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Preface

Dear reader,

This report has been written to obtain a masters degree in Civil Engineering at Delft University of Technology. It
is related to the location of the first fatigue crack of a specific fatigue detail in an orthotropic steel bridge deck.
It explores an uncommon approach to find the first fatigue crack. In this exploration the two parts which made
me love civil engineering were combined. It uses a lot of structural mechanics to (try to) accurately determine
stresses in an object. But above all, it does so in a bridge. An object one comes across often in their life.

| would never have been able to perform this research without the help of Antea Group. They provided me with
the necessary environment, hardware, software, knowledge, experts, etcetera. It was always possible to ask
anyone to help me. And even if they could not help me themselves, they would help me to find someone who
could. Even though my thesis occupied me full time they made me part of their team. Inviting me for all social
team building events. It should be clear, | am very grateful for the help that Antea Group provided me. In this
regard ir. Gerjan Dorgelo deserves some extra attention. He went the extra mile. Traveling for hours, just to make
sure that | could combine a meeting with him with an ice speed skating marathon in the afternoon. Reading a
hundred-page report for the tenth time, just because | wanted feedback for the tenth time. And teaching me the
mysteries of the bullpen. Gerjan, thanks.

This report would never have been finished without the help of my graduation committee. Therefore, | would
like to show my gratitude to dr. ir. Alice Cicirello, prof. dr. ir. Veljkovic and dr. ir. Steenbergen. Without their
feedback my master thesis would still have been in its infancy.

Lastly, | would like to express my gratitude to my friends and family. Those who gave me a moment to unwind
while ice speed skating. Or offered to make dinner when studying made me tired. The few who have been my
classmates, the fun we had together might be the reason | needed some extra time as a student. To my brothers,
who were brave enough to criticize me when | needed it. And my parents, who have been supporting me
unconditionally since before | was born. Friends, family, | would not have been able to achieve this without you.

Enjoy your readings,
Coen Stellinga

Delft, April 2023
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Abstract

To reduce the environmental impact or cost of a civil engineering structure their designs are optimized. A
promising method to optimize are iterative optimization algorithms. If both the design calculations and the
iterative optimization algorithm are automated, an optimized design solution can be found within a feasible
timeframe. To be able to automate the design calculations they need to be fully parameterizable. In this context
it becomes interesting to research whether yet unparameterizable calculation processes can be made
parameterizable. One of these processes is the determination of the locations in which the fatigue resistance has
to be determined in a steel orthotropic bridge deck. This location is the location where the first fatigue crack is
expected. Therefore, Antea Group requested if a study could be performed with the objective to answer the
following research question:

How can the determination of the location of the first fatigue crack in the deck, at a stiffener to deck plate
weld toe, be parameterized?

To answer the research question, the (in the Netherlands active) regulations are studied. Based on the
regulations the process of determining fatigue damage of a point in the bridge can be understood. As well as the
reason why, this process is too computational demanding and complex to be able to be applied to all points in
all welds.

In response to this an alternative method is proposed. This method reduces the complexity and the
computational budget that is needed, by using 1D elements instead of the currently prescribed 2D elements. To
determine if this method can be used it was decided to apply it on a case study. The bridge which served as the
case study was the Goereese bridge. The alternative method was applied to determine the expected distribution
of fatigue damages in all welds in the case study. Based on this obtained distribution a limited number of
interesting locations in the deck could be identified. At these points to regulatory required method was used to
obtain results which can be compared with the alternative method.

It is concluded that the predicted location of the first fatigue crack of both methods is directly next to each other.
However, the distribution of the remaining points suggest by the alternative method does not agree with the
obtained results of the regulatory method. Remarkable enough, both these methods predict a location which is
counter intuitive to the structural engineers participating in the research.

Therefore, the following general recommendations are given:
- Research if the regulatory method, to determine the location of the first fatigue crack, can be simplified.
- Research the cause(s) of the differences between the regulatory method and the alternative method.
- Increase the awareness of structural engineers regarding their intuition on the location of the first
fatigue crack.
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1 Introduction

Background:

Due to the rise of computers design calculations can be executed quicker and with less effort. This
makes it possible to iteratively optimize designs. Recent experiences of Antea Group have shown
that this can result in design solutions in which less materials are used, the costs are reduced
and/or the environmental impact is lowered [1, 2]. Due to these successes Antea Group researches
if the same method can be applied on more design calculations. An optimization algorithm can be
applied if the design stage meets the following conditions:

- The calculation related to each design solution takes a lot of time. Therefore, automating
the calculation is likely to be worth the time and effort.

- The (lawfully required) design calculations leave no room for interpretations of the
structural engineer®. Therefore, they can be fully automated.

- It is expected that the (lawfully required) design calculations will have no significant
changes in the near future. Therefore, the automation and optimization algorithm are
expected to be useful for a longer period. Thus, worth the time and effort to be
implemented.

- Itis expected that current designs can be significantly improved. Therefore, the benefits
of optimizing them are significant.

Recently the department of waterways of the Netherlands (Rijkswaterstaat) updated the lawfully
required design calculations on the determination of the fatigue resistance of steel orthotropic
bridge decks [3]. Thereby significantly reducing the freedom of the structural engineering in the
determination of the fatigue resistance of a bridge deck. As well as (assumably) setting a precedent
of the required design calculations for the upcoming years. This means that all requirements are
met for this design calculation. Thus, Antea Group would like to research if the design solution of
a steel orthotropic bridge deck regarding the fatigue resistance can be optimized.

This master thesis started with the goal to optimize the design of a steel orthotropic bridge deck
regarding the fatigue resistance. However, during the research it was realized that the required
design calculations are not yet defined strict enough to be able to be fully automized. To be able
to optimize a design using an iterative optimization algorithm this will be necessary. Therefore, the
goal changed to research the possibility to parametrize the design calculations regarding the
fatigue resistance of steel orthotropic bridge decks.

Problem:

According to the Dutch regulations [3] the resistance of all points in all welds of a bridge has to be
sufficient. Therefore, the stresses in all points in all welds due to all possible load combinations
have to be determined. This takes a lot of computational power and will not be possible to do
within a feasible time. As a result of this, only one point is usually analysed for each of the potential
fatigue cracks (fatigue details [3]). For each of the fatigue details, the point chosen is the point
where the highest fatigue damage is expected. In choosing this point a problem occurs. Since there
is no parametrizable method to determine this point without doing a computational expensive
calculation on all the points in all the welds. To be able to optimize a design with an iterative
optimization algorithm this will be necessary. To remain within the scope of a master thesis this
problem is researched for only one fatigue detail. This resulted in the following research question:

How can the determination of the location of the first fatigue crack in the deck, at a stiffener to
deck plate weld toe, be parameterized?

1 This is freedom in the design calculations. Structural engineers, designers and architects do
have freedom in the design itself. But, not on the calculations resulting from the design.
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Scope

To be able to perform the research some boundaries to the scope are necessary. For this research
the Goereese bridge (51°49°27.5”’N 4°02’18.4"'E) acted as a case-study. A description of a model
of the Goereese bridge is given in Chapter 3.

The problem being researched in this report relates to the application of Dutch regulations. The
scope of this research will be limited to the application of these regulations, it will not extend to
potential changes in the regulations themselves. Therefore, all proposed methods in this research
should be permissible according to the regulations.

In the research question it is stated that the fatigue crack in the deck at a stiffener to deck plate
weld toe is being researched. To determine if a bridge has enough fatigue resistance several other
potential fatigue cracks need to be analysed [3]. These fatigue cracks all defined by their own
fatigue detail. Since the Goereese bridge has continuous troughs a total of 16 fatigue details can
be identified. There are several reasons to consider the fatigue detail researched in this report:

- In this report a method is proposed which uses 1D elements (Chapter 4). The applied
Timoshenko beam elements assume no internal deformation [4, 5, 6]. Therefore, the
stresses occurring perpendicular on the cross section are most reliable. As a result of this
it is decided not to research any fatigue cracks occurring in a direction which is not
perpendicular to the cross section of the element in which the fatigue crack occurs. This
leaves 7 potential fatigue details to be researched.

- Since it is unknown where in the Goereese bridge the deck plate splice joints and the
stiffener splice joints are, these cannot be used to apply the proposed method on. This
leaves 4 potential fatigue details to be researched.

- The proposed 1D elements method uses cross beams with constant cross section
properties. In doing so it removes the cope holes from the cross beams, there by changing
the troughs from being continuous to discontinuous. It is assumed that this could have an
influence on the stresses found close to the troughs. But that this effect will be negligible
for fatigue details not related to the cross beams. This leaves 2 potential fatigue details to
be researched.

- ltis expected that any results of this research will have to be verified by experiments. To
be able to do so the start of the first fatigue crack will have to be researched. Since fatigue
cracks starting at the inside of a trough can only be located after they propagated through
the entire element these fatigue cracks will be omitted. This leaves only one fatigue detail.
The fatigue crack through the deck plate at a stiffener-to-deck plate weld toe (Figure 2).

According to the Eurocode there is a double logarithmic relation between the value of a stress
interval and the fatigue damage due to a stress interval (Figure 12). As a result of this it is assumed
that the first fatigue crack will occur at the location of the highest expected stress interval. A
discussion on this assumption is held in Chapter 9.1.

Studies have shown that the highest stress values in the deck plate, at trough web-to-deck plate
welds occur very close to the applied loads [7, 8]. The area significantly affected by a local wheel is
about two to three trough webs. In the longitudinal direction the significant effects only occur at
the loading area. Therefore, the influences of an axle positioned away from the considered location
are neglected. As a results of this only the influences of individual axles are analysed. A discussion
on this assumption can be found in Chapter 9.1.
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If the location, in which the fatigue resistance has to be determined, is known, the process of
determining the fatigue damage can start. In this process it is often the case that different influence
lines are made of the stresses in the found location due to the different applied axles. Previously
performed research shows that the compressive stresses found in the considered detail are up to
8.75 times higher than the found tensile stresses [9]. According to the Eurocode [10] the fatigue
damage due to a compressive stress is 60% of the fatigue damage due to a tensile stress of the
same magnitude. To account for this, the compressive stresses are reduced by 40%. This would still
result in the corrected compressive stress being up to 5.25 times higher than the maximum tensile
stress. The results from this report were obtained via numerical experiments preformed on a sub-
model of an orthotopic steel bridge deck. More recent studies determined the stresses of this
detail on a full-sized model which was in service during the determination of the stresses [11]. The
results obtained with the full-scale model suggest that the maximum obtained compressive stress
is approximately an order 4 times bigger than the maximum obtained tensile stress. Therefore, it
is assumed that the considered fatigue detail will fail due to stress intervals mainly consisting out
of compressive stresses.

Reading guide

Chapter 2 is a literature study in which the research problem is explored. Some assumptions are
made based on the literature study resulting in a demarcation of the research. Chapter 3 looks at
the problems occurring when a 3D model consisting out of 2D plate elements (without weld
details) is used. After which Chapter 4 proposes and explains a 3D model with 1D beam elements
to determine the point with the highest stress interval. Chapter 5 explains how 1D beam elements,
can be solved analytically thereby having no mesh dependency. As a result of this the 3D model
with 1D elements can be solved without mesh dependency. Chapter 6 makes use of the 3D model
with 1D elements without mesh dependency to determine the point most likely to propagate the
first fatigue crack. As well noting some remarkable results of this model. After which Chapter 7 will
focus on the calculation of the highest stress interval (using the computational expensive method
enforced by the regulations [3]) in the points considered most interesting according to current
experts and the results obtained in chapter 6. These results can be compared with the results of
the 3D model with 1D elements without mesh dependency to give information of the useability of
the latter model. In the last two chapters some conclusions are drawn, some recommendations
are given, and the research is discussed.
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2 Literature review

To be able to put this report in context it is necessary to have an overview of the research done in
related topics. Therefore, this chapter presents an overview of the resources used in the research.
It starts by explaining the concept of fatigue and how the resistance against fatigue of steel
orthotropic bridges is determined. This is followed by an overview in the methods applied to
determine the stresses in a structure.

2.1 Fatigue

To be able to research the location of the first fatigue crack the concept of fatigue should be
understood. As well as the method used to determine the fatigue resistance of an orthotropic steel
bridge deck. This paragraph explains both.

2.1.1 Fatigue cracks

Fatigue is the weaking of a material due to cyclic loading [12]. If a material has underwent more
fatigue damage than it can resist fatigue cracks will occur. The development of a fatigue crack is
divided in two stages. The crack initiation phase, in which the phenomenon works on a microscopic
scale and is not visible with the naked eye. And the crack growth phase, in which the fatigue crack
reached a macroscopic scale and is visible to the naked eye. When the crack growth phase is
reached only a small percentage of the total life remains [13].

Crack initiation

The fatigue cracks usually start at the surface of the material. This is because those grains have less
constraints regarding slip. At this location plastic deformations can start occurring at low stress
levels. This can result in a slip step (Figure 1).

free

surface "~ "1 [ " "1

new )
fresh I I
surface | |
| / |
L. — . I |

intrusion extrusion
1st cycle 2nd cycle

Figure 1:Development of slip band [13]

This slip step immediately results in a local reduction of the strength of the material. Each new
loading cycle will cause crack extension. The chaces of a fatigue crack increase at an
inhomogeneous stress distribution (for example at a weld). Since at such a location a peak stress
occurs. Another factor increasing the chances of a fatigue crack is the surface roughness.

Crack growth

Slowly the fatigue cracks will grow. After a while the crack direction will not following the direction
of the initial slip band anymore. Instead, it will tend to grow in a direction perpendicular to the
main principal stress [13]. At this stage the resistance against the fatigue cracks is no longer
depending on the surface properties. Instead, it depends on the material properties as a bulk [13].

Every increase of the crack size results in a reduction of the surface contributing to the resistance
against the occurring stresses. If this surface becomes too small (thus the fatigue crack becomes
too big), it will not be able to withstand to occurring stresses anymore. As a result of this (local)
failure of the structure will occur [13].

2
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2.1.2 Determine fatigue resistance

Fatigue detail
The regulations [3] divides all commonly occurring fatigue cracks in an orthotropic steel deck into
27 different fatigue details. In this report detail 1a is considered (Figure 2).

outside
stiffener
Figure 2: Stiffener-to-deck plate weld, weld toe crack in deck plate [3]

Based on the fatigue details requirements are given for the geometry of the weld and the method
in which the stresses should be analysed. The fatigue detail considered in this report regards the
stiffener-to-deck plate weld with a crack in the deck plate starting from the weld toe.

Weld modelling
There has been a lot of research into three different ways in which welds can be modelled [14, 15].
This resulted in the modelling method as provided in the regulations [3] (Figure 3).

t240,5L;

e s,
R \ht0,5L

Figure 3: Weld modelling method [3], L; is the length of the locally applied increase in thickness and t; is the
thickness of element i

This method states to locally increase the thickness of the plate elements at the locations of welds.
A summary of this method is given in Chapter 7.3.2 a detailed description of the application of this
method on to the considered case study is given in Appendix VII Elaboration calculating maximum
stress interval 2D FE model.
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The load cases which should be considered are given by a fatigue load model. In the case of steel
orthotropic bridge, fatigue load model 4a should be used [3]. This model is given in the Dutch annex
of Eurocode 1 part 2 [16]. The load model is shown in Figure 4.

Type voertuig Verkeerstype
Afbeelding van de ﬁfls:sa:: Gelijku;aardige szmged Mid;:lella:;ge Loll({aal Wiel-
vrachtwagen do nesen aslast afstan afstan verkeer |type
m kN % % %

45 70 20,0 50,0 80,0 A

130 B

4,20 70 5,0 5,0 5,0 A

1,30 120 B

120 B

3,20 70 40,0 20,0 5,0 A

5,20 150 B

1,30 90 C

1,30 90 C

90 C

3,40 70 25,0 15,0 50 A

6,00 140 B

1,80 90 C

90 C

4,80 70 10,0 10,0 5,0 A

3,60 130 B

440 90 C

1,30 80 C

80 C

Figure 4: Fatigue load model 4a [16]

This model states which trucks should be accounted for. The loads of the different axles of the
trucks. The distribution of the total amount of trucks in the 5 different separate trucks. And which
axles make up a single truck. In this report it is assumed that the location of the maximum fatigue
damage can be determined via applying single axles. Since the stresses are determined via a
geometric and linear finite element analyses the maximum stress will always occur due to the
maximum applied load. Therefore, for each of the three types of axles the maximum load is
considered. This leaves the load cases given in Figure 5.
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Figure 5: Relevant axles and loads, assuming that the location of the maximum fatigue damage can be
determined by analysing individual axles
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Types of axles
To be able to place these axles on the bridge the configuration of an axle needs to be known.

According to the ROK [3] the configuration stated in NEN 8701 [17] should be used in which the
length of the wheels should be changed to 220mm. This results in the configuration in Figure 6.

0ST¢
0881
0STZ

’i/

220

(€)

(A) (8)
Figure 6: Axle dimensions of axle (A), (B) and (C) [17]

Wheel track location and spreading
The loads are all defined however, the position where to put the load still needs to be determined.
Therefore, a location of a wheel track is determined. Depending on the location where the fatigue

resistance needs to be determined there are three positions of the wheel track that needs to be
determined [3]. Which are shown in Figure 7.

5x100mm

iR
i\ Detail

considered

2X/4CT Ciroush
Figure 7: Locations of the wheel tracks [3]

These are locations of wheel tracks. As a result of this the other wheel of an axle can be on either
side the considered wheel track. If the considered location is close to the edge of the bridge only

the theoretical possible configuration has to be considered. If both configurations are possible both
these configurations need to be considered.
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Number of trucks

Because fatigue is a result of cyclic loading not only the loading is needed but also the number of
cycles. In this case that means the number of trucks that pass the bridge during the considered
lifespan. The Eurocode divides bridges in 4 different types, depending on the type of road that uses
the bridge a different number of trucks pass the bridge. However, the Dutch ROK [3] states that all
steel orthotropic bridge decks should be designed to withstand the highest number of trucks given
by the Eurocode. This gives the results presented in Figure 8.

Verkeerscategorie Nobsast
per jaar en per rijstrook
voor zwaar verkeer
1 | Autosnelwegen (A-wegen) en wegen met twee of meer rijstroken 2,0 x 100
Nob per rijrichting en met intensief vrachtverkeer

Figure 8: Number of trucks passing the bridge per year [16]

Extrapolation

The stresses at a weld cannot be determined by reading the results of a FE model directly at the
weld. The ROK [3] gives methods to determine the stresses at fatigue details depending on the
fatigue category. In the case of the considered fatigue detail the stresses have to be determined
using the hot-spot method (Figure 9).

computed total i

stress g

structural stress

reference points

/ stress on surface

| |
- % \ hot spot 2—’

Figure 9: Sketch of hot-spot method [18]

This method states that the stresses should be determined at two reference points. After which
linear extrapolation can be used to determine the stresses at the weld toe. The location of the
reference points differs per considered fatigue detail. A summary of this method is explained in
Chapter 7.3.2 and an elaboration on the application to the considered case study can be found in
Appendix VII Elaboration calculating maximum stress interval 2D FE model.

Influence line / stress history

If all load cases are known, the hot-spot method can be used to determine the stresses from all
the load cases. Thus, an influence line of all trucks can be made. Since the number of each type of
truck passing the bridge can be determined using the fatigue load model, an influence line over
the entire lifespan of the bridge can be made. In the case of fatigue this influence line considers
the stresses at the weld detail. An example of such a line is given in the Eurocode [10] (Figure 10).

T

Figure 10: Example of influence line of stresses in a fatigue detail [10]
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Dynamic amplification factor

When a truck passes an expansion joint it causes some dynamic effects. To account for this, within
a static model, a dynamic amplification factor has to be applied. According to the ROK [3], an
amplification factor of 1.15 has to be applied on all stresses of fatigue details within 6m from an
expansion joint. In the considered case study, an expansion joint is situated at both ends of the
bridge. Every point in this bridge is within 6m of one of these expansion joints. As a result of this
all stresses (thus the entire influence line) have to be multiplied with a factor 1.15.

Reduced stress in compression

Since the compressive stresses have a lower contribution to fatigue damage then tensile stresses,
the Eurocode [10] states that the compressive stresses should be reduced with 40%. As a result of
this all compressive stresses in the found influence line of the considered fatigue detail are reduced
with 40%.

Stress interval spectrum

The influence line of the fatigue details is currently determined. The next step is to determine the
stress interval spectrum. This is a spectrum containing the values of the stress intervals of the
influence line and the number of times they are expected occur during the life span of the bridge.
To determine the stress interval spectrum an iterative procedure has to be used. An example of
the development of the stress interval spectrum (and the influence line) throughout the different
iterations is presented in Figure 11

Influence line Stress interval spectrum
Ac A A
T4

1 AU1

[ M | M | N | Ny | N
7 A A A A
Ao A Ao,
Aag,
VAVAVAN| =
o
| | S
n, n, N
Ao A Ao,
Aoy
Ao,
I
| | \ >
L M L M | M | N
A A A A
Ac A Ao,
Ao,
Ao
4 ¥\ = Ao,
| AO'4
| | | >
L N, | N | M | N
A A A A

Figure 11: Overview of determination of stress interval spectrum [10]
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For each of these iterations the following steps have to be completed:

1) The maximum compressive and tensile stress are determined. The summation of the two
(excluding sign differences) is the considered stress interval (Ao).

2) The number of times the compressive part and the tensile part, of the considered stress
interval, occurs is determined. The lowest of the two numbers is the number of times the
stress interval occurs (n).

3) The stress interval (Ac) and the corresponding number of times (n) it occurs are added to
the stress interval spectrum

4) The found compressive part and tensile part of the stress interval are removed n times
from the influence line.

5) The process repeats until the obtained stress interval has a value smaller than the cut-off
limit. Or the obtained fatigue damage of the considered stress interval spectrum results
in a fatigue damage value greater than 1.

Cycles to failure

Research [9] has been performed to find a relation between a stress interval and the resulting
fatigue damage. This resulted in a relation between the value of the stress interval (Ac) and the
number of times it can occur until a weld is considered to have failed due to fatigue (N). These
relations differ for each of the fatigue details and the design of the bridge [3]. For the considered

fatigue detail in this report and the considered case study the following relation is given in the
Eurocode [10].
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Figure 12: Relation between stress interval (Ac) and the number of times it can maximally occur (N) [10]

This relationship can be used to determine the maximum allowable number of times of each of the
stress intervals in the stress interval spectrum can occur. It can be observed that there is a double
logarithmic relation between the value of the stress interval and the number of times it can
maximally occur. Therefore, it is assumed that the location of the value of the maximum stress
interval is the same as the location of the maximum fatigue damage.

Fatigue damage

In the case of the weld in an orthotropic steel bridge deck the stress intervals contributing to the
fatigue damage have different values. Therefore, the damage due to the different stress intervals
has to be combined. This can be done using the rule of Palmgren-Miner [10]:

D SP
N~k

In which i is the number of stress intervals in the stress interval spectrum. n;jis the number of times
stress interval i occurs. And Niis the number of times that stress interval i is maximally allowed to

occur should occur. The total damage should be smaller than the fatigue accumulation (D.) which
is usually set as 1.
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2.2 Stress determination

In Chapter 2.1.2 it is explained how the fatigue damage should be determined using a FE model.
During the research problems occurred relating to the mesh dependency of the FE model. To be
able to understand the proposed alternative methods some knowledge about the determination
of stresses in structures is needed. An overview of the methods to determine the stresses in
structures is explained in this chapter.

This chapter is divided in 3 parts. The first part discusses the different 1D beam theories. The
second paragraph extends the 1D beams theories into 2D theories. The third part discusses the
commonly used FE method to numerically solve the equations describing the physics of the
structure according to the applied 1D beam or 2D theory.

2.2.1 1D beam theories

There are several beam theories which can be used to determine displacements, strains and
stresses in 1D beam elements. A clear overview of the most used ones is given by Simone [4].
Which explains 4 different elements. In this chapter 3 of those beam theories will be summarised.

Truss elements (normal deformation only)
Truss elements are elements which only account for normal deformations. A sketch of these
elements is given in Figure 13.

q : d N +dN
; N q dx
l< L e DL dx
| >l > - .

(A) (B)

Figure 13: lllustration of truss element: (A) deformations; (B) forces on small segment [4]

In Figure 13 several symbols are used, for the applied load (q), the length of the element (L), the
increase in the length of the element (AL), the size of a subsegment (dx), the normal force (N) and
the increase in the normal forces (dN). It can be observed that such an element assumes that the
cross-section area remains constant. The forces on a small segment can be used to determine the
differential equation describing the physics of the element in a similar way as for a 1D Timoshenko
beam element in a 3D space (Appendix | Derivation system of differential equations of a
Timoshenko beam element). An application of this can be found in existing literature [4, 19]. The
obtained differential equation is:

In which the elasticity modulus (E), the cross-section area (A) and the displacement (u) are used.
This differential equation can be solved analytically. The obtained solution is:

__ 1 >
u(x) = ZEA" + Cix + G,

In which Ciis an integration constant. The integration constants can be determined by substitution
of the boundary conditions and/or interface conditions of the considered structure.
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Euler-Bernoulli elements (includes bending deformations)

This theory includes the bending deformations of an element. It is only valid under small
deformations. The most important assumption of this theory is the Bernoulli-Navier hypothesis. It
states that the cross section remains planar and normal to the axis of the beam under bending.

