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Abstract

A
round 1610 Galileo Galilei made his discovery of the four large moons orbiting Jupiter
which are referred to now as the Galilean moons. The moons Europa and Ganymede

attract a significant amount of scientific interest due to potential present subsurface oceans.
As consequence, the design of missions to go there and explore the moon system are increasing.
This culminated in the sixth edition of the Global Trajectory Optimisation Competition
(GTOC6) which is focussed on solving low-thrust multiple gravity-assist trajectories to map
the Galilean moons. The aim of the thesis is to understand the complexity of the GTOC6
problem and to explore and evaluate the quality of various optimisation strategies to solve
flyby sequences with low-thrust arcs.

First, insight to the complexity of the problem was gained by analysing the best solution
to GTOC6 so far by the Chinese Centre for Space Utilisation (CSU). From the results a
clear picture was drawn from what the trajectory model should be capable of. The low-
thrust trajectory model is based on the spherical shaping method that is part of the Tudat
astrodynamics toolbox. A full analysis of the shaping method was performed to identify the
capabilities and shortcomings of the algorithm. One of the main shortcomings is the limited
accuracy for trajectories where the departure and arrival conditions differ with several degrees
and more for the right ascension of the ascending node (RAAN).

For optimisation use was made of differential evolution (DE). An extensive test was performed
to determine the optimal settings. The result was that defining the control parameters ran-
domly during the evolution was the best option with respect to quality and convergence. What
followed was defining the optimisation model for a variable number of flybys. Furthermore, a
framework was developed with six different optimisation strategies. A sequence of maximum
five flybys was set to test the strategies. The strategies define the amount of freedom around
the epochs of the flybys for the optimisation. Also the number of flybys that are influenced
by this freedom is defined by the strategy.

The goal was to optimise for ∆V for a main sequence of five flybys. Here the main sequence
was divided into smaller problems (subsets with less flybys). The optimisation of the main
sequence was guided by the solutions of the preceding smaller subsets. Results showed that
the initial subset of two flybys did not influence the optimisation of the subsequent subsets
at all. Furthermore, two sequences were tested. The first sequence showed large ∆V due to
thrust constraint violations and limited accuracy of the spherical shaping method. On the
other hand the second sequence showed ballistic solutions to go through all five moons in the
sequence.

Finally, from the previous test resulted an optimal strategy that was applied to a sub-problem
of GTOC6. Optimisation was set to map the most interesting surfaces of the moons and to
minimise ∆V . The resulting trajectories were able to map the surfaces of interest. However,
at the cost of more ∆V compared to the previous test which only optimised for ∆V .
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Symbols and parameters that represent the vector form are printed in boldface in this report.
Some symbols have units that depend on the input parameters or can not be described by
one unit like the orbital elements vector. These units are denoted with PD which stands for
problem dependent.

Symbol Description Unit

Latin letters

A Spacecraft-centred reference frame [-]

a Dimensionless acceleration parameter [-]

a Semi-major axis [m]

â Spacecraft-centred reference frame unit vector [-]
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angular momentum vector
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ĝ Galilean moon reference frame unit vector [-]
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g0 Nominal gravitational acceleration at the surface of the Earth
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H or h Angular momentum per unit mass [m2/s]
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1
Introduction

A
round 1610 Galileo Galilei made his discovery of the four large moons orbiting Jupiter.
Though he named the moons Medicea Sidera after the four Medici brothers, the current

names, after the lovers of god Zeus, were given by Simon Marius who discovered the moons
around the same time (McFadden et al., 2006). However, the moons Io, Europa, Ganymede
and Callisto still have a reference to Galilei as the group of four are called the Galilean
moons.

Petropoulos (2012) proposed the sixth global trajectory optimisation problem. The goal of
GTOC6 is to find the optimal trajectory to globally map the Galilean moons using fly-bys and
low-thrust propulsion. Additional constraints like radiation and mission duration complicate
the matter in effect to create a realistic mission scenario. The problem has still not been fully
solved and the best solution so far is by the Chinese Centre for Space Utilisation (He and
Gao, 2014). Besides solving it GTOC6 brings challenges for new trajectories in complex moon
systems using low thrust. With more attention these days for the Galilean moons, like Europe
and Ganymede, it is very interesting to do more research in the area of complex low-thrust
multiple gravity-assist trajectories.

The aim of this master thesis is to understand the complexity of the GTOC6 problem and
to explore various optimisation strategies to solve flyby sequences. It is the combination of
flybys with continuously acting thrust that creates a vast and challenging search space for the
optimisation process. Instead of solving the problem itself, the focus is on the development of
strategies to find optimal solutions in an efficient way. The research question for this thesis is
defined as follows:

Evaluate the quality of different optimisation strategies for Galilean moon
mapping trajectories using one-body dynamics, gravity-assist manoeuvres
and low-thrust propulsion.

For the low-thrust arcs in the trajectory use is made of the spherical shaping algorithm
developed by Roegiers (2014) and from the mind of Novak (2012). Constraints are supplied
by the GTOC6 problem and effective optimisation techniques are derived from an extensive
performed analysis of the current best solution for GTOC6.

The thesis report is divided into four major parts. In part I, ”Problem Statement & Heritage”,
the GTOC6 problem is detailed and the research objective is given. This is discussed in

1



2 CHAPTER 1 INTRODUCTION

Chapter 2 followed by Chapter 3 where a thorough analysis of the CSU solution is made to
prepare for the optimisation problem.

In the second part ”Low-Thrust Multiple Gravity-Assist Trajectory Model” all content related
to making the trajectories is given. First the spherical shaping method is explained, followed
by in-depth verification of the algorithm in Chapter 4. Secondly, Chapter 5 elaborates on the
multiple gravity-assist manoeuvre and the second part finishes with Chapter 6 where details
on mapping the moons according to the GTOC6 definition are given.

With part III ”Optimisation & Validation” all aspects related to the optimisation algorithm,
strategies and techniques are worked out. The former is explained in Chapter 7 and validated
in Chapter 8, whereas the latter are elaborated upon in Chapter 9. In that same chapter also
the problems are defined with respect to GTOC6 to test optimisation strategies.

Finally the results of the previous test are worked out and explained in Chapter 10 which
is in part IV ”Results & Conclusions”. The part is wrapped up with the conclusions and
recommendations.



Part I

Problem Statement & Heritage

3





2
Problem Statement and Research Objectives

G
TOC6 is the sixth edition of the Global Trajectory Optimisation Competition (GTOC)
and is the subject for the research in this Master of Science thesis. In the next section

the original problem is described. This is followed by the actual research focus and objectives
that were derived from the GTOC6 problem. The last section deals with assumptions and
constraints that are applied on top of the GTOC6 problem to narrow down the research
scope.

2.1 GTOC6 - Original Problem Description

The problem of GTOC6 is the global mapping of Jupiter’s Galilean moons. Here the global
mapping is performed by a low-thrust propulsion spacecraft utilising multiple close flybys. The
description in this section follows from the official GTOC6 problem description (Petropoulos,
2012).

To simplify the problem a few assumptions are made. First the dynamics of the system
are simplified by excluding the Sun’s gravity and modelling Jupiter as a point mass. The
moons around Jupiter are assumed to follow conical orbits. Furthermore the flybys are to be
modelled as instantaneous manoeuvres and the moons do not affect the trajectory otherwise.
In other words there are no perturbations present, which simplifies the problem significantly.
The assumptions and definitions are described in this subsection.

The motion of the spacecraft around Jupiter is modelled with one-body dynamics and the
added low thrust (Petropoulos, 2012). This results in Equations (2.1) and (2.2) for respectively
the acceleration and mass.

d2r

dt2
+ µ

r

r3
=

T

m
(2.1)

dm

dt
= − T

Ispg0
(2.2)

The departure date of the mission is to be selected between the years 2020 and 2030. Further-
more, the departure position of the spacecraft is in the vicinity of Jupiter. In other words
the optimal trajectory does not involve the transfer trajectory to get to Jupiter but only the

5
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mapping trajectory through the moon system of Jupiter. The start position is set to a radial
distance of 1000 Jupiter radii RJ with respect to the centre of Jupiter. Additionally, the
velocity of the spacecraft at departure is set to 3.4 km/s in arbitrary direction. The duration
of the mission is defined as the time lapsed between the initial start date and the time at
which the last flyby is performed by the spacecraft. This time-of-flight is set to a maximum of
four years.

The four Galilean moons, Jupiter and the spacecraft are defined in a Jovicentric coordinate
reference frame that coincides with the Mean Equator and the Prime Meridian of Jupiter at
epoch 58 849.0 MJD. The orbital elements of the moons at this epoch can be found in Table
A.1 in Appendix A. Physical constants and other constants related to the Jovian system can
be found in the same appendix in Tables A.2 and A.3. For the purpose of mapping the moons
a body-fixed coordinate frame is used for each moon. The b1 axis is pointing from the moon
to Jupiter and the b3 axis aligns with the angular momentum vector, which is normal to the
moon’s orbit plane. The last axis, b2, is perpendicular to the plane made up by the axis b1

and b3 and follows from the right-handed rule. Note that due to tidal locking (Io, Europa
and Ganymede) and the equal rotation periods of the orbit and the moon itself (Callisto),
the body and its surface are fixed with respect to the coordinate reference frame. With this
the moons can be mapped using the body-fixed reference system which is rotating in the
Jovicentric reference frame. At time tG the body-fixed unit vectors are given by Equations
(2.3), (2.4) and (2.5).

b̂1 = − xM (tG)

|xM (tG)| (2.3)

b̂3 =
xM (tG) × vM (tG)

|xM (tG) × vM (tG)| (2.4)

b̂2 = b̂3 × b̂1 (2.5)

Here xM and vM are vectors describing respectively the position and velocity of the moon
with respect to the coordinate reference frame.

The success of global mapping of the moons is described by maximising a performance index.
To determine this performance index, each moon is divided into a certain number of smaller
surfaces defined by the uniform icosahedron, see Figure 2.1. This shape is also known as the
football grid (Buckminsterfullerene or bucky-ball) made up by pentagons and hexagons. The
coordinates in the body-fixed reference frame of the vertices that make up the hexagons and
pentagons can be found in Tables B.1 and B.2 in Appendix B. There are 20 hexagons and 12
pentagons making a total of 32 faces. Each face is a unique part of the surface of the moon
and has a certain value FVi

. By performing close flybys over these faces the performance index
is increased. The performance index is given in Equation (2.6) and is also called the Total
Face Value.

J =

Nfby
∑

i=1

WSFVi
(2.6)

Here WS is the face value multiplier of the moon stating the importance of mapping that
particular moon, and Nfby is the number of close flybys. The values for WS are 1, 2, 1 and 1
for respectively Io, Europa, Ganymede and Callisto flybys. Note that the moon Europa is of
particular scientific interest and therefore has a value of two. Furthermore, the face values
FVi

also depend on which moon is being mapped. These values can be found in Table 2.1. A
maximum objective score of 324 points can be achieved when all faces are mapped. In Figure
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Figure 2.1: Three-dimensional representation of football grid and body-fixed coordinate axes. Adapted
from Petropoulos (2012).
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2.2 a longitude/latitude presentation is given of the football grid in which the faces with their
numbers are displayed.

Figure 2.2: Longitude/latitude representation of football grid. Adapted from Petropoulos (2012).

Table 2.1: Face values (Face numbers are illustrated in Figure 2.2).

Face numbers FV for Io, Europa FV for Ganymede, Callisto FV not new faces

1-8 1 3 0

9-14, 27-32 2 2 0

15-26 3 1 0

The performance index is only increased when a close flyby is executed. A close flyby is
defined by the minimum altitude which must be in the range given in Equation (2.7).

50 km ≤ hpS ≤ 2000 km (2.7)

Outside this range the instruments on the spacecraft are assumed not to be able to map the
surface of the particular face well as being too close to or too far from the surface of the moon.
Furthermore, the pericentre of the flyby needs to be above the surface of the face. In other
words, the vector from the centre of the moon to the pericentre is inside the pyramid defined
by the centre of the moon and the base of the pyramid. This base is defined by the vertices of
either the hexagon or pentagon face. When the vector goes through the boundary of the base,
that is the edge or corner (vertex), the face with the highest value connected to the edge or
vertex is considered. In case of a close flyby of an old face, that has been counted already, the
performance index is not affected. The same holds for when the flyby is outside the range in
Equation (2.7) and is therefore not a proper close flyby for scoring points.

Other constraints that apply to the spacecraft and trajectory are related to propulsion, mass
and radiation protection. The latter translates into the stringent constraint that the distance
of the spacecraft to Jupiter has to be larger than or equal to two times the radius of Jupiter
RJ , see Equation (2.8).

r ≥ RCAJ min = 2RJ (2.8)

Due to severe radiation that could damage the spacecraft significantly, solutions that violate
this constraint are considered catastrophic and therefore invalid.
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Figure 2.3: Mass penalty for closed orbits as a
function of the osculating periapsis
radius rpi and the apoapsis radius rai.
The white line defines the circular orbit
boundary.

Mass penalty against pericentre and energy
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Figure 2.4: Mass penalty for orbits as a function of
the osculating periapsis radius rpi and
the energy of the orbit E. The white
line defines the circular orbit boundary.

The spacecraft makes use of low-thrust propulsion which provides a maximum thrust of 0.1 N
with a specific impulse of 2000 s. Also the thrust is available in all directions and at all times.
The start mass of the spacecraft is 2000 kg and the amount of available propellant is set to
1000 kg. This sets the following mass constraint on the spacecraft.

m ≥ mmin = 1000 kg (2.9)

In addition to thrusting, the mass of the spacecraft can be decreased by mass penalties to
account for necessary radiation protection. Mass penalties are awarded when the spacecraft’s
trajectory is in close proximity to Jupiter. Close proximity is defined as having the oscillating
periapsis between two and 17 Jupiter radii. Below two Jupiter radii was already considered
catastrophic with respect to radiation. The relation for the mass penalty due to this violation
is given in Equation (2.10).

mpen, k+1 = 5
N
∑

i=1



1 −
( rpi

RJ
− 2

15

)2


 ·

(

1 +
1

1 + rai

RJ
− rpi

RJ

)



(1 + sign (rai))
1 + sign

(

17 − rpi

RJ

)

4



 (2.10)

m
(

t+Gk+1

)

= m
(

t−Gk+1

)

−mpen ,k+1 (2.11)

The relation determines the mass penalty between two consecutive flybys. These flybys occur
at times tGk

and tGk+1
and the penalty mpen, k+1 is defined for tGk

≤ t < tGk+1
. In the

equation, N is the number of close approaches to Jupiter which occur between the two flybys.
A close approach represents a local minimum in the range to the centre of Jupiter. For each
ith close approach the osculating periapsis rpi and apoapsis radius rai with respect to Jupiter
are determined based on the position and velocity of the close approach.

Not to mention, as follows from Equation (2.10), the mass penalty is valid for close approaches
where the perijove (rpi) is equal or lower than 17 times the radius of Jupiter. Both rpi and rai

influence the amount of mass penalty. Hyperbolic and parabolic conditions are excluded from
the mass penalty computation. In Figure 2.3 the mass penalty is shown for various closed
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orbits whereas Figure 2.4 shows all kinds of orbits. Note the white lines (diagonal and curved)
separating the figures in two parts. They represent the circular orbit boundary and the area
south-east of those lines has no physical meaning.

The mass penalty mpen, k+1 for tGk
≤ t < tGk+1

is subtracted from the spacecraft mass

immediately after the next flyby at tGk+1
. The latter is defined as m

(

tG+

k+1

)

whereas the

mass penalty during the time interval right before the next flyby is written as m

(

tG−

k+1

)

. The

subtraction of mass is also described in Equation (2.11). In case a close approach occurs at

tGk+1
the mass penalty is added to the next flyby at tGk+2

and is thus not part of m

(

tG−

k+1

)

,

but of m

(

tG−

k+2

)

which results in m

(

tG+

k+2

)

.

