Empir Software Eng (2008) 13:727-760
DOI 10.1007/s10664-008-9078-4

An industrial case study in reconstructing
requirements views

Marco Lormans - Arie van Deursen -
Hans-Gerhard Gross

Published online: 3 September 2008
© The Author(s) 2008. This article is published with open access at Springerlink.com

Editors: Dr. Massimiliano Di Penta and Dr. Susan Sim

Abstract Requirements views, such as coverage and status views, are an important
asset for monitoring and managing software development projects. We have devel-
oped a method that automates the process of reconstructing these views, and we
have built a tool, REQANALYST, that supports this method. This paper presents an
investigation as to which extent requirements views can be automatically generated
in order to monitor requirements in industrial practice. The paper focuses on
monitoring the requirements in test categories and test cases. In order to retrieve the
necessary data, an information retrieval technique, called Latent Semantic Indexing,
was used. The method was applied in an industrial study. A number of requirements
views were defined and experiments were carried out with different reconstruction
settings for generating these views. Finally, we explored how these views can help
the developers during the software development process.

Keywords Requirements management - Requirements traceability reconstruction -
Information retrieval

This is a substantially revised and expanded version of our paper (Lormans et al. 2006).

M. Lormans (X)) - H.-G. Gross
Delft University of Technology, Delft, The Netherlands
e-mail: M.Lormans@tudelft.nl

H.-G. Gross
e-mail: H.G.Gross@tudelft.nl

A. van Deursen
Delft University of Technology and CWI, Delft, The Netherlands
e-mail: Arie.vanDeursen@tudelft.nl

@ Springer

728 Empir Software Eng (2008) 13:727-760

1 Introduction

A “requirements view” on a system or development process offers a perspective on
that system in which requirements assume the leading role (Nuseibeh et al. 1994). A
requirement view can be a combination of artifacts such as requirements and design
information, showing how a requirement is transformed into a design artifact, and
indicating how and where a requirement is covered by specific design artifacts, or
where it is located in the system architecture. Examples are coverage views, such
as “which design artifacts address which requirement?”, or status views, such as
“which requirements are already implemented?” The various requirements views
help to avoid inconsistencies within the documentation of one kind of work prod-
uct (requirements specification) or between the documentation of different types
of work products (requirements specification and architectural design document)
(Easterbrook and Nuseibeh 1995). Requirements views help in improving the co-
herence between the work product documents, and lead to higher overall quality of
the work products.

Requirements views are essential for successful project management, and for
monitoring the progress of product development. In an outsourcing context, report-
ing progress in terms of requirements is particularly important, since the customer
is much less aware of the system breakdown or of implementation issues, and more
likely to be interested primarily in his requirements.

Unfortunately, capturing, monitoring, and resolving multiple views on require-
ments is difficult, time-consuming as well as error-prone when done by hand (Nissen
et al. 1996). The creation of requirements views necessitates an accurate traceability
matrix, which, in practice, turns out to be very hard to obtain and maintain (Gotel
and Finkelstein 1994; Domges and Pohl 1998; Graaf et al. 2003; Ramesh et al.
1995; Lindvall and Sandahl 1996). The tools currently available on the market,
such as Telelogic DOORS and IBM Rational RequisitePro, are often not sufficient:
keeping the traceability consistent using these tools is hard and involves significant
effort (Lormans et al. 2004; Alexander 2002).

To remedy this problem, a significant amount of research has been conducted
in the area of reverse engineering of traceability links from available software
development work products (De Lucia et al. 2004; Natt och Dag et al. 2005; Hayes
et al. 2006). Our own line of research has focused on the use of information retrieval
techniques, in particular latent semantic indexing (LSI) (Deerwester et al. 1990),
for this purpose, and on the application of the reconstructed matrices for view
reconstruction, specifically. We incorporated our ideas in a method, called MAREv,
and implemented the method in a tool, called REQANALYST (Lormans and van
Deursen 2005, 2006, 2009).

While significant progress in this area has been documented, a number of open
research issues exist, which we seek to explore in this paper. An initial question to be
addressed is not related to the case study performed. It is about which requirements
views are most needed in practice. To answer this question, a questionnaire was sent
out to a dozen practitioners, and from the answers three important groups of views
were distilled, which are described in detail.

As unit of analysis, one development project of LogicaCMG, an international IT
services supplier, was scrutinized for the case study. The primary question addressed
through this exploratory case study was how and to which extent requirements

@ Springer

Empir Software Eng (2008) 13:727-760 729

views can be reverse-engineered from existing work products. An important question
hereby is whether the approach we proposed (Lormans and van Deursen 2005, 2006,
2009) may be used to reconstruct these views. To answer this question, it is described
how our own prototype tool (REQANALYST) has been extended to support these
views, offering project stakeholders means to inspect the system and development
progress in terms of these views. Another question to be addressed through the
case study is whether these reconstructed views can help in a real life software
development process.

In the software development project under investigation in this case study, a traffic
monitoring system (TMS) is developed, and it is outsourced to LogicaCMG. In the
project, progress reporting to the customer must be done in terms of requirements,
making accurate requirements views an essential success factor. The paper discusses
the way of working in this project, and looks at how and to which extent recon-
structed links can be used to support and enhance the way of working. In the case
study, the focus lies on requirements views that are related to testing artifacts.

The remainder of this paper is organized as follows. Section 2 discusses existing
work in the area of requirements views and reverse engineering of traceability
matrices. Section 3 summarizes the methodology for generating requirements views,
called MAREv. Sections 4, 5, and 6 present the requirements views aimed at, the
way they are implemented in the REQANALYST tool, and the case study performed
at LogicaCMG, respectively. The paper conclude with a discussion, a summary of
contributions, and suggestions for future research.

2 Related Work
2.1 System Views

The term ‘view’ is often used in the area of software engineering, especially in
the area of requirements engineering. Views are generally introduced as a means
for separation of concerns (Nuseibeh et al. 1994) and mostly represent a specific
perspective on a system. This perspective is often a subset of the whole system in
such a way that its complexity is reduced. Each stakeholder is interested in a different
part of the system. A stakeholder may be a developer who is only interested in a small
part (a component, for example) of the complete system. The perspective that a view
represents, can also be an abstraction of the system. It can give an overview of the
whole system without providing too many details. Such a view from the top can be
useful for a project manager or a system architect.

Nuseibeh et al. discuss the relationships between multiple views of a requirements
specification (Nuseibeh et al. 1994; Easterbrook and Nuseibeh 1995). Most systems
that are developed by multiple participants have to deal with requirements that
overlap, complement and contradict each other. Their approach focuses on identi-
fying inconsistencies and managing inconsistencies in the requirements specification.
It is based on the viewpoints framework presented by Finkelstein et al. (1992).
This framework helps in organizing and facilitating the viewpoints of different
stakeholders.

Zachman proposes “The Architecture Framework” focusing on information
system views (Zachman 1987). Hay uses the six views of this framework for

@ Springer

730 Empir Software Eng (2008) 13:727-760

requirements analysis (Hay 2003). In his approach, he uses the framework to define
the requirements analysis process, which can be seen as the process of translating
business owners’ views into an architect’s view.

The concept of a “view” also appears in other areas of software engineering
such as architectural design. Kruchten introduced his “4 + 1 view model for ar-
chitecture”, where he defined five different concurrent perspectives on a software
architecture (Kruchten 1995). Each view of this model addresses a specific set of
concerns of interest to different stakeholders. Other examples are the “Siemens’ 4
views” by Hofmeister et al. (1999), the IEEE standard 1471 (IEEE 2000), and the
views discusses by Clements et al. in their book “Documenting Software Architec-
tures” (Clements et al. 2002, 2003). Van Deursen et al. also discuss a number of
specific views for architecture reconstruction (Deursen et al. 2004).

Finally, Von Knethen discusses view partitioning (von Knethen 2001). She con-
siders views on the system, distinguishing, for instance, the static structure from
the dynamic interactions in the system. These views support the process of impact
analysis in two ways: they improve (1) the planning (estimating costs) as well as
(2) the implementation of changes. Furthermore, the views allow the system to
incorporate changes in a consistent way.

Although, much research has been done in the area of system views, there is
no general agreement on what such views should look like, or which information
they should contain. Every project setting seems to have its own specific information
needs. Thus, views must be flexible in meeting these needs.

2.2 Document Standards, Templates and Reference Models

Another approach for separating concerns is to use a well structured document set,
conforming to known templates such as MIL-std 498 (Department of Defence 1994),
Volere (Robertson and Robertson 2000), IEEE-std-830 (IEEE 1998b), or IEEE-
std-1233 (IEEE 1998a). These templates help in getting an overview of what the
system does, but they are often not sufficient. Project managers, but also other team
members, need fast access to this data, and, preferably, they would like only a subset
of the whole pile of documents produced during the development life-cycle. Current
templates are not sufficiently flexible, and they are difficult to keep consistent during
development.

Nissen et al. show that meta-models help managing different requirements per-
spectives (Nissen et al. 1996). The meta-models define which information is available
and how it is structured in the life-cycle. This comprises the development artifacts,
including their attributes, and additionally, the traceability relations permitted to be
set between these artifacts. If the information is not stored sometime in the life-
cycle, it can never be extracted and used in a view. An important area of research is
developing these meta-models (Ramesh and Jarke 2001; von Knethen 2001; Toranzo
and Castro 1999; Maletic et al. 2003; Zisman et al. 2003), constraining the views to
be generated.

Von Knethen proposes traceability models for managing changes on embedded
systems (von Knethen 2001; von Knethen et al. 2002). These models help estimating
the impact of a change on the system, or help to determine the links necessary
for correct reuse of requirements. According to Von Knethen, defining a workable
traceability model is a neglected activity in many approaches. Our earlier research

@ Springer

Empir Software Eng (2008) 13:727-760 731

confirms the importance of defining a traceability model (Lormans et al. 2004). Some
initial experiments concerned a static traceability model. New insights suggest a
dynamic model, in which new types of links can be added as the way of working
evolves during the project. The need for information as well as the level of detail
change constantly in big development projects (Domges and Pohl 1998).

2.3 Traceability Support and Recovery

Traceability support is required in order to reconstruct requirements views from
project documentation. Several traceability recovery methods and supporting tools
already exist, each covering different traceability issues during the development life-
cycle. Some discuss the relations between source code and documentation, others
address the relations between requirements on different levels of abstraction.

