

Delft University of Technology

Reduction of computing time for least-squares migration based on the Helmholtz equation
by graphics processing units

Knibbe, Hans; Vuik, Kees; Oosterlee, Kees

DOI
10.1007/s10596-015-9546-z
Publication date
2015
Document Version
Final published version
Published in
Computational Geosciences: modeling, simulation and data analysis

Citation (APA)
Knibbe, H., Vuik, K., & Oosterlee, K. (2015). Reduction of computing time for least-squares migration based
on the Helmholtz equation by graphics processing units. Computational Geosciences: modeling, simulation
and data analysis, 20(2), 297-315. https://doi.org/10.1007/s10596-015-9546-z

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10596-015-9546-z
https://doi.org/10.1007/s10596-015-9546-z

Comput Geosci (2016) 20:297–315
DOI 10.1007/s10596-015-9546-z

ORIGINAL PAPER

Reduction of computing time for least-squares migration
based on the Helmholtz equation by graphics processing
units

H. Knibbe1 ·C. Vuik1 ·C. W. Oosterlee1,2

Received: 17 May 2015 / Accepted: 25 October 2015 / Published online: 30 December 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract In geophysical applications, the interest in least-
squares migration (LSM) as an imaging algorithm is
increasing due to the demand for more accurate solutions
and the development of high-performance computing. The
computational engine of LSM in this work is the numeri-
cal solution of the 3D Helmholtz equation in the frequency
domain. The Helmholtz solver is Bi-CGSTAB precondi-
tioned with the shifted Laplace matrix-dependent multigrid
method. In this paper, an efficient LSM algorithm is pre-
sented using several enhancements. First of all, a frequency
decimation approach is introduced that makes use of redun-
dant information present in the data. It leads to a speedup of
LSM, whereas the impact on accuracy is kept minimal. Sec-
ondly, a new matrix storage format Very Compressed Row
Storage (VCRS) is presented. It not only reduces the size of
the stored matrix by a certain factor but also increases the
efficiency of the matrix-vector computations. The effects of
lossless and lossy compression with a proper choice of the
compression parameters are positive. Thirdly, we accelerate
the LSM engine by graphics cards (GPUs). A GPU is used
as an accelerator, where the data is partially transferred to
a GPU to execute a set of operations or as a replacement,
where the complete data is stored in the GPU memory. We
demonstrate that using the GPU as a replacement leads to

� H. Knibbe
hknibbe@gmail.com

1 Faculty of Electrical Engineering, Mathematics and
Computer Science, Delft Institute of Applied Mathematics,
Delft University of Technology, Mekelweg 4, 2628 CD Delft,
The Netherlands

2 Centrum Wiskunde & Informatica, P.O. Box 94079, 1090 GB
Amsterdam, The Netherlands

higher speedups and allows us to solve larger problem sizes.
Summarizing the effects of each improvement, the resulting
speedup can be at least an order of magnitude compared to
the original LSM method.

Keywords Least-squares migration · Helmholtz
equation · Wave equation · Frequency domain · Multigrid
method · GPU acceleration · Matrix storage format ·
Frequency decimation

Mathematics Subject Classifications (2010) 65-04 ·
65N55 · 86A15 · 65Y05

1 Introduction

In the oil and gas industry, one of the challenges is to obtain
an accurate image of the subsurface to find hydrocarbons.
A source, for instance an explosion, sends acoustic or elas-
tic waves into the ground. Part of the waves is transmitted
through the subsurface, another part of the waves is reflected
at the interfaces between layers with different properties.
Then the wave amplitude is recorded at the receiver loca-
tions, for example, by geophones. The recorded signal in
time forms a seismogram. The data in frequency domain can
be easily obtained by the Fourier transform of the signal in
time. Using the recorded data, there are several techniques,
called depth migration, to map it to the depth domain,
given a sufficiently accurate velocity model. The result is a
reflectivity image of the subsurface. The techniques include
ray based and wave equation based algorithms and can be
formulated in time or in frequency domain.

An alternative to the depth migration is least-squares
migration (LSM). Least-squares migration [22] has been
shown to have the following advantages: (1) it can reduce

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10596-015-9546-z-x&domain=pdf
mailto:hknibbe@gmail.com

298 Comput Geosci (2016) 20:297–315

migration artifacts from a limited recording aperture and/or
coarse source and receiver sampling; (2) it can balance
the amplitudes of the reflectors; and (3) it can improve
the resolution of the migration images. However, least-
squares migration is usually considered expensive, because
it contains many modeling and migration steps.

Originally, ray-based Kirchhoff operators have been pro-
posed for the modeling and migration in LSM (see, e.g.,
Schuster [27], Nemeth et al. [22]). Recently, in least-squares
migration algorithms, wave-equation based operators were
used in the time domain (see, e.g., Tang [29], Wei and
Schuster [32]) and in the frequency domain (see, e.g.,
Plessix and Mulder [23], Kim et al. [14], Ren et al. [24]).
The major advantage of a frequency domain engine is that
each frequency can be processed independently in parallel.

With the recent developments in high-performance com-
puting, such as increased memory and processor power of
central processing units (CPUs) and the introduction of
general purpose graphic processing units (GPGPUs), it is
possible to compute larger and more complex problems and
use more sophisticated numerical techniques. For exam-
ple, in migration, the wave equation has been traditionally
solved by an explicit time discretization scheme in the time
domain requiring large amounts of disk space. In Knibbe
et al. [17], we have shown that solving the wave equation
in the frequency domain, i.e., the Helmholtz equation, can
compete with a time domain solver given a sufficient num-
ber of parallel computational nodes with a limited usage of
disk space. The Helmholtz equation is solved using iterative
methods. Many authors showed the suitability of precon-
ditioned Krylov subspace methods to solve the Helmholtz
equation, see, for example, Gozani et al. [10], Kechroud
et al. [12]. Especially, the shifted Laplace preconditioners
improve the convergence of the Krylov subspace methods,
see Laird and Giles [19], Turkel [31], Erlangga et al. [6],
Erlangga et al. [7].

These methods have shown their applicability on tradi-
tional hardware such as a multi-core CPUs, see, e.g., Riyanti
et al. [25]. However, the most common type of cluster hard-
ware consists nowadays of a multi-core CPU connected to
one or two GPUs. In general, a GPU has a relatively small
memory compared to the CPU.

A GPU can be used as a replacement for the CPU or
as an accelerator. In the first case, the data lives in GPU
memory to avoid memory transfers between CPU and GPU
memory. We have already investigated this approach for the
Helmholtz equation in the frequency domain in Knibbe et al.
[15, 16]. The advantage of the migration with a frequency
domain solver is that it does not require large amounts of
disk space to store the snapshots. However, a disadvantage
is the memory usage of the solver. As GPUs have generally
much less memory available than CPUs, this impacts the
size of the problem significantly.

In the second case, the GPU is considered as an accel-
erator, which means that the problem is solved on the CPU
while off-loading some computational intensive parts of the
algorithm to the GPU. Here, the data is transferred to and
from the GPU for each new task. This approach has been
investigated for the wave equation in the time domain in
Knibbe et al. [17]. While the simplicity of the time domain
algorithm makes it easy to use GPUs of modest size to
accelerate the computations, it is not trivial to use GPUs as
accelerators for the Helmholtz solver. By using the GPU as
an accelerator, the Helmholtz matrices are distributed across
two GPUs. The vectors would ”live” on the CPU and are
transferred when needed to the relevant GPU to execute
matrix-vector multiplication or Gauss-Seidel iterations. As
a parallel Gauss-Seidel iteration is generally more expensive
than a matrix-vector multiplication, it would still pay off to
transfer the memory content back-and-forth between GPU
and CPU. For a frequency domain solver, the off-loaded
matrix-vector multiplication in the well-known Compressed
Sparse Row (CSR) format does not result in any significant
improvements compared to a many-core CPU due to the
data transfer.

The goal of this paper is to accelerate the least-squares
migration algorithm in frequency domain using three differ-
ent techniques. Firstly, a decimation algorithm is introduced
using the redundancy of the data for different frequencies.
Secondly, we introduce a VCRS format and consider its
effect on the accuracy and performance of the Helmholtz
solver, which is our numerical engine for each source and
frequency of the LSM algorithm. The third goal is to achieve
an improved performance of LSM by using GPUs either as
accelerators or as replacements for CPUs.

