
Faculty of Electrical Engineering, Mathematics and Computer Science

Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ens.ewi.tudelft.nl/

CAS-2010-MS-11

M.Sc. Thesis

TMFab: A Transactional Memory Fabric
for Chip Multiprocessors

Sumeet S. Kumar

Abstract

With the performance of single-core processors approaching its limits,
an increased amount of research effort is focused on chip multiproces-
sors (CMP). However, existing lock-based synchronization methods
that are critical to performing parallel computation possess limited
scalability and are inherently complex to use while programming. This
thesis uses the concept of transactional memory implemented within a
synthesizable fabric named TMFab, containing all the requisite hard-
ware components needed to prototype a scalable chip-multiprocessor.
Its processor independent nature enables the instantiation and use
of any suitable soft-processor core inside the fabric without signif-
icant modifications to the fabric hardware. Additionally, the fab-
ric offers scalability on account of its 3D interconnect architecture
that supports die-stacking to add additional processor cores to the
CMP without increasing its area footprint. The hardware transac-
tional memory system of the fabric reduces performance overheads of
transactional operations, allowing transactions to complete execution
faster. TMFab is shown to provide speed up as high as 3.44× for
correctly partitioned independent transactions and can be used to an-
alyze the points of contention for conflicting transactions. The fabric
was synthesized for both Field Programmable Gate Array (FPGA) as
well as 90nm semi-custom targets.

TMFab: A Transactional Memory Fabric for Chip

Multiprocessors

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Microelectronics

by

Sumeet S. Kumar
born in Kuwait City, Kuwait

This work was performed in:

Circuits and Systems Group
Department of Microelectronics
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft University of Technology

Copyright c© 2010 Circuits and Systems Group
All rights reserved.

Delft University of Technology

Department of

Microelectronics

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “TMFab: A Transactional Memory Fabric for Chip Multiprocessors”
by Sumeet S. Kumar in partial fulfillment of the requirements for the degree of
Master of Science.

Dated: 26/11/2010

Chairman:
prof.dr.ir. A.J. van der Veen

Advisor:
dr.ir. T.G.R.M. van Leuken

Committee Members:
dr. ir. J.S.S.M. Wong

iv

Abstract

With the performance of single-core processors approaching its limits, an increased
amount of research effort is focused on chip multiprocessors (CMP). However, existing
lock-based synchronization methods that are critical to performing parallel computa-
tion possess limited scalability and are inherently complex to use while programming.
This thesis uses the concept of transactional memory implemented within a synthesiz-
able fabric named TMFab, containing all the requisite hardware components needed to
prototype a scalable chip-multiprocessor. Its processor independent nature enables the
instantiation and use of any suitable soft-processor core inside the fabric without sig-
nificant modifications to the fabric hardware. Additionally, the fabric offers scalability
on account of its 3D interconnect architecture that supports die-stacking to add addi-
tional processor cores to the CMP without increasing its area footprint. The hardware
transactional memory system of the fabric reduces performance overheads of transac-
tional operations, allowing transactions to complete execution faster. TMFab is shown
to provide speed up as high as 3.44× for correctly partitioned independent transactions
and can be used to analyze the points of contention for conflicting transactions. The
fabric was synthesized for both Field Programmable Gate Array (FPGA) as well as
90nm semi-custom targets.

v

vi

Acknowledgments

Two years ago, I arrived in the Netherlands from India with the enthusiasm of a child.
I was in a new country, with new people and was about to set out on an incredible
experience. In these two years I’ve come across situations that have taken me out
of my comfort zone, met strangers I felt I knew for ages and had an opportunity to
understand that its only when you give people a chance do you know how much they
can impress you. The last two years have been about the people, who knowingly
and unknowingly supported me and enriched my journey a little. It has been about
experiences, of knowing that an ego comes in the way of true learning. And it has been
of appreciation, for all the little things people do for you that always go unnoticed.
Therefore, at the conclusion of my Masters, I would like to express my appreciation for
all those people, for the experiences they gave me, and the little things they did that
went a long way in sustaining me in these two years.

First, Rene. You took me on as a fresh Masters student two years ago, and played
host to my strange questions and whimsical ideas throughout that time. It is with you
that I had some wonderful discussions which made think like an academic engineer. I
always appreciated the freedom you gave me with design decisions, and how we could
proceed from the many brick walls we ran into. You kept my feet on the ground, and
taught me to be realistic when it was needed the most. For this, and so much more,
thank you.

Alexander and Huib, through my messing around with the MB-Lite, playing with
cache simulators and fiddling with the ASIC design flow you remained patient. Without
your help, a lot of issues which I encountered wouldn’t have been solved very easily.
Antoon - missing license file, crashing design flows and noisy fans - you dealt with them
all even on gloomy Monday mornings. Thank you.

Laura, Judith and Minaksie, your presence on the 17th floor is always reassuring to
every member of the group. You are the glue that holds the group together, managing
every administrative task so students can focus on what they are meant to be doing.

To all my friends, you were always around to share my happiness, and never seemed
to leave when I was sad. Without your friendship and your support, life wouldn’t be
as colourful.

Mum, Dad, Nisha, Nicky and Sharmishta - Your unfaltering faith in me always kept
me going when I thought that hope was fading. Without your love, your understanding
and your support, none of this would have been possible. You all have been my brightest
stars, in my darkest nights.

Sumeet S. Kumar
Delft, The Netherlands
26/11/2010

vii

viii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Goals . 2
1.3 Contributions . 2
1.4 Thesis Organisation . 3

2 Background 5
2.1 Parallelism . 5
2.2 Cache Coherence . 6
2.3 Consistency . 6
2.4 Transactional Memory . 7

2.4.1 Types of Transactional Memory Systems 8
2.4.2 Transactional CMPs . 10

2.5 Interconnect . 13

3 TMFab System Overview 15
3.1 Overview of TMFab . 15
3.2 System-level Transactional Memory Policy 18

3.2.1 Transaction Programming . 18
3.2.2 Version Management . 19
3.2.3 Conflict Detection . 19
3.2.4 Contention Management . 20
3.2.5 Validate and Commit Contention 21
3.2.6 Cache Coherence Protocol . 21

4 Architecture 23
4.1 TMFab Scheduler (TMS) . 23

4.1.1 Scheduler Architecture . 23
4.2 TM Cache Controller . 30

4.2.1 Bootloader . 31
4.2.2 L1 Instruction Memory (L1-I) 31
4.2.3 L1 Data Cache (L1-D) . 31
4.2.4 Tag Unit . 34
4.2.5 Speculative Write Buffer (SWB) 37
4.2.6 Transaction Control . 38
4.2.7 PE Interfaces . 41

4.3 L2 Data Cache . 41
4.3.1 Data Memory . 42

ix

4.3.2 Tag Unit . 44
4.3.3 External Memory Interface . 44

4.4 Interconnect . 46
4.4.1 Network Architecture . 47
4.4.2 Router Architecture . 48
4.4.3 Network Interface Architecture 50

5 Performance Evaluation 53
5.1 Interconnect . 53

5.1.1 Methodology . 53
5.1.2 Interconnect performance . 53

5.2 TMFab System . 55
5.2.1 Methodology . 55

6 Implementation 63
6.1 TMFab . 63

6.1.1 FPGA . 63
6.1.2 ASIC . 63

6.2 Fabric router . 65
6.2.1 FPGA . 65
6.2.2 ASIC . 65

7 Conclusion 69
7.1 Summary . 69
7.2 Future Work . 70
7.3 Publications . 71

Bibliography 72

x

List of Figures

2.1 Atlas CMP . 11
2.2 Die Stacking with Through Silicon Vias 13

3.1 TMFab Transactional Memory Fabric 16
3.2 TSV based vertical links with die-stacking 17

4.1 TMFab Scheduler Architecture . 24
4.2 a. Demarcated transactional instruction stream, b. 24
4.3 Format of transactional markers . 25
4.4 State transitions in the PESM . 26
4.5 TM Cache Controller architecture . 30
4.6 Miss rates for varying cache size and associativity (Line Size: 16 Bytes

and 32 Bytes) . 33
4.7 Miss rates for varying cache size and associativity (Line Size: 64 Bytes) 34
4.8 Structure of L1-Tag set . 35
4.9 Cache line entry in the Speculative Write Buffer 37
4.10 States of operation of the TM-CC . 38
4.11 Architecture of L2-D tile . 41
4.12 Miss rates in the L2-D for varying cache sizes and associativity 43
4.13 Packet Format . 47
4.14 Fabric router architecture . 48
4.15 Average end-to-end packet latency and raw aggregate throughput with

varying input buffer depth . 49
4.16 Network Interface Architecture . 50

5.1 Destination distribution for PE-emulating injectors 54
5.2 Average packet latency for single layer 3×2 mesh 54
5.3 Average packet latency for stacked 3×3×2 mesh 55
5.4 Variation in Throughput and minimum network latency with stacking . 56
5.5 Dependencies between MAT-MED-HIGH transactions 57
5.6 Normalized speed up for MAT-SMALL, MAT-MED and MAT-LARGE 58
5.7 Breakdown of execution time (a) MAT-MED (Runtime = 18430ns), (b)

MAT-SMALL (Runtime = 2098ns) . 59
5.8 Breakdown of execution time for MAT-LARGE (Runtime = 144725ns) . 60
5.9 Magnitude of overhead for varying number of active transactions 61
5.10 Effect dependencies on speed up . 61

6.1 Structure of custom TSV cell . 66
6.2 Placed (L) and Routed (R) 5-port router 67
6.3 Placed (L) and Routed (R) 7-port router with 11.2µm TSVs 67

xi

xii

List of Tables

2.1 Rock specifications . 10
2.2 ATLAS Specifications . 12

4.1 tpi signal descriptions . 24
4.2 summary of pe-pesm transfers . 27
4.3 communication identifiers . 28
4.4 l1-d simulation parameters . 32
4.5 data references per application 32
4.6 l2-d simulation parameters . 42
4.7 L2-D references per application 43
4.8 communication identifiers . 48

6.1 resource utilization and clock freq. - tmfab 63
6.2 post-synthesis area utilization - tmfab 64
6.3 post-synthesis area utilization - mb-lite 64
6.4 summary of memory sizes . 64
6.5 resource utilization and clock freq. - fabric routers 65
6.6 tsv configurations . 66
6.7 area estimates for 7-port router 66

xiii

xiv

Introduction 1
1.1 Motivation

The quest for higher levels of performance from microprocessors has resulted in the
limitations of single core processors being uncovered. Chip multiprocessors are seen as
the future in an environment requiring high performance processor architectures capa-
ble of performing several tasks in parallel. However, such an increase in performance is
not easily obtainable and is accompanied by its own set of challenges, most significant
of which is the programming complexity associated with developing parallel applica-
tions. Conventional CMPs view parallel tasks as threads, requiring those that operate
on shared data to be synchronized and perform their writes in a mutually exclusive
manner. These requirements necessitate the use of lock and barrier primitives that
increase both effort and complexity of programming applications for CMPs. Further-
more, locks impose a serious limitation on the scalability of the system as contention
for shared data increases [1]. Transactional memory (TM) was first suggested as an
alternative for locks in critical sections of code [2], but has evolved into a general paral-
lel programming paradigm for chip-multiprocessors. TM uses transactions as the basic
unit of work, executing them speculatively on cores and performing all synchronization
with the shared memory only upon completion without requiring programmer specified
locks and synchronization primitives. Consistency of shared data and correctness of
execution are inherently guaranteed by transactional memory due to its strict checking
for dependencies between transactions, and the fixed order in which their operations
appear to complete. Most importantly, transactional applications have been shown to
execute faster than their lock-based counterparts [2][1].

Despite its promising performance and relatively simple programming interface,
there exist only two hardware implementations of TM - Atlas [3] and the discontinued
Sun Rock [4]. While the Atlas CMP provides an excellent platform for research on TM,
it uses hard PowerPC processor cores and offers no options for using alternative cores
in its place. Similarly, the Rock’s TM implementation uses a customized instruction set
for its processor cores. In addition, the interconnect in both these CMPs offers limited
scalability. Therefore, there exists no consolidated transactional memory infrastructure
to prototype and implement TM based CMPs using other processor architectures, in
hardware.

TMFab aims to address this by providing a transactional chip-multiprocessing fabric
containing requisite TM hardware and a scalable interconnect to enable the rapid pro-
totyping and implementation of CMPs composed of synthesizable soft-processor cores.
Additionally, it reduces programming complexity by simplifying the transactional prim-
itives available to the programmer.

1

1.2 Thesis Goals

This thesis describes the development of a hardware fabric which implements trans-
actional memory to enable the parallel execution of transactional applications on an
array of processor cores that share memory. The primary objectives of this work are
to:

• Design a light-weight scheduler to manage execution of transactions on processor
cores

• Design a hardware transactional cache memory system that is independent of
processor architecture

• Design a low-overhead scalable baseline interconnect architecture

• Define a system policy that governs the operation of the TM system.

• Reduce performance overhead of TM operations

• Establish the speed up achieved in applications with the proposed architecture,
along with the penalty incurred due to conflicts between transactions

• Implement the designed scalable hardware TM fabric for an FPGA target and in
90nm UMC technology

1.3 Contributions

This work analyzed existing state of the art transactional memory proposals to deter-
mine an appropriate TM system architecture for the envisaged fabric. This architecture
incorporated additional features to improve performance and enable the realization of
a hardware fabric for chip multiprocessor prototyping. Its significant contributions
include:

• Proposes the first such hardware transactional memory fabric for shared memory
chip-multiprocessor prototyping

• Processor architecture independent TM implementation

• Reduced performance overhead for scheduling and transactional validations

• Scalable 3D interconnect with full-custom Through Silicon Vias (TSV)

• Evaluation of the limitations of stacking, and area penalty incurred by the use of
TSVs with varying keep-out areas

2

1.4 Thesis Organisation

This thesis is organized into the following chapters:
Chapter 2 introduces the concepts of parallelism, and describes the reasons that ne-
cessitated chip multiprocessing and subsequently, transactional memory. Various TM
proposals and their contribution to the evolution of the methodology itself are exam-
ined, along with the only two hardware implementations of TM. Further, the concepts
of die stacking and 3D networks-on-chip are examined with a survey of recent work in
the field.
Chapter 3 provides an overview of TMFab, explaining its organisation and key com-
ponents. Using this as a foundation, a system level transactional memory policy that
defines protocols for version management, conflict detection, contention management
and cache coherence is described.
Chapter 4 examines the architecture of TMFab in terms of its four primary compo-
nents - scheduler, cache controller, L2 data cache and interconnect. Each is described
separately along with information on design decisions, as well as their implications.
Chapter 5 evaluates the performance of TMFab in two parts. The interconnect is first
tested in single and multi-layer configurations to determine performance, and stack-
ing limitations. Thereafter, the complete system is tested after integration of a light
soft-processor core. The performance overhead incurred for transactional operations is
analyzed along with the penalty due to conflicts between transactions.
Chapter 6 details the hardware implementation of the fabric on FPGA and 90nm UMC
technology targets. Additionally, it describes the full-custom design of a TSV cell in
its three configurations, and reports the area overhead associated with the use of each.
Chapter 7 includes concluding remarks, and recommendations for future work.

3

4

Background 2
This chapter provides an overview of the basics of chip multiprocessing, and the var-
ious issues surrounding it. The concept of transactional memory is introduced, along
with the different classifications of its implementation. One such class of TM systems -
Hardware Transactional Memory (HTM), is explained, and the most influential HTM
proposals from the last decade summarized. With this foundation, three transactional
chip-multiprocessors are reviewed, and their limitations highlighted. Further, the con-
cepts of 3D Networks on Chip using die-stacking and Through Silicon Vias are explained
in this chapter.

2.1 Parallelism

Processors exploit different types of parallelism in order to speed up execution of ap-
plication processes. There exist three primary types of parallelism: Instruction Level
Parallelism, Data Level Parallelism and Task Level Parallelism.

Instruction Level Parallelism (ILP) During execution, the processor fetches instruc-
tions from the waiting stream of instructions and executes each on an appropriate
function unit. Subsequent instructions in the stream that require a different function
unit may be executed in parallel, provided no dependencies exist between the two.
This is known as Instruction Level Parallelism and refers to the inherent parallelism in
sequential code.

Data Level Parallelism (DLP) Loops that perform a certain operation on large
data structures like arrays may be unrolled and executed in parallel by more than one
processor. This is referred to as Data Level Parallelism.

Task Level Parallelism (TLP) A process may contain several groups of instructions,
with each performing a particular task. Task Level Parallelism is exploited by the
parallel execution of each one of these task on one or more processors. Note that DLP
may be considered as a form of TLP.

The exploitation of ILP coupled with the consequences of Moore’s Law have enabled
the rapid increase in uniprocessor performance with every successive shift in technology
node [5][6]. However, with realistic limitations on the amount of such parallelism that
can be extracted from application code, other techniques are required to conserve the
rate of performance increase. For this reason, chip-multiprocessors (CMP) are used to
exploit additional TLP that may exist in the application code alongside any ILP.

5

CMPs consist of several processor cores (also called processing elements) with pri-
vate caches, connected over a common interconnect. Those in which the cores share a
common memory apart from having a local memory are referred to as Shared Memory
chip multiprocessors.

Each processor core in the CMP executes a process task, also called a Thread. Since
threads are executed in parallel with each modifying data in the core’s private cache, it
is imperative that appropriate measures are taken to ensure the consistency of shared
data in all private caches in the system and the shared memory. This means that every
private cache must hold a coherent view of shared data, ensuring that it caches the
most recent version.