The last part of the problem description is the definition of the flybys using the patched-conic
approximation. The spacecraft approaches the target moon and enters the sphere of influence
of the moon. Inside the sphere of influence the spacecraft follows a hyperbolic trajectory
around the moon and then leaves the sphere of influence. The time spent inside the sphere
of influence is neglected in this problem, because this duration is very small compared to
the orbital periods on Jovicentric scale. Therefore at time tG of the flyby the Jovicentric
position of the spacecraft has to be equal to the position of the moon up to a 1 km accuracy,
see Equation (2.12).

|x (tG) − xM (tG)| ≤ 1 km (2.12)

The mathematical definition for the position of the spacecraft and the moon around the flyby
at time tG is given in Equation (2.13).

x (tG−) = x (tG+) = xM (tG−) = xM (tG+) (2.13)

Next, the velocity of the spacecraft immediately before the flyby at tG− determines the
incoming hyperbolic excess velocity v∞G− relative to the moon. Immediately after the flyby
at tG+ the spacecraft has reached the outgoing hyperbolic excess velocity v∞G+ which has
the same magnitude as the incoming hyperbolic excess velocity. Note that the velocity of the
spacecraft experiences a discontinuous change when performing a flyby. The computation of
the excess velocities has a tolerance of 1 m/s, see Equation 2.14.

|v∞G+| − |v∞G−| ≤ 1 m/s (2.14)

Furthermore, the hyperbolic excess velocity is constrained to a minimum value defined by
Equation (2.15)

v∞ ≥ 0.3 km/s (2.15)

The turn angle δ between incoming and outgoing velocities follows from Equations (2.16),
(2.17), (2.18) and (2.19).

v∞G− = v (tG−) − vM (tG−) (2.16)

v∞G+ = v (tG+) − vM (tG+) (2.17)

|v∞G+| = |v∞G−| = v∞ (2.18)

v∞G+ · v∞G− = v2
∞ cos δ (2.19)
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From the turn angle follows the altitude of the hyperbolic at pericentre which is given in
Equation (2.20).

sin

(

δ

2

)

=

µS

RS+hpS

v2
∞ + µS

RS+hpS

(2.20)

The vector pointing to the pericentre of the hyperbolic trajectory with respect to the moon is
given by Equation (2.21).

rpS = (RS + hpS)
v∞G− − v∞G+

|v∞G− − v∞G+| (2.21)

2.2 Research Objectives

The focus of this thesis research is not to find an improved solution to the GTOC6 problem.
Although a solution with the maximum score has not been found yet, several prestigious
teams have tried and are trying to improve the previous best score and some even succeeding.
This shows that the problem is of great interest by many and that the search for the optimum
solution has not stopped yet.

The focus of this thesis is on preliminary trajectory optimisation in complex moon systems.
More specifically, the main interest is focussed on finding effective ways to optimise moon
sequences using low-thrust propulsion and flybys. Especially the latter are of great influence
on the trajectory efficiency while the number of flybys and the low-thrust propulsion take
care of the complexity of the problem. The GTOC6 problem prescribes the use of one-body
dynamics, and that the moons alter the trajectory with an instantaneous flyby and that they
do not affect the trajectory otherwise. From this the following main research objective is
defined.

Evaluate the quality of different optimisation strategies for Galilean moon mapping trajectories
using one-body dynamics, gravity-assist manoeuvres and low-thrust propulsion.

Aspects to be addressed here are:

• Develop astrodynamic tools to design low-thrust multiple gravity-assist trajectories in
both the Solar and the Jovian system.

• Develop a global optimisation method to find the global low-thrust arc between two
consecutive flybys.

• Extend the global optimisation method to incorporate multiple gravity-assist manoeu-
vres.

• Design optimisation strategies and develop the algorithm to incorporate the previous
described methods into one strategy optimisation algorithm.

• Compare the moon mapping trajectory results with other known solutions.

• Find the optimal strategy for the GTOC6 problem.
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2.3 Assumptions and Constraints

Since the focus of the research is on the optimisation strategies instead of finding a complete
solution to the GTOC6 problem, an additional constraint is introduced on top of those given
in the GTOC6 problem description and thereby reducing the scope of the research. The main
constraint is to reduce the flyby sequence from the total problem with 128 or more flybys to a
fixed subsequence of maximum five flybys.



3
CSU Solution Analysis

T
he GTOC6 competition finished by over more than two years ago, but still knows to
challenge group of individuals to find the optimal solution that maps all four Galilean

moons within the four years mission time. Champion of the official competition are the
Italians from Turin Polytechnic and “Sapienza” University of Rome with a score of 311 out
of 324. After the competition, the Advanced Concepts Team (ACT) of ESA that finished
second, improved their results and came to an astonishing score of 316. Nearly two years later,
Yang Gao from the Technology and Engineering Center for Space Utilization (CSU), Chinese
Academy of Sciences announced that they surpassed the best solution by four points, totalling
at 320. This is just four points short of the maximum. Their solution has not resulted in a
published paper yet, but they provided the trajectory files to their solution. With the latter a
detailed analysis of the trajectories to expect for the GTOC6 problem was performed to give
insight for the optimisation strategies. This analysis and the results will be discussed later in
this chapter.

3.1 Methodology of the CSU Solution

In contrast to an evolutionary algorithm that is used often in this problem by the other
contesters, the team of CSU went for the approach of human analysis of orbital mechanics.
Here two types of orbits are used to create the solution. The first is to find the transfers between
different moons in the form of double-moon cycler orbits. The global mapping is performed
with single-moon resonant orbits combined with back-flips (He and Gao, 2014). Although not
much more information is supplied by He and Gao (2014) on their techniques and methods, a
paper will be written soon with more details (according to email conversation). They announce
that their solution is a new form of flight mechanics that allows for interspersed mapping
with resonance. Also their moon sequence is derived from analysis of orbital mechanics. The
complete sequence solution of CSU can be stated in one line as follows

SOI-1Ca-4Ga-4Ca-4Ga-4Eu-32Io-28Eu-15Ga-2Ca-4Ga-2Ca-4Ga-2Ca-4Ga-18Ca

Here SOI is the sphere of influence and is followed by the gravity assists performed by the
spacecraft. The digit is the number of flybys at the same moon noted by the two first letters
of said moon. Most noteworthy to mention is the fact that most faces of one particular moon
are mapped in a few large sequences.

13
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3.2 General Mission Analysis

The paper (Izzo et al., 2013) published by the ACT of ESA on their solution to the GTOC6
problem allowed for considerable insight into the complex moon system problem. First, the
mission time is found to be very limited to successfully map all the Galilean moons. An
important conclusion from this follows that time is costly and essential and that multiple
revolutions (typical for low-thrust trajectories) are not desirable and should be avoided. This
is also further illustrated by the fact that capture of the spacecraft should happen fast with
as many flybys as possible. The latter will result in a high score within a small time frame.

Furthermore, thrusting is used for small adjustments of the trajectories whereas flybys are
utilised for major trajectory changes. However, the amount of change due to either flyby
or thrusting is not known and is explored by analysing the solution of CSU (He and Gao,
2014). Next, from the total available mass as propellant, only a small portion is reserved as
propellant for thrusting whereas the majority is used for paying the penalty of close encounters
with Jupiter due to radiation. The most important take here is that low-thrust propulsion is
not used for changing the trajectory and that flybys should be used effectively here. These
findings were also supported by Colasurdo et al. (2014).

3.3 Trajectory Analysis

The Chinese team from CSU, although not a participant of the competition, has computed
the best solution so far. Note, that the solution has not been verified yet by the organiser
of the GTOC6 competition, the Jet Propulsion Laboratory from NASA (according to email
conversation Petropoulos said that ”the solution looks solid/valid”). The solution files of
the trajectory were acquired from the Chinese CSU and underwent thorough analysis of the
characteristics of the trajectories. MATLAB was used to process the data and to generate the
results which are shown and discussed in this section.

To analyse the solution of the Chinese, the complete trajectory was rebuilt from their
solution files. The solution contains both thrusting arcs and Keplerian arcs where the latter
are propagated until the next arc or flyby to match the complete trajectory. During the
reconstruction the history of the orbital elements are stored for analysis later on. The complete
trajectory solution is shown in Figure 3.1.

In the figure the blue arcs represent the Keplerian arcs whereas the red arcs represent the
arcs where low-thrust propulsion is used. Immediately it can be noticed that low-thrust
has been used sparsely and that there are more Keplerian arcs than thrust arcs. Also the
capture of the spacecraft by Jupiter is clearly visualised in the figure and shows that after
several flybys the spacecraft maintains an orbit around Jupiter within the confinements of
the Galilean moons. As soon as the spacecraft enters the Galilean moon system it performs
two consecutive flybys within two days before making the large comeback orbit for the next
flyby. This manoeuvre is efficient and necessary to be captured by Jupiter. This was shown
by Gijsen (2014) who performed detailed moon flyby sequences in the Galilean moon system
using the Tisserand graph, an energy-based graphical tool to find optimal sequences of gravity
assist bodies. According to the author a minimum of two moon flybys is necessary to lower
the energy sufficiently to be captured by Jupiter. Note that the Tisserand graph is used with
the assumption of no applied thrust during transfers. This is used in this trajectory and
therefore only one moon flyby could be sufficient to have the spacecraft be captured.

The results of CSU require a division into the capture and mapping phase, because these two
phases are focussed on different aspects of the mission. Capture is focussed on reducing the
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Figure 3.1: Topview of the CSU GTOC6 trajectory solution.

Figure 3.2: Sideview of the CSU GTOC6 trajectory solution.
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energy of the spacecraft and thereby decreasing the semi-major axis and eccentricity. This is
done with both thrusting and flybys. For this thesis the focus is on the mapping phase and
therefore these first few flybys and corresponding thrusting arcs are ignored for the analysis.

Figure 3.3: Instantaneous semi-major axis a and eccentricty e during the complete solution of CSU.

Figure 3.3 shows the in-plane shape changes during the trajectory legs. It clearly shows
the capture phase which is characterised by lowering the energy of the spacecraft until it is
captured by Jupiter which happens when the semi-major axis switches from sign and the
eccentricity becomes below 1. A more detailed view of the mapping phase is given in Figure
3.4.

The results in Figures 3.3 and 3.4 show that the mapping phase contains eccentricities
below the value of 0.35. Also the values for the semi-major axis stay below 30 Jupiter radii.
Furthermore, the quick rapid changes are caused by a combination of a Keplerian arc followed
by a flyby and again followed by another Keplerian arc and flyby and so on. The CSU solution
is characterised by almost thrice as many Keplerian arcs than thrusting arcs.

Two more other orbital elements are of interest in this analysis, which are the out-of-plane
parameters inclination and right ascension of the ascending node. These are displayed in
Figures 3.5 and 3.6.

For both figures, again, the quick jumps can be seen as explained before. Next, it is interesting
to see, that to reach almost every face on the moons requires Jovian centric trajectory legs
with inclinations ranging from 0 till nearly 12 degrees inclination. Note that the orbits of
the moons are nearly planar, i.e. a maximum inclination of 0.5 ◦. The extreme difference in
the inclinations between the moon orbits and the trajectories is clearly visible in Figure 3.2.
This is explained by the fact that not all faces are easily accessible. Faces near the equator of
the moon and also in the vicinity of where the position vector of the moon would pierce the
body, i.e. longitudes of around zero or around 180 degrees, could potentially be mapped with
trajectories nearly similar to the moon. Other faces require the trajectory to be more inclined
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Figure 3.4: Instantaneous semi-major axis a and eccentricty e during the mapping phase of the CSU
solution.

to map them. As one could expect, the RAAN parameter utilises the full range of 0 till 360
degrees, because the RAAN parameter of each moon is also spread over the full range.

Next, the change of each orbital parameter is analysed. Here, the orbital parameters argument
of pericentre and true/mean anomaly are ignored for the time being. Note that the capture
phase is ignored. Another aspect that needs to be differentiated in the results shown in Figures
3.7 - 3.14, is the difference in effects caused by the flybys and the low-thrust propulsion.

In Figures 3.7 and 3.8 the change in semi-major axis is displayed, where it becomes clear that
the flybys affect the semi-major axis significantly compared to thrusting. For the extreme
cases it is a factor of 1000 and for the remaining case it is still 100 times larger compared
to thrusting. A similar observation can be made for the eccentricity in Figures 3.9 and 3.10
where the difference between effects caused by flybys and thrust arcs is around two orders of
magnitude.

The latter two orbital parameters relate to the size and shape of the orbit. In Figures 3.11 and
3.12 the change in inclination is shown followed by the right ascension of the ascending node
in Figures 3.13 and 3.14 which are defining the orientation of the orbit. Again the important
notion can be made for the inclination that the flybys take care of the main change required
in inclination with values in the order of a magnitude of 2 higher compared to the low-thrust
counterpart.

In the results of RAAN parameter there is something else going on. On the global scale
there is a magnitude of 2 difference again between the contributions of flybys and thrust arcs.
However the large variations for RAAN are grouped around the absolute value of 180 degrees.
This can be explained by the fact that low-inclination orbits may experience a decreasing
inclination past zero degrees so that the orbit goes through reference plane. This ”negative”
inclination does is not exist, because the inclination is defined as a positive value ranging from
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Figure 3.5: Instantaneous inclination i during the complete solution of CSU.

Figure 3.6: Instantaneous RAAN Ω during the complete solution of CSU.
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0 till 180 degrees. Instead the inclination remains positive, but the orientation of the orbit is
rotated a 180 degrees about the Z-axis which equals the rotation of RAAN. This rotation of
180 degrees comes back in the performance measurements of the spherical shaping method in
Chapter 4 where the RAAN parameter plays an important role.

To sum up, it becomes immediately clear that the flybys are causing the largest changes
which is also obvious due to the possible instantaneous changes and thereby avoiding long
duration propellant consuming thrusting with the spacecraft. An important conclusion follows
that the low-thrust propulsion is used for small changes and mostly in-plane. This is logic,
because out-of-plane changes (inclination) require relatively considerable amounts of ∆V . In
Figure 3.15 it is shown how much ∆V is required for the low-thrust arcs followed by Figure
3.16 where the control accelerations of the spacecraft required to follow the trajectory and
the corresponding thrust levels are shown. The vertical lines represent the shut down and
activation of the low-thrust engine, due to flybys or coasting arcs. Note that the flybys are
officially not powered according to the GTOC6 definition.

More elaborate analysis of parts of the CSU solution data is required for the subject optimisa-
tion. These analyses will be made in the corresponding chapter, because of the specific nature
of the data. In Table 3.1 an overview is given of the range of values for the orbital parameters
that are to be expected during the mapping phase of GTOC6.

Table 3.1: Characterstics for the orbital elements of the mapping phase of the CSU solution.

Orbital parameter Unit Lower bound Upper bound

a [RJ ] 5.0 27.0

e [-] 0.0 0.35

i [◦] 0.0 12.0

Ω [◦] 0.0 360.0

ω [◦] 0.0 360.0

θ [◦] 0.0 360.0

Note that these values are not binding for the GTOC6 problem. Different methodologies can
result in different trajectories to achieve the same result. For example Yam (2012) found
trajectories with an inclination of nearly 23 ◦. Therefore these values are used with caution.
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Figure 3.7: Change in semi-major axis a due to flybys.

Figure 3.8: Change in semi-major axis a due to low-thrust arcs.
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Figure 3.9: Change in eccentricity e due to flybys.

Figure 3.10: Change in eccentricity e due to low-thrust arcs.
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Figure 3.11: Change in inclination i due to flybys.

Figure 3.12: Change in inclination i due to low-thrust arcs.
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Figure 3.13: Change in RAAN Ω due to flybys.

Figure 3.14: Change in RAAN Ω due to low-thrust arcs.
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Figure 3.15: Required ∆V for low-thrust arcs.

Figure 3.16: Thrust T and acceleration a for low-thrust arcs.



Part II

Low-Thrust Multiple Gravity-Assist Trajectory
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4
Low-Thrust Trajectory

T
he low-thrust trajectory black box consists of three major blocks. Each block is essential
for creating the trajectories required for the GTOC6 problem. The first block is the

low-thrust trajectory model which is discussed in this chapter. Besides low-thrust propulsion,
the trajectories are influenced by flyby manoeuvres and the objective of the GTOC6 problem,
global mapping of the Galilean moons. The latter two blocks are detailed in the sequential
chapters.

4.1 Spherical Shaping

The spherical shaping method by Novak and Vasile (2011) is inspired by the pseudo-equinoctial
elements of Vasile and Pascale (2006). Instead of using non-singular elements in the pseudo-
spectral method, the spherical shaping method applies parametrisation in spherical coordinates.
In this section a brief explanation of the method is given and the reader is referred to Novak
and Vasile (2011); Novak (2012) and in specific Roegiers (2014) for the detailed description
and analysis of the algorithm supplied in the Tudat toolbox.

The spherical coordinate system is shown in Figure 4.1.

Figure 4.1: Illustration of the spherical coordinate system. (Novak and Vasile, 2011)

27
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Instead of having the default spherical state vector x =
[

r, θ, φ, ṙ, θ̇, φ̇
]T

, with spherical

shaping the angle θ is chosen to parametrise the trajectory. This results in three shaping
functions for the radius r = R (θ), the angle φ = Φ (θ) and the time t = T (θ), which replaces θ.
The new state vector is x = [r, t, φ, r′, t′, φ′]T . Here the prime ′ stands for the derivative with
respect to the parameter θ. The corresponding equation of motion in spherical coordinates is
given in Equation (4.1).

