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Abstract add some hidden text here  

To reduce the environmental impact or cost of a civil engineering structure their designs are optimized. A 
promising method to optimize are iterative optimization algorithms. If both the design calculations and the 
iterative optimization algorithm are automated, an optimized design solution can be found within a feasible 
timeframe. To be able to automate the design calculations they need to be fully parameterizable. In this context 
it becomes interesting to research whether yet unparameterizable calculation processes can be made 
parameterizable. One of these processes is the determination of the locations in which the fatigue resistance has 
to be determined in a steel orthotropic bridge deck. This location is the location where the first fatigue crack is 
expected. Therefore, Antea Group requested if a study could be performed with the objective to answer the 
following research question: 

How can the determination of the location of the first fatigue crack in the deck, at a stiffener to deck plate 
weld toe, be parameterized? 

To answer the research question, the (in the Netherlands active) regulations are studied. Based on the 
regulations the process of determining fatigue damage of a point in the bridge can be understood. As well as the 
reason why, this process is too computational demanding and complex to be able to be applied to all points in 
all welds. 

In response to this an alternative method is proposed. This method reduces the complexity and the 
computational budget that is needed, by using 1D elements instead of the currently prescribed 2D elements. To 
determine if this method can be used it was decided to apply it on a case study. The bridge which served as the 
case study was the Goereese bridge. The alternative method was applied to determine the expected distribution 
of fatigue damages in all welds in the case study. Based on this obtained distribution a limited number of 
interesting locations in the deck could be identified. At these points to regulatory required method was used to 
obtain results which can be compared with the alternative method. 

It is concluded that the predicted location of the first fatigue crack of both methods is directly next to each other. 
However, the distribution of the remaining points suggest by the alternative method does not agree with the 
obtained results of the regulatory method. Remarkable enough, both these methods predict a location which is 
counter intuitive to the structural engineers participating in the research. 

Therefore, the following general recommendations are given: 
- Research if the regulatory method, to determine the location of the first fatigue crack, can be simplified. 
- Research the cause(s) of the differences between the regulatory method and the alternative method. 
- Increase the awareness of structural engineers regarding their intuition on the location of the first 

fatigue crack. 
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1 Introduction 

Background: 
Due to the rise of computers design calculations can be executed quicker and with less effort. This 

makes it possible to iteratively optimize designs. Recent experiences of Antea Group have shown 

that this can result in design solutions in which less materials are used, the costs are reduced 

and/or the environmental impact is lowered [1, 2]. Due to these successes Antea Group researches 

if the same method can be applied on more design calculations. An optimization algorithm can be 

applied if the design stage meets the following conditions: 

- The calculation related to each design solution takes a lot of time. Therefore, automating 

the calculation is likely to be worth the time and effort. 

- The (lawfully required) design calculations leave no room for interpretations of the 

structural engineer1. Therefore, they can be fully automated. 

- It is expected that the (lawfully required) design calculations will have no significant 

changes in the near future. Therefore, the automation and optimization algorithm are 

expected to be useful for a longer period. Thus, worth the time and effort to be 

implemented. 

- It is expected that current designs can be significantly improved. Therefore, the benefits 

of optimizing them are significant. 

Recently the department of waterways of the Netherlands (Rijkswaterstaat) updated the lawfully 

required design calculations on the determination of the fatigue resistance of steel orthotropic 

bridge decks [3]. Thereby significantly reducing the freedom of the structural engineering in the 

determination of the fatigue resistance of a bridge deck. As well as (assumably) setting a precedent 

of the required design calculations for the upcoming years. This means that all requirements are 

met for this design calculation. Thus, Antea Group would like to research if the design solution of 

a steel orthotropic bridge deck regarding the fatigue resistance can be optimized. 

This master thesis started with the goal to optimize the design of a steel orthotropic bridge deck 

regarding the fatigue resistance. However, during the research it was realized that the required 

design calculations are not yet defined strict enough to be able to be fully automized. To be able 

to optimize a design using an iterative optimization algorithm this will be necessary. Therefore, the 

goal changed to research the possibility to parametrize the design calculations regarding the 

fatigue resistance of steel orthotropic bridge decks. 

Problem: 

According to the Dutch regulations [3] the resistance of all points in all welds of a bridge has to be 

sufficient. Therefore, the stresses in all points in all welds due to all possible load combinations 

have to be determined. This takes a lot of computational power and will not be possible to do 

within a feasible time. As a result of this, only one point is usually analysed for each of the potential 

fatigue cracks (fatigue details [3]). For each of the fatigue details, the point chosen is the point 

where the highest fatigue damage is expected. In choosing this point a problem occurs. Since there 

is no parametrizable method to determine this point without doing a computational expensive 

calculation on all the points in all the welds. To be able to optimize a design with an iterative 

optimization algorithm this will be necessary. To remain within the scope of a master thesis this 

problem is researched for only one fatigue detail. This resulted in the following research question: 

How can the determination of the location of the first fatigue crack in the deck, at a stiffener to 

deck plate weld toe, be parameterized?  

 
1 This is freedom in the design calculations. Structural engineers, designers and architects do 
have freedom in the design itself. But, not on the calculations resulting from the design. 
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Scope 

To be able to perform the research some boundaries to the scope are necessary. For this research 

the Goereese bridge (51°49’27.5’’N 4°02’18.4’’E) acted as a case-study. A description of a model 

of the Goereese bridge is given in Chapter 3. 

The problem being researched in this report relates to the application of Dutch regulations. The 

scope of this research will be limited to the application of these regulations, it will not extend to 

potential changes in the regulations themselves. Therefore, all proposed methods in this research 

should be permissible according to the regulations. 

In the research question it is stated that the fatigue crack in the deck at a stiffener to deck plate 

weld toe is being researched. To determine if a bridge has enough fatigue resistance several other 

potential fatigue cracks need to be analysed [3]. These fatigue cracks all defined by their own 

fatigue detail. Since the Goereese bridge has continuous troughs a total of 16 fatigue details can 

be identified. There are several reasons to consider the fatigue detail researched in this report: 

- In this report a method is proposed which uses 1D elements (Chapter 4). The applied 

Timoshenko beam elements assume no internal deformation [4, 5, 6]. Therefore, the 

stresses occurring perpendicular on the cross section are most reliable. As a result of this 

it is decided not to research any fatigue cracks occurring in a direction which is not 

perpendicular to the cross section of the element in which the fatigue crack occurs. This 

leaves 7 potential fatigue details to be researched. 

- Since it is unknown where in the Goereese bridge the deck plate splice joints and the 

stiffener splice joints are, these cannot be used to apply the proposed method on. This 

leaves 4 potential fatigue details to be researched. 

- The proposed 1D elements method uses cross beams with constant cross section 

properties. In doing so it removes the cope holes from the cross beams, there by changing 

the troughs from being continuous to discontinuous. It is assumed that this could have an 

influence on the stresses found close to the troughs. But that this effect will be negligible 

for fatigue details not related to the cross beams. This leaves 2 potential fatigue details to 

be researched. 

- It is expected that any results of this research will have to be verified by experiments. To 

be able to do so the start of the first fatigue crack will have to be researched. Since fatigue 

cracks starting at the inside of a trough can only be located after they propagated through 

the entire element these fatigue cracks will be omitted. This leaves only one fatigue detail. 

The fatigue crack through the deck plate at a stiffener-to-deck plate weld toe (Figure 2). 

According to the Eurocode there is a double logarithmic relation between the value of a stress 

interval and the fatigue damage due to a stress interval (Figure 12). As a result of this it is assumed 

that the first fatigue crack will occur at the location of the highest expected stress interval. A 

discussion on this assumption is held in Chapter 9.1. 

Studies have shown that the highest stress values in the deck plate, at trough web-to-deck plate 

welds occur very close to the applied loads [7, 8]. The area significantly affected by a local wheel is 

about two to three trough webs. In the longitudinal direction the significant effects only occur at 

the loading area. Therefore, the influences of an axle positioned away from the considered location 

are neglected. As a results of this only the influences of individual axles are analysed. A discussion 

on this assumption can be found in Chapter 9.1. 
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If the location, in which the fatigue resistance has to be determined, is known, the process of 

determining the fatigue damage can start. In this process it is often the case that different influence 

lines are made of the stresses in the found location due to the different applied axles. Previously 

performed research shows that the compressive stresses found in the considered detail are up to 

8.75 times higher than the found tensile stresses [9]. According to the Eurocode [10] the fatigue 

damage due to a compressive stress is 60% of the fatigue damage due to a tensile stress of the 

same magnitude. To account for this, the compressive stresses are reduced by 40%. This would still 

result in the corrected compressive stress being up to 5.25 times higher than the maximum tensile 

stress. The results from this report were obtained via numerical experiments preformed on a sub-

model of an orthotopic steel bridge deck. More recent studies determined the stresses of this 

detail on a full-sized model which was in service during the determination of the stresses [11]. The 

results obtained with the full-scale model suggest that the maximum obtained compressive stress 

is approximately an order 4 times bigger than the maximum obtained tensile stress. Therefore, it 

is assumed that the considered fatigue detail will fail due to stress intervals mainly consisting out 

of compressive stresses. 

Reading guide 

Chapter 2 is a literature study in which the research problem is explored. Some assumptions are 

made based on the literature study resulting in a demarcation of the research. Chapter 3 looks at 

the problems occurring when a 3D model consisting out of 2D plate elements (without weld 

details) is used. After which Chapter 4 proposes and explains a 3D model with 1D beam elements 

to determine the point with the highest stress interval. Chapter 5 explains how 1D beam elements, 

can be solved analytically thereby having no mesh dependency. As a result of this the 3D model 

with 1D elements can be solved without mesh dependency. Chapter 6 makes use of the 3D model 

with 1D elements without mesh dependency to determine the point most likely to propagate the 

first fatigue crack. As well noting some remarkable results of this model. After which Chapter 7 will 

focus on the calculation of the highest stress interval (using the computational expensive method 

enforced by the regulations [3]) in the points considered most interesting according to current 

experts and the results obtained in chapter 6. These results can be compared with the results of 

the 3D model with 1D elements without mesh dependency to give information of the useability of 

the latter model. In the last two chapters some conclusions are drawn, some recommendations 

are given, and the research is discussed. 
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2 Literature review 

To be able to put this report in context it is necessary to have an overview of the research done in 
related topics. Therefore, this chapter presents an overview of the resources used in the research. 
It starts by explaining the concept of fatigue and how the resistance against fatigue of steel 
orthotropic bridges is determined. This is followed by an overview in the methods applied to 
determine the stresses in a structure. 

2.1 Fatigue 

To be able to research the location of the first fatigue crack the concept of fatigue should be 
understood. As well as the method used to determine the fatigue resistance of an orthotropic steel 
bridge deck. This paragraph explains both. 

2.1.1 Fatigue cracks 

Fatigue is the weaking of a material due to cyclic loading [12]. If a material has underwent more 
fatigue damage than it can resist fatigue cracks will occur. The development of a fatigue crack is 
divided in two stages. The crack initiation phase, in which the phenomenon works on a microscopic 
scale and is not visible with the naked eye. And the crack growth phase, in which the fatigue crack 
reached a macroscopic scale and is visible to the naked eye. When the crack growth phase is 
reached only a small percentage of the total life remains [13]. 

Crack initiation 
The fatigue cracks usually start at the surface of the material. This is because those grains have less 
constraints regarding slip. At this location plastic deformations can start occurring at low stress 
levels. This can result in a slip step (Figure 1). 

 
Figure 1:Development of slip band [13] 

This slip step immediately results in a local reduction of the strength of the material. Each new 
loading cycle will cause crack extension. The chaces of a fatigue crack increase at an 
inhomogeneous stress distribution (for example at a weld). Since at such a location a peak stress 
occurs. Another factor increasing the chances of a fatigue crack is the surface roughness. 

Crack growth 
Slowly the fatigue cracks will grow. After a while the crack direction will not following the direction 
of the initial slip band anymore. Instead, it will tend to grow in a direction perpendicular to the 
main principal stress [13]. At this stage the resistance against the fatigue cracks is no longer 
depending on the surface properties. Instead, it depends on the material properties as a bulk [13]. 

Every increase of the crack size results in a reduction of the surface contributing to the resistance 
against the occurring stresses. If this surface becomes too small (thus the fatigue crack becomes 
too big), it will not be able to withstand to occurring stresses anymore. As a result of this (local) 
failure of the structure will occur [13].  
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2.1.2 Determine fatigue resistance 

Fatigue detail 
The regulations [3] divides all commonly occurring fatigue cracks in an orthotropic steel deck into 
27 different fatigue details. In this report detail 1a is considered (Figure 2). 

 
Figure 2: Stiffener-to-deck plate weld, weld toe crack in deck plate [3] 

Based on the fatigue details requirements are given for the geometry of the weld and the method 
in which the stresses should be analysed. The fatigue detail considered in this report regards the 
stiffener-to-deck plate weld with a crack in the deck plate starting from the weld toe. 

Weld modelling 
There has been a lot of research into three different ways in which welds can be modelled [14, 15]. 
This resulted in the modelling method as provided in the regulations [3] (Figure 3). 

  
Figure 3: Weld modelling method [3], Li is the length of the locally applied increase in thickness and ti is the 

thickness of element i 

This method states to locally increase the thickness of the plate elements at the locations of welds. 
A summary of this method is given in Chapter 7.3.2 a detailed description of the application of this 
method on to the considered case study is given in Appendix VII Elaboration calculating maximum 
stress interval 2D FE model. 
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Fatigue load model 
The load cases which should be considered are given by a fatigue load model. In the case of steel 
orthotropic bridge, fatigue load model 4a should be used [3]. This model is given in the Dutch annex 
of Eurocode 1 part 2 [16]. The load model is shown in Figure 4. 

 
Figure 4: Fatigue load model 4a [16] 

This model states which trucks should be accounted for. The loads of the different axles of the 
trucks. The distribution of the total amount of trucks in the 5 different separate trucks. And which 
axles make up a single truck. In this report it is assumed that the location of the maximum fatigue 
damage can be determined via applying single axles. Since the stresses are determined via a 
geometric and linear finite element analyses the maximum stress will always occur due to the 
maximum applied load. Therefore, for each of the three types of axles the maximum load is 
considered. This leaves the load cases given in Figure 5. 

 
Figure 5: Relevant axles and loads, assuming that the location of the maximum fatigue damage can be 

determined by analysing individual axles 
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Types of axles 
To be able to place these axles on the bridge the configuration of an axle needs to be known. 
According to the ROK [3] the configuration stated in NEN 8701 [17] should be used in which the 
length of the wheels should be changed to 220mm. This results in the configuration in Figure 6. 

 
(A) 

 
(B) 

 
(C) 

Figure 6: Axle dimensions of axle (A), (B) and (C) [17] 

Wheel track location and spreading 
The loads are all defined however, the position where to put the load still needs to be determined. 
Therefore, a location of a wheel track is determined. Depending on the location where the fatigue 
resistance needs to be determined there are three positions of the wheel track that needs to be 
determined [3]. Which are shown in Figure 7. 
 

 
Figure 7: Locations of the wheel tracks [3] 

These are locations of wheel tracks. As a result of this the other wheel of an axle can be on either 
side the considered wheel track. If the considered location is close to the edge of the bridge only 
the theoretical possible configuration has to be considered. If both configurations are possible both 
these configurations need to be considered.  



Thesis report 
  
projectnummer - 
3 oktober 2022  
  

  Page 8 

 
 
 

 

Number of trucks 
Because fatigue is a result of cyclic loading not only the loading is needed but also the number of 
cycles. In this case that means the number of trucks that pass the bridge during the considered 
lifespan. The Eurocode divides bridges in 4 different types, depending on the type of road that uses 
the bridge a different number of trucks pass the bridge. However, the Dutch ROK [3] states that all 
steel orthotropic bridge decks should be designed to withstand the highest number of trucks given 
by the Eurocode. This gives the results presented in Figure 8. 

Nob  
Figure 8: Number of trucks passing the bridge per year [16] 

Extrapolation 
The stresses at a weld cannot be determined by reading the results of a FE model directly at the 
weld. The ROK [3] gives methods to determine the stresses at fatigue details depending on the 
fatigue category. In the case of the considered fatigue detail the stresses have to be determined 
using the hot-spot method (Figure 9). 

 
Figure 9: Sketch of hot-spot method [18] 

This method states that the stresses should be determined at two reference points. After which 
linear extrapolation can be used to determine the stresses at the weld toe. The location of the 
reference points differs per considered fatigue detail. A summary of this method is explained in 
Chapter 7.3.2 and an elaboration on the application to the considered case study can be found in 
Appendix VII Elaboration calculating maximum stress interval 2D FE model. 

Influence line / stress history 
If all load cases are known, the hot-spot method can be used to determine the stresses from all 
the load cases. Thus, an influence line of all trucks can be made. Since the number of each type of 
truck passing the bridge can be determined using the fatigue load model, an influence line over 
the entire lifespan of the bridge can be made. In the case of fatigue this influence line considers 
the stresses at the weld detail. An example of such a line is given in the Eurocode [10] (Figure 10). 

 
Figure 10: Example of influence line of stresses in a fatigue detail [10] 
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Dynamic amplification factor 
When a truck passes an expansion joint it causes some dynamic effects. To account for this, within 
a static model, a dynamic amplification factor has to be applied. According to the ROK [3], an 
amplification factor of 1.15 has to be applied on all stresses of fatigue details within 6m from an 
expansion joint. In the considered case study, an expansion joint is situated at both ends of the 
bridge. Every point in this bridge is within 6m of one of these expansion joints. As a result of this 
all stresses (thus the entire influence line) have to be multiplied with a factor 1.15. 

Reduced stress in compression 
Since the compressive stresses have a lower contribution to fatigue damage then tensile stresses, 
the Eurocode [10] states that the compressive stresses should be reduced with 40%. As a result of 
this all compressive stresses in the found influence line of the considered fatigue detail are reduced 
with 40%. 

Stress interval spectrum 
The influence line of the fatigue details is currently determined. The next step is to determine the 
stress interval spectrum. This is a spectrum containing the values of the stress intervals of the 
influence line and the number of times they are expected occur during the life span of the bridge. 
To determine the stress interval spectrum an iterative procedure has to be used. An example of 
the development of the stress interval spectrum (and the influence line) throughout the different 
iterations is presented in Figure 11 

 Influence line Stress interval spectrum 

1 

 

 

2 
 

 

3 
 

 

4  

 
Figure 11: Overview of determination of stress interval spectrum [10] 
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For each of these iterations the following steps have to be completed: 
1) The maximum compressive and tensile stress are determined. The summation of the two 

(excluding sign differences) is the considered stress interval (Δσ). 
2) The number of times the compressive part and the tensile part, of the considered stress 

interval, occurs is determined. The lowest of the two numbers is the number of times the 
stress interval occurs (n). 

3) The stress interval (Δσ) and the corresponding number of times (n) it occurs are added to 
the stress interval spectrum 

4) The found compressive part and tensile part of the stress interval are removed n times 
from the influence line. 

5) The process repeats until the obtained stress interval has a value smaller than the cut-off 
limit. Or the obtained fatigue damage of the considered stress interval spectrum results 
in a fatigue damage value greater than 1. 