2.2 Cache Coherence

CMPs implement a cache coherence protocol to ensure that private caches remain
coherent with each other as well as with the shared memory. This is achieved by
maintaining a special set of tags for every cache line present in the memory. These
track the status of cache lines and serve to indicate if a line is valid, is shared by other
caches, or has been updated by another processor in the CMP. To maintain these tags,
each cache actively listens for cache line address traffic on the interconnect to determine
if the data it is caching has been modified by another core, and subsequently invalidates
its copy of the modified line. This is referred to as snooping. However in CMPs using a
scalable network based interconnect where communication between a core and shared
memory is not globally visible to other cores, directory based coherence is used. This
method uses a central directory structure alongside the shared memory which tracks
shared cache lines present in the private cache of each core. When shared lines are
modified, the directory notifies other cores caching that line to take appropriate action
- invalidate the line, or update the line with the new value. The number of tracking bits
present with each cache line is determined by the coherence protocol in use. Commonly
used protocols include MSI, MESI, MOSI and MOESI [5].

While cache coherence mechanisms ensure that caches always hold the most recent
versions of data, their implementation results in increased traffic in the interconnect.
This is especially true for CMPs with a large number of cores and large amounts of
shared data.

2.3 Consistency

Writes to shared data by threads executing in parallel must be serialized and performed
in the correct order, i.e. writes to shared data must bemutually exclusive. Locks provide
this mutual exclusion by permitting only the thread that owns them to modify shared
data. Threads that try to modify shared data while the lock is held by another thread
are forced to wait until the lock is released. Several important issues arise as a result
of this behavior of locks:

• Deadlock: Threads waiting to acquire a lock make no progress in their execution
until the lock-holding thread completes its write. In the event that the thread fails

6

or enters an infinite loop, the lock is never released causing all waiting threads to
deadlock.

• Priority Inversion: Higher-priority threads are forced to wait due to a low-priority
thread holding the lock.

• Convoying: Threads waiting on a lock experience an increased waiting time if the
lock-holding thread is descheduled.

• Scalability: Protecting data shared by a large number of cores with locks increases
contention for writes, and places limits on the application’s scalability.

• Complexity: Managing locks for multiple shared data over multiple threads in-
creases complexity of the application code.

2.4 Transactional Memory

Transactional Memory was proposed as a replacement for performance degrading lock-
based critical sections in shared memory multiprocessors by Herlihy and Moss in their
1993 paper [2]. They defined transactions as code segments that read or modify shared
data in the system, representing the part of the thread executed immediately after
acquisition of the lock. Transactions are executed in parallel based on the assumption
that they are atomic and do not share data with any other transaction. This assumption
is tested at the end of the transaction’s execution. If the assumption is found valid,
the transaction is allowed to commit its writes to the shared memory. However, if the
assumption is found invalid, the transaction is restarted, rolling back all its previous
writes.

The proposal defined two important properties of transactions:

• Serializability: The operations of every transaction are viewed independently from
those of other transactions. Consequently, transactions appear to execute in a
sequential order.

• Atomicity: Operations within a transaction either complete fully, or appear as
if they were never performed. The latter case results from a violation of the
serializability property by a transaction.

Data read by a transaction constitutes its read-set while the data written by it con-
stitutes the write-set. Collectively, these are referred to as the transaction’s data set.
Loads and stores during execution of a transaction occur according to a strict protocol,
replacing the need for locks during shared data accesses.

1. After performing a load from a shared location, a validation is performed to
determine if the transaction is valid, and if the read data is consistent. If the
validation fails, the transaction restarts execution

2. After completing all stores to a shared location, the transaction attempts to com-
mit its writes to the shared memory. Other transactions executing in parallel may

7

thwart this attempt to commit if the transaction’s writes violate the sequential
write order. Consequently, the transaction aborts, and restarts execution. If the
transaction succeeds, its writes are made global and appear in the order in which
they occurred

Herlihy and Moss used custom hardware in each core to implement such a protocol. An
additional transactional cache was added to store the transaction’s speculative writes
before commit. As writes are performed, their addresses are put onto the system bus
where they are snooped by other cores to determine if the write causes a violation.
Upon detection of a violation, the transaction is forced to clear its transactional cache
and restart. However, if no violations are detected, the transaction completes its writes
by committing them to the non-transactional private cache. The system was found
to provide considerable performance gains while executing transactional applications
when compared to their lock-based counterparts.

2.4.1 Types of Transactional Memory Systems

Herlihy and Moss’s TM implementation represents a Hardware Transactional Memory
(HTM) system, utilizing specialized hardware to enable transactional operations in
private caches. The primary disadvantages of HTMs lie in this additional hardware
itself. Firstly, since implementation of a HTM system requires modifications to private
caches in cores, design complexity as well as hardware cost is increased. Secondly, the
fixed nature of these additional hardware resources imposes limitations on the size of
transactions that may execute on cores. Consequently, HTMs require programmers to
understand how transactions execute on cores in the underlying system, thus increasing
program complexity.

Transactional Coherence and Consistency (TCC) [7] was an influential proposal for
HTMs, advocating the replacement of cache coherence protocols in shared memory
transactional CMPs. Transactions are executed speculatively on different cores in par-
allel, with their caches maintained in the coherent state by TCC, with the assumption
that the transactions are independent of each other. Similar to the first TM proposal,
TCC isolates the data sets of executing transactions until commit time, when trans-
actions arbitrate for commit permission and make their write-sets globally visible. An
executing transaction’s writes are buffered by TCC hardware present in each core. At
commit time, each of these writes is made global, and committed to the shared mem-
ory. Transactions are allowed to commit one at a time, according to the program’s
sequential execution order. The TCC system was shown to guarantee correctness of
execution, while maintaining coherence between caches and consistency of shared data.
In addition, the system was shown to scale well with moderate overheads for validation
and commit operations in simulations.

However, most of TCCs operations were based on the shared system bus. For
instance, each core maintains an active snapshot of the progress of other transactions
in the system by snooping the shared bus for transaction updates. Maintaining an
active snapshot of all executing transactions will result in increased broadcast traffic
on the bus, increasing contention. Further, the bus arbitration and transfer latency
is assumed to be 3-cycles, a rather low figure for a CMP. These issues are further

8

examined in Section 2.4.2.

Other proposals include Virtual Transactional Memory (VTM) [8] which provides
transactions access to a virtual memory space, enabling them to continue execution in-
spite of eviction of transactional data-set elements and overflow of transactional hard-
ware resources. Large Transactional Memory (LTM)[9] offers another alternative to
transactions that have exceeded their transactional hardware resources by storing their
speculative writes into an in-memory hash table. However, the conflict detection mech-
anism for such an implementation is complex since the conflict detector must scan both
the hash table as well as the core’s private cache in order to detect conflicts.

Software Transactional Memory (STM) systems were proposed to overcome the
costs and limitations of available HTMs. STMs implement all transactional operations
including validation and commit in software itself. Shavit and Touitou in 1995 proposed
the first software transactional memory system [Shavit and Touitou], comparing it with
Herlihy and Moss’s HTM. Their STM implementation reduced the penalty incurred on
restarts, which in HTMs depends on the size of the transaction’s data set. This penalty
was observed constant for STMs allowing them to scale to large processor counts with-
out losing performance. Several other proposals followed Shavit and Touitou over the
years claiming easy programmability and increased scalability [10], [11], [12]. However,
the 2008 paper by Cascaval et al. weighed such claims against the overheads incurred
in supporting them [13]. Analyzing the performance and overheads of various STMs,
the paper concluded that the overheads incurred in supporting transactional memory
operations simply exceeded the obtained speed up. This was attributed to the software
implementation of transactional primitives which results in tens of extra instructions
being executed after every load and store in order to provide conflict detection.

In a best of both worlds approach, Hybrid Transactional Memory (HyTM) was
proposed by Damron et al. as a combination of STM and HTM [14]. The proposal pri-
marily uses an STM system, with transactions managed in software. However, HyTM
allows transactions within resource limits to execute on an underlying HTM system, if
available. This solves two issues characteristic to HTMs and STMs:

1. Performance: The overheads of STM can be mitigated by executing suitable trans-
actions on the HTM system

2. Resource Limitations: The limitations imposed by the fixed size of transactional
hardware are overcome by providing STM execution for transactions that exceed
the HTM’s resources

Although designed as a hybrid, HyTM is primarily an STM system with support for
HTM when available. Baugh et al. in [15] present a similar hybrid architecture, how-
ever, extend HyTM to include a best-effort HTM system similar to Herlihy and Moss’s
1993 proposal. Other proposals such as [16], [17], [18] suggest similar architectures with
appropriate features to address specific issues from the earlier HyTM proposals. The
general consensus from these proposals is that while transactional execution in HyTMs
does not explicitly depend on hardware, the presence of a low commit-overhead HTM
may significantly improve performance.

9

2.4.2 Transactional CMPs

Although over ten different TM systems have been proposed since the first in 1993,
only two actual chip-multiprocessors have resulted from the research. These are: Sun
Rock and Atlas.

2.4.2.1 Rock

The first and only commercial implementation of transactional memory was Sun’s Rock
processor. The multithreaded Rock consisted of 16 cores based on the SPARC V9
instruction set architecture, with the ability to run upto two threads on each. The
specifications of Rock are listed in Table 2.1.

Table 2.1: Rock specifications

Cores 16 SPARC V9 cores at 2.1GHz
8×32KB 4-way L1-D cache
4×32KB 4-way L1-I cache
4×512KB 8-way L2-D cache
16MB (off chip)

Gate count 5.5 Million

Cores are arranged in clusters of four in order to effectively share on-chip memory
resources. Each cluster contains two L1 data caches shared by two cores. Further,
clusters are interconnected over a crossbar, and also to four banks of shared L2 data
caches. The memory management unit and the system interface are connected over the
same crossbar.

Rock enables hardware transactional memory operations by implementing a check-
point based architecture. During execution, an architectural checkpoint is captured at
the start of a transaction to begin speculative execution, and at the end, if the specula-
tion is found to be valid, the speculative state is converted into the current architectural
state. To enable transactional programming, Rock includes two custom instructions:
checkpoint and commit. The checkpoint instruction is used to indicate the start of a
transaction and also specify a fail pc address. The speculative write-set of transac-
tions is buffered in a local store buffer similar to TCC. Since transactions must validate
their write-set before committing, write-set addresses are forwarded to Rock’s directory
which performs conflict detection. In the event that validation succeeds, the contents
of the local store buffer are drained into the L2 data cache. However, should the val-
idation fail, execution continues from the address indicated in the fail-pc attribute of
the checkpoint instruction.

Dice et al. experimented with early versions of the HTM implementation in Rock,
and published an account in [19]. It was observed that even though some benchmarks
showed speed up with transactional execution, others showed a slow down, i.e. increased
run time when compared to uniprocessor execution. In addition, reported scalability
for applications was lower than expected. Dice’s paper provided much needed insight

10

into the functioning of HTMs in an actual hardware implementation. However, rather
than address the issues raised by Dice, Sun cancelled the Rock project.

Although Rock’s HTM system was the first hardware implementation of TM, it
possessed certain limitations along with the processor itself.

1. The local store buffer was small at only 32 cache lines, placing serious limitations
on the data-set size of transactions

2. The best-effort HTM system implemented did not take into account the inter-
rupt and IO capabilities of Rock. As a consequence, transactions were failed on
interrupts, exceptions, and any difficult situations occurring in the system.

3. The implemented crossbar is not the most scalable of interconnect architectures.
With increasing processor count, wire length to the central switch increases, thus
increasing latency. Further, with additional cores the area of the crossbar itself
increases, along with that of the overall die.

4. The HTM implementation was designed for the Rock alone, and is not portable
to other processor architectures

2.4.2.2 Atlas

Atlas forms a full system prototype for the TCC HTM architecture with eight embedded
PowerPC cores in a shared memory transactional CMP. The design is implemented on
a multi-FPGA (Field Programmable Gate Array) BEE2 board consisting of a single
control FPGA and four user FPGAs [20]. Fig. 2.1 shows an overview of the Atlas
CMP.

Figure 2.1: Atlas CMP

Each user FPGA in Atlas contains two hard PowerPC 405 cores with a custom
synthesized transactional cache. The control FPGA contains a single PowerPC core
that handles the OS and input/output operations. The five FPGAs are connected in a

11

star topology to a central switch which handles all control and data transfers between
cores.

The specifications of the Atlas CMP are listed in Table 2.2.

Table 2.2: ATLAS Specifications

Cores 9 IBM PowerPC 405 cores at 100MHz
16KB 2-way I-cache
32KB 4-way Transactional D-cache
16KB 2-way D-cache (Control CPU)

Main Memory 512MB DDR2 at 200MHz

User FPGA Xilinx XC2VP70 17641 LUTs (26%)
212KB BRAMs (32%)

Control FPGA Xilinx XC2VP70 16284 LUTs (24%)
66KB BRAMs (10%)

OS Montavista Linux 3.1

Applications for the Atlas are partitioned into threads with each containing one or
more transactions. It is subsequently compiled and linked with a library containing op-
timized assembly implementations of transaction control primitives. Additionally, Atlas
also includes performance tuning features to log the number and causes of violations
and overflows, allowing applications to be optimized for execution on the CMP.

While the Atlas does an excellent job at prototyping the TCC system, a few short-
comings are observed in its design approach.

1. The star topology interconnect shows limited scalability since increasing the num-
ber of processors in the system causes increased contention at the control switch.
As a result of the increased network latency, validation and commit communica-
tions would incur a larger performance overhead.

2. Operations such as commit request, commit writes, and conflict-driven data-set
invalidation are all performed using the Atlas library in software. Making such
operations visible to the programmer exposes the underlying TM system and
increases programming complexity.

3. Since the library is implemented as an optimized set of assembly instructions
for each transaction control primitive, switching to a lighter embedded processor
would entail rewriting the entire library. As a result, retargeting the Atlas for a
different processor architecture is not simple.

4. The Atlas system itself only consists of the required transactional memory hard-
ware for each CMP core. Since it uses a hard processor core, an ASIC implemen-
tation of the CMP would require the addition of processor core IPs, a suitable
interconnect, and appropriate memory blocks. While this is considered as a lim-
itation in the scope of this thesis, it must be noted that the Atlas project itself
focuses on developing a platform for transactional memory research, and not one
for CMP research as this work endeavours to.

12

2.5 Interconnect

A common trait to both the Rock and the Atlas was the limited scalability offered by
their interconnects. Addition of cores onto such interconnects would increase network
latency and serve as a performance bottleneck. Furthermore, ignoring their effect on
the Rock’s crossbar switch, these additional cores would significant increase the already
high area of its die. While scalable networks-on-chip (NoC) [21][22] provide a solution
to the interconnect issues faced in the Rock and the Atlas, a different approach is
necessary to address the issue of scalability limits on account of area constraints.

As conventional networks-on-chip increase in size, the number of hops between nodes
at opposite edges of the network increases, i.e. network latency increases, with network
size increasing accordingly. In order to maintain the area of the network while still
increasing the number of nodes it contains, die-stacking is used. This technology utilizes
several dice stacked one above the other, interconnected with a vertical wire, known as
the Through Silicon Via (TSV). Fig. 2.2 illustrates this concept.

Figure 2.2: Die Stacking with Through Silicon Vias

In addition to decreasing the area footprint of the overall design, die-stacking reduces
wire length in the vertical dimension. This is a consequence of the TSVs shorter height
when compared to that of ordinary lateral wires [23][24][25][26]. In addition, TSVs also
exhibit superior parasitic performance and thus reduce signal propagation delay [27].

Pavlidis and Friedman in [28] provided the earliest evidence of the packet latency
and performance benefits of 3D NoCs. They evaluated 3D interconnects in terms of
hops, and the zero-load network latency for different network configurations. They
found that with scaling in the vertical dimension, average network latency followed the
same increasing trend that is observed in scaling 2D networks. However, they noted that
the increase in number of hops per transmission with scaling in the vertical dimension
was considerably lower than that for 2D network. Additionally, with reduced channel
length to nodes in adjacent layers, the average packet latency was reduced. These
findings highlight the superiority of scaling in the vertical dimension over scaling in a
single plane.

Further to the work by Pavlidis, Weldezion et al. in [29] explored the scalability of

13

3D buffer-less networks-on-chip, analyzing the performance benefits over 2D meshes.
3D mesh and bus based networks were compared against a 2D mesh to determine the
increase in latency associated with adding network nodes. In general, their work served
to highlight the benefits of scaling in the vertical dimension. However, it did not explore
the penalties incurred in achieving such scaling.

Patti in [30] discussed the processes involved in fabricating TSVs in a real stacked
system-on-chip. It demonstrated the ease of integrating TSVs into standard digital
designs, and demonstrated the potential for partitioning systems in the vertical dimen-
sion, allowing for dice from different processes to be integrated within a single system.
However, a methodology for use of TSVs and details on their integration were only
provided by Loi et al. in [31] who describe a design flow for 3D NoCs using TSVs.
They present an electrical model for TSVs based on extracted parasitics, and describe
an implementation of a TSV based 3D NoC. ASIC processes use a fixed supply volt-
age at each technology node. Loi et al. do not specify a process technology making
it difficult to compare the TSV size with interconnect dimensions and area metrics
for the implemented logic. Additionally, process technologies specify a minimum wire
pitch to mitigate the effects of capacitive coupling between adjacent wires, and this is
implemented as a keep-out area in TSVs to prevent signal nets from being routed in
close proximity. The authors again do not specify such a keep-out area for their TSVs,
and only mention a fixed TSV pitch. The actual area overhead incurred by the use
of TSVs can be accurately determined only by factoring in the keep-out area during
floorplanning.