De Lucia et al. present an artifact management system, which has been extended
with traceability recovery features (De Lucia et al. 2004, 2007). This system manages
different artifacts produced during development such as requirements, designs, test
cases, and source code modules. The Information Retrieval (IR) technique that De
Lucia et al. use for recovering the traceability links is LSI. Furthermore, they propose
an incremental traceability recovery process in which they try to identify the optimal
threshold for link recovery in an incremental and iterative way (De Lucia et al.
2006b). The threshold determines which links should be considered as candidate
links by a tool and which not.

Natt och Dag et al. (2005) and Hayes et al. (2006) use traceability reconstruction
primarily for managing requirements of different levels of abstraction, such as
reconstructing links between business and system requirements. Both, Natt och Dag
et al. and Huffman Hayes et al., have developed a tool to support their approaches.
In (Natt och Dag et al. 2005), discuss their approach and tool, ReqSimile, that
implements the basic vector space model which also forms the basis for LSI. They
report their experiences in (Natt och Dag et al. 2005), and the results are comparable
to what we found.

In their tool called RETRO, Huffman Hayes et al. have implemented various
methods for recovering traceability links (Hayes et al. 2006). They also applied their
approach in an industrial case study.

Cleland-Huang et al. define three strategies for improving dynamic requirements
traceability performance: hierarchical modeling, logical clustering of artifacts and
semi-automated pruning of the probabilistic network (Cleland-Huang et al. 2005).
They are implementing their approach in a tool called Poirot (Lin et al. 2006). They
have also defined a strategy for discovering the optimal thresholds for determining
candidate links (Zou et al. 2004).

Antoniol et al. (2002) use information retrieval methods to recover the traceability
relations between C++ code and documentation pages, and between Java code and
requirements. Marcus and Maletic (2003), and Di Penta et al. (2002) use information
retrieval techniques for recovering the traceability relations between source code
and documentation. In addition, Di Penta et al. (2002) augmented their traceability
approach with models of programmer behavior. The IR methods in these cases are
mostly applied for reverse engineering traceability links between source code and
documentation in legacy systems.

@ Springer

732 Empir Software Eng (2008) 13:727-760

Marcus et al. (2005) discuss how to visualize traceability links, and they introduce
atool, TraceViz, that implements their proposed requirements for traceability visual-
ization. IR techniques are also used for improving the quality of the requirements set.
Finally, Park et al. use the calculated similarity measures for improving the quality
of the requirements specifications (Park et al. 2000).

None of the discussed traceability reconstruction methods support the generation
of requirements views for monitoring the requirements in the other work products.
One reason for this is that current methods do not explicitly discuss the links that
can be reconstructed and cannot be reconstructed. This makes it hard to define
specific views and retrieve the information needed to manage a project with respect
to evolving requirements.

3MAREYV and REQANALYST

In our earlier work, we have proposed an approach for reconstructing requirements
views (Lormans and van Deursen 2005) and experimented with the reconstruction
of traceability links in several case studies (Lormans and van Deursen 2006, 2009).
The method is called MaRrev: Methodology for Automating Requirements Evolution
using Views. Besides that, the method has been implemented in a tool called
REQANALYST. This section provides a brief overview of the tool as well as the
underlying method.

3.1 Marev: A Methodology for Automating Requirements Evolution using Views

MAREV consists of the following six steps (see also Lormans and van Deursen 2005,
2006, 2009).

Step 1: Defining the Traceability Meta-model The underlying traceability meta-
model defines the types of work products, such as business requirements, system
requirements, design artifacts, or test cases, and the like, and the type of links that
are permitted within the development life-cycle. The choices made for defining the
meta-model largely depend on the needs of the application domain. Examples can
be found in (Ramesh and Jarke 2001; von Knethen 2001; von Knethen et al. 2002;
Toranzo and Castro 1999; Maletic et al. 2003; Zisman et al. 2003).

Step 2: Identifying the Work Products The work products are identified in the
provided project documentation or configuration management system, and mapped
onto the traceability meta-model. Each work product is given a type and unique
identifier if it has not already been assigned one. This unique identifier is a code
plus a unique number, for example, a functional requirement description can have
an identifier of the type “FRxx”, where xx represents the number.

This results in a set of functional requirement descriptions with the unique
identifiers “FR01”, “FR02”, and so on. This step must be executed for every work
product defined in the traceability meta-model. If requirements management tools
such as Telelogic’s DOORS are used, unique identifiers are provided automatically.

Step 3: Preprocessing the Work Products The work products are preprocessed to
support automated analysis for them. The text of each work product needs to be

@ Springer

Empir Software Eng (2008) 13:727-760 733

extracted and transformed into plain text. This step includes typical information
retrieval activities such as lexical analysis, stemming, and so on.

Step 4: Reconstructing the possible Traceability Links The likely traceability links
are reconstructed for which Latent Semantic Indexing (Deerwester et al. 1990) is
used. The result of this step is the complete set of candidate traceability links.

LSI is an information retrieval technique based on the vector space model. It
assumes that there is an underlying or latent structure in word usage for every
document set (Deerwester et al. 1990). LSI uses statistical techniques to estimate
this latent structure. A description of terms and documents based on the underlying
latent semantic structure is used for representing and retrieving information. LSI
starts with a matrix of terms by documents. Subsequently, it uses Singular Value
Decomposition to derive a particular latent semantic structure model from the term-
by-document matrix. The result is a reduced model, the rank-k model with the best
possible least square fit to the original matrix of terms by documents (Deerwester
et al. 1990). Subsequently, this model can be used to determine a similarity matrix.

Once all documents have been represented in the LSI subspace, the similarities
between the documents can be computed.

The cosine between their corresponding vector representations can be used for
calculating this similarity metric. The metric has a value between [0, 1] with a value
of 1 indicating that two documents are (almost) identical. These measures can be
used to cluster similar documents, or for identifying traceability links between the
documents.

Finally, LSI does not rely on a predefined vocabulary or grammar for the
documentation (or source code). This allows the method to be applied without
large amounts of preprocessing (i.e., stemming) or manipulation of the input, and,
therefore, it can reduce the costs of traceability link recovery considerably (Maletic
et al. 2003; De Lucia et al. 2004).

Step 5: Selecting the Relevant Links The possibly relevant links are selected auto-
matically from the complete set of candidate links (from the LSI) using various link
selection strategies. In our previous work, we proposed two link selection strategies,
a one and a two dimensional vector filter strategy on the similarity matrix (Lormans
and van Deursen 2009). These link selection strategies combine the already known
strategies constant threshold (represented by the symbol ¢ in this paper) and variable
threshold (represented by a percentage ¢) discussed by De Lucia et al. (2004).
The one-dimensional filter strategy considers every single column of the similarity
matrix separately. Each column vector of the similarity matrix is taken as a new
set of similarity measures, and it combines, for each column, the constant and the
variable threshold approaches. The two-dimensional filter strategy extends the one-
dimensional strategy by considering both dimensions of the similarity matrix. The
benefits of these strategies are that they guarantee certain level of quality by using
the constant threshold, and, yet, they take only the best k% of the links for a certain
work product. Both strategies are described in detail in (Lormans and van Deursen
2009), and they have shown improved results in terms of recall and precision. As
with all information retrieval techniques, it is not guaranteed that all correct links
are indeed found: both, false negatives, and false positives may arise.

@ Springer

734 Empir Software Eng (2008) 13:727-760

Step 6: Generating Requirements Views Finally, the requirements views are gener-
ated using the reconstructed traceability links. This step will be the focus for the rest
of this paper.

Step 7: Tackling Changes Finally, the reconstructed traceability links and generated
requirements views need to be able to tackle changes in the requirements. Therefore,
the validated traceability matrix and the newly reconstructed traceability matrix need
be compared after each run of the MAREV approach. Users can then validate the
impact of a requirements change in the traceability matrix.

3.2 The REQANALYST Tool Suite

In order to support the MAREY approach, we developed the REQANALYsT' (Lormans
and van Deursen 2009) tool. This tool can reconstruct traceability information and
generate requirements views using that reconstructed traceability information. In
this section we summarize our earlier work on REQANALYST. In Section 5 we focus
again on generating our requirements views using REQANALYST.

Extract-Query-View Approach REQANALYsT adopts the Extract-Query-View ap-
proach used in many reverse engineering tools (van Deursen and Moonen 2006).
In this approach, first, the relevant data from the provided documents is extracted.
This data, the work products, and, if available, the reference traceability matrices,
are stored in a database. For reconstructing the traceability links, queries can be
conducted on the database. The reconstructed information, combined with the data
from the database, is used to generate the requirements views.

The reference traceability matrix is optional, and contains the correct links
according to the experts in the project. It is only required to assess the outcomes
of the tool, addressing the question as to which extent requirements views can be
reconstructed automatically. Typical (reengineering) projects do not have such a
matrix, to start with, and the ultimate goal is to generate this matrix automatically
from the existing project documents, i.e., through using LSI.

Implementation REQANALYST is implemented using standard web-technology. For
storing the data, a MySQL database is used. It is implemented as a Java web
application using Java Servlets and Java Server Pages. For the case study, the Apache
Tomcat 5.5 web server was taken for deployment.

Functionality A REQANALYST session starts by logging in. Each user of REQANA-
LYST has specific rights to see certain projects. After authentication the user gets a
list of projects. Once the user has chosen a project, REQANALYST shows the main
menu. This main menu follows the steps from the Extract-Query-View approach van
Deursen and Moonen (2006), including functionality for extracting the data from the
complete set of provided documentation, and options for setting the parameters of
the LSI reconstruction and the choice for a link selection strategy. Figure 1 shows a
excerpt of the tool.

I'REQANALYST is available from http://swerl.tudelft.nl/bin/view/Main/ReqAnalyst.

@ Springer

http://swerl.tudelft.nl/bin/view/Main/ReqAnalyst

Empir Software Eng (2008) 13:727-760 735

For reconstructing the traceability links:

:Requirements S Test Categories
ifynu want all documents nchided in the analysis ves [

k-rank subspace (1,100). 40

Constant threshold (eps) (-1,1) 0.3

Vanable threshold (eps) (1,100) 30

Link Selechon Strategy Two Dimensional Filter ¥

Fig. 1 Input screen for traceability reconstruction

Once REQANALYST has executed a reconstruction, a menu appears showing the
reconstructed traceability matrix and a number of options for generating various
requirements views. This menu shows all the metrics relevant for assessing the
reconstruction, such as recall, precision, and the number of false positives and missing
links in the traceability matrix. This menu is also used to generate the various
requirements views.

