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Abstract. We discuss some computational aspects of resistivity imaging by inversion

of offshore controlled-source electromagnetic data. We adopt the classic approach to

imaging by formulating it as an inverse problem. A weighted least-squares functional

measures the misfit between synthetic and observed data. Its minimization by

a quasi-Newton algorithm requires the gradient of the functional with respect to

the model parameters. We compute the gradient with the adjoint-state technique.

Preconditioners can improve the convergence of the inversion. Diagonal preconditioner

based on a Born approximation are commonly used. In the context of CSEM inversion,

the Born approximation is not really accurate, this limits the possibility of estimating a

correct approximation of the Hessian in a smooth medium or, in fact, in any reference

background that does not roughly account for the resistors. We hence rely on the

limited memory BFGS approximation of the inverse of the Hessian and we improve

the inversion convergence with the help of a heuristic data and depth weighting. Based

on a numerical example, we show that a simple exponential depth weighting combined

with an offset or frequency data weighting significantly improves the convergence rate

of a deep-water controlled-source electromagnetic data inversion.

AMS classification scheme numbers: 86A22,86A25,35R30

Submitted to: Inverse Problems



Resistivity imaging 2

1. Introduction

A classic offshore controlled-source electromagnetic (CSEM) survey consists of towing a

horizontal electric dipole close to the sea floor and recording the electric and magnetic

response on stations laid down on the sea floor. CSEM data are used in the oil and gas

industry to detect hydrocarbons because they are sensitive to thin resistive horizontal

layers [1, 2, 3]. The physical explanation is that the highly resistive layers strongly

modify the current lines emitted by the horizontal electric dipole [4]. In the presence

of resistors in the earth, the electromagnetic waves diffuse in the resistor at a higher

“velocity” than in the surrounding conductive sediments and radiate back to the surface.

These physics cannot be modeled by a Born (single scatterer) approximation in a smooth

(at the skin depth scale) resistivity model [5]. This impacts the imaging of CSEM data

[6].

In this paper, we discuss some computational and physical aspects of resistivity

imaging from CSEM data. We formulate the imaging problem as an inverse problem

[7, 8, 9]. Given electric and magnetic data, eobs
s,r,f and hobs

s,r,f , generated by electric emitting

dipoles at positions xs and frequencies f and observed at the receiver positions xr, the

inverse problem consists of finding a conductivity that minimizes the weighted least-

squares functional

J(p) = 1
2

∑

ω

∑

s

∑

r

{

||W e
s,r,f(es,r,f [σ(p)] − eobs

s,r,f)||
2+

||W h
s,r,f(hs,r,f [σ(p)] − hobs

s,r,f)||
2
}

+ R(p).
(1)

Here, es,r,f and hs,r,f represent the computed response for a given conductivity σ. W e
s,r,f

and W h
s,r,f are suitable data weights. The subscripts s, r, and f mark the dependency

on source, receiver, and frequency, respectively. The conductivity σ depends on the

model parameters p, a vector in R
M . In 3D, the number of model parameters, namely

unknowns, is typically in the range of 1 to 20 million. Finally, R is a regularization

term.

In complex media, the electric and magnetic response is computed by numerically

solving Maxwell’s equations. In the earth, the conduction currents satisfy Ohm’s

constitutive law and the electromagnetic waves are diffusive [10]. Different methods can

be used to discretize and solve those equations, for instance [11, 12, 13, 14, 15, 16, 17]

most of them based on the staggered scheme proposed by Yee [18]. In this work, we

discretized the Maxwell/Ohm equations with the Finite Integration Technique (FIT)

[17] and solved the linear system with a preconditioned Krylov method, BI-CGSTAB2,

[19, 20]. The preconditioner for the linear iterative solver is a single multigrid cycle

[21, 22]. Combined with an automatic frequency dependent regridding [23], this leads

to an efficient solver for CSEM modeling.

Although the 3D numerical solvers are efficient, the computational cost of stochastic

methods for the miminization of the least-squares functional (1) are still too high. We

therefore solve the inverse problem by gradient optimization. Several authors have

used this approach to invert magnetotelluric data, crosswell data, or CSEM data, for
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instance [2, 14, 24, 25, 26, 27, 28, 29]. The least-squares functional can be invert by a

non-linear conjugate gradient optimization [25, 27], a Gauss-Newton optimization [30],

or a quasi-Newton optimization [30, 31]. We applied a limited memory quasi-Newton

approach, more precisely a limited memory BFGS (Broyden, Fletcher, Goldfard and

Shanno) method [32, 33] that is less commonly used in geophysics. The update pk at

the iteration k is given by

pk = pk−1 − αk−1Kk−1∇pJ(pk−1), (2)

where αk−1 is a real scalar obtained by a suitable line-search algorithm and Kk−1 is the

approximated inverse of the Hessian given by the BFGS method. This inversion can be

preconditioned to improve convergence, for instance see [25, 30]. A common approach is

to use the inverse of the diagonal of the Hessian, generally computed in a smooth initial

model. The difficulty with CSEM inversion is that the Hessian is not necessarly diagonal

dominant, hence this approach may be of limited relevance. Another classic approach is

the Gauss-Newton approximation of the Hessian [30]. This requires the computation of

the Fréchet derivatives, which can be expensive except in simplified resistivity models.

Also, its relevance may depend on the accuracy of the Born (linearized) approximation.

Our formulation follows the classic inverse problem formulation where the gradient is

computed with the adjoint method [7, 9]. Newman and Hoversten [26] and Newman and

Boggs [30] have for instance described this method in the context of controlled source

electromagnetic surveys and Mackie and Radden [25] in the context of magnetoteluric

surveys. In this paper, we decided to formulate the preconditioning as a scaling of the

model parameters, which amounts to a depth weighting, and to use the BFGS method

to approximate the inverse of the Hessian. Our approach differs from the approach of

Newman and Boggs [30] in the preconditionner and in the data weighting. We do not

based our preconditioner on an approximation of the Hessian in a reference resistivity

model due to the limit accuracy of Born approximation for the low frequency electro-

magnetic applications in geophysics [5].

