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ABSTRACT: An analytical theory is presented of the disentanglement of rods in both semidilute and 
liquid-crystalline solutions within the context of the preaveraged Doi equation. The excluded-volume effect 
is accounted for in the second virial approximation. It is assumed that the degree of orientational order is 
high at all times. The diffusion equation and the stress are solved to leading order. 

Introduction 
A mere glimpse at  the experimental literature on the 

rheology of polymer liquid crystals reveals that many 
phenomena are not well understood.'" Nevertheless, the 
theory advanced by Doi6J does rationalize several re- 
markable effects like the sharp decrease in the viscosity 
when the concentration is increased beyond the isotrop- 
ic-nematic transition. Moreover, steady-state rheological 
properties are surprisingly well described by the Doi 
equations provided two parameters are adjusted to con- 
form to one or two e~periments.~ The relative success of 
the reptation theory for liquid crystals has caused a flurry 
of theoretical activity.&13 

Most previous analyses have concentrated on weak flow. 
Kuzuu and Doi14 have analyzed the influence of weak and 
strong flows on a solution of entangled rods but only for 
very low volume fractions. Here, we show that it is 
straightforward to extend their calculations for elonga- 
tional flow even when the excluded-volume effect is non- 
negligible. An asymptotic time-dependent solution to the 
preaveraged Doi equation6i7 is obtained for a high enough 
degree of orientational order. The latter is a nontrivial 
function of the elongational rate and the excluded-volume 
effect. Since the number of rods enveloping a test rod 
decreases with increasing order there is a distinct possi- 
bility of the rods disentangling with strong enough flow. 
Thus, beyond this critical rate the rotational diffusion 
should be close to ideal. At  very high elongational rates 
the rods should more or less align along the lines of flow. 
In that case, the stress is determined mainly by hydro- 
dynamic friction so that Batchelor's limit a~p1ies . l~ 

Several workers16-'* have attempted to study the iso- 
tropienematic transition for solutions of rodlike particles 
in steady elongational flow by adding a term of Kramers' 
typelg to the usual free energy. Here, we point out that 
these analyses contradict the integral equation for the 
orientational distribution function arising from the Doi 
equation. In effect, ref 16-18 neglect the effect of entan- 
glement altogether. 

Finally, let us recall some of the criticisms that can be 
leveled at  the Doi theory. Arguing that a rigid tube ccn- 
straint may be too severe, Fixman20,21 proposed an alter- 
native model in which the mean-square torque on a test 
rod is calculated by kinetic arguments. Nevertheless, the 
rotational diffusion coefficient would still increase with 
orientational order though less rapidly than in the Doi 
theory. Next, computer simulations20-28 show that en- 
tanglement starts developing at much higher concentra- 
tions than was originally s u r m i ~ e d . ~ ~ ~ ~ ~  The formulation 
of the hydrodynamic stress has also been cr i t i~ized. '~ ,~ ' -~~ 
Doi and E d w a r d ~ ~ ~ l ~ ~  used the bare rotational friction 
coefficient, but others13*31-33 have opted for a renormalized 
one. This problem is unresolved. Lastly, the influence of 

0024-9297/88/2221-3511$01.50/0 0 

semiflexibility needs to be assessed. There is definitely 
an influence.34 However, present of the ro- 
tational diffusion of worms (with identical results) appear 
to conflict with most data except a t  very high concentra- 
tion26 or for a chain trapped in a fixed gel.3e It has been 
argued that the semiflexibility effect does show up clearly 
in equilibrium measurements.% Of these influences only 
the one pertaining to entanglementwB will be accounted 
for here. 

Entanglement Condition 
We consider a semidilute or concentrated solution of 

slender rods of length L and number density v. The so- 
lution is either isotropic or uniaxially ordered; the sin- 
gle-rod orientational distribution function f(u,t) depends 
on time and the unit vector u pointing along the axis of 
a test rod and defined with respect to some preferred axis. 
Doi and Edwards7bo have calculated the average number 
N(r)  of rods intersecting a tube of radius r whose axis is 
aligned along a test rod. On averaging N(r)  over all ori- 
entations of the probe we obtain 

( N ( r ) )  = vrL2p (1) 
where 

P = YAin 7) 
= "/, 1 1 d u  du' sin y f(u,t) f(u',t) (2) 

and y is the angle between the test rod and another one 
with orientations u and u', respectively. The parameter 
p equals unity when the distribution is isotropic. Note that 
(N(r) )  is essentially the number density scaled by an ex- 
cluded-volume proportional to L2r (sin y ). 