Browsing in REQANALYST An important feature of REQANALYST is the possibility
to browse the reconstructed results. It allows engineers to inspect the reconstructed
traceability matrix and browse through the traceability links, implemented as hyper
links. When following the hyper link, all the information concerning the two entities
involved becomes available and can be inspected. For example, the original text of
both entities is shown in one view.

Furthermore, the reconstructed matrix can be compared with a reference matrix,
if available. The reference matrix represents the traceability matrix as determined
by the developers of a system and is only required for evaluation purposes. The
correctly reconstructed links (correct positives) are indicated with an “X” and the
cell is colored green. The false positives are indicated as “fp” and are colored yellow.
Furthermore, the false negatives (missing links) are indicated through “fn” and are
colored red.

4 Which Views are Needed in Practice?

While MaRrev and REQANALYST provide a method and tool support for obtaining
requirements views, it is less obvious which requirements views are actually needed
in practice. To address this issue, we have set up a questionnaire and distributed it
among various practitioners. Below, the questionnaire is described, and the three
main types of views that emerged from our survey are discussed.

4.1 Requirements View Questionnaire

The goal of our questionnaire was to get an impression about which views would
be helpful and which information these views should represent. The questions
asked to the participants are shown in Table 1. The questionnaire was distributed
among people of various roles within the software development life-cycle. The roles

@ Springer

736 Empir Software Eng (2008) 13:727-760

Table 1 Topics put forward in

k " Questions:
the questionnaire

1) What s your role in the software development life-cycle?
2a) What do you expect from a requirements view?
2b) What information would you like to see in a requirements
view? (Examples: coverage, functionality, status)
3a) What do you think persons in the roles below expect from
a requirements view?
— Project Manager
— Requirements Engineer
— System Architect
— Programmer
— Test Engineer
— Quality Manager
— Other? (please also define the role)
3b) What information do you think they would like to see?
(Do not fill in your own role again)
4) Do you think it is feasible to extract this information from the
work products currently produced during development?
(requirements specifications, design documents, etc.)

distinguished are: project manager, software process improvement / quality manager,
product marketing manager, requirements engineer, system/software architect, pro-
grammer and test engineer, as well as more specific roles such as product owner and
usability designer.

The respondents came from the industrial partners of the MERLIN project in which
we are involved.? This is a European research project in the area of global software
development in which various universities and companies participate. In total, the
questionnaire was spread among all 7 industrial partners. We got a response from
5 of the companies involved, all of which provided many replies according to their
various roles. In total we had 12 fully filled in questionnaires containing around 100
descriptions of desirable views for different roles in the life-cycle.

It was also asked if these views could be extracted from the work products they
currently produce during the development life-cycle. Most respondents think that
this should be possible, because this information should generally be contained
somewhere in the work products. However, the exact location of this information
is not always known.

4.2 Main Outcomes

The outcome from the questionnaire is that requirements should be able to be traced
into their associated subsequent work products. A challenge in that respect is that, in
many cases, the readability of many of the work products leaves much to be desired,
and that it is often hard to get an overview of the whole system. In addition to that,

Zhttp://www.merlinproject.org.

@ Springer

http://www.merlinproject.org

Empir Software Eng (2008) 13:727-760 737

stakeholders can easily get lost when looking for information if there are too many
possible links to follow. Our views should address this issue, and make it easier to
deduce the right information needed for the view in question.

Another lesson learned from the questionnaire is that the following information
is desirable in a requirements view:

— For each requirement, the source, description, motivation, importance, history,
status and dependencies to other work products. This is actually an obligation of
the new safety standard ISO/WD 26262 for systems in the automotive domain
that is currently being developed (Findeis and Pabst 2006).

— For each group of requirements, a list of all requirements, the status of their
implementation and verification (not tested, test passed, test failed).

— Life-cycle paths; per requirement, the complete path it undergoes during the
life-cycle. Two paths are of interest for the developers: the Requirements—
Implementation path and the Requirements—Test path.

— For all the requirements, the coverage in a certain work product. These work
products can, for example, be a lower level of requirements, the design or the
test cases.

From the questionnaire it was concluded that various developers and managers
are interested in specific information about a certain requirement (see first and third
bullet) or a group of requirements, sometimes in relation to other work products (see
last bullet).

From the answers to this questionnaire three types of views were distilled:
Coverage views, Life-cycle Path views, and Status views. Below, they are discussed
in detail.

4.3 Coverage Views

Requirements coverage views focus on the localization of the requirements in the
rest of the system. These views show whether and where a certain requirement is
associated with another artifact in the system. This can be coverage in the system
architecture, in the detailed design, or in the test cases, to name only a few instances.
The number of different types of coverage views depends on the meta-model
defined for the development process. It prescribes which phases are defined and
which work products are produced during these phases. This view is often used for
tracing requirements changes into subsequent work products (von Knethen 2001;
Settimi et al. 2004), and it can, therefore, be used for impact analysis in system
evolution (Bohner and Arnold 1996).

According to Costello et al., requirements coverage is defined as: The number of
requirements that trace consistently to the next level up or down (Costello and Liu
1995). They originally defined this metric for requirement to requirement coverage.
As this definition is very general, it is also suitable for the coverage of requirements
to other work products.

Hull et al. also define three so called traceability metrics (Hull et al. 2002). One
of them, Traceability Breadth, relates to coverage. It measures the extent to which
requirements are covered by the adjacent layer above or below (within the defined
meta-model).

@ Springer

738 Empir Software Eng (2008) 13:727-760

We define requirements coverage as follows: If a link between a requirement and
another work product, for example a test case, exists, and this link is correct, then
is the requirement covered by that work product. The requirements coverage view
shows which requirements are covered by work products, as well as the percentage of
these requirements with respect to the total number of requirements. For example,
the percentage of requirements (compared to all requirements) covered by a test
case can be defined as follows:

|requirements;eg|

coverageies = |requirementsor |’

where coverage,s; represents the coverage in the test case specification,
requirements,s; the number of requirements traced consistently by test cases and
requirements,,, the total number of requirements.

This coverage metric is very general and fundamental, and can be used for
requirements coverage in other life-cycle phases as well, such as the coverage of
requirements in the design.

4.4 Life-cycle Path Views

Requirements life cycle path views deal with the transformations and decompo-
sitions that a requirement undergoes throughout the development process. The
questionnaire showed that two life-cycle paths are important: the Requirements-
Implementation path and the Requirements-Test path. When comparing this to the
well-known V-model, it becomes apparent that these are the horizontal and vertical
dimensions of this life-cycle model.

The length of a life-cycle path is captured by the second traceability metric of Hull
et al., called Traceability Depth (Hull et al. 2002). This metric relates to the number
of layers along which the traceability extends, for example the layers along the left
leg of the V-model for capturing software development. It can also be seen as the
number of (model) transformations between the different types of work products.

As an example, Fig. 2 shows a Requirements—Test-Path in a traceability meta-
model. This example is taken from our case study which will be discussed in Section 6.
It shows that the focus of interest lies in following the path of the requirements
categories, via requirements and test categories, to test cases. The path extends along
4 layers according to Hull et al. Note, that a coverage view addresses only one layer.

In order to further characterize a life-cycle path view, another metric from Hull
et al. is relevant as well. This other metric, called Traceability Growth, measures how
a requirement expands down through the layers of the meta-model (in our case the
life-cycle path) (Hull et al. 2002). For example, a requirement can be covered by one
test case or by multiple test cases. This is also a useful metric for impact analysis,
which is why we will include it in our life-cycle path view.

Requirement Reai Test Test
Category equirement Category Case

Fig.2 An example of a life-cycle path

@ Springer

Empir Software Eng (2008) 13:727-760 739

4.5 Status Views

Requirements Status views concern the status of a (set of) work product(s) such as
a (set of) requirement(s). The view shows a specific status of the work product in
the life-cycle. In other words, if a link exists from a requirement to a source code
document, it can be assumed that the status of the requirement is “implemented”.
In addition, this information can be used in order to obtain a coverage measure
for the number of implemented requirements for project management purposes.
For example, status views may be associated with a measure expressing that 60%
of all requirements have the status “implemented”. A project manager can use this
information to monitor the progress of the project. Other management information
can be obtained by computing percentages of requirements that have reached a
certain status such as “tested successfully”.

Traceability support is often not enough to generate complete status reports of
requirements, for example, when a project manager needs to know whether all
requirements have passed a test. Traceability can help identifying the requirements
in the test document (the document that describes the test), and hopefully also in the
test report document. The latter contains the information whether the implementa-
tion of a specific requirement has passed its test or not. This information needs to be
extracted from the document and included in the status view as well.

In the case study, this extra status information was monitored in addition to the
normal traceability data. We tried to retrieve “richer information” concerning the
status of the requirements. For example, a status view for an individual requirement
can show its relations to other work products (coverage) including its status, such
as “covered by test, but not tested yet”, “covered by test, and failed the test” or
“covered by design, but not covered by test”.

5 Implementing the Views in REQANALYST

The three views presented should make it possible to obtain continuous feed-
back on the progress, in terms of requirements, of ongoing software develop-
ment or maintenance projects. Furthermore, they facilitate communication between
project stakeholders and different document owners. This section discusses how our
REQANALYST tool as described in Section 3.2 has been extended to incorporate
support for these three views.

Coverage Views The “Coverage View” as implemented in REQANALYST shows the
number of requirements that are covered (linked correctly) by some other work
product, and the total number of requirements that are analyzed. It also shows
the coverage percentage as defined in Section 4.3, i.e., percentage of the correctly
reconstructed links between requirement and associated other work product. Fur-
thermore, it lists the requirements with their description and the related artifacts
of the other work product. Besides the coverage, it is also possible to see which
requirements are not covered by the other work product. We call this view the
“Orphans View”. This view shows the same results as the coverage view, except for
the related artifacts: as there are none, these cannot be shown. This view is important

@ Springer

740 Empir Software Eng (2008) 13:727-760

for developers as they need to inspect why the requirements in this view are not yet
covered in the system.

Life-cycle path Views The “Life Cycle Path View” as implemented in REQANALYST
displays the stages involving a requirement. In particular, a tabular view is shown,
illustrating the work products a requirement is related to, such as requirements
categories or test cases. This table can also be used to obtain the values for the
traceability growth metric at the various levels in the life cycle path. An example
for our case study based on the traceability model in Fig. 2 is shown at the end of the
paper in Fig. 5.