Apart from the 3D NoC itself, router architectures utilizing TSVs were investigated
in MIRA [32] and Picoserver [33]. Park et al. presented a 3D router architecture
decomposed into blocks and placed on separate layers in a stacked configuration. MIRA
represented the first such architecture spanning several layers in a stack. However,
inspite of its design complexity, MIRA performed only marginally better than a baseline
3D network in terms of hop-count and latency. Additionally, MIRA assumed that
processor cores themselves are decomposed into multiple layers. Such processor cores
do not find their way into the mainstream very often due to the relative infancy of
the design flow for such decomposition over multiple layers. This effectively limits the
potential application of MIRA as a 3D interconnect architecture for CMPs.

Picoserver on the other hand was designed for CMPs in a stacked configuration. It
used a shared bus architecture composed primarily of TSVs to enable communication
between cores and shared memory in the CMP. However, its primary limitation lies in
its scalability since it uses a bus. The authors note that system performance would
saturate at 16 cores with their bus architecture.

14

TMFab System Overview 3
Chapter 2 studied the principles of transactional memory, and examined the different
approaches proposed for its implementation, highlighting the limitations of existing
transactional chip multiprocessors - Atlas and Sun’s ROCK. This chapter presents a
system-level overview of TMFab, and describes the transactional memory policy im-
plemented in the fabric.

3.1 Overview of TMFab

The transactional memory proposals have traditionally focused on developing TM sys-
tems and policies closely tied to a single processor architecture such as the x86 and
PowerPC. This was observed in both the Atlas and Rock. Furthermore, most proposed
TM implementations proposed features which are trivial in bus based systems, but
incur large communication overheads in scalable interconnects.

TMFab was conceived with the intent of providing a means to prototype transac-
tional chip multiprocessors using any suitable processor cores. The primary goal of
such a fabric was the reduction in design effort required to develop scalable CMPs.
From the background study performed in Chapter 2, it was observed that transactional
memory proposals have traditionally focussed on developing TM systems and policies
closely tied to a single processor architecture, a fact evidenced by both the Atlas and
the Rock. Furthermore, the proposed HTM implementations utilized features that are
relatively trivial to perform in bus based systems, however, incur large commuication
overheads in scalable interconects. It must also be reiterated that inspite of an abun-
dance of TM proposals over the last decade, the lack of hardware implementations have
resulted in a dearth of realistic performance estimates and system characterization.

From these observations, we arrive at a few key requirements for TMFab. These
include

• Processor architecture independence

• Scalability

• Synthesizability

Deploying soft-processor cores in such a fabric would require minimal modifications
to the underlying transactional memory system, and reduce the design effort involved
in prototyping transactional chip multiprocessors. With these requirements in mind,
a novel stackable hardware transactional memory fabric was designed, as illustrated in
Fig.3.1.

The TMFab transactional memory fabric is intended to work under a non-
transaction supervising processor (SP). Traditional non-transactional applications and

15

Figure 3.1: TMFab Transactional Memory Fabric

the operating system execute on the SP while transactional applications execute on
PEs1 across TMFab.

A network-on-chip based interconnect architecture was chosen on account of its ex-
cellent scalability when compared to bus and crossbar based architectures [34]. NoCs
are composed of routers interconnected with fixed-length links to form a highly struc-
tured network. Fixed-length links regularize wire delays between routers, allowing the
interconnect to operate at higher frequencies, and reducing the effort required in achiev-
ing timing closure. Function units such as processing elements and memory blocks are
placed inside tiles, and connected to the network by means of a Network Interface(NI).
The TMFab network is organized as a mesh for simplicity.

Furthermore, the TMFab network-on-chip was designed as a three dimensional in-
terconnect, i.e. it interconnects tiles not only in the X- and Y-planes, but also in the
Z-plane through vertical ports at each router employing advanced Through Silicon Vias
(TSV). These vertical links are established when dies are stacked one above the other,
with each die containing a mesh of routers, as illustrated in Fig.3.2. This effectively
results in a three dimensional network spanning several dies in the stack, with an overall
area footprint of a single die. Data is transferred across the network as packets and is
delivered to a tile based on the destination address in the packet header. The TMFab
network architecture is examined in detail in Chapter 4.

The TMFab network contains three types of tiles: Scheduler, PE and L2 Data

1Processor cores deployed in TMFab are referred to as Processing Elements (PE)

16

Figure 3.2: TSV based vertical links with die-stacking

Cache. When a transactional application is encountered by the SP, it is transferred
to the TMFab Scheduler (TMS) tile through a dedicated Transaction Programming
Interface (TPI). These transactions are stored in the L2 Instruction Memory inside the
Scheduler tile. Transactions are demarcated by transactional markers indicating the
start and end of transactional code segments, as well as the transaction’s logical position
in the sequential execution order of the program. TMS assumes all transactions to be
atomic and independent of each other, and schedules them for speculative execution on
its PEs. Scheduled transactions are transferred to their assigned PE over the network,
where they begin execution.

Loads during a transaction’s execution are serviced over the three-level memory hi-
erarchy of TMFab, starting with the L1 Transactional Data Cache (L1-D). This cache
is augmented with transactional fields to track speculative reads and writes to cached
data. TMFab’s Transactional Cache Controllers buffer all of the transaction’s specu-
lative writes in a local buffer until the transaction completes. In the event of a write,
the L1-D registers the local buffer address where the speculative write is temporarily
stored in order for subsequent reads to access the data.

If the data requested by the transaction is not found in the L1-D or the local
buffer, the request is forwarded to the larger, shared L2 Data Cache. This cache
is non-transactional, and only tracks if the data it is caching is valid, or has been
modified. In the event that the requested data is not found in the L2-D, an L2 miss is
registered, and the data is fetched from the slower external memory over the L2 data
cache controller’s external memory interface. Retrieved data is forwarded back to the
requesting PE. TMS monitors the progress of all transactions executing on PEs within
TMFab, and determines which transaction should be allowed to commit its write-set to
the L2-D. It implements a three-stage commit sequence - Initiate, Validate and Commit,
wherein, upon completing execution, a transaction first initiates a validation request
to the TMS. Validation is managed using a validation token, which serves as validate
permission. Once permitted to validate, the transaction transmits its read and write-
set addresses to other active transactions in the system, and waits for their response.
If the transaction’s reads and writes are legal, and causes no violations, the contents of
its local buffer are merged with the L1-D, and all its writes are committed to the L2.
In the event of a conflict arising due to the intersection of a committing transaction’s

17

write-set with that of an executing transaction, one of the two is forced to abort and
restart execution according to the implemented Contention Management (CM) policy.
TMFab implements the Oldest CM policy [7] with Aggressive retry which forces the
younger transaction to abort in the event of a conflict, and restart immediately. The
combination of Oldest CM and aggressive retry may result in wasted work should
repeated conflicts occur, however, this issue is examined more closely in Section 3.2.4.

The next section examines the system-level transactional memory policy that defines
version management, contention management and other policies for the TMFab system.

3.2 System-level Transactional Memory Policy

The system-level TM policy is described as a collection of sub-policies for the TMFab
transactional memory system. It defines the system protocol for transaction versioning
and version management, contention management, conflict detection and cache coher-
ence within TMFab. Each policy is examined separately.

3.2.1 Transaction Programming

Transactional programming for the TMFab differs from the conventional methodology
in a number of ways. In the conventional approach, application code is divided into
transactional threads that execute in parallel on different PEs. Critical sections are
demarcated by atomic transactions that must validate their write-set before it becomes
globally visible to other transactions. However, this means that non-transactional
program code is executed before the critical section is entered, necessitating the use
of register checkpointing during transaction restart. The TMFab approach considers
transactional threads of the conventional method themselves as atomic transactions.
Therefore, on transaction restart, execution simply begins from the first instruction
of the transactional thread, implying that each transaction assumes execution to start
with an empty register set. While eliminating the need for register checkpointing, this
approach adds the overhead of each transaction needing its own initialization code at
the start of execution. Since the entire thread is considered as an atomic transaction,
this initialization sequence is also considered as part of the transaction. This marks
a significant trade-off in the design process, where support for transactional code out-
side the transaction’s atomic section was dropped in favor of a simpler programming
interface, thereby decreasing the complexity of partitioning code into transactions.

Application code for TMFab is therefore divided into coarse grain transactions, each
demarcated by the transactional markers START TXN and END TXN, with no pro-
gram code outside of the transaction markers. To ensure correct execution, shared
memory operations are ordered as they occur during sequential execution. This deter-
mines the commit order [35]. Therefore, the position of a transaction in the program’s
sequential execution order is indicated during programming by means of a 12-bit se-
quence and phase field. Although TMFab assumes all transactions to be independent,
it forces them to validate their write-set before committing it to the shared L2-D.
However, if a transaction is guaranteed by the programmer to be independent, with
no dependencies with other transactions, it can be allowed to commit to the shared

18

L2-D without validating its write-set against other transactions. The transaction will
nonetheless have to request for the commit token from the scheduler, which will allow
the transaction to commit only if no other commit is in progress.

In order to do this, the transaction is marked with a different 4-bit phase code than
the default of 0000. Each different phase may contain only one guaranteed atomic
transaction sequence for it to commit without validation. Multiple sequences within
each phase result in the transaction requiring validation against other active transac-
tions in the phase. It must be re-iterated here that transactions marked with different
phase codes must be guaranteed to be independent, with no dependencies with trans-
actions in other phases, as this would result in conflicts passing undetected causing loss
of correctness in program execution.

Transactions within a phase, including the default, are marked with an 8-bit se-
quence code that describes their position in the global commit order. The sequence
and phase codes are included in the START TXN marker which marks the beginning
of the transaction. The END TXN marker contains no transaction information, and
simply marks the end of the transaction.

TMFab offers a best effort correctness guarantee to applications. This means that
TMFab guarantees the correctness of a transactional application’s results if its trans-
actions do not differ significantly in length, and in the sizes of their read/write sets.
Applications that deviate from this criterion may require additional tuning to ensure
correct results.

3.2.2 Version Management

TMFab implements lazy version management [36], which means that a transaction’s
speculative writes are held in a local write-buffer until commit time, at which point they
are copied into the L1-D and committed to the L2-D. With eager version management
the transaction’s writes are performed directly to the L1-D itself, thus allowing for fast
commits. However, it incurs a higher per-write latency than lazy version management
due to its need to save the old value of data in an undo log before writing the new value
in place. Lazy version management on the other hand results in fast aborts since the
old values are retained in the L1-D, while the local write-buffer can be flash cleared on
abort. It however results in slow commits since the contents of the write-buffer need
to be merged with the L1-D. TMFab overlaps the merging operation with the commit
to L2-D in order to reduce the overhead incurred during commits.

3.2.3 Conflict Detection

Transactions that have completed execution validate their write-set against other active
transactions in the system. Executing transactions that detect no conflicts with the
validating transaction’s write-set permit it to commit by responding with an acknowl-
edgment (ACK). If a conflict is detected and the validating transaction is determined to
be the loser in the contention according to the CM policy, the executing transaction re-
sponds with a negative-acknowledgement (NACK). This method of detecting conflicts
at commit time refers to optimistic conflict detection, as opposed to the pessimistic
method of detecting conflicts at each memory access.

19

The primary drawback of delayed conflict detection with the optimistic method is
that contentious data that would have otherwise registered a conflict in the early stages
of execution with the pessimistic method now remains unchecked until the transaction
begins validation, at which point a conflict is detected forcing the transaction to abort
and restart. The pessimistic method, however, increases traffic in the interconnect by
broadcasting all memory operations inside a transaction to other active transactions,
increasing the average communication latency and thus impacting the overall perfor-
mance of the system. Although these broadcasts occur in the optimistic method as
well, they do not occur for every memory operation, but instead in a burst during the
validation phase of the transaction. Additionally, the communication overhead involved
in performing validations is considerably lower than per-access broadcasts, as examined
in Chapter 4. Conflicts are detected at word granularity, preventing false conflicts from
being detected when two transactions modify different data words in the same cache
line.

For these reasons, the Optimistic method with word granularity was implemented
as TMFab’s conflict detection policy.

3.2.4 Contention Management

Contention Management (CM) refers to the policy used in determining which transac-
tion aborts in the event of a conflict. TMFab implements the Oldest CM policy which
causes the transaction with the larger sequence code, i.e. the younger transaction, to
abort and restart upon detection of a conflict. Since conflicts are detected lazily during
validation of the transaction’s write-set, the CM policy effectively determines whether
it is the validating transaction, or the executing transaction that is forced to abort and
restart when a conflict is detected.

The CM policy must be specified along with a retry policy that defines how long an
aborted transaction should wait before it can restart. In back-off based policies, the
aborted transaction waits for a period of time before it restarts, where the period of
time involved may be fixed, random, linear or exponentially increasing. The aggressive
policy on the other hand, restarts the aborted transaction immediately. However, if
the transaction is small, it may abort once again if restarted immediately, resulting in
wasted work. The effects of this drawback can be reduced by ensuring that transactions
are similarly sized, causing the aborted transaction to restart fewer times. TMFab uses
a modified version of the aggressive policy, with two different restart strategies for
transactions. The first causes transactions that are forced to abort and restart due
to a conflict during validation of their write-set to be restarted immediately. This
strategy was used since the TMFab interconnect requires tens of cycles to transfer the
validation and validation response packets between PEs. Additionally, the executing
transaction waits till the entire validation packet has been received before responding
with an ACK or a NACK to the transaction committing. These latencies effectively
induce a delay between the detection of a conflict at a remote executing transaction,
and the actual restart of the validating transaction, providing an inherent back-off with
the aggressive policy itself. The second strategy causes executing transactions that are
forced to abort and restart due to a conflict with a validating transaction to wait
until the entire incoming validation packet is received, before aborting and restarting.

20

However, the ACK for the validation is sent as soon as the local abort causing conflict
is detected. The conflicting data is invalidated upon detection of the conflict, and
therefore, when the transaction restarts, the invalidated data will be fetched from
the L2-D. The delay between detection of the conflict and the local abort is used to
delay restart in order to allow the conflicting data to be updated in the L2-D by the
committing transaction. Further, delaying restart until completion of validation allows
the local L1-D to invalidate all cache-line addresses specified in the validation packet
thus ensuring that the cache remains coherent.

3.2.5 Validate and Commit Contention

TMFab does not implement an explicit contention management policy for issue of val-
idate and commit tokens for three reasons. First, since all transactions are assumed to
be independent, delaying the issue of the validate token for transactions that have com-
pleted early results in serialization of execution, with completed transactions forming
a convoy waiting to acquire the token. This effectively converts the ”All transactions
are independent” assumption into ”No transaction is independent”.

Second, since the interconnect inherently serializes all validation token requests,
the scheduler can simply issue the token to the first request it receives, and buffer
the remaining till the first completes. On the other hand, with an explicitly ordered
sequence for validation token grants, transactions ready to commit are forced to wait
for older transactions to complete execution and commit. Without any such ordering,
transactions ready to commit are forced to wait only if another transaction is currently
validating or committing its write-set, and not for the execution of older transactions
to complete.

And third, by granting the validate token to the first transaction that requests it,
the scheduler is freed from the conflict detection operation, allowing truly independent
transactions that have completed execution to commit their writes to the L2-D without
having to wait on other executing transactions. While this results in independent
transactions being retired faster from the system, it may result in wasted work if the
transaction tries to commit before an older transaction it shares a dependency with.
This penalty may be avoided by reducing the number of dependencies that exist between
transactions executing in parallel.

Commit contention does not occur since a transaction is only allowed to commit
upon successful validation of its write-set. Since the validation-token is issued to the
first requesting transaction, it is implicit that should the transaction complete validation
successfully, it will commit to the L2-D atomically.

3.2.6 Cache Coherence Protocol

Updates to the L2-D by executing transactions are performed only when the transaction
commits to memory. The nature of transactional memory operations thus ensures
coherence between caches in TMFab’s PEs.

The validation phase before commit causes write-set addresses of the committing
transaction to become visible to other active transactions in the system. The valida-
tion packet thus serves as a coherence invalidation message between PEs. Based on

21

the outcome of validation, four possibilities exist for the L1-D cache of the executing
transaction’s PE. These possibilities illustrate the method by which L1-D caches are
kept coherent with each other and the L2-D cache.

1. If the incoming validation causes the executing transaction to abort, the trans-
action’s data set are invalidated. Additionally, all cache-lines in the local L1-D
cache with addresses matching those in the validating transaction’s write-set are
invalidated as well. This is done because the executing transaction’s dependence
on the validating transaction has been detected, and therefore, its local L1-D
cache must be refilled with data updated in the L2-D cache by the validating
transaction during commit.

2. If the incoming validation causes a conflict and the CM policy determines the vali-
dating transaction to be the loser in the contention, no invalidations are performed
in the executing transaction’s L1-D cache.

3. If the incoming validation causes no conflicts, no dependencies exist between the
validating and executing transactions. However, in the event that the validating
transaction is older than the executing transaction, its write-set addresses are used
to invalidate all matching cache lines in the executing transaction’s L1-D cache
to maintain coherence.

4. On the other hand, if the validating transaction is younger than the executing
transaction, no such invalidations are performed. Instead, cache-lines in the exe-
cuting transaction’s L1-D cache are marked for a delayed invalidation at commit.
Should the older transaction perform a read to an address that was modified by
the younger transaction, it will see the old value and not the new updated value.
This ensures that the younger transaction’s updates do not affect the older trans-
action’s execution, while still allowing the local L1-D cache to maintain coherence
by tracking which updated cache-lines to fetch from the L2-D cache after commit.

It is important to mention here that possibilities 3 and 4 could result in undetected
conflicts if the two involved conflicts differ significantly in their transaction length
and read/write-set size. Incorrectly ordered writes therefore may be attributed to
improperly load-balanced transactions, requiring the application code to be modified
for correct execution.