The purpose of deriving eq 1 is to determine the 
preaveraged radius a of the tube in which the test rod is 
dynamically constrained. Originally, the average number 
of rods needed was supposed to be of order unity29i30 so 
that ( N ( a ) )  = vaL2p = 1. The onset of entanglement v* 
was supposed to be at a = L so that v* = L-3 when p = 1. 
However, for isotropic solutions many have 
shown that the onset occurs at much higher densities, viz., 
v* = EL-3, where E is a number between about 30 and 70. 
This implies that ( N ( a ) )  = E is more realistic. We now 
postulate that the same relation is valid even when the 
solution is uniaxially ordered. In other words E rods are 
needed to make an effective tube constraint irrespective 
of whether the orientational order is due to flow or the 
excluded-volume effect. 

If we use a = E/vL2p instead of a = (uL2p)-', the 
preaveraged rotational diffusion coefficient valid in the 
entangled state is given by7p29930 

D, = (E/L3vp)2D,, (3) 
When the rods are not entangled, their diffusion coefficient 
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is equal to the infinite dilution value Dro. Here, the pre- 
factor in eq 3 defines entanglement 

(4) h = L 3 u p  > E 

Diffusion Equation 
Having defined our entanglement condition, we study 

the mean-field dynamics of the rods by using the preav- 
eraged diffusion equation introduced by Doi6 

(5) df/dt = DrV,.(V,f+ fv,v, - V,.(Ufl 

with 

V(u) = (&/*)I du' sin y(u,u') f(u') (6) 

c = (r/4)L2Dv (7) 

U = K-U - (U*K.U)U (8) 

The nematic potential V (scaled by kBT with T the tem- 
perature and kB Boltzmann's constant) is exerted on the 
test rod by the surrounding macromolecules. It is con- 
sistent with the second virial approximation as developed 
by Onsager40 for a liquid crystal of slender rods. The 
dimensionless parameter c is the number density scaled 
by the isotropic excluded volume (r/4)L2D, where D is the 
rod diameter ( L  >> D). Deviations from equilibrium are 
caused by macroscopic flow given in terms of K ,  the 
transpose of the velocity gradient tensor. Equation 8 
describes the rate of change of the orientation of a test 
particle. 

Here, we confine ourselves to elongational flow so that 
K is expressed as a function of the elongational rate i(t) by 
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Kramers.Ig In our case, trying to obtain the free energy 
is complicated by the fact that p is already a functional 
of the distribution function f .  

Equation 12 may have more than one solution. But it 
is anticipated that there will only be one that is stable if 
the degree of orientational order is high, as will be sup- 
posed here. We now focus on the leading behavior of this 
f .  We assume 6' is small and set w = 1 - 'I2 O2 + ... Let 
us for the moment put p equal to zero in order to recall 
the form o f f  for the unperturbed nematic state. 

At first sight the nematic potential V in eq 12 looks 
unwieldy because of the awkward sin y kernel in eq 6. But 
it is feasible to derive the expansion of V for small angles. 
First, we expand the kernel in terms of Legendre poly- 
nomials of even order 

m 

sin y = Cd2,PZn(cos y) 

Next, we note that upon using the addition theorem41 we 
have 

n=O 

Furthermore, we assume the director is always aligned 
along the z direction. Accordingly, eq 5 is simplified 
considerably upon switching to polar coordinates ( 0 , ~ )  with 
w = cos 6' and noting that f = f ( w )  

!Y = D,- [ (1 - w2) (;; - + f -  ;; - pwf - ) ]  (10) 
dt d W  

where 

Kuzuu and Doi14 have analyzed eq 10 for V = 0, assuming 
the rods are always entangled. Here we take both the 
excluded-volume potential and disentanglement into 
consideration. 