Status Views The “Status View” as implemented in our REQANALYST tool is based
on the observation that every entity of a work product type can have multiple status
attributes attached to it. So, besides extracting the relevant data for executing the
automated reconstruction, it can also extract the additional status attributes from
the provided documentation. These status attributes are saved separately in the
database. When a user generates a view of a specific “requirement — test case”
relation, for instance, it can also show the status attributes concerning this relation.

6 Case Study: LogicaCMG

The previous sections discussed the three most essential views considered by engi-
neers, and we have proposed a method and a tool for reconstructing these views
automatically from the available work products. This section presents the case study
performed at LogicaCMG aimed at illustrating how the method and the tool work
out in practice.

We begin with laying out the case study design, making use of the guidelines
provided by Yin (2003). Then, after discussing the nature of the project and the
development process followed, we describe which requirements documents we used
as input for the reconstruction effort. Furthermore, we explain the reconstruction
approach and its specific parameter settings used, followed by a discussion of the
traceability matrices obtained. Finally, we discuss how these matrices lead to the
requirements views considered.

6.1 Case Study Design

The study aims at answering the following two essential research questions: (1)
How and to which extent can requirements views be reconstructed from existing
work products, and if this is the case, (2) can these requirements views help during
development? Addressing question (1), we believe requirements views can be recon-
structed, although, not up to the level desired. So, the question remains, whether the
proposed techniques, although sub-optimal, may have a positive effect on the overall
development process of a software project. The unit of analysis is a large and long-
lasting development project carried out by LogicaCMG which is described in much
more detail below. Question one is assessed by typical measures used in traceability
link reconstruction, i.e. recall and precision. Additional measures are used to indicate
the likely effort to assess the reconstructed views, i.e. validation percentage, and
coverage. Addressing question (2) is a lot more difficult, because comparable data for

@ Springer

Empir Software Eng (2008) 13:727-760 741

a fully manual reconstruction approach are lacking. In that respect, we cannot come
to definite objective conclusions on the performance of the automatic approach for
the task under consideration.

6.2 Case Study Background

The project in our case study involves a TMS, which is an important part of a traffic
control and logistics system that is required to operate at its maximum capacity. The
main purpose of TMS is to record the positions of vehicles in the traffic system.
These recordings are used to adjust the schedules of running and planned vehicles
as well as operating the necessary signaling. The TMS owners decided to outsource
the development of TMS to LogicaCMG.

Initially, LogicaCMG used IBM Rational RequisitePro for managing the require-
ments and MIL-std-498 Department of Defence (1994) for documenting their work
products. The project consumed 21 man years in the past 3 years of development. In
total, there are over 1200 requirements and over 700 test cases. All the traceability
links between the work products were manually set. This manual effort, which is
time-consuming and error-prone, is acceptable if it is done once. However, when
existing requirements evolve or new requirements come in, the links can become
inconsistent; old links may need to be dropped and new links may need to be added.
These are examples for why tracing becomes inconsistent, and must be redone,
eventually. Sometimes, the large number of changes made that the effort needed for
updating the traceability links was comparable with completely resetting all the links.
Having an automatic technique in place to reconstruct the inconsistent traceability
links may, thus, save a lot of effort.

Furthermore, the customer was not willing, initially, to operate on the tagged
documentation LogicaCMG provided along with the tool, since the customer wanted
to keep control of their own documents. For managing the requirements in this
particular case, LogicaCMG was forced to make separate requirements documents in
which the traceability was manually set by the requirements engineers. Some of the
mechanisms used for managing requirements evolution in this setting are described
in our earlier work dealing with the same case study (Lormans et al. 2004).

This way of working had two important shortcomings. First, it made the informa-
tion used for monitoring the progress of the requirements during the development
process unreliable. This was mainly due to the difficulty of keeping the traceability
links consistent during the evolution of the project. This increased the risks during the
integration phase, such as requirements that are not implemented, or functionality
that should not be implemented in the system. Second, the manual work for synchro-
nizing the updates from the client introduced errors, and was time-consuming.

In a later stage of the project, the customer dropped the demand of ownership
of all documents. Furthermore, LogicaCMG decided to reduce the number of links
maintained to the most essential ones. In particular, test documentation and test de-
scriptions were merged, thus simplifying the underlying meta-model. This reduction
of possible traceability links also helped to reduce the risk of inconsistencies.

In addition to that, part of the traceability matrix was maintained within the
documentation itself, instead of in a separate spreadsheet. Test documents include
the unique identifiers of the requirements they cover. The documents are structured

@ Springer

742 Empir Software Eng (2008) 13:727-760

Fig. 3 Traceability X
Meta-Model. The bold lines Requirement Test
indicate the explicit Category Category

traceability links available in
the study

Test
Case

Requirement

in such a way that the Doxygen® documentation generator can be used to produce an
HTML representation of the full matrix.

In both, the initial, and the current way of working, traceability links are set
manually. Our approach aims at offering partially automated tool support for this.
The case study at hand offers an opportunity to investigate whether our proposed
approach can be useful in practice, and whether it may reduce the effort needed for
consistent traceability support. In the case study, only the current way of working
will be considered.

6.3 Available Data

In the TMS case study, we investigate the relation between requirements and test
categories and between requirements and test cases. More specifically, we focus on
the requirements-to-test-coverage and the requirements-test-path views.

Two main documents are provided: a System/Subsystem Specification (SSS),
containing the requirements, and a Software Test Description (STD), containing
the description of the test categories. Both are MS-Word documents and they are
structured according to MIL-std-498 (Department of Defence 1994). This means that
traceability data is incorporated in these documents and that it is possible to obtain
a reference traceability matrix from this data.

Besides the two MS-Word documents, an HTML document generated by Doxy-
gen is available. This document is an addition to the STD, and it contains the
description of the test cases. It also comprises the description of the test categories
and, in some cases, also the descriptions of the requirements it refers to (see
Section 6.2). Doxygen uses this additional information of the test categories, and,
if available, the requirements to generate the HTML document. The HTML docu-
ment is accompanied by an MS-Excel spreadsheet, which contains the traceability
links between the requirements and the test cases. For our LSI analysis, we only
extracted the test case descriptions without the additional data (as this data is
sometimes missing).

Our meta-model for this case study is shown in Fig. 3. It consists of the following
work products. In the SSS, a hierarchy of requirements can be identified. The
uniquely identifiable requirements are clustered according to a hierarchy, resulting in
categories of requirements. Just like the individual requirements, these requirements
categories have a unique numbering, so they were taken into account for analysis
as well.

3www.doxygen.org.

@ Springer

www.doxygen.org

Empir Software Eng (2008) 13:727-760 743

Table 2 TMS case study

o Work product Number Size in Avg. terms
statistics
type terms per doc.
Requirements categories 45 1168 183
Requirements 121 695 29
Test categories 29 589 183
Test cases 98 886 107

Examples of requirements categories are general ones, such as goal and domain,
as well as more specific ones, such as the use of computer resources, specific
system interfaces, and safety. Each of these requirements categories has one or
more uniquely identifiable requirements. The traceability between the requirements
categories and requirements can be derived from the hierarchy. This traceability is
not incorporated explicitly in the MS-Word documents.

For the test cases, the same hierarchy can be identified, resulting in the separate
work products “test category” and “test case”. Both are uniquely identifiable in the
provided documentation. The main difference is that the two documents are not
related directly, but only through the requirements. Thus, the individual test cases
are not identifiable in the STD. In order to work out the hierarchical relations, the
HTML files that include the test case descriptions and test scripts, have to be checked.
They contain an identifier of a test category in the STD. However, the STD does
contain the traceability links between the requirements and the test categories.

The progress of 121 requirements, distributed over 45 categories, was monitored.
As these requirements are provided by MS-Word documents, some manual process-
ing had to be done, in order to extract the relevant data from the SSS and store
the processed tokens of text in the database. The requirements consist of a unique
identifier and a description. Besides the requirements, the SSS document contains
some context explaining certain domain knowledge for a group of requirements. This
data was extracted as well and stored in the database, marking it as “context”.

For the other work products, the requirements categories, test categories and test
cases, the same approach for obtaining the relevant data was used, resulting in 45
requirements categories, 29 test categories and 98 test cases (see Table 2, above).

LogicaCMG presently maintains two types of links, as indicated by the bold lines
in Fig. 3. These links between requirements and test cases, and between requirements
and test categories, are maintained in the SSS, STD, and spreadsheet documents. The
remaining links in Fig. 3 can either be derived from the maintained links, or from the
hierarchical structure of the documents.

Table 3 displays, for each link type, the total number of candidate links that can be
reconstructed as well as the total number of links in the reference traceability matrix.
For example, there are 297 reference links derived for the “requirements — test case”
link, whereas the total number of candidate links is 121 x 98 = 11858. The objective
of our approach is to find this small number of correct reference links in the complete
set of candidate links.

6.4 Reconstruction Approach
Reconstruction Input Parameters The reconstruction of the traceability matrices

for the different link types can be tuned in several ways. As we will see, the various
link types call for slightly different parameter settings.

@ Springer

744 Empir Software Eng (2008) 13:727-760

Table 3 Number of reference links and candidate links in the TMS case study

Link source Link target # Reference links # Candidate links
Requirements categories Requirements 121 5445
Requirements categories Test categories 31 1305
Requirements Test categories 110 3509
Requirements Test cases 297 11858
Test categories Test cases 122 2842

In all cases, we adopt a rank-k subspace of 40%. This is the size of the reduced
semantic structure model produced by the singular value decomposition step of LSI.
The new matrix is only 40% of the size of the original matrix, and, in LSI, it is
important for filtering out unimportant details, while keeping the essential latent
semantic structure intact. This step of LSI can be regarded as compressing the same
information in a smaller sub-space (Gross et al. 2007a), thereby generalizing the
information contained.

The constant threshold is set to ¢ = 0.3, i.e., two documents with a similarity below
this value of ¢ are never related. The variable threshold g is varied between 20%
and 80%, indicating that the best g% of the interval between the minimum and the
maximum of the similarity measures for a given document are used. The question
here is which links are indeed relevant, or, in other words, where do we draw the line
between interesting links and irrelevant links (Gross et al. 2007b)?

These parameters are chosen according to our experience in applying LSI
(see (Lormans and van Deursen 2009) for details on these parameters), and in the
future, we anticipate that further “rules of thumb” for adjusting these parameters
according to the problems at hand will have to be devised. In the presentation of the
results in Tables 4, 5, 6, 7, and 8 the first two columns indicate the values of ¢ and
q used.