Cycles to failure 
Research [9] has been performed to find a relation between a stress interval and the resulting 
fatigue damage. This resulted in a relation between the value of the stress interval (Δσ) and the 
number of times it can occur until a weld is considered to have failed due to fatigue (N). These 
relations differ for each of the fatigue details and the design of the bridge [3]. For the considered 
fatigue detail in this report and the considered case study the following relation is given in the 
Eurocode [10]. 

 
Figure 12: Relation between stress interval (Δσ) and the number of times it can maximally occur (N) [10] 

This relationship can be used to determine the maximum allowable number of times of each of the 
stress intervals in the stress interval spectrum can occur. It can be observed that there is a double 
logarithmic relation between the value of the stress interval and the number of times it can 
maximally occur. Therefore, it is assumed that the location of the value of the maximum stress 
interval is the same as the location of the maximum fatigue damage. 

Fatigue damage 
In the case of the weld in an orthotropic steel bridge deck the stress intervals contributing to the 
fatigue damage have different values. Therefore, the damage due to the different stress intervals 
has to be combined. This can be done using the rule of Palmgren-Miner [10]: 

∑
𝑛𝑖

𝑁𝑖

≤ 𝐷𝐿  

In which i is the number of stress intervals in the stress interval spectrum. ni is the number of times 
stress interval i occurs. And Ni is the number of times that stress interval i is maximally allowed to 
occur should occur. The total damage should be smaller than the fatigue accumulation (DL) which 
is usually set as 1.  
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2.2 Stress determination 

In Chapter 2.1.2 it is explained how the fatigue damage should be determined using a FE model. 
During the research problems occurred relating to the mesh dependency of the FE model. To be 
able to understand the proposed alternative methods some knowledge about the determination 
of stresses in structures is needed. An overview of the methods to determine the stresses in 
structures is explained in this chapter. 

This chapter is divided in 3 parts. The first part discusses the different 1D beam theories. The 
second paragraph extends the 1D beams theories into 2D theories. The third part discusses the 
commonly used FE method to numerically solve the equations describing the physics of the 
structure according to the applied 1D beam or 2D theory. 

2.2.1 1D beam theories 

There are several beam theories which can be used to determine displacements, strains and 
stresses in 1D beam elements. A clear overview of the most used ones is given by Simone [4]. 
Which explains 4 different elements. In this chapter 3 of those beam theories will be summarised. 

Truss elements (normal deformation only) 
Truss elements are elements which only account for normal deformations. A sketch of these 
elements is given in Figure 13. 

  
(A) (B) 

Figure 13: Illustration of truss element: (A) deformations; (B) forces on small segment [4] 

In Figure 13 several symbols are used, for the applied load (q), the length of the element (L), the 
increase in the length of the element (ΔL), the size of a subsegment (dx), the normal force (N) and 
the increase in the normal forces (dN). It can be observed that such an element assumes that the 
cross-section area remains constant. The forces on a small segment can be used to determine the 
differential equation describing the physics of the element in a similar way as for a 1D Timoshenko 
beam element in a 3D space (Appendix I Derivation system of differential equations of a 
Timoshenko beam element). An application of this can be found in existing literature [4, 19]. The 
obtained differential equation is: 

−𝐸𝐴
𝑑2𝑢

𝑑𝑥2
= 𝑞 

In which the elasticity modulus (E), the cross-section area (A) and the displacement (u) are used. 
This differential equation can be solved analytically. The obtained solution is: 

𝑢(𝑥) = −
𝑞

2𝐸𝐴
𝑥2 + 𝐶1𝑥 + 𝐶2 

In which Ci is an integration constant. The integration constants can be determined by substitution 
of the boundary conditions and/or interface conditions of the considered structure. 
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Euler-Bernoulli elements (includes bending deformations) 
This theory includes the bending deformations of an element. It is only valid under small 
deformations. The most important assumption of this theory is the Bernoulli-Navier hypothesis. It 
states that the cross section remains planar and normal to the axis of the beam under bending. 

 
 

(A) (B) 
Figure 14: Illustration of Euler-Bernoulli element: (A) deformations [20]; (B) forces on small segment [4] 

Figure 14 introduces some extra quantities: the internal moment (M), the increase of the internal 
moment(dM), the internal shear force (V) and the increase in internal shear force (dV). The forces 
on a small segment can be used to determine the differential equation describing the physics of 
the element in a similar way as for a 1D Timoshenko beam element in a 3D space (Appendix I 
Derivation system of differential equations of a Timoshenko beam element). The relation between 
the moments on a segment and the displacements is explained in pre-existing literature [4, 21, 22]. 
An application of this can be found in the lecture notes written by Simone [4]. If this is combined 
with the truss element the following system of differential equations is obtained: 

−𝐸𝐴
𝑑2𝑢

𝑑𝑥2
= 𝑞𝑥 ;  𝐸𝐼

𝑑4𝑣

𝑑𝑥4
= 𝑞𝑦 

In which qi is an external force applied in the direction of i, I is the second moment of area of the 
cross section and v is the vertical displacement. This system of differential equations can be solved 
analytically. The obtained solutions are: 

𝑢(𝑥) = −
𝑞𝑥

2𝐸𝐴
𝑥2 + 𝐶1𝑥 + 𝐶2 ;  𝑣(𝑥) =

𝑞𝑦

24𝐸𝐼
𝑥4 + 𝐶3𝑥

3 + 𝐶4𝑥
2 + 𝐶5𝑥 + 𝐶6 

The integration constants can be determined by substitution of the boundary conditions and/or 
interface conditions of the considered structure. 
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Timoshenko elements (includes shear deformations) 
The Timoshenko beam element does not only describe bending deformations, but it also includes 
shear deformations. Shear deformations of a 1D beam element are sketched in Figure 15. 

 
Figure 15: Sketch of shear deformation in 1D beam element [4] 

An elaborate explanation of this type of element is given in Appendix I Derivation system of 
differential equations of a Timoshenko beam element. The methods add an extra degree of 
freedom (additional rotation of the bending slope), which results in the cross section being able to 
rotate relative to the neutral axis of the beam. Due to this degree of freedom shear strains are 
generated. In a 2D plane, if normal deformations are included, the following system of differential 
equations can be obtained: 

−𝐸𝐴
𝑑2𝑢

𝑑𝑥2
= 𝑞𝑥 ;  𝐸𝐼

𝑑2𝜑

𝑑𝑥2
+ 𝐺𝐴𝑠 (

𝑑𝑣

𝑑𝑥
− 𝜑) = 0 ;  𝐺𝐴𝑠 (

𝑑2𝑣

𝑑𝑥2
−

𝑑𝜑

𝑑𝑥
) = −𝑞𝑦 

This equation introduces: 𝜑  which is the rotation of the cross section, G which is the shear modulus 
and As which is the cross section shear area. This system of differential equations can be solved 
analytically. The obtained solutions are: 

𝑢(𝑥) = −
𝑞𝑥

2𝐸𝐴
𝑥2 + 𝐶1𝑥 + 𝐶2 

𝑣(𝑥) =
𝑞𝑦

24𝐸𝐼
𝑥4 +

𝐶3

6
𝑥3 +

𝐶4

2
𝑥2 + 𝐶5𝑥 + 𝐶6 

𝜑(𝑥) =
𝑞𝑦

6𝐸𝐼
𝑥3 +

𝐶3

2
𝑥2 + (

𝑞𝑦

𝐺𝐴𝑠

+ 𝐶4) 𝑥 +
𝐸𝐼𝐶1

𝐺𝐴𝑠

+ 𝐶5 

The integration constants can be determined by substitution of the boundary conditions and/or 
interface conditions of the considered structure. 

Elements including warping deformations 
The two most applied theories accounting for warping deformations are the De Saint Venant 
theory and the Vlasov theory [23, 24]. Most FE software uses De Saint Venant theory. As a results 
of this the effects of restraint warping are being ignored. Resulting in computed deformations 
being larger than the real deformations. As a result of this it can be argued that the De Saint Venant 
theory is safe to be applied. 

In Chapter 4 it is argued that warping deformations are not relevant to determine the stresses in 
the proposed 1D method. Therefore, no literature review will be given on the addition of warping 
deformations to the 1D beam theories. 
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2.2.2 2D theories 

There are several theories regarding 2D elements. In this chapter, 3 theories, related to this 
research, are discussed. All these theories are elaborated on in the notes given by Blaauwendraad 
[25]. 

Plates loaded in plane 
The theory related to a 1D truss element (Chapter 2.2.1) can be extended to a 2D plane. A 
presentation on this was given by Hendriks based on the notes by Blaauwendraad [26, 25]. It 
derives the following system of differential equations: 

−
𝐸𝑡

1 − 𝜈2
(
𝜕2𝑢𝑥

𝜕𝑥2
+

1 − 𝜈

2
∗

𝜕2𝑢𝑥

𝜕𝑦2
+

1 + 𝜈

2
∗

𝜕2𝑢𝑦

𝜕𝑥𝜕𝑦
) = 𝑝𝑥  

−
𝐸𝑡

1 − 𝜈2
(
𝜕2𝑢𝑦

𝜕𝑦2
+

1 − 𝜈

2
∗

𝜕2𝑢𝑦

𝜕𝑥2
+

1 + 𝜈

2
∗

𝜕2𝑢𝑥

𝜕𝑥𝜕𝑦
) = 𝑝𝑦 

The system uses t as the thickness of the plate, ν as the Poisson ratio, ui as the in-plane deformation 
in direction i, v as the out of plane deformation, pi as the external applied in plane force in direction 
i. This system is not generally solvable.  

Kirchhoff-Love (includes bending deformations) 
The theory related to a 1D Euler-Bernoulli element (Chapter 2.2.1) can be extended to a 2D plane. 
A presentation on this was given by Hoogendoorn based on the notes by Blaauwendraad [27, 25]. 
It derives the following differential equation: 

𝐷 (
𝜕4

𝜕𝑥4
+ 2

𝜕4

𝜕𝑥2𝜕𝑦2
+

𝜕4

𝜕𝑦4
)𝑤 = 𝑝𝑧 

In this equation D is the plate stiffness and w refers to the out of plane deformation. This 
differential equation is not generally solvable. 

Mindlin-Reissner (includes shear deformations) 
The theory related to a 1D Timoshenko element (Chapter 2.2.1) can be extended to a 2D plane. A 
presentation on this was given by Hendriks based on the notes by Blaauwendraad [28, 25]. It 
derives the following system of differential equations: 

−𝐷𝛾 ((
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
)𝑤 +

𝜕

𝜕𝑥
𝜑𝑥 +

𝜕

𝜕𝑦
𝜑𝑦) = 𝑝𝑧 

𝐷𝛾

𝜕

𝜕𝑥
𝑤 + (𝐷𝛾 − 𝐷

𝜕2

𝜕𝑥2
−

(1 − 𝜈)𝐷

2
∗

𝜕2

𝜕𝑦2
)𝜑𝑥 −

(1 + 𝜈)𝐷

2
∗

𝜕2

𝜕𝑥𝜕𝑦
∗ 𝜑𝑦 = 𝑝𝑥  

𝐷𝛾

𝜕

𝜕𝑦
𝑤 −

(1 + 𝜈)𝐷

2
∗

𝜕2

𝜕𝑥𝜕𝑦
∗ 𝜑𝑥 + (𝐷𝛾 −

(1 − 𝜈)𝐷

2
∗

𝜕2

𝜕𝑥2
− 𝐷

𝜕2

𝜕𝑦2
) 𝜑𝑦 = 𝑝𝑦 

In which Dγ is a measurement for the shear stiffness of the plate and 𝜑𝑖  is the rotation around 
axis i. This differential equation is not generally solvable. 
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2.2.3 Numerical solution method (FEM) 

There are several methods to solve partial differential equations numerically. In the case of the 
system of differential equations belonging to complex geometries the FEM is usually chosen to 
numerically solve the system [29]. An extensive explanation can be found in the notes by Wells 
[29]. 

The FEM is a numerical method which has the following general approach: 
- The domain is split in several sub-domains (meshing) 
- The solution is assumed to be continuous, and linear on each sub-domain 
- The system of differential equations is replaced by a system of linear equations 
- The system of linear equations is solved numerically 

If the domain is split in a higher number of sub-domains a higher level of accuracy of the numerical 
solution is obtained. However, with the increase in sub-domains the system of linear equations 
that needs to be solved increases as well. As a result of this computation time to determine a 
solution with a higher level of accuracy can be unpractically large. 
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3 Traditionally used 2D plate model 

Since the stresses occurring in a weld have to be determined with a plate model containing locally 
detailed welds [3]. It seems logical to use a similar model to find the location where additional 
detailing is needed. To do so this chapter describes the traditionally used 2D plate model [30]. 
Starting with an overview and several paragraphs about the different plate elements. After which, 
in the last paragraph, the useability of this model is analysed. 

3.1 General properties 

The model itself does not contain any detailed welds, since the location of the (point in) the weld 
which needs to be used for the design calculation still has to be determined. The bridge is entirely 
made of steel quality S355 thus the elasticity modulus, Poisson ratio and a shear modulus are 
constant throughout the entire model (Table 1). 

Table 1: Material properties of Goereese bridge 

Description Symbol Value 

Elasticity modulus E 210,000 N/mm² 
Shear modulus G 80,769 N/mm² 
Poisson ratio ν 0.3 

The model takes normal, bending, shearing, and warping deformations in account. The model is 
fully consists of 2D plate elements and is divided in several sub parts: the main girders, the 
crossbeams, the stiffeners and the deck plate (Figure 16). 

 
Figure 16: Goereese bridge with red main girders, green crossbeams, yellow stiffeners, and grey deck plate 

The bridge is only supported at one side. At the end of the main girders, where the ballast box is 
situated, the displacement in down- and upward direction is fixed. In between the ballast box and 
the start of the deck plate a hinge is situated which fixes all displacement and rotations except of 
the rotation around the axes perpendicular to the main girders. Together the supports make sure 
that the model cannot have any star deformations. A full description of the FE model can be found 
in the data repository [30].  



Thesis report 
  
projectnummer - 
3 oktober 2022  
  

  Page 17 

 
 
 

 

3.2 Main girders 

The main girders connect the orthotropic bridge deck to the ballast box. The crossbeams and the 
side of the deck plate are welded to the web of the main girders. The main girders have variable 
cross section properties. At the end, at which the ballast box is situated, the main girders have a 
support constraining the displacement in up- and downward direction. In between the ballast box 
and the start of the deck plate a hinge support is situated. The entire orthotropic bridge deck is an 
overhang of the main girders. The two main girders are situated parallel from each other with a 
centre-to-centre distance of 10,700 mm. The main girders are shown in Figure 17. 

 
Figure 17: Visualisation of main girders (red) in relation to the Goereese bridge 

The geometrical properties of the main girders can be found in Appendix III FE analysis main girder 
with variable cross section. 
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3.3 Crossbeams 

The crossbeams are in between the two main girders and welded to the web of the main girders, 
the stiffeners, and the deck plate. In the traditionally used 2D plate model the stiffeners are 
continuous resulting in a cope hole in the crossbeams at the location of every stiffener. The 
crossbeams differ in height (Figure 19) and have a length of 10,700 mm. The crossbeams are shown 
in Figure 18. 

 
Figure 18: Visualisation of crossbeams (green) in relation to the Goereese bridge 

The cross-section geometries of the different cross beams is given in Figure 19. 

 

 
 

(A) (B) (C) 
Figure 19: Cross section geometries of (A) cross beam 1 and 2, (B) cross beam 3 and (C) cross beam 4; all in 

mm with t being the thickness of the element 
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3.4 Stiffeners 

In the Goereese bridge the stiffeners are so called troughs. This means they have the shape of a 
trapezium. The stiffeners are continuous and all identical. They are welded to the crossbeams and 
the deck plate. The stiffeners cover the entire length of the bridge deck of 10,810 mm. There are a 
total of 18 stiffeners which are equally spaced with a centre-to-centre distance of 300 mm. This 
means that the first and last stiffener have 250 mm between the stiffener centre and the web of 
the nearest main girder. The stiffeners are shown in Figure 20. 

 
Figure 20: Visualisation of the stiffeners (yellow) in relation to the Goereese bridge 

The cross-section geometry of the stiffeners is given in Figure 21. 

 
Figure 21: Cross-section geometry of stiffeners; all in mm, t is the thickness 
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3.5 Deck plate 

The deck plate sits on top of the stiffeners and crossbeams and in between the two main girders. 
It is welded to the stiffeners, crossbeams, and the web of the main girders. It has a continuous 
thickness of 20 mm, a width of 10,700 mm and a length of 10,810 mm. In the traditionally used 2D 
plate model it is modelled as one continuous element. The deck plate is shown in Figure 22. 

 
Figure 22: Visualisation of the deck plate (grey) in relation to the Goereese bridge 

3.6 Useability 

Since the weld details are not included in this model the stresses found at the locations of the 
welds cannot be used to calculate the required resistance of the bridge. However, it might be 
possible to use these stresses to find the weld with the highest stresses interval. To check whether 
this is the case several analyses have been done. These analyses use a limited amount of load cases 
to reduce the computation time. The FE models can be found in the data repository [30]. The 
relevant results are presented in Table 2. 

Table 2: Point expected to have the highest maximum stress interval after use of traditionally used 2D plate 
model with different mesh sizes 

Mesh size [m] X coordinate [m] Y coordinate [m] Contributing loads 

0.4 4.800 3.2 BG56 + BG265 
0.2 4.703 3.5 BG196 + BG242 
0.1 4.850 1.7 BG12 + BG311 
0.05 4.850 3.2 BG35 + BG288 

These analyses show that a different point will have the maximum stress interval, caused by a 
different load combination when a finer mesh is applied. This suggest that a still finer mesh is 
needed to determine the point with the highest stress interval. The model with the finest mesh 
(0.05 m) takes approximately 5 hours to run. This model had a limited amount of load cases 
applied. For a full analysis all potential load locations should be considered, resulting in more than 
100 times the amount of load cases currently considered. Therefore, this model is considered 
unsuitable to determine the location of the point where the highest stress interval is expected2. It 
can be concluded that the x-coordinate of the point with the highest stress interval is close to 4.8 
m in the applied analysis. This is also the x-coordinate of all the applied loads. Therefore, it is 
assumed that the maximum stress interval in a point is the result of loads applied with the same x 
coordinate as the considered point.  

 
2 Some of the models found a point with a maximum stress interval which, in more refined models 
had a maximum stress interval 20% lower than the maximum stress interval in that refined model. 
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4 Analytically solvable 1D elements model 

Since the traditionally used 2D plate model is too mesh dependent it could not be used to 
determine the point most likely to propagate the first fatigue crack within a reasonable 
computation time. Because 1D elements usually need less computation time, it might be 
interesting to use those in an alternative model. Besides, often a system of differential equations 
belonging to a 1D element can be solved analytically (see Chapter 5) therefore, there is no mesh 
dependency. Even if a 1D element has no (useful) analytically solution they can be replaced with a 
set of boundary conditions (see Chapter 5.5), therefore, there is no need to discretize these 
elements. This means that it is be possible to make a model, constructed out of 1D elements, 
having no mesh dependency. However, it is not known if a model constructed out of 1D elements 
has the highest maximum stress interval at the same location as a model constructed out of 2D 
plate elements. A preliminary investigation is presented in this chapter. The chapter presents the 
different elements in the analytically solvable 1D elements model. 