2 Least-squares migration

2.1 Description

The solution for a wave problem in a heterogeneous medium
is given by the Helmholtz wave equation in three dimen-
sions

Aφ = g, A = −k2σ 2 − �h (1)

where φ = φ(x, y, z) is the pressure wavefield, g =
g(x, y, z) is a source function, and L is the Helmholtz oper-
ator with the spatially-dependent frequency k = k(x, y, z)

and the slowness σ = 1/c2 which is the inverse of the
square velocity c = c(x, y, z). Here, � denotes the dis-
crete spatial Laplace operator. The problem is defined in a
rectangular domain � = [(0, 0, 0), (X, Y, Z)], X, Y,Z ∈
R. A first-order radiation boundary condition is applied

Comput Geosci (2016) 20:297–315 299

(
− ∂

∂η
− ik

)
φ = 0, where η is the outward normal vector to

the boundary (see Engquist and Majda [5]).
The slowness σ can be split into σ = σ0 + rσ0, where

the perturbation of slowness r denotes reflectivity and σ0
ideally does not produce reflections in the bandwidth of the
seismic data. Then, the Helmholtz operator in Eq. 1 can be
written as

A = −k2σ 2
0 − 2k2rσ 2

0 − k2r2σ 2
0 − �h. (2)

Assuming reflectivity being very small r << 1 gives

A = −k2σ 2
0 − 2k2rσ 2

0 − �h. (3)

The wavefield φ = φ0 + φ1 can be split accordingly into
a reference and a scattering wavefield, respectively. The ref-
erence wavefield φ0 describes the propagation of a wave in a
smooth medium without any hard interfaces. The scattering
wavefield φ1 represents a wavefield in a medium which is
the difference between the actual and the reference medium.
Substituting the split to Eq. 1 gives
(
−k2σ 2

0 − 2k2rσ 2
0 − �h

)
(φ0 + φ1) = f. (4)

Wave propagation in the reference medium is described by
A0φ0 = g with A0 = −k2σ 2

0 − �h. Then, the Helmholtz
equation can be written as

A0φ0 − 2k2rσ 2
0 φ0 + A0φ1 − 2k2rσ 2

0 φ1 = g. (5)

In the Born approximation, the term 2k2rσ 2
0 φ1 is assumed

to be negligible, leading to the system of equations
{

A0φ0 = g,

A0φ1 = 2ω2rσ 2
0 φ0,

(6)

which represents the forward modeling. Let us denote
φ̂(ω, xs, xr) the solution of the wave Eq. 6 from the source
g at the position xs and recorded at the receiver positions xr

φ̂(ω, xs, xr) = R(xr)(φ0(ω, xs) + φ1(ω, xs, r)). (7)

Here, R can be seen as a projection operator to the receiver
positions. Then, migration becomes the linear inverse prob-
lem of finding the reflectivity r that minimizes the differ-
ence between the recorded data d(ω, xs, xr) and the mod-
eled wavefield φ̂(ω, xs, xr) dependent on the reflectivity r ,
in a least-squares sense

J (r) = 1

2

∑
ω

∑
xs ,xr

‖d(ω, xs, xr) − φ̂(ω, xs, xr)(r)‖2. (8)

Removing the first arrival from the recorded data and
denoting it by d1, the previous equation is equivalent to

J (r) = 1

2

∑
ω

∑
xs ,xr

‖d1(ω, xs, xr) − R(xr)φ1(ω, xs, r)‖2.

(9)

Equation 9 can be also written in a matrix form, as

J (r) = 1

2
(d − RFr)H (d − RFr) , (10)

where d contains the recorded data without first arrival
for each source and receiver pair, R denotes the projection
matrix, F is the modeling operator from Eq. 6, and r con-
tains reflectivity. By setting the gradient of the Jacobian in
Eq. 10 to zero, we obtain the solution to the least-squares
problem in a matrix form,

FHRHR F r = FHRHd. (11)

Here, the operator RH denotes the adjoint of the projection
operator R and is defined as ”extending the data d given at
the receiver positions to the whole computational domain”.
The right-hand side is the sum over each source of its sub-
surface image, that is obtained by migration FH of the data
at the receiver position corresponding to the given source.
Note that migration in the frequency domain is described
in detail in our previous work Knibbe et al. [17]. The left-
hand side consists of a sum over the forward modeling (6)
for a given set of reflectivity coefficients for each source,
consecutively followed by the migration.

2.2 CG and frequency decimation

Equation 11 represents the normal equation that can be
solved iteratively, for example, with a conjugate gradi-
ent method (CGNR, see, e.g., Saad [26]), which belongs
to the family of Krylov subspace methods. For each iter-
ation of the CGNR method, a number of matrix-vector
multiplications and vector operations are performed. Usu-
ally, the iteration matrix is constructed once before the
start of the iteration. However, to construct the matrix
in Eq. 11 is very costly, since it requires the number of
sources times the number of frequencies of matrix-matrix
multiplications. Therefore, we only compute the vector by
matrix-vector operations, where the used parts of the matrix
are constructed on the fly. Since we consider the problem
in the frequency domain, the iteration matrix consists of
Helmholtz matrices for each source and a corresponding set
of frequencies:

FHRHR F r =:
∑

s

∑
ω

(FH
s,ωRH

s,ωRs,ωFs,ωr). (12)

Next, we assume that there is a redundancy in the seismic
data (both modeled and observed) with respect to the fre-
quencies. This assumption has been suggested for migration
in frequency domain in Mulder and Plessix [21].

The idea is to reduce the number of frequencies in such a
way that for each source several frequencies are discarded.
Therefore, we benefit from the redundancy of seismic data,
so that the total amount of computations is reduced. We
introduce decimation over the frequencies and the sources

300 Comput Geosci (2016) 20:297–315

by choosing subsets ω′ and s′, respectively, and decima-
tion parameter δ. The decimation parameter is defined as a
factor by which the original set of frequencies and sources
is reduced. Note that the decimation factor also indicates
a reduction of the computational effort. The subset of fre-
quencies and sources, which has size of ω′ times s′, is
constructed by applying a mask consisting of zeros and ones
to the original set of size ω times s. The number of ones is δ

times smaller than the total size of the original subset. The
positions of the ones are randomly generated with a normal
distribution. A similar technique has been used for random
shot decimation for the full-waveform inversion in the time
domain in two dimensions (see Guitton and Diaz [11]). The
subset of size ω′ times s′ is changing for each iteration of
the CGNR method. In this way, the decimation of frequen-
cies and sources is compensated for by the redundancy of
the data.

The frequency decimation is only applied to the left-hand
side of Eq. 11, the right-hand side that represents input data
is not decimated. Therefore, the iteration matrix with the
frequency decimation is given by

FHRHR F r =: δ
∑
ω′×s′

(FH
s′,ω′RH

s′,ω′Rs′,ω′Fs′,ω′r). (13)

Here, the decimation parameter is used to compensate for
the energy of the sum in case of reduction over frequencies
and sources. Let us explain it for a simple example with
decimation factor δ = 2. In this case, there are two subsets
of equal size: one with decimated sources and frequencies,
�decimated = ω′ × s′, and a second one with the removed
sources and frequencies, �removed = ω × s − ω′ × s′. The
iteration matrix can then be presented as a sum of the two
matrices

FHRHR F r = Adecimated + Aremoved

:= ∑
i∈�decimated

(FH
i RH

i RiFi)

+ ∑
i∈�removed

(FH
i RH

i RiFi).

Here, the randomness of the decimated subset is impor-
tant because for a given source the randomly selected
frequencies are assumed to represent the spectrum of the
source. Randomly selected sources are collected without
affecting the total signal energy. We can assume that

Adecimated ≈ Aremoved, (14)

which leads to

FHRHR F r = 2Adecimated. (15)

Note that the matrices do not have to be assembled. In our
matrix notation, each matrix is implemented as an operator.

2.3 Helmholtz solver

The computational engine of the least-squares migration is
the damped Helmholtz equation in three dimensions. Let us
revise (1), as

−∂2φ

∂x2
− ∂2φ

∂y2
− ∂2φ

∂z2
− (1 − αi)ω2σ 2φ = g, (16)

and introduce a damping coefficient α � 1. The closer
the damping parameter α is set to zero, the more difficult
it is to solve the Helmholtz equation, as shown in Erlangga
et al. [7]. In this case, we choose α = 0.05. From our experi-
ments, we have observed that this choice of α does not affect
the quality of the image significantly within the LSM frame-
work, however, it leads to faster computational times of the
Helmholtz solver, see Knibbe et al. [15].

As the solver for the discretized Helmholtz equation,
we have chosen the Bi-CGSTAB method preconditioned
by a shifted Laplacian multigrid method with matrix-
dependent transfer operators and a multi-colored Gauss-
Seidel smoother (see Erlangga et al. [7] and Knibbe et al.
[16]). The preconditioner for the system (16) is given by

M = −� − (β1 − iβ2)k
2I, β1, β2 ∈ R (17)

where � is the discretized Laplace operator, I is the iden-
tity matrix, and β1, β2 can be chosen optimally. Depend-
ing on β1 and β2, the spectral properties of the matrix
AM−1 change. In Erlangga et al. [7], the Fourier analy-
sis shows that (17) with β1 = 1 and 0.4 ≤ β2 ≤ 1
gives rise to favorable properties that give rise to consider-
ably improved convergence of the Krylov subspace method
(e.g., Bi-CGSTAB), see also van Gijzen et al. [9]. For the
LSM framework, we have chosen β2 = 0.8 for robustness
reasons.