Entangled Steady State 
If the imposed flow has a constant elongational rate i(t) 

= k, the solution will eventually attain a steady state. 
Equation 10 reduces to 

(12) 

This integral equation does not agree with ref 16-18 be- 
cause, here, p depends on the degree of entanglement of 
the rods (when h L E) .  In ref 16-18, p is simply set equal 
to P 

log f ( w )  = constant - V(w) + '/Zpw2 

Then, eq 11 can be functionally integrated, yielding a free 
energy consisting of the usual term (as discussed in ref 40, 
for instance) and a term similar to the one introduced by 

1'" dp' sin y = 5 d2,P2,(cos 6')P2,(cos 0') 
2 9  0 n=O 

and so 

8c 
V(6') = --C~~,PZ,(COS ~)(P~,(cos 6 " ) )  (14) 

a n=O 

Hence, the potential is a straightforward expansion in 02. 
However, the coefficients are very tedious to calculate. A 
simpler route is to observe that eq 12 (with p = 0) and eq 
14 prove the leading term of the asymptotic expansion for 
f is Gaussian 

010 1 f - exp(-;aod2) 0 < 6' < -a 2 (15) 

f ( 8 )  = f(a-6') a0 >> 1 

The parameter a. is calculated by minimizing the free 

4c2 
a0 = - 

a 

The validity of eq 15 has also been established numeri- 
 ally.^^ Thus, eq 14 may be rewritten in view of eq 12 and 
16 

V(6') = V(0) + a-1~2a01/2c6'2 + ... (17) 

Note that the excluded-volume interaction tries to align 
a test rod along the director (the z direction). 

For highly oriented systems it is immediately clear that 
the solution to eq 12 must also have the Gaussian form 

1 1 
f - E exp(- 5a02) 0 < 6' < -T 2 (18) 

f ( 6 ' )  = f(a-6') a >> 1 

In this case V(6') is given by eq 17 with a0 replaced by a. 
The use of eq 18 is restricted by the requirement 

(19) 

The first inequality expresses the fact that the rods must 
be sufficiently slender if the second virial approximation 
is to hold;39 the second expresses the dominance of the 
leading order solution. Equations 2 and 18 give 

(L/D)2 >> a >> 1 

p = 4(ra)-'/2 (20) 

and eq 11 becomes 
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p = ph2E-2 = 16n-'a-'(yL3E-')2/3 (21)  

Equations 12, 17, and 21 finally yield the relation between 
a and p (for h > E )  

( 2 2 )  

This expression reduces to eq 16 as p goes to zero and to 
eq 19 of Kuzuu and Doi14 when c is set equal to zero and 
E to unity. Equation 22 shows that the orientational effect 
of flow becomes comparable to the excluded-volume effect 
when 

p+ = E'$ 

8(vL3/E)'p = 1/2mx2 - ir1/2~a3/2 

where the volume fraction cp = cD/L. 

Disentanglement 
Equations 4 and 20 show that the rods become disen- 

tangled when the degree of orientational order is high 
enough 

a'/' > ~ ~ S - ~ / ~ ( L / D ) C E - '  (23) 

Note that our calculations are of qualitative use only when 
c >> E. The first inequality of eq 19 will not be obeyed 
if one wants eq 23 to be satisfied. Equations 22 and 23 
allow a to be eliminated so that we have an explicit con- 
dition for the scaled elongational rate to force disentan- 
glement 
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time. The nonmonotone behavior of the time derivative 
of a( t )  can also be proved for initially isotropic states 
provided the elongational rate is high enough. Equation 
29 with c = 0 still holds, but a(t) must be much larger than 
unity if eq 27 is to remain a satisfactory approximation. 

It is of interest to compare the behavior of a(t)  with that 
of the order parameter S( t )  = ( 3 / 2  cos2 6 - 1 / 2 ) .  The time 
derivative is given by 

p > p* = 256f3( ; ) (c /E)(  ; - ~ T E )  (24) 

Short enough rods (LID C ' I8xE)  are disentangled at  all 
elongational rates, but for slow rates of flow the incipient 
state must be liquid crystalline in view of the second in- 
equality of eq 19. 

For /3 > /I* we can write an expression for a in terms of 
B = /3 in an analogous fashion 

a'/2 = *-'/2c + (n-'c2 + p)"2 (25)  

This reduces to two well-known limits as either c or p tend 
to zero. 

Time Dependence 

at the inception of steady flow 
For high degrees of order eq 10 can be solved explicitly 

i ( t )  = 0 t c 0 
= i  t>O (26) 

It is straightforward to prove that the leading order solu- 
tion is Gaussian again. 