4.1 General properties 

The model itself does not contain any detailed welds, since the location of (the point in) the weld 
which need to be used for the design calculation still has to be determined. The bridge is entirely 
made of steel quality S355 thus the elasticity modulus, Poisson ratio, and shear modulus are 
constant throughout the entire model (Table 1). The model takes bending, shearing, and warping 
in account. The model is constructed out of 1D beam elements and divided in several sub parts: 
the main girders, the crossbeams, the stiffeners and the deck plate strip (Figure 23). 

  
Figure 23: FE model of Goereese bridge out of 1D elements with element surfaces (left)  

and without element surfaces (right) 

The 1D model does not contain the ballast box since it is not expected to influence the stresses in 
the deck plate. Details of the individual elements can be found in the remaining paragraphs of this 
chapter. The full 1D FE model can be found in the data repository [30].  
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4.2 Main girders presented as 1D elements 

Due to limitations of the FE software used the main girders are supported at the height of the 
neutral axis at location of the ballast box. The main girders are the only elements with a changing 
cross section. Therefore, it is split in several regions as can been seen in Figure 24. 

 
Figure 24: Visualisation of main girders (red) as 1D elements 

The traditionally used 2D plate model makes use of plates with curved edges. The used software 
(SCIA) does not allow 1D elements to have curved edges thus all changes in the cross section are 
either stepwise or linear. In the calculations, done by the FE software, these are further simplified 
by further splitting the sub regions in part with constants cross section properties [31]. As a results 
of this the main girders need a very fine mesh to accurately determine the internal forces. The 
geometrical properties of the main girders can be found in Appendix III FE analysis main girder with 
variable cross section. 
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4.3 Crossbeams presented as 1D elements 

In the traditionally used 2D plate model the stiffeners are continuous, and the crossbeams have 
cope holes where the stiffeners intersect with the crossbeams. Since the considered weld detail 
(Figure 2) only has to be accounted for at a distance of more than 150mm from the crossbeams [3] 
it could be the case that modelling the crossbeams with or without a constant cross section (see 
Figure 25) will not influence the location of the maximum stress interval. 

  
(A) (B) 

Figure 25: Visualisation of crossbeams (green) as 1D elements with (A) or without (B) cope holes 

The influence of the presence of a cope hole on the location of the maximum stress interval is 
investigated in Chapter 4.6. All the crossbeams have the same length and shape however the 
height of the crossbeams differ (Figure 19). From the cross-section geometry, the following cross 
section properties can be derived (Table 3): 

Table 3: Cross section properties of 1D cross beams 

Description Symbol Value 

Cross section area of cross beam 1 & 2 ADD1 ; ADD2 47,136 mm² 
Shear area in horizontal direction of cross beam 1 & 
2 

Asy;DD1 ; Asy;DD2 20,533 mm² 

Shear area in vertical direction of cross beam 1 & 2 Asz;DD1 ; Asz;DD2 22,563 mm² 
Second moment of area around the y axis of cross 
beam 1 & 2 

Iy;DD1 ; Iy;DD2 11,953,800,324 mm4 

Second moment of area around the z axis of cross 
beam 1 & 2 

Iz;DD1 ; Iz;DD2 585,914,368 mm4 

Second polar moment of area of cross beam 1 & 2 It;DD1 ; It;DD2 14,057,472 mm4 

Warping constant of cross beam 1 & 2 Iw;DD1 ; Iw;DD2 1 ∗ 10−17 mm6 

Cross section area of cross beam 3 ADD3 45,744 mm² 
Shear area in horizontal direction of cross beam 3 Asy;DD3 20,525 mm² 
Shear area in vertical direction of cross beam 3 Asz;DD3 21,608 mm² 
Second moment of area around the y axis of cross 
beam 3 

Iy;DD3 10,227,287,957 mm4 

Second moment of area around the z axis of cross 
beam 3 

Iz;DD3 585,884,672 mm4 

Second polar moment of area of cross beam 3 It;DD3 13,938,688 mm4 

Warping constant of cross beam 1 & 2 Iw;DD3 1 ∗ 10−16 mm6 
Cross section area of cross beam 4 ADD4 44,368 mm² 
Shear area in horizontal direction of cross beam 4 Asy;DD4 20,518 mm² 
Shear area in vertical direction of cross beam 4 Asz;DD4 20,476 mm² 
Second moment of area around the y axis of cross 
beam 4 

Iy;DD4 8,680,996,621 mm4 

Second moment of area around the z axis of cross 
beam 4 

Iz;DD4 585,855,317 mm4 

Second polar moment of area of cross beam 4 It;DD4 13,821,269 mm4 

Warping constant of cross beam 1 & 2 Iw;DD4 3 ∗ 10−17 mm6 
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4.4 Stiffeners presented as 1D elements 

In the traditionally used 2D plate model the stiffeners consisted of 3 plate elements. In the 1D 
model the stiffeners are all modelled as a 1D beam element (Figure 26). 

 
Figure 26: Visualisation of stiffeners (yellow) as 1D elements 

The stiffeners are troughs (or u-ribs) of which the webs are welded to the deck plate, thereby 
making a closed cross section. This results in two possible options for the cross section of the 1D 
stiffeners: an open cross section or a closed cross section (Figure 27). 

  
(A) (B) 

Figure 27: Options for 1D stiffener cross section (A) an open stiffener; (B) a closed stiffener. All dimensions 
are in mm. ttr is the thickness of the trough and tDP is the thickness of the deck plate 

Using the cross-section geometries, the cross-section properties can be determined. 

Table 4: Cross-section properties of 1D stiffener elements 

 
Description 

 
Symbol 

Value 

Open Closed 

Cross section area Atr 5,292 mm² 11,292 mm² 
Shear area in horizontal direction Asy;tr 1,924 mm² 7,394 mm² 
Shear area in vertical direction Asz;tr 3,902 mm² 4,323 mm² 
Second moment of area around the y axis Iy;tr 68,841,506 mm4 191,560,919 mm4 

Second moment of area around the z axis Iz;tr 62,957,395 mm4 107,957,395 mm4 

Second polar moment of area It;tr 63,502 mm4 167,907,392 mm4 

Warping constant Iw;tr 203,693,164,282 mm6 140,784,373,310 mm6 

 
The open cross section does not represent any of the deck plate, thus outside of the deck plate 
strip there will be no deck plate at all. Leading to an underrepresentation of the stiffness. The 
closed cross section does locally represent the deck plate. There by having a stiffness closer to the 
2D model than the open cross section counterpart. However, a closed cross section has a deck 
plate part where it crosses the deck plate strip. This means that at all the stiffener with deck plate 
strip crossings the deck plate will be represented twice. Leading to locally overrepresentation of 
the stiffness. The influence of the choice of the cross section on the location of the point with the 
highest maximum stress interval is discussed in Chapter 7.2.  
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4.5 Deck plate presented as 1D Deck plate strip 

The deck plate is represented by a 1D strip in the direction of the width of the bridge. This direction 
is the direction of stresses which needs to be accounted for (Chapter 2.1.2). The width of the strip 
is equal to the length of a single wheel (Figure 28). 

 
Figure 28: Cross section geometry of 1D deck plate strip 

Using the geometry defined in Figure 28 the cross-section properties of the deck plate strip can be 
determined (Table 5). 

Table 5: Cross-section properties of deck plate strip 

Description Symbol Value 

Cross section area ADP 4,400 mm² 
Shear area in horizontal direction Asy;DP 3,667 mm² 
Shear area in vertical direction Asz;DP 3,667 mm² 
Second moment of area around the y axis Iy;DP 146,667 mm4 

Second moment of area around the z axis Iz;DP 17,746,667 mm4 

Second polar moment of area It;DP 553,067 mm4 

Warping constant Iw;DP 0 mm6 

 
The ends of the deck plate strip are connected to the first and last stiffener (Figure 29). 

 
Figure 29: Visualisation of deck plate strip (grey) as 1D element 

Since the point with the highest stress interval is expected to be situated directly next to the 
applied load (Chapter 3.6) the point with the highest stress interval due to a load applied at the 
deck plate strip is expected to be within the deck plate strip. To account for all potential load 
locations on the deck plate the loads have to be iteratively moved over the width of the bridge. 
Therefore, the deck plate strip has to be iteratively moved over the length of the bridge as well. 
Since the deck plate strip is iteratively moved over the length of the bridge the location of the 
connection between the main girder and the deck plate strip is changing throughout the iterations. 
Because the main girder is replaced by a set of boundary conditions (Chapter 5.5) a new set of 
boundary conditions needs to be determined for each iteration. This would lead to a computational 
expensive analysis of the main girder for all potential locations of the deck plate strip. 

Since it is expected that the connection between the deck plate and the main girder has no effect 
on the location of the point with the highest maximum stress interval, the deck plate strip will not 
be connected to the main girders but to the outer first stiffeners.  
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4.6 Influence of cope holes and stiffener cross section 

To investigate if the influence of cope holes and the cross section of the stiffener, on the location 
of the point with the highest maximum stress interval four models are compared. These models 
consisted of 1D elements with or without the presents of cope holes in the crossbeams. For this 
test all models used the same load combinations (the same as applied to determine the results 
from Table 2). The results can be found in Figure 30 and Table 6. 

 
Figure 30: Maximum stress interval at bottom of deck plate at the same cross section in 1D and 2D FE model 

Table 6: Comparison of locations of maximum stress intervals in different 1D FE models 

 Open cross section 
No cope hole 

Closed cross section 
No cope hole 

Distance from 
first stiffener 

[mm] 

Difference with 
maximum 

stress interval 

Distance from 
first stiffener 

[mm] 

Difference with 
maximum 

stress interval 

Maximum stress interval 
 
 

Lower stress intervals 

3150 - 3450 - 
750 2.68% 3150 0.11% 

3450 2.87% 1350 8.55% 
1350 6.95% 1050 8.97% 

 
 Open cross section 

With cope hole 
Closed cross section 

With cope hole 

Distance from 
first stiffener 

[mm] 

Difference with 
maximum 

stress interval 

Distance from 
first stiffener 

[mm] 

Difference with 
maximum 

stress interval 

Maximum stress interval 
 
 

Lower stress intervals 

3150 - 3450 - 
750 2.05% 3150 0.09% 

3450 4.29% 1350 8.95% 
1350 6.20% 1050 9.43% 
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The inclusion of a cope hole and choice of stiffener cross section can influence the location of the 
point with the maximum stress interval. The difference between the results of the different 1D FE 
models is small. However, the differences in the maximum stress intervals occurring in different 
points is also small. Therefore, the choice in different stiffener cross sections can lead to a different 
point having the highest maximum stress interval. Based on the results, obtained by applying a 
traffic lane at the theorized position3, it can be concluded that if one of the models is used, and all 
points within 5% of the found maximum are considered the maximum of all models is likely to be 
within in the remaining points (see Table 6). Therefore, any of the 1D models could be used. In this 
report the model without cope holes and an open stiffener cross section is researched. 

Currently the 1D FE models are made in FE software. This software does not use the exact solutions 
of the 1D elements but meshes the elements in smaller subparts. As a result, there still is mesh 
dependency and an increase in computation time. To determine the location of the point with the 
highest stress interval the loads and deck plate strip will have to be moved iteratively. Resulting in 
new FE models being made for each iteration. By writing code using the exact solutions of 1D 
elements both these disadvantages can be reduced. 
  

 
3 The current regulations do not allow to base the load cases on the theoretical traffic lane position. 
Elaboration on this can be found in the discussion (Chapter 9.1). 
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5 Mesh independent solutions of 1D elements 

To get rid of the mesh dependency of the 1D model the analytical solutions of the 1D elements 
need to be used. To do so a system of differential equations describing the behaviour of the 1D 
elements has to be derived. After which this system can be solved. The obtained solutions still has 
unknown integration constants which can be determined after formulating the boundary and 
interface conditions between all elements. After which all displacements (and by extension the 
stresses) of the 1D model are known without any mesh dependency. 

5.1 System of differential equations 

The 1D elements used are Timoshenko beam elements. These elements account for shear 
deformations [4, 5, 6] as is required by the ROK [3]. To simplify the calculations warping 
deformations are ignored, it is assumed that these deformations are negligible. In the considered 
case study, all elements perceive a constraint regarding torsional deformations due to their 
connection with the deck plate. Since the warping deformations are linked to the torsional 
deformations it is assumed that these can be neglected [32]. In the derivations of the system of 
differential equations normal deformations are accounted for. Since all elements have constant 
material properties the system of differential equation can be simplified. It is not assumed that all 
elements have constant geometrical properties since the main girders have variable cross section 
properties. To be able to understand the system of differential equations a coordinate system 
needs to be agreed upon. The used coordinate system is presented in Figure 31. The positive 
direction of the applied forces is the same as the positive direction of the axis. 

 
Figure 31: Sign conventions 

A lot of derivations of Timoshenko beam elements in a 2D space can found in existing literature [4, 
5, 6], however an extension of this in a 3D space is scarce. Therefore, the derivations of a 
Timoshenko beam element (including normal deformations) can be found in Appendix I Derivation 
system of differential equations of a Timoshenko beam element. By carefully collecting the 
material and cross section properties in three matrices (𝑲(1) ; 𝑲(2) ; 𝑲(3)). And constructing a 

vector containing all the displacement (𝒖) as well as a vector containing all applied forces (𝒒). The 
system of differential equation describing the physics of a 1D Timoshenko beam element can be 
written as: 

𝑲(1)

𝑑2

𝑑𝑥2
𝒖 + 𝑲(2)

𝑑

𝑑𝑥
𝒖 + 𝑲(3)𝒖 = 𝒒 (1) 
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5.2 General solutions of 1D Timoshenko beam elements 

The system of a 1D Timoshenko beam element including normal deformations has a solution. To 
be able to understand the solutions several terms need to be introduced (Table 7). 

Table 7: Terms used in solutions Timoshenko beam element 

Symbol Description  Symbol Description 

𝑼𝒊 Displacement in direction of i  𝐸 Elasticity modulus 
𝑨 Cross section area  𝑞𝑖  Distributed load applied in 

direction of i 
𝑪𝒊 Integration constant number i  𝐼𝑦  ; 𝐼𝑧 Second moment of area around 

axis y or z 
𝑮 Shear modulus  𝐴𝑠𝑖  Shear area in direction i 
𝒕𝒊 Distributed moment applied 

around axis i 
 𝜑𝑖  Rotation around axis i 

𝑰𝒕 Second polar moment of area    

Now the solution can be written as: 

𝑈𝑥(𝑥) = −
1

𝐸
∫

𝑥

𝐴(𝑥)
𝑑𝑥 ∗ 𝑞𝑥 + ∫

1

𝐴(𝑥)
𝑑𝑥 ∗ 𝐶1 + 𝐶2 

(2A) 

𝑈𝑦(𝑥) = (
1

𝐸
∬

𝑥

𝐼𝑧(𝑥)
𝑑𝑥𝑑𝑥 −

1

𝐺
∫

𝑥

𝐴𝑠𝑦(𝑥)
𝑑𝑥) ∗ 𝑞𝑦 +

1

𝐸
∬

𝑥

𝐼𝑧(𝑥)
𝑑𝑥𝑑𝑥 ∗ 𝑡𝑧

− ∬
1

𝐼𝑧(𝑥)
𝑑𝑥𝑑𝑥 ∗ 𝐶3 + ∫

1

𝐴𝑠𝑦(𝑥)
𝑑𝑥 ∗ 𝐶4 − 𝐶5𝑥 + 𝐶6 

(2B) 

𝑈𝑧(𝑥) = (
1

𝐸
∬

𝑥

𝐼𝑦(𝑥)
𝑑𝑥𝑑𝑥 −

1

𝐺
∫

𝑥

𝐴𝑠𝑧(𝑥)
𝑑𝑥) ∗ 𝑞𝑧 −

1

𝐸
∬

𝑥

𝐼𝑦(𝑥)
𝑑𝑥𝑑𝑥 ∗ 𝑡𝑦

+ ∬
1

𝐼𝑦(𝑥)
𝑑𝑥𝑑𝑥 ∗ 𝐶7 + ∫

1

𝐴𝑠𝑧(𝑥)
𝑑𝑥 ∗ 𝐶8 + 𝐶9𝑥 + 𝐶10 

(2C) 

𝜑𝑥(𝑥) = −
1

𝐺
∫

𝑥

𝐼𝑡(𝑥)
𝑑𝑥 ∗ 𝑡𝑥 + ∫

1

𝐼𝑡(𝑥)
𝑑𝑥 ∗ 𝐶11 + 𝐶12 (2D) 

𝜑𝑦(𝑥) =
1

𝐸
∫

𝑥

𝐼𝑦(𝑥)
𝑑𝑥 ∗ 𝑞𝑧 −

1

𝐸
∫

𝑥

𝐼𝑦(𝑥)
𝑑𝑥 ∗ 𝑡𝑦 + ∫

1

𝐼𝑦(𝑥)
𝑑𝑥 ∗ 𝐶7 + 𝐶9 (2E) 

𝜑𝑧(𝑥) = −
1

𝐸
∫

𝑥

𝐼𝑧(𝑥)
𝑑𝑥 ∗ 𝑞𝑦 −

1

𝐸
∫

𝑥

𝐼𝑧(𝑥)
𝑑𝑥 ∗ 𝑡𝑧 + ∫

1

𝐼𝑧(𝑥)
𝑑𝑥 ∗ 𝐶3 + 𝐶5 (2F) 

This solution contains several integrals which are hard to evaluate. The considered bridge mostly 
has elements with constant cross section properties. The next paragraph simplifies the solution for 
the case with constant cross section properties.  
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5.3 Solution 1D Timoshenko beam element with constant cross section properties 

When a 1D Timoshenko beam element has constant cross section properties both the system of 
differential equations (1) as well as the solutions of the system (2) can be simplified. An even 
further simplification can be found when only a load in the direction of the z axis has to be 
accounted for. In the case of the considered bridge both these statements are true for the 
crossbeams, the stiffeners and the deck plate strip. The solution is: 

[
 
 
 
 
 
𝑈𝑥

𝑈𝑦

𝑈𝑧

𝜑𝑥

𝜑𝑦

𝜑𝑧]
 
 
 
 
 

 =

[
 
 
 
 
 
 
 
 
 
 

0 0 0 𝐶1 𝐶2 

0 −
1

6
𝐶3 −

1

2
𝐶4

𝐸𝐼𝑧
𝐺𝐴𝑠𝑦

𝐶3 − 𝐶5 𝐶6

𝑞𝑧

24𝐸𝐼𝑦

1

6
𝐶7 −

𝑞𝑍

2𝐺𝐴𝑠𝑧

+
1

2
𝐶8 −

𝐸𝐼𝑦

𝐺𝐴𝑠𝑧

𝐶7 + 𝐶9 𝐶10

0 0 0 𝐶11 𝐶12

0
𝑞𝑧

6𝐸𝐼𝑦

1

2
𝐶7 𝐶8 𝐶9

0 0
1

2
𝐶3 𝐶4 𝐶5 ]

 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
𝑥4

𝑥3

𝑥2

𝑥
1 ]

 
 
 
 

 (3) 

This solution does not contain any integrals anymore. Before this solution can be used the 
integration constants need to be determined. 
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5.4 Solving integration constants 

The solution of the system with constant cross section properties (3) contains twelve unknown 
integration constants. These constants can be determined if twelve conditions are known. The 
elements with constant cross section properties (crossbeams, stiffeners, and deck plate strip) are 
mainly connected with interface conditions to each other. Only the ends of the crossbeams are 
connected to the main girder for which interface conditions are hard to formulate. In the other 
cases a connection of i number of elements is made. As shown in Figure 32. 