[ ‘ &qu
¥ g v
- e — M +dM
/”‘ -\\\

\/ /,’_--— --_.____h\\ 7 M V

\// ~J

< c ) pa— 1\

‘ ‘ dx
(A) (B)

Figure 14: lllustration of Euler-Bernoulli element: (A) deformations [20]; (B) forces on small segment [4]

Figure 14 introduces some extra quantities: the internal moment (M), the increase of the internal
moment(dM), the internal shear force (V) and the increase in internal shear force (dV). The forces
on a small segment can be used to determine the differential equation describing the physics of
the element in a similar way as for a 1D Timoshenko beam element in a 3D space (Appendix |
Derivation system of differential equations of a Timoshenko beam element). The relation between
the moments on a segment and the displacements is explained in pre-existing literature [4, 21, 22].
An application of this can be found in the lecture notes written by Simone [4]. If this is combined
with the truss element the following system of differential equations is obtained:

d*u d*v
THAGE T e Flga = O

In which qg;i is an external force applied in the direction of i, | is the second moment of area of the
cross section and v is the vertical displacement. This system of differential equations can be solved
analytically. The obtained solutions are:

__Cl_x 2 . - Y . 3 2
u(x) = T +C1x+C2,v(x)—24EIx + C3x° 4+ Cyx* + Csx + Cg

The integration constants can be determined by substitution of the boundary conditions and/or
interface conditions of the considered structure.
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Timoshenko elements (includes shear deformations)
The Timoshenko beam element does not only describe bending deformations, but it also includes
shear deformations. Shear deformations of a 1D beam element are sketched in Figure 15.

et

Figure 15: Sketch of shear deformation in 1D beam element [4]

An elaborate explanation of this type of element is given in Appendix | Derivation system of
differential equations of a Timoshenko beam element. The methods add an extra degree of
freedom (additional rotation of the bending slope), which results in the cross section being able to
rotate relative to the neutral axis of the beam. Due to this degree of freedom shear strains are
generated. In a 2D plane, if normal deformations are included, the following system of differential
equations can be obtained:

2 2

EAdu Eld(p+GA (dv ) 0; GA, v _do\ _
dx? T B ax 7 axz dx) - W
This equation introduces: ¢ which is the rotation of the cross section, G which is the shear modulus

and As which is the cross section shear area. This system of differential equations can be solved
analytically. The obtained solutions are:

Gx
ut) = =3
C; , Ci,
v(x)—24E[x + 6x +?x + Csx + Cy
(x) = I +<qy +C> JHa e
ox 6E1x 2 GA, ' ) T Ga, T

The integration constants can be determined by substitution of the boundary conditions and/or
interface conditions of the considered structure.

Elements including warping deformations

The two most applied theories accounting for warping deformations are the De Saint Venant
theory and the Vlasov theory [23, 24]. Most FE software uses De Saint Venant theory. As a results
of this the effects of restraint warping are being ignored. Resulting in computed deformations
being larger than the real deformations. As a result of this it can be argued that the De Saint Venant
theory is safe to be applied.

In Chapter 4 it is argued that warping deformations are not relevant to determine the stresses in

the proposed 1D method. Therefore, no literature review will be given on the addition of warping
deformations to the 1D beam theories.
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2.2.2 2D theories

There are several theories regarding 2D elements. In this chapter, 3 theories, related to this
research, are discussed. All these theories are elaborated on in the notes given by Blaauwendraad
[25].

Plates loaded in plane

The theory related to a 1D truss element (Chapter 2.2.1) can be extended to a 2D plane. A
presentation on this was given by Hendriks based on the notes by Blaauwendraad [26, 25]. It
derives the following system of differential equations:

Et (0%u, 1-v 0%u, 1+4v 0d%u,

_1—v2<6x2+ 2 *6y2+ 2 *axay)ZPX

_Et <62uy+1—v*62uy+1+v*02ux)_
1—v2\ 9y? 2 0x2 2 0xdy) Py

The system uses t as the thickness of the plate, v as the Poisson ratio, ui as the in-plane deformation
in direction i, v as the out of plane deformation, pi as the external applied in plane force in direction
i. This system is not generally solvable.

Kirchhoff-Love (includes bending deformations)

The theory related to a 1D Euler-Bernoulli element (Chapter 2.2.1) can be extended to a 2D plane.
A presentation on this was given by Hoogendoorn based on the notes by Blaauwendraad [27, 25].
It derives the following differential equation:

o* o* o*
Dlo—+2——t—|w=
<6x4 * dx20y? * By‘*) W=Pp

In this equation D is the plate stiffness and w refers to the out of plane deformation. This
differential equation is not generally solvable.

Mindlin-Reissner (includes shear deformations)

The theory related to a 1D Timoshenko element (Chapter 2.2.1) can be extended to a 2D plane. A
presentation on this was given by Hendriks based on the notes by Blaauwendraad [28, 25]. It
derives the following system of differential equations:

P A WAL B
Y\\ox2 * ay2 W ox P Oygoy = Pz
02 (1-v)D 092 ) (1+v)D 0°
o

0x? 2 dy? ¢ 2 0xdy * Py = Px
0 (1+v)D 02 N (1—-v)D 02 b 02
—_— W —— % — % -  x———D— =
14 ayW 2 0x0dy Ox 14 2 dx2 dy? by =Py

In which Dy is a measurement for the shear stiffness of the plate and ¢, is the rotation around
axis i. This differential equation is not generally solvable.
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Numerical solution method (FEM)

There are several methods to solve partial differential equations numerically. In the case of the
system of differential equations belonging to complex geometries the FEM is usually chosen to
numerically solve the system [29]. An extensive explanation can be found in the notes by Wells
[29].

The FEM is a numerical method which has the following general approach:
- The domain is split in several sub-domains (meshing)
- The solution is assumed to be continuous, and linear on each sub-domain
- The system of differential equations is replaced by a system of linear equations
- The system of linear equations is solved numerically

If the domain is split in a higher number of sub-domains a higher level of accuracy of the numerical
solution is obtained. However, with the increase in sub-domains the system of linear equations
that needs to be solved increases as well. As a result of this computation time to determine a
solution with a higher level of accuracy can be unpractically large.
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3 Traditionally used 2D plate model

Since the stresses occurring in a weld have to be determined with a plate model containing locally
detailed welds [3]. It seems logical to use a similar model to find the location where additional
detailing is needed. To do so this chapter describes the traditionally used 2D plate model [30].
Starting with an overview and several paragraphs about the different plate elements. After which,
in the last paragraph, the useability of this model is analysed.

3.1 General properties

The model itself does not contain any detailed welds, since the location of the (point in) the weld
which needs to be used for the design calculation still has to be determined. The bridge is entirely
made of steel quality S355 thus the elasticity modulus, Poisson ratio and a shear modulus are
constant throughout the entire model (Table 1).

Table 1: Material properties of Goereese bridge

Description Symbol Value
Elasticity modulus E 210,000 N/mm?
Shear modulus G 80,769 N/mm?
Poisson ratio v 0.3

The model takes normal, bending, shearing, and warping deformations in account. The model is
fully consists of 2D plate elements and is divided in several sub parts: the main girders, the
crossbeams, the stiffeners and the deck plate (Figure 16).

Figure 16: Goereese bridge with red main girders, green crossbeams, yellow stiffeners, and grey deck plate

The bridge is only supported at one side. At the end of the main girders, where the ballast box is
situated, the displacement in down- and upward direction is fixed. In between the ballast box and
the start of the deck plate a hinge is situated which fixes all displacement and rotations except of
the rotation around the axes perpendicular to the main girders. Together the supports make sure
that the model cannot have any star deformations. A full description of the FE model can be found
in the data repository [30].
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3.2 Main girders

The main girders connect the orthotropic bridge deck to the ballast box. The crossbeams and the
side of the deck plate are welded to the web of the main girders. The main girders have variable
cross section properties. At the end, at which the ballast box is situated, the main girders have a
support constraining the displacement in up- and downward direction. In between the ballast box
and the start of the deck plate a hinge support is situated. The entire orthotropic bridge deck is an
overhang of the main girders. The two main girders are situated parallel from each other with a
centre-to-centre distance of 10,700 mm. The main girders are shown in Figure 17.

Figure 17: Visualisation of main girders (red) in relation to the Goereese bridge

The geometrical properties of the main girders can be found in Appendix Ill FE analysis main girder
with variable cross section.
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3.3 Crossbeams

The crossbeams are in between the two main girders and welded to the web of the main girders,
the stiffeners, and the deck plate. In the traditionally used 2D plate model the stiffeners are
continuous resulting in a cope hole in the crossbeams at the location of every stiffener. The
crossbeams differ in height (Figure 19) and have a length of 10,700 mm. The crossbeams are shown
in Figure 18.

The cross-section geometries of the different cross beams is given in Figure 19.

<«—t=16 o t=16 - <«—t=16
- 5
g - -
[Fp]
i
t=40
t=40
t=40 Z
/ -l T

I—I560 560

(A) (B) (€)
Figure 19: Cross section geometries of (A) cross beam 1 and 2, (B) cross beam 3 and (C) cross beam 4; all in
mm with t being the thickness of the element
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34 Stiffeners

In the Goereese bridge the stiffeners are so called troughs. This means they have the shape of a
trapezium. The stiffeners are continuous and all identical. They are welded to the crossbeams and
the deck plate. The stiffeners cover the entire length of the bridge deck of 10,810 mm. There are a
total of 18 stiffeners which are equally spaced with a centre-to-centre distance of 300 mm. This
means that the first and last stiffener have 250 mm between the stiffener centre and the web of
the nearest main girder. The stiffeners are shown in Figure 20.

The cross-section geometry of the stiffeners is given in Figure 21.

350

L | | |
I'es I 170 I'es |

Figure 21: Cross-section geometry of stiffeners; all in mm, t is the thickness
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3.5 Deck plate

The deck plate sits on top of the stiffeners and crossbeams and in between the two main girders.
It is welded to the stiffeners, crossbeams, and the web of the main girders. It has a continuous
thickness of 20 mm, a width of 10,700 mm and a length of 10,810 mm. In the traditionally used 2D
plate model it is modelled as one continuous element. The deck plate is shown in Figure 22.

Figure 22: Visualisation of the deck plate (grey) in relation to the Goereese bridge

3.6 Useability

Since the weld details are not included in this model the stresses found at the locations of the
welds cannot be used to calculate the required resistance of the bridge. However, it might be
possible to use these stresses to find the weld with the highest stresses interval. To check whether
this is the case several analyses have been done. These analyses use a limited amount of load cases
to reduce the computation time. The FE models can be found in the data repository [30]. The
relevant results are presented in Table 2.

Table 2: Point expected to have the highest maximum stress interval after use of traditionally used 2D plate
model with different mesh sizes

Mesh size [m] X coordinate [m] Y coordinate [m] Contributing loads
0.4 4.800 3.2 BG56 + BG265
0.2 4.703 3.5 BG196 + BG242
0.1 4.850 1.7 BG12 + BG311
0.05 4.850 3.2 BG35 + BG288

These analyses show that a different point will have the maximum stress interval, caused by a
different load combination when a finer mesh is applied. This suggest that a still finer mesh is
needed to determine the point with the highest stress interval. The model with the finest mesh
(0.05 m) takes approximately 5 hours to run. This model had a limited amount of load cases
applied. For a full analysis all potential load locations should be considered, resulting in more than
100 times the amount of load cases currently considered. Therefore, this model is considered
unsuitable to determine the location of the point where the highest stress interval is expected?. It
can be concluded that the x-coordinate of the point with the highest stress interval is close to 4.8
m in the applied analysis. This is also the x-coordinate of all the applied loads. Therefore, it is
assumed that the maximum stress interval in a point is the result of loads applied with the same x
coordinate as the considered point.

2 Some of the models found a point with a maximum stress interval which, in more refined models
had a maximum stress interval 20% lower than the maximum stress interval in that refined model.
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4 Analytically solvable 1D elements model

Since the traditionally used 2D plate model is too mesh dependent it could not be used to
determine the point most likely to propagate the first fatigue crack within a reasonable
computation time. Because 1D elements usually need less computation time, it might be
interesting to use those in an alternative model. Besides, often a system of differential equations
belonging to a 1D element can be solved analytically (see Chapter 5) therefore, there is no mesh
dependency. Even if a 1D element has no (useful) analytically solution they can be replaced with a
set of boundary conditions (see Chapter 5.5), therefore, there is no need to discretize these
elements. This means that it is be possible to make a model, constructed out of 1D elements,
having no mesh dependency. However, it is not known if a model constructed out of 1D elements
has the highest maximum stress interval at the same location as a model constructed out of 2D
plate elements. A preliminary investigation is presented in this chapter. The chapter presents the
different elements in the analytically solvable 1D elements model.

4.1 General properties

The model itself does not contain any detailed welds, since the location of (the point in) the weld
which need to be used for the design calculation still has to be determined. The bridge is entirely
made of steel quality S355 thus the elasticity modulus, Poisson ratio, and shear modulus are
constant throughout the entire model (Table 1). The model takes bending, shearing, and warping
in account. The model is constructed out of 1D beam elements and divided in several sub parts:
the main girders, the crossbeams, the stiffeners and the deck plate strip (Figure 23).

Figure 23: FE model of Goereese bridge out of 1D elements with element surfaces (left)
and without element surfaces (right)

The 1D model does not contain the ballast box since it is not expected to influence the stresses in
the deck plate. Details of the individual elements can be found in the remaining paragraphs of this
chapter. The full 1D FE model can be found in the data repository [30].
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4.2 Main girders presented as 1D elements

Due to limitations of the FE software used the main girders are supported at the height of the
neutral axis at location of the ballast box. The main girders are the only elements with a changing
cross section. Therefore, it is split in several regions as can been seen in Figure 24.

Figure 24: Visualisation of main girders (red) as 1D elements

The traditionally used 2D plate model makes use of plates with curved edges. The used software
(SCIA) does not allow 1D elements to have curved edges thus all changes in the cross section are
either stepwise or linear. In the calculations, done by the FE software, these are further simplified
by further splitting the sub regions in part with constants cross section properties [31]. As a results
of this the main girders need a very fine mesh to accurately determine the internal forces. The
geometrical properties of the main girders can be found in Appendix Ill FE analysis main girder with
variable cross section.
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4.3 Crossbeams presented as 1D elements

In the traditionally used 2D plate model the stiffeners are continuous, and the crossbeams have
cope holes where the stiffeners intersect with the crossbeams. Since the considered weld detail
(Figure 2) only has to be accounted for at a distance of more than 150mm from the crossbeams [3]
it could be the case that modelling the crossbeams with or without a constant cross section (see
Figure 25) will not influence the location of the maximum stress interval.

(A) (B)

Figure 25: Visualisation of crossbeams (green) as 1D elements with (A) or without (B) cope holes
The influence of the presence of a cope hole on the location of the maximum stress interval is
investigated in Chapter 4.6. All the crossbeams have the same length and shape however the

height of the crossbeams differ (Figure 19). From the cross-section geometry, the following cross
section properties can be derived (Table 3):

Table 3: Cross section properties of 1D cross beams

Description Symbol Value
Cross section area of cross beam 1 & 2 Abp1 ; Abp2 47,136 mm?
Shear area in horizontal direction of cross beam 1 & Asy;op1 ; Asy;pD2 20,533 mm?
2

Shear area in vertical direction of cross beam 1 & 2 Asz;pp1 ; Asz;DD2 22,563 mm?
Second moment of area around the y axis of cross ly;op1 ; ly;pD2 11,953,800,324 mm*
beam 1 & 2

Second moment of area around the z axis of cross Iz;op1 ; l2;0D2 585,914,368 mm*
beam 1 & 2

Second polar moment of area of cross beam 1 & 2 It;pp1 ; lt;pD2 14,057,472 mm?*
Warping constant of cross beam 1 & 2 lw;pp1 ; lw;pD2 1% 10717 mm®
Cross section area of cross beam 3 Abp3 45,744 mm?
Shear area in horizontal direction of cross beam 3 Asy;pD3 20,525 mm?
Shear area in vertical direction of cross beam 3 Asz;pD3 21,608 mm?
Second moment of area around the y axis of cross ly;op3 10,227,287,957 mm*
beam 3

Second moment of area around the z axis of cross Iz;0p3 585,884,672 mm*
beam 3

Second polar moment of area of cross beam 3 lt;pp3 13,938,688 mm?*
Warping constant of cross beam 1 & 2 lw;pD3 1% 1071 mm®
Cross section area of cross beam 4 Abpa 44,368 mm?
Shear area in horizontal direction of cross beam 4 Asy;0D4 20,518 mm?
Shear area in vertical direction of cross beam 4 Asz;pp4 20,476 mm?
Second moment of area around the y axis of cross ly;0pa 8,680,996,621 mm*
beam 4

Second moment of area around the z axis of cross Iz;0p4 585,855,317 mm*
beam 4

Second polar moment of area of cross beam 4 It;pp4 13,821,269 mm*
Warping constant of cross beam 1 & 2 lw;pD4 3 %107 mm®
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4.4 Stiffeners presented as 1D elements

In the traditionally used 2D plate model the stiffeners consisted of 3 plate elements. In the 1D
model the stiffeners are all modelled as a 1D beam element (Figure 26).

Figure 26: Visualisation of stiffeners (yellow) as 1D elements

The stiffeners are troughs (or u-ribs) of which the webs are welded to the deck plate, thereby
making a closed cross section. This results in two possible options for the cross section of the 1D
stiffeners: an open cross section or a closed cross section (Figure 27).

350
350

'65° 170 65 65" 170 65"
(A) (B)
Figure 27: Options for 1D stiffener cross section (A) an open stiffener; (B) a closed stiffener. All dimensions
are in mm. ty is the thickness of the trough and tpp is the thickness of the deck plate

Using the cross-section geometries, the cross-section properties can be determined.

Table 4: Cross-section properties of 1D stiffener elements

Value
Description Symbol Open Closed
Cross section area At 5,292 mm? 11,292 mm?
Shear area in horizontal direction Asy;tr 1,924 mm? 7,394 mm?
Shear area in vertical direction Aszir 3,902 mm? 4,323 mm?
Second moment of area around the y axis ly;tr 68,841,506 mm* 191,560,919 mm*
Second moment of area around the z axis lz;tr 62,957,395 mm* 107,957,395 mm*
Second polar moment of area lt;tr 63,502 mm* 167,907,392 mm*
Warping constant lwitr  203,693,164,282 mm® 140,784,373,310 mm®

The open cross section does not represent any of the deck plate, thus outside of the deck plate
strip there will be no deck plate at all. Leading to an underrepresentation of the stiffness. The
closed cross section does locally represent the deck plate. There by having a stiffness closer to the
2D model than the open cross section counterpart. However, a closed cross section has a deck
plate part where it crosses the deck plate strip. This means that at all the stiffener with deck plate
strip crossings the deck plate will be represented twice. Leading to locally overrepresentation of
the stiffness. The influence of the choice of the cross section on the location of the point with the
highest maximum stress interval is discussed in Chapter 7.2.
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Deck plate presented as 1D Deck plate strip

The deck plate is represented by a 1D strip in the direction of the width of the bridge. This direction
is the direction of stresses which needs to be accounted for (Chapter 2.1.2). The width of the strip
is equal to the length of a single wheel (Figure 28).

2[! |

720 '
Figure 28: Cross section geometry of 1D deck plate strip

Using the geometry defined in Figure 28 the cross-section properties of the deck plate strip can be
determined (Table 5).

Table 5: Cross-section properties of deck plate strip

Description Symbol Value
Cross section area Aop 4,400 mm?
Shear area in horizontal direction Asy;op 3,667 mm?
Shear area in vertical direction Asz;pp 3,667 mm?
Second moment of area around the y axis ly;op 146,667 mm*
Second moment of area around the z axis Iz;op 17,746,667 mm*
Second polar moment of area It;op 553,067 mm*
Warping constant lw;pp 0 mm®

The ends of the deck plate strip are connected to the first and last stiffener (Figure 29).

Figure 29: Visualisation of deck plate strip (grey) as 1D element

Since the point with the highest stress interval is expected to be situated directly next to the
applied load (Chapter 3.6) the point with the highest stress interval due to a load applied at the
deck plate strip is expected to be within the deck plate strip. To account for all potential load
locations on the deck plate the loads have to be iteratively moved over the width of the bridge.
Therefore, the deck plate strip has to be iteratively moved over the length of the bridge as well.
Since the deck plate strip is iteratively moved over the length of the bridge the location of the
connection between the main girder and the deck plate strip is changing throughout the iterations.
Because the main girder is replaced by a set of boundary conditions (Chapter 5.5) a new set of
boundary conditions needs to be determined for each iteration. This would lead to a computational
expensive analysis of the main girder for all potential locations of the deck plate strip.

Since it is expected that the connection between the deck plate and the main girder has no effect
on the location of the point with the highest maximum stress interval, the deck plate strip will not
be connected to the main girders but to the outer first stiffeners.
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Influence of cope holes and stiffener cross section

To investigate if the influence of cope holes and the cross section of the stiffener, on the location
of the point with the highest maximum stress interval four models are compared. These models
consisted of 1D elements with or without the presents of cope holes in the crossbeams. For this
test all models used the same load combinations (the same as applied to determine the results
from Table 2). The results can be found in Figure 30 and Table 6.

Maximum stress interval

-150
150
450
750

o o o o o o o o o o o
LN LN LN LN n wn n n n N N n n
o [32] (o] ()] o] — < ~ o o O
i i i — (o] (o] (o] o o o < < <

Distance from Neutral axis of first stiffener [mm]

—e— 1D FE model (open stiffener No Copehole)
1D FE model (closed stiffener No Copehole)

—— 1D FE model (open stiffener With Copehole)

1D FE model (closed stiffener With Copehole)

Figure 30: Maximum stress interval at bottom of deck plate at the same cross section in 1D and 2D FE model

Table 6: Comparison of locations of maximum stress intervals in different 1D FE models

Open cross section
No cope hole

Closed cross section
No cope hole

Distance from
first stiffener

Difference with
maximum

Distance from
first stiffener

Difference with

maximum

Maximum stress interval

Lower stress intervals

[mm] stress interval [mm] stress interval
3150 - 3450 -

750 2.68% 3150 0.11%
3450 2.87% 1350 8.55%
1350 6.95% 1050 8.97%

Open cross section
With cope hole

Closed cross section
With cope hole

Distance from
first stiffener

Difference with
maximum

Distance from
first stiffener

Difference with

maximum

Maximum stress interval

Lower stress intervals

3
TUDelft

[mm] stress interval [mm] stress interval
3150 - 3450 -

750 2.05% 3150 0.09%
3450 4.29% 1350 8.95%
1350 6.20% 1050 9.43%
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The inclusion of a cope hole and choice of stiffener cross section can influence the location of the
point with the maximum stress interval. The difference between the results of the different 1D FE
models is small. However, the differences in the maximum stress intervals occurring in different
points is also small. Therefore, the choice in different stiffener cross sections can lead to a different
point having the highest maximum stress interval. Based on the results, obtained by applying a
traffic lane at the theorized position3, it can be concluded that if one of the models is used, and all
points within 5% of the found maximum are considered the maximum of all models is likely to be
within in the remaining points (see Table 6). Therefore, any of the 1D models could be used. In this
report the model without cope holes and an open stiffener cross section is researched.

Currently the 1D FE models are made in FE software. This software does not use the exact solutions
of the 1D elements but meshes the elements in smaller subparts. As a result, there still is mesh
dependency and an increase in computation time. To determine the location of the point with the
highest stress interval the loads and deck plate strip will have to be moved iteratively. Resulting in
new FE models being made for each iteration. By writing code using the exact solutions of 1D
elements both these disadvantages can be reduced.

3The current regulations do not allow to base the load cases on the theoretical traffic lane position.
Elaboration on this can be found in the discussion (Chapter 9.1).
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5 Mesh independent solutions of 1D elements

To get rid of the mesh dependency of the 1D model the analytical solutions of the 1D elements
need to be used. To do so a system of differential equations describing the behaviour of the 1D
elements has to be derived. After which this system can be solved. The obtained solutions still has
unknown integration constants which can be determined after formulating the boundary and
interface conditions between all elements. After which all displacements (and by extension the
stresses) of the 1D model are known without any mesh dependency.

5.1 System of differential equations

The 1D elements used are Timoshenko beam elements. These elements account for shear
deformations [4, 5, 6] as is required by the ROK [3]. To simplify the calculations warping
deformations are ignored, it is assumed that these deformations are negligible. In the considered
case study, all elements perceive a constraint regarding torsional deformations due to their
connection with the deck plate. Since the warping deformations are linked to the torsional
deformations it is assumed that these can be neglected [32]. In the derivations of the system of
differential equations normal deformations are accounted for. Since all elements have constant
material properties the system of differential equation can be simplified. It is not assumed that all
elements have constant geometrical properties since the main girders have variable cross section
properties. To be able to understand the system of differential equations a coordinate system
needs to be agreed upon. The used coordinate system is presented in Figure 31. The positive
direction of the applied forces is the same as the positive direction of the axis.