The outline of the paper is as follows. We first describe the gradient calculation

of the discretized problem with the FIT using the adjoint-state method [35]. While

this part is not new, it is important to notice the implementation advantage of this

approach compared to the classic finite-difference scheme on stretched grids. Secondly,

we discuss the scaling for CSEM applications. Then, we present synthetic numerical

results to show the relevance of the depth weighting approach in combination with some

commonly used data weighting schemes and we display an inversion result on the Troll

real data. Finally, we summarize our conclusions.

2. Discrete formulation

The problem is formulated in the frequency domain because we invert the data at only

a few frequencies. We model the CSEM response by solving Maxwell’s equations. The
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conduction currents satisfy Ohm’s constitutive law in a conductive medium (see [10] for

details). In the frequency domain, the second-order electromagnetic equation reads

ıµ0ωσ̃(x, ω)Es(x, ω) −∇× µ−1
r (x)∇× Es(x, ω) = −Fs(x, ω), (3)

with a source term

Fs(xs, ω) = ıωµ0Js(x, ω) + ∇× µ−1
r (x)Ms(xs, ω).

Es is the electric field, Ms the magnetic source, Js the electric source, and σ̃(x, ω) =

σ(x)− ıωε0εr(x) with conductivity σ, the inverse of the electric resistivity. The vacuum

dielectric permittivity is denoted by ε0, εr is the relative dielectric permittivity, µ0 is

the vacuum magnetic permeability, µr the relative magnetic permeability, and ω = 2πf

the angular frequency. Finally, x ∈ Ω is a subsurface point inside a domain Ω ⊂ R
3.

We adopted the Fourier convention f(t) = 1
2π

∫

∞

−∞
f(ω)e−ıωtdω. On the boundary Γ of

Ω, we impose the perfectly electrical conductor boundary conditions

n(x) × Es(x, ω) = 0, (4)

with n the outward normal of Γ. We obtain the electric data, e, and the magnetic data,

h, by sampling the electric field at the receiver positions xr:
{

es,r,f [σ] = See(xr, x)Es(x, ω);

hs,r,f [σ] = She(xr, x)Es(x, ω).
(5)

See and She are two sampling operators that map the fields to the receiver position xr.

She also takes the relation Hs = 1
ıωµ0µr

∇× Es into account.

Because electromagnetic waves diffuse in a conductive medium, which means

that their amplitudes decrease exponentially, we often discretize the electromagnetic

equations on a stretched grid to save computer time. The domain Ω is paved with

a tensor-product cartesian grid xg ⊗ yg ⊗ zg, with xg = (xk) (resp. yg = (yl) and

zg = (zm)) an array of positions in the x-direction (resp. y and z-direction) with

variable spacing. The electromagnetic equations are classically discretized by primal

and dual grids. The primal grid is defined by the nodes (xk, yl, zm) and the dual grid

by the nodes (xk+ 1

2

, yl+ 1

2

, zm+ 1

2

). Here, xk+ 1

2

= 1
2
(xk + xk+1), yl+ 1

2

= 1
2
(yl + yl+1),

and zm+ 1

2

= 1
2
(zm + zm+1). The spacing on the primal or dual grid is denoted by

hx
α = xα+ 1

2

− xα− 1

2

, h
y
β = yβ+ 1

2

− yβ− 1

2

, and hz
γ = zγ+ 1

2

− zγ− 1

2

with α = k or α = k + 1
2
,

β = l or β = l + 1
2
, and γ = m or γ = m + 1

2
. The conductivity, the relative magnetic

permeability, and the relative dielectric permittivity are discretized as averages per cell.

We denote their values by σk+ 1

2
,l+ 1

2
,m+ 1

2

, µ−1
r,k+ 1

2
,l+ 1

2
,m+ 1

2

, and εr,k+ 1

2
,l+ 1

2
,m+ 1

2

. These can

be interpreted as values at the center of each cell.

One of the classic discretizations of equation (3) is the centered finite difference

method (FDM) on a staggered grid. On a regular spacing grid, this is known as Yee’s

scheme [18]. An extension of the scheme to stretched grids can be obtained with the

FIT [17]. This scheme differs from the one directly obtained from finite difference by
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some volume factors (see Appendix A). The FIT, based on an integral representation of

the electromagnetic equations and flux quantities, leads to the following discretization:
U

x,k,l+1
2

,m+ 1
2

M
k,l+1

2
,m+ 1

2

−
E

z,k,l+1,m+1
2

−E
z,k,l,m+1

2

hy

l+ 1
2

+
E

y,k,l+1
2

,m+1
−E

y,k,l+1
2

,m

hz

m+ 1
2

= 0;

U
y,k+1

2
,l,m+1

2

M
k+ 1

2
,l,m+ 1

2

−
E

x,k+1
2

,l,m+1
−E

x,k+1
2

,l,m

hz

m+ 1
2

+
E

z,k+1,l,m+ 1
2

−E
z,k,l,m+1

2

hx

k+1
2

= 0;

U
z,k+1

2
,l+ 1

2
,m

M
k+1

2
,l+1

2
,m

−
E

y,k+1,l+1
2

,m
−E

y,k,l+1
2

,m

hx

k+1
2

+
E

x,k+1
2

,l+1,m
−E

x,k+1
2

,l,m

hy

l+1
2

= 0;

Sk+ 1

2
,l,mEx,k+ 1

2
,l,m −

(U
z,k+1

2
,l+1

2
,m

hy

l+1
2

−
U

z,k+1
2

,l− 1
2

,m

hy

l− 1
2

)

+
(U

y,k+1
2

,l,m+ 1
2

hz

m+ 1
2

−
U

y,k+1
2

,l,m−

1
2

hz

m−

1
2

)

=

−Vk+ 1

2
,l,mFx,k+ 1

2
,l,m;

Sk,l+ 1

2
,mEy,k,l+ 1

2
,m −

(U
x,k,l+1

2
,m+ 1

2

hz

m+ 1
2

−
U

x,k,l+1
2

,m−

1
2

hz

m−

1
2

)