22

Architecture 4
Based on the System-level Transactional Memory Policy, this chapter examines the
architecture of TMFab in terms of its four key components: Scheduler, TM Cache
Controller, L2 Data Cache and the scalable interconnect. Each of these components is
described in terms of their architecture, and their function in the overall operation of
the fabric.

4.1 TMFab Scheduler (TMS)

The performance of a TMFab based CMP depends on the design of the applications
that are run on it. Most threaded applications utilize performance degrading lock-
based synchronisation methods to ensure correctness and consistency in shared data.
Transactional memory, however, replaces lock-based synchronisation with atomic code
sections, allowing for the same correctness and consistency of shared data, without the
associated cost in performance. The relative infancy of the transactional programming
methodology, however, has meant lower acceptance and consequently fewer available
real world transactional applications.

Therefore, the transactional fabric works under a non-transactional supervising pro-
cessor (SP) which runs the operating system and user applications. When a transac-
tional application is executed from within the operating system, the SP transfers the
transactional code block to the TMFab Scheduler (TMS) which subsequently spawns
the required number of transactions.

4.1.1 Scheduler Architecture

The TMFab Scheduler (TMS) architecture is shown in Fig.4.1
TMS is responsible for mapping transactions received from the Supervisor Processor

onto available Processing Elements (PE) as well as managing validation and commit
tokens within the system. Each of these functions is placed inside one of TMS’s three
primary modules: the Scheduler Core, Transaction Programming Interface (TPI) and
the L2 Instruction Memory.

4.1.1.1 Transaction Programming Interface (TPI)

Transfers of transactional code blocks from the SP are performed through the Trans-
action Programming Interface. The signal descriptions of the TPI are listed in Table
4.1.

The SP initiates the transfer of a transactional code block by asserting the VALID I
signal of the TPI. Subsequently, 32-bit instructions are transferred through the DAT I
port to be written at ADDR I of the L2 Instruction Memory at the rising edge of every

23

Figure 4.1: TMFab Scheduler Architecture

Table 4.1: tpi signal descriptions

Signal Description Type Direction

VALID I Asserts validity of transfer In std logic

ADDR I [15:0] Memory address for current instruction In std logic

DAT I [31:0] 32-bit instruction In std logic vector

clock cycle. Transactions in this instruction stream are demarcated by special transac-
tion markers START TXN and END TXN, indicating the start and end instructions
of the atomic transactional code segment, as illustrated in Fig.4.2. These markers are
not stored in the instruction memory, and therefore, bear no relation to the instruction
set architecture of PEs in the system. The format of these markers is listed in Fig.4.3.

Figure 4.2: a. Demarcated transactional instruction stream, b.

The SEQ and PHASE fields of the START TXN marker indicate the position of
a transactional code segment in the overall sequential execution order of the program.
The Scheduler uses these fields to schedule transactions on PEs as explained in Trans-

24

actional Programming in Section 3.2.1.
Upon receiving transactional application code through the TPI, the SEQ and

PHASE fields of each transaction are registered, along with the L2 instruction memory
addresses of its first and last instructions. Collectively, these form the transaction’s
State. Upon receiving the complete transaction code segment, the TPI forwards the
transaction’s recorded state to the Scheduler Core. The transaction may now be sched-
uled for execution on an available PE.

Figure 4.3: Format of transactional markers

4.1.1.2 Scheduler Core

The Scheduler Core (SC) is responsible for mapping new transactions onto available
processing elements, and monitoring their status until they commit. Additionally,
it manages the validation and commit tokens, and arbitrates between transactions
contending to commit their write sets to memory. The SC is thus comprised of two
parts: the Scheduling Logic and the PE State Management.

Scheduling Logic Transaction states received from the TPI are entered into a trans-
action status table containing state information for all transactions currently executing
on the system as well as those awaiting scheduling. The received transaction is assigned
a 10-bit Transaction ID (TXN ID), and entered in the first available slot in the table.

A transaction may be scheduled for execution only when an idle PE is available.
Upon being assigned a PE, the Scheduling Logic retrieves the transactional code seg-
ment from the L2 instruction memory using the addresses stored in the transaction
state. Instructions from the code segment are transferred to the idle PE’s private in-
struction memory over the fabric interconnect. The transaction state is subsequently
transferred to the PE in order to commence execution.

An ideal interconnect offers single cycle communication latency between nodes.
Since the fabric network interconnects several PEs and functional units, it offers a
non-ideal multi-cycle communication latency. Therefore, even a 100-instruction code
segment may require a few hundred clock cycles before it is delivered to the appropriate
PE, which remains idle till the entire segment is received and stored in its L1 instruc-
tion memory. In effect, the overhead incurred in transferring code segments between
the TMS and the PEs would degrade the system’s performance.

25

Recalling the three-stage commit sequence from Section 3.1, we observe that after
completing the validation phase without aborting, a transaction with a commit token
will complete successfully and commit its write set to the L2. The PE for that trans-
action, therefore, will remain idle till its L1 instruction memory is loaded with the
next transaction. Leveraging this, the TMS performs the code segment transfer for the
next waiting transaction as soon as the transaction on a PE completes its validation
phase successfully, and begins to commit its write set to the L2. This significantly
reduces the incurred code segment transfer overhead, and its performance degrading
effects. However, in doing this, the TMS must ensure that the committing transaction
completes its commit operation before the next transaction can begin execution on the
PE. This is achieved by halting the transfer of transaction’s state, until the committing
transaction notifies the TMS of completion. Since the PE cannot commence execution
of a new transaction without receiving the transaction state from the TMS, completion
of committing transactions is guaranteed.

Processing Element State Manager (PESM) The PE Status Manager tracks the
status of individual processing elements, as well as the collective system state. Since
the system-level TM policy only allows one active transaction in the system to validate
and commit at a time, the PESM must monitor the status of all PEs within the fabric
in order to effectively track the progress of transactions. The PESM uses validate and
commit tokens to preserve proper transactional commit order. Processing elements
may assume one of three states of operation: Idle, Busy and Committing. An idle
PE transitions to the Busy state when a newly scheduled transaction is transferred to
it for execution. Upon completion, this transaction must enter a validation phase to
validate its write-sets against other active transactions in the system. In order to enter
this phase, the PE forwards a validation token request to the PESM, which grants the
token if no other transaction in the system is currently in the validation or commit
phase.

Figure 4.4: State transitions in the PESM

The PESM then switches to a waiting state, buffering incoming validation token
requests from other active transactions in the Outstanding Request Buffer (ORB) until

26

the validating transaction completes its validation. In the event that the validation
succeeds, the PESM is notified and the PEs status subsequently updated to Commit-
ting. PESM returns to the normal running state once the committing transaction has
completed its commit. However, should the validation fail causing a local abort, the
transaction restarts by returning the validation token to the PESM, which grants it
to the next buffered token request. These state transitions are illustrated in the state
diagram in Fig. 4.4. A summary of the transfers that occur between the PE and
PESM is given in Table 4.2

Table 4.2: summary of pe-pesm transfers

PE State Type Direction Transaction Status

Idle Transaction code segment transfer PESM-PE Scheduled
Transaction state transfer PESM-PE Start Execution

Busy Validation Token Request PE-PESM Execution complete
Validation Token PESM-PE Validating

Validation Successful PE-PESM Committing
Validation Unsuccessful PE-PESM Restarting

Committing Commit Complete PE-PESM Idle
Transaction code segment transfer PESM-PE Scheduled

L2 Instruction Memory (L2-I) The L2 Instruction Memory stores the transactional
code segments received through the TPI. Since the memory is written to by the TPI,
and read by the Scheduler Core, it is implemented as a dual port memory, with separate
read and write ports. From the circuit perspective, no additional logic is required to
ensure that the read and write ports don’t access the same memory locations. This is
because instructions from a transactional code segment are read out by the Scheduler
Core only once the entire transaction has been received, and its state recorded.

Transactional code segments contain all the program code the transaction requires
for execution, and therefore instruction misses do not occur in PEs. Consequently, the
L2 Instruction Memory is read from only when a transaction is scheduled for execution,
and its size holds no significance to the performance of the application. In the TMFab
design, it was sized in order to accommodate transactional applications with instruction
counts of the order 104. Thus, it has a storage capacity of 256KB, organised as 8192
lines with 16 instructions of 32-bits per line (8192 × 16 × 32). The fabric interconnect
which is examined later in this chapter, transfers transactional code segments in blocks
of 16 instructions from the TMS to PEs, therefore, the line size of 16-instructions serves
to reduce the latency in retrieving instruction blocks from the L2-I.

4.1.1.3 System Communications

The TMS engages in two primary types of communication with PEs in the fabric
Transactional code segment transfer, and Validation-commit message transfers. These
communications occur at specific phases in the transaction’s lifetime, starting with code

27

segment transfer when the transactional application code is transferred into the L2-I,
upto the final commit operation.

The communication type for each transfer is indicated in the packet header at the
start of the transfer. However, since the interconnect itself supports only three major
types of traffic, these communications must be augmented with special identifiers in
order to allow the receiving network interface to determine the context of the communi-
cation. These identifiers are listed in Table 4.3. While all requests carry a communica-
tion identifier, communications to the scheduler are denoted by an additional scheduler
operation identifier indicating the actual request or notification.

Table 4.3: communication identifiers

Communication Classification Comm. Scheduler
Identifier Operation

Code segment transfer Instruction Block Transfer - -

Transaction state transfer Instruction Block Transfer 001 -

Validation token request TM Communications 010 0001

Validation token granted TM Communications - -

Committing TM Communications 010 0100

Commit Complete TM Communications 010 0011

Abort and Restart TM Communications 010 0101

Partial validation TM Communications 010 0010
token request

Transactional Code Segment Transfer The start and end addresses of the trans-
actional code segment specified by the stored transaction state information are used
by the TMS to retrieve instructions from the L2-I. Immediately after a transaction is
scheduled, its instructions are retrieved from the L2-I in blocks of 16 and transferred
to the assigned PE. Transactional markers are not stored in the memory by the TPI,
and therefore, they are not transferred to PEs.

This transfer belongs to the Instruction Block Transfer communication class of
the fabric network and is not denoted by any special communication identifier. Such
transfers occur only when waiting transactions are assigned to a PE in the fabric, and
their duration depends on the instruction count of transactional code segments.

Transactional State Transfer Transactional code segment transfers are succeeded by
a state transfer operation once the assigned PE assumes the Idle state. This transfer
signals the start of operation, and consists of the scheduled transaction’s ID, Sequence
and Phase, along with an offset derived from the start and end memory address of the
transaction indicating the position of the last instruction of the code segment. It is
classified as part of the instruction block transfer communication class of the network,
and is denoted by the communication identifier 001.

Validation Token Request/Validation Token Granted Upon completion of execu-
tion at a PE, a request for the validation token is sent to the TMS. This type of transfer

28

is classified under the TM Communications class since it involves a transactional sys-
tem request/notification, and carries the scheduler operation identifier 0001 indicating
a validation token request. The TMS immediately responds to this request with a
Validation Token Granted notification to the requesting PE if the PESM asserts that
no other transaction is currently validating or committing. If the PESM indicates an
on-going validation or commit operation, the token request is buffered, and the token
grant notification is delayed till the operation completes.

The TMS does not perform any transfers to a PE after the initial code and trans-
action state transfers, and therefore the TM communications class notification from
the scheduler in itself serves as the validation token grant, removing the need for any
communications identifiers. Therefore the token grant notification does not bear a
communications identifier.

Alongside serving as a notification to begin validation, the token grant also serves
to update the requesting PE with a snapshot of the status of other PEs in the fabric.
This is done by means of the core status field that indicates which other PEs are active,
i.e. in the Busy state.

Committing/Restarting The PE notifies the TMS with the Committing notification
if the validation operation is successful. If an unscheduled waiting transaction exists
in the TMS, it is scheduled for execution on the PE when this notification arrives.
However, if the validation is unsuccessful, the TMS is notified with a Restarting no-
tification, and the transaction restarts. This notification is used only at the end of a
validation, and not on conflict-driven restarts during execution.

Commit Complete Transactions that have completed committing their write-sets
to the L2-D are no longer active in the system. Thus, the PE notifies the TMS of
commit completion in order for the transaction to be retired and for the next scheduled
transaction’s state to be transferred to it.

Partial Validation Token Request Previously mentioned requests and notifications
are performed atleast once in the lifetime of every transaction. However, an additional
request is built into the TMS to allow the system to cope with transactions that overflow
their PEs local write buffer. The Partial Validation Token Request allows PEs with
overflowing transactions to request for a validation token before execution completes.
Effectively, the transaction partially commits its write-set to the L2-D before resuming
execution, in a manner similar to TCC [tcc]. Since the transaction already holds the
partial validation token, once it completes, it immediately validates the remainder of
its write-set, before committing it. During an overflow, the TMS withholds the issue
of validation token grants to other transactions until the overflowing transaction fully
commits, and is retired. This represents a corner case in applications, and leads to
serialization of transactions, and possibly the loss of correctness.

29

4.2 TM Cache Controller

The architecture of the TM Cache Controller (TM-CC) is shown in Fig. 4.5. The
PE block is shaded red to indicate that TMFab in itself does not provide processing
elements, which must be instantiated separately in the fabric.

Figure 4.5: TM Cache Controller architecture

This section examines the architecture of the TM-CC in terms of its key components:

1. Bootloader

2. L1 Instruction Memory (L1-I)

3. L1 Data Cache (L1-D)

4. PE Instruction and Data Interfaces

5. Tag Unit

6. Speculative Write Buffer (SWB)

7. Transaction Control

• Conflict Detection and Contention Management

• Validation Management

• Version Management

30

4.2.1 Bootloader

Transactional code segments transferred from the TMS are stored in the local instruc-
tion memory for retrieval by the PE. Execution can begin only once the state is received,
containing the transaction’s ID, sequence and phase, and instruction memory addresses
of the transaction’s boundaries. These operations are managed by TM-CC’s integrated
bootloader.

The code segment is received in blocks of 16 instructions from the scheduler and
stored sequentially in the L1-Instruction Memory. The bootloader manages memory
addressing and records the local address of the first and the last instructions of the
code segment as the operation proceeds. When the code segment transfer completes,
the bootloader is switched into a waiting state, awaiting notification from the TMS.

The transaction is ready for execution when its code segment is loaded into the
L1-I. Execution is initiated when transaction state data is received from the TMS and
transferred to Transaction Control, marking the end of the code segment transfer phase,
and transitioning the system into the execution phase.

4.2.2 L1 Instruction Memory (L1-I)

Similar to the L2 Instruction Memory, the size of the L1-I holds no significance to the
performance of a transaction executing on the PE. Four executing transactions of equal
length occupying the entire 256KB L2-I implies that each of the four PEs in the system
executes a transaction with a 64KB code segment. The L1-I is thus structured as a
single port memory of size 16384×32b, or 64KB.

4.2.3 L1 Data Cache (L1-D)

In a chip multiprocessor, the L2-D cache is generally shared by all processing elements
in the system, and is accessible over the system interconnect. The shared nature of the
interconnect implies a non-ideal communication latency resulting in accesses between
the L1 Data cache and L2-D taking few tens of processor cycles before the requested
data is made available to the PE. During this time, the PE is stalled, performing no
useful work. Effectively, a performance penalty is incurred on every miss in the L1-D
cache, and subsequent misses in the L2-D incur a larger penalty as the requested data
must be fetched from the off-chip memory.

Unlike the L1-I, the L1-D cache influences performance of a transaction executing
on the PE. The performance of a cache depends on the memory access characteristics
of applications. Applications that read data randomly from the memory incur higher
performance penalties on account of higher miss rates. On the other hand, applications
that read data such as arrays incur a lower performance penalty due to a reduced miss
rate. This is because data in arrays is stored at consecutive addresses in the memory,
and since cache refills on misses in the L1-D consist of the entire cache line, misses
occur only when the requested address targets a word in an uncached line. Therefore, to
determine the optimal cache size for the system, a set of transactional applications from
the Stanford Transactional Applications for Multi-Processing (STAMP) [37] benchmark
suite was employed. The suite consists of eight transactional applications, of which four

31

were used on account of their varied memory access patterns. These include bayes,
labyrinth, vacation-low and kmeans. With a memory trace driven cache simulator,
different cache organizations were analyzed for this set of applications.

Since TMFab uses two levels of on-chip data cache, the optimal size for both the
L1-D and the L2-D must be determined. The miss rate of the L1-D is not influenced
by that of the L2-D, which was therefore fixed at 1MB during L1-D cache sizing.
Cache simulations were performed for each application with a range of cache sizes,
associativity and line sizes as listed in Table 4.4. Subsequently, the L1-D miss rate for
each combination was computed.

Table 4.4: l1-d simulation parameters

Cache Size 512B, 1KB, 2KB, 4KB, 8KB, 16KB, 32KB, 64KB

Associativity 1-way (Direct), 2-way, 4-way, 8-way, Fully Associative

Line Size 16B(4 words), 32B(8 words), 64B(16 words)

High runtimes were encountered for simulations using 64B line size, especially in
the case of the bayes and labyrinth applications. Thus, the simulation process was split
into two parts. In the first part, line sizes of 16B and 32B were used with combinations
of different cache size and associativity. The miss rates for the four applications are
shown in Fig. 4.6.

As associativity increases, a decrease in miss rate is observed, stemming from the
decrease in conflict misses in the cache. Since each set may hold more than one cache
line, contention for sets is decreased thus reducing the number of evictions. As cache
size increases, a greater decrease in miss rate is observed, although this decrease is due
to the reduced occurrence of capacity misses on account of the larger number of sets
available to store cache lines. Compulsory misses, however, remain unaffected by cache
size, line size and associativity since they represent accesses to data uncached since the
start of the transaction’s execution. The effects of these types of misses are observed
in the graphs in Fig. 4.6.