Obtaining the Reference Matrix The traceability data maintained manually by the
software engineers at LogicaCMG were used as reference matrices in our case study.
Maintaining such matrices and keeping them consistent by hand is hard and error-
prone (see Section 6.2), so that the matrices were validated once more by Logica
engineers. The existing matrix was compared with a matrix obtained automatically
using our LSI-based approach. Assessing 100% of the links was considered too time-

Table 4 Reconstruction results for links between requirements and test categories

Link type: Requirements — test categories

c q Reconstructed Missing Recall Precision Validation = Coverage
links links percentage percentage
Correct False
positives positives

03 20% 51 29 59 0.46 0.64 2 43

03 40% 75 324 35 0.68 0.19 11 62

03 60% 82 722 28 0.75 0.10 23 68

03 80% 82 740 28 0.75 0.10 23 68

02 80% 95 1389 15 0.86 0.06 42 77

01 80% 107 2152 3 0.97 0.05 64 83

@ Springer

Empir Software Eng (2008) 13:727-760 745

Table 5 Reconstruction results for links between requirements and test cases

Link type: Requirements — test cases

c q Reconstructed Missing Recall Precision Validation = Coverage
links links percentage percentage

Correct False
positives positives

0.3 20% 66 419 231 0.22 0.14 4 26
0.3 40% 141 2254 156 0.48 0.06 20 45
0.3 60% 186 3938 111 0.63 0.05 35 53
0.3 80% 186 3967 111 0.63 0.05 35 53
0.2 80% 223 6265 74 0.75 0.03 55 67
0.1 80% 260 8508 37 0.88 0.03 74 74
0.05 80% 265 8682 32 0.89 0.03 75 74
0.05 90% 276 10030 21 0.92 0.03 87 74

consuming. A rank-k subspace of 40%, ¢ = 0.3, and ¢ = 20% was used as inputs for
this comparison. The engineers worked about 30 min to inspect the 29 false positives
and 59 missing links issued by the tool (see Table 4). This resulted in resetting
four missing links. Initially, they were indicated as link in the original matrix, but
because REQANALYST did not reconstruct them, the engineers reassessed the links
and decided to remove them from the reference traceability data. This improved the
traceability matrix used as reference in our other reconstruction results.

Reconstruction Output Parameters For each of the reconstructed matrices in
Tables 4, 6, 7 and 8, seven results are shown that help to assess the usefulness of
the reconstruction approach.

The set of reconstructed links, generated by REQANALYST, consists of correct
positives, which are correctly reconstructed compared to the reference traceability
matrix, and false positives, which are incorrectly reconstructed compared to the
reference traceability matrix. Next, the missing links are shown (also known as false
negatives), which are the links not reconstructed by REQANALYST, but identified as
links according to the reference traceability matrix.

Finally, two commonly used metrics in the area of information retrieval are de-
picted; recall (correct positives / total reference links) and precision (correct posi-
tives / total reconstructed links) (Baeza-Yates and Ribeiro-Neto 1999; Frakes and

Table 6 Reconstruction results for links between requirements categories and requirements

Link type: Requirements categories — requirements

c q Reconstructed Missing Recall Precision Validation = Coverage
links links percentage percentage
Correct False
positives positives

03 20% 91 32 30 0.75 0.74 2 75

03 40% 113 313 8 0.93 0.27 8 93

03 50% 118 699 3 0.98 0.14 15 98

03 60% 119 1300 2 0.98 0.08 26 98

03 80% 119 1754 2 0.98 0.06 34 98

@ Springer

746 Empir Software Eng (2008) 13:727-760

Table 7 Reconstruction results for links between test categories and test cases

Link type: Test categories — test cases

c q Reconstructed Missing Recall Precision Validation = Coverage
links links percentage percentage

Correct False
positives positives

0.3 20% 43 73 79 0.35 0.37 4 62
0.3 40% 62 324 60 0.51 0.16 14 62
0.3 60% 71 755 51 0.58 0.09 29 66
0.3 80% 71 867 51 0.58 0.08 33 66
0.2 80% 101 1512 21 0.83 0.06 57 83
0.1 80% 105 1682 17 0.86 0.06 63 83
0.05 80% 105 1682 17 0.86 0.06 63 83

Baeza-Yates 1992; Rijsbergen 1979; Salton and McGill 1986). The ultimate goal
would be to achieve a recall of 100% and a corresponding precision that is as high as
possible, since in that case we only need to eliminate false positives. A recall below
100% which is often the case (Marcus and Maletic 2003), inevitably means there
are also false negatives (missing links). In the worst case, all candidate links need to
be checked to identify these missing links, which takes much effort, but one of the
goals of our approach was to reduce the manual effort needed to support consistent
traceability (see Section 6.2).

Besides these metrics two other metrics were calculated, the percentage of valida-
tion work and the coverage percentage. For the application shown, the results of these
last two columns are the most interesting.

The percentage of validation work refers to the effort needed to validate the
reconstructed links manually compared to validating all possible candidate links
manually (total reconstructed links/total candidate links). A validation percentage
of 2% (see first row Table 4) means that the developers only need to validate 2% of
all the candidate links manually.

The coverage percentage establishes a connection between the traceability matrix
and the coverage views discussed in Section 4.3. The coverage percentage refers to
the percentage of correctly covered work products compared to the total number
of work products of that particular type, for example, the total number of correctly
covered requirements compared to all the requirements.

Table 8 Reconstruction results for links between requirements categories and test categories

Link type: Requirements categories — test categories

c q Reconstructed Missing Recall Precision Validation = Coverage
links links percentage percentage
Correct False
positives positives

03 20% 15 17 16 0.48 0.47 2 52

03 40% 17 85 14 0.55 0.17 8 59

03 60% 20 212 11 0.65 0.09 18 69

03 80% 21 224 10 0.68 0.09 19 72

02 80% 27 564 4 0.87 0.05 45 90

01 80% 31 795 0 1.0 0.04 63 90

@ Springer

Empir Software Eng (2008) 13:727-760 747

6.5 Reconstructed Traceability Matrix Results

Given the traceability meta-model from Fig. 3, five traceability link types are
possible. First, we discuss the quality of reconstruction results for the link types
LogicaCMG maintained, “requirements — test categories” and “requirements — test
cases”. Next, we discuss the link types we derived indirectly, “requirements catego-

ries — requirements”, “test categories — test cases”, and “requirements categories —
test categories”.

“Requirements — Test Categories” Table 4 shows the results for the link recon-
struction between the requirements and test categories. When we increase g we
see the recall increasing and the precision decreasing as expected. The validation
percentage also increases, meaning more links need to be validated. A low validation
percentage is positive, as it indicates the effort needed to keep the traceability
support consistent after a change, for example. In the case of ¢ = 20%, only 2% of
the total candidate links need to be validated. In this example, 98% of the candidate
links do not need to be validated.

However, in the case where the validation percentage is 2%, there are also 59
correct links missing compared to the reference traceability matrix. We would like
to achieve a recall of 100%, so that only false positives need to be eliminated (see
Section 6.4). Table 4 shows that with a constant threshold of ¢ = 0.3, we never
achieve a recall of 100%. Therefore, ¢ was decreased to 0.2 and 0.1. With ¢ = 0.1,
arecall of almost 100% can be achieved. Unfortunately, the number of false positives
increases, and, accordingly, the validation percentage. Yet, the total effort reduction
is 100 — 64 = 36%. Antoniol et al. (2002) used a similar effort estimation, which
they called the Recovery Effort Index. It is not clear, however, whether such
measurements are realistic indicators of effort, because of lack of empirical data
about a manual traceability recovery process. This will require more comparative
studies in the future.

From these results it can be concluded that it is very hard to recover the last
10-15 missing links with the approach presented, and realize a recall of 100%. It is
an open question whether there are textual revisions to the documents conceivable
(such as an annotation mechanism, or more consistent wording of the requirements)
that would enable automatic recovery.

The final column, the coverage percentage, increases as the recall increases. This
is expected behavior as it uses the correct positives as input and ignores the false
positives. As the recall approaches 100%, the coverage percentage will get closer
to the coverage that is obtained from the reference matrix. In the TMS case study,
85% of the requirements are covered by test categories. The missing links cause the
coverage percentage to be 83% instead of 85%, as expected.

“Requirements — Test Cases” Table 5 shows the results for the links between
requirements and test cases. The results are of lower quality compared to the links
between requirements and test categories: For every value of the variable threshold
q, the recall and precision are lower in this case. In order to get a reasonable recall,
we need to decrease the constant threshold to ¢ = 0.05. Even then, the recall is not
100%: again, we are not able to recover the final 20-30 missing links, which, are
indicated as traceability links in the reference matrix.

@ Springer

748 Empir Software Eng (2008) 13:727-760

This result has consequences for the applicability of this link relation. Looking at
the validation percentage, in can be observed that 87% of all candidate links need to
be validated. This means that many false positives have to be eliminated and almost
all (87%) of the links must be checked manually. Somehow, there seems to be a
mismatch between the requirements and the test cases.

The coverage of requirements in test cases also confirms this mismatch. The cov-
erage percentage is 79% in the reference traceability matrix. Our result approaches
that value, as expected. But, comparable to the previous case, some requirements
seem to be hard to link to test cases as indicated by the difference between our value
of 74% and the reference value of 79%.

A way to improve the results can be by incorporating the additional information
of the test categories and requirements in the Lsri analysis. This was not done, since
this information is missing for some of the test cases (see Section 6.3). By adding this
information, the identifiers of the test categories and requirements can be included
in the Lsi analysis, causing the similarity value to increase. The test categories
did contain the unique identifiers of the requirements in their descriptions. This is
probably one of the reasons why the results for the links between the requirements
and test cases is lower. It also demonstrates the importance to include the identifiers
in the Lsr analysis.

“Requirements Categories — Requirements” As discussed in Section 6.3, the SSS
consists of a hierarchy of requirements. The higher level structure of requirements
is called requirements categories. We investigated whether this containment relation
can be identified using the link reconstruction approach presented.

Table 6 shows the results for the links between the requirements categories and
requirements. These results are promising. Except for the three missing links, we
already realize a recall of almost 100% with g = 50%. None of the previous results
has shown such high quality.

This result can be explained by the fact that a requirements category consists of
one or more requirements p/us some extra context. So, the requirements descriptions
can literally be found in the description of the requirements category. The extra
context is, in most cases, a general description of the requirements category. Our
reconstruction approach benefits directly from the fact that a requirements category
contains the individual requirement descriptions.

