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Abstract

The rate of oxygen consumption by germinating seeds is considered to be one of the promising
parameters for monitoring the seed status and a candidate for predicting germination and seed
vigor. Nowadays, the single seed oxygen consumption patterns can be measured on a big scale
and at a detailed time resolution using a Q2 machine. However, interpretation of the data in
terms of functioning of internal oxygen transport and overall seed properties is still hard, due to
the lack of knowledge on and the complexity of these properties and processes. Modeling may
be of great help in understanding the relation between germination and the oxygen consumption
pattern of a seed. In this thesis a model for the single seed oxygen consumption inside a closed
test tube is proposed, relating the measured oxygen concentration to the size of the active
mitochondrial population. The analytical solution of this model is used for calibration of the
experimental data and all calibrated results are analyzed. From this analysis an attempt is made
to distinguish between germinating and non germinating seeds in order to determine which seed
properties cause slow/fast germination. Based on this model a method introducing the seed
and test tube volume is proposed in order to predict the observations when the sizes of these
volumes change.
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1 Introduction

1.1 Motivation

From January 28 to February 1, 2013 I participated in the 90th Study Group Mathematics
with Industry (SWI) held at Leiden University. SWI is a combined industrial-academic week
where mathematics is used to tackle industrial problems. About fifty to eighty mathematicians,
working in industry or academia, come together during a full week to work together intensively
on industrial problems. The format follows the original Oxford model, dating back to 1968,
which is used worldwide in similar Study Groups.

One of the questions was formulated by Fytagoras. Fytagoras is a science orientated company
with much expertise in the fields of sensor technology, seed technology and plant breeding. The
question concerned the oxygen consumption of germinating seeds. Since I have always been very
interested in the link between physics/biology and mathematics this subject drew my attention.
After working on the problem for a week I decided to turn it into my bachelor thesis.

1.2 Problem statement

Seed germination refers to the physiological process of the growth of an embryo within a seed.
It starts with water uptake by the seed (imbibition) and ends with the emergence of the embryo
from its enclosing coverings. Although it is poorly defined, the event of germination is commonly
associated with the moment the seed coat is being penetrated by the embryo’s radicle [1]. Seed
germination depends on both internal and external conditions. The most important external
factors include temperature, water, oxygen and sometimes light. Various plants require different
variables for successful seed germination. The variables depend on the individual seed variety.
In agronomic and horticultural practice a fast and homogeneous germination is desirable for
many crops. Since the germination time of seeds in seed batches often varies significantly, much
effort is devoted to the selection and treatments of seeds to achieve simultaneous germination.

This thesis focuses on the dependency of seed germination on and the consumption of oxygen.
Living seeds start respiration upon imbibitions and respiration accelerates at the moment the
germination really commences. The availability of oxygen to the embryo in the seed depends on
the oxygen concentration around the seed, the respiration rate of the cells (in the embryo) and
oxygen transport through the seed towards the cells of the embryo. Especially the transport
through the seed is still a black box.

Fytagoras has developed a so-called Q2 machine by which single seed oxygen consumption
can be measured at a detailed time resolution. The measured curves can be used in seed quality
evaluation since the rate of oxygen consumption by germinating seeds is considered to be one of
the promising parameters for the monitoring of the seed’s status and a candidate for predicting
germination and seed vigor [2][3]. However, the interpretation of the data in terms of physical,
morphological and physiological properties and processes within the seed is still hard, due to lack
of knowledge of basic aspects of gas exchange in seeds and its role in the germination process.
It also greatly hampers advances in seed treatment possibilities, such as respiration controlled
seed priming, advanced seed coating and pellets, as well as improvements in seed storage and
seed longevity.

Currently oxygen consumption profiles are usually simply fitted using low-order polynomials
or piecewise-linear curves and the germination behavior is predicted on the basis of certain
features of these curves. The disadvantage of this approach lies with the parameters of these
polynomials. They have no clear biological meaning and therefore these models are unsuitable
for proper interpretation of the data.
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1.3 Research objectives

The main goal is to develop a mathematical model for the oxygen transport and consumption
within the seed that is in line with the current biological knowledge on these processes and the
highly detailed time-resolved oxygen consumption measurements for single seeds. The model
should allow interpretation of the observed data and characteristics in terms of the functioning
of internal oxygen transport processes and overall seed properties or provide hypothesis on these
that may be validated in future research.

In order to develop such a model we first take a closer look at the materials and measurements
in Section 2 and we dive into the biological properties of seeds and the processes associated with
their germination in Section 3. Secondly, we combine this with our mathematical knowledge
and develop a model for the growth and proliferation of cells and their oxygen consumption in
Section 4. The model contains several (unknown) parameters, is based on ordinary differential
equations (ODE) popular in biological growth and proliferation studies and describes the two
major stages of the germination process: the repair stage and the growth stage. By fitting the
obtained equation(s) to our experimental data, statistics on these parameters are obtained and
after analyzing these statistics and their corresponding fitted curves, an attempt is made to split
the seed batches into different classes. The fitting and analysis of the model is performed on one
seed batch first, Section 5, and the resulting hypothesis and observations are tested and verified
on the complete data batch in Section 6. The seed and test tube volume are not taken into
account even though they are likely to influence the germination process. Therefore in Section
7 a method is proposed to introduce the volumes into our model.

The eventual goal in this study is to find possible (cor)relations between parameters and link
the parameter values to curve- and therefore seed properties in order to determine which seed
properties cause slow/fast germination. This information will help seed technology and plant
breeding companies in the selective breeding process and mutation of plant seeds.
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2 Materials and measurements

2.1 Seeds

Fytagoras performed most of the single seed oxygen consumption measurements on barley seeds
(Hordeum vulgare Var. Esterel 2003). Seeds from different batches with different germination
properties were available and therefore this seed was very suitable for our research. Before
measurements the seeds were treated with a powder to prevent fungal growth.

2.2 Respiration measurements

Single seed oxygen consumption measurements were performed by a Q2 machine developed by
Fytagoras. Q2 stands for Quality and Quick but also for O2, the element on which the whole
instrument is based upon [2]. In a typical setup of such a machine a significant number of ran-
domly selected seeds is placed in small sealed, cylindrical shaped containers. These containers,
i.e. test tubes, are almost air-tight and contain enough water and air to suffice the germination
conditions of the seed. When a single test tube is too large, the decrease in oxygen concentration
is very small and therefore hard to measure. A test tube that is too small will cause the oxygen
to deplete so fast, that we are left with only a few measurement points. It turned out that the
best results in both time and oxygen level were obtained by using test tubes with a volume of
1.0 ml [14]. Therefore a 96 well plate (Eppendorf) was chosen for the machine. In each of these
wells a single seed was placed on top of a circular paper filter soaked in water.

The oxygen level in each well is carefully measured using the Q2 measuring technology. In
this fluorescent-dye technique [2] [7], the top of each test tube is by a lid with an oxygen sensitive
fluorescent coating which reacts with the oxygen present in the container. Plates are placed in
the Q2 machine and with the help of LED-technology blue light is sent through the coating and
transformed into red fluorescent light. The quantity of fluorescent light is in proportion with
the partial evaporation tension of oxygen in the container. By measuring the amount of light
the level of oxygen present in the container can be determined very precisely.

A schematic view of the experimental setup and a picture of the complete Q2 machine are
shown in Figure 2.1.

(a) Q2 machine [2] (b) Experimental setup

Figure 2.1: Overview of the operation of the Q2 machine

Each well was scanned automatically by the Q2 machine at 30 minute time intervals. The
oxygen level measurements were collected and stored in Excel data format and can easily be
converted to data curves showing the oxygen consumption pattern of individual seeds. Based
on this pattern we can categorize the seeds into different types [2]. The patterns of three types
of seeds are shown in Figure 2.2.
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Figure 2.2: Oxygen consumption measurement curves of three types of seeds. [2]

The upper line in this figure displays no oxygen consumption and is therefore categorized by
Van Asbrouck and Taridno [2] as a dead seed. The line showing a small and constant amount
of oxygen consumption is categorized as a dormant seed. The concept of dormancy will be
explained in Section 3. The lower line displays a huge increasing oxygen consumption and is
therefore categorized as a germinating seed. Germinating seeds can be split into two groups:
strong germinators, the seeds that show a sigmoid type of oxygen consumption pattern, and
weak germinators, the seeds that show a linear or incomplete oxygen consumption pattern. The
definition of a dormant seed and a weak germinator slightly overlap, which makes it hard to
distinguish between the two. Also note that for a complete picture of the seeds, approximately
two days were needed.

2.3 Data

Fytagoras has provided us with 112 sample batches, which amounts to data on circa 11,000
barley seeds. The batches are bundled in 7 files each containing 16 batches. Each file has its
own time frame, varying from about 21 to 72 hours. Data curves of one of the batches from the
first file are shown in Figure 2.3.

Figure 2.3: Oxygen consumption curves of one data batch.

Matlab was used for implementation and data fitting so the data originally stored in Excel
files was converted to .mat files using the xlsread function. For details of the model and data
fitting the reader is referred to Sections 4 and 5.
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3 Biological processes and modeling assumptions

This study considers the germination process of (barley) seeds. By definition, germination
commences when the dry seed, shed from its parent plant, takes up water (imbibition), and is
completed when the embryonic root visibly emerges through the seed coat. Thereafter, there
is seedling establishment, utilizing reserves stored within the seed, followed by vegetative and
reproductive growth of the plant, supported by photosynthesis. These successive phases will not
be discussed in this thesis.

In the mature, dry state the seeds are metabolically inactive (quiescent) and can withstand
extremes of drought and cold. For example, dry seeds can be stored at -150 degrees Celsius for
many years without harm. In this state the cells contain less than 10% water and the seed coat
is (almost) fully impermeable to oxygen. Upon imbibitions, the dried cells are being repaired
to healthy cells, which contain approximately 70% water. Only healthy cells are able to divide
and grow so this repair is necessary for the germination process. Besides that, the healthier the
cells the easier they absorb oxygen. During the repair process, which is shown in Figure 3.1, a
little bit of oxygen is entering the cell with the water. This oxygen is used for energy production
to facilitate the repair process. Within minutes of the water uptake the growth commences and
the respiration increases. Respiration refers to aerobic respiration, the chemical process that
convert nutrients from the starch into energy in the form of Adenosine Triphosphate (ATP)
using oxygen. As far as the transport physics are concerned the material inside the seed is
mostly water after this quick imbibition.