+
(U

z,k+ 1
2

,l+1
2

,m

hx

k+1
2

−
U

z,k− 1
2

,l+1
2

,m

hx

k−1
2

)

=

−Vk,l+ 1

2
,mFy,k,l+ 1

2
,m;

Sk,l,m+ 1

2

Ez,k,l,m+ 1

2

−
(U

y,k+1
2

,l,m+ 1
2

hx

k+1
2

−
U

y,k−1
2

,l,m+ 1
2

hx

k−1
2

)

+
(U

x,k,l+1
2

,m+ 1
2

hy

l+ 1
2

−
U

x,k,l−1
2

,m+ 1
2

hy

l− 1
2

)

=

−Vk,l,m+ 1

2

Fz,k,l,m+ 1

2

;

(6)

and

ex(xr) =
∑

k,l,m See
x,k+ 1

2
,l,m

(xr)Ex,k+ 1

2
,l,m;

ey(xr) =
∑

k,l,m See
y,k,l+ 1

2
,m

(xr)Ey,k,l+ 1

2
,m;

ez(xr) =
∑

k,l,m See
z,k,l,m+ 1

2

(xr)Ez,k,l,m+ 1

2

;

hx(xr) =
∑

k,l,m Shu
x,k,l+ 1

2
,m+ 1

2

(xr)Ux,k,l+ 1

2
,m+ 1

2

;

hy(xr) =
∑

k,l,m Shu
y,k+ 1

2
,l,m+ 1

2

(xr)Uy,k+ 1

2
,l,m+ 1

2

;

hz(xr) =
∑

k,l,m Shu
z,k+ 1

2
,l+ 1

2
,m

(xr)Uz,k+ 1

2
,l+ 1

2
,m.

(7)

The discrete values of the electric fields are interpreted as average quantities on the

edges of the primal grid and the magnetic fields as average quantities on the faces of the

primal grid. For instance, Ex,k+ 1

2
,l,m is the average of the x-component of the electric

field on the edge [xk, xk+1] and Ux,k,l+ 1

2
,m+ 1

2

the average on the face [yl, yl+1]× [zm, zm+1].

See and Shw are sampling operators that map the fields to the receiver position xr. We

have omitted references to the source, xs, to simplify the notation. In the first three

equations, one needs µ−1
r on the edges of the dual grid and in the three last equations, σ̃

on the edges of the primal grids. These values are evaluated by volume averaging. We

define the cell volume by Vα,β,γ = hx
αh

y
βhz

γ and let

Sk+ 1

2
,l+ 1

2
,m+ 1

2

= ıωµ0Vk+ 1

2
,l+ 1

2
,m+ 1

2

(σk+ 1

2
,l+ 1

2
,m+ 1

2

− ıωεr,k+ 1

2
,l+ 1

2
,m+ 1

2

);

Mk+ 1

2
,l+ 1

2
,m+ 1

2

= Vk+ 1

2
,l+ 1

2
,m+ 1

2

µ−1
r,k+ 1

2
,l+ 1

2
,m+ 1

2

.

The averaging to edges is accomplished by, for example,

Sk+ 1

2
,l,m =

(

Sk+ 1

2
,l+ 1

2
,m+ 1

2

+ Sk+ 1

2
,l+ 1

2
,m−

1

2

+ Sk+ 1

2
,l− 1

2
,m+ 1

2

+ Sk+ 1

2
,l− 1

2
,m−

1

2

)/

4;

Mk,l+ 1

2
,m+ 1

2

=
(

Mk+ 1

2
,l+ 1

2
,m+ 1

2

+ Mk− 1

2
,l+ 1

2
,m+ 1

2

)/

2.
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This implies that

σ̃k+ 1

2
,l,m =

S
k+ 1

2
,l,m

V
k+ 1

2
,l,m

;

µ−1
r,k,l+ 1

2
,m+ 1

2

=
M

k,l+ 1
2

,m+ 1
2

V
k,l+1

2
,m+ 1

2

.

We determine the discrete adjoint-state equations by equating to zero the

derivatives of the augmented functional with respect the states variables [35, 36]. We do

not list the augmented functional here, although the 1D case is described in Appendix B.

The adjoint-state equations are (̄ denotes the conjugate)

λ̄
U

x,k,l+1
2

,m+ 1
2

M
k,l+1

2
,m+ 1

2

−
λ̄

E,fit

z,k,l+1,m+1
2

−λ̄
E,fit

z,k,l,m+1
2

hy

l+1
2

+
λ̄

E,fit

y,k,l+1
2

,m+1
−λ̄

E,fit

y,k,l+1
2

,m

hz

m+ 1
2

=

ρ̄U
x,k,l+ 1

2
,m+ 1

2

;

λ̄
U

y,k+1
2

,l,m+ 1
2

M
k+1

2
,l,m+ 1

2

−
λ̄

E,fit

x,k+1
2

,l,m+1
−λ̄

E,fit

x,k+1
2

,l,m

hz

m+1
2

+
λ̄

E,fit

z,k+1,l,m+1
2

−λ̄
E,fit

z,k,l,m+ 1
2

hx

k+1
2

=

ρ̄U
y,k+ 1

2
,l,m+ 1

2

;

λ̄
U

z,k+1
2

,l+ 1
2

,m

M
k+ 1

2
,l+ 1

2
,m

−
λ̄

E,fit

y,k+1,l+1
2

,m
−λ̄

E,fit

y,k,l+1
2

,m

hx

k+1
2

+
λ̄

E,fit

x,k+1
2

,l+1,m
−λ̄

E,fit

x,k+1
2

,l,m

hy

l+1
2

=

ρ̄U
z,k+ 1

2
,l+ 1

2
,m

;

Sk+ 1

2
,l,mλ̄

E,fit

x,k+ 1

2
,l,m −

( λ̄
U

z,k+1
2

,l+1
2

,m

hy

l+ 1
2

−
λ̄

U

z,k+1
2

,l− 1
2

,m

hy

l− 1
2

)