In the coarse grid correction phase, the Galerkin method
is used in order to get coarse grid matrices:

Ml = Rl−1Ml−1Pl−1, (18)

where Ml and Ml−1 are matrices on the coarse and fine
grids, respectively, Pl−1 is prolongation and Rl−1 is restric-
tion, l = 0, . . . , m. The finest grid is denoted by the index
0 and the coarsest with m, respectively. The prolongation
Pl−1 is based on the 3-D matrix-dependent prolongation,
described in Zhebel [34] for real-valued matrices. Since the
matrixMl−1 is a complex-valued symmetric matrix, the pro-
longation is adapted for this case. This prolongation is also
valid at the boundaries.

The restriction Rl−1 is chosen as full weighting restric-
tion and not as the adjoint of the prolongation. It provided
a robust convergence for several complex-valued Helmholtz
problems in Erlangga et al. [7].

Comput Geosci (2016) 20:297–315 301

As the smoother within the preconditioner, the multi-
colored Gauss-Seidel method has been used. In particular,
for 3D problems, the smoother uses eight colors, so that the
color of a given point will be different from the color of its
neighbors.

It has been shown in Knibbe et al. [15] that the precon-
ditioned Helmholtz solver is parallelizable on CPUs as well
as on a single GPU and provides an interesting speedup on
parallel architectures.

3 Model problems

Before we dive into the acceleration techniques, let us con-
sider three model problems: one with a ”close to constant”
velocity field, a second one with significant velocity varia-
tion, and a realistic third velocity field. These model prob-
lems will be used further for illustration and comparison
purposes.

The first model problem MP1 represents a wedge that
consists of two dipping interfaces separating in the medium
different constant velocities. Figure 1 (top) shows the veloc-

Fig. 1 Velocity functions for the wedge model problem MP1 (top),
for the modified wedge problem MP2 (center), and for the modified
Overthrust model problem MP3 (bottom)

ities inMP1. This model problem represents a very smooth
medium with two contrast interfaces. Since the velocities
in both parts of the model are constant, the coefficients in
the discretization and the prolongation matrices are mainly
constant too.

The second model MP2 is based on the previous model
with additional smooth sinusoidal velocity oscillations in
each direction, shown in Fig. 1 (center). The velocity model
is heterogeneous, thus, the coefficients of the discretization
and prolongation matrices are not constant anymore. Since
we can vary easily the problem size, this model problem is
used to study the effects of compression on the convergence
of the preconditioned Bi-CGSTAB method. For our exper-
iments, we use this problem in three- and two-dimensions
MP23d andMP22d, respectively.

As the background velocity for the third model prob-
lem MP3, the SEG/EAGE Overthrust velocity model has
been chosen, described in Aminzadeh et al. [1]. On top of
it, additional smooth sinus oscillations are added in each
direction. This model problem is close to a realistic prob-
lem. The velocity model is heterogeneous as shown in Fig. 1
(bottom), so that matrix entries of the discretization and pro-
longation matrices exhibit many variations and are far from
constant. A reason for choosing additional smooth oscilla-
tions is to simulate a smooth update in the case of the full
waveform inversion algorithm. This way the robustness of
the proposed scheme can be validated for this application
area.

4 Very Compressed Row Storage (VCRS) format

As already known, an iterative solver for the wave equation
in frequency domain requires more memory than an explicit
solver in time domain, especially for a shifted Laplace
multigrid preconditioner based on matrix-dependent prolon-
gation. Then, the prolongation and coarse grid-correction
matrices need to be stored in memory. Since we are focusing
on sparse matrices, in this section, we suggest a new format
to store the sparse matrices that reduces memory and speeds
up the matrix-vector operations.

4.1 VCRS description

First of all, let us briefly describe the well-known CSR
format for storage of sparse matrices, e.g., Bai et al. [2],
Saad [26]. It consists of two integers and one floating point
array. The non-zero elements ai,j of a matrix A are con-
secutively, row by row, stored in the floating point array
data. The column index j of each element is stored in an
integer array cidx. The second integer array first con-
tains the location of the beginning of each row. To illustrate
this storage format, let us consider a small matrix from a

302 Comput Geosci (2016) 20:297–315

one-dimensional Poisson equation, with Dirichlet boundary
conditions,

A =

⎡
⎢⎢⎣

2 −1
−1 2 −1

−1 2 −1
−1 2

⎤
⎥⎥⎦ .

The CSR format of this matrix is given by

first = {0 2 5 8 10},
cidx = {0 1 | 0 1 2 | 1 2 3 | 2 3},
data = {2 − 1 | − 1 2 − 1 | − 1 2 − 1 | − 1 2}.

Note that the count starts at zero, which can however be
easily adjusted to a starting index equal to 1.

To take advantage of the redundancy in the column
indices of a matrix constructed by a discretization with
finite differences or finite elements on structured meshes,
we introduce a new sparse storage format inspired by the
CSR format. The first array contains the column indices of
the first non-zero elements of each row

col_offset = {0 0 1 2}.
The second array consists of the number of non-zero ele-
ments per row

num_row = {2 3 3 2}.
From an implementation point of view, if it is known that a
row does not have more than 255 non-zero elements, then 8
bits integers can be used to reduce the storage of num_row.
The third array is col_data which represents a unique set
of indices per row, calculated as the column indices of the
non-zero elements in the row cidx minus col_offset

col_data = {0 1 | 0 1 2}.
Here, the row numbers 0 and 3 have the same set of indices,
col_data = {0 1}, and the row numbers 1 and 2 have
the same set of indices as well, col_data = {0 1 2}.
To reduce redundancy in col_data, we introduce a fourth
array col_pointer that contains an index per row, point-
ing at the starting positions in the col_data, i.e.,

col_pointer = {0 2 2 0}.
This approach is also applied to the array containing values
of the non-zero elements per row, i.e., the set of values is
listed uniquely,

data = {2 − 1 | − 1 2 − 1 | − 1 2}.
Therefore, also here we need an additional array of pointers
per row pointing at the positions of the first non-zero value
in a row in data, i.e.,

data_pointer = {0 2 2 5}.
For ease of notation, let us call the new format VCRS. At a
first glance, it seems that the VCRS format is based on more

arrays than the CSR format, six versus three, respectively.
However, the largest arrays in the CSR format are cidx and
data, and they contain redundant information of repeated
indices and values of the matrix. For small matrices, the
overhead can be significant, however, for large matrices,
it can be beneficial to use the VCRS, especially on GPU
hardware with limited memory.

Summarizing, the following factors contribute to the
usage of the VCRS format:

1. The CSR format of a large matrix contains a large
amount of redundancy, especially if the matrix arises
from a finite-difference discretization;

2. The amount of redundancy of a matrix can vary depend-
ing on the accuracy and storage requirements, giving
the opportunity to use a lossy compression;

3. The exact representation of matrices is not required for
the preconditioner, an approximation might be suffi-
cient for the convergence of the solver.

The lossy compression of preconditioners can be very
beneficial for a GPU-implementation, as it allows to store
the data on hardware with a limited amount of memory, but
at the same time takes advantage of its speed compared to
CPU hardware.

In this paper, we use two mechanisms to adjust the data
redundancy: quantization and row classification. Note that
these mechanisms can be used separately or in combination.

Quantization is a lossy compression technique that com-
presses a range of values to a single value, see, e.g., Gersho
and Grey [8]. It has well-known applications in image pro-
cessing and digital signal processing. By lossy compression,
as opposed to lossless compression, some information will
be lost. However, we need to make sure that the effect of
the data loss in lossy compression does not affect the accu-
racy of the solution. The simplest example of quantization is
rounding a real number to the nearest integer value. A sim-
ilar idea applied to the lossless compression of the column
indices was described in Kourtis et al. [18]. The quantiza-
tion technique can be used to make the matrix elements in
different rows similar to each other for better compression.
The quantization mechanism is based on the maximum and
minimum values of a matrix and on a number of so-called
bins or sample intervals. Figure 2 illustrates the quantization
process of a matrix with values on the interval [0, 1]. In this
example, the number of bins is set to 5, meaning there are
five intervals [0.2(i − 1), 0.2i), i = 1, . . . , 5. The matrix
entries are normally distributed between 0 and 1, as shown
by the black dots connected with the solid line. By applying
quantization, the matrix values that fall in a bin are assigned
to be a new value equal to the bin center. Therefore, instead
of the whole range of matrix entries, we only get 5 values.
Obviously, the larger number of bins, the more accurate is
the representation of matrix entries.

Comput Geosci (2016) 20:297–315 303

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
B

in
s

Matrix values

Fig. 2 Quantization of a matrix with normal distribution of entries in
the interval [0, 1]. The number of bins is equal to 5

Next, we introduce row classification as a mechanism
to define similarity of two different matrix rows. Given a
sorted array of rows and a tolerance, we can easily search
for two rows that are similar within a certain tolerance.
The main assumption for row comparison is that the rows
have the same number of non-zero elements. Let Ri =
{ai1 ai2 . . . ain} be the i-th row of matrix A of length n and
Rj = {aj1 aj2 . . . ajn} be the j -th row of A.

