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Abstract
This study conducts a multi-scale analysis on the drag reduction (DR) in the fluid flow diluted with the polymers. A mesoscopic de-
scription of ensemble of elastic dumbbells using Brownian dynamics (BDS) is connected to the macroscopic description for the solvent
Newtonian fluid using DNS [1]. In Horiutiet al. [2], non-affinity in which the motion of dumbbells does not precisely correspond to
macroscopically-imposed deformation was introduced and its effect on DR was elucidated in homogeneous isotropic turbulence (HIT).
This work aims to carry out assessment on the influence of shear on DR in non-affine viscoelastic turbulence placed under constant
mean shear. It is shown that the occurrence of DR and its mechanism are in agreement with those in HIT. More drastic DR is achieved
when non-affinity is maximum than in the complete affine case. This difference is attributable to the convective motions of dumbbells.
In the complete affine case, the connector vector of dumbbell is convected as a contravariant vector representing material line element,
whereas, when non-affinity is the largest, it is convected as a covariant vector representing material surface element. In the latter
case, the dumbbells directs outward perpendicularly on the planar structures and exert an extra tension on vortex sheet, which leads to
attenuation of energy cascade, causing larger DR. The effect of presence of the streaks on the alignment of the dumbbells is discussed.

GOVERNING EQUATIONS FOR MOTION OF THE DUMBBELLS AND BDS-DNS RESULTS

Reduction of drag (DR) in the turbulent flow is critically important for engineering application. Addition of long-chain
polymers into the Newtonian fluid flow is one of vital tools to accomplish DR. De Gennes [3] considered that, in the
coil-stretch transition, stretched polymer chains behave elastically and it leads to modifications of turbulent cascade. In
fact, occurrence of this DR is shown by solving the Navier-Stokes equation coupled with the viscoelastic polymer models
to account for the effect of adding polymers [4]. It is generally assumed that the Newtonian fluid which surrounds the
bead-spring configuration of the polymers moves affinely with an equivalent continuum [5]. In the fluid diluted with
stretched polymer, however, molecular motions may not precisely correspond to the macroscopic deformation [3]. In
Horiuti et al. [4], the Johnson-Segalman (JS) constitutive equation [5] was used to introduce non-affinity into the polymer
stress. Remarkable enhancement of DR was achieved in forced homogeneous isotropic turbulence and pipe flow when
non-affinity is maximum (slip parameter,α = 1.0), compared with when complete affinity is assumed (α = 0.0).
Limitation of DNS using the constitutive equation is in its inability to identify exact orientation of the dumbbells. To
remedy this drawback, BDS-DNS approach [1] was developed by connecting a macroscopic description for the Newtonian
turbulent flow whose evolution is pursued using DNS to the mesoscopic description of an ensemble of elastic dumbbells
which are advected using the Brownian dynamics simulation (BDS). The polymer stresses incurred by the dumbbells
are fed back into the Navier-Stokes equation. In Horiutiet al. [2], this method was modified so that the dumbbells are
allowed to be advected non-affinely with the macroscopically-imposed deformation. It was applied to homogeneous
isotropic turbulence. More drastic drag reduction was achieved whenα = 1.0 thanα = 0.0. In DNS of pipe flow using
the JS equation, DR surpassing the Virk’s maximum limit, which is similar to DR in addition of cationic surfactant, was
achieved whenα = 1.0. It can be inferred that presence of mean shear may induce significant impact on DR.
This study aims to elucidate the effects of introduction of mean shear on DR using the modified BDS-DNS method.
Stationary constant mean shear is established by an imposition of volume forcing [6]. In the homogeneous streamwise
(x) and spanwise(y) directions, the periodic boundary conditions are used. At the boundaries in the shear(z) direction
z = 0, d, the free-slip condition is imposed. Pseudospectral technique with a3/2-rule de-aliasing is used. A linear mean
profile ⟨ux⟩(z)/(Sd) = (z/d − 1/2) is approximated by a Fourier cosine series, and the forcefi is chosen such that the
first 6 modes in the series remain constant in time.S denotes the constant mean shear rate. We carried out BDS-DNS
using128 grid points in thex− andy− directions,33 in thez− direction. The Reynolds numberSd2/ν is set equal to
400, the Weisenberg number based onS isWi = 5.0 andWi based on the Kolmogorov-time scale is10.76. Total number
of dumbbellsNt is set equal to107. The polymer stress tensorτij due to the force acting on the fluid from the dumbbell
are added to the Navier-Stokes equation. SinceNt is not sufficiently large, we adopted the replica method [1].
We denote the position vectors of each bead of then−th dumbbell byx1