Figure 3.1: Cell repair [4]

In the transport of oxygen from the seedcoat to the embryo, several aspects have to be
considered that influence the permeability and therefore the respiration rate. As was mentioned
before, the seed coat gets more permeable to oxygen as it gets more saturated. But also the
specific structure of the seed coat affects the permeability. It can be a paper-thin layer (peanut)
or something way more substantial (coconut). After passively diffusing through the seed coat,
the oxygen encounters a layer of starch cells. These cells are completely impermeable to oxygen
so the oxygen molecules have to pass through the intercellular spaces. The size of these spaces
depends on the shape and organization of the starch cells and this differs per seed type. The
larger the spaces and the more organized the cells, the higher the permeability. In Figure 3.2
the structure of the barley seed coat and starch cells is shown.

Figure 3.2: Microscopic view of the seed coat and
part of the starch layer of a barley grain.
This image shows the outer seed coat (SC), the cell
wall of a starch cell (W), its nucleus (N) and the pro-
tein storage vacuoles (AG) with globoids (G) (spher-
ical crystalline inclusions that contain nutrients for
plant growth)[1].
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Now the oxygen has made its way through the starch and reaches the embryo cells where
it passively diffuses through the cell walls and plasma membranes. The main assumption of
our model is that most of the oxygen is being consumed by the mitochondria, which are small
membrane-enclosed organelles located in the cytoplasm of the cells. In these organelles the
aerobic respiration takes place to produce energy that is as a source of chemical energy for other
processes inside the cell. This is why mitochondria are sometimes described as ‘cellular power
plants’. The number of mitochondria per cell can vary from a single one up to thousands of
them. According to the Endosymbiotic Theory [5], mitochondria evolved from bacteria and still
largely behave as such. The other organelles inside the seed use oxygen on such a small scale
that they are considered relatively insignificant an thus the oxygen data provide a unique insight
into the dynamics of the mitochondrial population.

Given that the material inside the seed is considered mostly water, we can apply Henry’s
law [6], which states that the measured oxygen concentration outside the seed (in the test tube)
is proportional to the oxygen concentration inside the seed:

caq = kH,cc · cgas

where caq is the concentration of gas in a solution, water in this case, cgas is the concentration of
gas above that solution and kH,cc is the Henry constant. Numerical simulations have shown that
this Henry equilibrium is established within the current measurement interval of 30 minutes [14],
which means that we can assume that the oxygen concentration inside our seed is uniform at all
times and we can thus neglect any spatial variations. A resulting assumption is that the complex
transport- and diffusion process of oxygen entering the embryo cells, as discussed earlier, can
be neglected as well. The more sophisticated models based on partial differential equations
(reaction-diffusion, transport etc.) introduce many more tuning parameters without providing
any better fit for the data [8] [9] [10]. This means that one of the research objectives, namely
interpreting the observed data and characteristics in terms of the functioning of internal oxygen
transport processes, becomes more and more irrelevant. Next to this, our initially much more
sophisticated simulations and models, have shown that we are also able to neglect the changes
in seed shape and volume. Because of these assumptions it is not necessary to elaborate on the
detailed dynamics of the growth and proliferation of the embryo cells during germination.

One thing left to consider is that not all seeds are able to germinate. Amongst these are the
dead and dormant seeds discussed in Section 2. Dormant seeds are seeds that do not have the
capacity to germinate in a specific period of time under any combination of normal, physical
and environmental factors that otherwise is favorable for its germination [1]. The breaking of
dormancy is possible and therefore dormancy is seen as a temporary block on germination.

This concludes the biological background. The next section will introduce a model based on
the assumptions made in this section.
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4 Model for oxygen consumption and growth in closed test
tubes

In this section the model for the oxygen consumption of a germinating seed in a closed test
tube is developed. This model relates the measured oxygen concentration c(t) to the number of
active mitochondria n(t) and splits the germination process into two stages, a repair stage and
a growth stage. An analytical solution is obtained and will be used for fitting the experimental
data in subsequent sections.

4.1 Oxygen consumption and growth in closed test tubes

From the previous section we know that oxygen consumption happens mainly in the mito-
chondria. Experiments with isolated mitochondria show that the rate of this consumption is
proportional to the concentration of oxygen [11]. Now assuming that this consumption rate is
the same for all mitochondria and that both c(t) and n(t) are continuous in t we arrive at the
following equation for the decrease in oxygen concentration:

dc

dt
= −αnc, c(0) = c0. (4.1)

Mitochondria behave as a colony of bacteria, i.e. multiplying at a rate proportional to their
number. Assuming that this rate is also proportional to the oxygen concentration we obtain the
equation for the growth of our mitochondrial population:

dn

dt
= βnc, n(0) = n0. (4.2)

Both the oxygen consumption rate α and mitochondrial reproduction rate β are non-negative. It
is natural to assume that α is constant while one may expect that β depends on the physiological
state of the seed and therefore on time. As mentioned in Section 3, the common understanding
is that embryo cells need to repair first before they can function properly. This means that the
mitochondria inside these cells also need a certain repair phase before they are fully functional
and able to replicate. The length of this repair phase is from now on denoted by tr. We assume
that all mitochondria are fully functional at the end of this repair phase and their physiological
state remains the same for the rest of the germination process. These facts are taken into account
by setting β equal to zero for 0 ≤ t ≤ tr and take β > 0 constant for t > tr.

The solution of the ODE system (4.1)-(4.2) is obtained by firstly dividing (4.2) by (4.1):

dn

dc
= −β

α
. (4.3)

During the repair stage Equation (4.2) turns into

dn

dt
= 0, n(0) = n0

with the trivial solution
n(t) = n0, 0 ≤ t ≤ tr.

For t > tr we use Equation (4.3) in combination with the initial conditions n(tr) = n0 and
c(tr) = cr to obtain:

n(t) = n0 −
β

α
[c(t)− cr], t > tr,

resulting in the following solution for the amount of mitochondria at time t:

n(t) =

{
n0 0 ≤ t ≤ tr
n0 − β

α [c(t)− cr] t > tr.
(4.4)
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This shows that the number of mitochondria does not grow during the repair stage and is
proportional to the oxygen concentration for t > tr.

Substituting this result into Equation (4.1) we obtain the following equation for the oxygen
consumption during the repair stage

dc

dt
= −αn0c, c(0) = c0

with solution
c(t) = c0e

−αn0t for 0 ≤ t ≤ tr,

attaining the value cr = c0e
−αn0tr at the end of this stage. For t > tr substitution results in the

standard logistic equation:

dc

dt
= −α

[
n0 −

β

α
(c− cr)

]
c

= −αn0c+ βc2 − βcrc

= βc

(
c− cr −

αn0

β

)
dc

dt
= βc(c− c̃), c(tr) = cr, (4.5)

where c̃ = cr+αn0/β. The solution of this equation can be derived using separation of variables
again and equals

c(t) =
cr(βcr + αn0)

βcr + αn0 e(βcr+αn0)(t−tr)
, t > tr. (4.6)

See Appendix A for the derivation. So for the oxygen concentration at time t we now have:

c(t) =

c0e
−αn0t 0 ≤ t ≤ tr

cr(βcr + αn0)

βcr + αn0 e(βcr+αn0)(t−tr)
t > tr.

(4.7)

Seeds with high concentrations of mitochondria are able to deplete oxygen to a zero level,
but seeds with a lower concentration of mitochondria only deplete oxygen to a certain minimal
level cmin [11]. As the oxygen pressure approaches this level the oxygen consumption and
multiplication of mitochondria slow down and eventually stop. The lowest level at which the
seeds start to reduce respiration, and thus metabolism, as a response to the lack of oxygen is
generally referred to as the COP (critical oxygen pressure) level, see Figure 4.1.

Figure 4.1: Graph showing cmin and the COP level.[2]
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Also, the measurements may contain a systematic error due to poor calibrations. By substi-
tuting c − cmin for c in the above equations, these effects are taken care of. The final formula
that can be used to approximate the measured data becomes:

c(t) =

cmin + (c0 − cmin)e−αn0t 0 ≤ t ≤ tr

cmin +
(cr − cmin)[β(cr − cmin) + αn0]

β(cr − cmin) + αn0 e(β(cr−cmin)+αn0)(t−tr)
t > tr.

(4.8)

with cr = cmin + (c0 − cmin)e−αn0tr .
Using data fitting we are able to determine the unknown parameters in Equation (4.8). The

curve of relative mitochondrial population growth in a closed test tube is then simply found by
simply evaluating

n(t)

n0
=

1 0 ≤ t ≤ tr
1− β

αn0
(c(t)− cr) t > tr,

(4.9)

which turns into

n(t)

n0
=


1 0 ≤ t ≤ tr
1 +

β

αn0
(cr − cmin)

− β

αn0

(cr − cmin)[β(cr − cmin) + αn0]

β(cr − cmin) + αn0 e(β(cr−cmin)+αn0)(t−tr)
t > tr

(4.10)

after substituting our expression for c(t).
We have now obtained the equation that can be used to fit our data but before moving on

to the fitting, we take a closer look at the definition of one of the most important seed quality
parameters, the germination time.

4.2 Germination time

Currently the Relative Germination Time (RGT) is used as a parameter to make inferences about
the actual germination time of a seed. The value of this RGT is determined by finding the point
of fastest decline rate in the oxygen concentration curve and extrapolating the tangential line
at that point until it crosses the time axis [2], as is shown in Figure 4.2.

Figure 4.2: Graph showing the RGT value.[2]

From a biological view the point of fastest decline must lie in the growth stage of the graph
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and can be computed by setting the second derivative of c(t) equal to zero:

dc

dt
= β(c− cmin)[(c− cmin)− (c̃− cmin)]

d2c

dt2
= 2β(c− cmin)− β(c̃− cmin) = 0,

so

2β(c(t)− cmin) = β(c̃− cmin).