θ̇2 d2r

dθ2
+ θ̈

dr

θ
= −µ r

r3
+ u (4.1)

r = [r cos θ cosφ, r sin θ cosφ, r sinφ]T (4.2)

Here the radius vector r is defined in Equation (4.2) and θ̇ = 1
t′ and θ̈ = − t′′

t′3 . Furthermore,
u is the control acceleration vector.

The functions R (θ) and Φ (θ) define the geometry of the shape whereas the function T (θ)
defines the time evolution along the trajectory. Novak and Vasile (2011) derived the following
relation for the time function in Equation (4.3) resulting in reasonable thrust profiles. Other
arbitrary functions resulted in thrust profiles that could not be considered low-thrust.

T ′ =

√

DR2

µ
(4.3)

The expression for D is given in Equation (4.4).

D = −R′′ + 2
R′2

R
+R′φ′φ

′′ − sinφ cosφ

φ′2 + cos2 φ
+R

(

φ′2 + cos2 φ
)

(4.4)

The radius R and elevation angle φ functions can be chosen arbitrarily, however, they do need
to satisfy the boundary conditions analytically.

The number of boundary conditions is determined by the initial and final state vector
x = [r, t, φ, r′, t′, ψ′]T giving a total of 12 BCs. Note that the spherical shaping method
normalises the boundary conditions before solving the trajectory and afterwards denormalises
the values back again. Two position boundaries (T (θ)) can be satisfied by selecting the
appropriate values for θ for initial and final position. This leaves one with 10 boundary
conditions that need to be satisfied by the shaping function R and Φ. In case the 10 are
satisfied, the time-of-flight is uniquely defined.

Novak and Vasile (2011) decided to use oscillating functions for the shaping functions R and
Φ which are given in Equations (4.5) and (4.6). Their motivation for these functions is that
the minimum-thrust arc is the Keplerian arc.

R (θ) =
1

a0 + a1θ + a2θ2 + (a3 + a4θ) cos θ + (a5 + a6θ) sin θ
(4.5)

Φ (θ) = (b0 + b1θ) cos θ + (b2 + b3θ) sin θ (4.6)

Note that 11 parameters are used instead of the 10 required to satisfy the boundary conditions.
The additional parameter allows for a degree of freedom for shaping the trajectory which is
used to satisfy the time-of-flight constraint. The latter can not be solved analytically and
therefore a numerical iteration (root-finding) is performed. In this form the method does not
have free parameters and therefore has limited flexibility for optimisation.

The spherical-shaping method is able to cope with the rendezvous problem and can therefore
match both position as well as velocity. Also three-dimensional trajectories and multiple
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revolutions can be handled. Thrust limit on the other hand, is done by applying constraints
afterwards and not during the shaping. This is a significant disadvantage, because the thrust
has to be computed after which it can be determined if the trajectory violates the maximum
thrust. It is preferable to set the maximum thrust level a priori.

4.2 Limitations to the Tudat Implementation

Besides the general limitations of the spherical shaping method noted in the previous section,
Roegiers (2014) found several additional limitations in her practical application of the method
worked out for the Tudat software library.

First of all, the inclination of the implementation is limited to several tens of degrees due to
the assumed elevation function in Equation (4.6) to shape the third dimension. In this chapter
an elaborate analysis is performed of the limitations of the performance of the spherical
shaping method, to get a thorough picture of the orbits and trajectories that the algorithm
is able to produce without significant errors in orbital states and other parameters like ∆V .
This is important for the actual trajectory computations in the GTOC6 problem, where the
flybys change the characteristics of the current trajectory instantly.

According to Roegiers (2014), the limitation of the elevation function also has its influence
on the allowable RAAN values for the departure and arrival conditions of the rendezvous
problem. Besides that, identical in-plane orbit transfers at different inclinations were giving
different ∆V values. This was solved with a transformation fix by Roegiers (2014), however,
this did not improve the performance with respect to the RAAN parameter. Also this will be
treated in this chapter.

On top of the limitations the algorithm was only analytically verified. The spherical shaping
method computes the trajectories by solving the two-point boundary value problem and
therefore needs to solve several intermediate shaping equations. In cases of extreme and exotic
trajectories, one or more of these equations will not result in a solution (not solvable) and
therefore the trajectory is invalid. To verify the latter a number of control points along the
shaped trajectory are computed. Each point is checked to verify that the solution does not
violate the assumptions and that the shaping functions do not result in significant errors.

As an example, for a highly-eccentric inclined orbit the shaping method has trouble to find a
suitable trajectory. The orbital states of the control points deviate from the desired trajectory.
The errors accumulate resulting in a final orbital state that does not match the given arrival
point of the two-point boundary value problem. Analytical verification is in place to assure
that the solutions are valid and that the shaped trajectories reach their intended destination.
As already mentioned, the analytical verification is available, though numerical verification is
not. The latter is discussed in Section 4.4.

The maximum error for the position and velocity values at the destination are set to respectively
1 m and 1 × 10−6 m/s per AU. A position error of 1 m is considered acceptable in case of
analytical verification. This means that the shaped trajectory is allowed to deviate a maximum
of 1 m of the intended arrival position. A similar analogy applies to the velocity error and
the arrival velocity. Significant position and velocity errors in the analytical solution indicate
that the trajectory is not suitable for this implementation of the spherical shaping method in
Tudat. Therefore the more strict the position and velocity errors are, the more reliable the
solutions are that are made by the shaping method. On top of this the numerical integration
will introduce another error on top of the analytical inaccuracy. The latter will be discussed
in Section 4.4.
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4.3 Additional Components to the Tudat Implementation

Before the Tudat implementation could be used to its full extent for the GTOC6 problem,
there were a few new features and error handling that were added to the implementation.

It was mentioned in the previous section that the analytical verification could potentially
result in errors along the control points. For highly-eccentric inclined orbits the time shaping
function D in Equation (4.4) would result in negative values at one or more control points
along the trajectory. Negative values indicate that the local curvature of the trajectory is
curved away from the central body which is not allowed. Beside negative values, the algorithm
available in Tudat produced NaN (not a number, undefined) values as well. However, these
were not filtered by the method, allowing for incorrect solutions, marked as valid by the
algorithm. Therefore an additional check was added for these undefined values in the time
equation.

Although the implementation verified the solutions analytically, this did not mean that the
solutions were viable or practical. Therefore verification by numerical integration was added
to the implementation as well. In the research before this thesis two integration methods
were suggested to be tested (Hoving, 2014). The best option would be used for the complete
problem. The testing of the numerical integration is done in the next section.

Finally, the shaping algorithm in Tudat did not contain computations for mass and thrust
force during the trajectory for a user-defined electrical propulsion unit. This is needed for
determining thrust violations during trajectories, which were done after the trajectory was
computed, again at the control points. This was also added to the existing Tudat algorithm.

4.4 Verification of Trajectory

For the verification of the spherical shaped trajectories a proper integrator needed to be selected.
From the preceding literature research two suitable integrators were selected, namely

• RK7(8) - The embedded Runge-Kutta-Fehlberg method utilising a 7th-order integration
method and an 8th-order error estimation method.

• DOPRI8 - Also known as RK8(7) which is an embedded Runge-Kutta by Prince &
Dormand with an 8th-order integration method and a 7th-order error estimation method.

Also the workhorse RK4, a 4th-order Runge-Kutta method, was used. Using the RK4 with
its fixed step-size allowed for direct comparison of the control points that were computed
analytically with the spherical shaping method. In this way, both the accelerations and the
orbital states at all intermediate points between the arrival and departure state could be
traced and verified. Also debugging the propagation code was very convenient in this way and
allowed for identifying and solving several problems that occurred while computing the control
accelerations of the spacecraft required for each integration step. Although in the literature
study (Hoving, 2014) it was assumed that the RK4 would perform insufficiently compared to
the variable step-size integrators, it was included to avoid neglecting an integration method
that uses a relatively low amount of computational effort per integration step. However
comparing with the performance and the quality of the results of the other integrators the
RK4 was no match in terms of number of steps (considerable small step-sizes for the complete
trajectory), computation time, and position and velocity errors.

Variation of the orbital parameters (Modified Equinoctial Elements, Gauss’ form of planetary
equations) was selected in the literature research to do the propagation of the trajectory.
However, also Cowell’s method (direct integration of the acceleration in Cartesian coordinates)
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was used to verify the performance and the quality of the variation of orbital parameters
method. Again the fixed step-size RK4 was used to verify the MEE elements computed with
variation of orbital parameters.

The spherical shaping method is parametrised with the azimuthal angle θ and therefore the
independent variable for the integration is this azimuthal angle instead of the usual parameter
time. For time as independent parameter a conversion needs to be performed, which can only
be computed after the shape has been determined, since only after shaping the azimuthal
angle its derivative with time is known. This derivative needs to be integrated to come to the
time variable needed. This is a tedious and time consuming process if a certain time step is
to be expected and therefore time is not selected as a suitable independent variable. Using
time as an independent variable is considered an item on the future work list, discussed in
Chapter 11.

In Table 4.1 the results are shown for an arbitrary Earth-planet X transfer. Here the number
of revolutions is set to five. The table shows the final orbital state when arriving at planet X
for the analytical computation with the spherical shaping method and the two integrators.
Also both propagation methods have been shown, where the top shows Cowell’s method with
Cartesian coordinates and below is the variation of orbital elements using MEE. A few things
can be noticed clearly from the table.

Table 4.1: Results of integrators for propagation using direct integration of Cartesian coordinates (top)
and integration of Lagrange’s planetary equations with MEE (bottom). Absolute and relative
tolerances are set to 1 × 10−14.

Description Unit Analytical RKF7(8) DOPRI8(7)

x [m] 208039903233.6481 208039903233.6726 208039903233.6425

y [m] -2090471735.325027 -2090471735.316544 -2090471735.3747

z [m] -5174612856.376161 -5174612856.376186 -5174612856.376189

ẋ [m/s] 1173.498351890574 1173.498351890982 1173.498351890466

ẏ [m/s] 26296.66247574401 26296.66247574425 26296.662475744

ż [m/s] 520.8174308493636 520.8174308493649 520.8174308493742

Nsteps [-] 270 444

tcpu [s] 0.064026 0.102812

|xerror| [m] 0.0259035763240423 0.0499855722120127

|verror| [m/s] 4.696817155095998e-10 1.098095392332208e-10

p [m] 225957136071.9289 225957136071.9327 225957136071.9297

f [-] 0.08534789825483075 0.08534789825477763 0.08534789825482669

g [-] -0.03785208090442532 -0.0378520809044809 -0.03785208090442944

h [-] 0.010450298503653 0.01045029850365433 0.01045029850365347

k [-] 0.01232832999533678 0.0123283299953379 0.01232832999533641

L [rad] 6.272880482712712 37.68880701861052 37.68880701861048

Nsteps [-] 184 255

tcpu [s] 0.042946 0.059225

|xerror| [m] 0.02934584202593212 0.03531411073146219

|verror| [m/s] 4.679904566463769e-09 4.214644110182441e-09

1 Analytical refers to the control points computed by the spherical shaping method.
2 Orbital state at the arrival position.
3 Propagated trajectory is an Earth-planet X trajectory with 5 revolutions at epoch is 51544.5 MJD.

First, the RKF7(8) shows to be favourable with the number of steps. This also translates to
the computation time (less function calls) which is considerably less for RKF7(8) compared
to DOPRI8. On the absolute position error, again RKF7(8) is clearly more suitable for the
job. For the velocity on the other hand the roles are switched. Overall, the performance of
the RKF7(8) is dominant and especially the computation time plays and important role for
the given accuracy in the GTOC6 problem. The same holds for propagation using Cartesian
coordinates or MEE. MEE shows better performance in terms of speed and accuracy (except
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velocity). Note, that only one test case is shown here, but that these results are consistent for
many different test cases that were performed. These test cases consisted of different orbit
transfers with varying values for all orbital elements.

For numerical verification in this chapter the same position and velocity errors apply as for
the analytical verification. In other words, a maximum error for the position and velocity
values at the destination are set to respectively 1 m and 1 × 10−6 m/s per AU. Note that these
errors can be loosened by the constraints of the given problem. For now the shaping method
in general is tested and therefore these strict maximum errors are used.

The variable step-size integrators can be set with predefined absolute and relative tolerances.
For tolerances of 1 × 10−13 (both absolute and relative) and lower the required maximum
position and velocity error can be achieved for the DOPRI8 integrator. The RK7(8) requires a
tolerance of 1 × 10−14 to achieve similar results, though, it requires slightly less computational
effort. In the results of Table 4.1 the same tolerance of 1 × 10−14 is used to show the difference
in performance. However, the performance is similar for both integrators when using a
tolerance of 1 × 10−13 for DOPRI8. Therefore the results in Table 4.1 are used to determine
the integrator. This concludes the RKF7(8) integrator with the variation of orbital elements
as propagation method for the remainder of the thesis.

4.5 Testing and Analysis of the Spherical Shaping method

In this section the spherical shaping method is benchmarked. With the benchmarking the
performance and the limitations of the method are found that could give indications of
potential problems during the next phase of the GTOC6 problem, the optimisation of the
trajectories. All transfer trajectories which are considered here are rendezvous trajectories.
An important remark for all simulations in this section is that the time-of-flight is left free
for the spherical shaping method to solve. A fixed time-of-flight would result in complete
different transfers for different lengths of trajectories. Also accuracy of the trajectories would
be influenced by the constant time-of-flight. Therefore the time-of-flight parameter is left
free.

4.5.1 Curvature Verification

The spherical shaping method makes use of analytical verification of the computed shaping
functions. This is done by taking control points along the trajectory and calculate various
parameters at these points. Computing these values is a time-consuming process and by
reducing the number of control points the computation time can be decreased significantly.

One particular and important parameter value is computed with the shaped time function
D in Equation (4.4). Novak (2012) used this simplified function to shape the time to avoid
complexity and time-consuming computations. The assumption for the simplified function
was that in-plane the spacecraft can only thrust tangentially. Normal thrust is ignored. In
order to satisfy this assumption, the function D is not allowed to be negative anywhere along
the trajectory. Therefore only calculating the function values of D at the initial and final
control point of the trajectory is not sufficient. There must be a number of control points to
verify that the assumption is not violated Novak (2012); Roegiers (2014). A number of 20
control points was deemed a proper compromise between being effective, fast and thoroughly
verifying the trajectory up till a satisfying level by Roegiers (2014). Note that this number is
per revolution and therefore a constant interval in the independent variable θ is used to verify
the trajectories, also for increasing numbers of revolutions. A variation of 50 and 100 control
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points was performed to test the performance compared to the required computational effort.
It turned out that the number of control points is linearly proportional to the computational
effort. Only a few edge cases, which were valid with 20 control points, were considered invalid
after increasing the number of control points. However, the computational effort weighed
considerably in the decision to keep the number of 20 control points.

4.5.2 Limitations of various transfer trajectories

According to Roegiers (2014) the shaping method has trouble with trajectories that go past
inclinations of 50 ◦. Though several test cases were performed and with the comet Tempel 1
transfer being the extreme case with an inclination of 10.527 ◦ and eccentricity of 0.517, a
thorough test for the full range of values for each orbital element was not performed. To get a
picture of the limitations, a full test case was performed.

The test case concerns a transfer between Earth and a fictional planet X transfer, with Earth
and planet X at respectively 1 AU and 3 AU. The initial orbit of Earth is circular, has no
inclination and its departure position in the orbit is fixed during the test case. Also the other
orbital parameters are set to zero degrees. The destination orbit of planet X is changed to
reflect different geometries of the problem throughout the whole test case; only the semi-major
axis is kept constant. The parameters for planet X are not continuous and are given within
a range of values with defined step-sizes which are found in Table 4.2. Note that there are
two different step-sizes for the last three orbital parameters; the smaller step-size was used to
refine the test case after having obtained the initial results.

Invalid trajectories for this chapter are defined as analytically and numerically not verified. To
pass analytical verification the position and velocity values at the destination had a maximum
error of respectively 1 m and 1 × 10−6 m/s per AU. To clarify, the shaping method solves the
set of coefficients to shape the most optimal trajectory for the given boundary conditions
(departure and arrival states, time-of-flight and number of revolutions). However, for increasing
eccentricity and inclination (limited elevation function) the algorithm has more trouble with
shaping the trajectory. The trajectory starts deviating from the intended destination orbital
state. Due to accumulating errors along the trajectory the final position and velocity differ
from the intended arrival orbital state. For this reason, a maximum error is set on both the
position and velocity at the final boundary condition. Note that at this stage determining
the validity of the trajectories is only based on the position and velocity errors and whether
the algorithm can solve the coefficients to shape the trajectory (e.g. positive D function
values). The ∆V is considered in the next section. Note, the error value per AU is to scale
the maximum allowable error with distance (relative error).