When doing a qualitative analysis on the three missing links we find a plausible
explanation for the fact that they are not reconstructed. The two links we could not
reconstruct are canceled and they have no text describing the requirements except
for the statement “canceled”.

As a consequence from the current configuration, the effort needed to validate
the links is low. Besides that, the coverage is almost 100%. This means that all
the requirements are covered by a requirements category. The reference matrix
also shows that all the requirements are covered by a requirements category. Our
reconstruction results confirm this (see the last column of Table 6).

“Test Categories — Test Cases” The same analysis that was done for the require-
ments categories and requirements was also carried out for the test categories and
test cases. The major difference with the requirements hierarchy is that the test
categories do not contain the test cases. The test categories are described in the STD

@ Springer

Empir Software Eng (2008) 13:727-760 749

and the test cases are described in the generated HTML document. There are no
reference links maintained by LogicaCMG for this relation, so these links had to be
derived via the links of the requirements.

Table 7 depicts the results of the link between the test categories and test cases.
The results are comparable with the results of the reconstruction between the
requirements and test cases. Again, it is difficult to realize a recall of 100%, so that
the constant threshold must be decreased, which leads to almost 20 links not being
recovered by the tool.

With a recall value of 86% already 63% of all candidate links need to be validated.
If the aim is to achieve a recall of 100%, probably all candidate links need to be
validated. This makes the effort reduction for this reconstruction minimal. In the
future, we will have to find ways to increase recall without sacrificing precision.

The coverage of the reference matrix is 83%. A recall of 86%, realises a coverage
of 83% which is equal to the coverage value of the reference matrix. This can be
explained by the definition of the coverage metric. The coverage metric takes into
account individual requirements. It checks if a test category is covered in the other
work product, that is, the test cases. Thus, it only needs one consistent link to a test
case to be set as covered. Still, a test category can have multiple links to multiple test
cases. If one of these “extra” links is not reconstructed, this does not influence the
coverage metric. Again, this metric only needs one consistent traceability link.

“Requirements Categories — Test Categories” We expected the results of the link
between the requirements categories and test categories to be comparable with,
or even better than the relation between the requirements and the test categories.
This has the following reasons. First, the level of granularity should match better.
Earlier results show that if there is a mismatch in the level of granularity, the
reconstruction results of Lst will decrease (Lormans and van Deursen 2006, 2009).
Second, the requirements categories contain more text, so the vector representation
of the requirements categories devised during latent semantic analysis is expected to
contain more terms than the one for the requirements.

Table 8 shows the results of this link type. The results are indeed comparable with
the results depicted in Table 4, but the results are not better. Thus, the clustering
of the requirements into categories does not imply an improvement of the results.
In other words, the “richer’ vector representation of the requirements categories
(because of the larger text size), does not influence the vector representation of
the requirements in a positive way, compared to the vector representation of the
test categories. The vector representations of the requirements and the requirements
categories are comparable, causing the similarity measure to be comparable.

6.6 From Traceability Matrices to Requirements Views

The previous section presented the reconstruction results of the different traceability
link types. The generated views were used to fill in the last two columns of the
Tables 4,5, 6,7, and 8. The other metrics such as recall and precision are not relevant
for the users of REQANALYST, and, thus, will not be depicted in a requirements view.
Each view can be tailored to the needs of the users.

Figure 4 depicts an example of a coverage view. This view shows the number of
requirements that are not covered in the test categories. In this case, 58 require-

@ Springer

750 Empir Software Eng (2008) 13:727-760

s
TUDelft

There are 58.0 requirements not covered of the total set of 121.0 requirements.
The coverage of the requirements in the testcategories is: 0.5206611570247934.

The following requirements do mot have a link to the testcategories:

ATG-1
b e = = : i v it

ATG-10

RPN ey oo bkoirbnsd P o el APl
ATG-2

n- e —— " X P 4 ikl i ik . DRI PR R T
ATG-4

= e e

ATG-8

e s e B e oraet o PRl e SR

Fig.4 Reconstructed coverage view. Company sensitive details have been made illegible on purpose

ments are not covered and this results in a coverage of 52%. This view also lists
each requirement that is not covered. The user can scroll this list and take the
appropriate action.

The views can use the automatically generated traceability links or the reference
traceability matrices stored in the database. Finally, a validated matrix can be stored
in the database as well. This validated matrix is then the preferred option for
generating the views. To create a validated traceability matrix, all the reconstructed
links are listed. The expert can review the complete list of reconstructed links
and confirm or decline each candidate link. The links that are confirmed form the
validated traceability matrix.

In order to create the Life-Cycle Path views, we can either use the reconstructed
traceability data, or the reference traceability data. Figure 5 shows an example of a
life-cycle path view, in which the requirements categories assume a leading role. We
have made the identifier unreadable for confidentiality reasons. Figure 5 only shows
a subset of 4 requirements categories. As can be seen, each requirements category
results in 3 or more requirements. The last requirements category even results in
30 requirements. Next, the several requirements are again captured in one or more
test categories. Note that in this case, the traceability growth is less than 1 (more
artifacts on the lower level, than on the higher level). The first 3 requirements are
captured in 1 test category, and the 30 requirements are captured by only 5 test
categories. Finally, the traceability growth between the test categories and the test
cases is greater than 1 (more artifacts on the lower level than on the higher level).
The 5 test categories are covered by 27 test cases, and the 1 test category is covered
by 3 test cases. The first two test categories do not have test cases related to them.

@ Springer

Empir Software Eng (2008) 13:727-760 751

Requirements Categories

—

Test Categories Test Cases ‘

Fig. 5 Reconstructed life-cycle path view. Company sensitive details have been made illegible
on purpose

Finally, we are not able to show an example of a status view. In this case study, the
status attributes are not provided in the documentation. So, we cannot show whether
a requirement is approved, or whether, a test case is executed and the system passed
the test. Future case studies should provide this information. If status attributes are
maintained, this additional information can easily be incorporated in a life-cycle
path view.

7 Discussion

Quality of the Reconstructed Links The LogicaCMGcase study, demonstrates that
the results for the various link types differ:

— Linking requirements to test categories worked out reasonably well. This is an
important link type, maintained manually by LogicaCMG.

@ Springer

752 Empir Software Eng (2008) 13:727-760

— Linking requirements to individual test cases was harder: apparently the test case
descriptions are too short and too specific to link them easily to requirements
prose.

— Linking requirements to their requirements category worked out very well,
thanks to the fact that the requirements text was included in the category
description.

Consistent Traceability Support Our analysis identified several small inconsisten-
cies. The traceability data incorporated in the SSS and the traceability data main-
tained in MS-Excel show different links compared to the content of the descriptions.
For example, a requirement that was canceled, was still included in the traceability
data. The manual synchronization of these work products is, apparently, error-prone.
REQANALYST can identify these inconsistencies, so that the developer can correct
them. In this way, maintaining consistent traceability support becomes easier.

Requirements Views Although more views can be defined in REQANALYsT, the
current views already got positive feedback from the developers at LogicaCMG. Our
views increase developers’ insights in the system and they improve the possibilities to
review and validate the requirements systematically. Individual requirements can be
inspected with respect to their coverage and their role within the system, using the
life-cycle paths. Therefore, not all possible related documents need to be checked
completely, reducing validation effort.

Currently, the number of views that can be generated using Doxygen is limited.
The hyper links Doxygen is able to generate from its input files are bound to the
information that is captured in those files. Our approach is more flexible. With
the reconstructed traceability data we can generate the same and additional views
compared to the Doxygen approach. So, our approach extends the current way of
working at LogicaCMG.

An issue is the fact that our views greatly depend on REQANALYST’s traceability
support (as discussed above). Once the traceability is consistent, monitoring the
progress of the requirements is improved by the requirements views proposed.

Effort Reduction Itisdifficult to estimate whether and to which extent REQANALYST
really reduces the effort needed for keeping the traceability support consistent. Is
the 35% effort reduction reasonable? In our case, we did a first-time reconstruction
and one increment (the validation session) (De Lucia et al. 2006b,a). Following
increments can take into account the validated reference traceability matrix. So, false
positives that are already discarded from a previous reconstruction, and that do not
relate to a change, are ignored. We expect that this will, again, reduce the effort
for doing a next update. Only a small number of links, the links that are concerned
with the changes, need to be validated. Initially, our reference traceability data was
updated manually after the validation session, together with the expert. In order to
come to final conclusions, in the future, we will have to pay more attention to how
people are really constructing traceability links manually, and compare that to the
performance of our automatic method.

Quality of the Documentation Our validation session also improved the quality

of the content of the work products. Normally, the specifications are reviewed by
individual persons after a change. In our validation session, we inspected the false

@ Springer

Empir Software Eng (2008) 13:727-760 753

positives and missing links. Assessing the links, implied reviewing the descriptions
of the related work products. This also led to more harmonized descriptions in the
documentation. It is worth investigating what the documentation requirements are
in order to enable full automated traceability with a 100% recall. If projects could
improve their documentation, for example along the lines proposed in (De Lucia
et al. 2006c), and that would enable fully automated traceability reconstruction, the
benefits for practice would increase considerably.

Reconstruction Technology The case study shows that in order to get a high recall,
we have to live with a rather low precision — figures which are consistent with
earlier studies (Lormans and van Deursen 2006; De Lucia et al. 2006b). This raises
the question whether the information retrieval approach used, LSI, can be further
refined. Future work is needed to determine whether there are specific characteristics
of the requirements specification domain that can help to obtain better results. For
example, the hierarchical nature of requirements documents may offer further clues
for reconstructing links.

In addition to that, the specific link selection approach could be further refined.
Presently, we made use of our two-dimensional link selection strategy as described
in our earlier work (Lormans and van Deursen 2006, 2009), since in a set of separate
case studies this strategy performed best. It may be worthwhile to investigate
alternatives to this approach, possibly differentiating between various link types.

Generalizing the Findings Naturally, many of the details in the case study are spe-
cific for the setting at LogicaCMG. Additional case studies are needed to determine
to what extent our results can be truly generalized.

To that end, we have conducted initial experiments in a different industrial
development project, this time in the electronics domain. In this case study, the meta-
model is more complex, and the total set of documents is larger. Yet we can easily
see the counterparts for the requirements and their categories, as well as the test
cases and their categories. The initial results of these case studies yield traceability
matrices and requirements views that are comparable in quality to the results from
the LogicaCMG case.