Substituting the expressions for c(t) and c̃ we find:

2β(cr − cmin)[β(cr − cmin) + αn0]

β(cr − cmin) + αn0 e[(β(cr−cmin)+αn0)(t−tr)]
= β(cr − cmin) + αn0

2β(cr − cmin)

β(cr − cmin) + αn0 e[(β(cr−cmin)+αn0)(t−tr)]
= 1

αn0 e
[(β(cr−cmin)+αn0)(t−tr)] = β(cr − cmin)

e[(β(cr−cmin)+αn0)(t−tr)] =
β

αn0
(cr − cmin)

[(β(cr − cmin) + αn0)(t− tr)] = log

(
β

αn0
(cr − cmin)

)

t− tr =
log
(

β
αn0

(cr − cmin)
)

(β(cr − cmin) + αn0)
.

So the time coordinate tm of this point of maximum decline is:

tm = tr +
log
(

β
αn0

(cr − cmin)
)

β(cr − cmin) + αn0
(4.11)

and the corresponding oxygen concentration c(tm) is

c(tm) = cmin +
1

2β
[β(cr − cmin) + αn0].

The tangential line drawn at this point has a slope of

dc

dt

∣∣∣∣
t=tm

= β[c(tm)− cmin][c(tm)− c̃]

and is therefore given by

y(t) = c(tm) + β[c(tm)− cmin][c(tm)− c̃](t− tm).

This line will cross the time axis at tg with y(tg) = 0, or:

c(tm) + β[c(tm)− cmin][c(tm)− c̃](tg − tm) = 0

(tg − tm) =
c(tm)

β[c(tm)− cmin][c̃− c(tm)]

tg = tm +
c(tm)

β[c(tm)− cmin][c̃− c(tm)]

= tm +
2

β(cr − cmin) + αn0
+

4βcmin

(β(cr − cmin) + αn0)2
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which can also be written as:

tg = tr +
2 + log

[
β
αn0

(cr − cmin)
]

β(cr − cmin) + αn0
+

4βcmin

(β(cr − cmin) + αn0)2
. (4.12)

We can conclude that this expression associated to germination time depends on all parameters of
the problem in a rather complicated way. One thing that’s clear is the fact that the germination
is largely dependent on the repair time tr. After calibration we’ve obtained all the unknown
parameters and are able to calculate this estimated germination time for each seed.
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5 Fitting the experimental data

Equation 4.8 describes the oxygen consumption during the two-stage germination process. For
analyzing the data and its fits it is more convenient to consider the normalized equation, obtained
by substituting c(t)

c0
for c(t):

c̃(t) =

c̃min + (1− c̃min)e−αn0t 0 ≤ t ≤ tr

c̃min +
(c̃r − c̃min)[β(c̃r − c̃min) + αn0]

β(c̃r − c̃min) + αn0 e(β(c̃r−c̃min)+αn0)(t−tr)
t > tr,

(5.1)

with normalized parameters c̃ = c
c0

, c̃min = cmin
c0

and c̃r = cr
c0

= c̃min + (1− c̃min)eαn0tr . To make
sure c0 remains a tuning parameter in our fitting algorithm, we implement the above equation
as

c(t) = c0 · c̃(t). (5.2)

Otherwise all curves are forced to start at the same point as the data curves, which hardly ever
results in the best fit because the data fluctuates a lot. From now on the data set will be referred
to as (x, y) with x the vector with time coordinates and y the vector with oxygen concentrations.
After fitting the data to the model function c(t), the normalized results are obtained by dividing
both the data and the estimated result by y0, the initially measured oxygen concentration.

The oxygen consumption is thus described by Equations (5.2) and (5.1) in terms of the
following five parameters:

1. c0 - the initial oxygen concentration
2. c̃min - the normalized minimal oxygen concentration cmin/c0

3. αn0 - the product of the initial amount of mitochondria n0 and the (average) oxygen
consumption rate α of a single mitochondrion

4. β - the (average) mitochondrial reproduction rate
5. tr - the duration of the repair stage

Since we are dealing with a function which is a nonlinear combination of the model parameters,
we use a nonlinear least squares optimization algorithm to fit our observational data.

5.1 Nonlinear Least Squares

The method of nonlinear least squares is used to fit a set of m data points to a presumed non-
linear model with n unknown parameters (m > n). Its goal is to find parameters such that
the model function fits the data points best. The basic approach is to approximate the model
function by a linear one and to iteratively update the parameters.

We consider a set of m data points, (x1, y1), (x2, y2), . . . , (xm, ym) and a model function
f(x, β) where β is the vector of n < m parameters, β = (β1, β2, . . . , βn). The goal is to find the
parameters β that minimize the sum of squared residual errors ri, i.e. the errors between the
data points and the corresponding values predicted by the model function:

arg min
β

‖R‖22 = arg min
β

m∑
i=1

r2
i

= arg min
β

m∑
i=1

[f(xi, β)− yi]2 (5.3)

The necessary condition for obtaining a minimum is that the gradient must be equal to zero
[12], hence:

∇

(
m∑
i=1

r2
i

)
=

m∑
i=1

∇
(
r2
i

)
= 2

m∑
i=1

ri
∂ri
∂βj

= 0 for j = 1, · · · , n, (5.4)
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which can also be written as

2RTJR = 0, (5.5)

with JR is the Jacobian of R, (JR)ij = ∂ri/∂βj for i = 1, . . . ,m and j = 1, . . . , n. All critical
points meet this condition so to be sure that we are in fact dealing with a minimum, the Hessian,
∇2
(∑m

i=1 r
2
i

)
, must be positive definite in that critical point.

In a nonlinear system, the Jacobian is still dependent on β and Equation (5.5) has no closed-
form solution in general. We start with an initial guess for the parameters and iteratively refine
them to obtain a global minimum. There exist many iteration methods all with their own pros
and cons. In this thesis the Curve Fitting Toolbox in Matlab is used for implementation of
the nonlinear least squares algorithm. This toolbox has two algorithms, a trust-region-reflective
algorithm and the Levenberg-Marquardt algorithm. Matlab recommends to use the trust-region-
reflective algorithm if there are no constraints or only bound constraints and the Levenberg-
Marquardt algorithm if the problem is underdetermined (m < n). Hence we chose the first of
the two.

5.1.1 Trust-Region-Reflective algorithm

The basic idea of the trust-region approach is to approximate the function you want to minimize
by a simpler function q, which reasonably reflects the behavior of the original function in a certain
neighborhood N around the point βk [13]. This neighborhood is the trust region. A trial step ∆β
is computed by (approximately) minimizing over N . This is called the trust-region subproblem:

arg min
∆β

{q(βk + ∆β), ∆β ∈ N}

The current point is updated to be β ≈ βk+1 = βk + ∆β if f(βk + ∆β) < f(βk); otherwise
the current point remains unchanged and N , the trust region, is shrunk and the trial step
computation is repeated. The key steps in this approach are choosing and computing the
approximation q, choosing and modifying the trust region N , and accurately solving the trust-
region problem.

In the standard trust-region method, the minimization function is approximated by a second-
order Taylor series expansion about βk. Our minimization function is of the form ri = f(xi, β)−
yi, where f is our model function with the following Taylor series expansion:

f(xi, β) ≈ f(xi, β
k) +

∑
j

∂f(xi, β
k)

∂βj

(
βj − βkj

)
+

1

2

∑
j

∑
k

∂2f(xi, β
k)

∂βj∂βk

(
βj − βkj

)(
βk − βkk

)
≈ f(xi, β

k) +
∑
j

Jij∆βj +
1

2

∑
j

∑
k

∆βj∆βkHjk(i)

≈ f(xi, β
k) + ∆βT∇f(xi, β

k) +
1

2
∆βTHi∆β.

Also the neighborhood N is usually spherical or ellipsoidal in shape, which means that our
minimization problem (5.3) has the following corresponding trust-region subproblem:

arg min
β, ‖∆β‖2≤δ

{∥∥∥∥∆y + ∆βTJ +
1

2
∆βTH∆β

∥∥∥∥2

2

}
(5.6)

with ∆y = f(x, βk)− y, J the Jacobian of f , H the Hessian of f and δ > 0.
There are many different algorithms for solving this trust-region subproblem. Such algo-

rithms typically involve computation of a full eigensystem, which requires O(n3) operations and
can take a lot of time. Therefore the approach followed in the Curve Fitting Toolbox is to re-
strict the subproblem to a two-dimensional subspace S. Once the subspace S has been computed,
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finding a solution to the minimization problem (5.6) is trivial since the problem is only two di-
mensional. The two-dimensional subspace S is determined with the aid of the preconditioned
conjugate gradient process described below. The solver defines S as the linear space spanned
by s1 and s2, where s1 is in the direction of the gradient of (f(xi, β)− yi)2 and s2 is either an
approximate Newton direction, i.e. a solution to Hs2 = −g with g the gradient, or a direction
of negative curvature, sT2 Hs2 < 0. The philosophy behind this choice of S is to force global
convergence (via the steepest descent direction or negative curvature direction) and achieve fast
local convergence (via the Newton step, when it exists).

Preconditioned conjugate gradients methods are popular for solving large positive definite
systems of linear equations Hp = −g, where H is symmetric. This iterative approach requires
the ability to calculate matrix-vector products of the form Hv where v is an arbitrary vector.
The symmetric positive definite matrix M = EET is a preconditioner for H, i.e. a matrix that
approximates H but is easier to invert, with M−1H a well-conditioned matrix or a matrix with
clustered eigenvalues. The system is indirectly solved by

M−1Hp = −M−1g

or
E−1H(E−1)T p̂ = −E−1g, p̂ = ET p,

which is solved for p̂ first, then for p. This preconditioning technique is necessary to ensure fast
convergence of the conjugate gradient method. The method starts by using g, he gradient of the
residual, as a search direction. Each new search direction is constructed (from the residual) to
be A-orthogonal to all the previous residuals and search directions. The algorithm exits when a
direction of negative curvature is encountered, i.e., pTHp < 0. The output direction, s2, is either
a direction of negative curvature or an approximate solution to the newton system Hs2 = −g
as mentioned above.

The trust-region-reflective algorithm can thus be summarized by the following steps [13]:
1. Determine the two-dimensional subspace with the aid of the preconditioned conjugate

gradient method and formulate the two-dimensional trust-region subproblem.
2. Solve the minimization problem (5.6) to determine the trial step ∆β.
3. If ‖r(x, β + ∆β)‖2 < ‖r(x, β)‖2, set β = β + ∆β.
4. Adjust δ to reduce the size of the trust region N .