From the results in Fig.4.6, the cache size range was determined as between 16KB
and 64KB, and associativity range as between 2-way and 8-way. The second part of
the simulation used this determined range of cache sizes with a 64B line size. The miss
rates for these simulations are shown in Fig. 4.7.

The number of memory references by each application is listed in Table 4.5.
The magnitude of these memory references highlights the importance of reducing

miss rates in the L1-D cache. Fig.4.6 and 4.7 indicate a general decreasing trend in

Table 4.5: data references per application

Application Data references

bayes 1.172×109

labyrinth 2.6×107

vacation-low 9.3×107

kmeans 6.7×105

32

Figure 4.6: Miss rates for varying cache size and associativity (Line Size: 16 Bytes and 32
Bytes)

miss rates with increasing cache size and associativity. Even though the 8-way and
fully associative caches are observed to be the best performers in terms of miss rate,
they bear a high hardware cost. Set associative caches are divided into sets, each
containing N cache lines, N being the associativity of the cache. During the tag lookup

33

Figure 4.7: Miss rates for varying cache size and associativity (Line Size: 64 Bytes)

operation to locate the requested data, all N cache lines in the addressed set must be
searched in parallel, thus requiring N comparators. Direct mapped caches have the
lowest hardware cost as each cache line is mapped to a single address, eliminating the
need for tag lookup. However, they have the highest miss rates in all combinations for
all tested applications.

The combination of 64KB cache size and 64 byte line size resulted in the lowest miss
rates in all simulations. While the miss rate for the same cache with 4-way associativity
was low, no significant decrease in miss rates was observed upon increasing associativity
to 8-way, indicating that the miss rate in this region is dominated by capacity misses
that occur due to the limited size of the cache itself and not due to conflict misses
arising from eviction of cache lines being accessed by the PE.

Consequently, the L1-D was organized as a 64KB, 4-way set-associate cache with a
64 byte line size. It is thus structured as a 256 set memory, with each set containing
four cache lines of 64 bytes.

4.2.4 Tag Unit

A separate memory structure called the Tag memory is required to track locations of
the L1-D that are actively caching cache lines. It stores this information in the form
of tag data that describes the complete memory address of cache lines, their location
in the L1-D, their validity, and whether they have been speculatively read or written
by an executing transaction. When the PE performs a memory access, the requested

34

memory address is used by the tag memory to determine the location of the requested
data in the L1-D. When the data is found, its address is forwarded to the L1-D which
responds to the PE with the requested data. The structure of a tag memory set is
shown in Fig 4.8.

Figure 4.8: Structure of L1-Tag set

The tag memory is also a 256 set, 4-way set associative memory with each set
containing four cache line entries. Each entry in the set contains 64 bits of tracking
data for a cache line stored in the L1-D equivalent location. The tag memory thus has
a total capacity of 8KB, and is implemented as a two port memory, with one port for
read and write operations, and a second port for incoming validations and invalidating
cache lines for coherence.

Every cache line stored in the L1-D is tracked in the Tag memory with a 20-bit
identifier that corresponds to the most significant 20-bits of its memory address. This
identifier is called the Tag and is used in determining if a requested cache line is in the
cache, or must be fetched from the L2-D.

The Valid bit marks the validity of cache lines stored in the L1-D. When an updated
version of the line exists in the L2-D, or when the writes to the cache line are invalidated,
the valid bit for the line is reset.

The 16-bit SR field tracks speculative reads from data words in cache lines dur-
ing transaction execution. However, in the event that the data has been speculatively
modified, subsequent reads from that location result in the transaction using locally
generated data, and thus the SR field is unmodified. Similarly, the SM field tracks
speculative writes to data words in cache lines during transaction execution. Writes to
memory during a transaction’s execution are held in a local write buffer until commit,
and therefore, cache lines containing speculatively written data, also contain a Reloca-
tion Address (REL) that indicates the location of the written data in the write buffer.
The relocation address is provided by the write buffer during every write operation on
a previously unmodified cache line. Because a cache line’s relocation address must be
maintained till the transaction commits, entries in a tag memory set with marked SM
bits cannot be evicted from the cache. If the relocation address for a cache line is reset
during execution, the tag memory no longer contains a record of the PE’s speculative
writes to the cache line. As a result, conflicts may pass undetected, and the PE’s
speculative writes may never reflect in the L2-D.

35

The IVC bit is used to mark cache lines for delayed invalidation. This is particularly
useful when a cache line unused by the executing transaction needs to be invalidated by
a younger committing transaction. The IVC bit marks cache lines for invalidation after
the executing transaction has committed, ensuring that the cache remains coherent,
and that the read-set of older transactions is protected from modification by newer
transactions.

On memory read and write requests from the PE, the tag unit looks up the requested
cache line in the addressed set of the tag memory by matching the 20-bit cache line
tags in each entry of the set with the requested cache line tag. A miss is registered if
no tags in the set match the requested cache line tag. On the other hand, a hit or miss
may be registered when the requested cache line tag is found in the set. Each of these
possibilites is described below.

Requested line is cached If a matching tag is found in the set, the requested cache
line is present in the cache. However, the cache line’s validity must be checked with the
valid bit. The cache may contain stale copies of cache lines that have been updated by
committing transactions. Validating transactions invalidate copies of modified cache
lines present in other caches by means of a validation packet.

Accesses to an invalidated cache line result in the L1-D cache requesting the L2-D
for a refill with an updated copy of the cache line. In effect, the L1-D registers a miss
and the PE is stalled till the updated cache line is received from the L2-D.

Requested cache line is uncached If no tags are found matching the requested cache
line, a miss is registered in the L1-D. The requested cache line must be fetched from the
L2-D, and placed in one of the set’s four entries. New cache lines are stored in empty
entries of the set. However, if no empty entries exist, an unused cache line marked with
the Empty bit (E) is evicted from the cache and replaced with the requested cache line,
similar to the pseudo Least Recently Used (LRU) replacement policy 1. Speculatively
read and written lines are not candidates for eviction since their removal from the cache
causes the loss of read and write-set tracking information, thus preventing conflicts from
being detected. A special case may result from this limitation, where no empty entries
are found in the set, and no candidates for replacement exist, i.e. all cache lines in
the set have been speculatively read or written by the executing transaction. This
condition is referred to as Overflow, and since the pending memory access cannot be
completed till the requested cache line is available in the cache, execution stops and
the PE is stalled.

During overflow, the TM-CC’s transaction control obtains a Partial Validation To-
ken, causing the entire write-set upto the point of validation to be validated, and if
successful, committed to the L2-D. Conflicting cache lines in sets may now be replaced
with the requested cache line. However, until this transaction completes execution and
completely commits its write-set, no other transactions are allowed to commit, ensuring
isolation of the overflowed transaction’s writes. Although this scheme manages over-
flows in transactions, it may result in loss of correctness guarantees in the system in the

1Explained in Section 4.3.2

36

event that a conflict is detected after the partial commit, since at this stage, there is no
way to roll back the overflowed transaction’s writes to the L2-D. Therefore, overflows
must be prevented in the software design itself by ensuring that data sets don’t exceed
the PEs transactional memory resources. Transactions operating on moderately sized
sets of data are preferred over transactions that use very large data sets causing over-
flows. Additionally, if the overflowing transaction is coded free of dependencies with
other transactions, correctness guarantees will remain in place since the transaction’s
writes to the L2-D may occur in any order with respect to other transactions.

4.2.5 Speculative Write Buffer (SWB)

During execution of a transaction, data writes are speculative since dependencies with
read and write sets of other concurrently executing transactions remain unknown until
validation. Therefore, speculative writes to data are buffered until commit, in accor-
dance with the lazy version management policy. This is achieved using a Speculative
Write Buffer (SWB). The format of a single SWB entry is shown in Fig. 4.9.

Figure 4.9: Cache line entry in the Speculative Write Buffer

The size of the SWB determines the maximum number of writes a transaction can
perform to sequential memory addresses before overflow occurs. For the 64KB 4-way
set associative L1 cache, assuming accesses occur sequentially starting from address
0x00000000, contention for set entries occurs after it contains 1024 cache lines, after
which the cache overflows since all cache lines have been speculatively read or written
to. Assuming that memory accesses contain an equal number of reads and writes,
write-set overflow would occur after 512 cache lines have been written. Thus the SWB
was implemented as a 512 cache line deep buffer, i.e. 32KB. While a small buffer
hampers performance with frequent overflows in applications with write-sets exceeding
its capacity, a large buffer imposes a significant overhead in terms of area.

The SWB serves two purposes, necessitated by a lazy versioning transactional mem-
ory system. First, it isolates a transaction’s speculative writes from the L1-D, and
second, it serves as a log of all data speculatively modified during execution. The latter
is used to create the validation packet when the transaction completes execution and
obtains the validation token.

On the first write to a cache line, the SWB acts as a FIFO by placing the cache
line address in the first empty slot of the buffer pointed at by the SWB pointer. Data
is written into the buffer at word granularity, and therefore, only words modified by
an executing transaction exist in cache line entries within the SWB. Upon adding this
data to the buffer, the 9-bit relocation address (REL) is passed back to the tag memory
indicating where the cache line is located in the buffer. For subsequent writes within

37

the same cache line, the SWB entry is selected using the Tag Unit supplied REL address
instead of the SWB pointer. In order to access data that was previously written by the
transaction, the Tag unit addresses the SWB entry with a REL address, and the block
offset of the word requested by the transaction. Thus the SWB behaves like a random
access memory during reads from buffered cache lines.

4.2.6 Transaction Control

The progress of an executing transaction is tracked at instruction granularity by the
Transaction Control. Every instruction fetch address is compared with the address of
the last instruction of the transactional code segment to determine if the transaction
has completed execution. The TM-CC is accordingly maintained in one of the eight
states of operation. These states are illustrated in Fig. 4.10

Figure 4.10: States of operation of the TM-CC

Fig. 4.10 illustrates the various states of operation, of which transaction execution
forms one state. Execution begins only once the transaction state data is loaded in the
Transaction Control Registers. As execution progresses, instruction fetch addresses are
compared every cycle with the stored transactions state data to determine if the last
instruction of the transaction has been reached.

Upon reaching the end of the transaction, the TM-CC transitions to the VAL REQ
state where the TMS is requested for a validation token, with this state being main-
tained until the token is received. Subsequently in the VALIDATE state, validation
begins under the control of the Validation Management (VaM).

During validation, VaM cycles through the SWB one entry at a time to determine
the contents of the transaction’s write-set. The SM field for the buffered cache lines is
copied into a validation packet containing the cache line tag, and is sent to the network
interface for transfer. The VM uses core status information received from the TMS in
the validation token to determine which other PEs to send the validation packet to,
thus directing validation packets only towards those with active transactions.

38

Should the validating transaction be the only active one in the fabric, the validation
immediately succeeds and proceeds to commit. However, if other active transactions
exist in the fabric, the validation packet is replicated and sent to each, while the TM-
CC holds the VALIDATE state until validation responses are received from them. A
received ACK implies that the validating transaction has been cleared to commit by
an active transaction. The validating transaction requires an ACK from every active
transaction the validation packet was sent to in order to advance to the COMMIT state.
A NACK on the other hand implies a conflict requiring the validating transaction to
restart execution after invalidating its read and write sets. This is done in the ABORT
state. Two possible outcomes exist for the validation.

Validation Successful In the COMMIT state, the SWB is cycled through by the
Version Management (VeM), and buffered cache lines retrieved. Based on the SM bits
set in the tag memory, data words are selected from the retrieved cache line and merged
with the old cache line in the L1-D. This refers to the Merge operation that commits
the transaction’s write set to memory.

In order to make these writes visible to other transactions, updated cache lines
are written back to the L2-D in a single stream of writes. It is important that these
writes to the L2-D remain uninterrupted till completion in order to isolate them from
intermediate reads by other transactions which must see these writes appear in the
L2-D simultaneously. Therefore, during a commit write operation, L1-D misses are
buffered in the L2-D until the committing transaction completes its write-back.

The merge and write-back operations are performed concurrently, in order to hide
the latency involved in retrieving cache lines from the SWB, merging them with the
L1-D and subsequently writing back the merged lines to the L2-D

Validation Unsuccessful NACK responses to validating transactions cause the TM-
CC to transition into the ABORT state. In this state, speculative writes buffered in
the SWB are cleared by resetting the SWB pointer to zero. Further, the SR and SM
fields of the tag memory are cleared, and speculatively read and written cache lines
invalidated. The PE is reset in order to clear the contents of all registers, and execu-
tion is restarted by placing the address of the first instruction of the transaction in the
Program Counter (PC). The transaction is now restarted, and commences execution
with the TM-CC’s transition to the EXECUTE state.
As a consequence of transmitting the validation packet only to PEs indicated as active in
the core status information, the performance overhead incurred during validations suc-
cessively decreases as transactions complete and are retired. In addition, by transmit-
ting the SM field instead of individual word addresses, the benefits of word-granularity
conflict-detection are obtained without the associated communication overhead. This
technique reduces overhead by over 80% when compared to validations using per-word
addresses.

During the EXECUTE and VAL REQ/PAR VAL REQ states, the TM-CC may
encounter incoming validation packets from another validating transaction, thus trig-
gering the conflict detection manager. Cache line addresses from the validation packet
are used in a tag lookup operation to determine if cache lines from the validation write-

39

set are cached in the local L1-D. If the particular cache line is present, its SR and
SM fields are compared with the SM bits carried in the validation packet in order to
detect intersections between the validation write-set and the local data set. The Oldest
contention management policy is invoked upon detection of an intersection.

The contention manager uses the age of the validating and executing transactions
along with conflict information in deciding which transaction is aborted. Once again,
two possibilities exist.

Validating transaction is older In the event of a read conflict, where the SR field
of the executing transaction’s read-set intersects with the SM field of the validation
packet, the contention manager restarts the younger executing transaction, according
to the Oldest CM policy. In addition, the restart is actually performed only after the
entire incoming validation completes, thus allowing for other conflicts to be detected,
and locally cached versions of the validation write-set to be marked for invalidation.

Intersections between the SM fields of the execution transaction’s write-set and the
SM field of the validation packet do not cause conflicts, as these writes occur according
to the program order. Therefore, neither transaction is aborted.

Validating transaction is younger The read-set of older transactions is protected
against invalidations by younger committing transactions by means of the IVC tag bit
for delayed invalidation. Therefore, intersections between the SR field of the older ex-
ecuting transaction’s read-set and the SM field of the validation packet do not cause
conflicts. However, intersections between the SM fields of the older executing transac-
tion’s write-set and the validation packet cause a write conflict. In accordance with the
Oldest policy, the older transaction’s writes are considered valid and thus the younger
validating transaction is restarted.

Conflict checking is performed through the second port of the tag memory and
therefore, does not block accesses to the L1-D by the executing transaction, preventing
the validation operation from increasing execution time.

Special Case: Overflow In the event of an overflow caused by a full SWB, or con-
tention for entries in L1-D cache sets, the TM-CC is switched to the PAR VAL REQ
state. The process that follows is identical to the validation and commit phases during
regular operation. Updated L1-D cache lines are written back, and the SWB sub-
sequently cleared. Since hardware resources are once again available in the TM-CC,
execution resumes.

The primary difference from regular operation lies in the handling of the validation
token. While at the end of a regular validation and commit the token is returned to the
TMS, in the case of a partial validation and commit, it is retained by the overflowed
transaction. At the end of execution, the TM-CC is switched to the VAL REQ state
to request for the validation token, however, since it was retained after the overflow
occurred, validation is initiated immediately.

40

4.2.7 PE Interfaces

The processor independent architecture of the fabric thus requires customizable PE
interfaces. The TM-CC implements two separate PE interfaces, a data interface and
an instruction interface.

The PE performs data memory accesses through the data interface which connects
it to the L1-D, SWB and Tag Unit. During reads, the appropriate local data source is
selected by the interface depending on whether the read data was stored in the L1-D,
or in the SWB.

Instruction fetches are performed through the PE instruction interface, which links
the PE with the L1-I. Fetch addresses are monitored by Transaction Control to deter-
mine if the last instruction of the transaction has been reached. During restarts, the
PE is reset, clearing all registers and setting the PC to zero. The instruction interface
also contains the enable signal used to stall execution on cache misses, and also after
the end of the transaction has been reached.

4.3 L2 Data Cache

PEs within TMFab cannot address data in the L1 data caches of other PEs directly.
However, since transactional multiprocessing requires sharing of data between PEs,
the fabric uses a shared L2 data cache. The L2-D tile also includes a 32-bit external
memory interface to fetch data on compulsory misses from a larger off-chip memory,
or a lower level cache.

The architecture of the L2-D and its 32-bit external memory interface is shown in
Fig. 4.11. This architecture is not examined in detail as it is based on the standard
cache architecture from Hennessey and Patterson [henessey and Patterson]. It is thus
described only briefly.

Figure 4.11: Architecture of L2-D tile

41

The L2-D primarily consists of three blocks: Data Memory, Tag Unit and the Ex-
ternal Memory Interface.

4.3.1 Data Memory

When a miss is registered in the L1-D cache, requested data is fetched from lower levels
of the memory hierarchy. Accesses to the external memory are slow, forcing PEs to be
stalled for long periods of time until data is retrieved. Additionally, since the contents
of the L1-D cache are not globally visible, accesses to the same data by different PEs
results in multiple external memory accesses for the same cache line. This degradation
of performance is addressed by the use of a shared second-level cache. The L2-D stores
data cached by the different L1-D caches in the fabric, thus reducing their miss penalty.
Consequently, on the first L1-D miss, the requested cache line is looked up in the L2-D.
Upon registering a miss, it is fetched from the external memory and cached in the
L2-D. Subsequent misses from other L1-D caches to the same cache line result in the
data simply being fetched from the L2-D, eliminating the need for multiple memory
accesses. For this reason, it is sized larger and has higher associativity than the L1-D
caches.