(27) 
When the macromolecular solution is entangled (h ( t )  > 
E ) ,  eq 10, 17, and 21 yield 

x -D,o(E/~L3)2(16~-'~a(vL3/E)2 - a3 + 27r- ' /2~~5/2)  (28) 
8 
If we start with a liquid-crystalline state, i.e., g = 0 and 

ao1/2 = 2xo-% for t < 0, it is easy to show that a t  some 
time t > 0 g(a,p) has a maximum a t  (Y = a,  given by 

= L ( E / V L ~ ) ~ ( ~ ~ , ~  - 5 ? r 1 ~ 2 ~ ~ , 3 / 2 )  (29) 

(provided the solution is still entangled at am). However, 
the function g is never negative so that a( t )  increases with 

16 

- - 3a-2g(a,P) 
at 

It is easy to prove that both S and aS/at show a monotone 
time dependence: the first increasing and the second 
decreasing. 

The disentangled state is now characterized by the 
time-dependent form of eq 3. Thus, a( t )  increases ac- 
cording to eq 28 until a( t )  becomes so large that 

4x-'/2L3va-'/2(t) C E (31) 
In that case eq 10 also has an asymptotic solution, with 
eq 27 as the first term and a( t )  given by 

(32) a a  _ -  - 2aD,,(P - a + 2 T - ' J ~ C ~ ' / ~ )  

at 
This derivative has a maximum for 

a,'/' = 3/4x-1/2c + 1/(9x-'c2 + 8p)'/' (33) 

Again, both S and dS/at have a monotone time depen- 
dence. 

Elongational Stress 

pression7 
The stress tensor is approximated by the usual ex- 

U = ~ V ~ B T ( U U  - Y3I) + vkBT((V,V)u) + '/V{K:(UUUU) 
(34) 

with I the unit tensor. The first term arises from the 
decrease in entropy, the second arises from the self-con- 
sistent nematic field, and the third is the hydrodynamic 
stress proportional to the (effective) rotational friction 
coefficient of a rod. We neglect hydrodynamic interactions 
between the rods. 

It is straightforward to calculate the stress when the 
solution is relatively highly ordered (a( t )  >> 1). In view 
of eq 9 and 21, eq 34 reduces to 
~ 3 3  - ~ 1 1  = 3&T(1 - 3a-'(t)) - 

6 ~ - ' / 2 ~ h ~ T C ~ - ' / 2 ( t ) ( 1  - Aa-'(t)) + Y2v{6(1 - 6a-'(t)) 
(35) 

An explicit solution of the stress can be obtained by in- 
serting a( t ) ,  the solution to eq 28 when h( t )  > E and the 
solution to eq 32 when h( t )  < E. Note that we are forced 
to include a factor (1 - A d )  in the term stemming from 
the nematic potential (proportional to c). The constant 
A would equal 5l3Il6 if the Onsager trial function were to 
be employed. The stress must be zero when flow is absent. 
The first term in eq 35 agrees with the expansion calcu- 
lated by Kuzuu and Doi.14 

There are several proposals for the form of the friction 
coefficient. One extreme is to assume that hydrodynamic 
dissipation is involved only when a test rod reorients in 
the pure solvent and none occurs as it slides along the 
"wall" of the constraining tube7 

where vs = viscosity of the solvent. The opposite extreme3' 
is to postulate that the rod rotates through an effective 
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medium having a viscosity qeff = q$ro/Dr 
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for higher i. are in good agreement with the dependence 
predicted by eq 3, 20, and 22 for c = 0 (and derived pre- 
viously by Kuzuu and Doi14). 

It is useful to have a look at the order of magnitude of 
the rate needed to cause disentanglement. Let us choose 
E to be equal to the lower numerical bound.30 Then, the 
equilibrium liquid crystal state would always be entangled 
(see eq 16 and 23). If the aspect ratio LID is 20 and the 
volume fraction cp = Dc/L is 0.3, we would need an elon- 
gational rate i: of about 36D,, in order to achieve disen- 
tanglement (see eq 24). This solution would be a liquid 
crystal at equilibrium. For semidilute solutions flow can 
force the rods to disentangle even when they are quite long. 
If LID is large, say about 100, fl* in eq 24 can be simplified 
as fl* i= 8 (cp/E)2(L/D). An initially semidilute solution 
(cp = 0.003; h > E )  would become disentangled at  a rate 
1: of only 5D,,. 