The comparison of two rows is summarized in Algo-
rithm 1. If Ri is not smaller than Rj and Rj is not smaller
than Ri , then the rows Ri and Rj are “equal within the
given tolerance λ”. Algorithm 2 then describes the com-
parison of two complex values and Algorithm 3 compares
two floating-point numbers. Figure 3 illustrates the classi-
fication of a complex number aij . Within a distance λ, the
numbers are assumed to be equal to aij . Then, aij is smaller
than the numbers in the dark gray area in Fig. 3, and larger
than the numbers in the light gray area.

The number of bins and tolerance have influence on

1. the compression factor c = m/mc, which is ratio
between the memory usage of the original matrix m and
the memory usage of the compressed matrix mc;

2. the maximum norm of the compression error ‖e‖∞ =
maxi,j (|aij | − |āij |), where aij are the original matrix
entries and āij are entries of the compressed matrix;

3. the computational time;
4. the memory usage;
5. the speedup on modern hardware which is calculated as

a ratio of the computational time of the algorithm using
the original matrix and of the computational time using
the compressed matrix.

Next, we consider the effect of the VCRS format for matrix-
vector multiplication, on the multigrid preconditioner, and
the preconditioned Bi-CGSTAB method.

4.2 Matrix-vector multiplication

Two parameters, the number of bins from quantization and
the tolerance λ from row classification, have an impact on

Fig. 3 Classification of a complex number aij . The numbers falling
in the white square around aij are assumed to be equal to aij . Then,
aij is smaller than the numbers in the dark gray area and larger than
the numbers in light gray area

304 Comput Geosci (2016) 20:297–315

the accuracy, performance, and memory usage. To illustrate
the effect, let us first consider model problem MP1. We
compare the matrix-vector multiplication in VCRS format
with that in the standard CSR format on a CPU. As we have
mentioned, matrix-vector multiplication for the discretiza-
tion matrix on the finest level is performed in a matrix-free
way. Therefore, the prolongation matrix on the finest level
has been chosen as the test example, since it is the largest
matrix that needs to be kept in memory.

The results are shown in Fig. 5(left), where the maxi-
mum error is given in subfigure (a), the computational time
in seconds in subfigure (b), the memory in GB in subfigure
(c), the speedup in subfigure (d), and the compression fac-
tor in subfigure (e), respectively. As expected, the smaller
the tolerance λ used, the more accurate is the representa-
tion of the compressed matrix, and the maximum error is
reduced. Since model problem MP1 has two large areas
with constant velocity, the entries of the prolongation matrix
are mostly constant. Even if the entries are not represented
accurately because of the larger tolerance or the smaller
number of bins, the number of non-zero elements does not
change significantly. Therefore, the computational time and
thus speedup, memory usage, and compression factor are
very similar for all combinations of λ and number of bins.

Model problem MP3 has significant velocity variation,
so that the prolongation matrix has different coefficients in
each row, as shown in Fig. 4. Note that the quantization has
been done on the real and imaginary parts separately. Obvi-
ously, for the real part, the quantization will have a smaller
effect than for the imaginary part, since the real values are
clustered whereas the imaginary values are distributed over
a larger interval.

Figure 5(right) shows the accuracy (a), the computational
time in seconds (b), the memory in GB (c), the speedup (d),
and the compression factor (e). It can be seen in Fig. 5a that
by increasing the number of bins, the accuracy of the matrix-
vector multiplication is also increasing, since two rows will
less likely be similar. Reduced tolerance λ also contributes
to the decrease of the maximum error, because the values of
entries in rows are becoming closer to each other. With an
increasing number of bins and a decreasing tolerance, the
compression factor (Fig. 5e) and speedup (Fig. 5d) decrease
and, therefore, the computational time increases (Fig. 5b).
The compression factor is decreasing, because the more bins
are used, the closer the matrix resembles its uncompressed
form. Therefore, the memory usage increases (see Fig. 5c).
With larger compression factor, the matrix has a smaller size
in the memory, so that the cache effect contributes to the
performance increase.

Obviously, there is a trade-off between performance and
accuracy. The more accurate the compressed matrix, the
slower the matrix-vector multiplication. Based on our exper-
iments above, the most reasonable parameter choice would

0.2 0.4 0.6 0.8 1
10

0

10
2

10
4

10
6

Re(P)

N
um

be
r

of
 e

le
m

en
ts

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5

x 10
−3

10
0

10
2

10
4

10
6

10
8

Im(P)

N
um

be
r

of
 e

le
m

en
ts

Fig. 4 Value distribution of the prolongation matrix on the finest level
for the model problem MP3

be a tolerance λ = 0.1 and number of bin equals to 105.
We will investigate the effect of this parameter choice on
the multigrid preconditioner and the complete Helmholtz
solver.

4.2.1 Different application, reservoir simulation

The VCRS compression can also be used in other appli-
cations where the solvers are based on a preconditioned
system of linear equations. For example, an iterative solver
for a system of linear equations is also an important part of
a reservoir simulator, see, e.g., Chen et al. [4]. It appears
within a Newton step to solve discretized nonlinear partial
differential equations describing the fluid flow in porous
media. The basic partial differential equations include a
mass-conservation equation, Darcy’s law, and an equation
of state relating the fluid pressure to its density. In its
original form, the values of the discretization matrix are
scattered, see Fig. 6(top). Although the matrix looks full

Comput Geosci (2016) 20:297–315 305

Fig. 5 Effect of the VCRS
format for the matrix-vector
multiplication ofMP1 (left) and
of MP3 (right) on the maximum
error (a), computational time
(b), memory (c), speedup (d),
compression factor (e)

10-10

102

100

104

Number of bins

10-5

106

10-5

M
ax

 e
rr

or

(a)

108 10-10

100

40

102

100

104

Number of bins

50

10-5

106

T
im

e
(s

)
(b)

108 10-10

60

70

0.326893

102

100

104

Number of bins

0.326894

10-5

106

M
em

or
y

G
B

(c)

108 10-10

0.326895

0.326896

3.8

102

100

104

Number of bins

10-5

106

3.9

S
pe

ed
up

(d)

108 10-10

4

3.40234

102

100

104

Number of bins

10-5

106

3.40235

C
om

pr
es

si
on

 fa
ct

or

(e)

108 10-10

3.40236

10-10

102

100

104

Number of bins

10-5

106

10-5

M
ax

 e
rr

or

(a)

108 10-10

100

40

102

100

104

Number of bins

10-5

106

50

T
im

e
(s

)

(b)

108 10-10

60

0.2

102

100

104

Number of bins

10-5

106

0.25
M

em
or

y
G

B

(c)

108 10-10

0.3

2.5

102

100

104

Number of bins

3

10-5

106

S
pe

ed
up

(d)

108 10-10

3.5

4

2.5

102

100

104

Number of bins

10-5

106

3

C
om

pr
es

si
on

 fa
ct

or

(e)

108 10-10

3.5

306 Comput Geosci (2016) 20:297–315

1 2 3 4 5 6 7 8 9

x 10
6

10
0

10
1

10
2

10
3

10
4

10
5

Matrix Values

N
um

be
r

of
 e

le
m

en
ts

Fig. 6 The original matrix from pressure solver (top) and its value
distribution (bottom)

due to the scattered entries, the most common number of
non-zero elements per row is equal to 7, however, the max-
imum number of elements per row is 210. The distribution
of the matrix values is shown in Fig. 6 (bottom). Note that
the matrix has real-valued entries only. It can be seen that
there is a large variety of matrix values that makes the quan-
tization and row classification effective. Using the VCRS
format to store this matrix results in two to three times
smaller memory requirements and two to three times faster
matrix-vector multiplication, depending on the compres-
sion parameters. Of course, the effect of the compression
parameters on the solver still needs to be investigated.

4.3 Multigrid method preconditioner

Since matrix A is implemented in stencil version, it does
not require any additional storage. However, the lossy
VCRS format may be very useful for the preconditioner,
as, because of the matrix-dependent preconditioner, the pro-
longation and coarse grid correction matrices have to be
stored at each level in the multigrid preconditioner. Note that
recomputing those matrices on the fly will result in doubling
or even tripling the total computational time.

The multigrid method consists of a setup phase and a
run phase. In the setup phase, the prolongation, restriction
and coarse grid correction matrices are constructed, and the

matrices are compressed. In the run phase, the multigrid
algorithm is actually applied. We assume that the multigrid
method is acting on grids at levels l, l = 0, . . . , m, the finest
grid being l = 0 and the coarsest grid being l = m. On each
level, except for l = m, the matrix-dependent prolongation
matrix has to be constructed. The restriction in our imple-
mentation is the standard restriction and can be easily used
in a matrix-free fashion. At each level, except for l = 0, the
coarse grid matrix has to be constructed using the Galerkin
method (18).

We suggest to construct all the coarse-grid matrices
exactly in the setup phase and use compression afterwards.
This way, errors due to lossy compression will not propa-
gate to the coarse-grid representation of the preconditioned
matrix. The algorithm is summarized in Table 1. Matrix
Mm, on the coarsest level m, is not compressed, since the
size of Mm is already small.