In order to determine the appropriate size, cache simulations were performed with
the same four applications used in the sizing of the L1-D. These applications are: bayes,
labyrinth, vacation-low and kmeans. A range of cache sizes and associativities were used
in simulation runs to determine miss rate. The L2-D’s miss rate may be specified in
two ways - global miss rate and local miss rate. The global miss rate refers to the ratio
of L2-D misses to the total data memory accesses performed in the system, indicating
the overall performance of the cache hierarchy. The local miss rate on the other hand
refers to the ratio of L2-D misses to the total number of L2-D references. Table 4.6
lists the cache sizes and associativities used in cache sizing simulations. The L1-D was
set at 64KB, 4-way with 64 byte line size. The same line size was used for the L2-D to
reduce design complexity of its tag unit.

Table 4.6: l2-d simulation parameters

Cache Size 512KB, 1MB, 2MB, 4MB, 8MB

Associativity 4-way, 8-way, 16-way, 32-way

Table 4.7 lists the logged reference metrics for each application while the local and
global miss rates for each application over a range of cache sizes and associativities are
presented in Fig. 4.12. These miss rates do not vary significantly between cache sizes
and associativites, a characteristic of compulsory cache misses. In bayes, large amounts
of data are read from the memory during execution. Since only a small amount of
locally generated data is used by transactions, miss rates are not significantly affected
by increasing cache size or associativity. Similar observations are made for labyrinth
and kmeans.

Increasing cache sizes across all applications reduced the L2-D miss rate although
by a rather small percentage. However, this increase diminished between cache sizes
of 4MB and 8MB. Increasing associativity causes a very small reduction in miss rates.

42

Table 4.7: L2-D references per application

Application Total data references Total L2-D references

bayes 1.172×109 1.78×106

labyrinth 2.6×107 7.7×103

vacation-low 9.3×107 6.89×105

kmeans 6.7×105 6.8×103

Figure 4.12: Miss rates in the L2-D for varying cache sizes and associativity

However, taking into account the number of L2 references for each application, small
miss rate reductions translate to hundreds of fewer memory accesses, such as in the

43

case of bayes. Increasing associativity beyond 8-way however yields no improvement in
miss rate. Therefore, the L2-D is organized as a 4MB, 8-way set associative cache with
64 byte line size, i.e. 8192 sets with each containing 8 cache lines of 16 words.

4.3.2 Tag Unit

The L2-D Tag Unit is a simplified version of that in the L1-D. It performs basic tag
lookup operations when a read or write request is received to determine if the addressed
cache line is in the cache. If a miss is registered, the requested cache line is fetched
from the external memory through the external memory interface. In addition to tag
lookup, the tag unit also maintains tag entries for cache lines stored in the L2-D Data
memory, and implements a replacement policy to handle contention for cache sets.

Least Recently Used (LRU) is considered as the best performer amongst cache re-
placement algorithms [38]. LRU tracks the least recently used entry in every set, and
replaces it when contention for the set occurs. It is implemented by adding tracking bits
to every entry in the set, and updating all tracking bits on every access to the set. Im-
plementing LRU for high-associativity caches (more than 4-way) is therefore complex,
and costly in terms of hardware. In order to obtain LRU-class performance without
the associated hardware cost and complexity, a pseudo-LRU algorithm is implemented
in the L2-D tag unit.

Most Recently Used (MRU) is one such pseudo-LRU algorithm, tracking the cache
set entry that was most recently accessed, and thus estimating the least recently used
entry of the set. It incurs a hardware cost of only one extra bit per set entry, and
negligible logic overhead owing to its simple implementation. Eviction decisions are
made based on the status of MRU bits in each entry of the set. An entry with an MRU
bit set to 0 is considered as a candidate for eviction.

On accesses to an entry in a set, its MRU bit is set to 1, while the MRU bits of
other entries are preserved. In the event that all but one MRU bits are set to 1, a
subsequent access to the unused entry will cause an inversion of all MRU bits in the
set. This ensures that there is always atleast one candidate for eviction in each set.
If multiple candidates exist, one is randomly selected for eviction. The performance
of the MRU application was found to be superior to the Random and FIFO cache
replacement algorithms in most cases, and comparable to the performance of LRU
according to Al-Zoubi et al. in [39].

Apart from the MRU bit, each set entry contains the Empty (E), Valid (V) and
Updated (U) tags. The U bit of each set entry is used to determine whether a write-
back is required on eviction. The bit is set when the entry is updated by writes from
a committing transaction. If a candidate for eviction is marked with the U bit, its
contents must be written back to memory before it can be evicted from the L2-D. The
L2-D is thus a write-back cache that updates memory only on cache evictions.

4.3.3 External Memory Interface

The external memory interface connects the L2-D to external memory or a lower level
cache outside the fabric. This interface only implements the requisite address and data
buses, and not any additional control logic required for memory accesses. A 32MB

44

external DDR400 memory module is assumed for determination of timing information.
A static memory access latency of 16 cycles is considered for burst reads and writes,
with burst length of 16 words (one cache line) [40][41].

45

4.4 Interconnect

Different application domains may require additional processing power from transac-
tional CMPs, necessitating the addition of PEs to the system. Scalability is therefore
an important requirement and must be taken into account in the design of the inter-
connect. The TMFab interconnect links PEs, the Scheduler and the L2-D cache to
form a transactional multiprocessing system capable of speculatively executing trans-
actions in parallel. The interconnect must support addition of PEs and other required
components to the system without significant degradation in performance. An increase
in the PE count must be supported by an expansion of the fabric interconnect. How-
ever, in silicon implementations additional PEs increase the physical area of the die,
an undesirable consequence in area constrained designs.

Die stacking technologies solve this issue by stacking individual dice one above the
other, interconnected with advanced Through Silicon Vias (TSV). The area footprint
of the stack however, is equivalent to that of a single die. Additional PEs may therefore
be added to the system with die stacking, without increasing its area footprint.

Interconnect architectures were evaluated based on their scalability, and suitability
for implementation with die stacking. Bus-based interconnects offer limited scalability
due to the increased bus arbitration time that results from adding additional compo-
nents to the system. This directly translates to an increased waiting time for com-
ponents wishing to perform a transfer over the bus. In the context of a transactional
multiprocessing system, miss penalties and validation/commit latencies are increased
due to the higher communication latency.

Crossbar based interconnects on the other hand offer increased scalability by inter-
connecting all system components over a large central switch. However, implementing a
crossbar for communication in a 3D interconnect requires careful placement and rout-
ing to achieve proper timing closure. Additionally, it may lead to increased design
complexity, and reduces reusability since adding layers to the stack would require the
crossbar switch to be modified to support components in the added die.

A mesh topology based network-on-chip was found to be a suitable interconnect
architecture for the stacked-die transactional CMP. The highly structured mesh topol-
ogy network simplifies place and route, and enables the faster achievement of timing
closure. Additionally, TSVs allow the expansion of the mesh topology from 2D to 3D.
Most importantly, the reusability of network-on-chip routers allows for the design to
be scaled up without requiring modifications to the routers themselves.

Hence, TMFab uses a packet switched network-on-chip interconnect with TSV based
vertical links to route packets between tiles on different layers of the stack. This
section examines the architecture of the network, its constituting routers and network
interfaces.

Note that since this work only considers TMFab with one to four PEs, only a single
layer 2D interconnect is considered for complete system simulations. Nevertheless,
subsequent sections describe the 3D interconnect since scaling up beyond four PEs
while maintaining a low area footprint will require the use of such an architecture, of
which the 2D interconnect is a subset.

46

4.4.1 Network Architecture

The TMFab network is organized as a packet-switched stack of 3x2 meshes with 36-bit
input and output links interconnecting nodes. While the network here is described
in the context of a 3D interconnect in the stacked-die configuration, it can also be
deployed in a single layer mesh as a 2D network.

Wormhole routing is used to route packets across the network. In this method, pack-
ets are transferred as flits, with the destination address indicated only in the header flit,
which is routed through by routers as soon as resources are available, without waiting
for the remaining flits which simply follow the header. As a consequence, buffering
requirements are reduced, and the packet is routed through faster, since routers do not
need to wait for the entire packet to be received before forwarding it to the next router
[42].

Network packets may contain upto 64 bytes of payload data, and are transferred
as 36-bit flits, with each flit containing 4 bytes of data. The header flit of the packet
contains addressing and control data essential for routing the packet across the network,
and additional fields to aid transactions’ communications with the scheduler and L2-D
cache. The packet format is illustrated in Fig. 4.13.

Figure 4.13: Packet Format

The network offers Best Effort Service to traffic within three communication classes:
Instruction Block Transfer, TM Communications and Memory Operations. These
classes simply categorize network traffic in order to clearly structure network services
for the PE, Scheduler and L2-D tile.

Packets are routed across the network based on the Destination Network Address
they carry in their header flit. Each router and its local tile are assigned a unique
Local Network Address in the network. When a packet is received at a router with a
destination network address that matches the local network address, it is forwarded
to the local tile. The header flit also contains a 4 bit communication identifier, which
indicates the purpose of the packet within a communication class. The complete list of
identifiers is in Table 4.8.

In addition to the communication identifier, the scheduler tile uses the Scheduler
Operation identifier to determine the requested scheduler operation. However, this
identifier is only used during scheduler communications.

During validations by transactions, the packet header also carries the transaction
sequence and phase information in order to indicate the transaction’s age during conflict

47

Table 4.8: communication identifiers

Comm. Identifier Comm. Class Purpose

001 Instruction Block Transfer Transaction state transfer

010 TM Communications Scheduler communication

011 TM Communications Validation Response

100 TM Communications Validation

101 Memory Operations L2-D Write

110 Memory Operations L2-D Read

detection and contention management operations. Since executing transactions wait for
the entire validation write-set to be received before responding with an ACK/NACK,
the E bit of the header is used to demarcate the last packet of the validation write-set.
In addition, during the commit operation, the L2-D buffers all read requests from other
transactions until it receives a packet with a set E bit. Therefore, the E bit is also used
to indicate the end of a commit operation.

4.4.2 Router Architecture

The fabric router facilitates a three dimensional interconnect utilizing advanced TSVs
and die stacking. This input buffered wormhole router contains five lateral ports and
two vertical ports, Up and Down for routing between layers in the stack, as illustrated
in Fig. 4.14.

Figure 4.14: Fabric router architecture

The router implements a dimension ordered static Z-X-Y routing algorithm that
routes packets along the shortest path from source to destination. Packets are first
routed in the Z-dimension, and consequently in the X and Y-dimensions. This ensures
that packets in transit to other layers in the stack are routed through the TSVs onto
their destination layer immediately upon injection into the network, reducing congestion
in the layer meshes. Once packets arrive in their destination layer, they are routed

48

first in the X-dimension, followed by the Y-dimension. The nature of the algorithm
ensures that incoming packets are never routed through the same port that they were
received at, nor misrouted. Consequently, conditions such as Deadlock and Livelock
are prevented from occurring in the network [43].

The router uses On-Off flowcontrol between nodes in the network due to its simple
and low overhead implementation. This is achieved by means of a flow control line
between upstream and downstream nodes, which switches to a high state when the
occupancy of the input buffer at the downstream router reaches a certain threshold.
The pipelined nature of the router induces a two-cycle latency for transmission stalls
in the event of congestion at downstream routers. The Buffer Management module is
designed to take this latency into account, and consequently, the flowcontrol threshold
is N-2, N being the input buffer depth at each port. This flowcontrol mechanism
ensures that flits are never dropped, thereby eliminating the need for retransmissions.

The optimal input buffer depth was determined from simulations by examining the
variation in average end-to-end packet latency and throughput with increasing buffer
depth in a single layer 3×2 mesh. Fig. 4.15 shows the variation in average end-to-
end packet latency and the corresponding raw aggregate throughput for different input
buffer sizes.

Figure 4.15: Average end-to-end packet latency and raw aggregate throughput with varying
input buffer depth

The lowest average latency is observed at an input buffer depth of 10-flits. However,

49

at a buffer depth of 12-flits, a slightly higher latency is observed although which a
significantly higher throughput. Therefore, the router uses 12-flit deep input buffers,
with a flowcontrol threshold of 10-flits.

The fabric router uses dedicated arbiters for each output port, implementing a
Round Robin arbitration scheme in order to ensure fair, Best Effort service to all input
ports. Due to the routing restriction that prevents packets from being routed through
the same port they arrived at, each output arbiter only polls six out of the seven input
ports. When a header flit arrives at an input port, the Routing Logic & Output Port
Select block raises a request to the appropriate output arbiter. If the requested output
port is idle and the downstream router has free input buffer slots, the arbiter grants
the request by asserting the Drain signal for the input buffer. Round robin arbitration
is deactivated, and remains in that state until the tail flit of the packet has advanced
through the output port. This ensures the integrity of routed packets, and prevents
flits from contending packets merging in the output stream.

Contending input ports now wait for access to the output port, keeping their re-
quest lines asserted, and input buffers in the stalled state. In the event of input buffers
becoming empty while flits of a packet are advancing through the router, the output
arbiter sets the link as idle while maintaining the round robin arbitration in the deac-
tivated state. This state of the output port holds until the tail flit has advanced and
the complete packet has been routed. Upon completion, the arbiter asserts the Next
signal and resumes round robin arbitration to service the next waiting input stream.
The maximum packet size of 17 flits, i.e. a 64 byte payload, imposed by the network
architecture ensures fair and timely arbitration to all input ports, and places a limit
on the time the arbiter spends servicing any particular input. The three-stage router
thus has a minimum fall through latency of four cycles. The performance of the fabric
router is analyzed in Chapter 5, while the design of Through Silicon Vias is described
in Chapter 6.

4.4.3 Network Interface Architecture

Specialized network interfaces are used to connect the tile to the fabric network. The
Network Interface (NI) architecture is illustrated in Fig. 4.16.

Figure 4.16: Network Interface Architecture

50

The NI is designed as a modular and customizable interface, split in two layers
- Service Layer and Network Adapter layer. The Service Layer consists of several
Service Units, each customizable according to the function of the tile. These convert
communication signals from the tile into fragments that are assembled by the network
adapter, and relayed to the intended recipient over the network, in compliance with the
network architecture. Service units are small, and can be easily increased in number
to support additional tile functionality.

Inward and Outward service units may also be linked with one another for fast
request-response communications. Such a scheme is used in the PE network interfaces
for responses to incoming validation write-set packets. During the start of validation,
the inward service unit passes the source address of the validation to the appropriate
outward service unit responsible for sending the validation response. As a result, the
network address and ID of the PE that the validating transaction is mapped to remains
abstracted from the other TM-CCs which are only aware of the validating transaction’s
sequence and phase.

The Network Adapter layer contains inward and outward flit buffers with the same
depth as that of input buffers in the fabric routers. Network Adapter In performs packet
disassembly for network packets. Data that has been received from a tile is stripped of
its header flit, and other control information before it is forwarded to the appropriate
service unit of the Service layer. Similarly, the Network Adapter Out performs packet
assembly utilizing control information supplied from the appropriate outward service
unit regarding the intended recipient of the packet, its purpose and any additionally
required control data for the header. Network adapters contain an address table with
the network addresses of all tiles in the system, and their function. In the network
interface for the PE tile for instance, individual service units exist in the service layer
for each transfer type between the tile and the Scheduler tile. Requests to the scheduler
cause the scheduler’s network address to be looked up by the network adapter out during
packet assembly automatically. The address table is specified as a generic to the NI
during instantiation of tiles in the design prior to synthesis.

51

52

Performance Evaluation 5
This chapter evaluates the performance of TMFab in two parts. First, the interconnect
is characterized with synthetic traffic to establish its performance over a range of in-
jection rates, and in a stacked configuration. Second, the performance of the complete
TMFab system with four MB-Lite processor cores is evaluated using test applications,
in terms of obtained speed-up over single core execution and execution characteristics
of transactions. The results from these simulations determine the overhead incurred
from the use of transactional memory, and thus indicate the scalability of TMFab.

5.1 Interconnect

The interconnect is independently characterized from TMFab to determine its perfor-
mance over a range of traffic injection rates, using tunable traffic to estimate its perfor-
mance for different traffic conditions. This section examines the testing methodology
employed in the evaluation of single layer and stacked meshes.

5.1.1 Methodology

Since the interconnect is characterized independently from the rest of the system, func-
tional units within tiles are replaced with synthetic traffic injectors and evaluators.
The fabric router was thus instantiated in a single layer 3×2 mesh, with such traffic
injectors and evaluators connected to the local port of each. In addition, the router’s
Up and Down ports were disabled since only a single layer mesh was used. Transac-
tional traffic was injected at each port with a variable injection rate. This variation is
achieved by inducing a delay between packets offered by the traffic generator at each
router. Traffic injectors determined packet destinations based on the order of opera-
tions in a transaction, i.e. transactional code segment transfer, L1-D misses, validation
and commit arbitration, and commit to the L2-D. Fixed packet size of 64 bytes was
used for the code segment transfers and the commit, while other traffic used a packet
size of 32 bytes. The destination distribution for PE-emulating injectors is shown in
Fig. 5.1 (illustrates the distribution for PE 0). The traffic generators emulating the
scheduler and L2-D used a uniform distribution for traffic to PEs.