 

Figure 32: Connection between crossbeam and stiffener in which tr1, tr2, DD1 and DD2 are the name of the 
names of the elements. (xi, yi, zi) are the coordinates of a point and Δz is the distance between the neutral 

axis of the stiffener and the cross beam [3] 

The following interface conditions can be formulated based on the requirement of the elements 
to be connected and in equilibrium: 

𝑢𝑥
𝐷𝐷1(𝑥0, 𝑦0, 𝑧0) = 𝑢𝑥

𝐷𝐷2(𝑥0, 𝑦0, 𝑧0) = 𝑢𝑥
𝑡𝑟1(𝑥1, 𝑦1, 𝑧1) + Δ𝑧𝜑𝑦

𝑡𝑟1(𝑥1, 𝑦1 , 𝑧1)

= 𝑢𝑥
𝑡𝑟2(𝑥1, 𝑦1, 𝑧1) + Δ𝑧𝜑𝑦

𝑡𝑟2(𝑥1, 𝑦1, 𝑧1) 
(4A) 

𝑢𝑦
𝐷𝐷1(𝑥0, 𝑦0, 𝑧0) = 𝑢𝑦

𝐷𝐷2(𝑥0, 𝑦0, 𝑧0) = 𝑢𝑦
𝑡𝑟1(𝑥1, 𝑦1, 𝑧1) − Δ𝑧𝜑𝑥

𝑡𝑟1(𝑥1, 𝑦1 , 𝑧1)

= 𝑢𝑥
𝑡𝑟2(𝑥1, 𝑦1, 𝑧1) − Δ𝑧𝜑𝑥

𝑡𝑟2(𝑥1, 𝑦1, 𝑧1) 
(4B) 

𝑢𝑧
𝐷𝐷1(𝑥0, 𝑦0, 𝑧0) = 𝑢𝑧

𝐷𝐷2(𝑥0, 𝑦0, 𝑧0) = 𝑢𝑧
𝑡𝑟1(𝑥1, 𝑦1, 𝑧1) = 𝑢𝑧

𝑡𝑟2(𝑥1, 𝑦1, 𝑧1) (4C) 

𝜑𝑥
𝐷𝐷1(𝑥0, 𝑦0, 𝑧0) = 𝜑𝑥

𝐷𝐷2(𝑥0, 𝑦0, 𝑧0) = 𝜑𝑥
𝑡𝑟1(𝑥1, 𝑦1 , 𝑧1) = 𝜑𝑥

𝑡𝑟2(𝑥1, 𝑦1, 𝑧1) (4D) 

𝜑𝑦
𝐷𝐷1(𝑥0, 𝑦0, 𝑧0) = 𝜑𝑦

𝐷𝐷2(𝑥0, 𝑦0, 𝑧0) = 𝜑𝑦
𝑡𝑟1(𝑥1, 𝑦1 , 𝑧1) = 𝜑𝑦

𝑡𝑟2(𝑥1, 𝑦1, 𝑧1) (4E) 

𝜑𝑧
𝐷𝐷1(𝑥0, 𝑦0, 𝑧0) = 𝜑𝑧

𝐷𝐷2(𝑥0, 𝑦0, 𝑧0) = 𝜑𝑧
𝑡𝑟1(𝑥1, 𝑦1 , 𝑧1) = 𝜑𝑧

𝑡𝑟2(𝑥1, 𝑦1, 𝑧1) (4F) 

𝑁𝑥
𝐷𝐷1(𝑥0, 𝑦0, 𝑧0) + 𝑁𝑥

𝐷𝐷2(𝑥0, 𝑦0, 𝑧0) + 𝑁𝑥
𝑡𝑟1(𝑥1, 𝑦1, 𝑧1) + 𝑁𝑥

𝑡𝑟2(𝑥1, 𝑦1 , 𝑧1) = 0 (4G) 

𝑉𝑦
𝐷𝐷1(𝑥0, 𝑦0, 𝑧0) + 𝑉𝑦

𝐷𝐷2(𝑥0, 𝑦0, 𝑧0) + 𝑉𝑦
𝑡𝑟1(𝑥1, 𝑦1, 𝑧1) + 𝑉𝑦

𝑡𝑟2(𝑥1, 𝑦1, 𝑧1) = 0 (4H) 

𝑉𝑧
𝐷𝐷1(𝑥0, 𝑦0, 𝑧0) + 𝑉𝑧

𝐷𝐷2(𝑥0, 𝑦0, 𝑧0) + 𝑉𝑧
𝑡𝑟1(𝑥1, 𝑦1, 𝑧1) + 𝑉𝑧

𝑡𝑟2(𝑥1, 𝑦1, 𝑧1) = 0 (4I) 

𝑀𝑥
𝐷𝐷1(𝑥0, 𝑦0, 𝑧0) + 𝑀𝑥

𝐷𝐷2(𝑥0, 𝑦0, 𝑧0) + 𝑀𝑥
𝑡𝑟1(𝑥1, 𝑦1, 𝑧1) + Δ𝑧𝑉𝑦

𝑡𝑟1(𝑥1, 𝑦1, 𝑧1)

+ 𝑀𝑥
𝑡𝑟2(𝑥1, 𝑦1, 𝑧1) + Δ𝑧𝑉𝑦

𝑡𝑟2(𝑥1, 𝑦1, 𝑧1) = 0 
(4J) 

𝑀𝑦
𝐷𝐷1(𝑥0, 𝑦0, 𝑧0) + 𝑀𝑦

𝐷𝐷2(𝑥0, 𝑦0, 𝑧0) + 𝑀𝑦
𝑡𝑟1(𝑥1, 𝑦1, 𝑧1) − Δ𝑧𝑉𝑥

𝑡𝑟1(𝑥1, 𝑦1, 𝑧1)

+ 𝑀𝑦
𝑡𝑟2(𝑥1, 𝑦1, 𝑧1) − Δ𝑧𝑉𝑥

𝑡𝑟2(𝑥1, 𝑦1, 𝑧1) = 0 
(4K) 

𝑀𝑧
𝐷𝐷1(𝑥0, 𝑦0, 𝑧0) + 𝑀𝑧

𝐷𝐷2(𝑥0, 𝑦0, 𝑧0) + 𝑀𝑧
𝑡𝑟1(𝑥1, 𝑦1, 𝑧1) + 𝑀𝑧

𝑡𝑟2(𝑥1, 𝑦1, 𝑧1) = 0 (4L) 

  

x 

z 

y 

(x0,y0,z0) 

(x1,y1,z1) 

Δz 
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In equation (4) the following terms are used: 

Table 8: Terms used in equation (4) 

Symbol Description 

𝒖𝒊
𝒋
(𝒂, 𝒃, 𝒄) Displacement in the direction of i of element j at point (a, b, c) 

𝚫𝒛 Distance between the neutral axis of the stiffener and the cross beam 

𝝋𝒊
𝒋
(𝒂, 𝒃, 𝒄) Rotation in around axis i of element j at point (a, b, c) 

𝑵𝒙
𝒋
(𝒂, 𝒃, 𝒄) Normal force of element j at point (a, b, c) 

𝑽𝒊
𝒋
(𝒂, 𝒃, 𝒄) Shear force in the direction of i of element j at point (a, b, c) 

𝑴𝒊
𝒋
(𝒂, 𝒃, 𝒄) Internal moment around axis i of element j at point (a, b, c) 

These interface conditions are formulated in terms of a global coordinate system. Since the 
displacement field (3)  and internal forces (11) are determined in terms of a local coordinate system 
they should be rewritten to the global coordinate before they can be substituted in the given 
interface conditions. At the ends of the stiffeners there is no crossing of two crossbeams and two 
stiffeners but a crossing of two cross beams with only one stiffener. In these cases, the interface 
conditions presented here are still valid. However, the terms related to the non-existent stiffener 
have to be neglected. As a result of this there are less interface conditions, this is no problem since 
one less stiffener means that there are less integration constants which will have to be solved. 

To be able to determine the total displacement field of the bridge all integration constants need 
to be solved. This cannot be done by only using the interface conditions shown here (4) since this 
does not give enough equations to solve all integration constant. The remaining equations have to 
do with the connections of the cross beams with the main girders. These cannot be determined in 
the way that is presented here since the main girders have a variable cross-section. Substitution of 
the displacement field of the main girder (2) in the interface equations does not lead to solvable 
equations. An alternative method is presented in the next paragraph. 
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5.5 Boundary conditions modelling behaviour of main girders 

The solutions of a beam with variable cross section properties (2) have potentially hard to solve 
integrals and are therefore not useful. As a result of this the interface equations (4) cannot be used 
and some integration constants remain unsolved. However, if the proper displacements of the 
main girders can be determined without using the analytical solution these can be used as 
boundary conditions. To see if this is possible the properties of the solution of an element with 
constant cross section properties is being analysed. After which a property of the solution of an 
element with constant cross section properties is assumed. Which will be combined with a 
numerical analysis of the main girder to formulate the needed boundary conditions. 

5.5.1 Properties of solution of simplified, constant cross section, main girder 

If a main girder with constant cross section properties is assumed. The solution can be determined 
using the standard solution (3) in combination with the general interface conditions (4). On the 
main girders there is no distributed load present. However, all the cross beams transfer their 
internal forces to the main girders, leading to point forces at the locations where the cross beams 
and the main girder are connected. The simplified, constant cross section, main girder is visualized 
in Figure 33. 

 
Figure 33: Visualisation of 1D main girder with crossbeams modelled as point loads4 

This simplified main girder consists of 7 elements with a constant cross section having the solutions 
discussed in Chapter 5.3 and presented in formula (3). The solution still contains unknown 
integration constants. All integration constants can be solved using the interface conditions 
presented in (4)5. In combination with the equations following from the physical constraints and 
the necessity from an equilibrium at the supports and the end of the beam. An elaboration of this 
calculation can be found in Appendix II Solution main beam with constant cross section properties. 
The displacements at the location (x(i)) of the different cross beams are: 

𝒖(𝑖) = 𝑲(𝑖)(𝐴𝑡𝑜𝑡 , 𝐸, 𝐺, 𝐼𝑡 , 𝐼𝑦 , 𝐼𝑧 , 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1, 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2, 𝑥𝐷𝐷1, 𝑥𝐷𝐷2, 𝑥𝐷𝐷3, 𝑥𝐷𝐷4, 𝑥(𝑖))𝒑 (5) 

In equation (5) u(i) is a vector containing the displacements at cross beam number (i). K(i) is a matrix 
depending on the material and geometry properties, and the location of cross beam i (x(i)). Vector 
p contains the forces that the cross beams apply to the main girder. Since the responses can be 
expressed as a matrix (independent of the force vector) multiplied with the force vector the 
response is linearly related to the force vector. This means that the response of a combination of 
loads is the summation of the responses of the individual loads in that combination. 

 
4 The cross beams are not connected to the main girders at the height of the neutral axis of the 
main girders. Thus, the internal normal and shear forces of the crossbeams result in an additional 
moment in the case that the main girders are modelled as shown in Figure 33. 
5 If a force is applied at a point this should be included in the force equilibrium 
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5.5.2 Hypothesized form of replacement boundary condition 

In the previous paragraph it was determined that, in the case of geometrically constant main 
girder, the displacements at the locations of the connection between the cross beams and the 
main girder are linearly related to the internal forces of the cross beams (5). This formula can be 
rewritten as: 

𝒖(𝑖) = ∑𝑲∗,𝑗
(𝑖)

𝒑𝑗

24

𝑗=1

 (6) 

In the case of constant geometrical properties, the components of 𝑲∗,𝑗  could be analytically 

determined and are depended on material and geometrical properties of the main girder 
(Appendix II Solution main beam with constant cross section properties). In the case of a 
geometrically variable main girder the component of 𝑲∗,𝑗  can not be determined analytically. 

However, if it is assumed that the displacements of the cross beams will remain linearly related to 
the internal forces in the crossbeams, equation (6) is still valid. In that case a single component of 
𝑲∗,𝑗  can be determined by obtaining the displacements for a load case in which only a single 

component of the load vector is unequal to zero. This can be easily shown by stating that for j=l all 
𝒑𝑗  are equal to zero except 𝒑𝑙. In that case (6) can be rewritten to: 

𝑲∗,𝑙
(𝑖)

=
1

𝒑𝑙

𝒖(𝒊) 

By preforming 24 numerical analyses of the main girder. In which a single internal force of a cross 

beam was applied as a unit load, and the displacements of the main girder at the location of the 

connection with the crossbeams are determined. All values of 𝑲 can be determined. For a 

description of the numerical analysis and the results see Appendix III FE analysis main girder with 

variable cross section. 

Since all components in 𝑲∗,𝑙
(𝑖)

 are now known the displacements of the main girder, at the point 

they intersect with the cross beams, can now be determined by substituting these values in (6). 

In the model with 1D elements described in Chapter 4 the only loads applied on the 1D model are 
the internal forces of the cross beams. This means that the displacements of the main girders at 
the location of the cross beams can be expressed in terms of the internal forces of the cross 
beams. The found expression is: 

𝒖(𝑖)(𝑥0) = 𝑲(𝑖)

[
 
 
 
 𝒇𝑖𝑛𝑡1

(𝐷𝐷1)
(𝑥0)

𝒇𝑖𝑛𝑡1
(𝐷𝐷2)(𝑥0)

⋮

𝒇𝑖𝑛𝑡6
(𝐷𝐷4)(𝑥0)]

 
 
 
 

 (7) 

In which 𝒇𝑖𝑛𝑡𝑖

(𝑗) is the ith component of the internal force vector of cross beam j as defined in 

Appendix I Derivation system of differential equations of a Timoshenko beam element. Adding 
these boundary conditions (7) to those established to the set determined in the previous chapter 
(4) makes it possible to solve the model of 1D element as described in Chapter 4 without 
discretising in space. Therefore, the solution obtained in this manner will have no mesh 
dependency. 
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6 Results of mesh independent 1D elements 
model 

In the previous chapters the theory and idea behind the use of a mesh independent model existing 
out of 1D elements was discussed. After applying the theory results can be obtained. In this chapter 
different options on the interpretation of these results are discussed. As well as the conclusions 
that can be drawn from these results. 

6.1 Use of mesh independent 1D model 

The proposed 1D elements model has to be used in an iterative manner (Chapter 4.5). For this 
research several iterations were performed. The locations at which the maximum stress intervals 
were determined are shown in Figure 34. 

 
Figure 34: Iteration locations 

Since the considered bridge has an axis of symmetry only half of the iteration locations have to be 
used. According to the Dutch regulations [3] at each of these locations 3 possible central points of 
the spread of a wheel of a truck have to be considered to determine the fatigue damage (Figure 
7). These being on top of the centre of the considered trough, on top of the considered web of a 
trough and in between the two troughs next to the considered trough web. However, in the 
proposed 1D elements model the troughs are connected to the deck plate at the neutral axis of 
the trough (not at the webs of the trough). Therefore, only two locations are considered for the 
central point of the spread of a wheel of a truck. These being on top of the neutral axis of the 
considered trough and in between the troughs next to the considered trough web. In some cases, 
the position of the spread of the wheel of the trucks was such that the other wheel of the truck 
had a set location (since setting it at the opposite side of the given location meant that it would be 
placed outside of the bridge). In the other cases both the placement of the left and right wheel at 
the given spread locations had to be considered. Note that left and right refer to a local definition 
which is shown in Figure 34. 

The very first iterations were chosen evenly distributed over the entire bridge. Extra iterations 
were added close the maximum of the previous iterations. As a result of this a global maximum 
might have been missed. An improvement in both the change of missing the global maximum as 
well as the number of iterations needed to find it can be reached by applying optimization 
algorithm [33, 12]. 



Thesis report 
  
projectnummer - 
3 oktober 2022  
  

  Page 36 

 
 
 

 

For every load case (between 30 and 60) in every considered trough web a linear system of 
equations has to be solved6. This system will have slightly different sizes but always exceeds 2025 
equations. Due to the size of these system and a limit in computation time this system is solved 
numerically. 

6.2 Interpretation of results of mesh independent 1D model 

In the proposed mesh independent 1D model the troughs are not connected to the deck plate at 
their webs but directly above the neutral axis of the trough. Therefore, the points with the 
maximum stress interval are not located at the trough webs but at the neutral axis of the trough 
(Figure 41). As a result of this, and some numerical interpolation issues (Appendix IV Uninterpreted 
results mesh independent 1D elements model) a different way of interpretating the results is 
necessary. In this research two interpretation methods are used and compared. 

In this paragraph all results of the mesh independent 1D model are presented in dimensionless 
units (percentages). This is because the results cannot be used to determine stress values 
accurately and presenting stress values might suggest that the model can be used to determine 
those values. However, the model might still be able to determine the location where the 
maximum stress interval can be found. All results in Paragraph 6.2.1 are in relation to the same 
maximum thus these figures can be compared with each other. The results of Paragraph 6.2.2 are 
in relation to a different maximum. 
  

 
6 Another reduction of less than 20% can be reached by noting that some load cases can be used 
to analyse two different trough webs. Therefore, in these cases, the system of equations has to be 
solved only once to get the stresses in two trough webs. 
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6.2.1 Interpretation method 1: Stress in trough web assumed to be stress at 
corresponding side of neutral axis, only right sided trough webs 

The first interpretation method which will be discussed is only taking the right web of all troughs 
in account. Since the bridge is symmetric the value of a left web of a trough is equal to right web 
of the trough at the other side of the symmetry axis (e.g. the maximum stress interval in the left 
web of trough 3 is the same as in the right web of trough 15). This leads to the following results 
(Figure 35): 

 
Figure 35: Contour plot of max stress interval obtained with method 1 

This contour plot has some notable properties: 
- All fields between the cross beams have a similar shape 
- The maxima are found close to the crossbeams while the minima are found in between 

the crossbeams 
- The maximum of the plot does not exceed 100% 
- The maxima look to be close to one main girder while the minima look to be close to the 

opposite main girder 

That the fields between the crossbeams have a similar shape but do not have identical values is 
expected. It is expected that the local design of the bridge has the most influence on the local 
stresses. Since the design is locally identical the stress values are expected to be similar. However, 
the global design will still have a small influence. And since the full design is not fully symmetric 
(the support conditions, main girders and cross beams are not symmetric in all axes, see Chapter 
3) some small difference between the stresses are expected. 

Having the highest and lowest value of the stress intervals either in the middle or at the ends of 
the fields in between the crossbeams is expected. This is due to high stiffness expected close to 
the cross beams and low stiffness expected the be in the middle between two cross beams. often 
the maximum and minimum stresses can be found close to the location of the maximum and 
minimum stiffness (Appendix V Shortlist of potential critical points). 

That no value in the contour plot exceeds 100% means that the point with the highest expected 
maximum stress interval is already within the points which have been analysed in the previous 
iterations. Therefore, it is assumed that further iterations are not likely to suggest that a different 
point will have a higher expected maximum stress interval. Thus, it is decided that the iterative 
process has been repeated enough times. 



Thesis report 
  
projectnummer - 
3 oktober 2022  
  

  Page 38 

 
 
 

 

The results suggest that the highest maximum stress interval is at an outer side of the bridge while 
the lowest is at the opposite side of the bridge. To better examine this the maximum stress interval 
is graphed in several cross sections (Figure 36). 