(n) andx2
(n) (n = 1, 2, · · ·Nt). The governing

equation for motion of the end-to-end connector vectorR(n) = x1
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(n) is given for the complete affine case as [1]
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whereui(x) denotes the velocity field of the solvent fluid, and the finitely extensible nonlinear elastic (FENE) model
is applied to the elastic force.(W1,2

(n))i is a random Gaussian force representing the Brownian motion of particles.
Lmax(= 0.04) is the maximum length which the dumbbell can extend.τs(= 5.0) is the relaxation time. The equilibrium



Figure 1. Left: Temporal variations in the work by the forceP (t); Right: Distribution of p.d.f of the length of the dumbbells|R|.

length of the dumbbellreq isLmax/50. Equation (1) is solved with the equation for the center-of-mass vectorRg [1]. We
introduce the non-affinity by allowing a slippage in the motion of polymer strand [4]. The velocity imposed at beadi, is
given asui = ug + (∇ug) · (Ri −Rg)− 2α{St · (Ri −Rg)}, whereug denotes the velocity at the center,∇ug is the
velocity gradient tensor andSt is the strain rate tensor. Whenα = 0.0, Eq. (1) is analogous to the equation for evolution
of a contravariant vector associated with a material line element of the fluid. Whenα = 1.0, Eq. (1) becomes analogous
to the equation for material surface element with its vector areaR.
Figure 1 (a) shows the temporal variations in the work due to the forcingP (t)(≡ ⟨u′

ifi⟩) averaged in the whole compu-
tational box. SmallerP (t) implies larger DR. Whenα = 0.0 DR occurs in comparison to the Newtonian case, but DR in
α = 1.0 is more remarkable. Figure 1 (b) shows the distributions of the probability density function for the length of the
dumbbells|R|. The distribution from theα = 1.0 case exhibits large concentration in the vicinity ofLmax, i.e., stretching
of the dumbbell in the caseα = 1.0 is larger than inα = 0.0. Larger DR inα = 1.0 is attributable to larger extension of
the dumbbells because larger elastic energy is stored in the dumbbell than inα = 0.0, and larger elastic effect ensues.

Figure 2. Three dimensional rendering of the isosurfaces of the vortex sheets (grey color), the streaks (u′ > 0 in green,u′ < 0 in blue)
and the dumbbells (red arrows); Top:α = 0.0, Bottom:α = 1.0.

Figure 2 shows the configurations of vortex sheets, streaks and dumbbells. The sheets and high- and low-speed streaks are
inclined against thex− andz− directions. Vortex sheet is placed between the streaks. Whenα = 0.0, the dumbbells align
selectively along the transverse direction of the sheet, and the principal polymer force opposes to the vortex stretching
and growth of the vorticity is annihilated. Whenα = 1.0, the dumbbells align preferentially in the direction normal to
the surface of vortex sheets. The dominant principal polymer force directs outward perpendicularly on the vortex sheets.
Pulling force is exerted on the vortex sheet and the sheet is under tension. Stretching and thinning of the sheet is reduced,
leading to larger DR. These results agree with those for pipe flow obtained using the JS model [4].
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