Threats to Validity We conclude our discussion with a brief analysis of potential
threats to validity of the case study findings, conforming to Yin (2003).

A first concern is construct validity, which deals with the question whether the type
of observations made can actually help in answering the case study’s questions. The
risks of subjective observations has been eliminated by the use of the REQANALYST
tool suite, which automatically produces the data in the tables as discussed in
Section 6. Obtaining an accurate reference matrix is perhaps the most subjective
element of the case study, since the tool findings resulted in discussion on the
correctness of the reference matrices produced. The process to carefully obtain this
matrix was described in Section 6. A final issue related to construct validity is whether
“validation percentage” is a reasonable measure for effort (reduction) — this question
was discussed earlier in this section as well. In all cases, we actively involved various
people from LogicaCMG in the case study, in order to minimize the risk of bias and
subjective findings.

@ Springer

754 Empir Software Eng (2008) 13:727-760

Since our case study is exploratory in nature, there are no threats to internal
validity. With respect to external validity, we refer to the observations made above
in the discussion on generalizing our findings.

Last but not least, repeatability (“reliability” in terms of Yin (2003)) is affected
by the closed nature of an industrial case study like ours. Thus, while all data have
been carefully collected and are indeed available, full repeatability is only possible
within LogicaCMG. This is, in fact, important for LogicaCMG as well, since they are
interested in conducting more studies like this one.

Revisiting the Case Study Questions Before performing the case study, we had a
few anticipations and expectations towards the likely outcome of a project like the
one described here. One question was not initially related to the actual case study,
and more of a general nature: which requirements views are needed in practice?
According to the answers obtained from industrial partners, we concentrated on
coverage views, life-cycle views, and status views. In particular, the first group,
coverage views, is gaining importance, in many software domains, simply through
the fact, that engineers want to assess the likely effect of a change in requirements
on all other work products. For some domains, the automotive domain, for example,
it will be compulsory in the future to provide such traceability views for certification.

Other questions, more fundamental to the case study performed, dealt with the
how and the extent to which the traceability views in a system can be reverse-
engineered from the existing work products. We have demonstrated the “how”
sufficiently through application of LSI in our proposed MArRev method and its
associated tool REQANALYsT. LSI is capable to generate traceability links between
documents that share the same inherent semantic concepts. It is quite robust with
respect to the type and structure of the documents provided. Our case study is,
therefore, successful in demonstrating the application of our method and tool in such
a reconstruction context.

The question of the extent to which REQANALYST can reconstruct links correctly
cannot be answered sufficiently in a single case study. We have seen that LSI can
reconstruct, sometimes more, sometimes less traceability links for the required views.
This depends on the parameters used, leading to high recall and low precision, or
low recall, with high precision. The actual question to be answered here is whether
and to which extent missed links or many false positives are acceptable, and that
depends on the quality of the reference matrix provided. The reference matrix is
typically provided by the developers of a system as a result of some tedious manual
process, and in other projects, we have observed that, sometimes, developers cannot
agree on the right links, or they simply forgot to define links. The extent to which
requirements views are reconstructed correctly is therefore still an open question
that must be answered empirically through a number of similar case studies with
thorough verification of the reference matrix, and this leads us the next questions
asked earlier in this paper: can the approach be used to reconstruct traceability
views, and can the reconstructed views help in real software development. The first
question we answer with a definitive yes, but engineers have to decide whether
low quality of the outcome is a serious hindrance for its application. Industry is
often quite pragmatic in the application of automated tools: any little tool support is
better than nothing, and only looking at and assessing automatically generated views
might be a lot easier than creating them from scratch. At least the tool is capable

@ Springer

Empir Software Eng (2008) 13:727-760 755

of generating the most obvious links for views that are easy to establish. However,
an aftertaste remains. That is the number of missed links. At the moment, there is
no way to identify missed links without visiting all links, i.e. if there is no reference
matrix. Therefore, we cannot claim our method is useful for software engineers as
it is, nor can we say how much effort it can save, if any. We do not have conclusive
data on the effort of reconstructing views manually. What we can foresee as future
research, however, is an extended iterative reconstruction method in which the recall
is increased gradually, generating many false positives, which can be filtered through
a comparison with false positive links dismissed earlier. This may lead to a more
precise reconstruction for which only a few new links would have to be assessed per
iteration. That way, the method could bootstrap its own reference matrix and extend
that on the way.

Another improvement could come from including a feedback mechanism similar
to the one described in (Hayes et al. 2006).

8 Conclusions

In this paper, we have studied the reverse engineering of requirements views from
software development work products, in the context of an industrial outsourcing
project. We consider the following as our key contributions:

— The identification, through a questionnaire among practitioners, of three rele-
vant requirements views: coverage views, life-cycle path views, and status views.

— An approach to reconstruct these requirements views from software develop-
ment work products, supported by our REQANALYST tool suite;

— The application of our approach to an ongoing project at LogicaCMG,
illustrating

1. how the software development process steers the reconstruction process
and determines the meta-model used;

2. how the quality of the reconstructed traceability matrix can vary per
link type;

3. how the traceability matrices can be used to obtain requirements views.

Our future work will concern the following issues. First, we would like to tune
our approach and come to more specific guidelines to reduce the effort needed to
get a validated reference traceability matrix. Furthermore, we would like to expand
the number of requirements views for more complex environments with more
sophisticated meta-models. Last but not least, as mentioned in the previous section,
we are presently working on an industrial case in the area of consumer electronics.
This case concerns a globally distributed software development environment and a
product-line, making it a very complex environment to apply our method.

Acknowledgements We would like to thank the Merlin partners for filling in the questionnaire.
In particular, we would like to thank LogicaCMG and the members of the TMS project for their
cooperation and making this research possible. Partial support was obtained from NWO Jacquard,
project Reconstructor.

@ Springer

756 Empir Software Eng (2008) 13:727-760

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

References

Alexander I (2002) Towards automatic traceability in industrial practice. In: Proc. of the 1st int.
workshop on traceability. Edinburgh, 28 September 2002, pp 26-31

Antoniol G, Canfora G, Casazza G, De Lucia A, Merlo E (2002) Recovering traceability links
between code and documentation. IEEE Trans Softw Eng 28(10):970-983 (ISSN 0098-5589)

Baeza-Yates RA, Ribeiro-Neto B (1999) Modern information retrieval. Addison-Wesley Longman,
Boston (ISBN 020139829X)

Bohner S, Arnold R (eds) (1996) Software change impact analysis. IEEE Computer Society,
Washington, DC

Cleland-Huang J, Settimi R, Duan C, Zou X (2005) Utilizing supporting evidence to improve
dynamic requirements traceability. In: Proc. of the 13th IEEE int. conf. on requirements en-
gineering. IEEE Computer Society, Washington, DC, pp 135-144 (ISBN 0-7695-2425-7)

Clements P, Garlan D, Bass L, Stafford J, Nord R, Ivers J, Little R (2002) Documenting software
architectures: views and beyond. Pearson Education, Harlow (ISBN 0201703726)

Clements P, Garlan D, Little R, Nord R, Stafford J (2003) Documenting software architectures:
views and beyond. In: Proceedings of the 25th international conference on software engineering.
IEEE Computer Society, Washington, DC, pp 740-741 (ISBN 0-7695-1877-X)

Costello RJ, Liu D-B (1995) Metrics for requirements engineering. J Syst Softw 29:39-63

Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R (1990) Indexing by latent
semantic analysis.] Am Soc Inf Sci 41(6):391-407

De Lucia A, Fasano F, Oliveto R, Tortora G (2004) Enhancing an artefact management system with
traceability recovery features. In: Proc. of the 20th IEEE int. conf. on software maintenance.
IEEE Computer Society, Washington, DC, pp 306-315

De Lucia A, Di Penta M, Oliveto R, Zurolo F (2006a) Coconut: code comprehension nurturant
using traceability. In: Proc. of the 22nd IEEE int. conf. on software maintenance (ICSM’06).
IEEE Computer Society, Washington, DC, pp 274-275 (ISBN 0-7695-2354-4)

De Lucia A, Fasano F, Oliveto R, Tortora G (2006b) Can information retrieval techniques effectively
support traceability link recovery? In: Proceedings 10th international conference on program
comprehension. IEEE Computer Society, Athens, pp 307-316

De Lucia A, Oliveto R, Zurolo F, Di Penta M (2006¢) Improving comprehensibility of source code
via traceability information: a controlled experiment. In: Proc. of the 14th IEEE international
conference on program comprehension (ICPC’06). IEEE Computer Society, Washington, DC,
pp 307-326 (ISBN 0-7695-2601-2)

De Lucia A, Fasano F, Oliveto R, Tortora G (2007) Recovering traceability links in software artifact
management systems using information retrieval methods. ACM Trans Softw Eng Methodol
16(4):Art. nr. 13

Di Penta M, Gradara S, Antoniol G (2002) Traceability recovery in rad software systems. In: Proc. of
the 10th int. workshop on program comprehension. IEEE Computer Society, Washington, DC,
pp 207-216 (ISBN 0-7695-1495-2)

Domges R, Pohl K (1998) Adapting traceability environments to project-specific needs. Commun
ACM 41(12):54-62 (ISSN 0001-0782)

Easterbrook S, Nuseibeh B (1995) Managing inconsistencies in an evolving specification. In:
Proc. of the 2th IEEE int. symposium on requirements engineering. IEEE Computer Society,
Washington, DC, pp 48-55 (ISBN 0-8186-7017-7)

Findeis M, Pabst I (2006) Functional safety in the automotive industry, process and methods. VDA
(Verband der Automobilindustrie) Winter meeting

Finkelstein A, Kramer J, Nuseibeh B, Finkelstein L, Goedicke M (1992) Viewpoints: a framework
for integrating multiple perspectives in system development. Int J Softw Eng Knowl Eng 2(1):
31-58, March

Frakes WB, Baeza-Yates R (eds) (1992) Information retrieval: data structures and algorithms.
Prentice-Hall, Upper Saddle River (ISBN 0-13-463837-9)

@ Springer

Empir Software Eng (2008) 13:727-760 757

Gotel O, Finkelstein A (1994) An analysis of the requirements traceability problem. In: Proc. of the
1st IEEE int. conf. on requirements engineering, Colorado Springs, April 1994, pp 94-101

Graaf B, Lormans M, Toetenel H (2003) Embedded software engineering: state of the practice. IEEE
Softw 20(6):61-69, November—December