 
Figure 36: Maximum stress interval in cross sections, obtained with interpretation method 1 

This graph has some notable properties: 
- The highest expected maximum stress interval is found at the end of the bridge (x = 9449) 

in the right web of trough 4 (y = 2200) 
- The lowest expected maximum stress interval is found in the centre of the field between 

crossbeam 3 and crossbeam 4 (x = 8000) in the right web of trough 16 (y = 9400) 
- In some cross sections there is a kink at trough 14 
- The cross sections in the middle of two cross beams (x = 1600, x = 4800 and x = 8000) 

contain maximum stress intervals which have a lower value than the cross sections which 
are close to the cross beams 

The highest value of the maximum stress interval is at the end of the bridge (x = 9449). This is one 
of the locations identified as likely to have the highest maximum stress interval (Appendix V 
Shortlist of potential critical points). However, it is found in the fourth trough, this is not a trough 
which is considered to be likely to have the highest maximum stress interval. Since the bridge is 
symmetric there is another point expected to have the same maximum stress interval. That point 
is also at the end of the bridge (x = 9449) but in the left web of trough fifteen. 

The lowest expected maximum stress interval is found in the left web of trough 16 for all analysed 
cross sections. This is remarkable since this means that both the lowest and highest maximum 
stress interval is found to be close to the main girders and close to each other. 

In Figure 36 some cross sections show a kink at the location of the right web of trough 14 while 
other cross sections do not. It is noted that the cross sections with a kink are located at x is 6249, 
6551, 8000, 8750 and 9449. These cross sections are all close (or at) an analysed point in the right 
web of trough 14. While the remaining cross sections are further away from a preformed iteration 
on the right web of trough 14. Therefore, the remaining cross sections will have a smooth curve at 
this location (Since a cubic surface is used to interpolate between iteration points the curve has to 
be smooth between these points [34]). The cross sections with a kink have those because troughs 
14, 15 and 16 have fewer load cases which can be applied (the trucks have to be positioned in such 
a manner that both wheels fit on the bridge). In the next trough these extra load cases can be 
added. This results in a sudden increase in the expected maximum stress interval. 
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It can be observed cross sections which are situated in between the cross beams have lower 
maximum stress interval values than the cross sections close to the cross beams. To research this 
behaviour the maximum stress intervals in the length of troughs are graphed (Figure 37). 

 
Figure 37: Maximum stress interval in right sided trough webs, obtained with interpretation method 1 

This graph has some notable properties: 
- All troughs have a maximum stress interval at the points close to the cross beams and a 

minimum in the middle between two cross beams 
- Troughs at the right side of the considered bridge (troughs with a low number) have higher 

expected stress interval values than the troughs at the left side of the considered bridge 
- Between the third and the fourth cross beam the differences between the maximum 

stress intervals in the different troughs is bigger than in between the other cross beams 

Each trough shows a similar behaviour of the maximum stress interval. All troughs have local 
maximum stress intervals at the cross beams and local minimum stress intervals in between two 
cross beams. This agrees with the cross sections in between two cross beams having lower stress 
interval values than the cross sections close to the cross beams as presented in Figure 36.  

It can be observed that the right sided trough webs at the right side of the bridge have higher 
expected maximum stress intervals than the right sided trough webs at the left side of the bridge. 
This agrees with the cross sections in between two cross beams having lower stress interval values 
than the cross sections close to the cross beams as presented in Figure 36. 

It is noted that the differences between the maximum stress values is bigger between the troughs 
at the left side of the bridge between cross beam 3 and 4 than at the other locations of the bridge. 
This agrees with the kink in the graph of Figure 36. The reason for this behaviour is explained in 
the paragraphs concerning Figure 36. 

The proposed mesh independent 1D model does not account for the connection between the 
trough webs and the deck plate. This might be the reason for the remarkable difference occurring 
between left and right webs of troughs (Appendix IV Uninterpreted results mesh independent 1D 
elements model). Therefore, an alternative interpretation for the results will be examined. 
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6.2.2 Interpretation method 2: Averaging trough webs, difference in trough webs 
determined using nearest trough 

By applying interpretation method 1 it was found that one web (right) of a trough has a remarkably 
higher expected maximum stress interval than the other web (left) of the trough. This might be 
due to the simplifications applied in the connection between the troughs and the deck plate strip. 
To account for this it can be argued to average the found values at either side of the neutral axis 
of the trough and use those for both webs of a trough. This would give a sense of the maximum 
stress interval of each trough. The difference between the webs in a trough could be determined 
by looking at the adjacent troughs at either side of the considered web. The trough with a higher 
expected stress interval could be argued to be on the side in which the trough web is expected to 
have a higher maximum stress interval as well. Applying this method, the following result can be 
obtained (Appendix VI Results mesh independent 1D element model interpretated via method 2, 
Figure 38): 

 
Figure 38: Contour plot when averaging between trough webs 

This contour plot (Figure 38) has some notable properties: 
- The highest maximum stress interval is found in the middle of the bridge (y = 5050 and 

5650) and at the last cross beam (x = 9449). It is expected to be in the trough web closest 
to the middle of the bridge. 

- The lowest maximum stress interval is found in the middle of the field between crossbeam 
3 and 4 (x = 8000) and close to the main girders (y = 1450 and 9250). 

- It is close the perfectly symmetric. 
- The maximum of the plot does not exceed 100% 
- In the fields between cross beam 1,2 and 2,3 a saddle point is situated in the middle. While 

in the field between cross beam 2 and 3 a local minimum is found in the middle. This 
minimum sits between two saddle points. 
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The highest maximum stress interval is found at one of the locations where it would have been 
expected in advance (Appendix V Shortlist of potential critical points). 

The lowest maximum stress interval is found at one of the locations where it would have been 
expected in advance (Appendix V Shortlist of potential critical points). 

The contour plot is almost symmetric. The bridge is entirely symmetric thus the contour plot is 
expected to be so too. The small deviation from symmetry is due to the accuracy of the applied 
interpolation method. 

The fact that no value in the contour plot exceeds 100% means that the point with the highest 
expected maximum stress interval is already within the points which have been analysed in the 
previous iterations. Therefore, it is assumed that further iterations are unlikely to suggest that a 
different point will have a higher expected maximum. Thus, it is decided that the iterative process 
has been repeated a sufficient number of times. 

In the fields between crossbeam 1, 2 and 3, 4 a saddle point can be found in the middle. While the 
field between crossbeam 2 and 3 has a local minimum at this point. In this research the focus is on 
the highest maximum stress interval thus no extra attention will be given to this remarkable 
property. 

6.3 Differences in results of interpolation methods 

Both the methods discussed in this chapter have wildly different results (Figure 35 and Figure 38). 
The points with the highest maximum stress interval found by applying the two interpolation 
methods are given in Table 9. 

Table 9: Results of 1D elements model using interpretation method 1 and method 2 

 Method 1 Method 2 

x [mm] y [mm] Through 
web 

x [mm] y [mm] Through 
web 

Maximum stress 
interval 

 
Lower stress intervals 

9449 2200 4R 9449 5200 9R 
9449 1600 3R 9449 4900 9L 
9449 2800 5R 9449 4600 8R 
9449 1000 2R 9449 4300 8L 

Both interpretation methods result in an expected point with the highest expected stress interval 
at the end of the bridge next to the last cross beam (x = 9449). However, both interpretation 
methods result in a different trough having the expected highest maximum stress interval. Method 
1 suggest that there is a significant difference in the maximum stress interval between the two 
webs of a trough while method 2 states that the stress interval in different webs of a trough are 
similar. 
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7 Verification 

In the previous chapters several simplifications on the traditionally used 2D plate model have been 
preformed of which the influence, on the location of the highest maximum stress interval, have to 
be studied. The following simplifications will be studied in reversed order: 

- Change from traditionally used 2D plate FE model to 1D elements FE model 
- Change from 1D elements FE model to mesh independent 1D model 

To see whether these simplifications have influences on the location with the highest maximum 
stress interval several case studies will be performed. The choice for these cases (choice in the 
points analysed). Is based on the results in the previous chapter (Paragraph 6.3) and the judgement 
of two structural engineers.  

The verification will be done by comparing the results of the proposed mesh independent 1D 
model with the 1D elements FE model. Comparing the results of a 1D FE model with the results of 
a 2D elements FE model with weld details (as required with the regulations [3]). And by comparing 
the results of the proposed mesh independent 1D model with the 2D elements FE model (with 
weld details). 

7.1 Proposed mesh independent 1D model vs. 1D elements FE model 

In the previous chapter it was shown that the maximum stress interval is expected in right web of 
trough 4 or the right web of trough 9. In this comparison the right web of trough 4 is considered. 
Since all load cases, which have to be considered in this point, create a compressive stress 
(Appendix IV Uninterpreted results mesh independent 1D elements model) only 1 load case will be 
needed to determine the maximum stress interval of the two models. The load case used for the 
comparison is one of the load cases which has to be used for the determination of the maximum 
stress interval in both the right web of trough 4 and the left web of trough 5. This load case is 
related to a truck with axis type B (Figure 6) on the field at the right side (Figure 40) of the 
considered trough web. The resulting stresses found in the bottom of the deck plate strip are 
shown in Figure 39 and Figure 40. These figures show the stresses found in both models. However, 
these values are not representative for the stress occurring in a 2D element model nor a full 3D 
model. These stresses cannot be used to determine fatigue damages. 

 
Figure 39: Stress in bottom of deck plate strip using proposed mesh independent 1D model 

 
Figure 40: Stress in bottom of deck plate strip using 1D elements FE model (without cope hole) 

It can be noted that the stress interval found at the considered web is (to at least two digits after 
the comma) identical in both 1D models. Therefore, it can be concluded that replacement of the 
main girders by alternative boundary conditions as presented in Chapter 5.5 is done properly. 
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7.2 1D elements FE model vs. traditionally used 2D plate model 

To compare the 1D FE model with the traditionally used 2D plate several FE analyses are compared. 
For these analyses both models used the same load combinations (the same as applied to 
determine the results from Table 2). Since it is likely that point with the highest stress interval is 
directly next to the applied loads (Chapter 3.6) only the points in line with the loads are considered. 
The results can be found in Figure 41. 

 
Figure 41: Maximum stress interval at bottom of deck plate at the 1D and 2D FE model 

The traditionally used 2D plate model used to make this graph has a mesh of 0.4m with local 
refinements around the welds of 0.05m. For a thorough description see the FE model in the 
database [30]. Some observation can be made based on Figure 41: 

- The values of stresses in the 1D FE models differ from the traditionally used 2D plate 
model. This is expected since the 1D FE model only a small deck plate strip is modelled 
(Chapter 4.5). 

- The traditionally used 2D plate model and 1D FE model have their maximum stress 
intervals in the same region. As a result of this the highest stress intervals could be at the 
same locations. The traditionally used 2D plate model (without weld details) is not able to 
determine the exact point the maximum stress interval is likely to occur (Chapter 3.6). 

7.3 Proposed mesh independent 1D model vs. 2D FE model 

The traditionally used 2D plate model cannot be used to determine the location of the maximum 
stress interval (Chapter 3.6). However, now that some points potentially having the maximum 
stress interval are determined (Chapter 6.3) the traditionally used 2D plate model can be updated. 
At the relevant locations the required [3] weld details and mesh refinement can be added. And the 
total amount of load cases considered can be reduced. After which this updated 2D FE model can 
be used to determine the value of the maximum stress interval at the relevant locations. These 
maximum stress intervals can be compared with the results of the proposed mesh independent 1D 
model. 

An overview on how to update the traditionally used 2D plate model is given in the Chapter 2.1.2. 
In this chapter only a short summary is given of this method. The calculation as applied on the 
considered case study (of the Goereese bridge) can be found in the appendix (Appendix VII 
Elaboration calculating maximum stress interval 2D FE model). 
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7.3.1 Comparison points 

Since the results required by the proposed mesh independent 1D model interpretated via method 
1 suggest significant difference between the maximum stress values at different webs of a trough 
(Chapter 6.2.1), for every point in a trough (if possible7) both webs will be considered. A total of 
four points will be considered. 2 of these points (1 and 2) are at the maxima found by the two 
different interpolation methods applied on the results of the 1D elements model (Figure 35 and 
Figure 38). The last two points are determined by asking experts on their opinion. One of these 
points (A) was given by structural engineer “A” who was not informed of the results of the 
proposed 1D elements model. The second point (B) was given by structural engineer “B” who was 
aware of the results and details of the proposed 1D elements model. Both structural engineers 
were familiar with the design of the bridge. In Figure 42 the points are shown. 

 
Figure 42: The four points analysed with a 2D elements SCIA model. 

Both structural engineer “A” and “B” explained their choice for their expected point A and B. 

Point A 
As stated before, this point was chosen without the results obtained by the proposed mesh 
independent 1D model. The short list obtained by this structural engineer was the same as 
explained in Appendix V Shortlist of potential critical points. Next, the structural engineer 
mentioned that the fields at the ends are expected to have a higher maximum stress interval since 
a dynamic amplification factor has to be applied. When this argument surfaced the structural 
engineer was told that the new regulations (ROK [3] article 00910) state that over a distance of 6m 
from any expansion joint a constant dynamic amplification factor of 1.15 has to be applied. Since 
there is an expansion joint at both ends of the bridge and the bridge is less than 12 meter long all 
points have the same constant dynamic amplification that has to be applied. Thus, this factor will 
not have an influence8. However, this did not change the chosen point since the structural engineer 
argued that the asymmetry in support conditions might still lead to point A having the highest 
maximum stress interval. The structural engineer stated that the difference between the trough 
webs is expected to be extremely small (therefore, the difference might not be measurable). 
However, if a difference can be found the structural engineer expect the trough web at right side 
(Figure 42) to have the highest maximum stress interval.  

 
7 For point “B” only the right trough web could be considered since the left trough web is too close 
to the main girder. Resulting in not all load cases, which have to be considered according to the 
regulations [3], fitting on the designed bridge. In this analysis the left trough web was omitted. In 
real live applications this point would either be analysed using the remaining possible load 
combinations or be omitted due to extra applied vehicle retaining barriers (see Chapter 9.1). 
8 In the previous version of the ROK [31] was published a linear decreasing dynamic amplification 
factor had to be applied which would have had an influence. 
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B 
This point was chosen by a structural engineer who was informed on the results of the proposed 
mesh independent 1D model. Again, the same short list of points was obtained (Appendix V 
Shortlist of potential critical points). After examining the results, the first thing the structural 
engineer started to do was trying to argue why the first interpretation method of the 1D elements 
model suggest a highest maximum stress interval at a point which is not on the short list. After 
looking at Figure 36 the structural engineer concluded that they simplification of the deck plate 
not being connected to the main girder but to the nearest trough (Chapter 4.5) might lead to 
inaccurate maximum stress intervals in the most outer 3 troughs. Therefore, the structural 
engineer expect that a more accurate estimation would be a further increase in the maximum 
stress interval when reaching the outer sides (Figure 43). Therefore, the prediction of this structural 
engineer was a point at the end of the bridge at the right trough web of the trough closest to the 
main girder (Figure 42). 

 
Figure 43: Results 1D elements model plus expected reality by expert at the end of the deck plate (x=9449)  
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7.3.2 Update 2D elements model (element thickness and mesh sizes) 

The regulations [3] provide a method to model the welds and determine the stresses occurring in 
the welds. For the considered weld detail (Figure 2) the most relevant articles are number 00912 
and 00915. Together these articles, in combination with the design of the bridge, make it possible 
to determine all necessary information to model the welds. As well as determine the stresses which 
would have to be used to determine the fatigue damage. The calculation is provided in Appendix 
VII Elaboration calculating maximum stress interval 2D FE model. The obtained weld model is 
shown in Figure 44. 

 
Figure 44: Detailed weld (drawing not to scale) [3] 

In Figure 44 the prescribed method on how to model the weld is shown. In this the red area is the 
local increase in element thickness (from 20 to 23mm) in the deck plate. In blue a local increase in 
the element thickness (from 6 to 13.3mm) in the trough is shown. 

To determine the stresses in the considered detail (Figure 2) it is not allowed to use the stresses 
reported by the FE model at the weld toe. Instead, the stresses have to be determined at two 
points (A and B) at a certain distance from the weld toe. After which the stresses at the weld toe 
can be determined via the application of linear interpolation (from A and B to C). To determine the 
location of points used for the interpolation article 00915 of the ROK [3] can be used. The obtained 
points are sketched in Figure 45. 

 
Figure 45: Interpolation points for stress determination [3] 

The regulations [3] also provides the maximum allowed mesh size. This size should be smaller or 

equal to half the deck plate thickness. For the considered case study that results in a local mesh 

size of 10mm. 
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7.3.3 Results 2D elements SCIA model 

After applying the calculation method as provided in the ROK [3], in combination with the results 
obtained from a FE analysis (see the database [30]) the results in Table 10 are obtained. 

Table 10: Results of 2D elements SCIA model 

Point Load case 
(see Figure 46) 

Maximum Stress interval 
[N/mm²]9 Name Trough Web 

A 9 Left 7 (A) 55.47 
A 9 Right 13 (D) 56.00 
B 2 Right 13 (D) 53.90 
1 4 Left 7 (C) 63.28 
1 4 Right 13 (D) 63.24 
2 9 Left 7 (C) 61.76 
2 9 Right 13 (B) 61.99 

From the results in Table 10 some observations can be made: 
- The stresses in the different webs of a trough are comparable 
- Every analysed point has a maximum stress interval due to a spread location which result 

in only compressive stresses happening in at the analysed point. As a result of this the 
maximum stress interval is the result of only one truck.10 

- The load case resulting in the maximum stress interval is always due to a truck with an 
axle type B having a wheel directly positioned on top of the considered trough web (Figure 
46). 

- Of all the considered points (Figure 42) the left side of point 1 has the highest maximum 
stress interval. This point is not within the points expected to contain the maximum stress 
interval (Appendix V Shortlist of potential critical points) 

 
Figure 46: Different load cases. (a) the right wheel of a truck with axle type B positioned on track 

7. (b) the right wheel of a truck with axle type B positioned on track 13. (c) the left wheel of a 

truck with axle type B positioned on track 7. (d) the left wheel of a truck with axle type B 

positioned on track 13. The red plus is positioned at the location which has the maximum stress 

during the shown load case.  

 
9 These result follow from the FE analysis after the dynamic amplification factor (1.15) is applied. 
The reduction for compressive stresses of 60% was not applied. This would not change the location 
of the maximum stress interval since all stresses are compressive. 
10 It can be noted that other analysed spread location sometimes had a maximum stress interval 
due to a combination of two different tucks. However, these are lower than the maximum stress 
interval of another spread location. This is unlikely to be the case for other detail categories. The 
ROK [3] specifically mentions detail 2a and 2b being prone the stresses in both compression and 
tension (article 00909). 
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7.4 Comparison 

The 2D FE model including weld details was used to determine the maximum stress interval in a 
limit set of points (Figure 42). The results of the 2D FE model with weld details (Table 10) for these 
points can be compared with the results of the different interpretations of the 1D analytical 
solutions model (Figure 35 and Figure 38). In Table 11 the points for which both models have results 
are ordered in order from highest maximum stress interval to lower maximum stress intervals. 