+
( λ̄

U

y,k+1
2

,l,m+1
2

hz

m+1
2

−
U

y,k+1
2

,l,m−

1
2

hz

m−

1
2

)

=

ρ̄E
x,k+ 1

2
,l,m

;

Sk,l+ 1

2
,mλ̄

E,fit

y,k,l+ 1

2
,m −

( λ̄
U

x,k,l+1
2

,m+ 1
2

hz

m+ 1
2

−
λ̄

U

x,k,l+1
2

,m−

1
2

hz

m−

1
2

)

+
( λ̄

U

z,k+1
2

,l+1
2

,m

hx

k+1
2

−
λ̄

U

z,k− 1
2

,l+ 1
2

,m

hx

k− 1
2

)

=

ρ̄E
y,k,l+ 1

2
,m

;

Sk,l,m+ 1

2

λ̄
E,fit

z,k,l,m+ 1

2

−
( λ̄

U

y,k+1
2

,l,m+ 1
2

hx

k+1
2

−
λ̄

U

y,k−1
2

,l,m+ 1
2

hx

k− 1
2

)

+
( λ̄

U

x,k,l+1
2

,m+ 1
2

hy

l+ 1
2

−
λ̄

U

x,k,l− 1
2

,m+ 1
2

hy

l−1
2

)

=

ρ̄E
x,k,l,m+ 1

2

;

(8)

with

ρE
x,k+ 1

2
,l,m

(xr) =
∑

r See
x,k+ 1

2
,l,m

∂Fc

∂ex(xr )
;

ρE
y,k,l+ 1

2
,m

(xr) =
∑

r See
y,k,l+ 1

2
,m

∂Fc

∂ey(xr )
;

ρE
z,k,l,m+ 1

2

(xr) =
∑

r See
z,k,l,m+ 1

2

∂Fc

∂ez(xr )
;

ρU
x,k,l+ 1

2
,m+ 1

2

(xr) =
∑

r Shu
x,k,l+ 1

2
,m+ 1

2

∂Fc

∂hx(xr )
;

ρU
y,k+ 1

2
,l,m+ 1

2

(xr) =
∑

r Shu
y,k+ 1

2
,l,m+ 1

2

∂Fc

∂hy(xr )
;

ρU
z,k+ 1

2
,l+ 1

2
,m

(xr) =
∑

r Shu
z,k+ 1

2
,l+ 1

2
,m

∂Fc

∂hz(xr )
.

(9)

The conjugate of the FIT adjoint states satisfies the FIT state system with specific

source terms. The symmetry of the continuous operator is preserved (cf. [37]). For the

implementation, this means that the same routines can be used for solving the state

and the adjoint-state system, which is an advantage of the FIT over the FDM, see
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Appendix A.

The discrete gradient for a single source at a single frequency is given by

−
∑

k,l,m λ̄
E,fit

x,k+ 1

2
,l,m

∂S
k+1

2
,l,m

∂p
Ex,k+ 1

2
,l,m−

∑

k,l,m λ̄
E,fit

y,k,l+ 1

2
,m

∂S
k,l+1

2
,m

∂p
Ey,k,l+ 1

2
,m−

∑

k,l,m λ̄
E,fit

z,k,l,m+ 1

2

∂S
k,l,m+1

2

∂p
Ez,k,l,m+ 1

2

.

(10)

We have implemented the FIT discretization. This leads to a large linear system. We

solved it with a preconditioned Krylov iterative method, BI-CGSTAB2, [19, 20]. The

preconditioner for the linear iterative solver is a single multigrid cycle [22].

3. Model parameter scaling

The non-linear optimization of the misfit function is generally carried out with a non-

linear conjugate gradient method, a Newton method, or a quasi-Newton method [38].

While the non-linear conjugate gradient or the Newton method is often used in geo-

physics [2, 14, 25, 39], we here decided to apply a quasi-Newton method. This approach

is more suitable than the Newton method due to the size of the problem. It does not re-

quire the computation of the large sensitivity matrix (Fréchet derivatives). We adopted

the BFGS method. This approach directly estimates the inverse of the Hessian matrix

from the gradient vector of the misfit at each iteration. The size of the problem pre-

vents us from working with the full Hessian. Therefore, we used the limited memory

approach, where the inverse of the Hessian is approximated by q vectors of size M (M is

the number of unknowns, i.e., the dimension of the model space) [40, 32, 33]. Hence, q

controls the memory requirements of the approximation. We used the limited memory

algorithm described in [34].

Although the method approximates the inverse of the Hessian, the convergence can

still be improved with preconditioning. We chose to implement the preconditioner as a

scaling of the unknowns, p. With D a regular matrix of R
M×M , we defined the scaled

unknows, p̃, by

p̃ = D−1p. (11)

The misfit function becomes

J̃(p̃) = J(Dp̃) = J(p), (12)

the gradient

∇p̃J̃(p̃) = D∇pJ(p), (13)

and the Hessian

H̃J = DHJD, (14)
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where HJ is the Hessian of J with respect to p and H̃J the Hessian of J̃ with respect

to p̃.

The quasi-Newton update at iteration k is

p̃k = p̃k−1 − αk−1K̃k−1∇p̃J̃(p̃k−1). (15)

For the unknowns p, this means

pk = pk−1 − αk−1DK̃k−1D∇pJ(pk−1). (16)

Here, K̃k−1 is the BFGS approximation of the inverse of the Hessian H̃J at iteration k.

A good preconditioning matrix D should be simple to compute and reduce the num-

ber of inversion iterations. For a quadratic misfit functional, this would be achieved

by D = (HJ)−1/2. For a non-quadratic, the Hessian depends on p while we want a

preconditioner matrix independent of p.

The use of a preconditioner for the BFGS quasi-Newton method for electromagnetic

data inversion was earlier studied by Newman and Boggs [30]. They proposed the use

of the Gauss-Newton approximation of the Hessian, which requires the sensitivity ma-

trix. Since it is too expensive to compute the sensitivity matrix at each iteration, they

relied on a Born approximation and an estimate of the Green function in a simple refer-

ence model. For the low frequency electromagnetic apllications in geophysics, the Born

approximation is generally not really accurate and of limited use [5].