Numerical verification is used to check if the trajectory is valid for a spacecraft to follow. The
same error is applied to the position whereas the velocity was set to 1 × 10−3 m/s per AU.
The latter is used to have the same ratio between position and velocity errors as is with the
propagation constraints of GTOC6. Note that the numerical position and velocity errors are
also defined with respect to the intended destination and not with the actual destination of
the shaped trajectory. This is because one wants to determine if the trajectory is able to put
the spacecraft at the intended destination point. Therefore the analytical boundary error is
kept significantly small.

In Figure 4.2 the results of the full test case are shown. A grand total of NG =193,536 transfer
trajectories have been computed from which 59,898 (30.95 %) are found to be invalid. The
invalid (both analytical and numerical) trajectories consider the full range of values for all
orbital parameters and the figure shows the inclination for which invalid trajectories occur. It
is clear that when all varieties of transfers are considered, that the spherical shaping method
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Table 4.2: Initial and final orbit parameters for determining the limitations of the shaping method.

Orbital Orbit Earth Planet X orbit

parameter Unit Lower bound Upper bound Step-size

a [AU] 1.0 3.0 - -

e [-] 0.0 0.0 0.95 0.05

i [◦] 0.0 0.0 85.0 5.0

Ω [◦] 0.0 0.0 360.0 22.5 / 45.0

ω [◦] 0.0 0.0 360.0 22.5 / 45.0

θ [◦] 0.0 0.0 360.0 22.5 / 45.0

produces invalid trajectories for all inclinations. Note that the invalid solutions with low
inclination are due to the high eccentricity transfers of 0.7 and more.

Filtering out the high eccentricity values creates a more clean result which is displayed in
Figure 4.3. Here eccentricities above 0.45 are removed from the search, leaving a selection of
the total of NS = 92,160 trajectories, and this shows that the spherical shaping method is
able to make transfers up till 45 degrees inclination (23.04 %, or 10.97 % invalid w.r.t. NG).
After that, the number of invalid trajectories increases relatively fast. Both figures confirm
the results from Roegiers (2014) that trajectories above 50 degrees inclination are invalid
even for reasonable orbital element parameters. To be precise, this translates to the fact that
spherical shaping (Tudat’s implementation) is not suitable for trajectories with an inclination
of 45.0 ĉirc and higher.

The final test is to find the values for the remaining orbital parameters for which the trajectories
start to fail (e = 0.45 and i = 45 ◦). To get a more clear picture for the parameters Ω, ω
and θ, the smaller step-sizes in Table 4.2 are used for said parameters. Also inclinations
above 50 degrees are neglected. This resulted in a grand total of NGS =495,616 transfer
trajectories from which 3,142 (0.63 %) are found to be invalid. For the edge case with e = 0.45
and i = 45 ◦, a total of 4,096 selected trajectories, only 12 (0.29 %, or 0.0024 % invalid w.r.t.
NGS) are invalid solutions. In Figure 4.4 the relaxations with the parameters Ω, ω and θ are
given.

Two observations can be made from these results. First, problem occur when the true anomaly
parameter is around zero degrees, meaning that the shaping method starts having trouble
when arriving at the pericentre of the arrival orbit. The destination pericentre comes closer to
the initial orbit for increasing eccentricity (in this case where the initial orbit is smaller). On
top of that, large inclinations require a considerable change in the orientation of the velocity
vectors compared to the departure velocity orientation in the initial orbit. Secondly, both
RAAN and the argument of the pericentre may lead to problems when their values are around
either zero or 180 degrees. Note that the set of the three parameters that belong to the same
invalid trajectory can not be read from the figure. For θ this is not of influence, however,
the combinations of Ω and ω are appear to happen around the same values. To clarify, if
Ω is around 180 degrees than so is ω, the same holds for around zero. The latter leads to
the conclusion that the shaping method may lead to invalid trajectories when the arrival
position is relatively close to the departure position for considerable large eccentricities and
inclinations in the arrival orbit.

The final conclusion from these test results is that the shaping method has no problem with
describing transfer trajectories, as long as the eccentricity and the inclination stay below
respectively 0.45 and 45 ◦. An important remark that comes with this conclusion is, that the
initial orbit is circular and not inclined. Also the remaining orbital parameters did not vary
during the test, which could be looked into for further research into the spherical shaping
method. And as final note, the results of this section are performed without the reference
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Figure 4.2: Inclination for invalid trajectories for the whole range of orbital parameters.

Figure 4.3: Inclination for invalid trajectories where the eccentricity is less or equal to 0.45.
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Figure 4.4: Orbital parameters for first invalid trajectories where the eccentricity equals 0.45 and inclina-
tion 45 ◦.

transformation fix suggested by Roegiers (2014) to solve the ∆V issue with in-plane transfers
at different inclinations. Though the fix was not used for this test, it was found that the fix
did not alter the results significantly.

4.5.3 Transfer Accuracy of Shaping Method

One problem during the development of the spherical shaping method for Tudat that Roegiers
(2014) encountered, was the deviating ∆V values for the same in-plane transfer at different
inclinations. These should result in the same values and for that reason she came up with a
reference frame transformation (RFT) fix that solved the problem caused by the elevation
shape function with the assumption of low inclinations. Also the Keplerian arc was made
possible with the fix. The fix involved rotating the initial and final orbit over the inclination
angle i, followed by a rotation of the RAAN angle Ω. After solving the coefficients for
the shaped trajectory, the reverse of the rotations was applied to get back to the original
situation. Though the in-plane transfers were corrected, it did introduce a new deviation in
∆V calculations in case of different RAAN parameters for the departure and arrival orbit.
According to Roegiers (2014) for an increasing difference in initial and final RAAN the error
in ∆V would increase considerably. In this section a thorough test is performed for both
versions of the algorithm to determine the efficiency and most suitable algorithm for the
GTOC6 problem.

The tests performed are again computing various transfer orbits, similar to the test in the
previous subsection. However, now both departure and arrival orbit are set to in-plane
transfers, and thus have the same inclination. In case of the test without the RFT fix,
increasing values for ∆V are expected while increasing the inclination of the same in-plane
transfer. Here the solution to the zero degrees inclination is used as a reference and to
determine the correctness of the transfer in an inclined plane. To be able to determine the
correctness a small change to the transfer trajectory is made. The destination orbit will
experience an offset in the RAAN parameter compared to the departure orbit. Note that,
except for RAAN, the remaining orbital parameters are kept the same for initial and final



4.5 TESTING AND ANALYSIS OF THE SPHERICAL SHAPING METHOD 37

orbit to be able to compare the transfer and to measure the influence of the difference in the
RAAN parameters. For the case with the reference frame fix, the previous tests are expected
to result in the same ∆V values for a relative difference of zero degrees in RAAN, hence
the fix. However, as soon as the RAAN of both orbits are different it is expected that the
increasing inclination will decrease the correctness of the shaping method for the same transfer
in that plane. This is, because both orbits have to be rotated over the angles i and Ω.

The accuracy of the transfer trajectories is determined as the deviation (error) in the computed
∆V required for the transfer. The velocity change is an accumulation of the accelerations
required for the trajectory which is determined with an RK4 integrator using the same number
of steps as used for the computing the control points (20). Note that the accuracy of the ∆V
computation is limited to the number of control points. Due to the fact that the number of
control points are directly related to the computation time, a sacrifice has to be made on the
accuracy on ∆V . Roegiers (2014) found an accuracy for ∆V of 1 × 10−5 AU/day ∼ 17 m/s.
Furthermore, Roegiers (2014) stated that for her test cases the exact same ∆V was computed
with an increased number (100) of control points. However, the computational effort was
increased severely. Therefore the ∆V computation is kept in the implemented form. The ∆V
is a proper comparison value for accuracy, because it takes into account the errors during the
whole trajectory and not just peak values of acceleration. For the test cases, two different levels
of accuracy are defined, which have a maximum error with the reference case of respectively
1 % and 5 %. The reference case is the transfer trajectory in the plane with an inclination of
zero degrees.

Before showing the full test case of a large range of applied relative RAAN changes, the focus
is set upon Figures 4.5 and 4.6. Here the difference between the RFT fix can be seen very
well. The figures that follow in this subsection show the limiting case of inclination for a given
case of initial and final eccentric orbit and a set error tolerance on the required ∆V . From
the first two figures it is unambiguous that without the RFT fix the inclination of transfer
trajectories is very limited up till 15 ◦ for ∆Ω = 0.0 ◦. Though the chosen elevation shape
function resulted before in invalid trajectories for larger inclination values (> 45.0 ◦), with the
accuracy taken into account it is even more limited. For the GTOC6 problem these values
would be even problematic, referring to the inclinations needed to map the moon faces in the
order of 12.0 ◦. On the other hand, the asymptote shows very clearly the result of the RFT
fix, allowing for higher inclinations without too much sacrifice on ∆V .

An important notion is that the absolute value of the inclination determines the level of
accuracy. For larger inclinations the shaping method becomes less accurate. In case of RAAN,
the accuracy is related to the relative difference in RAAN parameters of the initial and final
orbit. A departure orbit with RAAN of 0 ◦ and an arrival orbit with RAAN of 5 ◦ results in a
similar ∆V value as for orbits with RAAN’s of respectively 165 ◦ and 170 ◦. Here the change
in RAAN between initial and final orbit is the same resulting in a negligible difference in ∆V .
Note, that the latter is verified, but not shown in the figures. The figures show the results for
an initial orbit with RAAN of 0 ◦.

Another observation from Figures 4.5 and 4.6 is that the results are not symmetrical around
∆RAAN = 0.0 ◦. Take for example ∆V RAAN = ±10.0 ◦. There are slight differences in ∆V
and therefore the maximum inclination within the tolerance level, albeit it very small and
barely visible. This is due to small differences in trajectory length to reach the destination.
Figure 4.7 clarifies the latter. Here three different transfer trajectories are shown from Earth
to planet X. The trajectory with RAAN = 0.0 ◦ is displayed for reference purposes to compare
with the remaining two trajectories and makes one full revolution (Nrev = 1). It is clear that
the trajectories with destination RAAN = −10.0 ◦ and RAAN = 10.0 ◦ are not equal, the
former is shorter. Note that RAAN = −10.0 ◦ is the same as RAAN = 350.0 ◦ with zero
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Figure 4.5: Applicability for transfer trajectories with various eccentric orbits at different inclinations
and small relative RAAN changes. Maximum ∆V error is set to 1.0 % with respect to the
reference trajectory in the zero degrees inclined plane and the RFT is not used.

Figure 4.6: Applicability for transfer trajectories with various eccentric orbits at different inclinations
and small relative RAAN changes. Maximum ∆V error is set to 1.0 % with respect to the
reference trajectory in the zero degrees inclined plane and the RFT is used.
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Figure 4.7: Difference between orbits transfers where the arrival orbit has a RAAN offset with respect to
the departure orbit of ±10.0 ◦.

revolutions (Nrev = 0) whereas the other two trajectories make at least one full revolution
(Nrev = 1).

In Figures 4.8 and 4.9 the full test is shown for a continuous changing RAAN parameter
compared to the initial orbit. Here the RFT is not applied and it is immediately clear that the
increasing inclination has a negative effect on the applicability of the algorithm. Even worse,
the continuous increasing RAAN causes the maximum achievable inclination to decrease even
further. Though a RAAN value of 360 ◦ should equal the transfer with 0 ◦, the 360 ◦ has an
extra revolution added to the transfer. A change of RAAN of 361 ◦ is relatively speaking a
change of 1 ◦ with a complete revolution added. This is strictly taken not correct, because
the RAAN parameter is used for the orientation of the orbit and not for the position within
the orbit like the true anomaly. The RAAN parameter is constant for a given body (in the
simplified problem descriptions in this report). However, as shown in Figure 4.7 the length of
the trajectory influences the results and that is also related to the RAAN parameter of the
departure and arrival orbit if all the other orbital parameters are kept constant. Therefore in
the full test the number of revolutions is taken into account.

The results in Figures 4.8 and 4.9 show a decreasing trend of the maximum inclination possible
with the given error tolerance for increasing revolutions. From these results it can already
be concluded that the performance of the spherical shaping method without the RFT fix is
debatable for three-dimensional trajectories. Also they would be insufficient for the GTOC6
problem. Therefore at this point it can already be said that the RFT fix is needed to use the
spherical shaping method for the GTOC6 problem.

The same full RAAN test can be done for transfers with the RFT fix. These results are
shown in Figures 4.10 and 4.11. Here the effect of the RFT fix can be seen clearly. Even
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Figure 4.8: Applicability for transfer trajectories with various eccentric orbits at different inclinations.
Maximum ∆V error is set to 1.0 % with respect to the reference trajectory in the zero
degrees inclined plane and the RFT is not used.

for increasing number of revolutions, the efficiency for relative small RAAN changes is not
affected.

Finally, two specific cases for a GTOC6 problem are shown. Note that the spherical shaping
method normalises the semi-major axis of the given problem and therefore only the ratio of
the initial and final orbit have influence on the results, and not the absolute values. Therefore
most of the Galilean moon trajectories are not expected to show considerable differences
compared to their Solar system counter part of Earth and planet X. Although the same moon
transfer is an exception with its semi-major axis ratio of one, which will also be treated here.
The two cases concern the largest and smallest semi-major axis ratio between the moons.
The latter is also referred to as the same moon transfer (Europa to Europa in this case) and
results are shown in Figure 4.12.

Here it is clear that the errors are severe. Note that the usual tolerance of 1.0 % and 5.0 % is
not applied here. The reference trajectory for comparing here has the same departure and
arrival conditions, which results in ∆V = 0.0 m/s. Therefore a deviation of ∆V = 50.0 m/s
is considered acceptable as maximum error. The main difference with the other transfers is
that in this case there is no low thrust used to increase the semi-major axis. Therefore the
∆V value is actually needed just to overcome the accuracy flaw in the RAAN parameter of
the transfers. It is quite clear that these errors become considerably large for small changes
in RAAN already. With the previous results the ∆V required for increasing the semi-major
axis was relatively flattened out and therefore still acceptable inclinations could be achieved.
However, to conclude whether this is a huge disadvantage of the RFT fix for same moon (or
planet) transfers, the same case is repeated without the RFT fix.

The results for the RFT fix and without are shown in respectively 4.13 and 4.14. Surprisingly,
the original shaping method without the RFT fix performs even worse around ∆RAAN = 0.0 ◦,
which was not confirmed by Roegiers (2014). For an eccentricity of zero the trend of both
graphs is nearly the same except for around ∆RAAN = 0.0 ◦, where the RFT fix shows its
advantage. The remaining eccentric trajectories without the RFT fix display worse accuracies
compared to their RFT fix counter parts. From this it can be concluded that the RFT fix is
necessary for the spherical shaping method.
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Figure 4.9: Applicability for transfer trajectories with various eccentric orbits at different inclinations.
Maximum ∆V error is set to 5.0 % with respect to the reference trajectory in the zero
degrees inclined planeand the RFT is not used.

Furthermore, Figures 4.15 and 4.16 display various different moon transfers for the usual range
of eccentricities till the value 0.4. Though the colors are used to indicate the moon transfer
and not the eccentricity, it is clear from the previous results that the largest eccentricities
cause the most stringent inclination limitations.

Also the reverse transfer, from large initial to small final orbit, has negligible influence on the
results, even though the transfer trajectory is not exactly the same. This can also be said for
different reference values for the RAAN of the initial orbit. The change in the final orbit is
relative to the initial orbit. However, using a reference RAAN of 0.0 ◦ or for example 90.0 ◦

has shown negligible difference.

Besides the fact that the RFT fix is preferable in terms of accuracy there is another important
reason to go with RFT. Looking at the CSU solution of the trajectories in Chapter 3, it is
clear that low thrust is only used for small relative changes in RAAN whereas the inclination
does reach reasonable larger values which are absolute. The latter has more impact on the
accuracy than the small relative RAAN changes. Therefore, also for the GTOC6 problem it is
preferred to go with the RFT fix in the spherical shaping method.

Although it is clear from these benchmarks that the RFT fix is to be used to model the
trajectories, the RFT fix is not perfect either. An additional measure is needed to make sure
that valid and reliable trajectories are produced during the optimisation. This comes in the
form of a black box for the spherical shaping method that limits the transfer trajectories with
respect to various orbital elements and therefore avoiding too much error. The black box is
discussed in the next section.

4.6 The Black Box and its Limitations

After having benchmarked the spherical shaping thoroughly, there are several characteristic
trajectory cases that can be distinguished using the spherical shaping method. They are as
follows
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Figure 4.10: Applicability for transfer trajectories with various eccentric orbits at different inclinations.
Maximum ∆V error is set to 1.0 % with respect to the reference trajectory in the zero
degrees inclined plane and the RFT is used.