Table 11: Comparison of results of 2D FE model with weld details and proposed mesh independent 1D model 

 2D FE model with weld 
details 

Proposed mesh independent 1D model 

Interpretation method 1 Interpretation method 211 

Trough web x[mm] Trough web x[mm] Trough web x[mm] 

Max. 
stress 

interval 
 

Lower 
stress 

interval 

4 Left 9449 4 Right 9449 9 Right 9449 
4 Right 9449 2 Right 9449 9 Left 9449 
9 Right 9449 9 Right 9449 4 Right 9449 
9 Left 9449 9 Left 9449 4 Left 9449 
9 Right 1600 9 Right 1600 2 Right 9449 
9 Left 1600 9 Left 1600 9 Right 1600 
2 Right 9449 4 Left 9449 9 Left 1600 

This comparison leads to some observations. 
- The proposed mesh independent 1D model predicts a highest maximum at the end of the bridge 

(x = 9449) which agrees with the 2D FE model with weld details. 
- All models have a different point in width direction of the bridge containing the maximum stress 

interval 
- The 2D FE model with weld details and the proposed mesh independent 1D model interpreted via 

method 1 have the same trough with the maximum stress interval but in a different web 
- The 2D FE model with weld details and the proposed mesh independent 1D model interpreted via 

method 2 suggest that the difference of maximum stress interval between two trough webs is small 

Since all compared models have several points in the same cross section (x=9449) a graph 
containing these results can be made (Figure 47). 

 
Figure 47: Maximum stress interval at x = 9449 resulting from the different models 

It can be observed that all models predict a different distribution of the maximum stress intervals 
over this cross-section.  

 
11 This interpretation method (Chapter 6.2.2) cannot be applied on through 2. Thus, the result of 
trough 2 was obtained via extrapolation. 
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8 Conclusion and recommendations 

In the previous chapters results are shown regarding: 
- The useability of a 2D model without containing weld details (Chapter 3.6). Where the 

problems regarding mesh dependency of this model is shown. 
- The distribution of the maximum stress interval of the 1D model interpreted in 2 different 

ways (Figure 35 and Figure 38). Including a comparison of these distributions with the 2D 
model containing weld details at the end of the bridge (Figure 47). It is observed that the 
distributions are dissimilar. 

- The obtained location of the maximum stress interval of the 1D model interpreted in two 
different ways and the 2D model containing weld details (Table 11). It is observed that all 
three points are found in the same cross section. However, they are located at different 
trough webs. Two of the three points are at different legs of the same trough while the 
third point is several troughs away. 

- The load cases resulting in the maximum stress interval at a considered point in the 2D 
model containing weld details (Figure 46). It is observed that the load cases (resulting in 
the maximum stress interval) are similar. 

From these results conclusions can be drawn, and recommendations can be given. This will be done 
in this chapter. A discussion on these conclusions and recommendations is given in Chapter 9. 
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8.1 Conclusions 

In this report an investigation is presented of the answer the following research question: 

How can the determination of the location of the first fatigue crack in the deck, at a stiffener to 

deck plate weld toe, be parameterized? 

From this investigation six conclusions can be drawn: 

- It can be concluded that a model made from mesh independent 1D elements is unlikely 

to determine the location of the expected first fatigue crack in agreement with the 

prediction of a detailed 2D FE model. 

 

- A traditionally used, 2D FE model not containing any weld details cannot be used. Since 

the found location for the first fatigue crack is highly mesh depended. As a result of this a 

very small mesh size is needed resulting in unpractically large computation times (with 

the currently available computation power). 

 

- The results from 1D model as presented in the report predicts differences between the 

maximum stress intervals at the two webs of the same trough of a higher magnitude then 

the 2D detailed FE model. 

 
- All models in this report predict a location of the first fatigue crack. All these predictions 

stated that the crack will occur in a cross section at the end of the bridge (x = 9449). 

 
- The predictions of all models in this report suggest a point counterintuitive to the 

structural engineers participating in this research. Therefore, the intuition of structural 

engineers regarding the location of the first fatigue crack might sometimes be incorrect. 

 
- The number of load cases considered in the 2D FE model including weld details can be 

reduced. 
 
Since this conclusion is based on a limited number of considered locations and for a single 
case study this conclusion has a limited degree of certainty. The higher the number of 
concluded irrelevant load cases the higher the degree of uncertainty. In order of 
increasing uncertainty, it can be concluded that: 
 

o In a 2D FE model containing weld details (of the case study), the maximum stress 

interval at a trough web-to-deck plate weld toe occurs when the spread location 

of a wheel of a truck is applied directly on top of the considered trough web. 

 

o In a 2D FE model containing weld details (of the case study). If the spread location 

of a wheel of truck is directly above the considered trough web, all load cases 

result in a compressive stress in the considered trough web-to-deck plate weld 

toe. Therefore, only the influence of individual truck axles has to be accounted 

for in the determination of the location of the maximum stress interval at a 

trough web-to-deck plate weld toe. 

 

o In a 2D FE model containing weld details (of the case study), the maximum stress 

in a point at a trough web-to-deck plate weld toe occurs when an axle type B 

(Figure 66) is placed directly on top of the considered point.  
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8.2 Recommendations 

Based on the obtained results and related conclusion recommendations can be given. In this 
chapter these recommendations are split in three parts. First, recommendations are given on 
research into potential improvements of a 2D FE model. Secondly, recommendations are given on 
gaining knowledge to help explaining the differences in the results of the proposed 1D method and 
the 2D FE model containing weld details. Lastly, recommendations are given on the immediate use 
of the obtained knowledge. 

8.2.1 Possible simplifications of a 2D FE model for the determination of the location 
of the highest maximum stress interval 

To potentially reduce the computational time needed to solve the 2D FE models the following 
actions are recommended: 

- Investigate if the number of load cases necessary to determine the maximum stress 

interval in a point can be reduced. This can be done by researching the following questions 

and their general applicability: 

o Is the maximum stress interval in every trough web always caused by a load 

combination occurring when the spread of a truck wheel is applied directly on 

top of a trough web? 

o Do all load cases, in the spread location resulting in the maximum stress interval 

in a trough web, cause compressive stresses? 

o Is the maximum stress always occurring if an axle type B is directly on top of the 

considered trough web? 

o Does the presence of a second axle (away from the analysed point) of a truck 

influence the location of the highest maximum stress interval? 

o Does the presence of a second wheel of an axle influence the location of the 

highest maximum stress interval? 

 

- Investigate if the modelling requirements (as required by the regulations [3]) can be 

simplified for the determination of the location of the maximum stress interval. This can 

be done by investigating the following questions and their general applicability: 

o Does the addition of weld details influence the location of the highest maximum 

stress interval? 

o Does the omittance of the extrapolation method influence the location of the 

highest maximum stress interval? 

 

To research the two questions stated above a FE model including all the suggested 

simplifications can be made. The results of this FE model can be compared with the results 

of a FE model without the proposed simplifications. If necessary, a next set of models 

could be made in which a single simplification is lifted to research the influence of this 

specific simplification. 

Independent of the results presented in this report some general recommendations on the 

research in improving the computation time needed to solve the system of differential equation 

can be given (improving FE method, researching alternative methods, or improving computational 

power). However, in this report the recommendations will be limited to that what is discussed in 

the earlier chapters of the report. 
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8.2.2 Research difference between 1D method and 2D FE model 

To be able to further explain the differences between the obtained results of the 1D method and 
2D model several recommendations into further research are recommended. 

- Research if the location where the highest maximum stress interval occurs is the location 

where the highest fatigue damage occurs. To do this not only the maximum stress interval 

should be determined with a the detailed 2D FE model and regulatory method in several 

points. But the entire fatigue damage should be determined (with the 2D FE model 

including weld details as required by the regulations) in (the same) several points. 

 

- Research the influence of the difference between load cases considered in the 1D model 

and the 2D model containing weld details. This can be done by performing the analysis of 

the 2D model only considering the load cases which are accounted for in the 1D model. 

 

- Research the influence of the extrapolation (hot-spot) method. This can be done by 

determining the results of the 2D model without the extrapolation method and compare 

those with the results obtained with the 1D model. 

 

- Research the influence of the inclusion of the weld details. This can be done by 

determining the results of the 2D model without locally increased element thickness and 

compare those with the results obtained with the 1D model. 

 

Research the influence of the difference in the way the connection between the stiffeners 

and the deck plate are modelled. This can be done by analysing a bridge with stiffeners 

with only one connection point with the deck plate (e.g. bulb strips). And comparing the 

difference between the 2D and 1D model of these two bridges. It is recommended to start 

with a single load case. 

 

- Research if the connection of the deck plate with the main girder has an influence on the 

location of the maximum stress interval. This can be by connecting the deck plate strip (in 

the 1D method) with the main girder and compare the result of that model with the 

results presented in this report. 

8.2.3 Recommendation until knowledge, on the determination of the location with 
the highest expected fatigue damage, is acquired 

To be able to correctly determine the location of the first expected fatigue crack more knowledge 
has to be acquired. Until then, some action can be advised. 

- Inform current and future structural engineer on the unreliability of intuition with regards 

to the location of the first fatigue crack. 

 

- Monitor and inspect bridges carefully. Especially the welds directly below a wheel track. 

Since fatigue crack usually are located below a wheel track [7]. 

 

- Design bridges in such a manner that fatigue cracks are easy to repair. 
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9 Discussion 

Some remarks can be made related to the research presented in the report. In this chapter the 
assumptions and simplifications in the research are being discussed as well as the conclusions. 

9.1 Discussion on the assumptions and simplifications 

This paragraph mentions and discusses all assumptions and simplifications in this research. The 
order in which these are presented here is the same as the order in which they appear throughout 
the report. 

- It is assumed that the highest stress interval will occur at the same location as the highest 

fatigue damage. This is based on the double logarithmic relation between a stress interval 

and the fatigue damage resulting from a stress interval [10].The relation between a single 

stress interval and allowable number cycles is given by Figure 48. 

 

 
Figure 48: Relation between the size of a stress interval and the maximal allowable number of 

cycles [10] 

It is assumed that the highest maximum stress interval would be in the part of the curve 
with the steepest (1/3) declination. From this part, the slope and a single point are given 
(Figure 48). This means that the analytical expression for this part of the curve can be 
determined. It can be written as a relation between the number of cycles (𝑁) and the 
maximum allowable stress interval (Δ𝜎𝑅): 

𝑁 =
2 ∗ 1012

Δ𝜎𝑅
3  (10) 

Suggesting that a small increase in the stress interval results in significant decrease in the 
maximal number of cycles (e.g., if the stress interval increases with 10% the maximum 
number of cycles decreases with 25%). However, for the determination of the fatigue 
damage not only the maximum stress interval has to be accounted. All the stress intervals 
higher than the cut-off limit need to be taken in account. As a result of this it is possible 
that the highest maximal stress interval occurs at a point in which the maximum fatigue 
damage is not found. Since the maximum observed stress interval (Table 10) is not withing 
the part of the curve with biggest decline, the chances this assumption being incorrect 
increases.  
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- In the determination of the useability of the traditionally used 2D plate model (Chapter 
3.6) and in the investigation in the influence of cope holes and stiffener cross section 
(Chapter 4.6). Two discussable decisions are made: 

o The analyses were performed based on the choice of the central position of a 
traffic lane. While the current regulations [3] state that for each of the 
considered welds three positions of a wheel track should be considered. The 
benefit of the regulatory method is that only one point is analysed thus, mesh 
refinement has to be applied around only one point. The disadvantage is that 
more load cases need to be considered. 

o The load cases used are based on the axles of the trucks as defined by NEN 8701 
[35] while Dutch regulations state that the axles presented in Figure 6 should be 
used. 

In this report it is assumed that these decisions have no influence on the drawn 
conclusions. 
 

- Several discussable decisions are made in the design of the 1D model (Chapter 4). 
o It does not contain a ballast box. Since the ballast box is not directly connected 

to the bridge deck it is assumed that this choice has no influence on the location 
of the maximum stress interval. 

o The part of the bridge deck before the first and after the last cross beam is 
neglected. It is assumed that the point with the highest maximum stress interval 
will be found between the cross beams. And the presence of the bridge deck 
before the first and after the last cross beam will have no influence on the 
location of the highest maximum stress interval. 

o The deck plate is connected to most outer troughs instead of the main girder. 
Some discussion into the reason of this choice is presented in Chapter 4.5. And a 
recommendation on an investigation on the influence on this choice is given in 
Chapter 8.2.2. It is assumed that this choice has no influence on the location of 
the maximum stress interval. Especially since the considered case study has 
additional vehicle barriers (Figure 49) which were not included in this research. 
As a result of this the wheel track positions close to main girders can be omitted.  

 

 
Figure 49: Outer vehicle retaining barriers on Goereese bridge [36] 

- The 1D beam elements do not account for warping deformations. This might lead to 

differences between the 1D FE model and the 1D analytical solution. Which could 

potentially lead to change of the location of the highest maximum stress interval. 

However, it is assumed that the effect of warping deformations is negligible. The 

reasoning behind this assumption is given in Chapter 4. To check this assumption a 

comparison can be made of the 1D analytical method and the 1D FE model with a random 

load case (Figure 39 and Figure 40). It seems that the assumption was correct.  
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- The 1D method does not account for cope holes in the crossbeams. It was argued that this 

would not be a problem if all points within 5% of the found maximum would be used in 

the determination of the fatigue damage of the bridge (Chapter 4.6). From the results 

obtained of the 1D models (Figure 35 and Figure 38), the following remaining points can 

be obtained: 

 
Figure 50: Results 1D model interpretation 1 for points >95% 

 
Figure 51: Results 1D model interpretation 2 >95% 

From Figure 50 and Figure 51 it can be concluded that a lot of points are within 5% of the 
predicted maximum. Resulting in a significant amount of uncertainty regarding the point 
with the highest maximum stress interval. 
 

- The 1D model is used in a limited number of points (Figure 34). The predicted maximum 
stress interval in the remaining points is determined via interpolation. At the interpolated 
points the obtained values have a degree of uncertainty. As a results of this the global 
highest maximum stress interval might be missed. Advanced algorithms to determine the 
next location for the next iteration can reduce the uncertainty [33]. 
 

- Only 4 points are used to compare with the 2D FE model (Figure 42). It can be argued that 

using more points leads to a better comparison. 
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9.2 Discussion on the conclusions 

This paragraph discusses the conclusions which were made after the research was performed. It 
elaborates on how the conclusion can be drawn from the obtained results. It does not discuss the 
results themselves. Any discussion of the results can be found in Chapter 9.1. The conclusions are 
ordered in the way they are presented in Chapter 8.1. 

- Even though the 1D model interpretated via method 1 predicts a point with the highest 

maximum stress interval close to the point found with the 2D model (Table 11). This 

similarity could be coincidental. This because Figure 47 shows that the 1D model predicts 

a distribution of the maximum stress intervals which is behaving unlike the results from 

the 2D model.  

 

- From Table 2 it can be concluded that the 2D FE model without weld details needs a very 

fine mesh before the maximum stress interval can be determined without uncertainty. 

 

- Looking at the results from the 1D model (Chapter 6.2.1) it can be concluded that a 

significant difference between the maximum stress interval is found between the 

different webs of a trough. However, in the detailed 2D FE model the results (Table 10), 

maximum stress intervals are shown which suggest that the maximum stress intervals 

between two trough webs are very similar. 

 

- Based on the results in Table 11 it can be concluded that all models (1D with both 

interpretations and 2D detailed FE) suggest that the point with the highest maximum 

stress interval can be found at the end of the bridge (at x = 9449) 

 

- Based on the results in Table 11 it can be concluded that all models (1D with both 

interpretations and 2D detailed FE) suggest that the point with the highest maximum 

stress interval can be found somewhere else than what is expected by structural 

engineers (Appendix V Shortlist of potential critical points). Therefore, it is concluded that 

the point with the highest maximum stress interval is counter intuitive to most structural 

engineers. 

 

- In Figure 46, the load cases resulting in the maximum stress interval at the analysed points 

(Figure 42) are shown. This is a small number of the load cases which have to considered 

according to the regulations (Chapter 2.1.2). Therefore, it can be concluded that only a 

limited number of load cases has to be considered.  
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Appendix I Derivation system of differential 
equations of a Timoshenko beam element 

 
 
 

In a 3D space including normal deformations 
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Appendix I Derivation system of differential 
equations of a Timoshenko beam element 

A 1D Timoshenko beam element is a 1D shaped element in which it is assumed that the cross 
section remains plain. The cross section rotates and translates around the neutral axis of the beam. 
The sign conventions are shown in Figure 52. The external forces are considered positive if they 
are in the same direction as the axis. 

 
Figure 52: Sign conventions 

The displacement of all points in the cross section can be expressed in the displacement of the 
neutral axis as: 

𝑆𝑥(𝑥, 𝑦, 𝑧)  = 𝑈𝑥(𝑥) − 𝑧𝜑𝑦(𝑥) + 𝑦𝜑𝑧(𝑥) 

𝑆𝑦(𝑥, 𝑧) = 𝑈𝑦(𝑥) + 𝑧𝜑𝑥(𝑥) 

𝑆𝑧(𝑥, 𝑦) = 𝑈𝑧(𝑥) − 𝑦𝜑𝑥(𝑥) 

The strains can be determined by taking the different derivatives in space. 

𝜀𝑥𝑥(𝑥, 𝑦, 𝑧) =
𝜕𝑆𝑥

𝜕𝑥
 ;  𝛾𝑥𝑦(𝑥, 𝑧) =

𝜕𝑆𝑥

𝜕𝑦
+

𝜕𝑆𝑦

𝜕𝑥
 ;  𝛾𝑥𝑧(𝑥, 𝑦) =

𝜕𝑆𝑥

𝜕𝑧
+ 

𝜕𝑆𝑧

𝜕𝑥
 

The stresses can be determined using Hooke’s law. 

𝜎𝑥𝑥(𝑥, 𝑦, 𝑧) = 𝐸𝜀𝑥𝑥 ;  𝜏𝑥𝑦(𝑥, 𝑧) = 𝐺𝛾𝑥𝑦 ;  𝜏𝑥𝑧(𝑥, 𝑦) = 𝐺𝛾𝑥𝑧 (8) 

The normal force in the cross section can be determined by taking the integral of the normal stress 
over the surface of the cross section. For the shear forces take the integral over the corresponding 
shear area. It is assumed that the material properties are constant in space. The internal moment 
can be determined by taking the integral over the surface of the equivalent stress multiplied with 
the corresponding arm. 