These steps are repeated until convergence.
These are the basics of the nonlinear least squares optimization algorithm programmed

in Matlab. The following subsection discusses the implementation and results of this fitting
algorithm applied to one data batch.

5.2 Implementation

The initial implementation of this algorithm is done with the second batch of barley seeds. This
batch of 1520 seeds has the largest observation time and therefore the most data points as well.
It is beneficial to have as many data points available as possible in order to get better and more
reliable fits. We discuss our findings and some basic results before we apply the algorithm on
the entire batch of barley data.

Since the algorithm is iterative choosing the initial parameters β0 could be of great impor-
tance to the outcome of the model function. Especially when there are lots of local minima
on the error surface of the model function, the choice of initial parameters is crucial. To avoid
getting trapped in a local minimum and to ensure fast convergence of the iterative procedure
the initial values should be as close as possible to the global minimum. This can be achieved by
a grid search in the parameter space or by making some assumptions leading to a rough guess.
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Since the first is tricky for complex model functions with many parameters we apply the latter.
In case of an unsatisfactory fit different initial parameter values are chosen and this process is
repeated until the quality of the fit is sufficient. To be confident that the minimum found is
in fact the global minimum and not some local minimum one should widely differ the initial
parameter values. When the same minimum is found regardless of these initial values, it is likely
to be the global minimum.

Furthermore the range of parameters should also be considered. Implementing limits of
the parameters avoids futilely large or infinitesimally values and expedites the fitting process.
Therefore we have introduced some bounds on the five fitting parameters mentioned at the start
of this section. Their lower bound is zero since all parameters are defined non-negative and the
upper bounds are determined after the initial implementation without upper bounds.

Despite the fact that α and n0 only occur as a product and therefore aren’t regarded as
individual parameters, previous research showed that it is mathematically advantageous to see
them as such [14]. The extended six-parameter minimization problem proved to be easier to
solve than the original five-parameter problem. Therefore we chose to directly implement the six-
parameter formulation. However, the code in the previous research was written in Python and
as it turns out, the implementation in Matlab shows no advantage in using the six-parameter
versus the five-parameter model. In fact the fitting results are exactly the same under both
models, which means that either implementation could be used.

In the process of determining adequate initial parameter values, we’ve also observed the
minimization algorithm is quite sensitive to the initial choice of the repair time tr. As we
discussed above, this could indicate there are (lots of) local minima for tr. To avoid ending up
in such a local minimum we simply run the algorithm with two initial guesses for tr, one close to
zero and the other around 20 hrs. Comparing the resulting standard deviations of the residuals,
i.e. the square root of the mean squared difference between the data and the fitted model (Root
Mean Squared Error (RMSE) in the goodness-of-fit statistics), we could choose the better of the
two fits, always resulting in a robust (global) minimum.

Implementing a simpler single-stage model which neglects the repair process (tr = 0) shows
the repair process is an essential aspect of our model. In Figure 5.1, three typical results for
barley seeds are shown together with both the two-stage and one-stage model approximation.
The fact that the one-stage model provides poorer fits is abundantly clear, especially for the
curves of seeds with a longer estimated repair time. Standard deviations of both models are
computed for each seed to quantify and confirm the benefits of the two-stage model. The two-
stage model shows both a smaller mean of the deviations and more concentration about this
mean, as can be seen from the density plots of the standard deviations for a batch of 1520 barley
seeds in Figure 5.2.

Discussing the implementation resulted in a six-parameter implementation with clear impor-
tance of the repair phase of duration tr. The finally obtained adequate initial values and upper
and lower bounds for our fitting parameters are:

Parameter c0 c̃min α n0 β tr
initial value 29 0.1 0.06 0.6 0.02 0.1 ∨ 20
lower bound 0 0 0 0 0 0
upper bound max(y0) 1.1 1.5 1.5 20 160

The tolerance is set to 10−8 meaning that the solver stops if the change in the residual or
parameter value from one iteration to the next is less than 10−8. These settings result in high-
quality fit. The quality of a fit is usually determined by the goodness-of-fit statistic R-squared
which is defined as the ratio of the expected variance (model variance) to the total variance:

R-square =

∑
i(fi − ȳ)2∑
i(yi − ȳ)2

= 1−
∑

i(yi − fi)2∑
i(yi − ȳ)2
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where ȳ is the mean of the observed data. R-squared can take on any value between 0 and 1 with
a value closer to one indicating a better approximation of the data by our model function. For
example, an R-squared value of 0.8982 means that the fit explains 89.82% of the total variation
in the data about the mean. In this case the mean R-squared value is larger than 0.99.

The Matlab code for this implementation of the nonlinear least suqares optimization method
is shown in Appendix B. In the next subsection some results of this implementation are discussed.

Figure 5.1: Oxygen consumption data for three barley seeds and the results fitting using a one-stage and
two-stage model. The upper curve has a small repair time and the lower curves show larger repair times.

Figure 5.2: Histograms of the standard deviations of the two models showing the superiority of the
two-stage model.
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5.3 Initial results and discussion

Data fitting provides interesting statistics about the seeds and further insights into the model
and the associated minimization algorithm. In this subsection we take a look at the resulting fits
and the associated parameter values to find relations between the two that could help determine
which seed properties cause slow/fast germination.

To show how inhomogeneous the seeds in a batch are, oxygen consumption curves and
resulting fitted curves for the complete batch are presented in Figure 5.3, where the normalized
data is shown next to the fitted curves. Compared to the non-normalized results it is much
easier to compare the curves as they are no longer dependent on the measured initial oxygen
concentration, which varies widely in our seed batch. From both the original and the normalized
results one can conclude the shape of the oxygen consumption curves differ a lot. Parameter
statistics could be helpful in determining the cause of these differences.

Some of the data curves in Figure 5.3 contain a lot of noise which makes the resulting fits
less reliable. Therefore a method is proposed in the next section to filter these noised curves and
all other curves that deliver a bad fit. Filtering these curves leads to more reliable parameter
statistics and hence helps with better understanding the seed data.

Based on the clear gap between the curves in the graph it seems like the seed batch can be
divided into two classes. The first class contains all seeds corresponding to the oxygen curves at
the top of the graph, i.e. curves that do not reach a normalized oxygen value below 0.7 in the
given observation time. Seeds in this class clearly do not germinate during the observation time,
so, based on the definitions given in Section 2 and 3, we expect this class to consist of both dead
and dormant seeds. From a biological view we expect this class to show large repair times small
growth parameters. The second class contains the seeds corresponding to all the other curves,
which are both germinating and non-germinating seeds. Here the non-germinating seeds can be
subdivided into dormant seeds and weak germinators, causing the dormant seeds to be spread
over two classes. As mentioned in Section 2, we are able to distinguish between germinating
and non-germinating seeds by the shape of their oxygen consumption curve, but since the curve
shape depends on multiple parameters, this separation is hard to accomplish based on these
parameter values. Perhaps the value of cend, the normalized oxygen concentration measured at
the end of the observation time, will also come in handy to separate these two types of seeds.
Whether or not the value of cend is a valid parameter to separate the potential classes will be
discussed after treating the parameter statistics and other observations.

Histograms of the three main parameters - αn0, β and tr - are shown in Figure 5.4. The
parameter c0 is almost completely determined by the highest measured oxygen level and therefore
its meaning is quite clear. So is the meaning of cmin, the minimum oxygen level, but this value
is not completely determined by the measurements as it is possible that seeds do not reach this
level in the given observation time. Therefore we do consider this as a meaningful parameter,
but since the results are highly related to the lowest measured oxygen level we do not show its
histogram.

The distribution of αn0 seems to resemble a normal distribution, which could suggest the
variation in this parameter is caused by a large number of statistically independent factors.
However, statistical tests (discussed in Section 6.1.1) reject this hypothesis, meaning that αn0

is not normally distributed. Both β and tr contain several outliers which means that their
distributions are both skewed to the right. Looking at the values around the mode of the
parameter distributions, Figure 5.5 we see that β indeed shows more observations on the left
side of the histogram and tr shows a relatively large number of seeds with extremely short repair
times.

From a biological point of view a small repair time means that the seeds start growing
almost immediately which should result in oxygen consumption curves that start descending
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right away. But taken separately these curves turn out to be quite ordinary compared to the
total batch. This could indicate the extremely small values arise from a local minimum and are
not the parameter values consistent with a global minimum. Hence we followed the procedure
explained in the previous subsection and widely differed the initial values for tr. Despite the
fact that the resulting histograms for tr are slightly different we keep ending up with a spike
for extremely small values and thereby we can conclude that the small tr values are no artifact
of minimization. There are some remarks to be made about the curves corresponding to these
small repair times. Firstly, none of the curves are part of the suspected class of dead/dormant
seeds discussed earlier, which means that our fit still makes some sense biologically speaking.
Secondly, the parameter β only takes on values from the left hand side of the histogram shown
in Figure 5.5 which could indicate some kind of relation between β and tr. Looking at the model
equation, Equation (4.8), we see that β and (cr−cmin) always appear as a product. So reduction
in tr, which leads to the growth of the factor cr, may indeed be compensated by a smaller factor
β. Unfortunately neither these two nor the remaining three parameters show any significant
mutual correlation. Lastly, during the analysis we could distinguish different shapes of curves
much easier than when we considered all the curves from one batch. Looking at the parameter
values it turned out that the parameters cmin and especially β play a significant role in the
eventual shape of the curve. From a biological view one expects a faster descending curve for a
larger β and the lower the oxygen level this curve is descending to is, the faster this minimum
value is reached. These expectations were shown to be true for these small values of tr but have
to be verified for all values of tr before we draw any conclusions. For the complete batch the
same kind of results were obtained with respect to the influence of β. The expected influence of
cmin however was not reflected by the results as seeds with approximately the same values for
β but smaller values for cmin did not reach this minimum faster in all cases. However the shape
of the curves if affected by cmin since cmin is highly related to the lowest measured oxygen level
which on its turn determines where the curve will end. Results of the different graph shapes are
shown in Figure 5.6.

As can be further observed from the rightmost histogram of Figure 5.5, neglecting the ex-
tremely small values, the main peak value of the repair time tr is around 12 hours. This result is
in agreement with the average time it takes mitochondria to develop cristae - folds of the inner
membrane characteristic of mature mitochondria (Carrie et al, 2012). This indicates the repair
process of a seed ends with the presence of full grown cristae and that these cristae are crucial
in the oxygen consumption, which makes sense given the fact that cristae increase the surface
of the inner mitochondrial membrane and thus the efficiency of oxygen uptake.