To illustrate the compression factor at each level for the
matrices Ml and Pl , l = 1, . . . , m, for different values of
the row classification parameter λ, let us fix the quantiza-
tion parameter, i.e., the number of bins is set to 103. From
Fig. 5, this choice of bins seems to be reasonable. Table 2
shows the compression factors for M and P on each multi-
grid level. The first column lists the values of the tolerance
λ. The multigrid levels are shown in the second column.
The third multi-column presents the compression factor, i.e.,
the percentage of total memory usage of the preconditioner
after compression and the maximum error in the matrix ele-
ments of the compressed matrix P compared to its exact
representation at each multigrid level. The fourth multi-
column represents the compression factor, the percentage of
the preconditioner memory usage after compression and the
maximum error in the matrix elements of the compressed
matrix M compared to its exact representation at each
multigrid level. The last column shows the total memory
usage of the preconditioner for the given tolerance λ. Note
that the total memory usage for the uncompressed matrix is
810 MB.

Table 1 Summary of the exact and compressed matrices used in the
matrix-dependent multigrid preconditioner

Level Setup (exact) Run

Matrix-free Compressed

0 M0, P0, R0 M0, R0 P0

1 M1, P1, R1 R1 M1, P1

· · · · · · · · · · · ·
l Ml , Pl , Rl Rl Ml, Pl

· · · · · · · · · · · ·
m − 1 Mm−1, Pm−1, Rm−1 Rm−1 Mm−1, Pm−1

m Mm

Comput Geosci (2016) 20:297–315 307

Table 2 Model problem MP3
(3D Overthrust), nbins = 103 λ Level P M Memory

Factor Memory Error Factor Memory Error

0.2 0 3.4 76% 2.7e-2 276 MB

1 3.2 10% 5.1e-2 24.1 10 % 3.5e-3

2 2.9 1 % 1.0e-1 19.3 1.5 % 1.6e-3

3 2.3 < 1% 1.6e-1 5.3 < 1% 7.3e-4

4 1.9 < 1% 2.4e-4

0.1 0 3.4 71% 2.3e-2 293 MB

1 3.3 10% 5.1e-2 20.1 11 % 3.1e-3

2 3.1 1.4 % 5.1e-2 6.8 3.4 % 1.5e-3

3 2.2 < 1% 6.8e-2 2.4 < 1% 1.0e-3

4 1.5 < 1% 2.6e-4

0.01 0 3.4 57% 4.8e-3 367 MB

1 2.7 9% 4.8e-3 9.3 19 % 1.8e-4

2 2.1 1.4 % 5.1e-3 2.1 10 % 4.7e-5

3 1.7 < 1% 4.8e-3 1.6 2 % 1.5e-5

4 1.4 < 1% 1.4 < 1% 3.7e-6

0.001 0 3.4 54% 4.4e-4 382 MB

1 2.4 9% 4.4e-4 8.4 21 % 4.2e-5

2 2.1 1.4 % 5.0e-4 2.1 11 % 1.0e-5

3 1.8 < 1% 1.1e-3 1.5 2 % 5.1e-6

4 1.4 < 1% 9.2e-4 1.4 < 1% 3.6e-6

The compression factor for the prolongation matrix
almost does not change on the finest level for different tol-
erance parameters, since the prolongation coefficients are
constructed from the discretization matrix based on the
7-point discretization scheme. On the coarsest level, the
stencil becomes a full 27-point stencil and the effect of
the compression is more pronounced for smaller tolerance
parameter λ. Clearly, the most memory consuming part
is the prolongation matrix P0 on the finest level. How-
ever, with decreased tolerance λ, the coarse-grid correction
matrices need more memory due to larger variety of the
matrix entries. As expected, the maximum error is reduced
when the tolerance is decreasing in both cases for P and
M , respectively. Due to the 27-point stencil on the coarser
grids, the coarse-grid correction matrix has a wider spread
of the matrix values, which affects the compression factor
with respect to the tolerance parameter. The more accu-
rate compression is required, the more memory is needed to
store coarse-grid correction matrices. Therefore, to compro-
mise between the accuracy and the memory usage for the
multigrid preconditioner, the tolerance λ is chosen equal to
0.1.

A prolongation matrix stored in the VCRS format with
lossy compression uses less memory than the original

matrix, which can be seen as an approximation. However,
the matrix-dependent characteristics of the original prolon-
gation must be preserved for satisfactory convergence of
the Helmholtz solver, otherwise, it would be easier to just
use a standard prolongation matrix. A standard prolongation
matrix can be implemented in a matrix-free manner.

4.4 Preconditioned Bi-CGSTAB

Let us consider the convergence of the preconditioned sys-
tem,

AM−1v = f, u = Mv,

starting with an exact preconditioner and followed by the
preconditioner with lossy VCRS compression. From the
previous sections, it is clear that standard analysis on a sim-
ple homogeneous problem is not sufficient, because here
the tolerance and the number of bins will have a minimum
effect on the lossy compression.

4.4.1 Two-dimensional problem

Let us first consider a two-dimensional variant of the hetero-
geneous model problem MP22d. In this case, we can vary

308 Comput Geosci (2016) 20:297–315

the tolerance and the number of bins and observe the effect
on the convergence properties of the preconditioned sys-
tem. Also, an analytic derivation of the spectral radius of the
multigrid iteration matrix is not possible, and therefore, we
will use numerical computations to determine it.

In our work, we focus on quantitative estimates of
the convergence of the multigrid preconditioner, see, e.g.,
Trottenberg et al. [30]. To do this, we construct and analyze
the shifted Laplace multigrid operator M−1 from Eq. 17
with β1 = 1 and β2 = 0.8. Two-grid analysis has been
widely described in the literature, see Brackenridge [3],
Stüben and Trottenberg [28], Trottenberg et al. [30]. Three-
grid analysis has been done in Wienands and Oosterlee
[33]. To see the effect of the lossy VCRS compression, a
true multigrid matrix needs to be constructed. The four-grid
operator with only pre-smoothing for the F-cycle is given by

M−1 := T4 = S0 (I0 − P0F1V1R0M0) S0, with

V1 = S1(I1 − P1V2R1M1)S1

F1 = S1(I1 − P1F2V2R1M1)S1

V2 = S2(I2 − P2M
−1
3 R2M2)S2

F2 = S2(I2 − P2M
−1
3 M−1

3 R2M2)S2,

where S0, S1, S2 are smoothers on the finest, first, and sec-
ond grid, P0, P1, P2, and R0, R1, R2 are prolongation and
restriction matrices, respectively. M0 is the discretization
matrix on the finest grid and M1, M2, M3 are respective
coarse-grid correction matrices.

Next, we compute the spectral radius ρ of AM−1, which
is the maximum of the absolute eigenvalues, using the
four-grid operator as the preconditioner. The results are
summarized in Table 3 for different values of λ and differ-
ent numbers of bins, that are given in the first and second
rows. The third row presents the number of iterations of
Bi-CGSTAB applied to the preconditioned system, the stop-
ping criterion is 10−7 for the relative residual. The fourth
row shows the spectral radius of the compressed matri-
ces with VCRS preconditioner. The second column with
λ = 0.0 and #bins= 0.0 represents results for the exact
preconditioner. Note that the spectral radius is larger than
1 which means that the multigrid does not converge with-
out the Krylov subspace method for model problemMP22d.

However, for illustration purposes of the compression, it is
interesting to consider the spectral radius too. For large tol-
erance λ = 1.0, the spectral radius is far from the exact
one, meaning that the compressed preconditioned system
does not resemble the original preconditioned system and
the number of iterations may rapidly increase. For smaller
tolerance, the spectral radius of the compressed precondi-
tioned system is very similar to the exact spectral radius
and the iteration numbers are almost the same. Note thatthe
number of bins does not have a significant influence on the
number of iterations of the Helmholtz solver in this case.

Figure 7 illustrates the two extreme cases for MP22d,
where the number of iterations is most and least affected
by the compression. The eigenvalues of the exact operator
are shown by blue crosses and of the compressed opera-
tor by red circles. On the left, the compression parameters
are λ = 1.0, #bins= 102, and on the right, λ = 0.01,
#bins=106, respectively. Clearly, the more accurate com-
pression (shown on the bottom) gives a better approximation
of the eigenvalues of the exact operator, therefore, the con-
vergence is only slightly affected by the compression. The
least accurate compression (shown on the top) affects the
eigenvalues of the preconditioned system and therefore,
Bi-CGSTAB needs many more iterations.

4.4.2 Three-dimensional problem

The number of iterations for the more realistic example
MP3 are given in Table 4. The results are presented for dif-
ferent values of λ and numbers of bins, that are given in
the first and second row. The third row shows the number
of iterations of Bi-CGSTAB applied to the preconditioned
system, the stopping criterion is 10−7 for the relative resid-
ual. The second column with λ = 0.0 and #bins= 0.0
represents results for the exact preconditioner. For toler-
ance λ = 1.0, the preconditioned Bi-CGSTAB method does
not converge anymore. Therefore, it is advised to use the
tolerance smaller than 1.0. In case of MP3, the number
of bins influences the iterations number of the precondi-
tioned Bi-CGSTAB. This happens because the spreading
of the matrix entries for the realistic three-dimensional
problem is large, therefore, the quantization affects many
matrix entries significantly. For a relatively large number of
bins, the number of iterations is close to the uncompressed
case.