We then decided to test if a simple scaling of the unknowns would improve the

convergence rate of the BFGS quasi-Newton inversion. We chose to work with a diagonal

matrix D for simplicity:

D(x, y, z) =

{

1 for z ≤ zb;
[

z−γm exp
(

−βm
z−zb

δ

)

+ εr

]−1
for z > zb;

(17)

with zb a reference depth which may depend on x and y. For offshore CSEM inversion,

zb is the seafloor depth. Here, γm and βm are two positive numbers and δ is a reference

distance. We added the coefficient εr to account for the regularization term of equation

1. In practice, D is also tapered for z larger than a given depth corresponding to about

2 to 3 skin depths to avoid boosting the noise. We called this scaling model depth

weighting.

We proposed this expression for D to crudely compensate for the amplitude exponential

decay of the electromagnetic waves with the fact exp
(

−βm
z−zb

δ

)

and for the geometrical

spreading with the factor z−γm . This means that δ can be the skin depth in an average

resistivity and βm around 1. We did not include a lateral dependency in D because the

least-squares functional contains a summation over the sources and receivers which are

generally spread laterally.
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4. Numerical results

4.1. Synthetic example

We applied the imaging approach with this depth weighting to a synthetic example based

on a real geological setting [3]. The acquisition geometry is a line of 30 stations laid down

on the sea floor. A horizontal electric source is towed at a distance of 40 m above the

sea floor. A 2D inline section of the true resistivity model is displayed in figure 1.a. A

crossline section is plotted in figure 5.a to show the 3D variations of the resistivity model.

This model contains three main feaures: shallow resistors with resistivity between 10 to

20 Ohm.m, a deep 50 Ohm.m stratified reservoir, and a background resistivity increasing

from 1.8 to 2.5 Ohm.m. For the data generation, we used a grid with a 10 m spacing

in the z-direction around the sea floor as well as for the resistivity zones. Outside

those zones, a 25 m spacing was used. We considered three frequencies: 0.25, 0.75,

and 2.25 Hz. The stations were located between x ≃ 10 km and x ≃ 40 km. We used

reciprocity to generate and process the data. This means that the data set corresponds

to 90 source/frequency panels. This data set represents our “observed” data set.

Figure 1. On the left, true resistivity model plotted in a linear scale. The resistivity

values are clipped at 5 Ohm.m. On the right, the normalized misfit between the

“observed” data, computed on the true model, and the synthetics computed on a

1.8 Ohm.m homogeneous earth. The scale is in dB.

For the imaging, the inversion grid has a 25 m spacing in depth. Therefore, the

true resistivity is not in the model space of the inversion. For instance, the bathymetry

depth difference between the inversion model and the true model can be as large as 15 m.

During the runs, each frequency response was computed on a different computational

grid to keep the number of points per skin depth constant [23]. We first computed the

gradient on the computational grid and then used the adjoint of the projection operator

from the inversion grid to the computational grid. In this way, we obtained the gradient

on the inversion grid. This regridding approach introduces an error of few percent

[23]. We chose not to use the same discretization for the data generation and for the

inversion to make this synthetic study more meaningful by avoiding some of the issues

of the “inverse crime”. We did not add noise to the data. However, the numerical noise
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introduced by the regridding during the model generation and the inversion is different

because the computational grids were different.

The initial model for the inversion has a constant resistivity of 1.8 Ohm.m below

the sea floor and a water conductivity of 0.3 Ohm.m. We generated a synthetic set

for this initial conductivity and computed the normalized errors between the synthetic

and “observed” data in dB: 20 log10

∣

∣

∣

e−eobs

eobs

∣

∣

∣
. The result is displayed in figure 1.b. The

station indices from 1 to 30 correspond to a frequency of 0.25 Hz, between 31 and 60

to 0.75 Hz, and between 61 and 90 to 2.25 Hz. Data were absent in the white zones.

Because of the diffusive nature of the electromagnetic waves, the low frequency signal

diffuse further away than the high frequencies. The near-offset data, where the distance

between the source and the receiver is small, are not taken into account in the inversion

to avoid source representation effects. This is necessary when processing real data. At

0.25 Hz, we notice that the largest normalized errors occur around station indices 10

and 20, corresponding to x between about 20 and 30 km and offsets from 5 to 8 km.

This suggests the presence of a deep resistive zone. The large normalized errors at high

frequencies indicate the presence of shallow resistive zones.

The high frequency and short offset data are almost insensitive to the deep part of

the model. Because we are often interested in the deep part and to compensate for the

large amplitude decay versus offsets, the following data weighting is commonly applied:

W (xs, xr, ω) =
||xs − xr||

γd

ωβf ||E0
1(xs, xr, ω)||βd

, (18)

with positive constants γd, βd, and βf .

Smooth regularizations are not adequate for CSEM inversion because the goal is

to retrieve thin resistors with high resistivity contrasts. We hence implemented the

minimum norm support regularization [8]:

R(p) = αnms

∑

klm

|pklm − p
ref
klm|

2

β2
nms + |pklm − p

ref
klm|

2
, (19)

where pref is a reference model and αmns and βmns two positive numbers. The minimum

support regularization should smooth p for |pklm−p
ref
klm| smaller than about 2 to 3 βnms;

however the large contrasts should not be penalized since the gradient of R should

be small. In the inversion p corresponds to the logarithm of resistivity and we chose

βmns = 0.2. The reference model is equal to the initial guess.

We took into account only the horizontal (in-line) electric responses to horizontal

(in-line) emitting dipoles. We carried out four inversions with different data weights,

W , and depth weighting, D:

• D1: γd = 0 and βm = 0,

• D2: γd = 0.5 and βm = 0,

• D3: γd = 0, βm = 1,

• D4: γd = 0.5, βm = 1.