=

Ux P

Figure 31: Sign conventions

A lot of derivations of Timoshenko beam elements in a 2D space can found in existing literature [4,
5, 6], however an extension of this in a 3D space is scarce. Therefore, the derivations of a
Timoshenko beam element (including normal deformations) can be found in Appendix | Derivation
system of differential equations of a Timoshenko beam element. By carefully collecting the
material and cross section properties in three matrices (K1 ; K2 ; K(3)). And constructing a
vector containing all the displacement (u) as well as a vector containing all applied forces (q). The
system of differential equation describing the physics of a 1D Timoshenko beam element can be
written as:

d? d (1)
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The system of a 1D Timoshenko beam element including normal deformations has a solution. To

be able to understand the solutions several terms need to be introduced (Table 7).

Table 7: Terms used in solutions Timoshenko beam element

Symbol Description Symbol Description

U; Displacement in direction of i E Elasticity modulus

A Cross section area qi Distributed load applied in
direction of i

C; Integration constant number i Lyl Second moment of area around
axisy orz

G Shear modulus Agi Shear area in direction i

t; Distributed moment applied Qi Rotation around axis i

around axis i
I, Second polar moment of area

Now the solution can be written as:

Uy(x) = — 1J-A(x)dx *q, + fA()dx*C1+C2
”y(")=(%ff19(c) a/ sy(x)d"> i+ [ g et
ffl(x)dxdx Cs; + fsy()dx*Q Csx + Cq
”Z(")z( [J e -2 e ) “"F Hz()d’“d"*ty
ﬂl()dxdx C; + Jszl()dx*C8+C9x+C10
o (x) = Gjlt( )dx ty +f1t( )dx*C11+C12
py(x) = 1J‘IJ(C) *q, — 1fl()dx t+fl()dx*C7+C9

1 1
(pz(x)=—EfIZ(—x)dx*qy fl()dx t+fl()dx*C3+C5

(2A)

(2B)

(2C)

(2D)

(2E)

(2F)

This solution contains several integrals which are hard to evaluate. The considered bridge mostly
has elements with constant cross section properties. The next paragraph simplifies the solution for

the case with constant cross section properties.
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5.3 Solution 1D Timoshenko beam element with constant cross section properties

When a 1D Timoshenko beam element has constant cross section properties both the system of
differential equations (1) as well as the solutions of the system (2) can be simplified. An even
further simplification can be found when only a load in the direction of the z axis has to be
accounted for. In the case of the considered bridge both these statements are true for the
crossbeams, the stiffeners and the deck plate strip. The solution is:

0 0 0 Cy G 1
1 1 El,

0 _€C3 _EC4_ GAS C3_C5 CG
U, y 4
U o 1 qz 1 El, x
y -c, - —Cg — C,+Cy C 3

U,| _|24EL, 67 ZGASZ+2 8 GA,, 7o Lo X a)

- X
®x 0 0 0 Cix Ciz||
§0y qz 1 1

¢Z 0 6E1y EC7 Cg Cg

1
0 0 EC3 C4 C5

This solution does not contain any integrals anymore. Before this solution can be used the
integration constants need to be determined.
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5.4 Solving integration constants

The solution of the system with constant cross section properties (3) contains twelve unknown
integration constants. These constants can be determined if twelve conditions are known. The
elements with constant cross section properties (crossbeams, stiffeners, and deck plate strip) are
mainly connected with interface conditions to each other. Only the ends of the crossbeams are
connected to the main girder for which interface conditions are hard to formulate. In the other
cases a connection of i number of elements is made. As shown in Figure 32.

1 -"-d-.-’d\’.ﬂ!"“L
(xynz1) o
- 1 »T

L

L g

UL N
e T

Figure 32: Connection between crossbeam and stiffener in which trs, tr,, DD; and DD, are the name of the
names of the elements. (x, y,, z;) are the coordinates of a point and Az is the distance between the neutral
axis of the stiffener and the cross beam [3]

The following interface conditions can be formulated based on the requirement of the elements
to be connected and in equilibrium:

DD DD t t
ux 1(x0' yO' ZO) = ux 2(x0' yO' ZO) = uxrl(xll yl;Zl) + AZ(pyrl (xl; yllzl)

=l Gy, y, 2) + 82 (1, 31, 22) e
u3D1 (x0, Yo, Zo) =_u3f:2(x0'3’0' Zp) = ugt/rl (tlen}’p z;) — Az, (x1, Y1, 21) (48)
= Uy 2 (%1, Y1, 21) — Bz, (%1, Y1, 71)
uy (X0, Yo Zo) = Uy (%0, Yo, Z0) = Uy (X1, Y1, 21) = Uy (%1, Y1, 21) (4C)
(P;lc)Dl (x0,¥0,20) = ‘Psz(xo'YO' Zp) = ‘P;Tl (x1,¥1,21) = ‘P;rz (x1,¥1,21) (4D)
%?Dl (X0, Y0, Z0) = ‘P;?DZ(XO'YO' Z) = ‘P;tzrl (x1,y1,21) = ‘P;tzrz (%1, ¥1,21) (4E)
(I’ZDD1 (x0, Y0, 20) = ‘PzDDz(xo'YO' zp) = ‘P;rl (1, 01,21) = ‘P;rz (x1,¥1,21) (4F)
NPt (%o, Yo, 20) + Ny 2 (xo, Yo, Zo) + Ny (1, 1, 21) + Ny 2 (20, 1, 21) = 0 (4G)
VyDDl(xo'yo'Zo) + VyDD2 (%0, Yo, o) + Vytrl(xp)ﬁ,zﬂ + Vytrz(xp)ﬁ,zﬂ =0 (4H)
V"%t (x0, Y0, 20) + V"7 (X0, Yo, 20) + V Gy, yi,20) + V2 (g, y1,20) = 0 (41)
My (X0, Yo, Z0) + My "2 (20, Yo, Zo) + My (%1, y1,2,) + AZV;;trl (x1,¥1,21)
+ M;tcrz (x1,y1,21) + szytrz (x1,¥1,21) =0 (@)
M;)Dl(xo'%'zo) + MJ?DZ (%0, Y0, 20) + M;rl(xp}’pzl) - AZthrl (x1,¥1,71)
+ M;rz (x1,¥1,21) — AZthrz (x1,¥1,21) =0 (4K)
MzDDl(xOlyO'ZO) + MZDD2 (x0, Y0, 20) + Mérl (1, y1,21) + Mztr2 (x1,y1,21) =0 (4L)
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In equation (4) the following terms are used:
Table 8: Terms used in equation (4)

Symbol Description

u’l:(a, b,c) Displacement in the direction of i of element j at point (a, b, c)

Az Distance between the neutral axis of the stiffener and the cross beam

‘Pji(a’ b,c) Rotation in around axis i of element j at point (a, b, c)

Ni(a' b, c) Normal force of element j at point (a, b, c)

V’i(a, b,c) Shear force in the direction of i of element j at point (a, b, c)

Mli(a' b, c) Internal moment around axis i of element j at point (a, b, c)

These interface conditions are formulated in terms of a global coordinate system. Since the
displacement field (3) and internal forces (11) are determined in terms of a local coordinate system
they should be rewritten to the global coordinate before they can be substituted in the given
interface conditions. At the ends of the stiffeners there is no crossing of two crossbeams and two
stiffeners but a crossing of two cross beams with only one stiffener. In these cases, the interface
conditions presented here are still valid. However, the terms related to the non-existent stiffener
have to be neglected. As a result of this there are less interface conditions, this is no problem since
one less stiffener means that there are less integration constants which will have to be solved.

To be able to determine the total displacement field of the bridge all integration constants need
to be solved. This cannot be done by only using the interface conditions shown here (4) since this
does not give enough equations to solve all integration constant. The remaining equations have to
do with the connections of the cross beams with the main girders. These cannot be determined in
the way that is presented here since the main girders have a variable cross-section. Substitution of
the displacement field of the main girder (2) in the interface equations does not lead to solvable
equations. An alternative method is presented in the next paragraph.
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5.5 Boundary conditions modelling behaviour of main girders

The solutions of a beam with variable cross section properties (2) have potentially hard to solve
integrals and are therefore not useful. As a result of this the interface equations (4) cannot be used
and some integration constants remain unsolved. However, if the proper displacements of the
main girders can be determined without using the analytical solution these can be used as
boundary conditions. To see if this is possible the properties of the solution of an element with
constant cross section properties is being analysed. After which a property of the solution of an
element with constant cross section properties is assumed. Which will be combined with a
numerical analysis of the main girder to formulate the needed boundary conditions.

5.5.1 Properties of solution of simplified, constant cross section, main girder

If a main girder with constant cross section properties is assumed. The solution can be determined
using the standard solution (3) in combination with the general interface conditions (4). On the
main girders there is no distributed load present. However, all the cross beams transfer their
internal forces to the main girders, leading to point forces at the locations where the cross beams
and the main girder are connected. The simplified, constant cross section, main girder is visualized
in Figure 33.

S
e
»

Figure 33: Visualisation of 1D main girder with crossbeams modelled as point loads*

This simplified main girder consists of 7 elements with a constant cross section having the solutions
discussed in Chapter 5.3 and presented in formula (3). The solution still contains unknown
integration constants. All integration constants can be solved using the interface conditions
presented in (4)°. In combination with the equations following from the physical constraints and
the necessity from an equilibrium at the supports and the end of the beam. An elaboration of this
calculation can be found in Appendix Il Solution main beam with constant cross section properties.
The displacements at the location (x)) of the different cross beams are:

i) — i
u® = K¢ )(Atot' E,G, I, 1y, I, Xsupport1) Xsupport2» Xpp1 XpD25 XDD3) XD D4 x(i))l’ (5)

In equation (5) u® is a vector containing the displacements at cross beam number (i). K" is a matrix
depending on the material and geometry properties, and the location of cross beam i (x()). Vector
p contains the forces that the cross beams apply to the main girder. Since the responses can be
expressed as a matrix (independent of the force vector) multiplied with the force vector the
response is linearly related to the force vector. This means that the response of a combination of
loads is the summation of the responses of the individual loads in that combination.

4 The cross beams are not connected to the main girders at the height of the neutral axis of the
main girders. Thus, the internal normal and shear forces of the crossbeams result in an additional
moment in the case that the main girders are modelled as shown in Figure 33.
51f a force is applied at a point this should be included in the force equilibrium
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5.5.2 Hypothesized form of replacement boundary condition

In the previous paragraph it was determined that, in the case of geometrically constant main
girder, the displacements at the locations of the connection between the cross beams and the
main girder are linearly related to the internal forces of the cross beams (5). This formula can be
rewritten as:

24
u® =" Kp, @
=

In the case of constant geometrical properties, the components of K, ; could be analytically
determined and are depended on material and geometrical properties of the main girder
(Appendix Il Solution main beam with constant cross section properties). In the case of a
geometrically variable main girder the component of K, ; can not be determined analytically.
However, if it is assumed that the displacements of the cross beams will remain linearly related to
the internal forces in the crossbeams, equation (6) is still valid. In that case a single component of
K, ; can be determined by obtaining the displacements for a load case in which only a single
component of the load vector is unequal to zero. This can be easily shown by stating that for j=I all
p; are equal to zero except p;. In that case (6) can be rewritten to:

K9 = Ly
’ D
By preforming 24 numerical analyses of the main girder. In which a single internal force of a cross
beam was applied as a unit load, and the displacements of the main girder at the location of the
connection with the crossbeams are determined. All values of K can be determined. For a
description of the numerical analysis and the results see Appendix Il FE analysis main girder with
variable cross section.

Since all components in KEll) are now known the displacements of the main girder, at the point
they intersect with the cross beams, can now be determined by substituting these values in (6).

In the model with 1D elements described in Chapter 4 the only loads applied on the 1D model are
the internal forces of the cross beams. This means that the displacements of the main girders at
the location of the cross beams can be expressed in terms of the internal forces of the cross
beams. The found expression is:

Fine PP (x0)

. NPCED)
u®(x,) = KO finte : (%o) (7)
Finel"" (x0)

In which fintgj) is the i component of the internal force vector of cross beam j as defined in
Appendix | Derivation system of differential equations of a Timoshenko beam element. Adding
these boundary conditions (7) to those established to the set determined in the previous chapter
(4) makes it possible to solve the model of 1D element as described in Chapter 4 without
discretising in space. Therefore, the solution obtained in this manner will have no mesh
dependency.

]
TU Delft Page 34



6

6.1

anteagroup

Results of mesh independent 1D elements
model

In the previous chapters the theory and idea behind the use of a mesh independent model existing
out of 1D elements was discussed. After applying the theory results can be obtained. In this chapter
different options on the interpretation of these results are discussed. As well as the conclusions
that can be drawn from these results.

Use of mesh independent 1D model

The proposed 1D elements model has to be used in an iterative manner (Chapter 4.5). For this
research several iterations were performed. The locations at which the maximum stress intervals
were determined are shown in Figure 34.
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Figure 34: Iteration locations

Since the considered bridge has an axis of symmetry only half of the iteration locations have to be
used. According to the Dutch regulations [3] at each of these locations 3 possible central points of
the spread of a wheel of a truck have to be considered to determine the fatigue damage (Figure
7). These being on top of the centre of the considered trough, on top of the considered web of a
trough and in between the two troughs next to the considered trough web. However, in the
proposed 1D elements model the troughs are connected to the deck plate at the neutral axis of
the trough (not at the webs of the trough). Therefore, only two locations are considered for the
central point of the spread of a wheel of a truck. These being on top of the neutral axis of the
considered trough and in between the troughs next to the considered trough web. In some cases,
the position of the spread of the wheel of the trucks was such that the other wheel of the truck
had a set location (since setting it at the opposite side of the given location meant that it would be
placed outside of the bridge). In the other cases both the placement of the left and right wheel at
the given spread locations had to be considered. Note that left and right refer to a local definition
which is shown in Figure 34.

The very first iterations were chosen evenly distributed over the entire bridge. Extra iterations
were added close the maximum of the previous iterations. As a result of this a global maximum
might have been missed. An improvement in both the change of missing the global maximum as
well as the number of iterations needed to find it can be reached by applying optimization
algorithm [33, 12].
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For every load case (between 30 and 60) in every considered trough web a linear system of
equations has to be solved®. This system will have slightly different sizes but always exceeds 2025
equations. Due to the size of these system and a limit in computation time this system is solved
numerically.

6.2 Interpretation of results of mesh independent 1D model

In the proposed mesh independent 1D model the troughs are not connected to the deck plate at
their webs but directly above the neutral axis of the trough. Therefore, the points with the
maximum stress interval are not located at the trough webs but at the neutral axis of the trough
(Figure 41). As a result of this, and some numerical interpolation issues (Appendix IV Uninterpreted
results mesh independent 1D elements model) a different way of interpretating the results is
necessary. In this research two interpretation methods are used and compared.

In this paragraph all results of the mesh independent 1D model are presented in dimensionless
units (percentages). This is because the results cannot be used to determine stress values
accurately and presenting stress values might suggest that the model can be used to determine
those values. However, the model might still be able to determine the location where the
maximum stress interval can be found. All results in Paragraph 6.2.1 are in relation to the same
maximum thus these figures can be compared with each other. The results of Paragraph 6.2.2 are
in relation to a different maximum.

& Another reduction of less than 20% can be reached by noting that some load cases can be used
to analyse two different trough webs. Therefore, in these cases, the system of equations has to be
solved only once to get the stresses in two trough webs.
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6.2.1 Interpretation method 1: Stress in trough web assumed to be stress at
corresponding side of neutral axis, only right sided trough webs

The first interpretation method which will be discussed is only taking the right web of all troughs
in account. Since the bridge is symmetric the value of a left web of a trough is equal to right web
of the trough at the other side of the symmetry axis (e.g. the maximum stress interval in the left
web of trough 3 is the same as in the right web of trough 15). This leads to the following results

(Figure 35):
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Figure 35: Contour plot of max stress interval obtained with method 1

This contour plot has some notable properties:
- Allfields between the cross beams have a similar shape
- The maxima are found close to the crossbeams while the minima are found in between
the crossbeams
- The maximum of the plot does not exceed 100%
- The maxima look to be close to one main girder while the minima look to be close to the
opposite main girder

That the fields between the crossbeams have a similar shape but do not have identical values is
expected. It is expected that the local design of the bridge has the most influence on the local
stresses. Since the design is locally identical the stress values are expected to be similar. However,
the global design will still have a small influence. And since the full design is not fully symmetric
(the support conditions, main girders and cross beams are not symmetric in all axes, see Chapter
3) some small difference between the stresses are expected.

Having the highest and lowest value of the stress intervals either in the middle or at the ends of
the fields in between the crossbeams is expected. This is due to high stiffness expected close to
the cross beams and low stiffness expected the be in the middle between two cross beams. often
the maximum and minimum stresses can be found close to the location of the maximum and
minimum stiffness (Appendix V Shortlist of potential critical points).

That no value in the contour plot exceeds 100% means that the point with the highest expected
maximum stress interval is already within the points which have been analysed in the previous
iterations. Therefore, it is assumed that further iterations are not likely to suggest that a different
point will have a higher expected maximum stress interval. Thus, it is decided that the iterative
process has been repeated enough times.
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The results suggest that the highest maximum stress interval is at an outer side of the bridge while
the lowest is at the opposite side of the bridge. To better examine this the maximum stress interval
is graphed in several cross sections (Figure 36).
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Figure 36: Maximum stress interval in cross sections, obtained with interpretation method 1

This graph has some notable properties:

- The highest expected maximum stress interval is found at the end of the bridge (x = 9449)
in the right web of trough 4 (y = 2200)

- The lowest expected maximum stress interval is found in the centre of the field between
crossbeam 3 and crossbeam 4 (x = 8000) in the right web of trough 16 (y = 9400)

- Insome cross sections there is a kink at trough 14

- The cross sections in the middle of two cross beams (x = 1600, x = 4800 and x = 8000)
contain maximum stress intervals which have a lower value than the cross sections which
are close to the cross beams

The highest value of the maximum stress interval is at the end of the bridge (x = 9449). This is one
of the locations identified as likely to have the highest maximum stress interval (Appendix V
Shortlist of potential critical points). However, it is found in the fourth trough, this is not a trough
which is considered to be likely to have the highest maximum stress interval. Since the bridge is
symmetric there is another point expected to have the same maximum stress interval. That point
is also at the end of the bridge (x = 9449) but in the left web of trough fifteen.

The lowest expected maximum stress interval is found in the left web of trough 16 for all analysed
cross sections. This is remarkable since this means that both the lowest and highest maximum
stress interval is found to be close to the main girders and close to each other.

In Figure 36 some cross sections show a kink at the location of the right web of trough 14 while
other cross sections do not. It is noted that the cross sections with a kink are located at x is 6249,
6551, 8000, 8750 and 9449. These cross sections are all close (or at) an analysed point in the right
web of trough 14. While the remaining cross sections are further away from a preformed iteration
on the right web of trough 14. Therefore, the remaining cross sections will have a smooth curve at
this location (Since a cubic surface is used to interpolate between iteration points the curve has to
be smooth between these points [34]). The cross sections with a kink have those because troughs
14, 15 and 16 have fewer load cases which can be applied (the trucks have to be positioned in such
a manner that both wheels fit on the bridge). In the next trough these extra load cases can be
added. This results in a sudden increase in the expected maximum stress interval.
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It can be observed cross sections which are situated in between the cross beams have lower
maximum stress interval values than the cross sections close to the cross beams. To research this
behaviour the maximum stress intervals in the length of troughs are graphed (Figure 37).
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Figure 37: Maximum stress interval in right sided trough webs, obtained with interpretation method 1

This graph has some notable properties:
- All troughs have a maximum stress interval at the points close to the cross beams and a
minimum in the middle between two cross beams
- Troughs attheright side of the considered bridge (troughs with a low number) have higher
expected stress interval values than the troughs at the left side of the considered bridge
- Between the third and the fourth cross beam the differences between the maximum
stress intervals in the different troughs is bigger than in between the other cross beams

Each trough shows a similar behaviour of the maximum stress interval. All troughs have local
maximum stress intervals at the cross beams and local minimum stress intervals in between two
cross beams. This agrees with the cross sections in between two cross beams having lower stress
interval values than the cross sections close to the cross beams as presented in Figure 36.

It can be observed that the right sided trough webs at the right side of the bridge have higher
expected maximum stress intervals than the right sided trough webs at the left side of the bridge.
This agrees with the cross sections in between two cross beams having lower stress interval values
than the cross sections close to the cross beams as presented in Figure 36.

It is noted that the differences between the maximum stress values is bigger between the troughs
at the left side of the bridge between cross beam 3 and 4 than at the other locations of the bridge.
This agrees with the kink in the graph of Figure 36. The reason for this behaviour is explained in
the paragraphs concerning Figure 36.

The proposed mesh independent 1D model does not account for the connection between the
trough webs and the deck plate. This might be the reason for the remarkable difference occurring
between left and right webs of troughs (Appendix IV Uninterpreted results mesh independent 1D
elements model). Therefore, an alternative interpretation for the results will be examined.
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6.2.2 Interpretation method 2: Averaging trough webs, difference in trough webs
determined using nearest trough

By applying interpretation method 1 it was found that one web (right) of a trough has a remarkably
higher expected maximum stress interval than the other web (left) of the trough. This might be
due to the simplifications applied in the connection between the troughs and the deck plate strip.
To account for this it can be argued to average the found values at either side of the neutral axis
of the trough and use those for both webs of a trough. This would give a sense of the maximum
stress interval of each trough. The difference between the webs in a trough could be determined
by looking at the adjacent troughs at either side of the considered web. The trough with a higher
expected stress interval could be argued to be on the side in which the trough web is expected to
have a higher maximum stress interval as well. Applying this method, the following result can be
obtained (Appendix VI Results mesh independent 1D element model interpretated via method 2,

Figure 38):
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Figure 38: Contour plot when averaging between trough webs

This contour plot (Figure 38) has some notable properties:

- The highest maximum stress interval is found in the middle of the bridge (y = 5050 and
5650) and at the last cross beam (x = 9449). It is expected to be in the trough web closest
to the middle of the bridge.

- Thelowest maximum stress interval is found in the middle of the field between crossbeam
3 and 4 (x = 8000) and close to the main girders (y = 1450 and 9250).

- ltis close the perfectly symmetric.

- The maximum of the plot does not exceed 100%

- Inthefields between cross beam 1,2 and 2,3 a saddle point is situated in the middle. While
in the field between cross beam 2 and 3 a local minimum is found in the middle. This
minimum sits between two saddle points.
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The highest maximum stress interval is found at one of the locations where it would have been
expected in advance (Appendix V Shortlist of potential critical points).

The lowest maximum stress interval is found at one of the locations where it would have been
expected in advance (Appendix V Shortlist of potential critical points).

The contour plot is almost symmetric. The bridge is entirely symmetric thus the contour plot is
expected to be so too. The small deviation from symmetry is due to the accuracy of the applied
interpolation method.

The fact that no value in the contour plot exceeds 100% means that the point with the highest
expected maximum stress interval is already within the points which have been analysed in the
previous iterations. Therefore, it is assumed that further iterations are unlikely to suggest that a
different point will have a higher expected maximum. Thus, it is decided that the iterative process
has been repeated a sufficient number of times.

In the fields between crossbeam 1, 2 and 3, 4 a saddle point can be found in the middle. While the
field between crossbeam 2 and 3 has a local minimum at this point. In this research the focus is on
the highest maximum stress interval thus no extra attention will be given to this remarkable
property.

6.3 Differences in results of interpolation methods
Both the methods discussed in this chapter have wildly different results (Figure 35 and Figure 38).
The points with the highest maximum stress interval found by applying the two interpolation

methods are given in Table 9.

Table 9: Results of 1D elements model using interpretation method 1 and method 2

Method 1 Method 2
x[mm] y[mm] Through x[mm] y[mm] Through
web web
Maximum stress | 9449 2200 4R 9449 5200 9R
interval | 9449 1600 3R 9449 4900 9L
| 9449 2800 5R 9449 4600 8R
Lower stress intervals \ 9449 1000 2R 9449 4300 8L

Both interpretation methods result in an expected point with the highest expected stress interval
at the end of the bridge next to the last cross beam (x = 9449). However, both interpretation
methods result in a different trough having the expected highest maximum stress interval. Method
1 suggest that there is a significant difference in the maximum stress interval between the two
webs of a trough while method 2 states that the stress interval in different webs of a trough are
similar.
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7 Verification

In the previous chapters several simplifications on the traditionally used 2D plate model have been
preformed of which the influence, on the location of the highest maximum stress interval, have to
be studied. The following simplifications will be studied in reversed order:

- Change from traditionally used 2D plate FE model to 1D elements FE model
- Change from 1D elements FE model to mesh independent 1D model

To see whether these simplifications have influences on the location with the highest maximum
stress interval several case studies will be performed. The choice for these cases (choice in the
points analysed). Is based on the results in the previous chapter (Paragraph 6.3) and the judgement
of two structural engineers.