So far we haven’t discussed the outlying parameter values, but understanding where these
outliers originate from is an important aspect of understanding our model and the seed data.
Firstly, we look at the outliers of tr, or, specifically, all curves with tr > 50. Next to the expected
large amount of dormant/dead seeds we encounter several seeds with differently shaped curves.
These seeds consume much more oxygen during their long repair phase and seem to start growing
rapidly afterwards which is reflected by their large values for the growth parameter β. The
transition from the repair stage to the growth stage is indicated by a ‘bump’ in the oxygen
consumption curve. Is it likely that these seeds are possible of germination but mostly remain
in the repair phase too long to complete germination in the given time. Therefore they are not
actually dormant, but they do not seem to germinate in the given time either. How we classify
these and other non-dead and non-dormant seeds depends on our interpretation of the definition
of germination in terms of oxygen consumption curves. Is a seed for instance germinated if it
has depleted oxygen to almost its own minimal level, or does germination require a depletion
of oxygen below a certain fixed level? These classification issues will be discussed at the end of
this section.

Secondly, we consider the outliers of β, i.e. all curves with β > 0.5. These curves are shaped
just like the ones with large β we just encountered which means that this specific shape is more

18



determined by the value of β than by the value of tr. Once more the prominent influence of
β on the curve shape is made clear. Data and fitted curves corresponding to a selection of the
outliers are shown in Figure 5.7. Some of the data curves corresponding to large β values show
a lot of noise or weird jumps and therefore will be filtered from our seed batch which indicates
the importance of filtering to the reliability of our parameter statistics

So far no clear correlation between parameters has been found. Dividing the batch into two
or more classes based on seed/curve properties could shed more light on which parameter values
and combinations of them lead to a slow/fast germination and whether there is any correlation
between these parameters within classes. In the beginning of this subsection cend was proposed as
a classification criterion with a clear mark at 0.7 for this seed batch, separating the dead and part
of the dormant seeds from the rest of the seeds. Our expectation that this class contains large
values for tr and small values for β turns out to be true with a few exceptions, but since there are
only 35 seeds in this class we can’t draw any general conclusions. If such a clear mark for a large
value of cend also shows in the rest of the data batches and the associating parameters show the
same results, this classification is solid. Note however that the other data batches have smaller
observation times, meaning that their cend is defined as the normalized oxygen concentration at
a different, smaller time tend. This results in overall higher values for cend, causing the suspected
mark separating the dead (and dormant) seeds from the rest of the seeds to be higher as well.
Whether such a mark exist and if so at which level, will be discussed in the next section. That
leaves us to the rest of the seeds in this batch. Although they all deplete oxygen to a normalized
level below 0.7, they will not all germinate in the giving time and we are left with a class that
contains both germinating as non-germinating seeds. In addition, the latter consists of both
dormant and weak germinating seeds. Hence further classification is desired. Our hypothesis is
that cend could play a role in this classification as well. Or, more specifically, we believe that
there is a second mark, at some value of cend, separating the germinating seeds, i.e. both the
strong ones and the weak ones that do germinate in time, from the non germinating seeds, i.e.
both the dormant and weak germinating seeds that don’t finish germination in time. Based on
this hypothesis our interpretation of the definition of germinating seeds becomes “germinating
seeds are seeds that deplete oxygen below a certain level in the given time”. Whether or not this
hypothesis turns out to be true and what the concerning mark and corresponding time frame
are will be discussed in the next section where we regard results on all barley data.

This section discussed the implementation and results of our model applied to a batch of
1520 barley seeds. In the previous paragraphs some observations with corresponding hypothesis
or needed actions were posed. Firstly, it’s necessary to filter the results from bad fits to obtain
more reliable parameter statistics. Secondly we did not find any correlations between the fitting
parameters but we believe classification might help resolve this. Our hypothesis is that cend is
a good selection criterion for dividing our seed batch into (at least) the three following classes:

1. Dead/highly dormant seeds
2. Non-germinating seeds
3. Germinating seeds

The parameter statistics of these classes have to be analyzed to detect possible (cor)relations
and see if we can determine which properties cause slow/fast germination. The next section
addresses both the filtering and the classification.
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Figure 5.3: Normalized oxygen consumption data and fitting results for a batch of 1520 barley seeds.

Figure 5.4: Histograms of the three main parameters αn0, β and tr obtained by fitting the model on a
batch of 1520 barely seeds.

Figure 5.5: Zoomed-in histograms of the three main parameters αn0, β and tr.
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Figure 5.6: Different graph shapes showing the influence of β and cmin.

Figure 5.7: Oxygen consumption data and fitting curves corresponding to some of the extremely large
values for tr (at the top of the graph) and β (rest of the graph).
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6 Results on all barley data

The fitting algorithm described in the previous chapter is applied to all available barley data,
about 11.000 curves, resulting in the following parameter distributions:

Figure 6.1: Histograms and zoomed-in histograms of the three main parameters αn0, β and tr obtained
by fitting the model to the complete batch of 10.640 barley seeds.

Compared to the results on 1520 barley seeds all histograms are more right-skewed, especially
those of αn0 and β. The skewness of αn0 even changed from 1.36 to 14.67. Around the mode
all histograms have smoothed, as one would expect when increasing the sample size. This part
of the histogram of β is more bell shaped than before and has an obvious spike for small values.
For tr the spike for small values already noted in the previous section, is even more significant
and the histogram shows more observations to the left of the mode than before. Neglecting the
extremely small values, the main peak is around 10 hours, which is a little smaller than the 12
hours discovered in the previous section. This could indicate that the cristae don’t have to be
full grown but just highly developed for the repair process to end.

Further observations about the parameter distributions will be made after filtering the bad
fits and unreliable predictions from our obtained results. Subsequently we will treat the classi-
fication method as posed in the previous section.

6.1 Filtering

6.1.1 Filtering bad fits

By filtering the bad fits from our results we hope to obtain more reliable parameter statistics and
perhaps get rid of some of the extreme values on the way. Bad fits are fits where the estimated
values deviate too much from the original data. Therefore, in order to detect these bad fits,
we have to look at the residuals. In case of a good fit, where the estimation is very close tot
the original data, the residuals will be concentrated around zero. The worse the fit gets, the
more large residuals will emerge and the larger the variance will become. Residuals concentrated
around a point far away from zero, indicating that the errors tend to one side of the data curve,
could also indicate a bad fit. The latter happens rarely as we will see in this section.
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Detecting bad fits thus comes down to finding the fits with residuals that have a large
variance, which is the same as a large RMSE value (see Section 5.2), or a large absolute mean.
The variances of our complete batch are concentrated around 0.45 and vary up to a value of 79.
A histogram of the biggest part of the values, up to the observations equal to two, is shown in
Figure 6.2.

Figure 6.2: Histogram of the variance of the residuals showing a around the mode of 0.45.

Looking at the data curves compared to their fitted curve corresponding to large variances,
we’ve concluded that twice the mean of all variances (≈ 0.9) is a good threshold for distinguishing
between the good and the bad fits. This results in 384 bad fits, which is about 3.1% of the batch.
The (absolute) means of the residuals are concentrated around zero and vary up to 0.18. All
the fits belonging to large means that also visually give bad fits are already classified as bad fits
based on the large variance of their residuals. Therefore we discard the mean of the residuals as
an indication and only use the variance to detect bad fits.

In detecting the bad fits it became clear that there are three possible reasons for the fitting
algorithm to deliver a bad fit:

1. The seed data contains a lot of noise.
2. The seed data contains weird jumps.
3. The seed data does not contain a lot of noise or weird jumps but the model delivers a bad

fit anyway.
The latter means that the model equation is inadequate, i.e. the fitting algorithm is simply
unable to estimate the observed data closely under the given model equation. Furthermore, the
three reasons are not mutually exclusive.

Residuals have both a random component caused by for example measurement errors or
noise, and a systematic component caused by for example inadequacy of the model equation.
Assuming that the noise we’re dealing with is in fact randomly distributed, the residuals of bad
fits due to the first reason will deal with a large random component. The second and third
reason on the other hand give rise to a larger systematic component in the residuals.

In cases like noise, a single measured value is often regarded as the weighted average of a
large number of small effects. Using generalizations of the Central Limit Theorem, stating that
the distribution of the sum of a large number of random variables will tend towards a normal
distribution, we expect that this would often (though not always) produce a final distribution
of residuals that is approximately normal. Therefore we expect it to be very likely that the
distribution of the residuals of a good fit, with only a small random noise component, resembles
a normal distribution with a mean close to zero and a very small variance. If a systematic error
is introduced then we expect it to become less likely that the distribution will resemble a normal
distribution. These expectations are shown to be true in the subsequent part of this section.

By looking at the curves and corresponding histograms of the residuals, shown in Figure 6.3,
we can clearly see the difference between good and bad fits. (Note that the scale of the x-axis
is smaller for the histogram of the good fit.) Additionally, the histogram of the good fit shows
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a resemblance to the normal distribution, as expected. To quantify this resemblance we use
the Jarque-Bera (JB) test. This is a goodness-of-fit test of whether the sample data have the
skewness and kurtosis matching a normal distribution. Skewness is a measure of the asymmetry
of the probability distribution of a real valued random variable about its mean and kurtosis is
a measure of the “peakedness” of the probability distribution of a real-valued random variable.
Samples from a normal distribution have an expected skewness of zero and an expected kurtosis
of 3. The test assumes that the data originates from a normal distribution with unknown mean
and variance (the null hypothesis) and calculates the probability of obtaining the given data or
even “worse” data, under this assumption. “Worse” in this case means even further away from
the null hypothesis and closer to the alternative hypothesis that the data does not originate from
a normal distribution. If this probability, also called p-value, is smaller than the significance level
of 0.05 then the null hypothesis is rejected and we can assume that the underlying distribution
is not a normal distribution. If the p-value is not less than 0.05 then the test has no result and
we have insufficient evidence to conclude that the underlying distribution is indeed a normal
distribution. However, the larger this p-value is, the more likely it becomes that our distribution
resembles a normal distribution. The result for the good fit is a p-value of approximately 0.82
and corresponding skewness and kurtosis values of 0.0022 and 3.26 and therefore it is indeed
likely that the residuals of a good fit resemble a normal distribution.