For all the inversions we have βd = 1, βω = 0 and γm = 0. In the examples, δ is the

average skin depth at 0.25 Hz.
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Figure 2. Optimal resistivity models at iteration 150 plotted in a linear scale. The

resistivities are clipped at 5 Ohm.m.

The optimal resistivity models after 150 iterations for each depth and data

weighting scheme are displayed in figure 2 with the weighted normalized errors in

figure 3. The four inversion results well explain the data after 150 iterations. The

normalized errors are around -20 dB, which is close to the noise floor in real applications.

The four models mainly differ by the depth and the resistivity value of the deep resistive

zone. This was expected because the depth resolution of the CSEM inversion is limited

due to the diffusive effect and because of the non-uniqueness of the CSEM inversion.

The deep resistive zone is however better retrieved with D4 and it is less well recovered

with D1. We display in figure 5 a crossline section perpendicular to the inline section

at x = 22.4 km. Due to the inline acquisition geometry, we cannot retrieve the offline

shallow resistors and we notice the so-called “inversion smiles”. We display the decrease

of the weighted least-squares misfit versus the number of iterations in figure 4.a. We

obtained the fastest decrease for D4. The three other depth and data weighting gave

a relatively similar misfit decrease. We carried out those inversions with q = 1, which

limits the memory allocated for the approximated BFGS inverse of the Hessain to one

vector. We also inverted the CSEM data with the depth and data weighting D4 with

q = 3 and q = 5. The convergence histories are plotted in figure 4: the convergence did

not improve when increasing the number of vectors that determines the approximation

of the BFGS inverse of the Hessian.

To further understand the relevance of the depth and data weighting, we display
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Figure 3. Weighted normalized errors for the four depth-weighting schemes plotted

in a dB scale (the weighted normalized error is ||W (xs, xr, f)(ex,s,r,f (p) − eobs
x,s,r,f )||).

The white spots correspond to missing data. We removed some of the data samples

to mimic a real situation where some data samples are too noisy to be included in the

inversion due to instrument noise.
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Figure 4. On the left, the decrease of the weighted least-squares misfit versus

the number of iterations for the four depth and data weighting schemes when the

approximated BFGS inverse of the Hessian has a size of one vector (q = 1). On the

right, the decrease of the weighted least-square with the depth and data weighting D4

for three different sizes of the approximated BFGS inverse of the Hessian.
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Figure 5. Crossline sections at x = 22.5 km of the true resistivity model (a) and of the

optimal resistvity model after 150 iterations of the inversion D4 (b). The resistivities

are clipped at 5 Ohm.m.

Figure 6. Optimal resistivity models at iteration 20. The resistivities are clipped at

5 Ohm.m.

the results of the four inversions after 20 iterations in figure 6 and after 50 iterations in

figure 7. We can clearly see that with the depth and data weighting D4, the deeper part is

updated more rapidly. This speeds up the convergence significantly. Although the depth

weighting is crude, it helps to balance the shallow and deep resistivity updates during

the iterations. The inversions were computed on 30 cores (AMD Operton 2.4 Ghz). One

iteration took a bit more than 18 minutes. It requires the computation of 90 forward

and 90 backward modeling steps. This means that one evaluation of system 6 took a
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Figure 7. Optimal resistivity models at iteration 50. The resistivities are clipped at

5 Ohm.m.

bit more than 3 minutes on a single core, which shows the efficiency of the modeling

approach for deep-water CSEM applications. For each computation, the grid contained

about 117 by 69 by 130 points (a total of about 1 million points) while the inversion

grid contained about 3.5 million points. If we consider the fact that the inversion D4

could have been stopped at iteration 50, the inversion computation time was about 16

hours. We observe in figure 4.a that after iteration 20, the convergence rate significantly

decreases for the case D4. This is probably due to the regularization, since R(p) stays

around 0.04 after iteration 10.

Those results show that the combination of depth weighting (preconditioner) with

a data weighting that emphasizes the large offsets gave the best result. Boosting the

large offsets in CSEM inversion is common practice because it was noticed that the

information on the deeper part of the earth is mainly contained in the large offset data.

In a similar way, we can also increase the role of the low frequencies in the misfit function.

To illustrate the role of the frequency weighting in the misfit data, we repeated the four

inversions but with βf = 0.25. The resistivities at iteration 20, 50, and 100 are displayed

in figures 8, 9, and 10, respectively. We notice that the target zone is updated earlier

with a frequency data weighting than without. Once again, the combination of depth

and data weighting gave the best result. The convergence history is plotted in figure 11.
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Figure 8. Optimal resistivity models at iteration 20 with frequency data weighting

in the inversion. The resistivities are clipped at 5 Ohm.m.

Figure 9. Optimal resistivity models at iteration 50 with frequency data weighting

in the inversion. The resistivities are clipped at 5 Ohm.m.
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Figure 10. Optimal resistivity models at iteration 100 with frequency data weighting

in the inversion. The resistivities are clipped at 5 Ohm.m.

10
0

10
1

10
2

10
−1

10
0

Iteration number

W
ei

gh
te

d 
le

as
t−

sq
ua

re
 m

is
fit

 

 
D1
D2
D3
D4

Figure 11. Convergence history of the inversions with frequency data weighting in

the inversion.

4.2. Results with Troll data set

We now invert the Troll data set with the depth weighting D4. The data have been

recorded over the North Sea Troll west gas field in 2003. Imaging results of this data

set can be found, for instance, in [6]. The geology is fairly simple and the reservoir has

a high resistivity. This is an ideal case for CSEM application. The water depth is about

300 m and the reservoir is about 1500 m deep. The acquisition geometry is a standard

line acquisition with 24 receivers. We inverted the inline electric responses of the inline
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Figure 12. Inversion results of the Troll data set. The resistivity values (in Ohm·m)

are clipped at 25 Ohm·m. The normalized misfit (in db) between the observed data

and the synthetics. The station indices from 1 to 24 correspond to the data at 0.25

Hz, from 35 to 48 to the data at 0.75 Hz, and from 49 to 72 to the data at 1.25 hz.

electric dipole at 0.25, 0.75 and 1.25 Hz. The water resistivity is fixed at 0.3 Ohm·m

and the initial earth resistivity is 2.5 Ohm·m. In Figure 12, we plotted the initial and

final resistivity models and the initial and final normalized data misfit. On the initial

normalized data plot, we can see a large anomaly at 0.25 Hz (station index from 1 to 24).