The verification will be done by comparing the results of the proposed mesh independent 1D
model with the 1D elements FE model. Comparing the results of a 1D FE model with the results of
a 2D elements FE model with weld details (as required with the regulations [3]). And by comparing
the results of the proposed mesh independent 1D model with the 2D elements FE model (with
weld details).

7.1 Proposed mesh independent 1D model vs. 1D elements FE model

In the previous chapter it was shown that the maximum stress interval is expected in right web of
trough 4 or the right web of trough 9. In this comparison the right web of trough 4 is considered.
Since all load cases, which have to be considered in this point, create a compressive stress
(Appendix IV Uninterpreted results mesh independent 1D elements model) only 1 load case will be
needed to determine the maximum stress interval of the two models. The load case used for the
comparison is one of the load cases which has to be used for the determination of the maximum
stress interval in both the right web of trough 4 and the left web of trough 5. This load case is
related to a truck with axis type B (Figure 6) on the field at the right side (Figure 40) of the
considered trough web. The resulting stresses found in the bottom of the deck plate strip are
shown in Figure 39 and Figure 40. These figures show the stresses found in both models. However,
these values are not representative for the stress occurring in a 2D element model nor a full 3D
model. These stresses cannot be used to determine fatigue damages.

o V N VN
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l —242.43 N/mm?

—286.42 N/mm?
Figure 39: Stress in bottom of deck plate strip using proposed mesh independent 1D model

Y
—242.43 N/mm?

—286.42 N/mm?
Figure 40: Stress in bottom of deck plate strip using 1D elements FE model (without cope hole)

It can be noted that the stress interval found at the considered web is (to at least two digits after
the comma) identical in both 1D models. Therefore, it can be concluded that replacement of the
main girders by alternative boundary conditions as presented in Chapter 5.5 is done properly.
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7.2 1D elements FE model vs. traditionally used 2D plate model

To compare the 1D FE model with the traditionally used 2D plate several FE analyses are compared.
For these analyses both models used the same load combinations (the same as applied to
determine the results from Table 2). Since it is likely that point with the highest stress interval is

directly next to the applied loads (Chapter 3.6) only the points in line with the loads are considered.
The results can be found in Figure 41.
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Figure 41: Maximum stress interval at bottom of deck plate at the 1D and 2D FE model

The traditionally used 2D plate model used to make this graph has a mesh of 0.4m with local
refinements around the welds of 0.05m. For a thorough description see the FE model in the
database [30]. Some observation can be made based on Figure 41:

- The values of stresses in the 1D FE models differ from the traditionally used 2D plate
model. This is expected since the 1D FE model only a small deck plate strip is modelled
(Chapter 4.5).

- The traditionally used 2D plate model and 1D FE model have their maximum stress
intervals in the same region. As a result of this the highest stress intervals could be at the
same locations. The traditionally used 2D plate model (without weld details) is not able to
determine the exact point the maximum stress interval is likely to occur (Chapter 3.6).

7.3 Proposed mesh independent 1D model vs. 2D FE model

The traditionally used 2D plate model cannot be used to determine the location of the maximum
stress interval (Chapter 3.6). However, now that some points potentially having the maximum
stress interval are determined (Chapter 6.3) the traditionally used 2D plate model can be updated.
At the relevant locations the required [3] weld details and mesh refinement can be added. And the
total amount of load cases considered can be reduced. After which this updated 2D FE model can
be used to determine the value of the maximum stress interval at the relevant locations. These

maximum stress intervals can be compared with the results of the proposed mesh independent 1D
model.

An overview on how to update the traditionally used 2D plate model is given in the Chapter 2.1.2.
In this chapter only a short summary is given of this method. The calculation as applied on the
considered case study (of the Goereese bridge) can be found in the appendix (Appendix VII
Elaboration calculating maximum stress interval 2D FE model).
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7.3.1 Comparison points

Since the results required by the proposed mesh independent 1D model interpretated via method
1 suggest significant difference between the maximum stress values at different webs of a trough
(Chapter 6.2.1), for every point in a trough (if possible’) both webs will be considered. A total of
four points will be considered. 2 of these points (1 and 2) are at the maxima found by the two
different interpolation methods applied on the results of the 1D elements model (Figure 35 and
Figure 38). The last two points are determined by asking experts on their opinion. One of these
points (A) was given by structural engineer “A” who was not informed of the results of the
proposed 1D elements model. The second point (B) was given by structural engineer “B” who was
aware of the results and details of the proposed 1D elements model. Both structural engineers
were familiar with the design of the bridge. In Figure 42 the points are shown.
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Figure 42: The four points analysed with a 2D elements SCIA model.

Both structural engineer “A” and “B” explained their choice for their expected point A and B.

Point A

As stated before, this point was chosen without the results obtained by the proposed mesh
independent 1D model. The short list obtained by this structural engineer was the same as
explained in Appendix V Shortlist of potential critical points. Next, the structural engineer
mentioned that the fields at the ends are expected to have a higher maximum stress interval since
a dynamic amplification factor has to be applied. When this argument surfaced the structural
engineer was told that the new regulations (ROK [3] article 00910) state that over a distance of 6m
from any expansion joint a constant dynamic amplification factor of 1.15 has to be applied. Since
there is an expansion joint at both ends of the bridge and the bridge is less than 12 meter long all
points have the same constant dynamic amplification that has to be applied. Thus, this factor will
not have an influence®. However, this did not change the chosen point since the structural engineer
argued that the asymmetry in support conditions might still lead to point A having the highest
maximum stress interval. The structural engineer stated that the difference between the trough
webs is expected to be extremely small (therefore, the difference might not be measurable).
However, if a difference can be found the structural engineer expect the trough web at right side
(Figure 42) to have the highest maximum stress interval.

7 For point “B” only the right trough web could be considered since the left trough web is too close
to the main girder. Resulting in not all load cases, which have to be considered according to the
regulations [3], fitting on the designed bridge. In this analysis the left trough web was omitted. In
real live applications this point would either be analysed using the remaining possible load
combinations or be omitted due to extra applied vehicle retaining barriers (see Chapter 9.1).

8 In the previous version of the ROK [31] was published a linear decreasing dynamic amplification
factor had to be applied which would have had an influence.
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B

This point was chosen by a structural engineer who was informed on the results of the proposed
mesh independent 1D model. Again, the same short list of points was obtained (Appendix V
Shortlist of potential critical points). After examining the results, the first thing the structural
engineer started to do was trying to argue why the first interpretation method of the 1D elements
model suggest a highest maximum stress interval at a point which is not on the short list. After
looking at Figure 36 the structural engineer concluded that they simplification of the deck plate
not being connected to the main girder but to the nearest trough (Chapter 4.5) might lead to
inaccurate maximum stress intervals in the most outer 3 troughs. Therefore, the structural
engineer expect that a more accurate estimation would be a further increase in the maximum
stress interval when reaching the outer sides (Figure 43). Therefore, the prediction of this structural
engineer was a point at the end of the bridge at the right trough web of the trough closest to the
main girder (Figure 42).
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Figure 43: Results 1D elements model plus expected reality by expert at the end of the deck plate (x=9449)
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7.3.2 Update 2D elements model (element thickness and mesh sizes)

The regulations [3] provide a method to model the welds and determine the stresses occurring in
the welds. For the considered weld detail (Figure 2) the most relevant articles are number 00912
and 00915. Together these articles, in combination with the design of the bridge, make it possible
to determine all necessary information to model the welds. As well as determine the stresses which
would have to be used to determine the fatigue damage. The calculation is provided in Appendix
VII Elaboration calculating maximum stress interval 2D FE model. The obtained weld model is
shown in Figure 44.
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Figure 44: Detailed weld (drawing not to scale) [3]

In Figure 44 the prescribed method on how to model the weld is shown. In this the red area is the
local increase in element thickness (from 20 to 23mm) in the deck plate. In blue a local increase in
the element thickness (from 6 to 13.3mm) in the trough is shown.

To determine the stresses in the considered detail (Figure 2) it is not allowed to use the stresses
reported by the FE model at the weld toe. Instead, the stresses have to be determined at two
points (A and B) at a certain distance from the weld toe. After which the stresses at the weld toe
can be determined via the application of linear interpolation (from A and B to C). To determine the
location of points used for the interpolation article 00915 of the ROK [3] can be used. The obtained
points are sketched in Figure 45.

----------------------------

Figure 45: Interpolation points for stress determination [3]

The regulations [3] also provides the maximum allowed mesh size. This size should be smaller or
equal to half the deck plate thickness. For the considered case study that results in a local mesh
size of 10mm.
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7.3.3 Results 2D elements SCIA model

After applying the calculation method as provided in the ROK [3], in combination with the results
obtained from a FE analysis (see the database [30]) the results in Table 10 are obtained.

Table 10: Results of 2D elements SCIA model

Point Load case Maximum Stress interval

Name Trough Web (see Figure 46) [N/mm?]°
A 9 Left 7 (A) 55.47

A 9 Right 13 (D) 56.00

B 2 Right 13 (D) 53.90

1 4 Left 7 (C) 63.28

1 4 Right 13 (D) 63.24

2 9 Left 7 (C) 61.76

2 9 Right 13 (B) 61.99

From the results in Table 10 some observations can be made:

- The stresses in the different webs of a trough are comparable

- Every analysed point has a maximum stress interval due to a spread location which result
in only compressive stresses happening in at the analysed point. As a result of this the
maximum stress interval is the result of only one truck.°

- The load case resulting in the maximum stress interval is always due to a truck with an
axle type B having a wheel directly positioned on top of the considered trough web (Figure
46).

- Of all the considered points (Figure 42) the left side of point 1 has the highest maximum
stress interval. This point is not within the points expected to contain the maximum stress
interval (Appendix V Shortlist of potential critical points)
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Figure 46: Different load cases. (a) the right wheel of a truck with axle type B positioned on track
7. (b) the right wheel of a truck with axle type B positioned on track 13. (c) the left wheel of a
truck with axle type B positioned on track 7. (d) the left wheel of a truck with axle type B
positioned on track 13. The red plus is positioned at the location which has the maximum stress
during the shown load case.

9 These result follow from the FE analysis after the dynamic amplification factor (1.15) is applied.
The reduction for compressive stresses of 60% was not applied. This would not change the location
of the maximum stress interval since all stresses are compressive.

10 |t can be noted that other analysed spread location sometimes had a maximum stress interval
due to a combination of two different tucks. However, these are lower than the maximum stress
interval of another spread location. This is unlikely to be the case for other detail categories. The
ROK [3] specifically mentions detail 2a and 2b being prone the stresses in both compression and
tension (article 00909).
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7.4 Comparison

The 2D FE model including weld details was used to determine the maximum stress interval in a
limit set of points (Figure 42). The results of the 2D FE model with weld details (Table 10) for these
points can be compared with the results of the different interpretations of the 1D analytical
solutions model (Figure 35 and Figure 38). In Table 11 the points for which both models have results
are ordered in order from highest maximum stress interval to lower maximum stress intervals.

Table 11: Comparison of results of 2D FE model with weld details and proposed mesh independent 1D model

Max.
stress
interval

Lower
stress
interval

2D FE model with weld Proposed mesh independent 1D model
details Interpretation method 1 Interpretation method 2!
Trough web x[mm] Trough web x[mm] Trough web x[mm]
4 Left 9449 4 Right 9449 9 Right 9449
4 Right 9449 2 Right 9449 9 Left 9449
9 Right 9449 9 Right 9449 4 Right 9449
9 Left 9449 9 Left 9449 4 Left 9449
9 Right 1600 9 Right 1600 2 Right 9449
9 Left 1600 9 Left 1600 9 Right 1600
2 Right 9449 4 Left 9449 9 Left 1600

This comparison leads to some observations.

The proposed mesh independent 1D model predicts a highest maximum at the end of the bridge
(x = 9449) which agrees with the 2D FE model with weld details.

All models have a different point in width direction of the bridge containing the maximum stress
interval

The 2D FE model with weld details and the proposed mesh independent 1D model interpreted via
method 1 have the same trough with the maximum stress interval but in a different web

The 2D FE model with weld details and the proposed mesh independent 1D model interpreted via
method 2 suggest that the difference of maximum stress interval between two trough webs is small

Since all compared models have several points in the same cross section (x=9449) a graph
containing these results can be made (Figure 47).
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Figure 47: Maximum stress interval at x = 9449 resulting from the different models

It can be observed that all models predict a different distribution of the maximum stress intervals
over this cross-section.

11 This interpretation method (Chapter 6.2.2) cannot be applied on through 2. Thus, the result of
trough 2 was obtained via extrapolation.
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8 Conclusion and recommendations

In the previous chapters results are shown regarding:

The useability of a 2D model without containing weld details (Chapter 3.6). Where the
problems regarding mesh dependency of this model is shown.

The distribution of the maximum stress interval of the 1D model interpreted in 2 different
ways (Figure 35 and Figure 38). Including a comparison of these distributions with the 2D
model containing weld details at the end of the bridge (Figure 47). It is observed that the
distributions are dissimilar.

The obtained location of the maximum stress interval of the 1D model interpreted in two
different ways and the 2D model containing weld details (Table 11). It is observed that all
three points are found in the same cross section. However, they are located at different
trough webs. Two of the three points are at different legs of the same trough while the
third point is several troughs away.

The load cases resulting in the maximum stress interval at a considered point in the 2D
model containing weld details (Figure 46). It is observed that the load cases (resulting in
the maximum stress interval) are similar.

From these results conclusions can be drawn, and recommendations can be given. This will be done
in this chapter. A discussion on these conclusions and recommendations is given in Chapter 9.
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8.1 Conclusions

In this report an investigation is presented of the answer the following research question:

How can the determination of the location of the first fatigue crack in the deck, at a stiffener to
deck plate weld toe, be parameterized?

From this investigation six conclusions can be drawn:

3
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It can be concluded that a model made from mesh independent 1D elements is unlikely
to determine the location of the expected first fatigue crack in agreement with the
prediction of a detailed 2D FE model.

A traditionally used, 2D FE model not containing any weld details cannot be used. Since
the found location for the first fatigue crack is highly mesh depended. As a result of this a
very small mesh size is needed resulting in unpractically large computation times (with
the currently available computation power).

The results from 1D model as presented in the report predicts differences between the
maximum stress intervals at the two webs of the same trough of a higher magnitude then
the 2D detailed FE model.

All models in this report predict a location of the first fatigue crack. All these predictions
stated that the crack will occur in a cross section at the end of the bridge (x = 9449).

The predictions of all models in this report suggest a point counterintuitive to the
structural engineers participating in this research. Therefore, the intuition of structural
engineers regarding the location of the first fatigue crack might sometimes be incorrect.

The number of load cases considered in the 2D FE model including weld details can be
reduced.

Since this conclusion is based on a limited number of considered locations and for a single
case study this conclusion has a limited degree of certainty. The higher the number of
concluded irrelevant load cases the higher the degree of uncertainty. In order of
increasing uncertainty, it can be concluded that:

o Ina2D FE model containing weld details (of the case study), the maximum stress
interval at a trough web-to-deck plate weld toe occurs when the spread location
of a wheel of a truck is applied directly on top of the considered trough web.

o Ina2D FE model containing weld details (of the case study). If the spread location
of a wheel of truck is directly above the considered trough web, all load cases
result in a compressive stress in the considered trough web-to-deck plate weld
toe. Therefore, only the influence of individual truck axles has to be accounted
for in the determination of the location of the maximum stress interval at a
trough web-to-deck plate weld toe.

o Ina 2D FE model containing weld details (of the case study), the maximum stress

in a point at a trough web-to-deck plate weld toe occurs when an axle type B
(Figure 66) is placed directly on top of the considered point.
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8.2 Recommendations

Based on the obtained results and related conclusion recommendations can be given. In this
chapter these recommendations are split in three parts. First, recommendations are given on
research into potential improvements of a 2D FE model. Secondly, recommendations are given on
gaining knowledge to help explaining the differences in the results of the proposed 1D method and
the 2D FE model containing weld details. Lastly, recommendations are given on the immediate use
of the obtained knowledge.

8.2.1 Possible simplifications of a 2D FE model for the determination of the location
of the highest maximum stress interval

To potentially reduce the computational time needed to solve the 2D FE models the following
actions are recommended:

- Investigate if the number of load cases necessary to determine the maximum stress
interval in a point can be reduced. This can be done by researching the following questions
and their general applicability:

o Is the maximum stress interval in every trough web always caused by a load
combination occurring when the spread of a truck wheel is applied directly on
top of a trough web?

o Do all load cases, in the spread location resulting in the maximum stress interval
in a trough web, cause compressive stresses?

o Isthe maximum stress always occurring if an axle type B is directly on top of the
considered trough web?

o Does the presence of a second axle (away from the analysed point) of a truck
influence the location of the highest maximum stress interval?

o Does the presence of a second wheel of an axle influence the location of the
highest maximum stress interval?

- Investigate if the modelling requirements (as required by the regulations [3]) can be
simplified for the determination of the location of the maximum stress interval. This can
be done by investigating the following questions and their general applicability:

o Does the addition of weld details influence the location of the highest maximum
stress interval?

o Does the omittance of the extrapolation method influence the location of the
highest maximum stress interval?

To research the two questions stated above a FE model including all the suggested
simplifications can be made. The results of this FE model can be compared with the results
of a FE model without the proposed simplifications. If necessary, a next set of models
could be made in which a single simplification is lifted to research the influence of this
specific simplification.

Independent of the results presented in this report some general recommendations on the
research in improving the computation time needed to solve the system of differential equation
can be given (improving FE method, researching alternative methods, or improving computational
power). However, in this report the recommendations will be limited to that what is discussed in
the earlier chapters of the report.
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8.2.2 Research difference between 1D method and 2D FE model

To be able to further explain the differences between the obtained results of the 1D method and
2D model several recommendations into further research are recommended.

Research if the location where the highest maximum stress interval occurs is the location
where the highest fatigue damage occurs. To do this not only the maximum stress interval
should be determined with a the detailed 2D FE model and regulatory method in several
points. But the entire fatigue damage should be determined (with the 2D FE model
including weld details as required by the regulations) in (the same) several points.

Research the influence of the difference between load cases considered in the 1D model
and the 2D model containing weld details. This can be done by performing the analysis of
the 2D model only considering the load cases which are accounted for in the 1D model.

Research the influence of the extrapolation (hot-spot) method. This can be done by
determining the results of the 2D model without the extrapolation method and compare
those with the results obtained with the 1D model.

Research the influence of the inclusion of the weld details. This can be done by
determining the results of the 2D model without locally increased element thickness and
compare those with the results obtained with the 1D model.

Research the influence of the difference in the way the connection between the stiffeners
and the deck plate are modelled. This can be done by analysing a bridge with stiffeners
with only one connection point with the deck plate (e.g. bulb strips). And comparing the
difference between the 2D and 1D model of these two bridges. It is recommended to start
with a single load case.

Research if the connection of the deck plate with the main girder has an influence on the
location of the maximum stress interval. This can be by connecting the deck plate strip (in
the 1D method) with the main girder and compare the result of that model with the
results presented in this report.

8.2.3 Recommendation until knowledge, on the determination of the location with
the highest expected fatigue damage, is acquired

To be able to correctly determine the location of the first expected fatigue crack more knowledge
has to be acquired. Until then, some action can be advised.

3
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Inform current and future structural engineer on the unreliability of intuition with regards
to the location of the first fatigue crack.

Monitor and inspect bridges carefully. Especially the welds directly below a wheel track.
Since fatigue crack usually are located below a wheel track [7].

Design bridges in such a manner that fatigue cracks are easy to repair.
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Discussion

Some remarks can be made related to the research presented in the report. In this chapter the
assumptions and simplifications in the research are being discussed as well as the conclusions.

9.1 Discussion on the assumptions and simplifications

This paragraph mentions and discusses all assumptions and simplifications in this research. The
order in which these are presented here is the same as the order in which they appear throughout
the report.

3
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It is assumed that the highest stress interval will occur at the same location as the highest
fatigue damage. This is based on the double logarithmic relation between a stress interval
and the fatigue damage resulting from a stress interval [10].The relation between a single
stress interval and allowable number cycles is given by Figure 48.
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Figure 48: Relation between the size of a stress interval and the maximal allowable number of
cycles [10]

It is assumed that the highest maximum stress interval would be in the part of the curve
with the steepest (1/3) declination. From this part, the slope and a single point are given
(Figure 48). This means that the analytical expression for this part of the curve can be
determined. It can be written as a relation between the number of cycles (N) and the
maximum allowable stress interval (Aog):

2 % 1012
= Aol (10)
Suggesting that a small increase in the stress interval results in significant decrease in the
maximal number of cycles (e.g., if the stress interval increases with 10% the maximum
number of cycles decreases with 25%). However, for the determination of the fatigue
damage not only the maximum stress interval has to be accounted. All the stress intervals
higher than the cut-off limit need to be taken in account. As a result of this it is possible
that the highest maximal stress interval occurs at a point in which the maximum fatigue
damage is not found. Since the maximum observed stress interval (Table 10) is not withing
the part of the curve with biggest decline, the chances this assumption being incorrect
increases.
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In the determination of the useability of the traditionally used 2D plate model (Chapter
3.6) and in the investigation in the influence of cope holes and stiffener cross section
(Chapter 4.6). Two discussable decisions are made:

o

The analyses were performed based on the choice of the central position of a
traffic lane. While the current regulations [3] state that for each of the
considered welds three positions of a wheel track should be considered. The
benefit of the regulatory method is that only one point is analysed thus, mesh
refinement has to be applied around only one point. The disadvantage is that
more load cases need to be considered.

The load cases used are based on the axles of the trucks as defined by NEN 8701
[35] while Dutch regulations state that the axles presented in Figure 6 should be
used.

In this report it is assumed that these decisions have no influence on the drawn
conclusions.

Several discussable decisions are made in the design of the 1D model (Chapter 4).

@)

It does not contain a ballast box. Since the ballast box is not directly connected
to the bridge deck it is assumed that this choice has no influence on the location
of the maximum stress interval.

The part of the bridge deck before the first and after the last cross beam is
neglected. It is assumed that the point with the highest maximum stress interval
will be found between the cross beams. And the presence of the bridge deck
before the first and after the last cross beam will have no influence on the
location of the highest maximum stress interval.

The deck plate is connected to most outer troughs instead of the main girder.
Some discussion into the reason of this choice is presented in Chapter 4.5. And a
recommendation on an investigation on the influence on this choice is given in
Chapter 8.2.2. It is assumed that this choice has no influence on the location of
the maximum stress interval. Especially since the considered case study has
additional vehicle barriers (Figure 49) which were not included in this research.
As a result of this the wheel track positions close to main girders can be omitted.

Figure 49: Outer vehicle retaining barriers on Goereese bridge [36]

The 1D beam elements do not account for warping deformations. This might lead to
differences between the 1D FE model and the 1D analytical solution. Which could

potentially lead to change of the location of the highest maximum stress interval.
However, it is assumed that the effect of warping deformations is negligible. The
reasoning behind this assumption is given in Chapter 4. To check this assumption a

comparison can be made of the 1D analytical method and the 1D FE model with a random

load case (Figure 39 and Figure 40). It seems that the assumption was correct.
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The 1D method does not account for cope holes in the crossbeams. It was argued that this
would not be a problem if all points within 5% of the found maximum would be used in
the determination of the fatigue damage of the bridge (Chapter 4.6). From the results
obtained of the 1D models (Figure 35 and Figure 38), the following remaining points can
be obtained:
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Figure 50: Results 1D model interpretation 1 for points >95%

® [mim]
0 3200 400 9600
9250 - - 16 100.0
B650 L 15
8050 4 L 714 9.2
7450 L ¥ 13 =
€850 - FT12 R
6250 L 11 g
' 5650 - L% 10 976 =
E 5050 L %9 i
- %8 &
2450 LF8 v
3850 LE7 %0 5
3250 LF 6 I
2650 LS 952
2050 LF4
1450 - 2 .4
DD DD2 DD3 DD4

Figure 51: Results 1D model interpretation 2 >95%

From Figure 50 and Figure 51 it can be concluded that a lot of points are within 5% of the
predicted maximum. Resulting in a significant amount of uncertainty regarding the point
with the highest maximum stress interval.

The 1D model is used in a limited number of points (Figure 34). The predicted maximum
stress interval in the remaining points is determined via interpolation. At the interpolated
points the obtained values have a degree of uncertainty. As a results of this the global
highest maximum stress interval might be missed. Advanced algorithms to determine the
next location for the next iteration can reduce the uncertainty [33].