1 The shaping method is not able to shape a viable trajectory with the given boundary
conditions. This is most likely due to extreme trajectories with highly eccentric and
large inclination values. Also unsuitable combinations of time of flight and number of
revolutions can cause failed trajectories (negative and/or NaN values of D).

2 The shaping method is able to find plausible/viable trajectories. However, the final
boundary conditions (position and velocity) are not analytically verified, i.e. the final
control point has too much error with the desired arrival conditions.

3 The shaping method is able to find plausible/viable trajectories. However, the final
boundary conditions (position and velocity) are not verified with numerical integration.
This can be due to mainly accumulating errors during the numerical integration, or
mainly due to errors already existing in the analytical trajectory, though still within the
tolerances, or a combination of both. In case the analytical errors are relatively large,
near the tolerance values, it is likely that the error due to numerical integration will
surpass the set tolerances.

4 The shaping method is able to find plausible/viable trajectories and has verified them
with numerical integration. Although the trajectory is viable, it is still possible that
the computed trajectory is far from optimal due to the nature and assumptions of the
shaping method.

Only the last option results in valid trajectories. Although the trajectories can still be far
from optimal there is a solution to avoid these non-optimal solutions in the optimisation
phase. The proposed solution is a black box model for the low-thrust trajectory where ∆V
penalties are applied to non-reliable trajectories. In the black box there are three different
regions defined which are shown in Figure 4.17.

The first one is trajectories that are thought to have a maximum ∆V uncertainty of one
percent, which are considered valid, and do not receive a penalty. Trajectories with a maximum
∆V uncertainty of five percent are also considered valid, but not accurate, and therefore
have a penalty related to their uncertainty added to their ∆V to encourage the optimiser to
find better solutions. Instead of computing for every transfer the reference trajectory, the
uncertainty is based on the relative distance between the inner and outer boundaries of the
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Figure 4.11: Applicability for transfer trajectories with various eccentric orbits at different inclinations.
Maximum ∆V error is set to 5.0 % with respect to the reference trajectory in the zero
degrees inclined plane and the RFT is used.

triangle. For this the inclination and the change in RAAN is used of the boundary conditions
for the spherical shaping method.

The final region is outside the five percent uncertainty and these solutions are considered
invalid and results in a considerable large penalty, also related to the uncertainty. The scaling
of the penalties is needed to avoid the solution space of the problem becoming flat and
therefore impossible for the optimiser to get to the actual solutions. Each region is defined
by creating a triangle shape that fits the results shown in the figures in this subsection. As
mentioned before, the ratio of semi-major axis and the eccentricity are of influence on the
accuracy and therefore they need to scale the triangle that defines the valid region.

4.7 Final Remarks

Although the capture phase is not treated in this thesis, it is noteworthy to mention that
the spherical shaping method in its current implementation will have problems computing
near-parabolic trajectories. Adding potentially high inclinations that lower the performance
even more, leads to the conclusion that the spherical shaping method is not sufficient for
assessing the approach or capture phase of the GTOC6. However, this can be overcome by
the use of an improved elevation function for shaping the third dimension. This is the thesis
project of a fellow Master of Science student at the moment of writing (Vroom, 2015).
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Figure 4.12: Applicability for an Eu-Eu transfer trajectory with various eccentric orbits at different
inclinations. Maximum ∆V error is set to 50.0 m/s with respect to the reference trajectory
in the zero degrees inclined plane and the RFT is used.

Figure 4.13: Applicability for an Eu-Eu transfer trajectory with various eccentric orbits at different
inclinations. Maximum ∆V error is set to 50.0 m/s with respect to the reference trajectory
in the zero degrees inclined plane and the RFT is used.
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Figure 4.14: Applicability for an Eu-Eu transfer trajectory with various eccentric orbits at different
inclinations. Maximum ∆V error is set to 50.0 m/s with respect to the reference trajectory
in the zero degrees inclined plane and the RFT is not used.

Figure 4.15: Applicability for different moon transfer trajectories with various eccentric orbits at differ-
ent inclinations. Maximum ∆V error is set to 1.0 % with respect to the reference trajec-
tory in the zero degrees inclined plane and the RFT is used.
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Figure 4.16: Applicability for different moon transfer trajectories with various eccentric orbits at differ-
ent inclinations. Maximum ∆V error is set to 5.0 % with respect to the reference trajec-
tory in the zero degrees inclined plane and the RFT is used.

Figure 4.17: The regions defining the limitations of the blackbox for the spherical shaping method.



5
Multiple Gravity Assist

T
he gravity-assist manoeuvre is an important asset in the GTOC6 problem. Besides the
fact that the flybys are synonymous for mapping the moons from a certain distance,

more importantly, they allow for significant changes required in the trajectory to visit different
faces and moons. In this chapter the single non-powered flyby is discussed and extended with
the multiple gravity assists.

5.1 Single Unpowered Gravity-Assist

The gravity-assist manoeuvre is used to alter the orbital characteristics of the spacecraft.
Basically, the fly-by is a hyperbolic trajectory near the attracting body that occurs inside
the sphere of influence of that body. For the swing-by, the law of preservation of the total
momentum applies, see Equation (5.1).

msc, iVsc, i +mM, iVM, i = msc, fVsc, f +mM, fVM, f (5.1)

Here the subscripts i and f denote the initial and final state of the gravity-assist respectively.
For clarity, Jupiter is the dominating gravitational body whereas the moon is used for the
gravity-assist (subscript M ). Furthermore, sc stands for the spacecraft.

During the fly-by, the spacecraft and the moon exchange momentum resulting in an increase
of velocity or change in inclination (rotation of the velocity vector) for the spacecraft and
a decrease for the body assuming constant mass for both. Note that this is the case for a
gravity-assist where the spacecraft moves ’behind’ the moving body. The reverse is true when
the spacecraft performs the fly-by in ’front’ or ’ahead’ of the body. Since the moon is relatively
large in mass compared to the spacecraft, the effective velocity of the moon is not altered by
the gravity-assist.

For the GTOC6 problem the classical gravity assist is required for the trajectories. This means
that moons are assumed to have no atmospheres and that there is no impulsive, powered
flight, during the flyby.

A detailed view of the swing-by is given in Figure 5.1. Here the in-plane geometry is shown of
the swing-by which is happening inside the sphere of influence of the moon. The hyperbolic
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Figure 5.1: The in-plane geometery of hyperbolic encounter trajectories. (Cornelisse et al., 1979)

excess velocities V∞t and V ∗
∞t

are with respect to the moon and represent the velocities
with which the spacecraft enters and leaves the sphere of influence. Due to the conservation
of angular momentum the magnitudes of the excess velocities are the same. However, the
outgoing excess velocity is bent in a new direction after the gravity assist. In the reference
frame of Jupiter, in which the velocity of the moon V ′

t (in-plane) is defined, this means
a different velocity. Note that V ′

t is the projected velocity of the moon in the Jovicentric
reference frame on the trajectory plane. The asymptote of the incoming hyperbolic trajectory
approximates the aiming direction of the spacecraft for the gravity assist. Here the distance
between the centre of mass of the moon and the asymptote is defined as the impact parameter
B, where the vector B points to the aiming point on the asymptote. Furthermore, V3 and r3

denote the velocity and radius at the pericentre of the fly-by trajectory. The final important
parameters are the two angles α and β. The angle α represents the asymptotic deflection
angle and β defines the angle between the moon’s velocity and the symmetry line of the
hyperbolic trajectory.

The total change in velocity of the spacecraft due to the gravity assist can be derived from
the geometry on the right in Figure 5.1. Subtracting the two excess-velocity vectors, initial
and final, results into a simplified relation which is given in Equation (5.2).

∆V = 2V∞t sin
1

2
α (5.2)

Note that the initial and final excess-velocity vectors are equal in magnitude but not in
direction.

The classical gravity-assist algorithm is part of the Tudat software library and allows for a full
three-dimensional swing-by. Due to the fact that the flyby is performed instantaneously when
the position of the flyby body and spacecraft coincide, the spacecraft does not enter a sphere
of influence in which the hyperbolic trajectory around the moon is performed. Therefore the
orientation of the incoming trajectory can not be determined with respect to the swing-by
body, which means that it is not known whether the spacecraft passes ahead or behind the
body. Another parameter is needed to represent the out-of-plane component for the gravity
assist. This is introduced as a rotation angle which defines the rotation with respect to the
flyby plane that is defined by the velocity vector of the spacecraft and that of the swing-by
body.
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Figure 5.2: Visualisation of the Gravity Assist Manoeuvre using the Tudat method.

In Figure 5.2 the flyby as computed with the Tudat algorithm is visualised. On the left the
velocities of the spacecraft and the gravity-assist body are shown with respect to Jupiter.
Also the excess velocities with respect to the flyby body are shown together with the sphere
of rotation of these velocities due to the swing-by. On the right the actual flyby trajectory is
depicted inside the sphere of influence.

To use the algorithm of Tudat, a total of five input parameters need to be supplied. First the
flyby-body velocity, the spacecraft velocity and the gravitational parameter of the swing-by
body are given at the moment of the instantaneous flyby. As said before, because there is
no sphere of influence and therefore no flyby trajectory in said sphere, the orientation of the
trajectory around the gravity-assist body and also the pericentre radius of the flyby can not
be determined. Therefore these are supplied as well to the function, where the former is the
rotation angle mentioned before.

5.2 MGA

Multiple gravity-assist (MGA) manoeuvres are used for the GTOC6 problem to map the
moons and to decrease the amount of thrust needed by the propulsion unit. In essence the
MGA is a sequence of single gravity assists patched together, and in case of GTOC6 with one
or more low-thrust legs in-between. No other tools or algorithms are needed to perform MGA.
The sequence with the moon destinations does need to be known or can be made part of the
optimisation process. More information on the trajectory model for optimisation is discussed
in Chapter 8.
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A problem that is introduced when patching multiple GA’s is that the next GA depends
on the outcome of the previous GA’s. It is possible that a sequence of 3 flybys yields a
promising result whereas adding the fourth GA will make the solution far from desirable.
According to Novak (2012) this dependency can be removed by decoupling the legs from the
GA’s. This is done by introducing powered swing-bys. However, GTOC6 is only focussed on
the non-powered gravity-assists. Although, the continuous low-thrust legs between the GA’s
allow for a certain degree of decoupling. More on this will be treated in the results of the
optimisation problems in Chapter 10.



6
Moon Mapping

A
n important element of the GTOC6 problem is the global mapping of the moons which
is used as the main objective to be maximised given a number of constraints. For this

thesis study the mapping objective is taken into account as well, although not all simulations
performed in Chapter 10 are focussed on maximising the global mapping objective, they do
compute the mapped faces alongside the objective of optimising the ∆V . In this chapter
the mapping of the moons is further elaborated upon and it also discusses how the points
associated with it are computed.

6.1 Computational Geometry

In Chapter 2 the principle of moon mapping was explained and also how points can be scored.
A face on the moon was said to be mapped when the pericentre vector of the flyby with
respect to the moon pierces through that face on the football surface. To compute if the face
is pierced by the vector, use is made of computational geometry, specifically inclusion methods.
There are several if not many ways to assess the latter, however for the GTOC6 problem a
few considerations are important. First of all, the complexity and the size of the problem
result in a considerable large number of flyby computations and therefore the calculations
of the coverage of the moon faces as well. For this reason the algorithm to determine the
moon mapping score should be relatively quick and should also be lightweight in respect to
memory management. Another consideration is converting the three-dimensional problem
into a two-dimensional problem. This simplifies the algorithms considerably and keeps the
algorithms within a few computations.

The buckly ball consists of 32 polygons that represent the faces, from which 12 are pentagons
and 20 hexagons. These polygons are regular and convex, meaning that they do not have
intersections and that the sides and angles are equal. This simplifies the algorithm for finding
if the point (projection of pericentre vector onto hexagon or pentagon plane) is inside the
area of the hexagon or pentagon.

From Haines (1994) and Ward and Heckbert (1994) follows a comparison of several convex
inclusion methods and according to the latter the best option for convex polygons with a few
sides is either the half-plane method or the spackman test. Both methods do require a little
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Figure 6.1: Triangle-fan method. Adapted from
Ward and Heckbert (1994).

Figure 6.2: Line-plane intersection. (Morris, 2007).

preprocessing and additional memory for storing data on the polygons. However this is not
an issue, due to the fact that the computations will not happen on memory-limited systems
like on a spacecraft.

Also, Ward and Heckbert (1994) states that the half-plane method is slightly faster for
polygons having 3 or 4 sides compared to the spackman test. On the other hand, for a polygon
with 10 sides the performance is similar. Note that the moon polygons have 5 or 6 sides and
therefore it can be reasonably assumed that the half-plane method is slightly faster there as
well. Walker and Snoeyink (1999) confirmed that the half-plane performs better than the
spackman test. Therefore the half-plane method is selected to assess the inclusion of the
pericentre vector in the faces of the moon. The method is explained in the next section.

6.2 Pericentre Vector Pointing Algorithm using the Half-Plane
Test

The half-plane method is based on a simple dot product computation. One takes as example
a triangle that has three sides and vertices. The first side, made of two vertices is used as
baseline and the third vertex is used to define the ’inside’ of the triangle. By computing the
dot product it can be found that the third vertex is on the left or the right side of the baseline.
The same can be done for the point of interest to check for inclusion. If the dot products have
the same sign, than the point is on the same half-plane defined by the baseline as the third
vertex. Doing so for all the sides of the triangle in an ordered fashion it can be determined
if the point is inside a given geometry, in this case the triangle. It is important that the
vertices are sorted in order of drawing, either clockwise or counter-clockwise, to make sure
that all sides of the polygon have the same ’inside’ direction. This process can be sped up by
reversing the computation. Instead of determining for every side that the point is inside the
triangle, one can also determine if the point is outside the triangle. As soon as a point is on
the ’outside’ of one of the baselines, the polygon can be excluded from the search.

With the half-plane method all kinds of polygons can be tested and the usual way is to split
up the polygon into multiple triangles that are formed with the vertices of the main polygon.
A visualisation is given in Figure 6.1.

In case of a convex polygon, the triangle fan is not necessary, and one can traverse the sides of
the complete polygon with the half-plane method, instead of making several smaller triangles,
and therefore saving computation time (Haines, 1994). This is also referred to the exterior
edge strategy which according to Haines (1994) resulted in a factor of 1.7 - 11 times faster
computations. Note that all computations are done in two-dimensional space. Therefore the
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Figure 6.3: Moon mapping football and the pericentre vector of the flyby piercing through the corner of
three faces.

three-dimensional problem needs to be converted to a two-dimensional case. To do this, first
the pericentre vector is projected onto the plane of where the polygon of interest is residing.
This is in three-dimensional space as shown in Figure 6.2 where a line-plane intersection
computation is performed.

With the pericentre vector intersection found in the plane of the polygon the problem can be
converted to two-dimensional to allow for the half-plane check. The conversion is simplified by
ignoring one of the three dimensions for both the point as well as the polygon, preferably the
one with the least amount of information that will change the shape of the geometry the least.
By computing the normal of the polygon plane the largest component and the corresponding
dimension can be set to zero. Now the problem is two-dimensional. Note that due to the
conversion, the polygon is still convex, however, most likely not regular any more.

Since all polygons of the moon have to be evaluated, another additional computation is
added to speed up the algorithm. By defining a bounding box in the form of a cone in
the three-dimensional problem, where the tip of the cone is at the origin, it can be quickly
determined (with inner product) if the pericentre vector is inside the cone and thus most
likely on the inside of the polygon as well. This feature gave on average a speed boost of a
factor 5 compared to checking all the polygons in detail.

Now the algorithm is capable of detecting the polygons that have been pierced by the flyby
vector. Note that if the vector goes exactly through a side or vertex that is shared by multiple
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Figure 6.4: The longitude and latitude presentation of the mapping with the pericentre vector of the
flyby piercing through the corner of three faces.

polygons, all polygons are possible for being mapped. However, only one face can be mapped
at the time, and the face with the highest number of points will be returned as the surface that
is mapped with the given pericentre vector of the flyby as specified by the original GTOC6
assignment.
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Optimisation & Validation
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7
Optimisation Algorithm

T
he optimisation of the actual trajectory including multiple gravity assists is performed
with a well-known evolutionary algorithm. After a thorough selection procedure in the

preceding literature study (Hoving, 2014) it followed that DE is the most suitable candidate
for optimising a wide range of trajectory problems. However, DE comes in many varieties,
each having their pro and cons. This chapter will explore the available varieties and put them
to the test to see what the optimal settings are for the DE algorithm to tackle low-thrust
gravity-assist problems.