𝑁𝑥(𝑥) = ∯ 𝜎𝑥𝑥𝑑𝐴
𝐴(𝑥)

;  𝑉𝑦(𝑥) = ∯ 𝜏𝑥𝑦𝑑𝐴
𝐴𝑠𝑦(𝑥)

 ;  𝑉𝑧(𝑥) = ∯ 𝜏𝑥𝑧𝑑𝐴
𝐴𝑠𝑧(𝑥)

 (9) 

𝑀𝑥(𝑥) = ∯ 𝑧𝜏𝑥𝑦 − 𝑦𝜏𝑥𝑧𝑑𝐴
𝐴𝑠𝑦(𝑥)∩𝐴𝑠𝑧(𝑥)

 ;  𝑀𝑦(𝑥) = ∯ −𝑧𝜎𝑥𝑥𝑑𝐴
𝐴(𝑥)

 ;  𝑀𝑧(𝑥) = ∯ 𝑦𝜎𝑥𝑥𝑑𝐴
𝐴(𝑥)

 (10) 

φz 

Uz 

z 

y 
Uy 

φy 

x 
Ux 

φx 
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By choosing the coordinate system in the neutral axis of the element and substituting (8) in (10) 
and (10) these expressions can be simplified to: 

𝑁𝑥(𝑥) = 𝐸𝐴(𝑥)
𝑑𝑈𝑥

𝑑𝑥
 ;  𝑉𝑦(𝑥) = 𝐺𝐴𝑠𝑦(𝑥) (

𝑑𝑈𝑦

𝑑𝑥
+ 𝜑𝑧(𝑥)) (11A) 

𝑉𝑧(𝑥) = 𝐺𝐴𝑠𝑧(𝑥) (
𝑑𝑈𝑧

𝑑𝑥
− 𝜑𝑦(𝑥)) (11B) 

𝑀𝑥(𝑥) = 𝐺 ∯ (𝑦2 + 𝑧2)𝑑𝐴
𝐴𝑠𝑦(𝑥)∩𝐴𝑠𝑧(𝑥)

𝑑𝜑𝑥

𝑑𝑥
 ;  𝑀𝑦(𝑥) = 𝐸 ∯ 𝑧2𝑑𝐴

𝐴(𝑥)

𝑑𝜑𝑦

𝑑𝑥
 (12A) 

𝑀𝑧(𝑥) = 𝐸 ∯ 𝑦2𝑑𝐴
𝐴(𝑥)

𝑑𝜑𝑧

𝑑𝑥
 (12B) 

The definitions of the moments of inertia (1313) can be substituted in these expressions (12). 
Leading to the following results. 

𝐼𝑦(𝑥) = ∯ 𝑧2𝑑𝐴
𝐴(𝑥)

 ; 𝐼𝑧(𝑥) = ∯ 𝑦2𝑑𝐴
𝐴(𝑥)

 ; 𝐼𝑡(𝑥) = ∯ (𝑦2 + 𝑧2)𝑑𝐴
𝐴𝑠𝑦(𝑥)∩𝐴𝑠𝑧(𝑥)

 (13) 

𝑀𝑥(𝑥) = 𝐺𝐼𝑡(𝑥)
𝑑𝜑𝑥

𝑑𝑥
 ;  𝑀𝑦(𝑥) = 𝐸𝐼𝑦(𝑥)

𝑑𝜑𝑦

𝑑𝑥
 ;  𝑀𝑧(𝑥) = 𝐸𝐼𝑧(𝑥)

𝑑𝜑𝑧

𝑑𝑥
 (14) 
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The next step is to determine the equilibrium equations. Here it is assumed that the applied load 

is constant over a distance dx and that second order terms can be neglected. To understand the 

equations describing the equilibrium equations sketches are added 

Table 12: Equilibrium equations 

 
Translation equilibrium in x direction 

𝑑𝑁𝑥

𝑑𝑥
= −𝑞𝑥  

 
Rotation equilibrium around x axis 

𝑑𝑀𝑥

𝑑𝑥
= −𝑡𝑥 

 
Translation equilibrium in y direction 

𝑑𝑉𝑦

𝑑𝑥
= −𝑞𝑦 

 
Rotation equilibrium around y axis 

𝑑𝑀𝑦

𝑑𝑥
+ 𝑉𝑧 = −𝑡𝑦 

 
Translation equilibrium in y direction 

𝑑𝑉𝑧
𝑑𝑥

= −𝑞𝑧 

 
Rotation equilibrium around z axis 

𝑑𝑀𝑧

𝑑𝑥
− 𝑉𝑦 = −𝑡𝑧 

  

𝑁𝑥  

𝑞𝑥  

y 

dx 

𝑉𝑦 z 

x 

y 
𝑉𝑦 + 𝑑𝑉𝑦 

𝑞𝑦 

dx 

𝑉𝑧 + 𝑑𝑉𝑧 
z 

𝑞𝑧 

x 
y 

𝑉𝑧 
dx 

𝑁𝑥 + 𝑑𝑁𝑥 

x 

z 

𝑀𝑥  

z 

𝑀𝑥 + 𝑑𝑀𝑋 

𝑡𝑥 

𝑑𝑀𝑦 z 

𝑡𝑦 

y 

y 

x 

𝑀𝑦 + 𝑑𝑀𝑦 

dx 

dx 

z 

𝑡𝑧 
y 

x 

𝑀𝑧 

𝑀𝑧 + 𝑑𝑀𝑧 

dx 

x 
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The total set of equilibrium equations are: 

𝑑𝑁𝑥

𝑑𝑥
= −𝑞𝑥 ;  

𝑑𝑉𝑦

𝑑𝑥
= −𝑞𝑦 ;  

𝑑𝑉𝑧
𝑑𝑥

= −𝑞𝑧 ;  
𝑑𝑀𝑥

𝑑𝑥
= −𝑡𝑥  ;  

𝑑𝑀𝑦

𝑑𝑥
+ 𝑉𝑧 = −𝑡𝑦  

𝑑𝑀𝑧

𝑑𝑥
− 𝑉𝑦 = −𝑡𝑧 (15) 

By substitution of (11) and (14) into (15) the following system of differential equations is 
obtained: 

𝐸
𝑑

𝑑𝑥
(𝐴(𝑥)

𝑑𝑈𝑥

𝑑𝑥
) = −𝑞𝑥 

𝐺
𝑑

𝑑𝑥
(𝐴𝑠𝑦(𝑥) (

𝑑𝑈𝑦

𝑑𝑥
+ 𝜑𝑧(𝑥))) = −𝑞𝑦 

𝐺
𝑑

𝑑𝑥
(𝐴𝑠𝑧(𝑥) (

𝑑𝑈𝑧

𝑑𝑥
− 𝜑𝑦(𝑥))) = −𝑞𝑧 

𝐺
𝑑

𝑑𝑥
(𝐼𝑡(𝑥)

𝑑𝜑𝑥

𝑑𝑥
) = −𝑡𝑥 

𝐺𝐴𝑠𝑧(𝑥)
𝑑𝑈𝑧

𝑑𝑥
+ 𝐸

𝑑

𝑑𝑥
(𝐼𝑦(𝑥)

𝑑𝜑𝑦

𝑑𝑥
) − 𝐺𝐴𝑠𝑧(𝑥)𝜑𝑦(𝑥) = −𝑡𝑦 

𝐺𝐴𝑠𝑦(𝑥)
𝑑𝑈𝑦

𝑑𝑥
− 𝐸

𝑑

𝑑𝑥
(𝐼𝑧(𝑥)

𝑑𝜑𝑧

𝑑𝑥
) + 𝐺𝐴𝑠𝑦(𝑥)𝜑𝑧(𝑥) = 𝑡𝑧 

Or the following matrices and vector can be introduced: 

𝑲𝑠ℎ𝑒𝑎𝑟(𝑥) = 𝐺 [
𝐴𝑠𝑦 0

0 𝐴𝑠𝑧
] ; 𝑲𝑏𝑒𝑛𝑑(𝑥) = 𝐸 [

𝐼𝑦 0

0 −𝐼𝑧
] ; 𝑻(1) = [

0 1
−1 0

] ; 𝑻(2) = [
0 1
1 0

] 

𝑲(1)(𝑥) =

[
 
 
 
 
 
𝐸𝐴 0 0 0 0 0
0
0

𝑲𝑠ℎ𝑒𝑎𝑟
0
0

0 0
0 0

0 0 0 𝐺𝐼𝑡 0 0
0
0

0 0
0 0

0
0

𝑲𝑏𝑒𝑛𝑑]
 
 
 
 
 

 ; 𝑲(2)(𝑥) =

[
 
 
 
 
 
 
 
 𝐸

𝑑𝐴

𝑑𝑥
0 0 0 0 0

0
0

𝑑

𝑑𝑥
𝑲𝑠ℎ𝑒𝑎𝑟

0
0

𝑲𝑠ℎ𝑒𝑎𝑟𝑻(1)

0 0 0 𝐺
𝑑𝐼𝑡
𝑑𝑥

0 0

0
0

𝑻(2)𝑲𝑠ℎ𝑒𝑎𝑟
0
0

𝑑

𝑑𝑥
𝑲𝑏𝑒𝑛𝑑 ]

 
 
 
 
 
 
 
 

 

𝑲(3)(𝑥) =

[
 
 
 
 
 
0 0 0 0 0 0
0
0

0
0

0
0

0
0

𝑑

𝑑𝑥
𝑲𝑠ℎ𝑒𝑎𝑟𝑻(1)

0 0 0 0 0 0
0
0

0
0

0
0

0
0

𝑻(2)𝑲𝑠ℎ𝑒𝑎𝑟𝑻(1)]
 
 
 
 
 

 ;  𝒖(𝑥) =

[
 
 
 
 
 
𝑈𝑥

𝑈𝑦

𝑈𝑧

𝜑𝑥

𝜑𝑦

𝜑𝑧]
 
 
 
 
 

 ;  𝒒 =

[
 
 
 
 
 
−𝑞𝑥

−𝑞𝑦

−𝑞𝑧

−𝑡𝑥
−𝑡𝑦
𝑡𝑧 ]

 
 
 
 
 

 

Such that the system of differential equation describing the physics of a 1D Timoshenko beam 
element can be written as: 

𝑲(1)

𝑑2

𝑑𝑥2
𝒖 + 𝑲(2)

𝑑

𝑑𝑥
𝒖 + 𝑲(3)𝒖 = 𝒒 
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Appendix II Solution main beam with constant 
cross section properties 
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Appendix II Solution main beam with constant 
cross section properties  

The main girder as described in figure Figure 33 has seven elements all having six degrees of 
freedom. Each of these elements has the solution given as (3). This solution contains 12 unknown 
integration constants each. Leading to a total 84 unknowns which can be solved using 84 
equations. At the six interfaces (at Support 1, Support 2, DD1, DD2, DD3 and DD4) we have 12 
interface conditions as described in Chapter 5.4. At the start and the end of the beam we have 
another six boundary conditions leading to a total of 84 equations. To be able to formulate and 
understand the equations some conventions need to be established. The coordinate system (of all 
the elements) will be set at the start of the beam. In the subscript of the x coordinate the 
information of the location is contained. The superscript used refers to the element number, 
numbering starts with 1 from the start of the main girder. The following boundary conditions can 
be formulated12: 

 Boundary 

conditions 

Interface conditions 

Neuman 

conditions 

Dirichlet conditions Neumann / Equilibrium 

conditions 

Location - Continuity 

conditions 

Support 

conditions 

 

𝑥𝑠𝑡𝑎𝑟𝑡 𝒇𝑖𝑛𝑡
(1)

= 𝟎 - -  

𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡 1 - 𝒖(1) = 𝒖(2) 𝑢𝑧
(1)

= 0 𝒇𝑖𝑛𝑡
(1)

− 𝒇𝑖𝑛𝑡
(2)

=

[
 
 
 
 
 

0
0

𝑉𝑧
(1)

− 𝑉𝑧
(2)

0
0
0 ]

 
 
 
 
 

 

𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡 2 - 𝒖(2) = 𝒖(3) 𝒖(2) =

[
 
 
 
 
 

0
0
0
0

𝜑𝑦
(2)

0 ]
 
 
 
 
 

 𝑀𝑦
(2)

− 𝑀𝑦
(3)

= 0 

𝑥𝐷𝐷1 - 𝒖(3) = 𝒖(4) - 𝒇𝑖𝑛𝑡
(3)

− 𝒇𝑖𝑛𝑡
(4)

= 𝒑(𝐷𝐷1) 

𝑥𝐷𝐷2 - 𝒖(4) = 𝒖(5) - 𝒇𝑖𝑛𝑡
(4)

− 𝒇𝑖𝑛𝑡
(5)

= 𝒑(𝐷𝐷2) 

𝑥𝐷𝐷3 - 𝒖(5) = 𝒖(6) - 𝒇𝑖𝑛𝑡
(5)

− 𝒇𝑖𝑛𝑡
(6)

= 𝒑(𝐷𝐷3) 

𝑥𝐷𝐷4 - 𝒖(6) = 𝒖(7) - 𝒇𝑖𝑛𝑡
(6)

− 𝒇𝑖𝑛𝑡
(7)

= 𝒑(𝐷𝐷4) 

𝑥𝐸𝑛𝑑  𝒇𝑖𝑛𝑡
(7)

= 𝟎 - - - 

Substitution of (11), (14) and (3) in these conditions results in system of 84 equations with 84 
unknowns. This system can be solved after which the integration constants can be substituted in 
the general solution (3). From this point on the superscript refers to the considered cross beam. 
The displacement at the cross beams are: 

  

 
12 Same variables and names are used as in earlier appendices. And a vector containing the 
applied forces p is introduced 𝒑 = [𝑃𝑥 𝑃𝑦 𝑃𝑧 𝑇𝑥 𝑇𝑦 𝑇𝑧]𝑇 
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Solution of cross beam at location i 

We introduce the following vectors: 

𝒖(𝑖) = [𝑢𝑥
(𝑖) 𝑢𝑦

(𝑖) 𝑢𝑧
(𝑖) 𝜑𝑥

(𝑖) 𝜑𝑦
(𝑖) 𝜑𝑧

(𝑖)]
𝑇
 ; 𝒌𝑛𝑜𝑟𝑚

(𝑖) =
𝑥(𝑖) − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

𝐸𝐴
[

1
1
1
1

] 

𝒌2𝑏𝑒𝑛𝑑
(𝑖)

=
(𝑥(𝑖) − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2)

2

6𝐸𝐼𝑧
[
 
 
 
 
3𝑥𝐷𝐷1 − 𝑥(𝑖) − 2𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

3𝑥𝐷𝐷2 − 𝑥(𝑖) − 2𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

3𝑥𝐷𝐷3 − 𝑥(𝑖) − 2𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

3𝑥𝐷𝐷4 − 𝑥(𝑖) − 2𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2]
 
 
 
 

 ;  𝒌2𝑠ℎ𝑒𝑎𝑟
(𝑖)

=
𝑥(𝑖) − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

𝐺𝐴𝑠𝑦

[

1
1
1
1

] 

𝒌3𝑏𝑒𝑛𝑑
(𝑖)

= −
𝑥(𝑖) − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

2𝐸𝐼𝑧
[
 
 
 
 
2𝑥𝐷𝐷1 − 𝑥(𝑖) − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

2𝑥𝐷𝐷2 − 𝑥(𝑖) − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

2𝑥𝐷𝐷3 − 𝑥(𝑖) − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

2𝑥𝐷𝐷4 − 𝑥(𝑖) − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2]
 
 
 
 

 

𝒌4𝑏𝑒𝑛𝑑
(𝑖)

=
𝑥(𝑖) − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

6𝐸𝐼𝑦

[
 
 
 
 
𝑥(𝑖)(3𝑥𝐷𝐷1 − 𝑥(𝑖)) − (𝑥𝐷𝐷1 + 𝑥(𝑖) − 2𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1)𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2 − 2𝑥𝐷𝐷1𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1

𝑥(𝑖)(3𝑥𝐷𝐷2 − 𝑥(𝑖)) − (𝑥𝐷𝐷2 + 𝑥(𝑖) − 2𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1)𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2 − 2𝑥𝐷𝐷2𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1

𝑥(𝑖)(3𝑥𝐷𝐷3 − 𝑥(𝑖)) − (𝑥𝐷𝐷3 + 𝑥(𝑖) − 2𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1)𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2 − 2𝑥𝐷𝐷3𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1

𝑥(𝑖)(3𝑥𝐷𝐷4 − 𝑥(𝑖)) − (𝑥𝐷𝐷4 + 𝑥(𝑖) − 2𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1)𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2 − 2𝑥𝐷𝐷4𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1]
 
 
 
 

 

𝒌4𝑠ℎ𝑒𝑎𝑟
(𝑖)

=
𝑥(𝑖) − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

𝐺𝐴𝑠𝑧(𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2 − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1)
[

𝑥𝐷𝐷1 − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

𝑥𝐷𝐷2 − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

𝑥𝐷𝐷3 − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

𝑥𝐷𝐷4 − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

] 

𝒌5𝑏𝑒𝑛𝑑
(𝑖)

=
1

6𝐸𝐼𝑦

[
 
 
 
 
2𝑥𝐷𝐷1(3𝑥(𝑖) − 2𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2 − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1) − 3𝑥(𝑖)

2 + 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2
2 + 2𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1

2𝑥𝐷𝐷2(3𝑥(𝑖) − 2𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2 − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1) − 3𝑥(𝑖)
2 + 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

2 + 2𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1

2𝑥𝐷𝐷3(3𝑥(𝑖) − 2𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2 − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1) − 3𝑥(𝑖)
2 + 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

2 + 2𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1

2𝑥𝐷𝐷4(3𝑥(𝑖) − 2𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2 − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1) − 3𝑥(𝑖)
2 + 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

2 + 2𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1]
 
 
 
 

 

𝒌5𝑠ℎ𝑒𝑎𝑟 =
1

𝐺𝐴𝑠𝑧(𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2 − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1)
[

𝑥𝐷𝐷1 − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

𝑥𝐷𝐷2 − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

𝑥𝐷𝐷3 − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

𝑥𝐷𝐷4 − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

] ;  𝒌𝑡𝑜𝑟𝑠
(𝑖)

=
𝑥(𝑖) − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

𝐺𝐼𝑡
[

1
1
1
1

] 

𝒌7𝑏𝑒𝑛𝑑
(𝑖)

=
(3𝑥(𝑖) − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2 − 2𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1)(𝑥(𝑖) − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2)

6𝐸𝐼𝑦
[

1
1
1
1

] 

𝒌7𝑠ℎ𝑒𝑎𝑟
(𝑖)

=
𝑥(𝑖) − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

𝐺𝐴𝑠𝑧(𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2 − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1)
[

1
1
1
1

] ; 𝒌8𝑏𝑒𝑛𝑑
(𝑖)

=
3𝑥(𝑖) − 2𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2 − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1

3𝐸𝐼𝑦
[

1
1
1
1

] 

𝒌8𝑠ℎ𝑒𝑎𝑟 =
1

𝐺𝐴𝑠𝑧(𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2 − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1)
[

1
1
1
1

] ;  𝒌9𝑏𝑒𝑛𝑑
(𝑖)

= −
(𝑥(𝑖) − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2)

2

2𝐸𝐼𝑧
[

1
1
1
1

] 

𝒌10𝑏𝑒𝑛𝑑
(𝑖)

=
𝑥(𝑖) − 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2

𝐸𝐼𝑧
[

1
1
1
1

] 

𝒑𝑥 = [

𝑃𝑥𝐷𝐷1

𝑃𝑥𝐷𝐷2

𝑃𝑥𝐷𝐷3

𝑃𝑥𝐷𝐷4

] ; 𝒑𝑦 =

[
 
 
 
𝑃𝑦𝐷𝐷1

𝑃𝑦𝐷𝐷2

𝑃𝑦𝐷𝐷3

𝑃𝑦𝐷𝐷4]
 
 
 

 ; 𝒑𝑧 = [

𝑃𝑧𝐷𝐷1

𝑃𝑧𝐷𝐷2

𝑃𝑧𝐷𝐷3

𝑃𝑧𝐷𝐷4

] ; 𝒕𝑥 = [

𝑇𝑥𝐷𝐷1

𝑇𝑥𝐷𝐷2

𝑇𝑥𝐷𝐷3

𝑇𝑥𝐷𝐷4

]  ; 𝒕𝑦 =

[
 
 
 