This anomaly is visible at offsets larger than 2 km and is n hardly present at 1.25 Hz

(station index from 49 to 72). This is an indication of a deep resistive layer. On the

initial normalized data plot at 1.25 Hz, we can also notice that either the 2.5 Ohm·m

initial resistivity does not fully explain the data indicating some shallow variations or

some calibration issues of the data still exist due to noise. The final resistivity model

clearly displays the Troll gas field at the correct depth. Some shallow variations are also

present. The final normalized data plot shows that this final model correctly interprets

the data. We plotted the result up to 3 km depth to illustrate that the use of the depth

weighting did not create artefacts in the final resistivity model.

5. Conclusions

We discussed some computational aspects of the resistivity inversion from controlled-

source electromagnetic data and we considered a realistic and rather complicated 3D

numerical example and a simple real data example. The implementation is simpler

when we discretize Maxwell’s equation with the Finite-Integration Technique because

the discrete operator retains the symmetry property of the continuous operator. We did

not try to evaluate an approximation of the Hessian in a reference model because the
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Born approximation is generally of limited use with the low frequency electromagnetic

applications in geophysics. With the inverse of the Hessian estimated by the BFGS

method, we numerically showed that a simple exponential depth weighting combined

with proper data weighting helps to balance the shallow and deep part of the resistivity

update and provides a significant improvement of the inversion convergence and

inversion results. Although this approach is based on simple heuristics, it allows us

to obtain relevant resistivity images from CSEM data in about 50 iterations, which is a

quite satisfactory result. This reduces the number of iterations by 2 to 4 compared to

an inversion without depth weighting. We did not compare our simple approach with

an inversion based on a Gauss-Newton approximation of the Hessian.
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Appendix A. The adjoint-state equations for the FDM and the FIT

The FDM proposed by Yee [18] can be extended to stretched grid. The electric field is

discretized at the midpoints of the edges on the primal grid. We denote its components

by Ex,k+ 1

2
,l,m, Ey,k,l+ 1

2
,m, and Ez,k,l,m+ 1

2

. This notation means that, for instance, the

x-component of E is discretized at the point (xk+ 1

2

, yl, zm). The magnetic field is

discretized at the midpoints of the edges on the dual grid. These correspond to the

centers of the faces of the primal grid. We denote those components by Hx,k,l+ 1

2
,m+ 1

2

,

Hy,k+ 1

2
,l,m+ 1

2

, and Hz,k+ 1

2
,l+ 1

2
,m. Using centered finite-differences, the discretization of

equation (3), W = µ−1
r ∇× E, becomes

V
k,l+ 1

2
,m+ 1

2

M
k,l+1

2
,m+ 1
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−
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2

)

= 0;

V
k+1

2
,l,m+1

2

M
k+ 1

2
,l,m+ 1

2

Wy,k+ 1

2
,l,m+ 1

2

−
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E
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2
,l,m+1
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2

−
E
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2

−E
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2

)

= 0;

V
k+ 1

2
,l+1

2
,m

M
k+ 1

2
,l+ 1

2
,m

Wz,k+ 1

2
,l+ 1

2
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E
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(A.1)



Resistivity imaging 19

and

ex(xr) =
∑

k,l,m See
x,k+ 1

2
,l,m

(xr)Ex,k+ 1

2
,l,m;

ey(xr) =
∑

k,l,m See
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2
,m
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2
,m;
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(A.2)

The FDM and FIT schemes (A.1) and (6) are equivalent. Both have second-order

accuracy [37]. Also, the average quantities and the midpoint values are the same up

to the second-order. Hence, by replacing Ux,k,l+ 1

2
,m+ 1

2

with Vk,l+ 1

2
,m+ 1

2

Wx,k,l+ 1

2
,m+ 1

2

,

Uy,k+ 1

2
,l,m+ 1

2

with Vk+ 1

2
,l,m+ 1

2
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2
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, and Uz,k+ 1

2
,l+ 1

2
,m with Vk+ 1

2
,l+ 1

2
,mWz,k+ 1

2
,l+ 1

2
,m

in system (6), we obtain the system (A.1). From a forward modeling point of view,

there are a priori no reasons to prefer one scheme above the other. The situation is

different for the imaging problem because we also need to solve the adjoint system. The

continuous electromagnetic operator is symmetric, meaning that the conjugate of the

adjoint-state variables satisfies the same equation as the state variables but for different

source terms. Equating to zeros the derivatives of the augmented functional with respect

to the state variables W and E for the FDM leads to the backward system
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λ̄

W

z,k− 1
2

,l+ 1
2

,m

hx

k− 1
2

)

=

ρ̄E
y,k,l+ 1

2
,m

;

S
k,l,m+1

2

V
k,l,m+1

2

λ̄
E,fd

z,k,l,m+ 1

2

−

(

λ̄
W

y,k+1
2

,l,m+ 1
2

hx

k+ 1
2

−
λ̄

W

y,k− 1
2

,l,m+ 1
2

hx

k− 1
2

)

−

(

λ̄
W

x,k,l+1
2

,m+ 1
2

hy

l+1
2

−
λ̄

W

x,k,l− 1
2

,m+ 1
2

hy

l−1
2

)

=

ρ̄E
z,k,l,m+ 1

2

;

(A.3)
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with

ρE
x (xr) =

∑

r See
x,k+ 1

2
,l,m

∂Fc

∂ex(xr )
;

ρE
y (xr) =

∑

r See
y,k,l+ 1

2
,m

∂Fc

∂ey(xr )
;

ρE
z (xr) =

∑

r See
z,k,l,m+ 1

2

∂Fc

∂ez(xr )
;

ρW
x (xr) =

∑

r Shw
x,k,l+ 1

2
,m+ 1

2

∂Fc

∂hx(xr )
;

ρW
y (xr) =

∑

r Shw
y,k+ 1

2
,l,m+ 1

2

∂Fc

∂hy(xr )
;

ρW
z (xr) =

∑

r Shw
z,k+ 1

2
,l+ 1

2
,m

∂Fc

∂hz(xr )
.