Table 3 Spectral radius ρ for
preconditioned system AM−1

for four-grids using VCRS
format for several λ and
number of bins for model
problem MP22d, ω = 10 Hz

λ 0.0 1.0 0.2 0.2 0.1 0.1 0.01 0.01

bins 0.0 102 102 106 102 106 102 106

iter 24 124 24 24 24 24 23 24

ρ 1.149 1.966 1.158 1.151 1.155 1.150 1.158 1.150

Comput Geosci (2016) 20:297–315 309

-1.5 -1 -0.5 0 0.5 1 1.5

Re(eigen values)

-2

-1.5

-1

-0.5

0

0.5

1
Im

(e
ig

en
 v

al
ue

s)

0 0.2 0.4 0.6 0.8 1 1.2

Re(eigen values)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Im
(e

ig
en

 v
al

ue
s)

Fig. 7 Comparison of exact eigenvalues (red crosses) for the pre-
conditioned system AM−1 by a four-grid method with approximate
eigenvalues (blue circles) using the VCRS format for λ = 1.0,
bins=102 (top) and λ = 0.01, bin=106 (bottom), model problem
MP22d, ω = 10 Hz

5 Implementation details

Presently, a common hardware configuration is a CPU con-
nected to two GPUs that contain less memory than the CPU.
By a ”CPU”, we refer here to a multi-core CPU and by
a ”GPU” to an NVidia general purpose graphics card. We
identified the parts of the algorithms that can be accelerated
on a GPU and implemented them in CUDA 5.0.

5.1 GPU

We consider the GPU as a replacement for the CPU and as
an accelerator. In both cases, the Bi-CGSTAB algorithm is
executed on the CPU, since the storage of temporary vec-
tors takes the most of the memory space. Executing the
Bi-CGSTABmethod on a GPUwould significantly limit the
problem size. Therefore, we split the algorithm, where the
Krylov solver runs on a CPU and the preconditioner runs on
one or more GPUs. We exploited this technique in Knibbe
et al. [16] and concluded that it reduces the communication
between different devices.

When the GPU is used as a replacement, the hardware
setup consists of one multi-core CPU connected to one
GPU. Then the data for the preconditioner, i.e., prolongation
and coarse-grid correction matrices, lives in GPU memory
to avoid memory transfers between CPU and GPU memory.
The process is illustrated in Fig. 8. A Bi-CGSTAB vector
is transferred from the CPU to the GPU, then the multigrid
preconditioner is applied. The prolongation and coarse-grid
correction matrices are already located in the GPU memory,
since they have been transferred in the setup phase. After
the preconditioner is applied, the resulting vector is copied
back to the CPU memory and the iterations of Bi-CGSTAB
continue. As GPUs have generally much less memory avail-
able than CPUs, this impacts the size of the problem under
consideration. The VCRS format can be used to increase
the size of the problem that would fit into GPU memory,
moreover, it also leads to increased performance.

When the GPU is used as an accelerator, then a multi-
core CPU is connected to one or more GPUs, see Fig. 8. This
means that part of the data for the preconditioner lives in the
CPU memory, and it is copied to the GPU only for the dura-
tion of the relevant computational intensive operation, for
example, a multi-colored Gauss-Seidel iteration or matrix-
vector multiplication. The data is copied back to the CPU
memory once the operation is finished. Note that only the
vectors are transferred back-and-forth between the CPU and
GPUmemories, the matrices stay in the GPUmemory. Also,
on each GPU, memory for an input and an output vector on
the finest grid needs to be allocated to receive vectors from
the CPU. Then all the vectors from the preconditioner will
fit into this allocated memory. This approach takes advan-
tage of the memory available across GPUs. Using the VCRS
format, the matrices become small enough so that they can
be evenly distributed across two GPUs. For example, in case

Table 4 Number of iterations
for preconditioned system
AM−1 using VCRS format for
several λ and number of bins
for model problem MP3,
ω = 20 Hz

λ 0.0 1.0 1.0 0.2 0.2 0.1 0.1 0.01 0.01

bins 0.0 102 106 102 106 102 106 102 106

iter 18 > 400 > 400 60 20 59 20 58 19

310 Comput Geosci (2016) 20:297–315

Fig. 8 GPU as a replacement
(a) and as an accelerator (b)

of two GPUs connected to one CPU, we suggest to store
the prolongation matrices on one GPU and the coarse-grid
correction matrices on the other GPU.

Table 5 shows the performance of the preconditioned
Bi-CGSTAB method forMP23d on CPU, GPU as an accel-
erator and GPU as a replacement. The first column shows
the chosen matrix storage format. The second column lists
the used hardware. The compression parameters are given
in the third and fourth columns. If no compression param-
eters are given, then lossless compression is applied, where
no information is lost due to the matrix compression and
the matrix entries are unchanged. Otherwise, the compres-
sion parameters belong to lossy compression, where some
loss of information is unavoidable. The setup phase, num-
ber of iterations, and time per iteration are shown in the last
three columns of the table. The setup phase for the VCRS
format takes longer than the setup phase for the standard
CSR because of the construction of additional arrays. The
number of iterations does not change significantly for dif-
ferent formats, however, it increases slightly in the case of
lossy compression. The VCRS format with lossy compres-
sion gives the best performance time per iteration without
affecting the iteration numbers significantly.

The maximum number of unknowns for the CSR and
VCRS formats with lossless and lossy compression are

shown forMP23d in Table 6. The CPU, the GPU as an accel-
erator and the GPU as a replacement are considered. The
first column shows the chosen matrix storage format. The
second column lists the used hardware. The compression
parameters are given in the third column. If no compression
parameters are given, then lossless compression is applied.
Across the different hardware platforms, the VCRS format
increases the maximum size of the problem compared to the
CSR matrix storage. Using GPU as a replacement leads to
solving larger problem sizes than using GPU as an accel-
erator, because the memory needed to store preconditioner
matrices is distributed across the GPUs.

Summarizing we can conclude that the VCRS format can
be used to reduce the memory for the preconditioner as
well as to increase the performance of the preconditioned
Bi-CGSTAB on different hardware platforms.

5.2 Common code

The idea of one common hardware code on CPU and GPU
has a number of benefits. Just to name few of them, code
duplication is kept to a minimum, reducing the possibility
to make mistakes, easier maintainability and extensibility.
There have been attempts to create a common high-level
language for hybrid architectures, for example, OpenCL

Table 5 Performance of
preconditioned Bi-CGSTAB on
CPU, GPU as accelerator and
GPU as a replacement for
MP23d of size 2503

Format Hardware # bins λ Setup (s) # iter Time per iter (s)

CSR CPU – – 88 73 5.8

VCRS CPU – – 175 73 4.9

VCRS CPU 103 0.1 150 80 4.6

VCRS GPU accel – – 180 73 3.4

VCRS GPU accel 103 0.1 149 78 3.1

VCRS GPU repl – – 148 73 2.8

VCRS GPU repl 103 0.1 149 76 2.4

Comput Geosci (2016) 20:297–315 311

Table 6 Maximum number of unknowns forMP23d for given storage
format on different hardware

Format Hardware Compression Maximum

parameters size

CSR CPU – 74,088,000

VCRS CPU λ = 0.1, #bins=103 94,196,375

VCRS GPU accel – 19,683,000

VCRS GPU accel λ = 0.1, #bins=103 27,000,000

VCRS GPU repl – 23,149,125

VCRS GPU repl λ = 0.1, #bins=103 32,768,000

that has been introduced by the Khronos group [13]. For
our research, the idea of a common code has always been
attractive, but its development really started when NVIDIA
stopped to support the CUDA-emulator on CPU hardware.
By the time our research had started, OpenCL was not com-
monly available. Therefore, we used our own approach for
a common code on CPU and GPU. We assume the code on
the CPU is using C++ and the code on the GPU is using
CUDA, respectively.

Our implementation is based on the fact that CPUs
and GPUs have multiple threads. Therefore, the multi-
threading mechanism can be made abstract on the highest
level of the program that describes the numerical algo-
rithms. Code to setup the information about threads is
abstracted in macros. On the device level, OpenMP is used
for parallel computations on a CPU and CUDA is used
on a GPU, respectively. Depending on the device where
the part of the program is executed, the high-level func-
tions call sub-functions specific for the device. For example,
the synchronization of the threads after computations uses
the so-called omp barrier() function for a CPU and
cudaThreadsSynchronize() for a GPU.

Another abstraction technique we use is to simplify
argument handling. It uses one structure that contains all
arguments of a function. This allows to copy all argu-
ments with one command to a GPU. Memory transfers
to the right hardware remain the responsibility of the
developer.