Only 4 points are used to compare with the 2D FE model (Figure 42). It can be argued that
using more points leads to a better comparison.
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9.2 Discussion on the conclusions

This paragraph discusses the conclusions which were made after the research was performed. It
elaborates on how the conclusion can be drawn from the obtained results. It does not discuss the
results themselves. Any discussion of the results can be found in Chapter 9.1. The conclusions are
ordered in the way they are presented in Chapter 8.1.
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Even though the 1D model interpretated via method 1 predicts a point with the highest
maximum stress interval close to the point found with the 2D model (Table 11). This
similarity could be coincidental. This because Figure 47 shows that the 1D model predicts
a distribution of the maximum stress intervals which is behaving unlike the results from
the 2D model.

From Table 2 it can be concluded that the 2D FE model without weld details needs a very
fine mesh before the maximum stress interval can be determined without uncertainty.

Looking at the results from the 1D model (Chapter 6.2.1) it can be concluded that a
significant difference between the maximum stress interval is found between the
different webs of a trough. However, in the detailed 2D FE model the results (Table 10),
maximum stress intervals are shown which suggest that the maximum stress intervals
between two trough webs are very similar.

Based on the results in Table 11 it can be concluded that all models (1D with both
interpretations and 2D detailed FE) suggest that the point with the highest maximum
stress interval can be found at the end of the bridge (at x = 9449)

Based on the results in Table 11 it can be concluded that all models (1D with both
interpretations and 2D detailed FE) suggest that the point with the highest maximum
stress interval can be found somewhere else than what is expected by structural
engineers (Appendix V Shortlist of potential critical points). Therefore, it is concluded that
the point with the highest maximum stress interval is counter intuitive to most structural
engineers.

In Figure 46, the load cases resulting in the maximum stress interval at the analysed points
(Figure 42) are shown. This is a small number of the load cases which have to considered
according to the regulations (Chapter 2.1.2). Therefore, it can be concluded that only a
limited number of load cases has to be considered.

Page 56



anteagroup

Bibliography

(1]
(2]

(3]
(4]

(5]
(6]

(7]
(8]

[0l
(10]
(11]

(12]

(13]
(14]

(15]
(16]
(17]

(18]

(19]

3
TUDelft

Antea Group. B.V., ,Hoe we dankzij nieuwe technologie de vervanginsopgave de baas
blijven,” extraCT, pp. 22-23, 1 April 2022.

Antea Group B.V., ,Hoe een kudde schapen de civiele wereld op zijn kop zet,” extraCT,
pp. 54-55, 1 April 2022.

Rijkswaterstaat, ,Richtlijnen Ontwerp Kunstwerken,” Rijkswaterstaat, 2021.

A. Simone, “Timoshenko beam theory,” in An Introduction to the Analysis of Slender
Structures, Draft ed., Delft, Zuid-Holland: Delft University of Technology, Faculty of Civil
Engineering and Geosciences, Structural Mechanics Section, Computational Mechanics
Group, 2011, pp. 25-27.

S. P. Timoshenko, “On the correction for shear of the differential equation for transverse
vibrations of prismatic bars,” Philosphical Magazine, vol. 41, no. 245, pp. 744-746, 1921.

S. P. Timoshenko, “On the transverse vibrations of bars of uniform cross-section,”
Philosophical Magazine, vol. 43, no. 253, pp. 124-131, 1922.

L. Yunsheng, C. Chunlei, W. Yuanging and P. Peng, “Stress Distribution of Orthotropic
Steel Bridge Decks under Vehicle Wheel Loading,” in Nineteenth International Offshore
and Polar Engineering Conference, Osaka, 2009.

X. Zhi-Gang, Y. Kentaro, Y. Samol and Z. Xiao-Ling, “Stress analyses and fatigue evaluation
of rib-to deck joints in steel orthotropic decks,” International Journal of Fatigue, vol. 30,
no. 8, p. 11, 30 October 2007.

M. H. Kolstein, “Fatigue Classification of Welded Joints in Orthotropic Steel Bridge
Decks,” M.H. Kolstein, Spijkenisse, 2007.

Netherlands Standardization Institute, “Eurocode 3: Design of steel structures - Part 1-9:
Fatigue,” Netherlands Standardization Institute, 2012.

Z. Zhiwen, Y. Tao, X. Ze, H. Yan, Y. Z. Edward and S. Xudong, “Behavior and Fatigue
Performance of Details in an Orthotropic Steel Bridge with UHPC-Deck Plate Composite
System under In-Service Traffic Flows,” Journal of Bridge Engineering, vol. 23, no. 3, p. 21,
1 March 2018.

H. W. Van der Laan, “Repository TU Delft,” 9 July 2021. [Online]. Available:
https://repository.tudelft.nl/islandora/object/uuid%3A29f4a730-500f-47e4-863b-
al765f1e9e02. [Accessed 22 Februari 2023].

J. Schijve, Fatigue of Structures and Materials, Second Edition ed., Delft, Zuid-Holland:
Springer, 2008, p. 627.

D. J. van der Ende, “A state of art review on advanced modelling techniques for weld in
structural steel,” Delft University of Technology, Brielle, 2020.

S. Pandit, “Finite element modelling of open longitudinal stiffener to crossbeam
connection in OSD bridges for hot-spot stress determination,” Delft University of
Technology, Delft, 2020.

Royal Netherlands Standardization Institute, “National Annex to NEN-EN 1991-2+C1:
Eurocode 1: Actions on structures - Part2: Traffic loads on bridges,” Royal Netherlands
Standardization Institute, 2019.

Stichting Koninklijk Nederlands Normalisatie Instituut, “Assessment of existing structures
in case of reconstruction and disapproval - Actions,” Stichting Koninklijk Nederlands
Normalisatie Instituut, 2020.

A. F. Hobbacher, Recommendations for Fatigue Design of Welded Joints and
Components, 2 ed., C. Mayer, Ed., Wilhelmshaven: Springer, 2014, p. 19.

J. F. Doyle, Static and Dynamic Analysis of Structures with An Emphasis on Mechanics and
Computer Matrix Methods, West Lafayette: Springer, 1991.

Page 57



[20]

[21]
[22]

(23]
[24]

[25]
(26]
(27]
(28]
[29]
(30]

(31]
(32]

(33]
(34]
(35]

(36]

(37]

(38]

3
TUDelft

anteagroup

A. R. Hadjesfandiari, A. Hajesfandiari, H. Zhang and G. F. Dargush, “arxiv,” 20 December
2017. [Online]. Available: https://arxiv.org/abs/1712.08527. [Accessed 12 April 2023].

J. P. Den Hartog, Strength of Material, New York: Dover Publications, 1968.

E. P. Popov, Introduction to mechanics of solids, Berkeley: London: Macdonald & Co.,
1968.

P. C. J. Hoogenboom, “7 Vlasov torsion theory,” 2006.

P. C. Hoogenboom and A. Borgart, “Method for including restrained warping in
traditional frame analyses,” HERON., vol. 50, no. 1, 2005.

J. Blaauwendraad, Plate analysis, theory and application, vol. 1, 2006.

M. A. N. Hendriks, Plates loaded in their plane, Delft, Zuid-Holland, 2017, p. 39.
P. C.J. Hoogendoorn, Thick slabs, Delft, Zuid-Holland, 2017.

P. C. J. Hoogendoorn, Isotropic thick slabs, Delft, Zuid-Holland, 2017, p. 39.

G. N. Wells, “The Finite Element Method: An Introduction,” 2020, p. 125.

C. Stellinga, “Database containing FE models,” 14 April 2023. [Online]. Available:
https://doi.org/10.4121/eaa8ceb3-77cc-452b-b2f2-2796ba33e5ab.

SCIA, “Analysis of a haunch versus mesh size,” SCIA, [Online]. Available:
https://help.scia.net/22.0/en/analysis/calculation/analysis_of a_haunch_versus_mesh_s
ize.htm. [Accessed 16 March 2023].

S. P. Timoshenko, “Theory of bending, torsion and buckling of thin-walled members of
open cross section.,” Journal of the Franklin Insitute, vol. 239, no. 3, pp. 201-219, March
1945.

A. Cicirello and F. Giunta, “arxiv,” 21 June 2021. [Online]. Available:
https://arxiv.org/abs/2106.11215. [Accessed 22 Februari 2023].

C. Vuik, F. J. Vermolen, M. B. Van Gijzen and M. J. Vuik, “Interplation,” in Numerical
Methods for Ordinary Differential Equations, Delft, VSSD, 2015, p. 125.

Netherlands Standardization Institute, “Eurocode 1: Actions on structures - Part 2: Traffic
loads on bridges,” Netherlands Standardiztion Institute, 2015.

Flakkee Nieuws, “Nieuwe brudgedelen voor Goereese brug,” FlakkeeNieuws, 30 October
2012. [Online]. Available: https://flakkeenieuws.nl/nieuws/nieuwe-brugdelen-voor-
goereese-brug/5580. [Accessed 20 March 2023].

C. Hartsuijker and J. W. Welleman, “Engineering Mechanics; Volume 2: Stresses, Strains,
Displacements,” Springer, Delft, 2007.

Rijkswaterstaat, “Richtlijnen Onterp Kunsterken ROK 1.4,” RWS GPO, 2017.

Page 58



o

anteagroup

Appendix | Derivation system of differential
equations of a Timoshenko beam element

In a 3D space including normal deformations
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Appendix | Derivation system of differential
equations of a Timoshenko beam element

A 1D Timoshenko beam element is a 1D shaped element in which it is assumed that the cross
section remains plain. The cross section rotates and translates around the neutral axis of the beam.
The sign conventions are shown in Figure 52. The external forces are considered positive if they
are in the same direction as the axis.

Figure 52: Sign conventions

The displacement of all points in the cross section can be expressed in the displacement of the
neutral axis as:
Sx(x,y,2z) =Uy(x) — Zq’y(x) + yp,(x)
Sy(x,2) = Uy (x) + 2, (x)
S;(x,y) = Uz (x) =y (%)

The strains can be determined by taking the different derivatives in space.

3s, s, as, as,

Sy
x Yay(x,2) = @"‘W S Ve (0, Y) = % ox

gx(X,y,2) =

The stresses can be determined using Hooke’s law.
Oux(,9,2) = Egyy ; Txy(x' z) = nyy; Tuz (6, V) = GVxz (8)

The normal force in the cross section can be determined by taking the integral of the normal stress
over the surface of the cross section. For the shear forces take the integral over the corresponding
shear area. It is assumed that the material properties are constant in space. The internal moment
can be determined by taking the integral over the surface of the equivalent stress multiplied with
the corresponding arm.

M@ = 0adhi B0 =fp  radd i K@= §  w.da o)
A(x) Asy () Asz(x)
M, (x) = # ZTxy — YTy dA ; My(x) = # =20 dA ; M,(x) = # Y0xxdA (10)
Asy(x)NAsz(x) A(x) A(x)
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By choosing the coordinate system in the neutral axis of the element and substituting (8) in (10)
and (10) these expressions can be simplified to:

du, au,
N,(x) = EA(X)W ; V(x) = GAgy(x) ot @, (x) (11A)
du,

Vz(x) = GAsz(x) E_ (py(x) (11B)

d d
M,(x) = G # (o + zz)dA% S My(x) =E # deA% (12A)

Asy(X)NAsz(x) A(x)
d
M,(x) = Eﬁ y2da 2z (128)
e dx

The definitions of the moments of inertia (1313) can be substituted in these expressions (12).
Leading to the following results.

L, (x) =# z%dA ;1,(x) = # y2dA ;1. (x) = # (y% + z%)dA (13)
Ax) A(x) Asy(x)NAsz(x)
dey d(py de,
Mx(X) = GIL-(X)W ; My(,X') = EI;,(X)W ; MZ(X) = EIZ(X) dx (14)
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The next step is to determine the equilibrium equations. Here it is assumed that the applied load
is constant over a distance dx and that second order terms can be neglected. To understand the
equations describing the equilibrium equations sketches are added

Table 12: Equilibrium equations

Z
'
—t N, dN,
/Nx LN \I\. [ESEETNErY NN
S R L S e o A . Mx+dMX
ST A x i
L/ P 2R M X
y - I
pa dx ~
Translation equilibrium in x direction < dx e
dN, Rotation equilibrium around x axis
dx = _qx de _
dx
v z
P /?'dMy
. "," ’4"
- X ad
Vel beletetelelebbatatatak — > P
P SO . DO S N
A T NV S TR
y Phe y y y/a ’J- _____________
= dx - s M, +dM,,
Translation equilibrium in y direction P dx ;
dv, 7 7
dx = —qy Rotation equilibrium around y axis
dm,
o TETTh
z N z
V, +av, AM, + dM,
: T X
T = TS 5
. jl. .......... A Syt A
N v e
L] .o
1 z
z dx
dx Z -
Translation equilibrium in y direction Rotation equilibrium around z axis
dv; My
dx & dx yoo
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The total set of equilibrium equations are:
dN, dv, dv, dM, aM, am,
=—Qy;=—=—Qy; 5= =—(Qy; ——=—ty; 5—+V, =—t -V, =—t, (15)
dx U gy Wi gy UG5 Uy * dx th Y odx Y z

By substitution of (11) and (14) into (15) the following system of differential equations is
obtained:

d du,
Eﬁ(/‘(") dx ) —
d du,
Ga Asy(x) (E""pz(x)) =—qy
d du,
Ga Asz(x) (W - (Py(X)> =—q:
G:_x<1f(x) ddfcx) T
du, d do,
GAg (%) dx + E$<1y(x) W) - GAsz(x)QDy(x) = —t,
v, d do,
GAsy ()2 = E (L) T2) + Gy ()0, (1) = ¢,

Or the following matrices and vector can be introduced:

Asy 0 L 0 0 1 0 1
Kshear(x) = G[ 0 Asz] ;Kbend(x) =E [0 _IZ] ;T(l) = [_1 0] ;T(Z) = [1 0]

dA
E— 0 0 0 0 0
EA 0 0 0 0 0 dx 4
0 0 0 0 0 0
l 0 Kshear 0 0 0 l 0 EKshear 0 KshearT(l)
Ko®=10 0 0 6, o o Ko®= dl,
0 0 0 G— 0 0
0 0 0 0 Kpona dx
0 00 O d
0 T K 0 K
[ o (2)Mshear 0 a bend |
0 000 0 0 Uy —0x
0000 d Uy —dy
— K T —
|0 0 0 0 dx sheert@| _|U:|. |74
K = = =
(3)(x) 0 0 0 0 0 0 lu(x) (px lq —tx
0000 ® —t,
0 0 0 0 T(Z)KshearT(l) (pJZ/ tz

Such that the system of differential equation describing the physics of a 1D Timoshenko beam
element can be written as:

d? d
K(l)ﬁu + K(z)au + K(3)u =q
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Appendix Il Solution main beam with constant
cross section properties

The main girder as described in figure Figure 33 has seven elements all having six degrees of
freedom. Each of these elements has the solution given as (3). This solution contains 12 unknown
integration constants each. Leading to a total 84 unknowns which can be solved using 84
equations. At the six interfaces (at Support 1, Support 2, DD1, DD2, DD3 and DD4) we have 12
interface conditions as described in Chapter 5.4. At the start and the end of the beam we have
another six boundary conditions leading to a total of 84 equations. To be able to formulate and
understand the equations some conventions need to be established. The coordinate system (of all
the elements) will be set at the start of the beam. In the subscript of the x coordinate the
information of the location is contained. The superscript used refers to the element number,
numbering starts with 1 from the start of the main girder. The following boundary conditions can
be formulated?®?:

Boundary Interface conditions
conditions
Neuman Dirichlet conditions Neumann / Equilibrium
conditions conditions
Location - Continuity Support
conditions conditions
1
Xstare ffng =0 - -
0
0
(€] ()
1 2 V=V,
Xsupport 1 - u® =y® u;l) =0 ffn)t - ffn% =17 0 “
0
0
0
0
0
Xsupport 2 - u® = u® u® = 0 MJ(,Z) - Mj(,?’) =0
2
o
0
3 4
Xpp1 - u® = u® - f Eni -f fn)t = Pwp1)
4 5
XpDp2 - u® = y® - fEni - ffn)t = Pwb2)
5 6
Xpp3 - u® =u® - ffni - ffn)t = Pob3)
6 7
Xpp4 - u® =u® - ffnz - ffn?t = P(op4)
7
XEnd ffni =0 - B B

Substitution of (11), (14) and (3) in these conditions results in system of 84 equations with 84
unknowns. This system can be solved after which the integration constants can be substituted in
the general solution (3). From this point on the superscript refers to the considered cross beam.
The displacement at the cross beams are:

12 same variables and names are used as in earlier appendices. And a vector containing the
applied forces pisintroducedp =[P B, B T, T, T,]"
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Solution of cross beam at location i
We introduce the following vectors:
1
u® = [u® P P P H® (pz(i)]T KD X ~ b’if:pportz 1
1
2 3xDDl —Xu) — ZxSupportZ 1
ksgend _ (x(i) - xSupportZ) 3xDDZ - x(i) - 2xSupport‘Z ; k(i) — x(i) - xSupportZ 1
6EI, 3Xpp3 — Xy — ZxSupportZ 2shear GASy 1
3xDD4 —Xu) — ZxSupportZ 1
szDl - x(i) - xSupportZ
k(i) _ _x(i) — Xsupport2 2xDDZ — X(i) — Xsupport2
3bend ZEIZ 2XDDS — X(i) — Xsupport2
2Xppa — X(i) — Xsupport2
k(i)
4bend

x(i)(3xDD1 - x(i)) - (xz)m + Xy — 2x5upport1)x5upport2 — 2Xpp1Xsupport1

_ X)) — Xsupport2 x(i)(sxDDZ - x(i)) - (xDDZ + Xy — ZxSupportl)xSupportZ - ZxDDZxSupportl

6El, x(i)(3xDD3 - x(i)) - (xz)ns + Xy — 2x5upport1)x5upport2 — 2Xpp3Xsupport1
x(i)(3xDD4 - x(i)) - (xDD4 + X — ZxSupportl)xSupportz — 2XppaXsupport1

Xpp1 — xSupportZ

k(i) X(i) ~ Xsupport2 Xpp2 — Xsupport2

4shear — x —x
GASZ(xSupportz — xSupportl) DD3 Support2
DD4 — xSupportZ
®)
k5bend

2 2
[ZXDD1(3X(L') - szupportZ - xSupportl) - 3x(i) + xSupportz + 2x5upport2x5upport1]
2 2
_ 1 2xDD2(3x(i) - zxsupportz - xSupportl) - 3x(i) + XSupport2 + ZxSuppOTtZXSupportl
- 2 2
6E1y 2xDD3(3x(i) - szupportZ - xSupportl) - 3x(i) + xSupportZ + szupporthSupportl

2 2
2xDDzL(Sx(i) - szupportZ - xSupportl) - 3x(i) + xSupportz + szupporthSupportl
Xpp1 — Xsupport2
1 Xpp2 — Xsupport2

1
k _ . k(i) _ X)) ~ Xsupport2 |1
Sshear — X — X » Mtors T
GASZ (xSupportZ - xSupportl) bb3 Support2 Glf 1
1

Xpp4a — Xsupport2

k(i) _ (3x(i) - xSupportZ - szupportl)(x(i) - xSupportZ) 1
7bend 6E1y 1
1
1 1
k(i) X(i) — Xsupport2 1] . k(i) _ 3x(i) - szupportZ — Xsupport1 | 1
h - » "“8bend ~
7shear GAsz(xSupportZ - xSupportl) 1 e 3E1y 1
1 ,[1
Kooy = 1 1] . PO (x(i) - xSupportz) 1
shear ’ "“9bend
GAsz(xSupportz - xSupportl) 1 e 2EIZ 1
1
k(i) _ X(i) ~ Xsupporez |1
10bend — EIZ 1
1
Pypp1 IF:YDDl P,pp1 Typp1 ;yDDl T,pp1
P P T, T,
Dy = xDD2 :py yDD2 ip, = zDD2 ;tx — xDD2 ;ty — yDD2 ;tz — zDD2
PxDD3 PyDD3 PZDD3 TxDD3 TyDD3 TZDD3
Pyppa Pyppa P,ppa Typpa Typpa T2ppa

]
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Now we can write the solutions as:
u®
o T
kO 0 0 0 0 0
@ ® 0] Px
0 kzbend + sthear ] 0 ] 0 ] 0 k3bend py
- Y 0 kz(tllzend + kz(tls)hear 0 kéllzend + kSshear 0 Pz
0 0 0 KO 0 0 L
0 0 kY kY 0o k9 k 0 b
7bend + 7shear 8bend + Kgsnear t,
® (O)
0 k9bend 0 0 0 klobend—

Which can be simplified to:

i) — i
u( ) = K( )(A' Asy' Asz' E' G' It' Iy' Iz' xSupportlt xSupportZt Xpp1)Xpp2)Xpp3, Xpp4s x(i))p

]
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Appendix Il FE analysis main girder with

variable cross section
SCIAENGINEER

Project
Onderdeel

Thesis Coen Stellinga
Nonlinear main girder

Auteur
Datum

Coen Stellinga
01. 06.2022

1. Layers
Naam enkel Constructiemodel Kleur
Hoofd | x |

DD [x | =

2. Cross sections

Type Grafische doorsnede

Onderdeelmateriaal $355

Bouwwijze Algemeen

Knik y-y, Knik z-z d

A [mm2] 70399,9999999999

Ay [mm?], Az [mm?] 34803,1997990195 32889,5812380470
Iy [mm*], I, [mm*] 39532572666,6661758423 792541466,6666566133
Wely [mm?3], Welz [mm3] 43016945,2303222045 3170165,8666666220
Wiy [mm3], Wpi. [mm?] 48780000,0000001118 4895799,9999999823
Tw [mm€], It [mm4] 641249999999999,8750000000 21789866,6666704677
dy [mm], d: [mm] 0 0
cv.ucs [mm], czucs [mm] 250 900
a [deg] 0,00

Mply.+ [Nmm], Mpiy.- [Nmm] 17316900000,0000419617  17316900000,0000495911
Mpiz+ [Nmm], Mpiz- [Nmm] 1738008999,9999938011 1738008999,9999945164
AL [mm?2/m], Ap [mm2/m] 5640000,0000000009 5640000,0000000009
Picture

z
T —
y
el c—

Type Grafische doorsnede

Onderdeelmateriaal $355

Bouwwijze Algemeen

Knik y-y, Knik z-z d d

A [mm?] 80228,0000000001

Ay [mm2], Az [mm2] 34870,4582185199 42946,6936845624
Iy [mm4], I; [mm?] 71657451270,6669769287 792806822,6666648388
Weiy [mm3], Weiz [mm?3] 60115311,4686802030 3171227,2906666561
Woly [mm3], Wi, [mm3] 69340722,0000002086 4940025,9999999888
Tw [mm®], It [mm*] 1089277124999999,7500000000 22851290,6666716188
dy [mm], dz [mm] 0 0
cvucs [mm], czucs [mm] 250 1173
a [deg] 0,00

Mply.+ [Nmm], Mpiy.- [Nmm] 24615956310,0000839233 | 24615956310,0000686646
Mplz+ [Nmm], Mpiz- [Nmm] 1753709230,0000090599 1753709229,9999959469
AL [mm?%/m], Ao [mm%/m] | 6732000,0000000009 6732000,0000000009
Picture

Z
y
—f——
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7 Project Thesis Coen Stellinga Auteur Coen Stellinga
SC|A E N G I N E E R Onderdeel Nonlinear main girder Datum 01.06.2022
Hoofd3A_Dunl
Type Grafische doorsnede
Onderdeelmateriaal S355
Bouwwijze Algemeen
Knik y-y, Knik z-z d d
A [mm2] 97238,0000000002
Ay [mm?], Az [mm?] 34953,6570794996 | 59902,3570725706
Iy [mm#], Iz [mm4] 156361698923,1693115234 793266092,6666659117
Weiy [mm3], Wel.z [mm?3] 93939140,2362085432 3173064,3706666613
Woiy [mm3], Wpi2 [mm3] 111267064,4999998659 5016570,9999999953
Iw [mmé], It [mm*] 2143572281249998,7500000000 | 24688370,6666909680
dy [mm], dz [mm] 0| 0
cv.ucs [mm], czucs [mm] 250 1645
a [deg] 0,00
Mpiy.+ [Nmm], Mply.- [Nmm] 39499807897,4999465942  39499807897,4999542236
Mpl.z+ [Nmm], Mpiz- [Nmm] 1780882704,9999980927 |  1780882705,0000021458
AL [mm2/m], Ao [mm?/m] 8622000,0000000000 8622000,0000000000
Picture
Z
h

Hoofd3B_Dunl

Type Grafische doorsnede

Onderdeelmateriaal S355

Bouwwijze Algemeen

Knik y-y, Knik z-z d . d

A [mm?] 136730,0000000002 |

Ay [mm2], A; [mm2] 39020,8452280028 97021,4671869126
Iy [mm#], I, [mm*] 192005470094,1691894531 799071416,6666597128
Weiy [mm3], Welz [mm?] 115353241,2701526433 3196285,6666666339
Woly [mm?3], Wiz [mm?3] 143759107,4999998510 | 5490475,0000000196
Tw [mmé], It [mm*4] 2143572281250000,0000000000 | 47909666,6666666642
dy [mm], dz [mm] 0 0
cvucs [mm], czucs [mm] 250 | 1645

a [deg]
Mpiy.+ [Nmm], Moly.- [Nmm]
Mpl.z+ [Nmm], Mpiz- [Nmm]