7.1 DE Basic Working Principle

One of the most powerful stochastic real-parameter optimisation methods nowadays, is the
DE algorithm. The algorithm is from the mind of Storn and Price (1997) and was designed
to fulfil the following requirements.

• Optimise non-differentiable, non-linear and multi-modal objective functions.

• Allow for parallel computing to handle complex problems that require considerable
computational effort.

• Easy to use algorithm by needing only a few robust control variables.

• Good and consistent convergence to the global minimum in independent trials.

The DE method is similar to the generally known genetic algorithm (GA), also based on evo-
lutionary computing. However, DE performs better than GA in nearly most cases concerning
trajectory design (Biesbroek, 2006). Because of its popularity there are many versions and
papers to be found on the subject. This section details the original method based on Storn
and Price (1997) and applies additional information from Das and Suganthan (2011).

The basic DE method consists of four main stages which are initialisation, mutation, crossover
and selection. Apart from the first stage, the other stages will be repeated until convergence
is found.
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Initialisation

The algorithm starts with an initial population of size NP . Each individual in the population
is defined as a D-dimensional parameter vector, see Equation (7.1).

xi, G, i = 1, 2, ..., NP (7.1)

The initial values for the parameter vectors are chosen randomly and in most cases are based
on a uniform probability distribution. It is possible to use a preliminary solution as initial
population xnom, 0. To ensure good optimisation a normally distributed random deviation
should be added on top of the preliminary solution xnom, 0.

Mutation

Mutation refers to creating new parameter vectors for the next generation. DE takes three ran-
dom parameter vectors defined by the mutually exclusive indices r1, r2 and r3 ∈ 1, 2, ..., NP .
The mutant vector follows from taking the weighted difference from the vectors r2 and r3 and
add this to the first vector r1. In Equation (7.2) the mathematical relation for the mutation
vector vi, G+1 is given.

vi, G+1 = xr1, G + F · (xr2, G − xr3, G) (7.2)

Here the parameter F is the weight of the differential term and is defined as F > 0 and is
one of the control parameters of the DE algorithm. The mutation is applied to each target
vector xi, G in the current generation of the population. In Figure 7.1 the mutation has been
visualised for a two-dimensional objective function.

Figure 7.1: An example of a two-dimensional cost function showing its contour lines and the process for
generating vi, G+1. (Storn and Price, 1997)
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Crossover

Crossover is added to the process to increase the diversity of the newly formed parame-
ter vectors. The vector acquired after crossover is called the trial vector uji, G+1 and the
mathematical relation is given in Equation (7.3).

uji, G+1 =







vji, G+1 if (randb(j) ≤ CR) or j = rnbr(i)

xji, G if (randb(j) > CR) and j , rnbr(i)
j = 1, 2, ..., D (7.3)

In Figure 7.2 the crossover operation is visualised. From Equation (7.3) follows that parameters
of the trial vector can be either taken from the mutant vector or the original target vector
depending on the conditions defined by random numbers and the parameter CR. The
parameter CR is the crossover constant ∈ [0, 1] and is a control input for the DE algorithm.
The term randb(j) ∈ [0, 1] is determined with a uniform random number generator for the
jth evaluation whereas the last term rnbr(i) ∈ [1, 2, ..., D] resembles a random chosen index
defining the parameter of the vector. From the conditions it follows that at least one parameter
of the mutated vector is passed on to the trial vector.

Figure 7.2: Illustration of the crossover process for D = 7 parameters. (Storn and Price, 1997)

Selection

The last step determines whether a parameter vector that has undergone mutation and
crossover continues to the next generation. By determining the objective function of the trial
vector uji, G+1 and that of the target vector xi, G the optimal of the two can be found and
this vector proceeds to the next generation. In case the performance of the two vectors is
equal, the trial vector is chosen to ensure that the individual target vector does not get stuck
on a plane of the objective function.

7.2 DE Schemes

The DE algorithm knows many varieties. A common way to distinguish the different schemes
is by using the notation DE/x/y/z. Here x represents the method for choosing the target
vector for mutation. The DE described here uses randomly chosen vectors which is denoted by
’rand’. However, instead of random also the optimal target vector of the current generation can
be chosen. This is denoted as ’best’. The parameter y defines the number of difference vectors
to be used. Finally, z determines the crossover scheme. The one used in the description in
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the previous section is independent binomial experiments denoted as ’bin’, but exponential
crossover ’exp’ is also possible (Das and Suganthan, 2011).

PaGMO, the optimisation toolbox by ACT of ESA, exploits a variety of schemes for DE
and the main schemes are taken into consideration for testing the algorithm. The selected
schemes use random or the best vector for mutation and one or two weighted difference vectors.
This gives five different schemes with different mutation vectors which come in the flavour of
binomial or exponential crossovers, making a total of ten schemes. Below the schemes are
listed with their mutation vector calculation.
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4. best/2/exp and best/2/bin
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5. rand/2/exp and rand/2/bin
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Das and Suganthan (2011), Storn and Price (1997) and Price (1996) suggested to use the
ten different DE schemes above. Also Musegaas (2012) tried the five exponential crossover
schemes for extensive tuning of his problems. None of the authors could find a scheme
that worked best for all their problems. The general notion is that the scheme is too much
problem-dependent.

Whereas having one difference vector is more considered the classic DE variant, the schemes
using two difference vectors are noteworthy according to Price (1996). Also Storn and Price
(1997) referred to cases of large population sizes NP where the diversity of the population is
improved by using two difference vectors.

Since the performance of each scheme is problem-dependent it is difficult to state which
schemes are preferred. Therefore a full scale testing is performed in the next chapter, to test
the performance of the DE schemes applied to the low-thrust problems using the spherical
shaping method by Roegiers (2014) and Novak and Vasile (2011) combined with gravity-assist
manoeuvres.

Although PaGMO supplies more schemes, only these ten are selected, because the adaptive
variant of DE, where F and CR are set during evolution, comes with the same schemes as the
ones listed above. This allows for comparison on two aspects. First, the performance of the
schemes is compared. Here the performance is defined as a combination of quality, computa-
tional effort (i.e. function evaluations, CPU time, number of generations for convergence) and
robustness. Secondly, the performance of the adaptive control parameters can be compared
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with the manually selected parameters. The adaptive DE method will be discussed in one of
the next sections.

7.3 Control Parameters and Population Size

DE is a simple method that only requires three control variables to tune the algorithm (F ,
CR and NP ). Consequently of its simplicity the algorithm requires a limited amount of
coding resulting in fast execution of the single steps. Furthermore, DE is designed for use in
parallel computing which is a necessity for very complex problems requiring many (objective
function) computations. Also, only a limited number of NP objective function evaluations
are performed per generation of DE.

The ranges for the control parameters were mentioned earlier in this chapter and are respectively
F > 0 and CR ∈ [0, 1]. According to Das and Suganthan (2011) the range for F lies typically
in ∈ [0.4, 1]. For CR there are different options, like CR ∈ [0, 0.2] for objective functions
that are separable and CR ∈ [0.9, 1] for objective functions for which the parameters are
dependent. Also the range CR ∈ [0.3, 1] is a plausible option according to Das and Suganthan
(2011).

The selection of the number of individuals (population) and the number of generations is still
to be selected for the algorithms. According to Storn and Price (1997) a usually good range
for population size is between 5 D to 10 D. Here D is the dimension of the problem (number
of decision variables). On the other hand recent authors (according to Das and Suganthan
(2011)) state sizes between 3 D to 8 D. Again, the problem has influence on what population
size is most suitable and therefore a population size test is added to the benchmark in the
next chapter as well. Also the number of generations is problem dependent and on how well
the problem converges. However, a maximum number of generations can be set for which the
optimisation should evolve the population in case convergence is not met. These maximums
are defined per problem and are discussed in the following chapters.

7.4 Adaptive Control

One of the main disadvantages of DE and at the same time for the whole class of stochastic
optimisation methods is that obtaining the global optimum is not guaranteed. Also the
algorithm could get stuck in a local optimum. Furthermore, stochastic methods can be applied
to a wide variety of problems, however, the performance is often problem-dependent. In case
of DE, the parameters are very sensitive (Gämperle et al., 2002). Therefore tuning of the
control parameters to the problem at hand is required which is a time-consuming procedure.

An alternative to tuning the control parameters of the DE algorithm manually, is to let these
parameters be defined and altered by the evolution itself. In this way the time-consuming
fine-tuning of the control parameters is avoided. On top of that, the control parameters are
not constant during the full evolution of the population and can therefore utilise the strength
of certain combinations of parameters depending on where in the evolution the population is
evolving. If convergence is needed, the control parameters will be adapted to allow for swift
convergence and therefore not allowing many new random individuals that will slow down
the convergence. However, self-regulating control parameters might not be feasible for very
time-consuming problems (Brest et al., 2006).

Both tuning the control parameters as well as choosing a suitable scheme for the problem at
hand is very important according to Price (1996) and Musegaas (2012). Finding the optimal
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settings requires multiple runs and can be time consuming and therefore adaptive is considered
to overcome this (Brest et al., 2006). Note that adaptive requires more computations for
determining new F and CR values, which in turn should improve the optimisation and therefore
also save computational time. In the next chapter the tuning of the DE algorithm is further
elaborated.

PaGMO comes with an adapted version of the DE algorithm called jDE. Two flavours are
present at the time, meaning two different schemes to apply as adaptive control. The first
scheme is based on Brest et al. (2007) and Brest et al. (2009) and uses the following equations
to adapt the control parameters F and CR.

F i, G+1 =







Fl + rand1 · Fu if rand2 < τ1,

F i otherwise
(7.9)

CRi, G+1 =







rand3 if rand4 < τ2,

CRi, G otherwise
(7.10)

For each individual a set of F and CR values is computed for each generation. Here randj ,
j ∈ [1, 2, 3, 4] are uniform random values ∈ [0, 1] and τ1 and τ2 represent the probabilities
of adjusting the control parameters F and CR or keeping the control values of the previous
generation. The probability values are given the value 0.1. Furthermore, the new F values are
determined inside a range defined by Fl and Fu and by default are between 0.1 and 0.9. The
CR values are completely defined in the range ∈ [0, 1]. The values are randomly initialised at
the beginning of the evolution.

The second adaptive version is from the mind of Elsayed et al. (2011). He employs a similar
computation for the control parameters as with the mutation vectors in the DE schemes. For
each scheme there is a specific mutation of both control parameters. Below the adaptive
scheme for each DE scheme is given.
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3. rand-to-best/1/exp and rand-to-best/1/bin
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4. best/2/exp and best/2/bin
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5. rand/2/exp and rand/2/bin
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Also for this adaptive version each individual has a set of F and CR computed for each
generation. Here randj , j ∈ [1, 2, 3, 4, 5] are uniform random values ∈ [0, 1]. The calculation
for the control parameters is exactly the same as for the mutation vector, except that control
parameters F and CR are computed instead of the velocity vector. Furthermore, the difference
vector is multiplied with a uniform random value in the range [0, 0.5].

According to Brest et al. (2006) the adaptive versions make use of good F and CR combinations
during the evolution that were also found by extensive tuning of the normal DE for the same
problem. This advantage makes the adaptive DE less problem dependent, because the better
combinations of F and CR are found during the optimisation. For the research in optimisation
techniques, where the problem dimension (number of legs and GA’s) are different, this can be
a considerable advantage, because time is saved on time-expensive tuning. Note that tuning
the population size remains a necessary process as it is for the normal DE algorithm. The
next chapter will deal with the tuning and thoroughly testing the control parameters on two
different problems.
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8
Trajectory Leg Optimisation

O
ptimisation knows many settings and options and can become a very time-consuming
process, specifically for complex problems. Also the model that describes the problem

needs to be validated in order to trust the results that are coming from the optimiser. Therefore
this chapter deals with the benchmarking of two different trajectory problems defined by
Novak (2012) to compare the results and to fine tune the settings required to have smooth
optimisation of the actual GTOC6 problem in the next chapters. First the two different
trajectory problems are given. This will be followed by the test case of DE and adaptive DE.
Due to problem dependency and sensitivity to the combination of control parameters and
schemes the best algorithm and scheme are chosen after the full test case. This is followed by
determining the optimal population size. The algorithm and settings that follow from this
chapter will be used for the GTOC6 optimisation problem.

8.1 Trajectory Problems

The test suite for the control parameters for DE and the adaptive variants consists of two
different problems. One problem is a single low-thrust trajectory from Earth to the comet
Tempel 1. The second one is a low-thrust trajectory from Earth to the asteroid Apollo with a
gravity-assist manoeuvre at Earth. Both problems are taken from Novak (2012) and one of
the main reasons for that is that they are also solved with the spherical shaping method. The
latter allows for better comparison of the results, even though implementation and problem
definition differences can still influence the results. All problems are defined in the ecliptic
and mean equinox of J2000.0 reference frame.

8.1.1 Earth - Tempel 1

The first test problem is a single low-thrust transfer from Earth to the comet Tempel 1. In this
case there is no gravity-assist manoeuvre involved and the target is an inclined and eccentric
orbit, which provides a challenge for the spherical shaping code. Note that the spacecraft is
rendezvousing with the comet and that at departure and arrival no velocity impulse is given
(i.e. V∞ = 0.0 m/s).

65
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Furthermore, Roegiers (2014) performed the optimisation of several low-thrust trajectories
using grid search including the comet problem. In theory, similar results are to be expected
with the problems from Novak (2012). However, Roegiers (2014) noticed slight deviations in
the results which she contributed to differences in the implementation of the shaping method
and to settings used for various computations during the spherical shaping of the trajectory.
Among the settings are constants (e.g. gravitational parameters, AU) and ephemerides of the
celestial bodies. Also for this problem her result (∆V = 11.51 km/s) deviated considerably
from the solution (∆V = 11.13 km/s) of Novak (2012). For the validation of the optimisation
model a value for the true anomaly has been assumed, see Table 8.2. However, the true
anomaly could be introduced as an extra decision variable in the optimisation model to find
the true anomaly angle that solves the discrepancy with the solution of Novak (2012).

The low-thrust problem is defined with three decision variables, namely the start epoch, the
time-of-flight and the number of revolutions. As input for the optimisation, the same values
used by Novak (2012) and Roegiers (2014) are applied, see Table 8.1. The population size used
for the optimisation by Novak (2012) is 10D, where D is the decision vector size. Accordingly,
a total of 30 individuals make up the population.

The orbital elements of the comet Tempel 1 are given in Table 8.2. Note that the sixth Kepler
element is not given in both papers and therefore it is assumed that the actual position of
the comet in the orbit is given by NASA’s small body database. This element could be one
reason for the difference in ∆V in the solutions of Roegiers (2014) and Novak (2012).

Table 8.1: Decision vector for the Earth - Tempel 1 problem.

Variable Unit Lower bound Upper bound

Epoch [MJD] 51544.0 57390.0

Time-of-flight [days] 400.0 1500.0

Nrevolutions [-] 0 2

Table 8.2: Orbital elements of comet Tempel 1 (Novak, 2012).

Element Unit Apollo

a [AU] 3.124

e [-] 0.517

i [◦] 10.527

Ω [◦] 68.933

ω [◦] 178.926

θ1 [◦] 0.0

1 Assumed value for
true anomaly at epoch
57 602.018 MJD (Park and
Chamberlin, 2015)

The Tempel 1 problem has only three decision variables and therefore allows to create a pork
chop plot of the solution space. It gives insight into the problem and whether the optimisation
algorithm is searching in the correct areas. The result is displayed in Figure 8.1. In principle
three different pork chops could be created, one for each number of revolutions. However,
the pork chop in Figure 8.1 is made in the same way as done by Novak (2012) and Roegiers
(2014) to be able to compare the results. Both authors stacked the individual pork chops on
top of each other, allowing for the optimal result of the three layers to be shown.

The main goal of this optimisation problem is to achieve the value of ∆V = 11.51 km/s (with
epoch = 55 669.0 MJD, TOF = 1460 days and Nrevolutions = 0) acquired by Roegiers (2014)
or even better. Due to the nature of the grid search that she applied it is possible that by
zooming in on the grid a better optimum can be found near one of the grid points that she
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Figure 8.1: Pork chop plot of the low-thrust trajectory from Earth to Tempel 1. The graph is the opti-
mal result of stacking three individual pork chops on top of each other for nr ∈ [0, 2].

computed as optimal. Unfortunately Novak (2012) did not mention the TOF or the number
of revolutions for his optimal solution.

8.1.2 Earth - Earth - Apollo

The second problem is a low-thrust gravity-assist transfer from Earth to the asteroid Apollo.
Here the spacecraft starts at Earth, performs a low-thrust arc to come back to Earth to
perform a flyby and then continues with the last thrust arc to get to the asteroid. Due to the
large eccentricity of the Apollo orbit the gravity-assist manoeuvre becomes necessary to keep
the ∆V of the thrust arcs low. This is also preferred for the GTOC6 problem and therefore
this makes a great test problem. Note that at Earth the spacecraft gets a velocity impulse
which is not included in the optimisation ∆V . This trajectory problem with flybys by Novak
(2012) is not performed by Roegiers (2014).