𝑇𝑦𝐷𝐷1

𝑇𝑦𝐷𝐷2

𝑇𝑦𝐷𝐷3

𝑇𝑦𝐷𝐷4]
 
 
 

 ; 𝒕𝑧 = [

𝑇𝑧𝐷𝐷1

𝑇𝑧𝐷𝐷2

𝑇𝑧𝐷𝐷3

𝑇𝑧𝐷𝐷4

]  
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Now we can write the solutions as: 

𝒖(𝑖)

=

[
 
 
 
 
 
 
 
 𝒌𝑛𝑜𝑟𝑚

(𝑖)
𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝒌2𝑏𝑒𝑛𝑑
(𝑖)

+ 𝒌2𝑠ℎ𝑒𝑎𝑟
(𝑖)

𝟎 𝟎 𝟎 𝒌3𝑏𝑒𝑛𝑑
(𝑖)

𝟎 𝟎 𝒌4𝑏𝑒𝑛𝑑
(𝑖)

+ 𝒌4𝑠ℎ𝑒𝑎𝑟
(𝑖)

𝟎 𝒌5𝑏𝑒𝑛𝑑
(𝑖)

+ 𝒌5𝑠ℎ𝑒𝑎𝑟 𝟎

𝟎 𝟎 𝟎 𝒌𝑡𝑜𝑟𝑠
(𝑖)

𝟎 𝟎

𝟎 𝟎 𝒌7𝑏𝑒𝑛𝑑
(𝑖)

+ 𝒌7𝑠ℎ𝑒𝑎𝑟
(𝑖)

𝟎 𝒌8𝑏𝑒𝑛𝑑
(𝑖)

+ 𝒌8𝑠ℎ𝑒𝑎𝑟 𝟎

𝟎 𝒌9𝑏𝑒𝑛𝑑
(𝑖)

𝟎 𝟎 𝟎 𝒌10𝑏𝑒𝑛𝑑
(𝑖)

]
 
 
 
 
 
 
 
 
𝑇

[
 
 
 
 
 
𝒑𝑥

𝒑𝑦

𝒑𝑧

𝒕𝑥

𝒕𝑦

𝒕𝑧 ]
 
 
 
 
 

 

Which can be simplified to: 

𝒖(𝑖) = 𝑲(𝑖)(𝐴, 𝐴𝑠𝑦 , 𝐴𝑠𝑧 , 𝐸, 𝐺, 𝐼𝑡 , 𝐼𝑦 , 𝐼𝑧 , 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡1, 𝑥𝑆𝑢𝑝𝑝𝑜𝑟𝑡2, 𝑥𝐷𝐷1, 𝑥𝐷𝐷2, 𝑥𝐷𝐷3, 𝑥𝐷𝐷4, 𝑥(𝑖))𝒑 
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Appendix III FE analysis main girder with 
variable cross section 
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Appendix IV Uninterpreted results mesh 
independend 1D elements model 
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Appendix IV Uninterpreted results mesh 
independent 1D elements model 

As mentioned before (Paragraph 4.5) the proposed mesh independent 1D model has no 
connections between the webs of the troughs and the deck plate strip. Thus, no relevant stress 
values at these locations can be found at the locations of the theoretical connections between the 
trough webs and the deck plate strip. However, it does have relevant stress values at either side of 
the neutral axis of a trough. One approach could be to state that the value of the maximum stress 
interval directly next to the neutral axis of a trough is a measure of the maximum stress interval of 
the trough web at the same side of the neutral axis. If this is assumed, the following results are 
obtained: 
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These are the results obtained in the points in which the 1D model was applied (Figure 34). To get 

the results in the remaining points cubic interpolation is applied. Thereby the results presented in 

Figure 53 are found. 

 
Figure 53: Contour plot obtained without interpretation method 

These results show a significant difference between the result obtained between the first and 

second as well as the second and third cross beam in comparison with the results obtained 

between the third and fourth cross beam. To investigate this the results of 3 cross sections was 

taken a closer look at. The following plot of the results in these cross sections were obtained. 

 
Figure 54: Results obtained between different cross beams without interpretation 

It can be noted that the behaviour predicted on the areas where points are interpolated is very 
different from the behaviour of the areas in which points are located for which the model was 
used. This would suggest that the chosen interpolation algorithm (the use of cubic splines) cannot 
be used to predict values at unknown points. This seems logical since cubic splines assume that the 
closest points to an unknown point give the most information of the predicted value at the 
unknown point. However, for in this case there is a big difference between the left and right webs 
of the troughs. Therefore, not the closest point, but the closes point on the same sided trough leg 
gives the most information. There either an alternative interpolation method, or an alternative 
interpretation method should be used. In this report it was decided to research different 
interpretation of the obtained data. 
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Appendix V Shortlist of potential critical points 
 
 
 

Based on intuition of structural engineers 
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Appendix V Shortlist of potential critical points  

All structural engineers within Antea Group, who have experience in regards fatigue calculations 
of steel orthotropic bridge decks, identify 18 potential points which are considered more likely to 
be exposed to the highest stress interval. When asked why these points the structural engineers 
give a reasoning stated below. 

It seems likely that the deformations in the deck plate are governed by bending. Therefore, it is 
assumed that the strains are mainly governed by bending. Which results in the stresses being 
mainly governed by bending (Appendix I Derivation system of differential equations of a 
Timoshenko beam element [4, 21, 22]). In most cases bending is the result of internal moments 
therefore, it is assumed that the highest stress interval will be found at the location of the highest 
internal moment. These can often be determined by applying basic equilibrium equations as 
explained in [37]. In the determination of the short list the crossbeams are simplified to all have 
the same stiffness. Since local effects are considered to have a bigger influence on the stresses 
than the global effects only one field is considered at a time. Thus, the following symmetrical load 
cases were considered of interest (Figure 55). 

Load case Moment line 

 
 

  
  

  

Figure 55: Moment lines of basic load case situations13 

In both these load cases the maximum or minimum moment is found at either a support or in at 

the location of the load. The internal moments obtain the biggest value when 𝑎 =
𝑙

2
 thus maximum 

or minimum internal moment is found either at the support or in the middle of the considered 
field. As a result of this the structural engineers expect the maximum and minimum stress intervals 
either close to the main girders and cross beams or in the middle of the field between the main 
girders and the cross beams. This leads to the short list of points as in Figure 56. 

 
13 These moment lines found when the Euler-Bernoulli beam theory is applied. Since this is the first 
theory most structural engineers will learn usually this is where their intuition is based on. 

2𝑎(𝑎 − 𝑙)

𝑙
𝐹 

𝑎2(𝑙 − 𝑎)

𝑙2
𝐹 

𝑎(𝑙 − 𝑎)2

𝑙2
𝐹 

−4𝑎2(𝑙 − 𝑎)2

𝑙3
𝐹 
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Figure 56: Short list of potential points 

Some structural engineers hesitate to mitigate the list even further. Stating that this specific bridge 
is supported at one side only. Therefore, it is expected that the first field is the stiffest and the last 
field is the least stiff. As a result of this they omit all points in between cross beam 2 and cross 
beam 3. However, these structural engineers state that they are not entirely sure if this method is 
valid. Therefore, it was decided to keep these points on the short list. 
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Appendix VI Results mesh independend 1D 
element model interpretated via method 2 
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Appendix VII Elaboration calculating maximum 
stress interval 2D FE model 
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Appendix VII Elaboration calculating maximum 
stress interval 2D FE model 

Determination of dimension of weld details in 2D FE model. 
The weld dimension, in the FE model, can be determined using article 00912, figure F00912-1 F) in 
combination with the figure in article 00915, table T00915 of the ROK. These are shown in Figure 
57. 

 
Figure 57: Sketches provided by ROK [3] to model weld details [3] 

The thickness of the trough and the deck plate is known. These can be inserted in Figure 57. h3 and 
h4 are given in in the regulations (ROK [3], table T00915) and therefore known. The updated 
sketches are shown in Figure 58. 

 
Figure 58: ROK sketches of weld details updated for Goereese bridge [3] 

The unknowns that still need to be determined are: L1, <L1 and L2. These are dependent on the 
geometrical properties of the bridge. Therefore, they can be expressed in terms of the geometrical 
properties of the bridge. To be able to this some geometrically quantities will be determined in 
intermediate steps. In this document they are determined step by step clarified by addition 
sketches. 
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α 
α is the angle between the trough web and the deck plate. This angle can be determined 
using the geometry of a trough. To demonstrate this a sketch is made (Figure 59). 

 
Figure 59: Sketch clarifying angle α 

Using basic geometrical definitions, it can be found that: 

𝛼 = arctan (
2ℎ𝑡𝑟

𝑤𝑡𝑟,𝑡𝑜𝑝 − 𝑤𝑡𝑟,𝑏𝑜𝑡

) (16) 

a 
a is the length of the contact line between the trough web and the deck plate (). 

 
Figure 60: Sketch clarifying length a [3] 

Using basic geometrical definitions, it can be found that: 

𝑎 =
𝑡𝑡𝑟

sin(𝛼)
 (17) 

Substitution of α (16) in the definition of a (17) leads to: 

𝑎 =
𝑡𝑡𝑟

sin (arctan (
2ℎ𝑡𝑟

𝑤𝑡𝑟,𝑡𝑜𝑝 − 𝑤𝑡𝑟,𝑏𝑜𝑡
))
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b 
b is the horizontal difference between the contact point of the deck plate with the trough 
web and the intersection point of the neutral axis of the deck plate and the neutral axis of 
the trough web (Figure 61): 

 
Figure 61: Sketch clarifying length b [3] 

Using basic geometrical definitions, it can be found that: 

𝑏 =
𝑡𝐷𝑃

2tan (𝛼)
 ; < 𝐿1 =

𝑎

2
+ 𝑏 =

1

2
(𝑎 +

𝑡𝐷𝑃

tan(𝛼)
) ; 𝐿1 =

𝑎

2
− 𝑏 + ℎ3 (18) 

Substitution of α (16) in the definitions of b, <L1 and L1 (18) leads to: 

𝑏 =
𝑡𝐷𝑃(𝑤𝑡𝑟,𝑡𝑜𝑝 − 𝑤𝑡𝑟,𝑏𝑜𝑡)

4ℎ𝑡𝑟

 (19) 

< 𝐿1 =
𝑤𝑡𝑟,𝑡𝑜𝑝 − 𝑤𝑡𝑟,𝑏𝑜𝑡

2
(𝑡𝑡𝑟√

1

(𝑤𝑡𝑟,𝑡𝑜𝑝 − 𝑤𝑡𝑟,𝑏𝑜𝑡)
2 +

1

4ℎ𝑡𝑟
2 +

𝑡𝐷𝑃

2ℎ𝑡𝑟

) (20) 

𝐿1 =
𝑤𝑡𝑟,𝑡𝑜𝑝 − 𝑤𝑡𝑟,𝑏𝑜𝑡

2
(𝑡𝑡𝑟√

1

(𝑤𝑡𝑟,𝑡𝑜𝑝 − 𝑤𝑡𝑟,𝑏𝑜𝑡)
2 +

1

4ℎ𝑡𝑟
2 −

𝑡𝐷𝑃

2ℎ𝑡𝑟

) + ℎ3 (21) 

  



 

  Page 104 

 
 
 

c and d 
Lengths c and d are clarified in Figure 62. 

 
Figure 62: Sketch clarifying length c and d [3] 

Using basic geometrical definitions, it can be found that: 

𝑐 = √𝑏2 + (
𝑡𝐷𝑃

2
)

2

 ; 𝑑 = √(
𝑎

2
)

2

− (
𝑡𝑡𝑟
2

)
2

 ;  𝐿2 = ℎ4 + 𝑐 − 𝑑 (22) 

Substitution of the expression found for a (17) and b (19) into the definitions found for c, 
d and L2 (22) leads to: 

𝑐 =
𝑡𝐷𝑃

2
√

(𝑤𝑡𝑟,𝑡𝑜𝑝 − 𝑤𝑡𝑟,𝑏𝑜𝑡)
2

4ℎ𝑡𝑟
2 + 1 ;  𝑑 =

𝑡𝑡𝑟(𝑤𝑡𝑟,𝑡𝑜𝑝 − 𝑤𝑡𝑟,𝑏𝑜𝑡)

4ℎ𝑡𝑟

  

𝐿2 = ℎ4 +
𝑡𝐷𝑃

2
√

(𝑤𝑡𝑟,𝑡𝑜𝑝 − 𝑤𝑡𝑟,𝑏𝑜𝑡)
2

4ℎ𝑡𝑟
2 + 1 −

𝑡𝑡𝑟(𝑤𝑡𝑟,𝑡𝑜𝑝 − 𝑤𝑡𝑟,𝑏𝑜𝑡)

4ℎ𝑡𝑟

 (23) 

All remaining expression are based on the dimension of the bridge: 

ℎ𝑡𝑟 = 350𝑚𝑚 ; 𝑡𝐷𝑃 = 20𝑚𝑚 ; 𝑡𝑡𝑟 = 6𝑚𝑚 ; 𝑤𝑡𝑟,𝑏𝑜𝑡 = 170𝑚𝑚 ; 𝑤𝑡𝑟,𝑡𝑜𝑝 = 300𝑚𝑚 (24) 

Substitution of the dimensions of the bridge (24) into the expression for <L1 (20) , L1 (21) and L2 (23) 
leads to: 

< 𝐿1 =
3√5069 + 130

70
≈ 4.9𝑚𝑚 ; 𝐿1 =

3√5069 − 130

70
+ ℎ3 ≈ 1.1942 + ℎ3 𝑚𝑚 (25) 

𝐿2 = ℎ4 +
10√5069 − 39

70
≈ ℎ4 + 9.6138 𝑚𝑚 (26) 

  



 

  Page 105 

 
 
 

It can be noted that L1 and L2 are dependent on the quality of the weld. To ensure the bridge 
remains safe it is assumed that the smallest weld dimensions are used. The values can be found in 
the regulations (ROK [3], table T00915). In this table all dimensions are given in tents of millimetres. 
To ensure the bridges is not undersized the determined weld sizes ware rounded down. 
Substitution of these into the expression for <L1, L1 (25) and L2 (26) leads to: 

< 𝐿1 ≈ 4.9𝑚𝑚 ; 𝐿1 =
3√5069 + 220

70
≈ 6.1𝑚𝑚 ; 𝐿2 =

311 + 10√5069

70
≈ 14.6 𝑚𝑚 

𝑡𝐷𝑃 +
𝐿1

2
=

3020 + 3√5069

140
≈ 23.0𝑚𝑚 ; 𝑡𝑡𝑟 +

𝐿2

2
=

1151 + 10√5069

140
≈ 13.3𝑚𝑚 

Which are the values given in the report (Figure 44). This results in a weld detail in the FE model as 
shown in Figure 63: 

 
Figure 63: Weld detail in 2D FE model at a connection of a trough (yellow), the deck plate (grey) and a cross 

beam (green) 

Mesh refinement 
To be able to use the FE model mesh settings need to be applied. To acquire sufficient accuracy a 
fine mesh needs to be applied, however this rapidly increases the time needed to compute the 
results [29]. As a result of this structural engineers tend to apply a fine mesh locally at the location 
where the results are of most interest, while remaining a course mesh at less relevant locations. 
The regulations (ROK [3], table T00915) provide a maximum allowable mesh size adapted at the 
analysed weld. It states that the maximum allowable mesh size equals half the deck plate thickness 
(in the considered case 10mm). This results in the mesh shown in Figure 64. 

 
(A) 

 
(B) 

Figure 64: Mesh refinements in the 2D FE in (A) the trough web and (B) the deck plate  
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Load cases 

To get the relevant results not only the bridge should be modelled properly but also the right load 

cases should be applied. In this case the goal of the FE model is to find the maximum stress interval 

in the considered point. In Chapter 3.6 it is shown that the maximum stress interval occurs when 

the load is applied next to the considered point. Therefore, only trucks at the location of the 

considered point have to be considered. It is assumed that the maximum stress interval due to load 

cases considering single axles is found in the same point as the maximum stress interval due to 

trucks. As a result of this only the effect of a single axle is studied. The ROK [3] mentions to locations 

of wheel spreads which have to be accounted for in Figure 65. 

 
Figure 65: Wheel track spread positions having to be considered according ROK [3] 

This leads to a total of 15 maximum possible wheel positions. However, depending on the centre-
to-centre distance of the trough some the load cases resulting from the different spread positions 
are not unique. This is the case for the considered bridge (Goereese bridge). In this case the total 
number of unique wheel positions is 13. The regulations do not specify which wheel of a truck is 
positioned at this wheel track position. Therefore, both options are considered if possible14. This 
leads to a total of 26 axle configurations. For all these configuration 3 types of axles are considered. 
The definition of the axles in given in [17] and updated by ROK [3]. The later states that the length 
of a wheel should be equal to 220mm. The axles are presented in Figure 66. 

 
14 If the considered point is part of trough 2 or 4 only one wheel configuration can be used. Since 
the other configuration results in a wheel placed outside of the bridge. If the considered point is 
part of trough 9 both configurations are analysed. 
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Figure 66: Truck axle definitions according to regulations [17] and [3], given in mm 

Now the locations of all loads are defined. However, the size of loads still needs to be set. To 
determine the fatigue damage a model is used to represent the entire stress history. In this case 
the model is used to determine the maximum stress interval. Therefore, only the maximally loaded 
axles need to be used. These can be found in the Dutch annex of Eurocode 1 table NB.6 4.7 [16]. 
The maximum load on an axle type A is 70kN, the maximum load on an axle type B is 150kN and 
the maximum load on an axle type C is 90kN. Together with 26 axle configurations this results in 
78 load cases. 

Stress determination 
To determine the stresses at a weld toe is not allowed to use the stresses found at this location 
directly. Instead, the stress values have to be linearly interpolated to this point from two different 
points [3]. The interpolation happens from point A and B to point C (Figure 58). The stresses values 
at point A and point B will be different for each applied load case. In this example the stress at 
point will be given as σA and at point B as σB. Linear interpolation from the stresses at A and B 
means that the stress in point C can be expressed in the stresses at point A and B. 

𝜎𝐶 =
3𝜎𝐵 − 𝜎𝐴

2
  

Stress interval determination 

To determine the occurring stress interval the difference between two different load cases is 
determined. In a formula this means that: 

Δ𝜎𝐿𝐶1;𝐿𝐶2 = 𝑎𝑏𝑠(𝜎𝐶;𝐿1 − 𝜎𝐶;𝐿2) 

The stress interval can be determined for all load cases in spread of the traffic wheel position. Each 
spread location has a total of 120 combinations. This means a total possible maximum of 360 load 
combination could exist. However, in the considered bridge the spreads of two locations partly 
overlap (Figure 65) resulting in a reduced number of load combinations. In the considered load 
cases in the case is study is 339. From these the highest is the highest expected stress interval. To 
determine the resulting fatigue damage this has to be multiplied with a dynamic amplification 
factor of 1.15 [3]. This factor has to be applied if a considered point is withing 6m of expansion 
joint. Since the considered bridge is only 10.8 meters long all points have the dynamic amplification 
factor applied to them. 