0,00/
51034483162,5000000000 | 51034483162,4999465942
1949118625,0000069141 |  1949118625,0000112057

AL [mm2/m], Ao [mm%/m] 8597999,9999999981 | 8597999,9999999981
Picture
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SC iA E N G I N E E R Project Thesis Coen Stellinga Auteur Coen Stellinga

Onderdeel Nonlinear main girder Datum 01.06.2022

Type Grafische doorsnede
Onderdeelmateriaal S355
Bouwwijze Algemeen
Knik y-y, Knik z-z d d
A [mm?] 144230,0000000002 |
Ay [mm?2], Az [mm?] 39111,1374229501 | 104020,3138113953
Iy [mm#], I, [mm4] 230120715719,1678161621 |  799633916,6666741371
Weiy [mm3], Welz [mm?] 128594979,4463076890 | 3198535,6666666949
Woly [mm?3], Wpl.z [mm?3] 161319107,5000004470 5546725,0000000140
Tw [mmé], It [nm#] 2481613947916667,5000000000 | 50159666,6666442603
dy [mm], dz [mm] 0| 0
cv.ucs [mm], czucs [mm] 250 1771
a [deg] 0,00
Moly.+ [Nmm], MpLy.- [Nmm] 57268283162,5001831055 | 57268283162,5001602173
Mplz+ [Nmm], Mpiz- [Nmm] 1969087375,0000050068 |  1969087375,0000059605
AL [mm?%/m], Ao [mm%/m] | 9097999,9999999981 | 9097999,9999999981
Picture

Z

y

Type Grafische doorsnede
Onderdeelmateriaal S355
Bouwwijze Algemeen |
Knik y-y, Knik z-z d d
A[mm?] 129530,0000000003 |
Ay [mm?], A; [mm?] 38929,4161309355 | 90251,3340639735
Iy [mm4], I. [mm*] 159437636294,1655273438 798531416,6666663885
Wely [mm3], Wel.z [mm?] 103229288,6333215237 | 3194125,6666666633
Woly [mm3], Wpi2 [mm3] 127783507,5000007004 | 5436475,0000000075
Tw [mmé], It [mm*#] 1842327281250000,5000000000 | 45749666,6666570157
dy [mm], dz [mm] 0 0
crucs [mm], czucs [mm] 250 | 1526
a [deg] 0,00
Mpiy.+ [Nmm], MpLy- [Nmm] 45363145162,5002441406  45363145162,5002441406
Mpiz+ [Nmm], Mpi.z- [Nmm] 1929948625,0000028610 1929948625,0000123978
AL [mm2/m], Ao [mm2/m 8118000,0000000000 | 8118000,0000000000
Picture

Zz

y
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Auteur
Datum

Project
Onderdeel

Thesis Coen Stellinga
Nonlinear main girder

SCIiAENGINEER

Coen Stellinga
01.06.2022

Hoofd5B_Dunl

Type Grafische doorsnede

Onderdeelmateriaal S355

Bouwwijze Algemeen [

Knik y-y, Knik z-z d d

A [mm?2] 92918,0000000002 |

Ay [mm?], Az [mm?] 34934,9392630844 ‘ 55645,0228181110
Iy [mm4], I, [mm4] 131037094643,1653442383 |  793149452,6666628122
Wely [mm?3], Weiz [mm?] 84841110,1606764346 3172597,8106666468
Wely [mm3], Wpiz [mm3] 99857704,5000007749 | 4997131,0000000130
Tw [mm®], It [mm*] 1842327281249999,7500000000 | 24221810,6666763239
dy [mm], dz [mm] 0 0
cv.ucs [mm], czucs [mm] 250 1526
a [deg] 0,00 1

Mply.+ [Nmm], Mpiy.- [Nmm] 35449485097,5002746582 |  35449485097,5002746582
Mpiz+ [Nmm], Mpiz- [Nmm] 1773981505,0000047684 |  1773981505,0000293255
AL [mm?2/m], Ao [mm?2/m] 8142000,0000000009 | 8142000,0000000009

Picture

| Hoofd6_Dunl

Type Grafische doorsnede
Onderdeelmateriaal S355
Bouwwijze Algemeen
Knik y-y, Knik z-z d d
A[mm2] 71984,0000000000
Ay [mm2], Az [mm?] 34815,6552461386 34524,8089067466
Iy [mm4], Iz [mm4] 43962529274,6667785645 792584234,6666626930
Wely [mm?3], Welz [mm?] 45651639,9529249147 3170336,9386666482
Woly [mm3], Wpi.2 [mm3] 51912447,9999998957 4902927,9999999730
Tw [mmé], It [mm*] 705482666666666,7500000000 21960938,6666646749
dy [mm], dz [mm] 0 0
cv.ues [mm], czucs [mm] 250 944
a [deg] 0,00
Mply.+ [Nmm], MpLy.- [Nmm] 18428919039,9999618530  18428919039,9999618530
Mpl.z+ [Nmm], Mpl.z- [Nmm] 1740539439,9999921322 1740539439,9999904633
A [mm?/m], Ao [mm%/m] 5816000,0000000009 5816000,0000000009
Picture
z
=
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Coen Stellinga

SCIAENGINEER

Nonlinear main girder

Project Thesis Coen Stellinga Auteur
Onderdeel

Datum

01. 06.2022

Hoofd7A_Dunl

Type Grafische doorsnede
Onderdeelmateriaal S355
Bouwwijze Algemeen
Knik y-y, Knik z-z d
A [mm2] 70705,9999999999
Ay [mm2], A; [mm2] 34805,6675774186 33205,9202083336
Iy [mm4], I [mm4] 40366926436,1668853760 792549728,6666625738
Weiy [mm?3], Wei.z [mm?] 43522292,6535490379 3170198,9146666480
Woly [mm3], Wpiz [mm?] 49379700,4999997318 4897176,9999999609
Tw [mm®], It [mm4] 653419697916666,5000000000 21822914,6666685827
dy [mm], dz [mm] 0 0
cr.ucs [mm], czucs [mm] 250 908 |
a [deg] 0,00
Mply.+ [Nmm], Mpiy.- [Nmm] 17529793677,4999046326  17529793677,4999046326
Mpiz+ [Nmm], Mpiz- [Nmm] 1738497834,9999926090 1738497834,9999859333
AL [mm?2/m], Ao [mm?/m] 5673999,9999999991 5673999,9999999991
Picture
z
T —]

e

Hoofd7B_Dunl

Type Grafische doorsnede
Onderdeelmateriaal $355
Bouwwijze Algemeen
Knik y-y, Knik z-z d
A[mm?] 57940,0000000000
Ay [mm2], A; [mm2] 22968,5963848621 33439,4666573654
Iy [mm#], I [mm¥] 30124657583,3332290649 521722713,3333286643
Wely [mm?3], Wei.z [mm?] 32479415,1841867678 2086890,8533333135
WoLy [mm?3], Wpl.. [mm?] 37945050,0000000224 3273229,9999999874
Iw [mmé], It [mm*] 436054687500000,1250000000 8765853,3333314303
dy [mm], dz [mm] 0 0
cvues [mm], czucs [mm] 250 915
a [deg] 0,00
Mply.+ [Nmm], Mpiy.- [Nmm] 13470492750,0000114441  13470492750,0000076294
Mpl.z+ [Nmm], Mplz- [Nmm] 1161996649,9999954700  1161996649,9999959469
AL [mm?2/m], Ao [mm2/m 5674000,0000000009 5674000,0000000009
Picture
zZ
y
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SCiA E N G I N E E R Project Thesis Coen Stellinga Auteur Coen Stellinga

Onderdeel Nonlinear main girder Datum 01. 06.2022

[Hoofd8 DU |
Type Grafische doorsnede

Onderdeelmateriaal S355

Bouwwijze Algemeen

Knik y-y, Knik z-z d d

A [mm?] 54862,0000000000

Ay [mm2], Az [mm?] 22952,7887683663 30355,0181640924
Iy [mm*], I, [mm?] 24052109601,8331146240 521639607,3333311677
Wely [mm3], Wel.z [mm?3] 28565450,8335310109 2086558,4293333234
Woly [mm?3], Wpi2 [mm?3] 33122764,5000000075 3259378,9999999711
Tw [mmé], It [mm*] 358369921875000,1250000000 8433429,3333321847
dy [mm], dz [mm] 0 0
crucs [mm], czucs [mm] 250 830
a [deg] 0,00

Mply.+ [Nmm], Mpiy.- [Nmm] 11758581397,5000019073  11758581397,5000038147
Mpiz+ [Nmm], Mpiz- [Nmm] 1157079544,9999971390 1157079544,9999897480
AL [mm?/m], Ao [mm?/m] 5332000,0000000009 5332000,0000000009
Picture

Z

<

DD1&2 Dunl

Type Grafische doorsnede
Onderdeelmateriaal S355
Bouwwijze Algemeen
Knik y-y, Knik z-z d d
A [mm?] 47136,0000000000
Ay [mm?2], Az [mm?] 20532,5610365557 22563,2392342305
Iy [mm*], I [mm*] 11953800323,6279792786 |  585914368,0000027418
Wely [mm3], Weiz [mm3] 10482612,3003794141 2092551,3142857230
Woly [mm3], Wi [mm?] 19035664,0000000149 3234943,9999999898
Tw [mm$], It [mm4] 0,0000000000 14057472,0000000037
dy [mm], dz [mm] 0 -406
cv.ucs [mm], czucs [mm] 280 406
a [deg] 0,00
Mply.+ [Nmm], Mpiy.- [Nmm] 6757660720,0000057220 | 6757660720,0000057220
Mpl.z+ [Nmm], Mpiz- [Nmm] 1148405119,9999964237 | 1148405120,0000021458
AL [mm2/m], Ao [mm?%/m] 4252000,0000000009 4252000,0000000009
Picture
z
y
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SCIAENGINEER

Project Thesis Coen Stellinga
Onderdeel

Nonlinear main girder

Auteur
Datum

Coen Stellinga
01.06. 2022

Type Grafische doorsnede
Onderdeelmateriaal S355
Bouwwijze Algemeen
Knik y-y, Knik z-z d
A [mm?] 45744,0000000000
Ay [mm?], A; [mm?] 20525,3065632881 21608,4645033836
Iy [mm#], I, [mm?4] 10227287957,1696472168 585884672,0000025802
Wely [mm?3], Weiz [mm?3] 9411128,4942688867 2092445,2571428670
Woly [mm3], Wpiz [mm?3] 17015524,0000000186 3229376,0000000000
Tw [mme], It [mm*] 0,0000000000 13938688,0000000037
dy [mm], dz [mm] 0 -372
cr.ucs [mm], czucs [mm] 280 372
a [deg] 0,00
Mply.+ [Nmm], Mpiy.- [Nmm] 6040511020,0000057220 | 6040511020,0000076294
Mpl.z+ [Nmm], Mpi..- [Nmm] 1146428480,0000000000 | 1146428480,0000028610
AL [mm?%/m], Ao [mm%/m] 4078000,0000000005 4078000,0000000005
Picture
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Type Grafische doorsnede

Onderdeelmateriaal S355

Bouwwijze Algemeen

Knik y-y, Knik z-z d

A[mm?] 44368,0000000000

Ay [mm2], A; [mm?] 20517,5256550606 20476,4323104473
Iy [mm*], I [mm4] 8680996620,6712436676 585855317,3333420753
Wely [mm3], Wei.z [mm?3] 8402925,8353073541 2092340,4190476472
Wiy [mm3], Wpi.2 [mm?3] 15095665,1172371134 3223871,9999999972
Tw [mmé], It [mm*] 0,0000000000 13821269,3333333377
dy [mm], dz [mm] 0 -340
cr.ucs [mm], czucs [mm] 280 340
a [deg] 0,00

Mply.+ [Nmm], Mpiy.- [Nmm] 5358961116,6191749573 | 5358961116,6191749573
Mplz+ [Nmm], Mplz- [Nmm] 1144474559,9999990463 | 1144474560,0000028610
AL [mm2/m], Ao [mm?%/m] 3906000,0000000005 3906000,0000000005
Picture

Z
v
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3. Materials

Thermisch uitz. [m/mK] 0,00

Massa eenheid [kg/m?3] 7850,0

E-mod [MPa] 2,1000e+05

Poisson - nu 0.3

Onafhankelijke G-modulus

G-mod [MPa] 8,0769e+04

Log. decrement (niet-uniforme demping enkel) 0.025

Kleur

Therm. exp. (brand) [m/mK] 0,00

Specifieke hitte [J/gK] 6,0000e-01

Thermische geleiding [W/mK] 4,5000e+01

Fu [N/mm?] 510,0000000000

Fy [N/mm?] 355,0000000000
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Project
Onderdeel

Thesis Coen Stellinga
Nonlinear main girder

SCIiAENGINEER

Auteur
Datum

Coen Stellinga
01. 06. 2022

4. Load cases

Naam Actietype Lastgroep Belastingtype Spec Duur 'Master' belastingsgeval Lastgroep
LG1 LG1

Fx_DD1 | Variabel Statisch Standaard | Kort Geen

Fx_DD2 | Variabel LG1 Statisch ' Standaard | Kort Geen LG1
Fx_DD3 | Variabel LG1 Statisch Standaard |Kort |Geen LG1
Fx_DD4 | Variabel LG1 Statisch Standaard |Kort | Geen LG1
Fy_DD1 | Variabel LG1 Statisch Standaard |Kort | Geen LG1
Fy_DD2 | Variabel LG1 Statisch Standaard |Kort |Geen LG1
Fy DD3 | Variabel LG1 Statisch Standaard | Kort Geen LG1
Fy_DD4 | Variabel | LGl Statisch |Standaard |Kort | Geen LGl
Fz_ DD1 | Variabel  |LG1  Statisch ~ Standaard | Kort Geen LG1 _
Fz_DD2 | Variabel LG1 Statisch ' Standaard |Kort | Geen LG1
Fz_DD3 | Variabel LG1 Statisch Standaard |Kort | Geen LG1
Fz DD4 | Variabel LG1 Statisch Standaard | Kort Geen LG1
Mx_DD1 | Variabel LG1 Statisch ' Standaard | Kort Geen LG1
Mx_DD2 | Variabel LG1 Statisch Standaard |Kort |Geen LG1
Mx_DD3 | Variabel LG1 Statisch Standaard |Kort | Geen LG1
Mx_DD4 | Variabel LG1 Statisch Standaard | Kort Geen LG1
My _DD1 | Variabel LG1 Statisch Standaard | Kort Geen LG1
My DD2 | Variabel LG1 Statisch Standaard | Kort Geen LG1
My _DD3 | Variabel LG1 ‘Statisch ' Standaard | Kort Geen LG1
My_DD4 | Variabel LG1 Statisch ' Standaard | Kort Geen LG1
Mz_DD1 | Variabel LG1 Statisch Standaard |Kort | Geen LG1
Mz_DD2 | Variabel LG1 Statisch Standaard | Kort Geen LG1
Mz_DD3 | Variabel LG1 Statisch Standaard | Kort Geen LG1
Mz_DD4 | Variabel LG1 Statisch Standaard | Kort Geen LG1
5. Load groups

Naam Last Relatie  Coéff.

LG1 Variabel | Exclusief 0.5

6. Settings net

Naam

NetInstellingl

Generatie van variabele excentriciteiten op elementen in plaats van constante excentriciteiten X

Generatie van knopen op staven X

Elastisch net v

Pas automatische netverfijning toe X

Constructie-entiteiten verbinden v

Verdeling op consoles en variabele staven 500
Verdeling voor integratiestrook en 2D-1D upgrade 50
Gemiddeld aantal 1D-netelementen op rechte 1D-elementen 100
Gemiddelde grootte van 2D-netelement [m] 1,000
Gemiddelde grootte van 1D-element op gebogen 1D-elementen [m] 0,100
Minimum lengte van staafelement [m] 0,001
Maximum lengte van staafelement [m] 1000,000
Gemiddelde grootte van voorspankabels, elementen op elastische bedding, niet-lineaire grondveer [m] 1,000
Maximale hoek uit het viak van vierhoekig element [rad] 0,03000000000000000
Verh. voorgedefinieerd net 1.5
Minimumafstand tussen definitiepunt en -lijn [m] 0.001
Gemiddelde afmeting van paneelelement [m] 1,000
Netverfijning volgens het liggertype Geen

Definitie van netelementen afmetingen voor panelen Handmatig
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7. Instellingen solver

Naam ' SolverSetup1

Negeer dwarskrachtvervormingen ( Ay, Az >> A ) | X

Initiéle spanning X

Aantal diktes van plaatrib 20

Maximumaantal bodeminteractie-iteraties 10

Aantal sneden op gemiddelde staaf 5

Stap voor grond/waterdruk [m] 0,500

Clx [MN/m3] 1,0000e-01

Cly [MN/m?3] 1,0000e-01

Cl1z [MN/m?3] | 1,0000e+01

C2x [MN/m] 5,0000e+00

C2y [MN/m] 5,0000e+00

Wapeningscoéfficiént | 1

Waarschuwing als de maximale translatie groter is dan [mm] 1000,00000000000000000

Waarschuwing als de maximale rotatie groter is dan [rad] 0,10000000000000001

Tolerantie van parallellisme [deg] | 10,00

Verhouding tot helft - afstand tot aanliggende ligger beff,i/bi [-] | 0,20

Verhouding tot effectieve overspanningslengte beff,i/I0 [-] 0,10

Maximale verhouding tot effectieve overspanningslengte beff,i/I0 [-] | 0,20

Enkelvoudig opgelegde ligger [-] | 1,00

Inwendige overspanning [-] 0,70

Eind overspanning [-] 0,85

Uitkraging, basisverhouding tot huidige overspanning [-] | 1,00

Uitkraging, basisverhouding tot aangrenzende overspanning [-] 0,15

Uitkraging, maximale verhouding tot huidige overspanning [-] 1,50

Maximale aangrenzende overspanninglengteverhouding [-] 1,50

Maximale uitkragingslengteverhouding tot aangrenzende overspanning [-] 0,50
Overspanningslengteverhouding Le/beff,max (1 kant) [-] | 8,00

Enkelvoudig opgelegde ligger [-] 1,00

Inwendige overspanning [-] | 0,70

Eind overspanning [-] 0,85

Uitkraging [-] | 2,00

Methode gebruikt voor niet-beton en niet-staal / staalbetonliggers EN 1994-1-1

Grond combinatie | Geen

Buigtheorie van plaat/schaal berekening ' Mindlin

Type solver ' Direct

8. Nodes
Naam Codrdinaat X CobrdinaatY CodrdinaatZ

KStart -8,050 0,000 -2,341 pb2 3,950 0,000 -2,341 |
K1 -7,350 0,000 -2,341 DD2_2 3,950 10,700 -2,341
K2 -4,787 0,000 2,341 DD3 7,150 0,000 -2,341
K3 -3,400 0,000 -2,341 DD3_2 | 7,150 10,700 -2,341
K4 -2,950 0,000 -2,341 DD4 10,350 0,000 -2,341
K8 4,550 0,000 -2,341 DD4_2 10,350 10,700 -2,341
KEnd | 10,850 0,000 -2,341 KSupl 7,900 0,000 -2,341
K7 2,401 0,000 -2,341 KSup2 | -2,400 0,000 -2,341
K5 -1,400 0,000 -2,341 K6 0,000 0,000 -2,341
DD1 0,750 0,000 -2,341 K9 10,810 0,000 -2,341
DD1_2 0,750 10,700 -2,341

9. Elements

Naam Doorsnede Materiaal Lengte Beginknoop Eindknoop Type Laag
[m]

Mainl | Hoofdl_Dunl - Grafische doorsnede |S355 0,700 | KStart K1 | Algemeen (0) | Hoofd
Main2 | Hoofdl_Dunl - Grafische doorsnede |S355 2,563 | K1 K2 | Algemeen (0) | Hoofd
Main3  Hoofd2_Dunl - Grafische doorsnede |S355 1,387 | K2 K3 Algemeen (0) | Hoofd
Main4  Hoofd3B_Dunl - Grafische doorsnede | S355 0,450 | K3 K4 Algemeen (0) | Hoofd
Main5 | Hoofd4_Dun1 - Grafische doorsnede |S355 1,550 | K4 K5 | Algemeen (0) | Hoofd
Main6  Hoofd5B_Dunl - Grafische doorsnede | S355 3,801 | K5 K7 Algemeen (0) | Hoofd
Main7  Hoofd6_Dunl - Grafische doorsnede |S355 2,149 | K7 K8 Algemeen (0) | Hoofd
Main8 | Hoofd7B_Duni - Grafische doorsnede |S355 | 6,300/K8  |KEnd | Algemeen (0) |Hoofd
DD1 DD1&2_Dun1 - Grafische doorsnede | S355 10,700 | DD1 DD1_2 Algemeen (0) [DD |
DD2 DD1&2_Dunl - Grafische doorsnede | S355 10,700 | DD2 DD2_2 Algemeen (0) [DD
DD3 DD3_Dun1 - Grafische doorsnede S355 10,700 | DD3 DD3_2 Algemeen (0) |[DD
DD4 | DD4_Dunl - Grafische doorsnede S355 | 10,700 | DD4 |DD4_2 | Algemeen (0) |DD

]
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10. Variabel cross sections

Staaf

Coor

lengte 1, Css1(1), Css2(1
Staaf

Coor

lengte 1, Css1(1), Css2(1
Varia3B-4

Staaf

Coor

lengte 1, Css1(1), Css2(1
Varia4-5A

Staaf

Coor

lengte 1, Css1(1), Css2(1
Varia5B-6

Staaf

Coor

lengte 1, Css1(1), Css2(1
Varia6-7A

Staaf

Coor

lengte 1, Css1(1), Css2(1
Vari7B-8

Staaf

Coor

lengte 1, Css1(1), Css2(1)

Main2
Rela

1.000 Hoofdl Dunl - Grafische doorsnede |Hoofd2_Dunl - Grafische doorsnede

Main3
Rela

1.000 Hoofd2 Dunl - Grafische doorsnede | Hoofd3A Dunl - Grafische doorsnede

Main4
Rela

1.000 Hoofd3B_Dun1 - Grafische doorsnede | Hoofd4_Dun1 - Grafische doorsnede

Main5
Rela
1.000 Hoofd4 Dunl - Grafische doorsnede

Main6
Rela
1.000 Hoofd5B_Dunl - Grafische doorsnede

Main7
Rela
1.000 Hoofd6_Dun1 - Grafische doorsnede

Main8
Rela
1.000 Hoofd7B_Dun1 - Grafische doorsnede

Hoofd5A_Dunl - Grafische doorsnede

Hoofd6_Dunl - Grafische doorsnede

Hoofd7A_Dun1 - Grafische doorsnede

11. Supports

Naam Knoop Systeem Type

Supportl | KSupl |GCS

Standaard |Vrij |Vrij  Vast |Vrij

Vrij

Vrij

| Support2 [KSup2 [GCS

12. Overview, main girder + cross beams + supports

|Standaard |Vast |[vast Vast |Vast Vrij Vast |
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13. Pointload on element

Naam Belastingsgeval Systeem Oors Rich Type Posx Waarde - F Staaf
[N]

Fx_DD1 |Fx_DD1 | GCS Vanaf begin | X Kracht 0.000| 1000,0000000000 DD1
Fx_DD2 |Fx_DD2 GCS Vanaf begin | X Kracht 0.000| 1000,0000000000 DD2
Fx_DD3 |Fx_DD3 GCS Vanaf begin | X Kracht 0.000| 1000,0000000000 DD3
Fx_DD4 |Fx_DD4 GCS Vanaf begin | X Kracht 0.000| 1000,0000000000 DD4
Fy_DD1 |Fy DD1 GCS Vanaf begin |Y Kracht 0.000| 1000,0000000000 DD1
Fy DD2 |Fy DD2 GCS Vanaf begin |Y Kracht 0.000| 1000,0000000000 DD2
Fy DD3 |Fy DD3 GCS Vanaf begin |Y Kracht 0.000| 1000,0000000000 DD3
Fy DD4 |FyDD4  |GCS  |Vanafbegin |Y  |Kracht | 0.000 | 1000,0000000000 DD4
Fz_DD1 |Fz_DD1 | GCs Vanaf begin |Z Kracht 0.000| 1000,0000000000 DD1
Fz_DD2 |Fz_DD2 GCS Vanaf begin |Z Kracht 0.000| 1000,0000000000 DD2
Fz DD3 |Fz_DD3 GCS Vanaf begin |Z Kracht 0.000| 1000,0000000000 DD3
Fz_DD4 |Fz_DD4 GCS Vanaf begin |Z Kracht 0.000| 1000,0000000000 DD4
Verklaring van symbolen
Staaf [ (10,700 m)
14. Fx_DD1