Finally, there is one code that describes a numerical
algorithm, for example, the multigrid preconditioner, that
compiles for two different architectures, CPU and GPU.
The code developments are done on a CPU in debug
mode, where multi-threading is switched off and only one
thread is used. This allows to develop on less power-
ful hardware or when CUDA is not available. The code
can be easily expanded to other architectures as long as
a subset of all the programming languages is used, in
our case meaning the intersection of CUDA, C++, etc.
Currently, CUDA is a limiting factor for a program in

how many C++ language-specific features it can have.
As soon as CUDA releases a version that supports more
C++ features, it can be immediately used in the common
code.

5.3 Task system

To run the least-squares migration in parallel, we have
developed a task system that allows to split the work
amongst compute nodes and monitor the execution. By a
compute node, we assume a multi-core CPU connected
to one or more GPUs, where GPUs can be used as a
replacement or as an accelerator.

As we have seen in Eq. 11, the least-squares migration
algorithm consists of forward modeling and migrations in
frequency domain for each source. Therefore, the highest
level of parallelism for LSM consists of parallelization over
all sources and frequencies. That means one task consists
of computations of one frequency ωsi for a given source
si from the set of size ω times s, si ∈ s on one compute
node, ωsi ∈ ω, i = 1, . . . , Ns with the number of sources
Ns . In total, we have NωNs tasks, where Nω is number of
frequencies.

For each frequency, a linear system of equations needs
to be solved. We have shown in Knibbe et al. [17] that the
matrix size and memory requirements are the same for each
frequency, but the lower frequencies require less compute
time than the higher ones [7]. Here, we assume that one
shot for one frequency in the frequency domain fits in one
compute node.

For the LSM task system, we adapt a client-to-server
approach, described in Knibbe et al. [17], where clients
request tasks to the server. GPU clusters are either hetero-
geneous or they have to be shared simultaneously amongst
the users. For example, the cluster at our disposition, Lit-
tle Green Machine [20], has the same hardware (with the
exception of one node), see Appendix. Similarly, the GPUs
have the same specifications, but one GPU can already be
used by a user while the other one remains available. The
task system addresses the issue of load balancing. This is
also handy when compute nodes are shared between users.

For each CGNR iteration, the server or master node cre-
ates one task per shot per frequency. Each task is added to a
queue. When a client requests a task, a given task is moved
from the queue to the active list as illustrated in Fig. 9.
This example shows computation of the right-hand side in
Eq. 11. The active list contains tasks in the table ”Jobs being
processed”. The queue is given in the table ”Remaining
jobs”. The column ”Description” shows the task for a given
frequency and corresponding source with related receivers
called ”panel”. It can happen that a node will crash due
to a hardware failure. In that case, the task will remain on
the active list until all the other tasks have finished. Once

312 Comput Geosci (2016) 20:297–315

that happens, any unfinished task will be moved back to
the queue, so that another compute node can take over the
uncompleted work. When all tasks have been processed, the
master node proceeds to the next CGNR iteration or stops if
convergence is achieved.

Using the task system, the frequency decimation in
Eq. 13 can be easily applied, since only the content of
the queue will change, the implementation will stay the
same. Our implementation has only a single point of fail-
ure: the master process. Furthermore, it is possible to
adjust parameters on the fly by connecting into the mas-
ter program using Telnet without having to restart the
master program. The Telnet session allows the master pro-
gram to process commands as well (load/save of restart
points, save intermediate results, display statistics, etc.). It
is also possible to manipulate the queues with an Internet
browser.

6 Results

Combining the techniques described above, let us com-
pare the results of the least-squares migration method with
and without decimation for the original Overthrust velocity
model problem [1]. Both implementations ran on the Lit-
tle Green Machine [20]. Due to limited resources because
of sharing with other students, we take a two-dimensional
vertical slice of the overthrust velocity model for our LSM
experiments to make sure it will fit in the available mem-
ory. The domain size of the test problem is [0, 20000] ×
[0, 4650], that is discretized on a regular orthogonal
grid with 4000 points in x-direction and 930 points in
depth.

Both implementations use the VCRS format with the
tolerance λ = 0.1 and the number of bins of 107. The dec-
imation is applied with the decimation parameter δ = 10,

Fig. 9 Example of a task
system monitoring during the
LSM execution. The active list
contains tasks in table ”Jobs
being processed”. The queue is
given in the table ”Remaining
jobs”

Comput Geosci (2016) 20:297–315 313

meaning that the least-squares migration matrix is com-
puted using 10 times less information, and therefore, 10
times faster than without decimation. The stopping crite-
rion for the Helmholtz solver is 10−5. The results for LSM
are presented in Fig. 10, where the implementation with-
out decimation is shown at the top, the implementation
with decimation at the center and difference between those
two at the bottom, respectively. The results represent the
reflectivity of the overthrust velocity model. The color scale
is the same for the three pictures. The results for both meth-
ods are very similar, even with the large decimation factor
chosen.

The speedup of the LSM with decimation algorithm
compared to the original LSM can be calculated theo-
retically. Assuming the computational time of the right-
hand side operator FHRHd from Eq. 12 is equal to t ,
then the computational time to calculate the least-squares
matrix equals 2t per iteration of the CGNR method. In
total, the computational time of the original LSM is given
by

Toriginal = t (2niter + 1), (19)

where the niter denotes the total number of CGNR itera-
tions. There is a possibility to decrease the total time of the
LSM. This can be achieved by saving the smooth solution u0
in Eq. 6 for each source and frequency to disk while comput-
ing the right-hand side and reusing it instead of recomputing
for the construction of the LSM matrix. Assuming the time

to read the solution u0 from the disk negligible, the total
time of the LSM reads

T̂original = t (niter + 1). (20)

Of course, in this case, the compression of the solution on
the disk becomes important, since the disk space is also usu-
ally limited. We recommend to use lossless compression of
u0 to avoid any effects of the lossy compression. This could
be investigated in the future.

In case of the LSM with decimation, the time to com-
pute the right-hand side is the same as for the original LSM.
However, the computational time of the matrix on the left-
hand side of the Eq. 13 is equal to t/δ, where δ is the
decimation parameter. Then the total computational time of
the LSM with decimation is given by

Tdecimation = t (
niter

δ
+ 1). (21)

The speedup can be defined as the computational time of the
original LSM algorithm divided by the computational time
of the LSM with decimation:

Speedup = Toriginal

Tdecimation

= 2niter + 1
niter

δ
+ 1

(22)

For a large number of CGNR iterations, the speedup is
approaching the decimation factor 2δ.

Using the VCRS format for the Helmholtz solver gives
additional speedup of 4 compared to the standard CSR
matrix format. If a GPU is used to improve the perfor-
mance of the preconditioned Helmholtz solver, then the total
speedup can be increased approximately by another factor
3. This brings the total speedup of the decimated LSM to the
value of 24δ. In the case δ = 10, the LSM with the above

Fig. 10 The second iteration of
LSM for the original Overthrust
velocity model without
decimation (top), with
decimation δ = 10 (center) and
the difference between them
(bottom)

314 Comput Geosci (2016) 20:297–315

improvements is about 240 times faster than the original
algorithm.

7 Conclusions

In this work, we presented an efficient least-squares migra-
tion algorithm using several improvements.

Firstly, a decimation was done over sources and frequen-
cies to take advantage of the redundant information present
in the data during the CGNR iterations, which is used
to solve the optimization problem within the LSM frame-
work. This leads to a speedup of the LSM algorithm by the
decimation parameter, whereas the impact is kept minimal.

Secondly, we introduced a VCRS format. The VCRS for-
mat not only reduces the size of the stored matrix by a
certain factor but also increases the efficiency of the matrix-
vector computations. We have investigated the lossless and
lossy compression and shown that with the proper choice of
the compression parameters the effect of the lossy compres-
sion is minimal on the Helmholtz solver which is the Bi-
CGSTAB method preconditioned with the shifted Laplace
matrix-dependent multigrid method. Also, we applied the
VCRS format to a problem arising from a different applica-
tion area and showed that the compression may be useful in
this case as well.

Moreover, using VCRS allows to accelerate the least-
squares migration engine by GPUs. A GPU can be used as
an accelerator, in which case the data is partially transferred
to a GPU to execute a set of operations, or as a replacement,
in which case the complete data is stored in the GPU mem-
ory. We have demonstrated that using GPU as a replacement
leads to higher speedups and allows to use larger problem
sizes than when used as an accelerator. In both cases, the
speedup is higher than for the standard CSR matrix format.