The low-thrust gravity-assist problem is defined with 13 decision variables which are given in
Table 8.3. Here the angles α and β define the orientation respectively in-plane and out-of-plane
of the hyperbolic excess velocity V−∞. hflyby, 1 and θrot, 1 are respectively the altitude and
the rotation angle of the flyby manoeuvre. The V−∞, 1 and corresponding orientation angles
define the hyperbolic excess velocity before the gravity assist. This is needed because the
spherical shaping method handles rendezvous conditions at both the departure and arrival
node. Therefore the arrival velocity at the flyby needs to be known in order for the shaping
method to create a trajectory. Note the middle block of seven decision parameters that defines
one low-thrust arc with a gravity-assist manoeuvre attached to it. This block can be used
iteratively as will be shown for the GTOC6 problem.

The actual decision vector and model used by Novak (2012) for optimisation are not known.
However, the boundary conditions for time-of-flight and maximum V−∞ were partially given
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and can also be found in Table 8.3. Furthermore, the population size used for the optimisation
by Novak (2012) is again 10D, making a total of 130 individuals as population.

Table 8.3: Decision vector for the Earth - Earth - Apollo problem.

Variable Unit Lower bound Upper bound

Epoch [MJD] 55197.0 57023.0

V−∞, 0 [m/s] 0.0 5000.0

α0 [◦] 0.0 360.0

β0 [◦] -90.0 90.0

T OF1 [days] 200.0 800.0

Nrev, 1 [-] 0 1

V−∞, 1 [m/s] 0.0 10000.0

α1 [◦] 0.0 360.0

β1 [◦] -90.0 90.0

hflyby, 1 [km] 200.0 10000.0

θrot, 1 [◦] -180.0 180.0

T OF2 [days] 200.0 1000.0

Nrev, 2 [-] 0 1

The orbital elements of the asteroid Apollo are given in Table 8.4. Again Novak (2012) did
not supply the true anomaly element and therefore a value was assumed, see Table 8.4.

Table 8.4: Orbital elements of asteroid Apollo (Novak, 2012).

Element Unit Apollo

a [AU] 1.471

e [-] 0.56

i [◦] 6.4

Ω [◦] 25.9

ω [◦] 285.7

θ1 [◦] 0.0

1 Assumed value for
true anomaly at epoch
54 933.135 MJD (Park and
Chamberlin, 2015)

An important remark on this solution is that the model by Novak (2012) used a coasting arc
to go from Earth to the gravity-assist manoeuvre at Earth. The model used here has two
low-thrust arcs, however it should theoretically be possible to aim for a coasting arc, for the
first thrust leg, with the spherical shaping method due to the RFT fix. Furthermore, Novak
(2012) applies extensive space pruning before optimisation. The resulting hyper-spaces with
promising search areas are to be optimised with DE. Another important remark, is the used
pruning method GASP. The method creates Lambert arcs and uses powered swing-bys to
allow for independent legs in the problem. Taking these considerations into account, it is clear
that comparing the solutions will be more difficult.

Also the details on the final result are minimal and only the total ∆V solution is given to the
problem which has a value of 10.25 km/s. Here 4.93 km/s is for the launch velocity at Earth
and 5.32 km/s is for the low-thrust arc. The total solution is a combination of low and high
thrust and because no further details are given on the optimisation model, it is not known
whether the trajectory is optimised for only the low-thrust arc or a combination of low and
high thrust. Therefore, it is assumed that both low and high thrust are optimised and that
a solution in the same order of magnitude of Novak (2012) will be considered adequate to
validate the model. More on the this is discussed in the next section with the results.
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8.1.3 Initial Results & Validation

Both problems were tested before starting on the complete benchmark. This was done using
the adaptive DE (jDE) algorithm using the default settings (DE/rand/1/exp and adaptive
scheme by Brest et al. (2009)). The population size was chosen similar to that of Novak
(2012), namely 10D, to allow for more compatibility with his settings for the optimisation.

For the Tempel 1 problem a maximum of 500 generations was set whereas for the Apollo
problem 2500 generations was the maximum. Convergence is defined by the built-in algorithm
of PaGMO. It determines every 40 generations if the summation of difference in either the
fitness variables or the decision variables decreased up till a certain predefined limit. This
limit was left to be the default value of PaGMO which is set to 1.0 × 10−6.

The initial results for the Tempel 1 problem provided the same solution for every repeated
optimisation run (10x) and are given in Table 8.5. From the results it is clear that the solution
is in the neighbourhood of and slightly improved compared to the solution of Roegiers (2014).
Note that the latter performed a grid search, however, the solution found is very close to her
solution. Therefore this problem is considered verified.

Table 8.5: Initial results Earth - Tempel 1 problem.

Variable Unit Hoving Novak Roegiers

∆V [km/s] 11.4951 11.13 11.51

Epoch [MJD] 53664.3 - 55669.0

Time-of-flight [days] 1497.39 - 1460

Nrevolutions [-] 0 - 0

1 10 out of 10 times.

The initial results for the Apollo problem provided not the same solution for every repeated
optimisation run (10x) and are given in Table 8.5. Because the model of Novak (2012) is
different, the same result is less likely to happen. However, in this case the result is consistently
and considerably better. This can be related to the model difference and the space pruning
that could have skipped uninteresting areas which did include promising values. Note that
this is the case for optimisation of both low and high thrust. Furthermore, the results from
the optimisation were verified with numerical propagation and are therefore considered valid
solutions.

Table 8.6: Initial results Earth - Earth - Apollo problem.

Variable Unit Hoving Novak

Total ∆V [m/s] 8764.291 10250.00

Total ∆V [m/s] 8777.342 10250.00

Total ∆V [m/s] 8797.163 10250.00

1 2 out of 10 times.
2 7 out of 10 times.
3 1 out of 10 times.

The difference with the solution of Novak (2012) is considerable. Taking a closer look, the
high-thrust impulse at departure is V+∞ = 601.21 m/s and the two low-thrust arcs have
respectively ∆V = 3271.15 m/s and ∆V = 4891.93 m/s. It is clear that the shaping method
did not find the coasting arc. Furthermore, the hyperbolic excess velocity at departure is
relatively low compared to the value that Novak (2012) achieved. The low value indicates
that the thrust legs and flyby have to compensate to find a suitable trajectory to rendezvous
with Apollo. Unfortunately Novak (2012) did not provide information on the flyby or thrust
leg which could have been helpful to identify the culprit in the optimisation problem here.
However, it is clear that the optimisation models are not the same. An attempt was made
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to only optimise for ∆V of the two low-thrust legs, though, this resulted in even worse ∆V
for the low-thrust legs. Therefore the result shown above with ∆V containing both high
and low thrust is used. Another point that has to be kept in mind is the unknown value
for the true anomaly used by Novak (2012). This can make a considerable difference as well
besides the model differences. Although the low-thrust gravity-assist model has no matching
solution with Novak (2012), and therefore can not be said to be validated, it does result
in proper trajectories that are numerically verified. The combined objective (high and low
thrust) does prove to have considerable better results and the thrust leg of Novak (2012)
does show similar values with the second thrust leg mentioned above. Still the optimisation
problems are different due to the coasting arc that causes a higher hyperbolic excess velocity
at departure.

A clear result from this problem is that the increasing dimension of the decision vector
and adding the gravity-assist causes the optimiser to have more difficulty with convergence.
Although several trials have been performed, so far the most optimal solution is 8764.29 m/s.
However, DE is known to get stuck in local optima, as is shown with the results here. Also it
is never guaranteed with DE that the optimum has been found. Therefore, for the upcoming
test suite, the current best value of 8764.29 m/s is used as aim value for the optimisation
process.

8.2 Test Suite - Adaptive versus normal DE

With the optimisation goals set for the two problems and the models verified and validated
the tests for DE schemes and the adaptive variants can be performed. The variables for the
test suite are the schemes and the F and CR control parameters in case of the normal DE
algorithm.

The values for F and CR are in the range of ∈ [0.2, 1.0] with steps of 0.2. A grid of 25 cases is
the result. Each case is repeated 10 times to verify the robustness of the algorithms. Musegaas
(2012) performed a more thorough analysis by increasing the number of repeats in the order
of hundreds to allow for statistical analysis. He used it to analyse his optimisation toolbox,
which was to be used for various problems. However, this is considered too extensive and
unnecessary for the goal of this thesis. A repeat in the order of hundreds would increase the
computation time enormously to out of proportions for this thesis subject. This will become
clear with the results. For the adaptive DE only the scheme and the adaptive variant are
variables.

The results of the optimisation can be found in Appendix C. Before discussing the results it
was noticed that the adaptive algorithm was implemented incorrectly for the test suite. Due
to recording of the data of the optimisation the evolution method was repeatedly called. This
caused the control parameters to be initialised with random values each time a new generation
was being made, instead of taking the values of the previous generation into account. However,
it turned out that this new approach, which in definition is not adaptive, worked out better
than the actual adaptive methods. The results of the incorrect implementation of jDE with
adaptive variant 1 are shown in Figure 8.2. An explanation for this improved behaviour due
to the incorrect implementation is given later on in this section.

In Appendix C the correct versions of the adaptive method have been given. For each figure
the settings for F and CR are found on the x- and y-axis in case of normal DE. In case of
adaptive DE the 10 schemes applied are shown on the axis. The crossover scheme is set on
the x-axis whereas the selection and mutation schemes can be found on the y-axis. The colour
shows the number of occurrences (i.e. percentage) that the threshold has been passed for that
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Figure 8.2: Optimisation tuning results for the incorrect jDE (adaptive, scheme 1). Threshold for ∆V =
8764.29 m/s.

Figure 8.3: Optimisation tuning results for the incorrect jDE (adaptive, scheme 1). Threshold for ∆V =
8764.29 + 25.0 m/s.
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setting and is an indication of the robustness of the tested algorithm. Inside the coloured
circles there are two values. The top one equals the previous percentage value in case the
colour is not clear. The bottom value indicates the number of generations until the threshold
value has been reached. This threshold value is either set to the expected optimum or the
that same with a certain deviation added.

From the colourful results two major findings can be made. First the expected optimum value
of 8764.29 m/s is barely found at all. Only the schemes rand/1/bin and rand/1/exp show a
few occurrences for normal DE. In case of adaptive also rand/1/exp and best/2/exp show
potential. However, this is the case for the incorrect adaptive variant, the actual adaptive
versions show no success there. Secondly the normal DE schemes with manual and constant
control parameters only have a single few results. This makes it really hard to select a proper
scheme with suitable control parameters. Although also the incorrect adaptive variant does
not display conclusive results.

The expected optimum appears to be very difficult to find. Therefore the threshold has
been increased by a relatively small step of 25 m/s. The result for the incorrect adaptive
DE is displayed in Figure 8.3 whereas the other results can be found again in Appendix
C. With the new threshold the optimisation schemes look more promising. Especially the
rand/1/exp scheme is performing well for this problem, for both the incorrect adaptive and
the fixed DE algorithm. It appears that the gravity-assist problem favours the scheme
where random selection is performed on the individuals over selecting the best individual for
mutation. This can be explained by the fact that the continuous low-thrust arcs allow for many
possibilities with slight alterations to the variables. Also the gravity-assist manoeuvre allows
for a considerable amount of flexibility. The combination of the two trajectory elements allow
for many if not infinitely many possibilities and therefore it is very likely that the solution
space consists of many local optima. On top of that small changes in the decision vector allow
for considerable varying solutions that change quickly from being optimal solutions to worse
individuals that will slow down the optimisation process.

To get a picture of the optimisation process the champion values of the complete evolution
are shown in Figures 8.4 and 8.5. For this the same schedule is selected for both algorithms
to be able to assess the difference in random and fixed control parameters. For fixed DE the
optimal setting is showing which is F = 0.8 and CR = 0.8. An interesting observation can be
made from these evolutions of champions. The figures show for all ten repeats the evolution
of the best individual in the current generation. What is clearly visible is that the incorrect
adaptive method is considerably and consistently faster in convergence to the area close
around the expected optimum value. Here it can be said that the use of non-constant control
parameters during the evolution works to the advantage of this complex trajectory problem.
Note, that a few schemes offered slightly improved results for DE with respect to convergence.
However, non was able to get close to the incorrect adaptive version. Furthermore, that these
findings are valid for this current low-thrust gravity-assist problem and that they are no
general conclusion for all low-thrust gravity-assist problems. As mentioned by Novak (2012)
and Musegaas (2012) numerous times the optimal DE parameters are very sensitive to the
problem at hand.

Another benefit of the incorrect jDE algorithm is that there is no need to fine tune the control
parameters. For the standard DE, however, the control parameters that gave a reasonable
good performance followed after extensive testing of F and CR values. Therefore the incorrect
adaptive method is chosen as the optimal optimisation algorithm for the GTOC6 problem
with the rand/1/exp scheme in spite of its puzzling aspects. Next follows the selection of the
most effective population size to reduce the number of function evaluations and therefore
computation time, to improve the solutions even further. Note that all simulations in this
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Figure 8.4: Complete evolution of the champions of the population for the incorrect jDE (adaptive,
scheme 1).

Figure 8.5: Complete evolution of the champions of the population for the DE with rand/1/exp.
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section are performed with the same population size which might not work in favour of all
tested schemes.

8.3 DE with Random Control Parameters

As mentioned in the previous discussion the adaptive method selected for the optimisation is
actually not adaptive anymore. The official adaptive variant 1 turned out to be less effective
compared to the incorrect implemented version. In principle the new algorithm is not wrong,
it just does not take into account the control parameters of the previous generation. Therefore
the equations to adapt the control parameters are written as follows.

F i, G+1 = Fl + rand1 · Fu (8.1)

CRi, G+1 = rand2 (8.2)

Here randj , j ∈ [1, 2] are uniform random values ∈ [0, 1]. The new F values are determined
inside a range defined by Fl and Fu and by default are between 0.1 and 0.9. CR values are
again completely defined in the range [0, 1].

The new algorithm is a normal DE with randomly selected control parameters for each
generation instead of constant parameters for the whole evolution. To avoid confusion about
the naming of the algorithms, the incorrect adaptive method is from here on referred to as
randDE.

8.4 Test Suite - Population Sizes

The final test suite before continuing with the GTOC6 problem is finding the optimal
population size. Previous optimisations were performed with 10D individuals which seemed to
work well and allowed for a better comparison with Novak (2012) who also used that number.
Although various recommendations exist for population sizes as mentioned in Chapter 7, also
problem dependency plays a role here. Therefore a complete range of population sizes is
performed from 1D till 14D. Furthermore, the number of trials is increased to 50 to give
better insight into the consistency of the results.

Figure 8.6: Results for randDE (rand/1/exp) with population sizes ∈ [1D, 14D]. Threshold for ∆V =
8764.29 m/s.

In Figure 8.6 the results are shown for when the threshold is set at the expected optimum.
Comparing the total of trials that have reached the threshold, one can conclude that population
sizes ranging ∈ [1D, 8D] are not sufficient. From 9D onwards at least 20 % reached the
optimum. Allowing for a deviation of 25 m/s on the previous threshold gives Figure 8.7.
Though populations with ∈ [6D, 8D] did not perform well before, they now do keep up very
well with local optima close to the expected minimum.

A nearly constant result can be seen in the range ∈ [9D, 14D]. Apparently the increased
population size does not add significant more better solutions and even for 13D the performance
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Figure 8.7: Results for randDE (rand/1/exp) with population sizes ∈ [1D, 14D]. Threshold for ∆V =
8764.29 + 25.0 m/s.

drops slightly. Note that even for 50 trials it is hard to draw a significant statistical conclusion
from these results. However, taken from these results it is in the best interest for the
optimisation process to take a population size as small as possible (reduce computation time)
while maintaining a considerable number of optimal solutions that are found consistently
(robustness) by the optimiser. Combining the results of both figures gives the conclusion
that a population size with 9D is the best compromise in terms of quality and quantity and
computational effort. A final remark is that 44 (i.e. 88 %) trials are within in the 25 m/s
deviation for 9D.
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9
Sequence Optimisation

T
he low-thrust multiple gravity-assist trajectories considered in this chapter only deal with
a relative small sub-selection of the whole sequence of the GTOC6 problem. However,

the focus is not on solving the GTOC6 problem. Rather it is focussed on finding an optimal
strategy to find optimal solutions to sub-sequences of the larger problem. In this chapter the
model, the optimisation objective and its constraints are explained. Also the two sub-sequences
that are selected from the CSU solution for optimisation are discussed.