5.1.2 Interconnect performance

End-to-end packet latency is defined as the time difference between the injection of the
head flit into the network at the injector node, and the delivery of the tail flit to the
evaluator node from the network. Since each evaluator receives traffic from injectors
situated at different distances, the end-to-end packet latency is averaged over 500K
cycles, and considered as the average latency to a particular node in the network. The

53

Figure 5.1: Destination distribution for PE-emulating injectors

raw aggregate throughput of the mesh was computed using the total data received at
all traffic evaluators in the mesh over 500K cycles at 200MHz. The obtained average
packet latency over injection rates is shown in Fig. 5.2.

Figure 5.2: Average packet latency for single layer 3×2 mesh

The average packet latency is considered as the average latency to a particular
node from any node in the mesh, i.e the cross network latency. It is observed to be
flat at lower injection rates due to the fixed maximum packet size imposed by the
network architecture that prevents the domination of any particular input stream at
the output arbiter of routers. At higher injection rates however packets are injected
into the network faster than they can be routed by the output arbiters, consequently
increasing the waiting time for input streams and thus the latency. A maximum raw
aggregate throughput of 2.85GBps was obtained for the single layer mesh.

The same test setup was extended to study the effects of increasing stack-height
while using a 3D network-on-chip. Therefore, the Up and Down router ports were
enabled in the previously mentioned mesh, and stacked in three-layers. This increases
the round robin arbitration cycle since the each arbiter now polls two extra ports. Fig.
5.3 shows the average packet latency for the three-layer stack.

54

Figure 5.3: Average packet latency for stacked 3×3×2 mesh

The average latency shows a gradual increase with increasing injection rates. This is
due in part to the Z-X-Y routing algorithm that routes packets over the TSVs to their
destination layer immediately on injection into the network, preserving X-Y routing
resources on each layer for packets in their destination layer. The Z-first nature of
the routing algorithm also reduces contention for the TSVs by utilizing them primarily
at injection. A maximum raw aggregate throughput of 8.3GBps was obtained for the
three-layer stack of meshes.

In order to highlight the effects of scaling, the increase in maximum throughput
obtained by adding each layer to the stack is weighed against the increase in minimum
network latency. The results of this comparison in Fig. 5.4 indicate that as the number
of layers in the stack increase, the average latency increases as expected. However,
towards higher layers in the stack, this latency increases steeply on account of increased
contention on the vertical links, translating to an increased waiting time for inter-layer
packets on the TSVs. On the other hand, while raw aggregate throughput increases
steeply over the first few layers of the stack, the higher average latency due to the
increased network size begins to outweigh the increase in throughput at large stack
heights, evidenced by the flattening of the throughput curve past five layers. However,
this flattening can be postponed by prioritizing TSV traffic, and by possibly exploiting
the superior parasitic performance of TSVs [27].

5.2 TMFab System

5.2.1 Methodology

Since TMFab is only a fabric, and does not include PEs, a suitable soft-processor
core must first be instantiated in the design, resulting in a CMP capable of executing
transactional application code. Since the fabric is processor independent, no restrictions
are placed on the choice of soft-processor core integrated into the design. However,
testing the fabric requires integration of a suitable soft-processor core. The MB-Lite

55

Figure 5.4: Variation in Throughput and minimum network latency with stacking

[44] is an open source soft-processor core based on the Xilinx Microblaze architecture
[45]. It was found suitable for the performance evaluation of the fabric for the following
reasons:

1. Open source

2. Good documentation

Since each processor architecture is accompanied by its own set of signaling conven-
tions, quality documentation significantly reduces the design effort in integrating the
core into the fabric.

In order to evaluate the performance of the fabric, transactional applications must
be run on PEs to determine the amount of speedup the system provides over a single
core processor. Conventional processors use a set of standard benchmarks composed
of several applications designed to stress a particular part of the system. While some
benchmarks operate on large sets of data, stressing the underlying memory system,
others are computationally intensive, highlighting the performance of the processor
core itself. Evaluating a transactional memory system however, requires the use of
transactional benchmark applications. The Stanford Transactional Applications for
Multi-Processing (STAMP) is the broadest benchmark suite available for transactional
memory performance evaluation, consisting of eight applications with varying transac-
tional characteristics. However, the suite was not usable on TMFab since:

1. STAMP applications use the POSIX thread (pthread) library to spawn transac-
tional threads. However, pthreads is not supported by the MB-Lite toolchain.

2. Not all applications are completely transactional, and contain non-transactional
code.

Removing pthread references from the code was not a trivial task, and resulted in
incorrect results over several iterations in porting the benchmark to TMFab. Manually

56

parallelizing the application after eliminating pthreads was not feasible. In addition,
converting non-transactional code into coarse grain transactions also impacted the cor-
rectness of the applications. Therefore, STAMP could not be ported to the fabric
within the context of this work, however it holds a high priority in future work with
TMFab.

A custom set of test programs was coded in order to test the system. The programs
were coded in C, with coarse grain transactional sections demarcated with transactional
markers. The code was compiled with the -S switch in order to obtain its assembly
code. However, compiling the partitioned code with transactional markers in place
yielded incorrectly executing transactions. This highlighted the need for a toolchain
augmented with capabilities to maintain the integrity of code between transactional
markers, and to manage initialization code for each transaction.

Therefore, the four test programs - MAT-SMALL, MAT-MED, MAT-LARGE and
MAT-LARGE-HIGH, were hand-coded in assembly, with initialization code for each
of their four transactions included within their transactional boundaries. The pro-
grams were not designed to be computationally intensive, but instead to generate L2-D
accesses, create conditions for false sharing, and illustrate the effects of conflicts on
obtained speed-up.

MAT-SMALL : A 4×4 matrix is read in by four transactions, with each transaction
assigned one 2×2 section. Transactions increment values in the matrix, and write them
back to the L2-D as they commit. Since different transactions modify words in the same
cache line, conventional cache line granularity conflict detection mechanisms would flag
a conflict here.

MAT-MED: A 32×16 matrix is read in by four transactions, with each transaction
assigned one 16×8 section. Transactions increment values, similar to the MAT-SMALL
program and write them back to the L2-D. Each transaction works on individual cache
lines, and therefore, no conflicts are detected.

MAT-MED-HIGH : is identical to MAT-MED except in that it contains dependen-
cies between transactions. MAT-MED-HIGH uses four transactions with a configurable
number of dependencies between them. MAT-MED-HIGH thus defines dependencies
as the sharing of data between the boundaries of a pair of transactions. Dependencies
are defined for pairs of transactions as illustrated in Fig. 5.5.

Figure 5.5: Dependencies between MAT-MED-HIGH transactions

57

Thus transactions 0 through 2 modify one data word in another transaction’s write-
set during execution. Transaction 3, being the last transaction to execute, has no such
characteristic.

MAT-LARGE : A 64×64 matrix is read in by four transactions, with each assigned
one 32×32 section. Transactions increment values in the matrix, and write them back
to the L2-D. This program stresses the L2-D and the interconnect since it generates
atleast 64 L1-D misses per transaction.

Each of these applications was assembled, and loaded onto an instruction ROM in
the testbench, performing the function of the supervisor processor. The run timer was
started as soon as the transfer of to the L2-Instruction Memory through the Scheduler’s
TPI began, and stopped when the commit complete notification from the last executing
transaction was received by the PESM. Each simulation was run in three iterations,
with the number of PEs ranging from one to four, in order to show speed up. Upon
completion of all transactions, L2-D contents were manually evaluated to check for
correctness. The normalized speed-up for the MAT-SMALL, MAT-MED and MAT-
LARGE applications is shown in Fig. 5.6.

Figure 5.6: Normalized speed up for MAT-SMALL, MAT-MED and MAT-LARGE

Amongst the three test applications, MAT-LARGE shows the highest speed up at
3.44× with four PEs in the fabric while MAT-MED performs closely at 3.14×. MAT-
SMALL in comparison exhibits the lowest speed up of 1.8× over execution on a single
PE system. However, the significant difference between the three lies in the manner
in which their performance scales with an increasing number of PEs. The breakdown
of execution time in Fig. 5.7 contrasts the characteristics of execution of the MAT-
SMALL application on a four-PE system against those for MAT-MED, indicating why
application performance scales in the manner observed in Fig. 5.6.

The percentage bar graphs in Fig. 5.7 break the execution of transactions on in-
dividual PEs down into constituent transactional operations. Sections shaded blue
correspond to the time spent by the PE in actively fetching and executing instructions.

58

(a)

(b)

Figure 5.7: Breakdown of execution time (a) MAT-MED (Runtime = 18430ns), (b) MAT-

SMALL (Runtime = 2098ns)

Each of the four transactions in MAT-MED operate on eight cache lines, while MAT-
SMALL’s transactions, on the other hand, operate on four distinct sets of words in a
single cache line. The Red areas on each bar correspond to the total duration for which
the PE remained stalled under cache misses registered on the first reference to a cache
line by a transaction.

Before a transaction can commit, its write-set is validated against the data sets of
other active transactions. Reiterating from Chapter 4, validation packets only contain a
cache line address and its corresponding SM field, thus acting as a coherence invalidation
packet. As execution progresses and transactions complete their commits, fewer active
transactions remain in the system. Consequently, the number of validation packets

59

sent by each remaining transaction decreases, effectively shortening the length of its
validation phase. This is illustrated by the gradual decrease in the duration of the
validation phase for each PE. The commit phase, however, is of constant duration
regardless of the number of active transactions in the system, since it depends on the
write-set size alone.

The validation and commit phases collectively account for 6% of each transaction’s
execution time in the case of MAT-MED, while they form 39% of the execution time for
MAT-SMALL. The overhead of validation and the commit operation is observed in Fig.
Fig. 5.7B to be of comparable duration to that of active execution of the transaction
itself. Further, the decrease in the duration of the validation phase in the case of
MAT-SMALL is negligible on account of its small write-set, unlike MAT-MED where
such a decrease causes commits to commence sooner. Fig. 5.8 shows the breakdown
of execution for the MAT-LARGE, clearly illustrating the performance advantage of
using longer duration transactions.

Figure 5.8: Breakdown of execution time for MAT-LARGE (Runtime = 144725ns)

The validation and commit phases in MAT-LARGE account for a maximum of
8% of each transaction’s execution time. With progress in execution, this overhead is
reduced to 5% for the last active transaction. Fig. 5.9 shows the magnitude of the
overhead for different numbers of active transactions in the system.

Therefore, for applications with short duration transactions, the overhead imposed
by the validation and commit operations severely limits the speed-up obtainable from
their concurrent execution on TMFab. This overhead is offset in long duration transac-
tions by the length of the execute phase itself. Consequently, such transactions achieve
a high speed up from concurrent speculative execution on the fabric. The execution
characteristics and speed up of MAT-SMALL, MAT-MED and MAT-LARGE illus-
trate the performance of TMFab with atomic transactions free of dependencies. In
order to examine the effects of non-atomic transactions with dependencies, the MAT-
MED-HIGH application is used, with dependencies between transactions leading to
contention for shared data. Fig.5.10 illustrates the effects of dependencies between
transactions on the speed up obtained from execution on TMFab.

60

Figure 5.9: Magnitude of overhead for varying number of active transactions

Figure 5.10: Effect dependencies on speed up

Dependencies effectively serialize execution, with contention-losing transactions
forced to abort and restart. As a consequence of this serialization, overall applica-
tion run time is increased, drastically decreasing speed up. The decrease in speed
up becomes more significant with the amount of concurrency exploited in the system.
Thus, the gradient in speed-up is observed to be much steeper for the four-PE system
than for the two-PE system. Execution on the one-PE system is inherently sequen-
tial and remains unaffected by dependencies. However, It is interesting to note that
transactions with dependencies cause the performance of the four-PE system to drop
below the levels of a one-PE system. This underlines the importance of ensuring the
independence of transactions.

In the VHDL simulation model of TMFab, contentious data is identified by noting
its read/write-set address, the sequence and phase of the two contending transactions

61

and the type of conflict that was flagged. Using this data, transactional boundaries
may shifted, or the operations on the shared data restructured in order to eliminate
contention.

The L2-D contents were evaluated at completion for each application and found
to reflect expected values, indicating correctness of the result, and overall execution
of the application. This observation was also made in the case of MAT-MED-HIGH,
affirming that transactional operations in the fabric and the enforced system policy
maintain coherence of the L1-D caches.

62

Implementation 6
In this chapter, the results from synthesis of each TMFab tile for a Field Programmable
Gate Array (FPGA) target as well as a semi-custom ASIC flow are examined. Addi-
tionally, results from the place and route (PAR) of the fabric router are examined,
along with the full-custom design of the Through Silicon Via (TSV) cell in different
configurations.

6.1 TMFab

The primary objective of this synthesis is to determine the area utilization of compo-
nents in order to establish a base line for future optimizations. This design was not
taken through the place and route flow for reasons of time.

6.1.1 FPGA

Each tile was decomposed into its constituting components - network interface and the
TMFab functional unit, and each of these components was synthesized separately on a
Xilinx Virtex6 LX75T [46] target in order to determine its resource utilization. How-
ever, memories were not included in this synthesis on account of their size. Therefore,
the stated resource utilization only considers logic components. The resource utiliza-
tion and maximum clock frequency automatically determined during synthesis for each
TMFab component is listed in Table 6.1.

Table 6.1: resource utilization and clock freq. - tmfab

Component Resources (LUTs) Max. Clock Frequency (MHz)

TM-CC 3089 262

Scheduler 880 417

L2-D Control Logic 5800 397

Scheduler NI 2886 321

PE NI 2285 250

L2-D NI 1265 334

In comparison, the MB-Lite utilizes 1221 LUTs on the same device.

6.1.2 ASIC

Synthesis was also performed using the Faraday FSD0A A standard cell library [47]
built on the 90nm Standard Performance logic process from UMC (L90SP) using worst

63

case operating conditions (125◦C temperature and 0.9V core supply) and a 200MHz
clock frequency.

To highlight the area occupied by the different caches and memories in the fabric,
synchronous SRAM blocks were generated according to the required size and organi-
zation. These memory blocks are built on the same 90nm process, and are part of the
FSD0A A library as well. Synthesis results are presented separately for each tile. Table
6.2 lists the area utilization for each TMFab component in comparison with the area of
a synthesized MB-Lite core in Table 6.3. Additionally, Table 6.4 summarizes the sizes
of various memory blocks within the fabric.

Table 6.2: post-synthesis area utilization - tmfab

Scheduler Tile PE Tile L2-D Tile

Component Area
(mm2)

Component Area
(mm2)

Component Area
(mm2)

Scheduler 0.045 TM-CC 0.063 Control Logic 0.23

L2-I 3.068 L1-D 0.96 L2-D 49.08

NI 0.076 L1-Tag 0.24 L2-Tag 30.84

SWB 0.636 NI 0.09

L1-I 0.767

NI 0.1

Total Area 3.15 2.76 80.24

Table 6.3: post-synthesis area utilization - mb-lite

Component Area (mm2)

MB-Lite 0.034

Register File 0.023

Total Area 0.057

Table 6.4: summary of memory sizes

Type Capacity (KB)

L1-I 64

L1-D 64

L1-Tag 8

SWB 32

L2-I 256

L2-D 4096

L2-Tag 152

It is prudent to note here that these represent estimates of area, and not the actual
area itself. During place and route, nets are routed between standard cells, and buffers

64

inserted to meet timing requirements, thus altering the design area. However, these
numbers still serve as reasonable first estimates of the area of the design.

The L2-D occupies the most area on chip in comparison with other components.
This large area penalty can be mitigated by splitting this large memory into smaller
blocks, and placing them in a stacked-die configuration, connected to the L2-D control
logic by means of TSVs. This is analogous to the work by [48].

6.2 Fabric router

The 3D 7-port fabric router was designed to enable a 3D interconnect for the TMFab
system, facilitating communication between PEs in a stacked die configuration. How-
ever, since only a single-layer mesh with four PEs was considered for system simulation,
the vertical ports of the router were disabled, resulting in a 2D 5-port router. Both
the 5- and the 7-port router were taken through the synthesis-place and route flow to
determine area utilization.

6.2.1 FPGA

The two router variants were synthesized for the same Virtex 6 target mentioned
earlier. It is important to note that only the 5-port router can be implemented
on an FPGA, while the 7-port router can be implemented only to realize 2D NoCs.
Its resource utilization is therefore presented only for comparison with the 5-port router.

The resource utilization along with the determined maximum clock frequency for
the two routers is listed in Table 6.5.

Table 6.5: resource utilization and clock freq. - fabric routers

Router Variant Resources (LUTs) Max. Clock Frequency (MHz)

5-port 4141 260

7-port 5942 220

6.2.2 ASIC

The Through Silicon Via (TSV) forms a critical part of the 3D router, since it acts
as the vertical link between routers in a stack. Their large height, spanning from the
fourth metal layer through the first metal layer may induce signal integrity issues in
neighbouring nets, and thus a buffer zone known as the keep out area is maintained
around the via. This area contains routing and placement blockages, preventing nets
from being routed close to the via. The keep out area also determines the spacing
between TSVs, i.e. the pitch. Thus, to investigate the area penalty associated with the
use of TSVs, three full-custom cells were designed in 90nm UMC with varying keep out
areas. Fig. 6.1 illustrates the general structure of this cell.

The three TSV configurations are listed in Table 6.6.

65

Figure 6.1: Structure of custom TSV cell

Table 6.6: tsv configurations

TSV Width (µm) 5.6

TSV Pitch (µm) 11.2 25.2 50.4

Aggregate Cell Area (µm2) 282.2 953.5 3144.96

The 2D 5-port router was first synthesized and subsequently taken through a series
of floorplanning, placement and routing steps. At a clock frequency of 200MHz, the
2D router occupied an aggregate area of 0.158mm2, inclusive of the 0.0177mm2 of area
occupied by the 12-flit deep input buffers at each port. Fig. 6.2 provides a view of the
placed and routed designs, in which the five ports of the router are easily observed.
Note that the router’s local port is located at the upper left corner of the die area
shown.