Comparing the histogram of the good fit to the histogram of the bad fit caused by a lot
of noise, we observe a similar resemblance to the normal distribution. This is also reflected
in the JB test statistics showing a p-value of 0.83 and a skewness and kurtosis of -0.0606 and
3.21 respectively. The fact that the distributions of this good and bad fit show resemblance is
not strange considering the residuals of both fits arise mostly from noise in the data. The only
difference is the amount of noise, which is reflected by a larger variance and doesn’t change the
shape of the distribution.

In the third bad fit a small overall systematic error is introduced caused by the inadequacy of
our model. This systematic error increases (respectively decreases) the residuals that are already
present due to noise. In the histogram this is reflected by a gap for residuals around zero, two
spikes for values close to zero and a larger spread. While the skewness of the distribution
remains close to zero, attaining a value of 0.0077, the kurtosis becomes much smaller than 3 due
to the spikes, attaining a value of 2.19. Therefore it is less likely that this distribution resembles
a normal distribution, as anticipated. This claim is supported by the JB test, resulting in a
p-value of 0.11. The larger the overall systematic error is, the lower the kurtosis will become,
eventually leading to rejection of the null-hypothesis. If the (large) systematic error tends to
one side of the data, then the skewness will increase which will also lead to rejection of the
null-hypothesis. This is the case with the second bad fit, showing a locally large systematic
error caused by a weird ‘jump’ in the data. Though the resulting residuals have larger positive
values, the amount of negative values is much higher, causing the distribution to be right-skewed.
Skewness and kurtosis attain values of 0.8939 and 2.78 and the JB test rejects the hypothesis
that this data originates from a normal distribution with a very small p-value of 0.0036.

We can conclude that histograms corresponding to either a good fit or a bad fit solely due
to a large amount of noise, will likely resemble a normal distribution. This shows the beauty of
data fitting: that a random measurement error, in this case noise, has no influence on the quality
of the resulting fit. Therefore these fits can not in fact be qualified as bad fits and they will be
returned to the batch of good fits. The histograms corresponding to bad fits caused by model
errors show less resemblance to the normal distribution due to a higher skewness and/or lower
kurtosis. In case of a jump in the data, the resemblance to a normal distribution is completely
gone and we’re dealing with a very high skewness and/or very low kurtosis. Therefore we can
easily separate the jumpy data from the other bad fits. Distinguishing between the noised data
and the inadequate model is much harder, especially when last two reasons are slightly combined.
However, comparing the corresponding p-values gives the desired result in most cases.
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In this subsection we’ve shown that bad fits can be filtered from our data by looking at both
the distribution and corresponding variance of their residuals. This resulted in the following two
criteria for detecting a bad fit:

1. The variance is higher than twice the mean of the variances of all residuals.
2. The result of the JB test is equal to one, rejecting the hypothesis that the distribution is

normal, or equal to zero with a corresponding p-value lower than 0.55, making it not likely
enough that the distribution is normal.

These two criteria result in 308 bad fits, which is about 2.9% of the batch. Filtering the bad fits
results in more reliable parameter values. The histograms of the parameter values after filtering
are similar to the ones for the complete batch, showed in 6.1, and therefore the new histograms
are not yet displayed and we will continue the filtering first.

Figure 6.3: Curves and corresponding histograms of the three types of bad fits compared to those of a
good fit.

6.1.2 Filtering unreliable predictions

The hypothesis from the previous section is that our seed batch can be divided into (at least)
three different classes based on the normalized oxygen concentration at the end of the observation
time, cend. Since all batches have different observation times, we cannot compare their cend

directly but have to extrapolate the fitted results to a general observation time first. In Section
2 it was noted that in order to obtain a complete picture of the seed germination, approximately
two days were needed. Therefore we extrapolate, if necessary, to 48 hours. This extrapolation
is carried out by evaluating the fitted result at a vector of values running from tend to 48
hours, where tend is the original observation time of the measurements. Extrapolation is subject
to greater uncertainty and a higher risk of producing meaningless results, therefore prediction
intervals of the extrapolated values have to be taken into account before drawing any conclusions.
A prediction interval is an estimate of an interval in which future values will fall, with a certain
probability, given what has already been observed. Hence an extremely wide 95% prediction
interval around the estimated concentration cend, means that the value of this concentration is
very unreliable. Looking at the original observation times of all seven batches, a time of only
21 hours is observed in case of the third batch. Due to this low observation time, there are very
little data points available. Although the resulting fit might be very close to the original data,
both the confidence intervals of the estimated parameters and the prediction intervals of the
estimated function values are very wide due to this small amount of data points (in some cases
even tenth orders of magnitude wider than for the other batches). This causes the estimated
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parameters and function values to be already very unreliable. Extrapolation will only introduce
more uncertainty en therefore we remove these seeds are removed from our batch.

But besides these seeds, extrapolation can also cause a huge uncertainty for more reliable fits
with observation times closer to 48 hours. Therefore we also discard the seeds with a very wide
prediction interval for the value of cend and seeds for which the the extrapolation drastically
enlarges this interval. An example is shown in Figure 6.4 where the data and extrapolated fit
are shown together with the prediction bounds of the fitted curve. The prediction bounds were
constructed using the predint function in Matlab.

Figure 6.4: Data and corresponding fitted result extrapolated to 48 hours with a 95% prediction interval,
showing the unreliability of the extrapolated value for cend.

After filtering the bad fits and unreliable predictions we are left with a batch of 8551 barley
seeds with parameter distributions shown in Figure 6.5. Compared to unfiltered results we see
that αn0 shows less observations for large values and also β and tr have lost some of their
extremely large values. The peak for small values of tr is a little less high, but besides that the
overall shapes of the distributions remained the same.

Figure 6.5: Histograms and zoomed-in histograms of the three main parameters αn0, β and tr obtained
by filtering the fitted results, leaving us with a batch of 8.551 barley seeds.
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Filtering the bad fits and unreliable parameters showed us that some of the observed extreme
parameter values were caused by our fitting algorithm or deviations in the seed data. Some of
the extreme values are however still present, meaning that they could in fact have a biological
meaning. In the next section an attempt is made to divide our seed batch into different classes
with the goal to show (cor)relations between parameters and indicate which combination of
parameter values causes fast/slow germination.

6.2 Classification

The total batch of barley seeds has now been reduced to a smaller batch with more reliable
parameters and values for cend, the normalized concentration at t = 48 hours. On this batch the
classification proposed in Section 5 is performed. The hypothesis was that cend could be used
as a classification parameter, splitting our batch into (at least) the following three classes:

1. Dead and highly dormant seeds.
2. Non-germinating seeds

The rest of the dormant seeds and weak germinators that don’t germinate within the given
time of 48 hours.

3. Germinating steeds
Strong germinators and weak germinators that do germinate within the given time of 48
hours.

This separation, and the separation between the first and second class in particular, originated
from the clear gap between the normalized end concentrations in batch 2. Looking at the
histogram of cend for the complete batch shown in Figure 6.6, we do not observe a similar gap
around a large value but only a slight decrease in the amount of observations around 0.87. This
means that the reason to split the dormant seeds over two classes disappears and we will start
by focusing on the classification between germinating and non-germinating seeds. Afterwards
we discuss the possibilities of achieving the following sub-classification:

1. Non-germinating seeds
(a) Dead seeds
(b) Dormant seeds
(c) Weak germinators that don’t germinate within the given time

2. Germinating seeds

(a) Weak germinators that do germinate within the given time

(b) Strong germinators

based on the different seed types mentioned in Section 2. In the ideal case, each subclass has
its own specific parameter distribution or a distinct characteristic separating its seeds from the
seeds in other classes. We will thus take a close look at the parameter distributions and possible
(cor)relations between parameters in each classification attempt.

6.2.1 Germinating versus non-germinating seeds

In Section 5 the following interpretation of the definition of germination was given: “germinating
seeds are seeds that deplete oxygen below a certain level in the given time”. The given time has
already been set at 48 hours, so that leaves the oxygen level. In the literature, the only relation
between the oxygen consumption curve and the time of germination is given by the relative
germination time (RGT) described in Section 4.2. However, the RGT value can be the same for
seeds with very different oxygen consumption patterns that certainly do not germinate at the
same time. The relative germiniation time is therefore of no use in our classification problem.
As an example two of those curves with the same RGT value are shown in Figure 6.7.
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Figure 6.6: Histogram of cend, the estimated normalized oxygen level at t = 48 hours, for the complete
batch of 8551 barley seeds.

Figure 6.7: Data and corresponding fitted result of two seeds with the same RGT value but a completely
different oxygen consumption pattern.

Since this was the only lead to finding a link between the time of germination and the
normalized oxygen level, we will now have to determine the threshold separating the germinating
from the non germinating seeds by considering several values for cend and comparing the results.
Intuitively the threshold must be chosen closer to zero than to one and we must make sure that
the amount of germinating versus non germinating seeds remains realistic. For instance, a 95%
germination in the given time is not really realistic given the wide spread of oxygen consumption
patterns in the batch. Therefore the maximum threshold is set at cend = 0.25, meaning that a
seed has to consume 75% of the available oxygen in order to germinate. In this batch 80% of
the seeds suffices that condition. On the other hand the threshold can’t be too close to zero
either, meaning that almost no seeds germinate in the given time. The minimum threshold is
thus set at cend = 0.05 resulting in a 18% germination. The goal of classification is to gain more
insight in the influence of parameter values on germination and finding possible (cor)relations
between these parameters. Therefore we regard both the distributions as the scatter plots of all
parameters, while we vary the level of cend.

Overall we can conclude that there is more correlation between parameters in the germinating
class compared to the complete batch showing no correlation at all, see Figure 6.9. Changing
the threshold defining this germinating class however, does not make much of a difference to
either the shape of the parameter distributions or the correlation between them. Therefore we
set the threshold separating the germinating from the non germinating seeds at 0.173, which
is equal to the mean of cend, resulting in a 70% germination. Corresponding scatter plots and
parameter distributions are shown in see Figure 6.8. The correlations between the parameters
seem to be all slightly positive, but no clear relationship can be derived from the scatter plots.
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The non germinating seeds show practically the same plots as the total batch of seeds, meaning
that there is no correlation at all between parameters in the non germinating class.