Fx_DD1 >

15. Fx_DD2

Fx_DD2

16. Fx_DD3

17. Fx_DD4

]
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18. Fy_DD1

19. Fy_DD2

20. Fy_DD3

21. Fy_DD4

]
TU Delft Page 81



)

anteagroup

SCiAE N G I N E E R Project Thesis Coen Stellinga Auteur Coen Stellinga

Onderdeel Nonlinear main girder Datum 01. 06.2022

22.Fz_DD1

Fz_DD1

23.Fz_DD2

24.Fz_DD3

25. Fz_DD4

]
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26. Moment on element
Naam Staaf Systeem Waarde - M Pos x Cobr Herh (n) Staaf
[Nmm]

Belastingsgeval Rich Type Oors dx

Mx_DD1 |DD1 GCs 1000000,0000000000 | 0.000 | Rela 1/DD1
Mx_DD1 Mx Moment Vanaf begin

Mx_DD2 |DD2 GCS 1000000,0000000000 | 0.000 | Rela 1/DD2
Mx_DD2 Mx Moment Vanaf begin

Mx_DD3 |DD3 GCs 1000000,0000000000 | 0.000 | Rela 1|DD3
Mx_DD3 Mx Moment Vanaf begin

Mx_DD4 | DD4 GCs 1000000,0000000000 | 0.000 | Rela 1 |DD4
Mx_DD4 Mx Moment Vanaf begin

My_DD1 |DD1 GCs 1000000,0000000000 | 0.000 | Rela 1/DD1
My _DD1 My Moment Vanaf begin

My_DD2 |DD2 GCS 1000000,0000000000 |  0.000 |Rela 1/DD2
My_DD2 My Moment Vanaf begin

My_DD3 |DD3 GCs 1000000,0000000000 | 0.000 | Rela 1/DD3
My_DD3 My Moment Vanaf begin

My_DD4 |DD4 GCS 1000000,0000000000 | 0.000 | Rela 1|DD4
My DD4 My Moment Vanaf begin

Mz_DD1 |DD1 GCS 1000000,0000000000 | 0.000 | Rela 1|DD1
Mz_DD1 Mz Moment Vanaf begin

Mz_DD2 |DD2 GCs 1000000,0000000000 | 0.000 | Rela 1/DD2
Mz_DD2 Mz Moment Vanaf begin

Mz_DD3 | DD3 GCS 1000000,0000000000 | 0.000 |Rela 1|/DD3
Mz_DD3 Mz Moment Vanaf begin

Mz_DD4 |DD4 GCs 1000000,0000000000 | 0.000 | Rela 1/DD4
Mz_DD4 Mz Moment Vanaf begin

“3
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28. Mx_DD2

29. Mx_DD3

]
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30. Mx_DD4

31. My_DD1
i QL L
- -

32. My_DD2

r1 A

]
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33. My_DD3

34. My_DD4

il

¥ X

35. Mz_DD1
[

Zl X

36. Mz_DD2

Z_ X

My_pD4
|
|

37.Mz_DD3

—

38. Mz_DD4

A
Y

Z X

i

I
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39. 1D-vervormingen

Lineaire berekening

Klasse: Alle indiv belastingen

Assenstelsel: Globaal
Extreme 1D: Nee
Selectie: DD1..DD4
Filter: Laag = DD

Geselecteerde doorsnedes: Ingevoerd

Vervormingen

Belasting

Doorsnede

DD1  |0,000 |Fx_DD1

DD1&2_Dunl
- Grafische
doorsnede

0,00033399999210815

DD1 0,000 |Fx_DD2

DD1&2_Dunl
- Grafische
doorsnede

0,00033399999210815

DD1 0,000 |Fx_DD3

DD1&2 Dunl
- Grafische
doorsnede

0,00034199999277007 |

DD1 0,000 |Fx_DD4

DD1&2_Dunl
- Grafische

0,00034999999343199

0,00000000000000000

0,00000000000000000
0,00000000000000000

0,00000000000000000

-0,00047599999675185
-0,00047599999675185
-0,00050599999212864

-0,00053600001592713

0,00000000000000000

0,00000000000000000

| 0,00000000000000000

0,00000000000000000

0,00000014299999407

0,00000014299999407

0,00000015700000233

0,00000017000000696

0,00000000000000000

0,00000000000000000

0,00000000000000000

0,00000000000000000

DD1 0,000 |Fy DDL

DD1&2 Dunl
- Grafische
doorsnede

DD1 0,000 |Fy_DD2

DD1&2_Dunl
- Grafische
doorsnede

0,00000000000000000

DD 0,000 |Fy_DD3

DD1&2_Dunl
- Grafische
doorsnede

0,00000000000000000

DDI 0,000 |Fy_DD4

DD1&2_Dunl
- Grafische
doorsnede

0,00000000000000000

DD1 0,000 [Fz_DD1

DD1&2_Dunl
- Grafische
doorsnede

-0,00047599999675185

DD1 0,000 (Fz_DD2

DD1&2_Dunl
- Grafische
doorsnede

-0,00093400001333066

0, 279

0,18338300287723541

0,27574700652621686

0,36811101017519832
0,00000000000000000

0,00000000000000000

DD1 0,000 [Fz_DD3

DD1&2_Dunl
- Grafische
doorsnede

-0,00139099995521974

0,00000000000000000

DD1 0,000 |Fz_DD4

DD1&2_Dunl
- Grafische
doorsnede

-0,00184900000022026

DD1 0,000 |Mx_DD1

DD1&2_Dunl
- Grafische
doorsnede

0,00000000000000000

DD1 0,000 |Mx_DD2

DD1&2_Dunl
- Grafische
doorsnede

0,00000000000000000

DD1 0,000 |Mx_DD3

DD1&2_Dunl
- Grafische

0,00000000000000000

0,00000000000000000

0,04831999831367284
0,04831999831367284

0,04831999831367284

| 0,00000000000000000 |
| 0,00000000000000000 |
[ 0,00000000000000000 |
[ 0,00221899995267449 |
0,00401199986299616
| 0,00580500000069151 |
| 0,00759300012781145 |
| 0,00000000000000000 |
| 0,00000000000000000 |

0,00000000000000000

0,00004831999831367
| 0,00004831999831367 |
| -0,00002629899972817 |
[-0,00010093000310007 |

0,00000000000000000

0,00000000000000000

0,00000000000000000
0,00000000000000000
0,00000000000000000

-0,00000055999998949

0,00002967299951706

0,00009006199979922
0,00015045100008138
0,00021083900355734

0,00000000000000000

0,00000000000000000
[ 0,00000000000000000 |
| 0,00000000000000000 |
| 0,00139157299418002 |
| 0,00139157497324049 |

0,00139157602097839

-0,00000137200004247
| -0,00000218400009544 |
| -0,00000299599992104 |
| 0,00000000000000000 |
| 0,00000000000000000 |

0,00000000000000000

0,00000000000000000

|~ 0,00000000000000000 |
| 0,00000000000000000 |
|0,00000000000000000 |
|0,00000000000000000 |

0,00000000000000000

DD1 0,000 |Mx_DD4

DD1&2_Dunl
- Grafische

DD1 0,000 |My_DD1

0,00000000000000000

0,00014299999406830

DD1 0,000 |My_DD2

DD1&2_Dunl
- Grafische

0,00014299999406830

DD1 0,000 |My_DD3

DD1&2_Dunl

- Grafische
doorsnede

0,00014299999406830

DDI  |0,000 |My_DD4

DD1&2_Dunl
- Grafische
doorsnede

0,00014299999406830

DD1 0,000 [Mz_DD1

DD1&2 Dunl

0,00000000000000000

0,04831999831367284

0,00000000000000000

0,00000000000000000

0,00000000000000000

-0,00055999998949119

-0,00055999998949119

0,00139157602097839
| 0,00000000000000000 |

0,00000000000000000

0,00000000000000000

0,00000025400001351

0,00000025400001391

0,00000000000000000

0,00000000000000000

0,00000000000000000

10,0000

0,00000000000000000

0,02967299951706082

-0,000559" 19

-0,00055999998949119

0,00000000000000000

0,00000000000000000

0,00000000000000000

0,00000000000000000

0,00000025400001351

0,00000025400001391

0,00000000000000000

0,00000000000000000

0,00000000000000000

0,00001887100006570
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LEET

dx

Belasting

Doorsnede

Mz_DD2

doorsnede

0,00000000000000000

0,02967299951706082

0,00000000000000000

0,00000000000000000

0,00000000000000000

0,00001887100006570

Mz_DD3

DD1&2_Duni
- Grafische
doorsnede

0,00000000000000000

Mz_DD4

DD1&2_Duni
- Grafische
doorsnede

0,00000000000000000

0,000

Fx_DDL

DD182_Duni
- Grafische
doorsnede

0,00033399999210815

DD2

0,000

Fx_DD2

DD1&2_Dunl
- Grafische
doorsnede

0,00060600001461353

DD2

0,000

Fx_DD3

DD1&2_Dunl
- Grafische

0,00060600001461353

DD2

0,000

Fx_DD4

DD1&2 Dunl
- Grafische
doorsnede

0,02967299951706082
| 0,02967299951706082 |
| 0,00000000000000000 |
| 0,00000000000000000 |

0,00000000000000000

0,00000000000000000
-0,00093400001333066
-0,00075100001595274

-0,00084900000274502

0,00000000000000000
0,00000000000000000

0,00000000000000000

0,00000000000000000
0,00000014299999407

0,00000000300000003

0,00001887100006570
0,00001887100006570
0,00000000000000000

0,00000000000000000

0,00000000000000000

0,00000003299999918

0,00000000000000000

0,00060600001461353

0,000000000

0, 000000000

DD2

0,000

Fy_DD1

DD1&2_Dunl
- Grafische
doorsnede

0,00000000000000000

DD2

0,000

Fy_DD2

DD1&2_Dunl
- Grafische
doorsnede

0,00000000000000000

DD2

0,000

Fy_DD3

DD1&2_Dunl
- Grafische
doorsnede

0,00000000000000000

DD2

0,000

Fy_DD4

-0,0009: 1269

0,00000006300000166

0,18338300287723541
0,89543301146477461

1,23745400924235582

0,00000000000000000
0,00000000000000000

0,00000000000000000

0,00000000000000000

DD2

0,000

Fz DD1

-0,00047599999675185

DD2

0,000

Fz_DD2

-0,00075100001595274

DD2

0,000

Fz_DD3

DD1&2_Dunl
- Grafische
doorsnede

-0,00075899998819295

DD2

0,000

Fz_DD4

DD18&2_Duni
- Grafische
doorsnede

-0,00076700001727659

DD2

0,000

Mx_DD1

DD1&2_Dunl
- Grafische
doorsnede

0,00000000000000000

0,000

Mx_DD2

DD1&2_Duni
- Grafische
doorsnede

0,00000000000000000

0,000

Mx_DD3

DD1&2_Duni
- Grafische
doorsnede

0,00000000000000000

0,000

Mx_DD4

DD1&2_Dunl
- Grafische
doorsnede

0,00000000000000000

0,000

My_DDI

DD1&2_Dunl
- Grafische
doorsnede

0,00014299999406830

0,000

My_DD2

DD1&2_Dunl
- Grafische

0,00000300000002618

1,57946802210062742
| 0,00000000000000000 |
|0,00000000000000000 |
| 0,00000000000000000 |
| 0,00000000000000000 |
0,04831999831367284
| 0,83175697363913059 |
| 0,83175697363913059 |
| 0,83175802137702703 |
| 0,00000000000000000 |

aboccoooScSoou&

0,00000000000000000
| 0,00401199986299616 |

0,01038499976857565
| 0,01621199953660835 |

0,02203899930464104

0,00004831999831367
| 0,00083175697363913 |
| 0,00066137698013335 |
| 0,00049096997827251 |
| 0,00000000000000000 |
| 0,00000000000000000 |
| 0,00000000000000000 |

0,00000000000000000

0,00000000000000000
| 0,00000000000000000 |
| 0,00000000000000000 |
| 0,00000000000000000 |
| -0,00000055999998543 |
| -0,00000182099995527 |
| -0,00000362600007575 |

-0,00000543099986317

0,00000000000000000
| 0,00000000000000000 |
| 0,00000000000000000 |
| 0,00000000000000000 |
| -0,00137200004246552 |

-0,00182099995527096

0,00139157194644213
| 0,00317740091122687 |
| 0,00317740300670266 |
| 0,00317740510217845 |

0,00000000000000000

0,00000000000000000

0,00000000000000000
| 0,00000000000000000 |
| 0,00000000000000000 |
| 0,00000000000000000 |

0,00000025400001391

0,00000056400000403

0,00000000000000000
| 0,00002967299951706 |
| 0,00012081900058547 |
| 0,00024272600421682 |
| 0,00036463298602030 |
|0,00000000000000000 |

0,00000000000000000
| 0,00000000000000000 |
| 0,00000000000000000 |
| 0,00000000000000000 |
| 0,00000000000000000 |
| 0,00000000000000000 |
| 0,00000000000000000 |

0,00000000000000000

0,00000000000000000

DD2

0,000

My_DD3

DD1&2 Duni
- Grafische
doorsnede

-0, 5527096

DD2

0,000

My_DD4

DD1&2_Dunl
- Grafische
doorshede

0,00000300000002618

DD2

0,000

Mz_DD1

DD1&2_Dunl

0,00000000000000000

0,00000000000000000

0,09006199979921803

-0,00182099995527096

0,00000000000000000

0,00000000000000000

0,00000000000000000

0,00000056400000403

0,00000000000000000

0,00000000000000000

0,00001887100006570
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Auteur
Datum

Coen Stellinga
01.06. 2022

dx

[m]

Belasting

Doorsnede

- Grafische
doorsnede

0,000

Mz_DD2

DD1&2_Dunl
- Grafische

0,00000000000000000

0,12081900058547035

| 0,00000000000000000 |

0,00000000000000000

| 0,00000000000000000 |

0,00003809600093518

0,000

Mz_DD3

DD1&2_Dunl
- Grafische
doorsnede

0,00000000000000000

DD2

0,000

Mz_DD4

DD1&2_Dunl
- Grafische
doorsnede

0,00000000000000000

DD3

0,000

Fx_DD1

DD3_Dunl -
Grafische
doorsnede

0,00034199999277007

DD3

0,000

Fx_DD2

DD3_Dunl -
Grafische
doorsnede

0,00060600001461353

0,12081900058547035
0,12081900058547035
0,00000000000000000

0,00000000000000000

DD3

0,000

Fx_DD3

DD3_Duni -
Grafische
doorsnede

0,00098600003184401

DD3

0,000

Fx_DD4

DD3_Dunl -
Grafische
doorsnede

0,00097400004506198

DD3

0,000

Fy_DD1

DD3_Dunl -
Grafische
doorsnede

0,00000000000000000

0,000

Fy_DD2

DD3_Dunl -
Grafische
doorsnede

0,00000000000000000

0,000

4

Fy_DD3

DD3_Dunl -
Grafische
doorsnede

0,00000000000000000

0,000

Fy_DD4

DD3 Duni -
Grafische
doorsnede

0,00000000000000000

Fz_DD1

DD3_Dunl -
Grafische
doorsnede

-0,00050599999212864

0,000

Fz DD2

DD3 Duni -
Grafische
doorsnede

-0,00084900000274502

DD3

0,000

Fz_DD3

DD3_Dunl -
Grafische
doorsnede

-0,00058799997759706

DD3

0,000

Fz_DD4

DD3_Dunl -
Grafische
doorsnede

0,00009600000083765

DD3

0,000

Mx_DD1

DD3_Dunl -
Grafische
doorsnede

0,00000000000000000

DD3

0,000

Mx_DD2

DD3_Dunl -
Grafische
doorsnede

0,00000000000000000

DD3

0,000

Mx_DD3

DD3_Dunl -
Grafische
doorsnede

0,00000000000000000

DD3

0,000

Mx_DD4

DD3_Dunl -
Grafische
doorsnede

0,00000000000000000

DD3

0,000

My_DD1

DD3_Dunl -
Grafische
doorsnede

0,00015700000233210

0,00000000000000000
0,00000000060000000 |
0,27574799605645239
1,23745400924235582
[ 3,05103906430304050
3,81739810109138489
|0,00000000000000000 |
[ 0,00000000060000000 |
5,00000000060000600 |
5,00000000000000000 |
[ 0,02630000017234124 |
| 0,66137500107288361
| 2,65783607026424740 |
| 3,65784169105033675 |

0,00000000000000000

0,000

My_DD2

DD3_Dunl -
Grafische

0,00003299999917772

0,00000000000000000

0, 93518

| 0,00006000000060000
|-0,00135009995571674 |
|=0,00075639998819295
[=0,00058769957759706
|=0,00082259955346634
| 0,00000000000000000
I 0,00006000000000000 |
I5,00000000000000000
I 0,00000000000000000
| 0,00580500000069151 |
| 0,01621199953660835
| 0,03055459837500975
| 0,04456800161278807 |
| 0,00000000000000000
|0,00000000000060000
| 0,00006000000060000
5,00006000000000000
[ =0,00216400009543981

-0,00362600007974834

I 0,00000000000006000 |
I 0,00008000000006000 |
[ 5,00000000000006000 |
[ 0,00008000000004000 |
0,00000000000006000 |
| 0,0000483199831367 |
[ 0,00083175697363913 |
| 0,00265783607028475 |
| 0,00227068900130689 |
|0,00008000000000000 |
I 0,0000600000000G000 |
" 5,00006000000066000 |
I 5,00008000000000000 |
| 0,00139157299418002 |
| 0,00317735788447850 |
| 0,00721876500487629 |
T 0,00721877720206976 |

0,00000000000000000

I5,00000000000600000
I 0,00000014299995407
I0,00000000300000003
I-0,00000021399999639 |
[=0,00000015700000233

0,00000000000000000
I 5,00000000000000000
0,00000000000000000
I 0,00000000000000000
|-0,00000055959598945
I0,00000182099995527
I0,30000437900007455
I0,00000775400044510
I0,00000000000000000
I0,00000000000000000 |
I 0,00000000000060000 |
I5,30000000000000000 |

0,00000025400001391

|0,00003809600093518
I0,06000060000000600
[0,00000000000000000 |
|”0,00000000000000000 |
[0,00000000000000000 |

0,00002967299951706
I0,0001208 1900058547 |
I0,00028403199394234
[0,00049341598059982
|,00000060000000000
I0,00000060000000000
I5,0000006006006060
[,00000000000000000 |
[0,00000000000000000
I0,00000000000000000
I0,00000000000000000
I75,000000000000G0630 |

0,00000000000000000

0,00000000000000000

0,00000056400000403

0,00000000000000000

0,000

My_DD3

DD3_Dunl -
Grafische
doorsnede

-0,00021

My_DD4

DD3_Dunl -
Grafische
doorsnede

-0,00021399999639016

0,000

Mz_DD1

DD3_Duni -

0,00000000000000000

0,00000000000000000

0,15045100008137524

| 0,1504>10000813/524 |

-0,00437900007455028

-0,00437900007455028

0,00000000000000000

|__0,00000000000000000 |

0,00000000000000000

0,00000000000000000

|__0,00000000000000000 |

0, 77

0,00000106400000277

0,00000000000000000

|__0,000000000000000%0 |

0,00000000000000000

0,00001887100006570

|_0,0000186/100006570 |
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Auteur
Datum

Coen Stellinga
01.06. 2022

Naam

3

[m]

Belasting

Doorsnede

Grafische
doorsnede

DD3

Mz_DD2

DD3_Dunl -
Grafische
doorsnede

0,00000000000000000

DD3

Mz_DD3

DD3_Dunl -
Grafische
doorsnede

0,00000000000000000

DD3

Mz_DD4

DD3_Dunl -
Grafische
doorsnede

0,00000000000000000

0,28403199394233525

0,28403199394233525

0,00000000000000000

0,00000000000000000

0,00000000000000000

0,00000000000000000

DD4

Fx_DD1

DD4_Duni -
Grafische
doorsnede

0,00034999999343199

DD4

Fx_DD2

DD4_Dunl -
Grafische
doorsnede

0,00060600001461353

DD4

Fx_DD3

DD4_Dunl -
Grafische
doorsnede

0,00097400004506198

DD4

0,000

Fx_DD4

DD4_Dunl -
Grafische
doorsnede

0,00137500001073931

DD4

0,000

Fy_DD1

DD4_Dunl -
Grafische
doorsnede

0,00000000000000000

DD4

0,000

Fy_DD2

DD4_Dunl -
Grafische
doorsnede

0,00000000000000000

DD4

Fy_DD3

DD4_Dunl -
Grafische
doorsnede

0,00000000000000000

DD4

Fy_DD4

DD4_Dunl -
Grafische
doorsnede

0,00000000000000000

DD4

F2DD1

DD4_Dunl -
Grafische
doorsnede

-0,00053600001592713

DD4

Fz_DD2

DD4_Dunl -
Grafische

-0,00094600000011269

0,00000000000000000
0,00000000000000000

0,00000000000000000

-0,00184900000022026
-0,00076700001727659

0,00009600000083765

0,00000000000000000
0,00000000000000000

0,00000000000000000

0,00000000000000000
0,36811101017519832
1,57946895342320204
| 3,81739903241395950 |
| 6,45250082015991211 |
0,00000000000000000

0,00000000000000000

0,00011600000245246
| 0,00000000000000000 |
[ 0,00000000000000000 |
| 0,00000000000000000 |
| 0,00000000000000000 |
| 0,00759900012781145 |

0,02203899930464104

0,00000000000000000
| 0,00004832089875784 |
| 0,00083175802137703 |
| 0,00265783909708261 |
| 0,00450418516993523 |
| 0,00000000000000000 |

0,00000000000000000

0,00000000000000000 |  0,00000000000000000

0,00000000000000000
| 0,00000000000000000 |
| 0,00000000000000000 |
| 0,00000014299999407 |
| 0,00000000300000003 |
| -0,00000021399999639 |
|-0,00000043899995014 |
| 0,00000000000000000 |
| 0,00000000000000000 |
|”0,00000000000000000 |
| 0,00000000000000000 |
| -0,00000055999998949 |

-0,00000182099995527

0,00003809600093518
| 0,00006543295969053 |
| 0,00006543295965053 |
| 0,00000000000000000 |
|0,00000000000000060 |
|0,00000000000000000 |
|0,00000000000000000 |
| 0,00002967299951706 |
|0,00012081900058547 |
| 0,00028403159394234 |
| 0,00054015201749280 |
|0,00000000000000000 |

0,00000000000000000

DD4

Fz.DD3

DD4_Dunl -
Grafische
doorsnede

0,

0,

0, 1278807

DD4

DD4_Dunl -
Grafische

0,00011600000249246

0,00000000000000000

0,07268400077009574

0,

0,00000000000000000

-0,00000437900007455

-0,00000870500025485

0,00000000000000000

0,00000000000000000

DD4

Mx_DD1

DD4_Dunl -
Grafische
doorsnede

0,00000000000000000

DD4

Mx_DD2

DD4_Dunl -
Grafische
doorsnede

0,00000000000000000

DD4

Mx_DD3

DD4_Dunl -
Grafische
doorsnede

0,00000000000000000

DD4

Mx_DD4

DD4_Dunl -
Grafische
doorsnede

-0,10093000310007483
0,49096898874267936

2,27068993262946606

0,00000000000000000
0,00000000000000000

0,00000000000000000

0,00000000000000000

DD4

My_DD1

DD4_Dunl -
Grafische
doorsnede

0,00017000000696044

DD4

My_Db2

DD4_Dunl -
Grafische
doorsnede

0,00006300000165993

DD4

My_DD3

DD4_Dunl -
Grafische
doorsnede

-0,00015700000233210

DD4

My_DD4

DD4_Dunl -
Grafische
doorsnede

-0,00043899999013775

DD4

Mz DD1

DD4 Dunl -

0,00000000000000000

4,50419122353196144
[ 0,00000000000000000 |
[ 0,00000000000000000 |
0,00000000000000000

0,00000000000000000

0,21083900355733931

0,00000000000000000
| -0,00299599992104049 |
[ -0,00543099986316520 |
| -0,00778400044509508 |

-0,00870500025484944

0,00000000000000000

0,00139157404191792
| 0,00317739904858172 |
| 0,00721876788884401 |
| 0,01185583043843508 |
| 0,00000000000000000 |
| 0,00000000000000000 |
| 0,00000000000000000 |

0,00000000000000000

0,00000000000000000

0,

0,0000:
| 0,00000000000000000 |
| 0,00000000000000000 |
| 0,00000000000000000 |
| 0,00000025400001391 |
| 0,00000056400000403 |
| 0,00000106400000277 |

0,00000165100004779

0,00000000000000000

|~ 0,00000000000000000 |
|~ 0,00000000000000000 |
|0,00000000000000000 |
| ~0,00000000000000000 |
| 0,00000000000000000 |
|0,00000000000000000 |