Finally, it is pertinent to point out that eq 40 and eq 41 
predict that the elongational viscosity qo for a liquid crystal 
has a minimum at a volume fraction cp = 12~-'/~E-*. By 
contrast, if the rods are assumed to rotate through an 
effective medium (eq 37 and 40), qo would show a mono- 
tone increase with concentration because c 2 4.2 in the 
nematic state. Accordingly, measurements of the elonga- 
tional viscosity could be a useful means of discriminating 
between the two extremes proposed for 5: 
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ABSTRACT Simple dimensional analysis is employed to discuss the relevance of impurity interactions on 
the molecular dimensions of flexible polymers in the limits of high- and low-impurity densities. Scaling arguments 
account for the universal behavior of static properties observed by Baumgiirtner and Muthukumar in their 
recent Monte Carlo simulations. An approximate model of the random impurity interaction is introduced 
by considering the random impurities as being analogous to an “effective surface“ with which the polymer 
interacts. Qualitatively the same conclusions are obtained as in the scaling arguments except that the effective 
surface analogy provides closed form scaling functions describing the variation of the molecular dimensions 
as a function of the dimensionless disorder interaction. The transition to a collapsed state is found to be 
characterized by a critical impurity density which is a function of the chain length. 

1. Introduction 

Recently, Baumgartner and Muthukumar’ (MB) in- 
vestigated the configurational properties of a polymer in 
an array of randomly distributed fixed obstacles 
(“impurities”) and found a crossover from random coil to 
“collapsed” chain configurations with an increasing im- 
purity concentration. For the idealized random walk 
model that they consider, the limiting collapsed chain 
dimensions are found to be independent of chain length 
and dependent in a universal way on the impurity con- 
centration. 

A close quantum mechanical analogue of this problem, 
the scattering of an electron in an array of randomly 
distributed impurity centers, has been studied extensively 
over the last 30 years, and this formalism can be tran- 
scribed with little variation to the polymer problem.2-’2 
The polymer collapse transition due to impurities in a 
quantum mechanical context corresponds to a change from 
a free-electron (conducting) state to a localized (noncon- 
ducting) state with increasing impurity concentration. 
Calculations by Edwards8Jo using the path integral for- 
mulation of the one-electron Green’s function averaged 
over random impurities indicate that this transition occurs 
because the randomly distributed impurities generate a 
net attractive interaction, giving rise to the localization 
transition for sufficient disorder. MB give the same in- 
terpretation to the polymer collapse due to a net effective 
attractive interaction generated by impurities.’ Edwards 
and others have also noted the close mathematical analogy 
between electron localization and polymer collapse due to 
binary self-attractive excluded volume i n t e r a c t i ~ n s . ~ J ~ J ~  

2. The Model 

Following the standard modeP12 for impurity inter- 
acting electrons, MB introduce the impurity-averaged 
end-to-end vector distribution function for the polymer 
as 

where NI is the number of impurities in the system at  
positions R, and pOp is a coupling constant for the point 
impurity-polymer interaction. P(R,) describes the dis- 
tribution of impurities which is taken to be random in the 
simulation of MB. Other choices of P(R,) are of course 
possible, and P can be more generally taken as a random 
variable as welfl The variable N is the chain length, d is 
the dimension, 1 is the Kuhn length, and T is the contour 
distance measured along the chain. In the analogue 
quantum mechanical problem, N is replaced by imaginary 
time, the dimension d by electron mass, and the Kuhn 
length 1 by Plank’s constant h. See ref 2,3,  and 10 for a 
detailed discussion of the impurity-averaging formalism 
and the quantum mechanical analogue of (2.1) corre- 
sponding to the average propagator for an electron moving 
in a background of fixed random scatterers. 

Below we introduce dimensionless units for the position 
vectors of the impurities and polymer chain, R, and R(T), 
respectively, and the chain length N = nl as 
R ( X ) ( ~ / ( R ~ ) ~ ) ~ / ~  = r(x) 

The Hamiltonian H/KBT in these units is equal to 
R,(d/(R2)o)1/2 = r, 

Ho = ( 1 / 2 ) l 1 d x  0 Idr(x)/dx12 

Nl 

x = T/N (2.2) 

HI = $,(d/2a12)d/2n1-d/2 L l d x  ( 2 ~ ) ~ / ~ 6 [ r ( x )  - r,] 
u = l  

(2.3) 
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