Summarizing the effects of each used improvement, it
has been shown that the resulting speedup can be at least an
order of magnitude compared to the original LSM method,
depending on the decimation parameter.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

Appendix

The Little Green Machine configuration consists of the
following nodes interconnected by 40 Gbps Infiniband:

– 1 head node

– 2 Intel hexacore X5650
– 24 GB memory
– 24 TB disk (RAID)

– 1 large RAM node

– 2 Intel quadcore E5620
– 96 GB memory
– 8 TB disk
– 2 NVIDIA C2070

– 1 secondary Tesla node

– 2 Intel quadcore E5620
– 24 GB memory
– 8 TB disk
– 2 NVIDIA GTX480

– 1 test node

– 2 Intel quadcore E5620
– 24 GB memory
– 2 TB disk
– 1 NVIDIA C2050
– 1 NVIDIA GTX480

– 20 LGM general computing nodes

– 2 Intel quadcore E5620
– 24 GB memory
– 2 TB disk
– 2 NVIDIA GTX480

References

1. Aminzadeh, F., Brac, J., Kunz, T.: 3-D Salt and Over-
thrust Models. Society of Exploration Geophysicists, Tulsa
(1997)

2. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H.:
Templates for the Solution of Algebraic Eigenvalue Problems: A
Practical Guide. SIAM, Philadelphia (2000)

3. Brackenridge, K.: Multigrid and cyclic reduction applied to
the Helmholtz equation. In: Melson, N.D., Manteufel, T.A.,
McCormick, S.F. (eds.) 6th Cooper Mountain Conf. on Multigrid
Methods, pp. 31–41 (1993)

4. Chen, Z., Huan, G., Ma, Y.: Computational Methods for Mul-
tiphase Flows in Porous Media. Society for Industrial and
Applied Mathematics, Philadelphia (2006). http://opac.inria.fr/
record=b1120110

5. Engquist, B., Majda, A.: Absorbing boundary conditions for
numerical simulation of waves. Math. Comput. 31, 629–651
(1977)

6. Erlangga, Y.A., Vuik, C., Oosterlee, C.W.: On a class of precon-
ditioners for solving the discrete Helmholtz equation. In: Cohen,
G., Heikkola, E., Joly, P., Neittaanmakki, P. (eds.) Mathematical
and Numerical Aspects of Wave Propagation, pp. 788–793. Univ
Jyväskylä, Finnland (2003)

7. Erlangga, Y.A., Oosterlee, C.W., Vuik, C.: A novel multigrid based
preconditioner for heterogeneous Helmholtz problems. SIAM J.
Sci. Comput. 27, 1471–1492 (2006)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://opac.inria.fr/record=b1120110
http://opac.inria.fr/record=b1120110

Comput Geosci (2016) 20:297–315 315

8. Gersho, A., Grey, R.M.: Vector Quantization and Signal
Compression. Springer Science+Business Media (1992).
doi:10.1007/978-1-4615-3626-

9. van Gijzen, M.B., Erlangga, Y.A., Vuik, C.: Spectral anal-
ysis of the discrete Helmholtz operator preconditioned with
a shifted Laplace. SIAM J. Sci. Comput. 29, 1942–1958
(2007)

10. Gozani, J., Nachshon, A., Turkel, E.: Conjugate gradient coupled
with multigrid for an indefinite problem. In: Vichnevestsky R,
Tepelman, R.S. (eds.) Advances in Computational Methods for
PDEs V, pp. 425–427. IMACS, New Brunswick (1984)

11. Guitton, A., Diaz, E.: Attenuating crosstalk noise with simultane-
ous source full waveform inversion. Geophys. Prosp. 60, 759–768
(2012). doi:10.1111/j.1365-2478.2011.01023.x

12. Kechroud, R., Soulaimani, A., Saad, Y., Gowda, S.: Precondition-
ing techniques for the solution of the Helmholtz equation by the
finite element method. Math. Comput. Simul. 65(4-5), 303–321
(2004). doi:10.1016/j.matcom.2004.01.004

13. Khronos Group (2014) www.khronos.org
14. Kim, Y., Min, D.J., Shin, C.: Frequency-domain reverse-time

migration with source estimation. Geophysics 76(2), S41–S49
(2011)

15. Knibbe, H., Oosterlee, C.W., Vuik, C.: GPU implementation of
a Helmholtz Krylov solver preconditioned by a shifted Laplace
multigrid method. J. Comput. Appl. Math. 236, 281–293 (2011).
doi:10.1016/j.cam.2011.07.021

16. Knibbe, H., Vuik, C., Oosterlee, C.W.: 3D Helmholtz Krylov
solver preconditioned by a shifted Laplace multigrid method
on multi-GPUs. In: Cangiani, A., Davidchack, R.L., Georgoulis,
E., Gorban, A.N., Levesley, J., Tretyakov, M.V. (eds.) Pro-
ceedings of ENUMATH 2011, the 9th European Confer-
ence on Numerical Mathematics and Advanced Applications,
Leicester, pp. 653–661. Springer-Verlag, Berlin Heidelberg
(2011)

17. Knibbe, H., Mulder, W.A., Oosterlee, C.W., Vuik, C.: Closing the
performance gap between an iterative frequency-domain solver
and an explicit time-domain scheme for 3-d migration on parallel
architectures. Geophysics 79, 47–61 (2014)

18. Kourtis, K., Goumas, G., Koziris, N.: Optimizing sparse matrix-
vector multiplication using index and value compression. In:
Proceedings of the 5th Conference on Computing Frontiers CF
’08, pp. 87–96. ACM, New York (2008)

19. Laird, A.L., Giles, M.B.: Preconditioned iterative solution of the
2D Helmholtz equation. Tech. Rep. 02/12, Oxford Computing
Laboratory, Oxford, UK (2002)

20. LGM (2012) The Little Green Machine: Massive many-
core supercomputer at low environmental cost. http://www.
littlegreenmachine.org

21. Mulder, W.A., Plessix, R.E.: How to choose a sub-
set of frequencies in frequency-domain finite-difference
migration. Geophys. J. Int. 158(3), 801–812 (2004).
doi:10.1111/j.1365-246X.2004.02336.x

22. Nemeth, T., Wu, C., Schuster, G.T.: Least-squares migration of
incomplete reflection data. Geophysics 64(1), 208–221 (1999)

23. Plessix, R.E., Mulder, W.A.: Frequency-domain finite-difference
amplitude-preserving migration. Geophys. J. Int. 157, 975–987
(2004)

24. Ren, H., Wang, H., Chen, S.: Least-squares reverse time migration
in frequency domain using the adjoint-state method. J. Geophys.
Eng. 10(3), 035, 002 (2013). http://stacks.iop.org/1742-2140/10/
i=3/a=035002

25. Riyanti, C.D., Kononov, A., Erlangga, Y.A., Vuik, C., Oosterlee,
C.W., Plessix, R.E., Mulder, W.A.: A parallel multigrid-
based preconditioner for the 3D heterogeneous high-frequency
Helmholtz equation. J. Comput. Phys. 224(1), 431–448 (2007).
doi:10.1016/j.jcp.2007.03.033

26. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM,
Philadelphia (2003)

27. Schuster, G.T.: Least-squares crosswell migration. In: SEG
Expanded Abstracts 12, 63 Annual International Meeting, pp.
25–28 (1993)

28. Stüben, K., Trottenberg, U.: Multigrid methods: Fundamental
algorithms, model problem analysis and applications. In: Hack-
bush, W., Trottenberg, U. (eds.) Lecture Notes in Math, vol. 960,
pp. 1–176 (1982)

29. Tang, Y.: Wave-equation Hessian by phase encoding. In: 78
Annual International Meeting, SEG, Expanded Abstracts, vol. 27,
pp. 2201–2205 (2008)

30. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Aca-
demic Press, New York (2001)

31. Turkel, E.: Numerical methods and nature. J. Sci. Comput. 28,
549–570 (2006)

32. Wei, D., Schuster, G.T.: Least-squares migration of multisource
data with a deblurring filter. Geophysics 76(5), R135–R146 (2011)

33. Wienands, R., Oosterlee, C.W.: On three-grid Fourier analysis of
multigrid. SIAM J. Sci. Comp. 23, 651–671 (2001)

34. Zhebel, E.: A multigrid method with matrix-dependent transfer
operators for 3D diffusion problems with jump coefficients, PhD
thesis, Technical University Bergakademie Freiberg, Germany
(2006)

http://dx.doi.org/10.1007/978-1-4615-3626-
http://dx.doi.org/10.1111/j.1365-2478.2011.01023.x
http://dx.doi.org/10.1016/j.matcom.2004.01.004
www.khronos.org
http://dx.doi.org/10.1016/j.cam.2011.07.021
http://www.littlegreenmachine.org
http://www.littlegreenmachine.org
http://dx.doi.org/10.1111/j.1365-246X.2004.02336.x
http://stacks.iop.org/1742-2140/10/i=3/a=035002
http://stacks.iop.org/1742-2140/10/i=3/a=035002
http://dx.doi.org/10.1016/j.jcp.2007.03.033

	Reduction of computing time for least-squares migration based on the Helmholtz equation by graphics processing units
	Abstract
	Introduction
	Least-squares migration
	Description
	CG and frequency decimation
	Helmholtz solver

	Model problems
	Very Compressed Row Storage (VCRS) format
	VCRS description
	Matrix-vector multiplication
	Different application, reservoir simulation

	Multigrid method preconditioner
	Preconditioned Bi-CGSTAB
	Two-dimensional problem
	Three-dimensional problem

	Implementation details
	GPU
	Common code
	Task system

	Results
	Conclusions
	Open Access
	Appendix 1
	References