0,00000000000000000

0,00001887100006570
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dx  Belasting Doorsnede
[m] [mm]
Grafische
doorsnede B
DD4 0,000 |Mz_DD2 DD4_Dunl - 0,00000000000000000 |  0,36463298602029681 0,00000000000000000

Grafische
0,49341598059982061 |  0,00000000000000000

doorsnede
0,54015201749280095 | 0,00000000000000000

0,00003809600093518

0,00000000000000000 | 0,00006543299969053

0,00000000000000000

DD4 0,000 |Mz_DD3 DD4_Dunl - 0,00000000000000000
Grafische
doorsnede
DD4 0,000 |Mz DD4 DD4_Dunl - 0,00000000000000000
Grafische

0,00000000000000000 | - 0,00009464300092077

0,00000000000000000
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Appendix IV Uninterpreted results mesh

independent 1D elements model

As mentioned before (Paragraph 4.5) the proposed mesh independent 1D model has no

connections between the webs of the troughs and the deck plate strip. Thus, no relevant stress

values at these locations can be found at the locations of the theoretical connections between the

trough webs and the deck plate strip. However, it does have relevant stress values at either side of

the neutral axis of a trough. One approach could be to state that the value of the maximum stress
interval directly next to the neutral axis of a trough is a measure of the maximum stress interval of
the trough web at the same side of the neutral axis. If this is assumed, the following results are

obtained

[Mpa] Stress trough Leg x coord y coord [Wheel, x-coord, y-coord] [Mpa] Stress trough Leg x coord y coord [Wheel, x-coord, y-coord]
280,4893082 -280,4893082 tr[2] R 151 850 [Axis_B, 151, 1150] 269,2044547 -269,2044547 tr[5] R 1600 2650 [Axis_B, 1600, 2950]
271,0309648 -271,0309648 tr[2] R 1600 850 [Axis_B, 1600, 1150] 278,419456 -278,419456 tr[5] R 3049 2650 [Axis_B, 3049, 2950]
278,3255714 -278,3255714 tr[2] R 3049 850 [Axis_B, 3049, 1150] 278,2888892 -278,2888892 tr[5] R 3351 2650 [Axis_B, 3351, 2950]
278,2957596 -278,2957596 tr[2] R 3351 850 [Axis_B, 3351, 1150] 268,6838276 -268,6838276 tr[5] R 4800 2650 [Axis_B, 4800, 2950]
270,3969914 -270,3969914 tr[2] R 4800 850 [Axis_B, 4800, 1150] 279,5261476 -279,5261476 tr[5S] R 6249 2650 [Axis_B, 6249, 2950]
279,4819173 -279,4819173 tr[2] R 6249 850 [Axis_B, 6249, 1150] 279,7188651 -279,7188651 tr[5] R 6551 2650 [Axis_B, 6551, 2950]
279,8706442 -279,8706442 tr[2] R 6551 850 [Axis_B, 6551, 1150] 270,2821666 -270,2821666 tr[5S] R 8000 2650 [Axis_B, 8000, 2950]
273,1989814 -273,1989814 tr[2] R 8000 850 [Axis_B, 8000, 1150] 275,6042738 -275,6042738 tr[5] R 8750 2650 [Axis_B, 8750, 2950]
277,1518001 -277,1518001 tr[2] R 8750 850 [Axis_B, 8750, 1150] 284,9213281 -284,9213281 tr[5] R 9449 2650 [Axis_B, 9449, 2950]
284,0933084 -284,0933084 tr[2] R 9449 850 [Axis_B, 9449, 1150] 254,4271077 -254,4271077 tr[6] L 151 3250 [Axis_B, 151, 1070]
243,1230758 -243,1230758 tr[3] L 151 1450 [Axis_B, 151, 1150] 248,3122349 -248,3122349 tr[6] L 1600 3250 [Axis_B, 1600, 1070]
232,4977666 -232,4977666 tr[3] L 1600 1450 [Axis_B, 1600, 1150] 255,3381456 -255,3381456 tr[6] L 3049 3250 [Axis_B, 3049, 1070]
245,0072591 -245,0072591 tr(3] L 3049 1450 [Axis_B, 3049, 1150] 255,3925989 -255,3925989 tr[6] L 3351 3250 [Axis_B, 3351, 1070]
245,0500086 -245,0500086 tr[3] L 3351 1450 [Axis_B, 3351, 1150] 247,9966791 -247,9966791 tr[6] L 4800 3250 [Axis_B, 4800, 1070]
233,1827234 -233,1827234 tr3] L 4800 1450 [Axis_B, 4800, 1150] 255,1791304 -255,1791304 tr[6] L 6249 3250 [Axis_B, 6249, 1070]
244,0233144 -244,0233144 tr[3] L 6249 1450 [Axis_B, 6249, 1150] 255,1884119 -255,1884119 tr[6] L 6551 3250 [Axis_B, 6551, 1070]
243,7016722 -243,7016722 tr[3] L 6551 1450 [Axis_B, 6551, 1150] 248,7965639 -248,7965639 tr[6] L 8000 3250 [Axis_B, 8000, 1070]
230,8849852 -230,8849852 tr[3] L 8000 1450 [Axis_B, 8000, 1150] 251,6951056 -251,6951056 tr[6] L 8750 3250 [Axis_B, 8750, 1070]
235,8208832 -235,8208832 tr[3] L 8750 1450 [Axis_B, 8750, 1150] 253,4575064 -253,4575064 tr[6] L 9449 3250 [Axis_B, 9449, 1070]
239,9827454 -239,9827454 tr(3] L 9449 1450 [Axis_B, 9449, 1150] 274,6837446 -274,6837446 tr[7] R 6551 3850 [Axis_B, 6551, 4150]

282,192865 -282,192865 tr[3] R 151 1450 [Axis_B, 151, 1750] 265,9337719 -265,9337719 tr[7] R 8000 3850 [Axis_B, 8000, 4150]
271,8655259 -271,8655259 tr[3] R 1600 1450 [Axis_B, 1600, 1750] 270,7833317 -270,7833317 tr[7] R 8750 3850 [Axis_B, 8750, 4150]
279,7683947 -279,7683947 tr[3] R 3049 1450 [Axis_B, 3049, 1750] 278,5356986 -278,5356986 tr[7] R 9449 3850 [Axis_B, 9449, 4150]
279,6713044 -279,6713044 tr[3] R 3351 1450 [Axis_B, 3351, 1750] 264,000809 -264,000809 tr[9] L 151 5050 [Axis_B, 151, 2870]
271,0575351 -271,0575351 tr[3] R 4800 1450 [Axis_B, 4800, 1750] 257,380657 -257,380657 tr[9] L 1600 5050 [Axis_B, 1600, 2870]
280,9888793 -280,9888793 tr[3] R 6249 1450 [Axis_B, 6249, 1750] 263,9034887 -263,9034887 tr[9] L 3049 5050 [Axis_B, 3049, 2870]
281,3053101 -281,3053101 tr[3] R 6551 1450 [Axis_B, 6551, 1750] 263,8774286 -263,8774286 tr[9] L 3351 5050 [Axis_B, 3351, 2870]
273,3977431 -273,3977431 tr[3] R 8000 1450 [Axis_B, 8000, 1750] 256,4261635 -256,4261635 tr[9] L 4800 5050 [Axis_B, 4800, 2870]
277,9996047 -277,9996047 tr[3] R 8750 1450 [Axis_B, 8750, 1750] 264,2239525 -264,2239525 tr[9] L 6249 5050 [Axis_B, 6249, 2870]
286,3019213 -286,3019213 tr[3] R 9449 1450 [Axis_B, 9449, 1750] 264,3423337 -264,3423337 tr[9] L 6551 5050 [Axis_B, 6551, 2870]
244,2078735 -244,2078735 tr[4] L 6551 2050 [Axis_B, 6551, 1750] 258,0024064 -258,0024064 tr[9] L 8000 5050 [Axis_B, 8000, 2870]

232,701379 -232,701379 tr[4] L 8000 2050 [Axis_B, 8000, 1750] 261,2234172 -261,2234172 tr[9] L 8750 5050 [Axis_B, 8750, 2870]
236,9852397 -236,9852397 tr[4] L 8750 2050 [Axis_B, 8750, 1750] 264,7884156 -264,7884156 tr[9] L 9449 5050 [Axis_B, 9449, 2870]
240,1918223 -240,1918223 tr[4] L 9449 2050 [Axis_B, 9449, 1750] 267,9732279 -267,9732279 tr[9] R 151 5050 [Axis_B, 151, 5350]
281,0978011 -281,0978011 tr[4] R 6551 2050 [Axis_B, 6551, 2350] 260,0913499 -260,0913499 tr[9] R 1600 5050 [Axis_B, 1600, 5350]
272,1070046 -272,1070046 tr[4] R 8000 2050 [Axis_B, 8000, 2350] 267,3161257 -267,3161257 tr[9] R 3049 5050 [Axis_B, 3049, 5350]
277,2308537 -277,2308537 tr[4] R 8750 2050 [Axis_B, 8750, 2350] 267,2623943 -267,2623943 tr[9] R 3351 5050 [Axis_B, 3351, 5350]
286,4165306 -286,4165306 tr[4] R 9449 2050 [Axis_B, 9449, 2350] 259,2528558 -259,2528558 tr[9] R 4800 5050 [Axis_B, 4800, 5350]
246,2483158 -246,2483158 tr[5] L 6551 2650 [Axis_B, 6551, 2350] 267,8183111 -267,8183111 tr[9] R 6249 5050 [Axis_B, 6249, 5350]
235,6017974 -235,6017974 tr[5] L 8000 2650 [Axis_B, 8000, 2350] 267,9443965 -267,9443965 tr[9] R 6551 5050 [Axis_B, 6551, 5350]
239,5223444 -239,5223444 tr[5] L 8750 2650 [Axis_B, 8750, 2350] 260,8118573 -260,8118573 tr[9] R 8000 5050 [Axis_B, 8000, 5350]
242,4274904 -242,4274904 tr[5] L 9449 2650 [Axis_B, 9449, 2350] 264,5753265 -264,5753265 tr[9] R 8750 5050 [Axis_B, 8750, 5350]
280,8492775 -280,8492775 tr[5] R 151 2650 [Axis_B, 151, 2950] 269,5547171 -269,5547171 tr[9] R 9449 5050 [Axis_B, 9449, 5350]
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These are the results obtained in the points in which the 1D model was applied (Figure 34). To get
the results in the remaining points cubic interpolation is applied. Thereby the results presented in
Figure 53 are found.
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Figure 53: Contour plot obtained without interpretation method

These results show a significant difference between the result obtained between the first and
second as well as the second and third cross beam in comparison with the results obtained
between the third and fourth cross beam. To investigate this the results of 3 cross sections was
taken a closer look at. The following plot of the results in these cross sections were obtained.
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—— Field between DD1 and DDO2, x = 1600
Field between DD2 and DD3, x = 4800
—— Field between DD3 and DO, x = 8000

Figure 54: Results obtained between different cross beams without interpretation

It can be noted that the behaviour predicted on the areas where points are interpolated is very
different from the behaviour of the areas in which points are located for which the model was
used. This would suggest that the chosen interpolation algorithm (the use of cubic splines) cannot
be used to predict values at unknown points. This seems logical since cubic splines assume that the
closest points to an unknown point give the most information of the predicted value at the
unknown point. However, for in this case there is a big difference between the left and right webs
of the troughs. Therefore, not the closest point, but the closes point on the same sided trough leg
gives the most information. There either an alternative interpolation method, or an alternative
interpretation method should be used. In this report it was decided to research different
interpretation of the obtained data.
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Appendix V Shortlist of potential critical points

All structural engineers within Antea Group, who have experience in regards fatigue calculations
of steel orthotropic bridge decks, identify 18 potential points which are considered more likely to
be exposed to the highest stress interval. When asked why these points the structural engineers
give a reasoning stated below.

It seems likely that the deformations in the deck plate are governed by bending. Therefore, it is
assumed that the strains are mainly governed by bending. Which results in the stresses being
mainly governed by bending (Appendix | Derivation system of differential equations of a
Timoshenko beam element [4, 21, 22]). In most cases bending is the result of internal moments
therefore, it is assumed that the highest stress interval will be found at the location of the highest
internal moment. These can often be determined by applying basic equilibrium equations as
explained in [37]. In the determination of the short list the crossbeams are simplified to all have
the same stiffness. Since local effects are considered to have a bigger influence on the stresses
than the global effects only one field is considered at a time. Thus, the following symmetrical load
cases were considered of interest (Figure 55).

Load case Moment line
!.
b—a i | a 2aa-1) .
\7 l
i L |
- l
+ , % ! . 1
F a(l —a)? —4a?%(l — a)?
% a | 12 —F Jf a B F
‘ -
——F—F—F
1 ¢
l' f
{ 1 )

Figure 55: Moment lines of basic load case situations'?

In both these load cases the maximum or minimum moment is found at either a support or in at
the location of the load. The internal moments obtain the biggest value when a = éthus maximum
or minimum internal moment is found either at the support or in the middle of the considered
field. As a result of this the structural engineers expect the maximum and minimum stress intervals
either close to the main girders and cross beams or in the middle of the field between the main
girders and the cross beams. This leads to the short list of points as in Figure 56.

13 These moment lines found when the Euler-Bernoulli beam theory is applied. Since this is the first
theory most structural engineers will learn usually this is where their intuition is based on.

]
TU Delft Page 96



)

anteagroup

(e e [

Right

Left

Trough 17
Trough 16
Trough 15
Trough 14
Trough 13
Trough 12
Trough 11
Trough 10
Trough 9
Trough 8
Trough 7
Trough 6
Trough 5
Trough 4
Trough 3
Trough 2

T ™!

| 1]
e ° 0 * *0 o d~i
Tl [l T [
R i ] B i |
| | |
Lk . | | o 1 |
| I |
L8 S IS | 0 [ |
| | |
JEH 8 S j = | I [ |
| [ R
R i | = I |
| I |
¢ 3 W 3 & 33
| b |
Tt =S| N B
IEEN j o 1 |
| .- | |
IE ] i} | 5 ) il
| | |
| N | ] I |
| | |
I ot = ) = |
| T |
B S—T— —R— S——
| | |
DD1 DD2 DD3 DD4

Figure 56: Short list of potential points

Some structural engineers hesitate to mitigate the list even further. Stating that this specific bridge
is supported at one side only. Therefore, it is expected that the first field is the stiffest and the last
field is the least stiff. As a result of this they omit all points in between cross beam 2 and cross
beam 3. However, these structural engineers state that they are not entirely sure if this method is

valid. Therefore, it was decided to keep these points on the short list.
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Appendix VI Results mesh independent 1D
element model interpretated via method 2

3
TUDelft

Stress interval
[Mpa]

262,6579704
252,1816463
262,3878269
262,3606565
252,1201293
262,5060969
262,5034912
252,1413642
256,910244
263,1423334
262,6528373
252,4041918
257,1080467
263,3041765
262,9835905
252,941982
257,5633091
263,6744093
265,9870185
258,7360035
265,6098072
265,5699115
257,8395097
266,0211318
266,1433651
259,4071319
262,8993719
267,1715664

Point where stress is

Stress
-262,6579704 tr[3]
-252,1816463 tr[3]
-262,3878269 tr[3]
-262,3606565 tr[3]
-252,1201293 tr[3]
-262,5060969 tr[3]
-262,5034912 tr[3]
-252,1413642 tr[3]

-256,910244 tr[3]
-263,1423334 tr[3]
-262,6528373 tr[4]
-252,4041918 tr[4]
-257,1080467 tr[4]
-263,3041765 tr[4]
-262,9835905 tr[5]

-252,941982 tr[5]
-257,5633091 tr[5]
-263,6744093 tr[5]
-265,9870185 tr[9]
-258,7360035 tr[9]
-265,6098072 tr[9]
-265,5699115 tr[9]
-257,8395097 tr[9]
-266,0211318 tr[9]
-266,1433651 tr[9]
-259,4071319 tr[9]
-262,8993719 tr[9]
-267,1715664 tr[9]

Page 99

determined

trough x coord vy coord
151 1450
1600 1450
3049 1450
3351 1450
4800 1450
6249 1450
6551 1450
8000 1450
8750 1450
9449 1450
6551 2050
8000 2050
8750 2050
9449 2050
6551 2650
8000 2650
8750 2650
9449 2650
151 5050
1600 5050
3049 5050
3351 5050
4800 5050
6249 5050
6551 5050
8000 5050
8750 5050
9449 5050
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Appendix VIl Elaboration calculating maximum
stress interval 2D FE model

Determination of dimension of weld details in 2D FE model.

The weld dimension, in the FE model, can be determined using article 00912, figure F0O0912-1 F) in
combination with the figure in article 00915, table T00915 of the ROK. These are shown in Figure
57.

dekplaat

buitenzijde
rog trog

Figure 57: Sketches provided by ROK [3] to model weld details [3]

The thickness of the trough and the deck plate is known. These can be inserted in Figure 57. hz and
hs are given in in the regulations (ROK [3], table TO0915) and therefore known. The updated
sketches are shown in Figure 58.

Crack
Deck plate

; _0,5%or 1,0t0r

Stiffener

outerside
trough

Figure 58: ROK sketches of weld details updated for Goereese bridge [3]

The unknowns that still need to be determined are: L1, <L1 and L2. These are dependent on the
geometrical properties of the bridge. Therefore, they can be expressed in terms of the geometrical
properties of the bridge. To be able to this some geometrically quantities will be determined in
intermediate steps. In this document they are determined step by step clarified by addition
sketches.
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a is the angle between the trough web and the deck plate. This angle can be determined
using the geometry of a trough. To demonstrate this a sketch is made (Figure 59).

Wir top

Wertop — Werbot wt?’.b-‘.}t Wirtop — Wirbot

I Wi bot I

Figure 59: Sketch clarifying angle a

Using basic geometrical definitions, it can be found that:

2h
a = arctan (—tr) (16)

Wtr,top — Wer bot

a
a is the length of the contact line between the trough web and the deck plate ().

Figure 60: Sketch clarifying length a [3]

Using basic geometrical definitions, it can be found that:

a= ttr
sin(a)

(17)

Substitution of a (16) in the definition of a (17) leads to:

ter

. 2h
sin (arctan (—”
Wer.top — Wer,bot

a =

2
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b is the horizontal difference between the contact point of the deck plate with the trough
web and the intersection point of the neutral axis of the deck plate and the neutral axis of
the trough web (Figure 61):

.-d--

DP

Syt

Figure 61: Sketch clarifying length b [3]

| |

G

Using basic geometrical definitions, it can be found that:

tpp a 1 ( tpp

b=———;<Li=-+b=2
2tan (a) ! + a+tan(a)

a

Substitution of a (16) in the definitions of b, <L1 and L1 (18) leads to:

_ tDP(Wtr,top - Wtr,bot)

b= 19
w, -w 1 1 t
< L1 — tr,top - tr,bot o . + 4h2 + ZZP (20)
(Wtr,top - Wtr,bot) tr tr
Wertop — Werb 1 1 t
L = tr.top : tr.bot t, 2+4h2 _ZZP +hy (21)
(Wtr,top - Wtr,bot) tr tr
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Lengths c and d are clarified in Figure 62.

Figure 62: Sketch clarifying length c and d [3]

Using basic geometrical definitions, it can be found that:

t t
/ =22 d—/— " sLy=hy+c—d (22)

Substitution of the expression found for a (17) and b (19) into the definitions found for c,
d and Lz (22) leads to:

2
_ tD_P (Wtr,top - Wtr,bot) 1:d = ttr (Wtr,top - Wtr,bot)
2 42, ’ 4h,,

=hy +

2
tDP (Wtr top Wtr,bot) ttr(wtr,top - Wtr,bot) (23)
> +1-
2 4h2, 4h,,

All remaining expression are based on the dimension of the bridge:
her = 350mm; tpp = 20mm ; by = 6MM ; Wiy por = 170mm ; Wiy, 1o, = 300mm (24)

Substitution of the dimensions of the bridge (24) into the expression for <L1(20), L1 (21) and L2 (23)

leads to:
3v5069 + 130 3v/5069 — 130
Ly =————— = 49mm; Ly = —————+hy ~ 1.1942 + hy mm (25)
10v/5069 — 39
Ly = hy + ———5——~ hy +9.6138 mm (26)
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It can be noted that L1 and L2 are dependent on the quality of the weld. To ensure the bridge
remains safe it is assumed that the smallest weld dimensions are used. The values can be found in
the regulations (ROK [3], table T0O0915). In this table all dimensions are given in tents of millimetres.
To ensure the bridges is not undersized the determined weld sizes ware rounded down.
Substitution of these into the expression for <L1, L1 (25) and L2 (26) leads to:

3v5069 + 220 _ 311+ 10v5069

<L =49mm; L, = 70 6.1lmm; L, 70 4.6 mm
L; 3020+ 3v5069 L, 1151+ 10v5069
tpp +7=Tz23.0mm; ttr"‘?: 140 =~ 13.3mm

Which are the values given in the report (Figure 44). This results in a weld detail in the FE model as
shown in Figure 63:

f
|

Figure 63: Weld detail in 2D FE model at a connection of a trough (yellow), the deck plate (grey) and a cross
beam (green)

Mesh refinement

To be able to use the FE model mesh settings need to be applied. To acquire sufficient accuracy a
fine mesh needs to be applied, however this rapidly increases the time needed to compute the
results [29]. As a result of this structural engineers tend to apply a fine mesh locally at the location
where the results are of most interest, while remaining a course mesh at less relevant locations.
The regulations (ROK [3], table T00915) provide a maximum allowable mesh size adapted at the
analysed weld. It states that the maximum allowable mesh size equals half the deck plate thickness
(in the considered case 10mm). This results in the mesh shown in Figure 64.

(A) (B)
Figure 64: Mesh refinements in the 2D FE in (A) the trough web and (B) the deck plate
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Load cases

To get the relevant results not only the bridge should be modelled properly but also the right load
cases should be applied. In this case the goal of the FE model is to find the maximum stress interval
in the considered point. In Chapter 3.6 it is shown that the maximum stress interval occurs when
the load is applied next to the considered point. Therefore, only trucks at the location of the
considered point have to be considered. It is assumed that the maximum stress interval due to load
cases considering single axles is found in the same point as the maximum stress interval due to
trucks. As a result of this only the effect of a single axle is studied. The ROK [3] mentions to locations
of wheel spreads which have to be accounted for in Figure 65.

5x100mm

L4 H
\ Detail

considered

—_—
2x¥aCTCrrough

Figure 65: Wheel track spread positions having to be considered according ROK [3]

This leads to a total of 15 maximum possible wheel positions. However, depending on the centre-
to-centre distance of the trough some the load cases resulting from the different spread positions
are not unique. This is the case for the considered bridge (Goereese bridge). In this case the total
number of unique wheel positions is 13. The regulations do not specify which wheel of a truck is
positioned at this wheel track position. Therefore, both options are considered if possible!*. This
leads to a total of 26 axle configurations. For all these configuration 3 types of axles are considered.
The definition of the axles in given in [17] and updated by ROK [3]. The later states that the length
of a wheel should be equal to 220mm. The axles are presented in Figure 66.

1 1f the considered point is part of trough 2 or 4 only one wheel configuration can be used. Since
the other configuration results in a wheel placed outside of the bridge. If the considered point is
part of trough 9 both configurations are analysed.
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Figure 66: Truck axle definitions according to regulations [17] and [3], given in mm

Now the locations of all loads are defined. However, the size of loads still needs to be set. To
determine the fatigue damage a model is used to represent the entire stress history. In this case
the model is used to determine the maximum stress interval. Therefore, only the maximally loaded
axles need to be used. These can be found in the Dutch annex of Eurocode 1 table NB.6 4.7 [16].
The maximum load on an axle type A is 70kN, the maximum load on an axle type B is 150kN and
the maximum load on an axle type C is 90kN. Together with 26 axle configurations this results in
78 load cases.

Stress determination

To determine the stresses at a weld toe is not allowed to use the stresses found at this location
directly. Instead, the stress values have to be linearly interpolated to this point from two different
points [3]. The interpolation happens from point A and B to point C (Figure 58). The stresses values
at point A and point B will be different for each applied load case. In this example the stress at
point will be given as oa and at point B as os. Linear interpolation from the stresses at A and B
means that the stress in point C can be expressed in the stresses at point A and B.

Stress interval determination

To determine the occurring stress interval the difference between two different load cases is
determined. In a formula this means that:

Aoiciyic2 = abs(Uc;m - UC;LZ)

The stress interval can be determined for all load cases in spread of the traffic wheel position. Each
spread location has a total of 120 combinations. This means a total possible maximum of 360 load
combination could exist. However, in the considered bridge the spreads of two locations partly
overlap (Figure 65) resulting in a reduced number of load combinations. In the considered load
cases in the case is study is 339. From these the highest is the highest expected stress interval. To
determine the resulting fatigue damage this has to be multiplied with a dynamic amplification
factor of 1.15 [3]. This factor has to be applied if a considered point is withing 6m of expansion
joint. Since the considered bridge is only 10.8 meters long all points have the dynamic amplification
factor applied to them.
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