Looking at the parameter values of the germinating and non germinating seeds, which are
more clearly shown in Figure 6.10, we see that the non germinating class contains most large
parameter values, especially for tr. The distributions of the germinating class slightly resemble
the distributions of the parameters of the complete batch around the mode, Figure 6.5. The
clear difference is the large amount of observations for small β values in the complete batch. This
makes sense given the fact that a small β indicates a slow growth and therefore makes it less likely
that the seed is able to deplete oxygen below the level of 0.173 in the given time. Furthermore
it seems like both αn0 and β could be normally or log-normally distributed. Unfortunately, the
JB test rejects the null-hypothesis in all cases, meaning that none of these assumptions turn
out to be true. The non germinating parameter distributions resemble those of the complete
batch, which calls for further investigation. In the following two subsections both the class of
germinating seeds as the class of non germinating seeds will be further investigated.

Figure 6.8: Scatter plots and histograms of the parameters from the germinating class.
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Figure 6.9: Scatter plots and histograms of the parameters from all the seeds in the batch.

Figure 6.10: Histograms of the three main parameters for both the germinating and the non germinating
seeds.
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6.2.2 Germinating seeds

As suggested in Section 2, there are two types of germinating seeds, strong germinators and
weak germinators. The difference between them is that strong germinators show a sigmoid type
of oxygen consumption pattern while weak germinators show a linear or incomplete pattern.
Distinguishing between these two thus comes down to finding a parameter or parameter com-
binations that divide(s) our class into two groups, based on the shape of the oxygen curve. As
mentioned in Section 5.3 this is very hard to accomplish and a split based on cend is proposed.
However this does not give the desired results as the curve shapes are spread trough-out both
groups. Therefore we return to the three main parameters to see if one these can be used as a
classification parameter.

In Section 5 the significant role of β in determining the shape of the oxygen curve became
apparent. And indeed, distinguishing between large and small β, the group of small β shows
more ‘flat’ curves while the group of large β consists of mostly sigmoid type curves. Two
examples are shown in Figure 6.11.

Figure 6.11: Oxygen consumption patterns of two seeds with different values for β, showing a clear
difference in shape.

However, this clear separation only holds for extremely large and extremely small values for
β. For all the values around the mean of β, the curves can have either of the two shapes or a
shape somewhere in between. Here lies the problem in classifying oxygen consumption curves
based on shape that was already mentioned in Section 5.3. A clear split between shapes in a
batch of thousands of seeds is highly unlikely. Furthermore the extreme small values of β occur
in conjunction with small values of tr and the same holds for the large values. This shows the
slight correlation between the parameters that was already showed in the previous sections.

Although a clear separation is not possible, we showed that the value of β gives a good
indication in whether a germinating seed is a strong or a weak germinator.

6.2.3 Non germinating seeds

The class of non germinating seeds by definition consists of the following three types of seeds:
dead seeds, dormant seeds and weak germinating seeds. The difference between dead seeds and
the other two is that dead seeds do not deplete oxygen at all, while the other two do. Dormant
seeds only consume a small constant amount of oxygen while weak germinators have a wide
range of possible oxygen consumption patterns, varying from a linear one up to an unfinished
sigmoid one.

In Section 5.3 the value of cend was chosen to separate the dead and part of the dormant
seeds from the rest of the batch. In this case there was no clear mark for cend and since we
are more interested in keeping all the dormant seeds together, we will look for other separation
criteria first. Considering the parameter distributions of the non-germinating seeds shown at the
top of Figure 6.10, tr seems like an interesting parameter with regard to splitting up the batch
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into several groups. Since tr has the most influence on the repair stage and not so much on the
growth stage, and given that tr is not even slightly correlated to one of the other parameters, we
have to take another parameter into account that regulates the growth stage of the germination
process. Therefore we will look for combinations of tr and β.

First we use tr = tend = 48 as a threshold. We expect all seeds with a repair time larger
than tend to be either dead or dormant. However, this turns out to be false because not all of
the seeds show a linear oxygen consumption pattern. The seeds that don’t do not belong to
the class of dead or dormant seeds but to the class of weak germinators. Further classification
is needed to isolate the dead and dormant seeds. Here the growth parameter β steps in. As it
turns out, all dead and dormant seeds are consistent with a small value for β, as was expected
in Section 5.3. This makes sense since both types of seeds show no growth at all during the
given observation time. Now that we’ve isolated the dead and dormant curves, we can easily
distinguish between them by using cend. Seeds that hardly deplete any oxygen and therefore
have a high value for cend (> 0.9) are dead and seeds that deplete more oxygen are dormant.

The hereby selected curves of both the dead and dormant seeds are shown in Figure 6.12.
One of these curves shows an exponential depletion of oxygen. This is the only curve in the
entire batch having a very large value for αn0, meaning that the seed rapidly depletes oxygen
during the repair stage but practically stops depleting oxygen afterwards. This is a unique case
that can not be put in any class based on shape, but comes closest to a dormant seed based on
the definition.

Since we have now isolated all dead and dormant seeds, the remaining seeds must be weak
germinators. These weak germinators have a wide variety of oxygen consumption patterns and
therefore also take on a wide spread of variables. Their mutual correlation however did slightly
improve compared to the correlation of the parameters of all non germinating seeds as can be
seen in Figure 6.13.

Figure 6.12: Fitted curves of both dead and dormant seeds.
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Figure 6.13: Scatter plots and histograms of the parameters from the weak germinators in the non
germinating class.

6.2.4 Conclusion Classification

The classification attempts in the previous subsections have lead to the following three discussed
classes

1. Germinating seeds
2. Non germinating seeds (These are the weak germinators that are able to germinate, but

not in the given observation time)
3. Dead and Dormant seeds

Histograms of the parameters of all three classes are shown in Figure 6.14. The histograms of
αn0 of both the germinating and the non germinating class seem similarly shaped, which could
indicate that variation in αn0 is mostly caused by a large amount of statistical factors that
are practically the same in both classes. Furthermore the germinating seeds have less skewed
distributions compared to the non germinating seeds, which shows that our threshold for cend

also “bounds” our parameters. Compared to the total batch, correlations between parameters
in the classes have improved, but still no really clear correlations were found.

In discussing the germinating batch, we concluded that distinguishing between slow and fast
germinators is extremely hard, but that the value of β gives a good indication. In the non
germinating class β was also used but this time in combination with tr to separate the dead
and dormant seeds from the rest of the batch. We can thus conclude that the course of the
germination process is highly determined by values of the parameters tr and β. For example, a
seed with a large β and an average tr is more likely to germinate in the given time than a seed
with a small β and an average tr.

All observations have pointed out that a clear classification based on cend is very hard to
achieve. However we can conclude that some combinations of β, tr and cmin are more likely to
result in germinating seeds than other and therefore these three values have to be watched very
closely.
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Figure 6.14: Histograms of the parameters for the three different classes.
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7 Volume predictions

In the previous sections, a model for oxygen consumption and growth in closed test tubes was
proposed and fitted to a large amount of experimental data. All experiments were performed
with equally sized test tubes and (almost) equally sized seeds. Therefore the influence of the
seed volume and test tube volume were not taken into account. However, both volumes do
influence the germination process as will be showed in this section.

Define the test tube volume as V1 with oxygen concentration c1(t) and the seed volume
as V2 with oxygen concentration c2(t). The oxygen measured concentration is c1(t) but we
are interested in c2(t), the oxygen used by the seed. According to the Henry law, mentioned
in Section 3, the concentration of oxygen inside the test tube is proportional to the oxygen
concentration inside the seed:

c1(t) = kH,cc · c2(t),

where kH,cc is the Henry constant, from now on referred to as k. Differentiating the above
equation with respect to t results in

dc1

dt
= k

dc2

dt
. (7.1)

Furthermore we have conservation of mass, meaning that all oxygen consumed in V1 has to come
from V2:

d

dt
m1

∣∣∣∣
V1

=
d

dt
m2

∣∣∣∣
V2

d

dt
(V1 c1) =

d

dt
(V2 c2), (7.2)

where m1 and m2 are the total masses of oxygen in respectively V1 and V2.
Assuming the volume changes caused by growth of the seed are very small and very slow,

we can say that both volumes remain constant over a small period of time and Equation (7.2)
can be written as:

V1
dc1

dt
= V2

dc2

dt
. (7.3)

The equation for oxygen consumption inside the seed, dc2
dt , discussed in Section 4 is given by:

dc2

dt
= −αn(c2 − cmin).

Substituting this results in

V1
dc1

dt
= −V2αn(c2 − cmin).

After applying the Henry from Equation (7.1), we end up with an equation only containing c2:

V1k
dc2

dt
= −V2αn(c2 − cmin),

resulting in the following equation for the oxygen consumption of the seed

dc2

dt
= −α V2

kV1
n(c2 − cmin). (7.4)

We see that both volumes are taken into account by the change of the oxygen consumption rate
from α to α V2

kV1
. Increasing the size of the test tube causes an increase in V1 resulting in a lower

oxygen consumption rate.
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Since V2
kV1

is a constant, we can easily find the analytical solution by simply substituting α V2
kV1

for α in Equation (4.8). Therefore the predicted oxygen consumption curves, when changing the
test tube volume, can be obtained by adjusting the fitted parameter results for α for all seeds.
Of course, the prediction intervals, with respect to α, of these estimated results have to be taken
into account to check the reliability of these predictions.

Similarly we can we can predict the possible oxygen consumption patterns for larger seeds,
i.e. larger V1, in the same test tubes. Since Fytagoras has carried out the single seed oxygen
consumption measurements, under the same conditions, on other seeds besides barley, there
is some data available to investigate the validity of these predictions. Unfortunately, we were
unable to include this in this thesis, so this will be regarded as further research.
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8 Conclusion and discussion

The main goal in this thesis was to develop a mathematical model describing the oxygen trans-
port and consumption within germinating seeds. It had to be in line with the current biological
knowledge on these processes and the highly detailed time-resolved oxygen consumption mea-
surements for single seeds, obtained with Q2 measuring technology. This should allow interpre-
tation of the observed data and characteristic in terms of internal oxygen transport processes
and overall seed properties.