(A.4)

We observe that the discrete FDM adjoint-state system is different from the FDM state

system for stretched grids. Clearly, the FDM operator is not symmetric.

The discrete gradient for a single source at a single frequency is given by

−
∑

k,l,m

[ λ̄
E,fd

x,k+1
2

,l,m

V
k+1

2
,l,m

∂S
k+1

2
,l,m

∂p
Ex,k+ 1

2
,l,m −

λ̄
E,fd

y,k,l+1
2

,m

V
k,l+1

2
,m

∂S
k,l+ 1

2
,m

∂p
Ey,k,l+ 1

2
,m−

λ̄
E,fd

z,k,l,m+1
2

V
k,l,m+ 1

2

∂S
k,l,m+1

2

∂p
Ez,k,l,m+ 1

2

]

.

(A.5)

The FDM and FIT gradient formulas (A.5) and (10) provide, of course, the same

result since λ̄
E,fit

x,k+ 1

2
,l,m =

λ̄
E,fd

x,k+1
2

,l,m

V
k+ 1

2
,l,m

, λ̄
W
x,k,l+ 1

2
,m+ 1

2

= λ̄
U
xk,l+ 1

2
,m+ 1

2

, and ρ̄W
x,k,l+ 1

2
,m+ 1

2

=

Vk,l+ 1

2
,m+ 1

2

ρ̄U
x,k,l+ 1

2
,m+ 1

2

. However, having a symmetric discrete operator simplifies the

implementation because the forward and background system can be implemented with

the same routines.

Appendix B. The 1D case

In this appendix we present the complete gradient derivation with the finite-difference

method and the discretization based on the Finite-Integration Technique for a 1D

problem. Then, we evaluate the errors we would commit if we approximate the transpose

of the adjoint-state system with the forward system in the FDM. We thereby illustrate

the well-known fact that we should apply the adjoint-state method to the discrete

equations and not discretize the adjoint-state equations found from the continuous case.

The 1D partial differential equation on Ω ⊂ R reads

∂2u

∂x2
+ ıωµ0σu = f , (B.1)

with u = 0 on Γ the boundary points on Ω.

The FDM gives

uk+1 − uk

hkhk+ 1

2

−
uk − uk−1

hkhk− 1

2

+ ıωµ0σkuk = fk. (B.2)

The FIT discretization is
uk+1 − uk

hk+ 1

2

−
uk − uk−1

hk− 1

2

+ ıωµ0hkσkuk = hkfk , (B.3)
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with u0 = un = 0. We consider the least-squares functional

f(σ) =
1

2

n−1
∑

k=1

||uk − uobs
k ||2 , (B.4)

where uobs
k are data recorded at xk.

The equation for the continuous adjoint states is

∂2λ̄

∂x2
+ ıωµ0σλ̄ = u − uobs. (B.5)

The Lagrangian associated with the FDM is

La(ũk, λ̃k) =

1
2

∑n−1
k=1 ||ũk − uobs

k ||2 −
∑n−1

k=1
¯̃
λk

(

ũk+1−ũk

hkh
k+1

2

− ũk−ũk−1

hkh
k−1

2

+ ıωµ0σkuk − fk

)

.
(B.6)

The derivative of La with respect to ũk provides the adjoint-state equation of

equation (B.2)

1

hk+ 1

2

(

λ̄a
k+1

hk+1
−

λ̄a
k

hk

)

−
1

hk− 1

2

(

λ̄a
k

hk
−

λ̄a
k−1

hk−1

)

+ ıωµ0σkλ̄
a
k = uk − ud

k (B.7)

with λ0 = λn = 0.

Similarly the Lagrangian associated with the FIT discretization is

La(ũk, λ̃k) =

1
2

∑n−1
k=1 ||ũk − uobs

k ||2 −
∑n−1

k=1
¯̃
λk

(

uk+1−uk

h
k+1

2

−
uk−uk−1

h
k− 1

2

+ ıωµ0hkσkuk − hkfk

)

(B.8)

and the adjoint-state equation of equation (B.3) is

λ̄b
k+1 − λ̄b

k

hk+ 1

2

−
λ̄b

k − λ̄b
k−1

hk− 1

2

+ ıωµ0hkσkλ̄
b
k = uk − ud

k. (B.9)

It is easy to see that λ̄a
k = hkλ̄

b
k. The gradient of f is given by

∂f

∂σk
= −Re(ıωµ0λ̄

a
kuk)= −Re(ıωµ0hkλ̄

b
kuk) . (B.10)

If now instead of using the adjoint-state system of the discrete finite-difference

scheme, we discretize the continuous adjoint-state equation B.5 with the FDM used to

discrete equation B.1, we obtain:

λ̄c
k+1 − λ̄c

k

hkhk+ 1

2

−
λ̄c

k − λ̄c
k−1

hkhk− 1

2

+ ıωµ0σkλ̄
c
k = uk − ud

k ; (B.11)

This leads to the approximated gradient

ga
k = −Re(ıωµ0ukλ̄

c
k) . (B.12)

Equations B.7 and B.11 correspond to two discretizations of the continuous adjoint-

state equations. Therefore with a fine discretization, equation B.12 will give a good

approximation of the discrete gradient since the approximation error in equation B.12

is roughly of the order of the discretisation of the direct problem. We, however, often

use a discretization with stretching and as coarse as possible to reduce the memory
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requirement and the computational time. We then prefer to implement the exact

gradient of the discrete formulation to obtain a consistent code. Using the approximate

gradient, equation B.12, instead of the exact gradient, equation B.10, may lead to a less

efficient numerical optimization. However, we did not investigate this aspect.
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