The 3D 7-port router was subsequently synthesized after instantiating 74 TSVs
for each of its two vertical ports, thus yielding a total of 148 TSVs. The design was
floorplanned, placed and routed iteratively, with a different TSV configuration in each
run. The obtained area estimates with each configuration is listed in Table 6.7.

Table 6.7: area estimates for 7-port router

TSV Pitch (µm) 11.2 25.2 50.4

Router area without TSV (mm2) 0.158

Router area with TSV (mm2) 0.199 0.298 0.62

Fig. 6.3 shows the placed and routed 7-port router with 11.2µm pitch TSVs sur-
rounding the router core. The TSVs are clustered in the corners as a precaution against
vertical ports inducing signal integrity issues in lateral nets in close proximity with

66

them.

Figure 6.2: Placed (L) and Routed (R) 5-port router

Figure 6.3: Placed (L) and Routed (R) 7-port router with 11.2µm TSVs

67

68

Conclusion 7
This chapter presents concluding remarks on the TMFab design alongside summarizing
the work that was carried out during the course of the project, and emphasizing the
goals that were achieved. Additionally, areas requiring further exploration are identi-
fied, and the scope for future work highlighted.

7.1 Summary

It was determined from initial background research that existing hardware transac-
tional memory implementations did not offer enough flexibility to enable scalable chip
multiprocessors with different processor cores than the ones they were designed with.
The TMFab project was started with the intent to develop of a transactional memory
fabric containing requisite hardware infrastructure to prototype and deploy scalable
chip multiprocessors. With this objective, a fabric architecture was developed after an
extensive survey of existing transactional memory proposals and their implementations.
The developed architecture contained a best effort hardware transactional memory sys-
tem along with a scalable network-on-chip based interconnect architecture. To support
such an architecture, a system-level transactional memory policy was defined, establish-
ing the protocol for transactional operations, and defining policies to reduce incurred
performance overheads, thus providing a roadmap for the development of the required
hardware. TMFab implements a best-effort transactional memory system, with lazy
data versioning and optimistic conflict detection. Application code coarsely partitioned
into transactions using simple transactional primitives, is executed on the fabric’s PEs
through a light-weight transaction scheduler using a Fixed-Priority First-Come-First-
Served scheduling policy. Transactional caches and associated hardware were designed
as processor independent modules, performing all conflict detection, version manage-
ment, contention management, and validation operations outside the PE. This approach
eliminated the need for register checkpointing in PEs, and allowed for their easy in-
tegration without any modifications to the core itself. Transactional operations were
designed keeping a scalable network in mind, and a conscious effort was made to de-
crease the amount of traffic that each PE injected into the network. This resulted in the
reduction in validation overheads generally incurred at the end of transactions. By us-
ing scheduler tracked core-status information, validation packets were only transmitted
to active transactions in the system, reducing the total number of packets injected into
the interconnect at the end of a transaction’s execution. This provided an additional
benefit in the form of speeding up the application as transactions committed. This
was attributed to the reduced validation requirements for every subsequent transaction
on account of the fewer number of active transactions in the fabric. Additionally, by
using a 16-bit field indicating the speculatively modified words within a cache line,

69

validation overhead was decreased by over 80% when compared to per-word address
transmission based validations. And lastly, a baseline 3D interconnect architecture uti-
lizing advanced Through Silicon Vias was built into the fabric to allow scalability in
the vertical plane using die-stacking. Experiments with the interconnect were used to
highlight the area penalty resulting from the use of TSVs of different pitches, and to
determine the maximum feasible height of a stacked-die configuration for the baseline
3D architecture. The performance of TMFab was evaluated by instantiating four light-
weight MB-Lite processor cores inside the fabric, and executing a set of test applications
that stressed the conflict detection, contention management and version management
policies of the fabric. Over three application configurations, the TMFab based CMP
showed a worst case speed up of 1.8× and a best case speed of 3.44× over single core
execution. With dependencies, the worst case speed up was 0.96× highlighting the
importance of reducing dependencies between transactions. The overall performance
overhead was determined at under 10% for medium and long running transactions,
while it settled at a minimum value which translated to 38% overhead for the short du-
ration transaction The fabric was decomposed into blocks and synthesized to determine
its resource utilization and post-synthesis area utilization in a semi-custom design flow,
along with the automatically determined maximum clock frequency which was found
to be atleast 220MHz for all components.

7.2 Future Work

In the course of the design of TMFab, several ideas were conceived that couldn’t be re-
alistically implemented given the magnitude of the project. These are listed as possible
avenues for future work:

1. The highest priority task involves the development of an augmented toolchain for
TMFab. Test applications were manually coded in assembly during benchmarking
however for very large applications with several transactions, such a method will
not suffice. A tool to automatically partition compiler generated assembly code
from a high level user program is envisaged. Initialization code for every transac-
tion would have to be included by the tool within the transactional boundaries.
Such a tool, needless to say, would have to remain processor independent, or pos-
sibly offer support for a broad range of processors. This would certainly pose a
significant challenge, however the benefits are plenty.

2. Although a hardware transactional memory system has been implemented within
the fabric, it is by no means optimal. Optimizations to further reduce performance
overheads, and scaling up of the fabric beyond the test four cores would improve
the design past its current state.

3. In addition, the possibilities of decomposing the scheduler into multiple dice on
separate layers may be looked into to increase system scalability

4. Differential clocking of TSVs and bufferless vertical links must be explored in order
to adequately exploit the electrical characteristics of the TSVs, and overcome the
performance loss observed during experiments with stacking.

70

7.3 Publications

These contributions of TMFab are described in two papers:

• Sumeet S. Kumar, T.G.R.M. van Leuken; A 3D Network-on-Chip for
Stacked-Die Transactional Chip Multiprocessors using Through Sili-
con Vias, submitted to the 6th International conference on Design & Technology
of Integrated Systems in Nanoscale Era (DTIS’11), Athens, Greece.

• Sumeet S. Kumar, T.G.R.M. van Leuken; TMFab: A Transactional Memory
Fabric for Chip Multiprocessors, currently being compiled

71

72

Bibliography

[1] R. Rajwar and J. R. Goodman, “Transactional lock-free execution of lock-based
programs,” in In Proceedings of the Tenth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, pp. 5–17, ACM
Press, 2002.

[2] M. Herlihy, J. Eliot, and B. Moss, “Transactional memory: Architectural support
for lock-free data structures,” in Computer Architecture, 1993., Proceedings of the
20th Annual International Symposium on, pp. 289 –300, may 1993.

[3] N. Njoroge, J. Casper, S. Wee, Y. Teslyar, D. Ge, C. Kozyrakis, and K. Olukotun,
“Atlas: A chip-multiprocessor with transactional memory support,” in Design,
Automation Test in Europe Conference Exhibition, 2007. DATE ’07, pp. 1 –6,
april 2007.

[4] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip, H. Zeffer,
and M. Tremblay, “Rock: A high-performance sparc cmt processor,” Micro, IEEE,
vol. 29, pp. 6 –16, march-april 2009.

[5] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fourth Edition: A
Quantitative Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2006.

[6] P. Stravers and J. Hoogerbrugge, “Homogeneous multiprocessing and the future of
silicon design paradigms,” in VLSI Technology, Systems, and Applications, 2001.
Proceedings of Technical Papers. 2001 International Symposium on, 2001.

[7] L. Hammond, V. Wong, M. Chen, B. Carlstrom, J. Davis, B. Hertzberg,
M. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun, “Transactional mem-
ory coherence and consistency,” in Computer Architecture, 2004. Proceedings. 31st
Annual International Symposium on, pp. 102 – 113, june 2004.

[8] R. Rajwar, M. Herlihy, and K. Lai, “Virtualizing transactional memory,” in Com-
puter Architecture, 2005. ISCA ’05. Proceedings. 32nd International Symposium
on, pp. 494 – 505, june 2005.

[9] C. Ananian, K. Asanovic, B. Kuszmaul, C. Leiserson, and S. Lie, “Unbounded
transactional memory,” Micro, IEEE, vol. 26, pp. 59 –69, feb. 2006.

[10] O. S. D. Dice and N. Shavit, “Transactional locking ii,” in Proc. of the 20th Inter-
national Symposium on Distributed Computing (DISC 2006), pp. 194–208, 2006.

[11] M. Herlihy, V. Luchangco, and M. Moir, “Software transactional memory for
dynamic-sized data structures,” pp. 92–101, ACM Press, 2003.

[12] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B. Hertzberg, “Mcrt-
stm: a high performance software transactional memory system for a multi- core

73

runtime,” in Proceedings of the eleventh ACM SIGPLAN symposium on Principles
and practice of parallel programming, PPoPP ’06, (New York, NY, USA), pp. 187–
197, ACM, 2006.

[13] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras, and S. Chat-
terjee, “Software transactional memory: Why is it only a research toy?,” Queue,
vol. 6, pp. 46–58, September 2008.

[14] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum,
“Hybrid transactional memory.,” in ASPLOS’06, pp. 336–346, 2006.

[15] L. Baugh, N. Neelakantam, and C. Zilles, “Using hardware memory protec-
tion to build a high-performance, strongly-atomic hybrid transactional memory,”
SIGARCH Comput. Archit. News, vol. 36, pp. 115–126, June 2008.

[16] E. Vallejo, T. Harris, A. Cristal, O. S. Unsal, and M. Valero, “Hybrid transac-
tional memory to accelerate safe lock-based transactions,” in WORKSHOP ON
TRANSACTIONAL COMPUTING (TRANSACT 2008), 2008.

[17] K. Moore, J. Bobba, M. Moravan, M. Hill, and D. Wood, “Logtm: log-based
transactional memory,” in High-Performance Computer Architecture, 2006. The
Twelfth International Symposium on, feb 2006.

[18] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen, “Hybrid transactional
memory,” 2006.

[19] D. Dice, Y. Lev, M. Moir, and D. Nussbaum, “Early experience with a commer-
cial hardware transactional memory implementation,” SIGPLAN Not., vol. 44,
pp. 157–168, March 2009.

[20] J. Wawrzynek, D. Patterson, M. Oskin, S.-L. Lu, C. Kozyrakis, J. Hoe, D. Chiou,
and K. Asanovic, “Ramp: Research accelerator for multiple processors,” Micro,
IEEE, vol. 27, pp. 46 –57, march-april 2007.

[21] W. Dally and B. Towles, “Route packets, not wires: on-chip interconnection net-
works,” in Design Automation Conference, 2001. Proceedings, 2001.

[22] L. Benini, “Networks on chip: a new paradigm for systems on chip design,” in In
Proceedings of Conference on Design, Automation and Test in Europe, pp. 418–
419, IEEE Computer Society, 2002.

[23] S. W. Yoon, D. W. Yang, J. H. Koo, M. Padmanathan, and F. Carson, “3d tsv
processes and its assembly/packaging technology,” in 3D System Integration, 2009.
3DIC 2009. IEEE International Conference on, pp. 1 –5, 2009.

[24] P. Franzon, W. Davis, and T. Thorolffson, “Creating 3d specific systems: Ar-
chitecture, design and cad,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2010, pp. 1684 –1688, 2010.

74

[25] E. Beyne and B. Swinnen, “3d system integration technologies,” in Integrated
Circuit Design and Technology, 2007. ICICDT ’07. IEEE International Conference
on, 30 2007.

[26] K. Puttaswamy and G. Loh, “3d-integrated sram components for high-performance
microprocessors,” Computers, IEEE Transactions on, vol. 58, no. 10, pp. 1369 –
1381, 2009.

[27] G. Loi, B. Agrawal, N. Srivastava, S.-C. Lin, T. Sherwood, and K. Banerjee,
“A thermally-aware performance analysis of vertically integrated (3-d) processor-
memory hierarchy,” in Design Automation Conference, 2006 43rd ACM/IEEE, 0
2006.

[28] V. F. Pavlidis and E. G. Friedman, “3-d topologies for networks-on-chip,” IEEE
Trans. Very Large Scale Integr. Syst., vol. 15, pp. 1081–1090, October 2007.

[29] A. Y. Weldezion, M. Grange, D. Pamunuwa, Z. Lu, A. Jantsch, R. Weerasekera,
and H. Tenhunen, “Scalability of network-on-chip communication architecture for
3-d meshes,” in Proceedings of the 2009 3rd ACM/IEEE International Symposium
on Networks-on-Chip, NOCS ’09, (Washington, DC, USA), pp. 114–123, IEEE
Computer Society, 2009.

[30] R. Patti, “Three-dimensional integrated circuits and the future of system-on-chip
designs,” Proceedings of the IEEE, vol. 94, no. 6, pp. 1214 –1224, 2006.

[31] I. Loi, F. Angiolini, and L. Benini, “Supporting vertical links for 3d networks-
on-chip: toward an automated design and analysis flow,” in Proceedings of the
2nd international conference on Nano-Networks, Nano-Net ’07, (ICST, Brussels,
Belgium, Belgium), pp. 15:1–15:5, ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2007.

[32] D. Park, S. Eachempati, R. Das, A. Mishra, Y. Xie, N. Vijaykrishnan, and C. Das,
“Mira: A multi-layered on-chip interconnect router architecture,” in Computer
Architecture, 2008. ISCA ’08. 35th International Symposium on, pp. 251 –261,
2008.

[33] T. Kgil, S. D’Souza, A. Saidi, N. Binkert, R. Dreslinski, T. Mudge, S. Reinhardt,
and K. Flautner, “Picoserver: using 3d stacking technology to enable a compact
energy efficient chip multiprocessor,” SIGPLAN Not., vol. 41, pp. 117–128, Octo-
ber 2006.

[34] F. Angiolini, P. Meloni, S. Carta, L. Benini, and L. Raffo, “Contrasting a noc and
a traditional interconnect fabric with layout awareness,” in Design, Automation
and Test in Europe, 2006. DATE ’06. Proceedings, vol. 1, pp. 1 –6, 2006.

[35] T. F. Knight, “An architecture for mostly functional languages,” in Proceedings of
ACM Lisp and Functional Programming Conference, pp. 500–519, Aug 1986.

75

[36] M. Lupon, G. Magklis, and A. González, “Version management alternatives for
hardware transactional memory,” in Proceedings of the 9th workshop on MEmory
performance: DEaling with Applications, systems and architecture, MEDEA ’08,
(New York, NY, USA), pp. 69–76, ACM, 2008.

[37] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “Stamp: Stanford trans-
actional applications for multi-processing,” in Workload Characterization, 2008.
IISWC 2008. IEEE International Symposium on, pp. 35 –46, sept 2008.

[38] A. Dan and D. Towsley, “An approximate analysis of the lru and fifo buffer re-
placement schemes,” SIGMETRICS Perform. Eval. Rev., vol. 18, pp. 143–152,
April 1990.

[39] H. Al-Zoubi, A. Milenkovic, and M. Milenkovic, “Performance evaluation of cache
replacement policies for the spec cpu2000 benchmark suite,” in Proceedings of the
42nd annual Southeast regional conference, ACM-SE 42, (New York, NY, USA),
pp. 267–272, ACM, 2004.

[40] I. S. S. Inc, IS43R32800B 256Mb DDR Synchronous DRAM, Rev. 00D.

[41] M. T. Inc, Micron MT46V128M4 Core DDR Rev. B 2/09 EN.

[42] C. Scheideler and B. Vöcking, “Universal continuous routing strategies,” in Pro-
ceedings of the eighth annual ACM symposium on Parallel algorithms and archi-
tectures, SPAA ’96, (New York, NY, USA), pp. 142–151, ACM, 1996.

[43] W. Dally and C. Seitz, “Deadlock-free message routing in multiprocessor intercon-
nection networks,” Computers, IEEE Transactions on, vol. C-36, pp. 547 –553,
May 1987.

[44] T. Kranenburg and R. van Leuken, “Mb-lite: A robust, light-weight soft-core
implementation of the microblaze architecture,” in Design, Automation Test in
Europe Conference Exhibition (DATE), 2010, pp. 997 –1000, 2010.

[45] X. Inc, Microblaze Processor Reference Guide.

[46] X. Inc, DS150 Virtex-6 Family Overview.

[47] F. T. Corporation, FSD0A A Standard Cell Library.

[48] G. H. Loh, “3d-stacked memory architectures for multi-core processors,” in In
International Symposium on Computer Architecture.

76

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Thesis Goals
	Contributions
	Thesis Organisation

	Background
	Parallelism
	Cache Coherence
	Consistency
	Transactional Memory
	Types of Transactional Memory Systems
	Transactional CMPs

	Interconnect

	TMFab System Overview
	Overview of TMFab
	System-level Transactional Memory Policy
	Transaction Programming
	Version Management
	Conflict Detection
	Contention Management
	Validate and Commit Contention
	Cache Coherence Protocol

	Architecture
	TMFab Scheduler (TMS)
	Scheduler Architecture

	TM Cache Controller
	Bootloader
	L1 Instruction Memory (L1-I)
	L1 Data Cache (L1-D)
	Tag Unit
	Speculative Write Buffer (SWB)
	Transaction Control
	PE Interfaces

	L2 Data Cache
	Data Memory
	Tag Unit
	External Memory Interface

	Interconnect
	Network Architecture
	Router Architecture
	Network Interface Architecture

	Performance Evaluation
	Interconnect
	Methodology
	Interconnect performance

	TMFab System
	Methodology

	Implementation
	TMFab
	FPGA
	ASIC

	Fabric router
	FPGA
	ASIC

	Conclusion
	Summary
	Future Work
	Publications

	Bibliography