Gross H-G, Lormans M, Zhou J (2007a) Reformulating component identification as document
analysis problem. In: Shishkov B, Filipe J, Helfert M (eds) 2nd Intl. conference on software
and data technologies, 22-24 July 2007. Insticc, Setubal, pp 111-116 (ISBN 978-989-8111-10-8)

Gross H-G, Lormans M, Zhou J (2007b) Towards software component procurement automation
with latent semantic analysis. Electron Notes Theor Comp Sci 189:51-68, July (ISSN 1571-0661)

Hay DC (2003) Requirements analysis: from business views to architecture. Prentice Hall PTR,
Upper Saddle River

Hayes JH, Dekhtyar A, Sundaram SK (2006) Advancing candidate link generation for requirements
tracing: the study of methods. IEEE Trans Softw Eng 32(1):4-19, January

Hofmeister C, Nord R, Soni D (1999) Applied software architecture. Addison-Wesley, Reading

Hull MEC, Jackson K, Dick AJJ (2002) Requirements engineering. Springer, Berlin

IEEE (1998a) IEEE guide for developing system requirements specifications (IEEE-std-1233).
IEEE, Piscataway

IEEE (1998b) IEEE recommended practice for software requirements specifications (IEEE-std-
830). IEEE, Piscataway

IEEE (2000) IEEE recommended practice for architectural description of software intensive systems
(IEEE-std-1471). IEEE, Piscataway

Kruchten P (1995) The 4+1 view model of architecture. IEEE Softw 12(6):42-50 (ISSN 0740-7459)

Lin J, Lin CC, Cleland-Huang J, Settimi R, Amaya J, Bedford G, Berenbach B, Khadra OB, Duan
C, Zou X (2006) Poirot: a distributed tool supporting enterprise-wide automated traceability.
In: RE °06: Proceedings of the 14th IEEE international requirements engineering conference
(RE’06). IEEE Computer Society, Washington, DC, pp 356-357 (ISBN 0-7695-2555-5)

Lindvall M, Sandahl K (1996) Practical implications of traceability. Softw Pract Exp 26(10):
1161-1180 (ISSN 0038-0644)

Lormans M, van Deursen A (2005) Reconstructing requirements coverage views from design and
test using traceability recovery via LSI. In: Proc. of the int. workshop on traceability in emerging
forms of software engineering, Long Beach, November 2005, pp 37-42

Lormans M, van Deursen A (2006) Can LSI help reconstructing requirements traceability in design
and test? In: Proc. of the 10th European conf. on software maintenance and reengineering,
March. IEEE Computer Society, Bari, pp 47-56

Lormans M, van Deursen A (2009) Reconstructing requirements traceability in design and test using
latent semantic indexing. J Softw Maint Evol Res Pract (Preprint on line available as technical
report TUD-SERG-2007-007. Delft University of Technology) (in press)

Lormans M, van Dijk H, van Deursen A, Nocker E, de Zeeuw A (2004) Managing evolving require-
ments in an outsoucring context: an industrial experience report. In: Proceedings international
workshop on principles of software evolution (IWPSE). IEEE Computer Society, Piscataway,
pp 149-158

Lormans M, Gross H-G, van Deursen A, van Solingen R, Stéhouwer A (2006) Monitoring require-
ments coverage using reconstructed views: an industrial case study. In: Proc. of the 13th working
conf. on reverse engineering, October. IEEE Computer Society, Benevento, pp 275-284

Maletic JI, Munson EV, Marcus A, Nguyen TN (2003) Using a hypertext model for traceability link
conformance analysis. In: Proc. of the 2nd int. workshop on traceability in emerging forms of
software engineering, TEFSE, Montreal, 7 October 2003, pp 47-54

Marcus A, Maletic JT (2003) Recovering documentation-to-source-code traceability links using latent
semantic indexing. In: Proc. of the 25th int. conf. on software engineering. IEEE Computer
Society, Washington, DC, pp 125-135 (ISBN 0-7695-1877-X)

Marcus A, Xie X, Poshyvanyk D (2005) When and how to visualize traceability links. In: Maletic
JI, Cleland-Huang J, Hayes H, Antoniol G (eds) 3rd intl. workshop on traceability in emerging
forms of software engineering, November. ACM, Long Beach, pp 56-61

Natt och Dag J, Gervasi V, Brinkkemper S, Regnell B (2005) A linguistic-engineering approach to
large-scale requirements management. IEEE Softw 22(1):32-39 (ISSN 0740-7459)

Nissen HW, Jeusfeld MA, Jarke M, Zemanek GV, Huber H (1996) Managing multiple requirements
perspectives with metamodels. IEEE Softw 13(2):37-48 (ISSN 0740-7459)

Nuseibeh B, Kramer J, Finkelstein A (1994) A framework for expressing the relationships be-
tween multiple views in requirements specification. IEEE Trans Softw Eng 20(10):760-773
(ISSN 0098-5589)

@ Springer

758 Empir Software Eng (2008) 13:727-760

Park S, Kim H, Ko Y, Seo J (2000) Implementation of an efficient requirements-analysis supporting
system using similarity measure techniques. Inf Softw Technol 42(6):429-438

Ramesh B, Jarke M (2001) Toward reference models for requirements traceability. IEEE Trans
Softw Eng 27(1):58-93 (ISSN 0098-5589)

Ramesh B, Powers T, Stubbs C, Edwards M (1995) Implementing requirements traceability: a case
study. In: Proc. of the 2nd IEEE int. symp. on requirements engineering. IEEE Computer
Society, Washington, DC, pp 89 (ISBN 0-8186-7017-7)

Robertson J, Robertson S (2000) Volere requirements specification template. Technical report,
Atlantic Systems Guild

Salton G, McGill MJ (1986) Introduction to modern information retrieval. McGraw-Hill, New York
(ISBN 0070544840)

Settimi R, Cleland-Huang J, Ben Khadra O, Mody J, Lukasik W, DePalma C (2004) Supporting
software evolution through dynamically retrieving traces to UML artifacts. In: Proc. of the 7th
int. workshop on principles of software evolution. IEEE Computer Society, Washington, DC,
pp 49-54 (ISBN 0-7695-2211-4)

Toranzo M, Castro J (1999) A comprehensive traceability model to support the design of interactive
systems. In: Proc. of the workshop on object-oriented technology. Springer, London, pp 283-284
(ISBN 3-540-66954-X)

USA Department of Defence (1997) Military standard on software development and documentation
(MIL-std-498). USA Department of Defence, Washington, DC

van Deursen A, Moonen L (2006) Documenting software systems using types. Sci Comput Program
60(2):205-220, April

van Deursen A, Hofmeister C, Koschke R, Moonen L, Riva C (2004) Symphony: view-driven soft-
ware architecture reconstruction. In: Proceedings Working IEEE/IFIP conference on software
architecture (WICSA’04). IEEE Computer Society, Silver Spring, pp 122-134

Van Rijsbergen CJ (1979) Information retrieval. Butterworth-Heinemann, Newton (ISBN
0408709294)

von Knethen A (2001) A trace model for system requirements changes on embedded systems.
In: Proc. of the 4th int. workshop on principles of software evolution. ACM, New York, pp 17-26
(ISBN 1-58113-508-4)

von Knethen A, Paech B, Kiedaisch F, Houdek F (2002) Systematic requirements recycling through
abstraction and traceability. In: Proc. of the int. conf. on requirements engineering. IEEE Com-
puter Society, Washington, DC, pp 273-281 (ISBN 0-7695-1465-0)

Yin RK (2003) Case study research: design and methods, 3rd edn. SAGE, Thousand Oaks

Zachman JA (1987) A framework for information systems architecture. IBM Syst J 26(3):276-292
(ISSN 0018-8670)

Zisman A, Spanoudakis G, Perez-Mi nana E, Krause P (2003) Tracing software requirements arti-
facts. In: Proc. of int. conf. on software engineering research and practice, Las Vegas, 23-26 June
2003, pp 448-455

Zou X, Settimi R, Cleland-Huang J, Duan C (2004) Thresholding strategy in requirements trace
retrieval. In: CTI Research symposium, Chicago, November 2004, pp 100-103

@ Springer

Empir Software Eng (2008) 13:727-760 759

Marco Lormans is a PhD researcher at the Software Engineering department of Delft University
of Technology and a consultant at Logica. He received a MSc. in computer science from Delft
University of Technology. His research interests encompass (global) software development, and in
particular the specification and management of requirements, and software quality assurance.

Arie van Deursen is a full professor at Delft University of Technology, where he is heading the
Software Engineering Research Group. He obtained his MSc degree in computer science in 1990
from the Vrije Universiteit, Amsterdam. From 1996 until 2006 he was a research leader at CWI, the
Dutch National Institute for Research in Mathematics in Computer Science. His research interests
include software evolution and reverse engineering, as well as model-driven approaches to software
engineering. He is one of the co-founders of Software Improvement Group, an Amsterdam-based
software consultancy firm in the area of software system analysis. He has served on numerous
program committees in the areas of software evolution, maintenance, and software engineering in
general, and has been program chair for the IEEE Working Conference on Reverse Engineering in
2002 and 2003.

@ Springer

760 Empir Software Eng (2008) 13:727-760

Hans-Gerhard Gross received an MSc in Computer Science (1996) from the University of
Applied Sciences, Berlin, Germany, and a PhD in Software Engineering (2000) from the
University of Glamorgan, Wales, UK. Following his PhD, Dr. Gross joined the Fraunhofer In-
stitute for Experimental Software Engineering in Kaiserslautern, Germany, where he was re-
sponsible for a number of public research projects, devising software testing strategies, and
for consulting projects with major German software organizations. Since 2005, Dr. Gross is
employed as Assistant Professor at Delft University of Technology, The Netherlands. His
research interests encompass all phases of software development, in general, and software testing,
in particular.

@ Springer

	An industrial case study in reconstructing requirements views
	Abstract
	Introduction
	Related Work
	System Views
	Document Standards, Templates and Reference Models
	Traceability Support and Recovery

	Marev and ReqAnalyst
	Marev: A Methodology for Automating Requirements Evolution using Views
	The ReqAnalyst Tool Suite

	Which Views are Needed in Practice?
	Requirements View Questionnaire
	Main Outcomes
	Coverage Views
	Life-cycle Path Views
	Status Views

	Implementing the Views in ReqAnalyst
	Case Study: LogicaCMG
	Case Study Design
	Case Study Background
	Available Data
	Reconstruction Approach
	Reconstructed Traceability Matrix Results
	From Traceability Matrices to Requirements Views

	Discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