In developing this model, the basic premise is that most of the oxygen is being consumed by
the mitochondria and that they largely behave as a colony of bacteria. Also, by the Henry law,
we can assume that the oxygen concentration inside the seed is uniform at all times resulting in
the assumption that the complex processes of transport and diffusion of oxygen can be neglected.
Based on these assumptions a simple ODE model is developed, relating the measured oxygen
concentration to the number of active mitochondria. The model splits the germination process
into two stages, an initial repair stage and a subsequent growth stage.

An analytical solution is obtained and fitted to the experimental data using a standard
nonlinear least squares optimization algorithm in Matlab. It turns out that the simple two-stage
model provides excellent fits for the experimental data. Furthermore, the fit results in several
biologically interesting parameters of which the main three are the oxygen consumption rate by
mitochondria times the initial amount of mitochondria, the growth rate of the mitochondrial
population and the duration of the repair stage. Especially the last two parameters have a
large influence on the oxygen consumption pattern of a seed. The longer the duration of the
repair stage, the less likely it becomes that the seed will germinate during the given observation
time. Similarly, the higher the growth parameter is, the more likely it becomes for the seed to
germinate in the given time. Furthermore our experiments show a large peak for small repair
times and, discarding this peak, a mean of about 10 hours, which is close to the previously
discussed time of 12 hours when mitochondria contain fully developed cristae.

Initial results also show that filtering is necessary in order to obtain more reliable parameter
statistics. This is done in two different ways, firstly by removing the bad fits and secondly by
removing the unreliable predictions for the normalized concentration at t = 48 hours, cend. The
reliable predictions for cend are used in the classification, which attempts to divide the seed batch
into different classes, each with their own characteristic properties. Results show that a clear
separation between these classes is hard to accomplish. However, the parameters in the class of
germinating seeds, i.e. seeds that deplete oxygen to a level below the mean of the normalized
end concentration at t = 48 hours, show more correlation compared to the parameters of the
total batch and are therefore biologically interesting to investigate. Next to this the parameters
attain values from a more restricted range, meaning the all the outlying parameter values are
found in the non germinating class.

The definition for germinating seeds used here, is our interpretation of the general definition
of germination in terms of oxygen consumption. Whether this definition coincides with the
actual occurrence of germination is unknown. Therefore determining a correct definition of
germination in terms of oxygen consumption curves, with the use of observations, would greatly
contribute to the classification issue and help us in determining what exact combinations of
parameters cause a fast/slow germination. For now all we can say is that seeds with certain
combinations of β, tr and probably cend are more likely to germinate than seeds with other
combinations. Here a large β, small tr and small cend are in favour of germination.

For research into the influence of the volumes of both the seed and test tube, an adjusted
model is proposed with a new oxygen consumption rate containing α, both volumes and the
Henry constant k. This model can be used to predict the effect of changing one of these vol-
umes, to the oxygen consumption patterns. These predictions should afterwards be validated
by comparing it to experimental data.

37



References

[1] J.D. Bewley, K. J. Bradford, H.W.M. Hilhorst, and H. Nonogaki. Seeds: Physiology of
development, germination and dormancy. 3rd Edition, Springer, New York, Heidelberg,
Dordrecht, London (2013).

[2] J. Van Asbrouck and P. Taridno. Using the single seed oxygen consumption measurements
as a method for determination of different seed quality parameters for commercial tomato
seed samples, Asian Journal of Food and Agro-Industry, (2009), pp. S88-S95.

[3] K. J. Bradford, P. Bello, J.-C. Fu, and M. Barros Single-seed respiration: a new method to
assess seed quality, Seed Science and Technology, 41 (2013), pp. 45-54.

[4] http://opencurriculum.org/5358/cell-transport-and-homeostasis/

[5] L. Margulis Symbiosis in cell evolution. 2nd Edition, W.H. Freeman, San Francisco, (1993),
pp. 452

[6] W. Henry Experiments on the Quantity of Gases Absorbed by Water, at Different Tem-
peratures, and under Different Pressures, Philosophical Transactions of the Royal Society
(London), No. 93, pp.29–274

[7] H.C. Gerritsen, R. Sanders, A. Draaijer, C. Ince, and Y.K. Levine Fluorescence lifetime
imaging of oxygen in living cells, Journal of Fluorescence, 7 (1997), no. 1, pp. 11-15.

[8] N. Collis-George, and M.D. Melville Models of oxygen diffusion in respiring seed, J. Exp.
Botany, 25 (1974), No. 89, pp. 1053-1069.

[9] K.E. Dionne Oxygen transport to respiring myocytes, J. Biol. Chem., 265 (1990), pp. 15400-
15402.

[10] N. Budko, A. Corbetta, B. van Duijn, S. Hille, O. Krehel, V. Rottschëafer, L. Wiegman,
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A Derivation of Equation (4.6)

We ended up with

dc

dt
= βc(c− c̃), c(tr) = cr,

where c̃ = cr + αn0/β.
Now separation of variables results in:

1

c(c− c̃)
dc = β dt

which is the same as

−1

c̃

(
1

c
− 1

c− c̃

)
dc = β dt.

Integrate both parts to obtain

−1

c̃
(log(c)− log(c− c̃)) = βt+ C0

log(c)− log(c− c̃) = −c̃βt+ C0

elog(c)−log(c−c̃) = C0 · e−c̃βt
c

c− c̃
= C0 · e−c̃βt

c = C0 · (c− c̃)e−c̃βt

where C0 is an arbitrary constant. We write this in the form c(t) equals some function of t:

(1− C0 e
−c̃βt) c(t) = −C0 c̃e

−c̃βt

c(t) =
−C0 c̃e

−c̃βt

1− C0 e−c̃βt

c(t) =
c̃

1− 1
C0
ec̃βt

.

To obtain an expression for the constant in the equation above we substitute c(tr) = cr:

cr =
c̃

1− 1
C0
ec̃βtr

1− 1

C0
ec̃βtr =

c̃

cr
= 1 +

αn0

crβ

− 1

C0
=
αn0

crβ
e−c̃βtr

C0 = − crβ
αn0

ec̃βtr

Substituting our constant and the expression for c̃, we arrive at our solution:

c(t) =
cr + αn0

β

1 + αn0
βcr

e(crβ+αn0)(t−tr)

=
cr(βcr + αn0)

βcr + αn0 e(βcr+αn0)(t−tr)
, t > tr
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B Matlab code

B.1 FitAllData.m

clear all;
clc;

load('AllBarleyData.mat','Data','Time');

[Nsamp,Nexp]=size(Data);

% Initial parameter values
x0=[0.06 0.02 29 0.1 0.6 0.1];
x1=x0;
x1(end)=20;

aFit=zeros(Nexp,1);
bFit=zeros(Nexp,1);
c 0Fit=zeros(Nexp,1);
c mFit=zeros(Nexp,1);
n 0Fit=zeros(Nexp,1);
t rFit=zeros(Nexp,1);
dataFit=NaN(Nsamp,Nexp);
RMSE=NaN(Nexp,1);
Rsquare=NaN(Nexp,1);
residuals=NaN(Nsamp,Nexp);

%% Fit
for i=1:Nexp

t=Time(:,ceil(i./95));
t(isnan(t))=[];
ydata = Data(:,i);
ydata(isnan(ydata))=[];
t(size(ydata)+1:end)=[];

if isempty(ydata)==0
% Comparing the quality of the fits under both initial conditions
[fitresult1,gof1,output1] = createFit(t, ydata, x0);
[fitresult2,gof2,output2] = createFit(t, ydata, x1);
if gof1.rmse <= gof2.rmse

fitresult=fitresult1;
gof=gof1;
output=output1;

elseif gof1.rmse>gof2.rmse
fitresult=fitresult2;
gof=gof2;
output=output2;

end
% Save the fitting results
aFit(i)=fitresult.a; % fitted value alpha
bFit(i)=fitresult.b; % fitted value beta
c 0Fit(i)=fitresult.c 0;
c mFit(i)=fitresult.c m; % fitted value c m
n 0Fit(i)=fitresult.n 0; % fitted value n 0
t rFit(i)=fitresult.t r; % fitted value t r
dataFit(1:length(ydata),i)=fitresult(t);
RMSE(i)=gof.rmse;
Rsquare(i)=gof.rsquare;
residuals(1:length(ydata),i)=output.residuals;

end
end
alpha=aFit.*n 0Fit;
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%% Normalize the data and corresponding fits
Data2=bsxfun(@rdivide, Data(1:end,:),Data(1,:));
dataFit2=bsxfun(@rdivide, dataFit(1:end,:),Data(1,:));

B.2 createFit.m

function [fitresult, gof, output] = createFit(time, expdata, x0)
%CREATEFITS(TIME,EXPDATA)
% Data for 'untitled fit 1' fit:
% X Input : time
% Y Output: expdata

% Output:
% fitresult : a cell−array of fit objects representing the fits.
% gof : structure array with goodness−of fit info.
%
% See also FIT, CFIT, SFIT.

%% Fit: 'Create fit'.
[xData, yData] = prepareCurveData(time, expdata);

% Set up fittype and options.
ft = fittype('ModelEquation(time,a,b,c 0,c m,n 0,t r)',...

'independent', 'time', 'dependent', 'y' );
opts = fitoptions( ft );
opts.Display = 'Off';
opts.StartPoint = x0; % Initial parameter values
opts.Lower = [0 0 0 0 0 0]; % Lower Bound
opts.Upper = [1.5 20 500 1.1 1.5 160]; % Upper Bound
opts.TolFun = 1e−08; % Tolerance model function
opts.TolX = 1e−08; % Tolerance paramaters

% Fit model to data.
[fitresult, gof, output] = fit(xData, yData, ft, opts);

B.3 ModelEquation.m

function f = ModelEquation(x,a,b,c 0,c m,n 0,t r)
f=zeros(size(x));
c r=c m+(1−c m)*exp(−a*n 0*t r); % Concentration at the end of repair stage

for i = 1:length(x)
if x(i)<=t r; % Repair stage

f(i)=c 0*(c m+(1−c m)*exp(−a*n 0*x(i)));
else % Growth stage

f(i)=c 0*(c m+...
((c r−c m)*(b*(c r−c m)+a*n 0))/...
(b*(c r−c m)+a*n 0*exp((b*(c r−c m)+a*n 0)*(x(i)−t r))));

end
end
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