9.1 The GTOC6 Low-Thrust Multiple Gravity-Assist Optimisation
Model

The optimisation model used for tackling the GTOC6 sub-problems is based on the model
used in the previous chapter. A few alterations were made to allow for the flexibility of adding
as many gravity-assist manoeuvres as required. The model starts with a flyby at the first
moon of the sequence and is followed by a user-defined number of low-thrust legs and gravity
assists. Also the rendezvous element was removed. Despite the changes, no new decision
variables were introduced. The template of the decision vector is given in Table 9.1.

The first six decision variables define the initial flyby (denoted by 0) of the sequence. Here
epoch defines the start of the flyby sequence and also the time of the first flyby. The remaining
five parameters describe the actual gravity assist. With the in-plane and out-of-plane angles,
respectively α and β, the orientation of the hyperbolic excess velocity V−∞ is set. This is
followed by the altitude hflyby and the rotation angle θrot. Note that the entry conditions
for the flyby (V−∞) are used instead of the exit conditions (V+∞). The reason for that is
simply the flexibility and modularity of the code. Also no sphere of influence is used for the
instantaneous flybys as defined by the GTOC6 constraints. Therefore the initial position of
the sequence is set to the exact position of the first moon at the given epoch.

After that one can patch a low-thrust leg with a gravity-assist manoeuvre to the initial
flyby. Here a total of seven decision variables are needed. Two describe the low-thrust
arc characteristics time-of-flight TOF and number of revolutions Nrev. The remaining five
describe again the next flyby. By adding another set of the seven parameters the sequence is

77
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Table 9.1: Template decision vector for low-thrust multiple gravity-assist trajectories
with i ∈ [1, 2, ..., Nflybys − 1].

Variable Unit Lower bound Upper bound

Epoch [MJD] strategy defined strategy defined

V−∞, 0 [m/s] 300.01 3000.02

α0 [◦] 0.0 360.0

β0 [◦] -90.0 90.0

hflyby, 0 [km] 50.01 2000.01

θrot, 0 [◦] -180.0 180.0

For each flyby

T OFi [days] strategy defined strategy defined

Nrev, i [-] 0 1

V−∞, i [m/s] 300.01 3000.02

αi [◦] 0.0 360.0

βi [◦] -90.0 90.0

hflyby, i [km] 50.01 2000.01

θrot, i [◦] -180.0 180.0

1 GTOC6 constraint.
2 Boundary defined after global CSU solution analysis.

again increased by yet another segment consisting of a low-thrust arc and a flyby. The total
number of decision variables can be computed with Equation (9.1).

Ndecision vars = 7 ·N − 1 N ∈ [2,∞] (9.1)

Npop size = 9 ·Ndecision vars (9.2)

The corresponding population size follows from Equation (9.2). A final remark for the decision
vector template is that it requires a minimum of two flybys. This makes sense, because a
single gravity-assist problem without a thrust leg is not useful.

9.2 Sequence selection

For the sequence optimisation test suite two different sub-sequences of five flybys are selected.
The reason is not to focus on one specific subset, because that would lead to conclusions only
relevant to that part of the main sequence. Therefore sub-sequences are taken from near the
beginning and near the end of the CSU solution, allowing for both short-period and long
period interaction in the moon sequences. The solution of CSU did not have sub-sequences
that had a length of five gravity assists that have more than two different moon destinations
in there. For example, Io is mapped nearly completely in one large sequence. This resulted in
only two different moons being visited in the two sub-sequences.

An important note is that the CSU team used different techniques and therefore the solutions
can never be fully matched or compared. But they are used as indication of what is possible
and to stay in the neighbourhood and to give initial conditions with respect to time-of-flight
and epochs. Also the remaining parameters of the sequence are used as initial condition, like
the mass of the spacecraft at the start of the sequence.

9.2.1 Sequence 1: Europa, Europa, Europa, Io, Io

The first sub-sequence starts at flyby number 15 of the whole sequence and ends at the 19th
gravity-assist manoeuvre. With an epoch of 59 880.709 MJD the sequence starts not much
after the capture of the spacecraft into the Jovian system with the moon Europa, to be
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continued with Europa, Europa, Io and finally Io again. Also the sequence is situated in the
region where radiation is strong and thus more mass penalty is applied. However, also the
high-score faces are available on Europa. Note that for pure ∆V optimisation this has no
influence. Also the orbital periods and synodic periods are small compared to those of the
next sequence.

Table 9.2: Characteristics of the gravity-assist manoeuvres for the first sub-sequence Eu-Eu-Eu-Io-Io.

# Flyby1 Moon Epoch [MJD] V−∞ [km/s] hflyby [km] # Face Face value mpost flyby [kg]

1 (15) Eu 59880.709 1.7625 65.5 23 6 1889.67

2 (16) Eu 59884.262 1.7625 180.4 11 4 1884.32

3 (17) Eu 59898.475 1.7625 592.0 12 4 1856.10

4 (18) Io 59912.873 2.4985 1262.1 31 2 1821.93

5 (19) Io 59921.730 2.4985 60.7 29 2 1797.62

1 Number between parenthesis is the actual flyby number in the CSU solution.

The characteristics of the flybys and low-thrust legs of the CSU sequence are given respectively
in Tables 9.2 and 9.4. Looking at the gravity assists one can see clearly the resonance pattern
in the sequence where the spacecraft arrives with a similar hyperbolic excess velocity at the
same moon. Note that just two consecutive flybys with the same excess velocity does not
necessarily mean a resonance. The time-of-flight also needs to be an integer multitude of the
orbital period in case of a transfer between the same moons. Also the moon can orbit for
multiple integers of revolutions allowing for a variety of resonance patters (e.g. 1:1, 2:1, 3:2).
Here the two integers are the number of orbits of respectively the moon and the spacecraft.
Resonance is the case for the two Eu-Eu transfers which have time-of-flights that are an
integer multitude of the orbital period of Europa (3.55 days). Therefore leg one and leg two
are respectively 1:1 and 4:1 resonance transfers. Also the Io-Io transfer is a 5:1 resonance. In
case of different moon destinations, the synodic period is used as base value for the resonance
of the two moons and the spacecraft. In Table 9.3 an overview is given of the all orbital and
synodical periods of the Galilean moons.

Table 9.3: Orbital periods T and synodic periods Tsyn for the Galilean moons.

Moon T [days] Moons Tsyn [days] Moons Tsyn [days]

Io 1.771 Io - Eu 3.553 Eu - Ga 7.056

Eu 3.553 Io - Ga 2.354 Eu - Ca 4.514

Ga 7.157 Io - Ca 1.982 Ga - Ca 12.527

Ca 16.696

Combining the data with the low-thrust legs, it becomes obvious that the strategy of CSU
was to find resonance patterns that made use of the flybys to do all of the work on changing
the orbital parameters to arrive at the next moon.

Table 9.4: Characteristics of the low-thrust legs for the first sub-sequence Eu-Eu-Eu-Io-Io.

# Leg1 Moons Epoch [MJD] Arc type T OF [days] ∆V [m/s] Tmax [N]

1 (15-16) Eu-Eu 59880.709 coasting 3.55 0.0 0.0

2 (16-17) Eu-Eu 59884.262 coasting 14.21 0.0 0.0

3 (17-18) Eu-Io 59898.475 coasting 14.40 0.0 0.0

4 (18-19) Io-Io 59912.873 coasting 8.86 0.0 0.0

1 Numbers between parenthesis are the actual flyby numbers in the CSU solution and define the
departure and arrival point of the leg.

One final remark is that there is no thrust used in this sequence. Although this means that
no propellant has been used, there is still loss of mass due to mass penalties due to close
proximity with Jupiter (radiation). For comparison of the spherical shaping accuracy in the
test suite the orbital elements of the departure and arrival terminals are given in Table 9.5.
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Table 9.5: Orbital elements of the low-thrust legs of sub-sequence one.

Element Unit Leg 1d Leg 1a Leg 2d Leg 2a

a [km] 671224.2 671224.2 578443.5 578443.5

e [-] 0.135 0.135 0.194 0.194

i [◦] 1.9 1.9 0.4 0.4

Ω [◦] 238.1 238.1 75.3 75.3

ω [◦] 265.3 265.3 14.1 14.1

θ1 [◦] 97.9 97.9 151.9 151.9

Element Unit Leg 3d Leg 3a Leg 4d Leg 4a

a [km] 542738.8 542738.8 489722.1 489722.1

e [-] 0.239 0.239 0.177 0.177

i [◦] 0.2 0.2 3.0 3.0

Ω [◦] 95.2 95.2 96.0 96.0

ω [◦] 331.7 331.7 312.9 312.9

θ1 [◦] 174.5 29.2 47.2 47.2

1 True anomaly at epoch of departure of arrival

9.2.2 Sequence 2: Ganymede, Ganymede, Callisto, Callisto, Ganymede

The second sub-sequence starts at flyby number 103 of the whole sequence and ends at the
107th gravity-assist manoeuvre. With a start epoch of 60 510.155 MJD the sequence starts
not much before the end of the sequence (total of 128 flybys) with the moon Ganymede, to
be continued with Ganymede, Callisto, Callisto and Ganymede again. Contrary to sequence
one, this sequence is situated in the region where radiation is less strong and thus less mass
penalty is applied. However, also the lesser score faces are available on these moons. Also the
orbital periods and synodic periods are large compared to those in the first sequence.

Table 9.6: Characteristics of the gravity-assist manoeuvres for the second sub-sequence Ga-Ga-Ca-Ca-
Ga.

# Flyby1 Moon Epoch [MJD] V−∞ [km/s] hflyby [km] # Face Face value mpost flyby [kg]

1 (103) Ga 60510.155 1.6314 491.3 4 3 1098.51

2 (104) Ga 60517.312 1.6314 186.6 10 2 1095.76

3 (105) Ca 60524.864 1.6650 852.4 17 1 1092.87

4 (106) Ca 60541.561 1.6650 790.5 23 1 1092.87

5 (107) Ga 60545.921 1.6615 169.9 11 2 1092.87

1 Number between parenthesis is the actual flyby number in the CSU solution.

The characteristics of the flybys and low-thrust legs of the sequence are given respectively
in Tables 9.6 and 9.7. Looking at the gravity assists one can see clearly again the resonance
pattern in the sequence for leg one and three. Different from the first sequence, this one does
perform a low-thrust arc in the second leg. The actual leg has two coasting arcs and one
thrust arc combined. Notice that due to the larger distance with Jupiter the mass penalty for
close proximity is less visible if not negligible in the results.

Table 9.7: Characteristics of the low-thrust legs for the second sub-sequence Ga-Ga-Ca-Ca-Ga.

# Leg1 Moons Epoch [MJD] Arc type T OF [days] ∆V [m/s] Tmax [N]

1 (103-104) Ga-Ga 60510.155 coasting 7.16 0.0 0.0

2 (104-105) Ga-Ca 60517.312 coasting + thrusting 7.55 26.26 0.1

3 (105-106) Ca-Ca 60524.864 coasting 16.70 0.0 0.0

4 (106-107) Ca-Ga 60541.561 coasting 4.36 0.0 0.0

1 Numbers between parenthesis are the actual flyby numbers in the CSU solution and define the departure and
arrival point of the leg.

For comparison of the spherical shaping accuracy in the test suite the orbital elements of the
departure and arrival terminals are given in Table 9.8.
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Table 9.8: Orbital elements of the low-thrust legs of sub-sequence two.

Element Unit Leg 1d Leg 1a Leg 2d Leg 2a

a [km] 10705874.7 10705874.7 1502562.4 1502562.4

e [-] 0.127 0.127 0.294 0.293

i [◦] 4.6 4.6 0.4 0.5

Ω [◦] 163.8 163.8 174.7 174.6

ω [◦] 96.6 96.6 4.2 4.1

θ1 [◦] 262.5 262.5 343.9 203.3

Element Unit Leg 3d Leg 3a Leg 4d Leg 4a

a [km] 1883136.6 1883136.6 1502741.7 1502741.7

e [-] 0.141 0.141 0.295 0.295

i [◦] 7.9 7.9 0.4 0.4

Ω [◦] 200.4 200.4 171.3 171.30

ω [◦] 280.1 280.1 8.0 8.0

θ1 [◦] 261.6 261.6 202.7 342.6

1 True anomaly at epoch of departure of arrival

9.3 Setup - Strategy and Window

The optimisation of the sub-sequences is divided into smaller subsets of the sub-sequence.
Each subset leads to a solution that is used as guideline for the following subset. For the
sub-sequences of five gravity-assist manoeuvres this means that there are four total subsets to
be computed. Initially, the first two flybys are used for optimisation. The solution from this
is used as search direction for the next problem with the first three flybys. After optimising
the latter, again the result is used as search direction for the optimisation of the first four
flybys. Finally the full sub-sequence is optimised with the result of the last subset.

The reason behind splitting up the sub-sequence into smaller subsets is to find viable solutions
in the smaller problems which are computed faster compared to the larger sequences (more
decision variables and larger population size). Of course the solution of the smaller subset is
not guaranteed to be part of the full optimal solution. Actually it is more likely that the final
solution to the full problem is not equal to the initial solution found by the smaller subsets.
This is, because the last flyby is not constrained to match a low-thrust leg to the next flyby.
By continuing to the one flyby larger sequence, the last flyby of the previous sequence will
most likely change to match an optimal trajectory to the next flyby. However, the smaller
subsets do allow for promising search areas for the larger sub-sequences.

In Table 9.1 the boundary values for the decision variables were given. However, a few of them
had the value ’strategy defined’. The values concerned are the epoch for the start time of the
sequence and the time-of-flight values of the low-thrust legs. Lower and upper boundaries
of both epoch and time-of-flight are being defined by the optimisation strategies defined in
this section. Note that only the time parameters are influenced by the strategies. It was not
considered effective to limit the gravity-assist manoeuvres more than by the constraints given
by GTOC6. Also by only allowing changes in the phases of the moons (combination of epoch
and TOF ) the full GTOC6 problem was still considered relatively to the confinement of the
subsets.

Two main strategies are to be considered, namely small freedom and full freedom. They refer
to the freedom or amount of time that is allowed for the optimisation to look around the
given epoch of a flyby for better solutions. The freedom is predefined for both strategies to
be a constant multiplied with the synodical period between two consecutive flybys. Synodical
periods are chosen as base for the time shift, because they define the period in which the
two moons corresponding to the two flybys return to the same relative phase between them.
Although the solution space is not a repeating cycle for each synodical period due to transfers
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# Subset # Flybys Flyby 1 Flyby 2 Flyby 3 Flyby 4 Flyby 5

1 2 Small Small

2 3 Strict Small Small

3 4 Strict Strict Small Small

4 5 Strict Strict Strict Small Small

Figure 9.1: Example of the window shift (window size is two flybys) and for all subsets of the whole
sub-sequence. Strategy is small freedom.

to other moons, it is an indication of where similar solutions can be found. In case of a
transfer between the same moon, the actual orbital period is chosen. In Equations (9.3) and
(9.4) the relations are given to compute the boundaries for the new subset.

Epochlb, ub = Epochwinner subset ± Cstrategy · Tsyn (9.3)

TOFlb, ub = TOFwinner subset ± Cstrategy · Tsyn (9.4)

Here Epochlb, ub and TOFlb, ub are respectively the lower and upper boundaries of the epoch
and time-of-flight of the new subset problem. Tsyn is the synodic period of the given moon
transfer. Note that the latter is computed for each low-thrust leg and depends on which moons
are involved in the trajectory leg. Furthermore, Epochwinner subset and TOFwinner subset are
the values of the optimisation solution of the previous subset. It is around this solution that
the freedom will be applied. The last one is Cstrategy, which is a constant that states how
much freedom will be given depending on the strategy chosen. For full freedom Cstrategy = 2.5,
small freedom Cstrategy = 1.0 and for strict freedom, which is the default for all flybys,
Cstrategy = 0.5. In other words, strict freedom allows the optimiser to find solutions within
one cycle of the current moon transfer.

To complicate the matter, there are three windows sizes (number of flybys) for which the
strategies apply. Outside the window the strict freedom is applied to the remaining flybys,
which allows minimal shift in the phases of the flybys. The window moves with the last flyby
in the sequence and therefore will shift one flyby with each new subset. In Figure 9.1 an
overview is given of the window shifting through the sequence for each subset of the whole
sub-sequence. Each row (subset) defines one optimisation problem having either two, three,
four or five flybys. Small and strict indicate the freedom of the given flyby and the dark
shaded area defines the window. The same principle applies for the full freedom strategy and
using different window sizes.

For the initial subset of two flybys the boundaries are widened a bit more compared to the
strategy settings. The epoch has a fixed offset of ±25.0 days and the time-of-flight variable
has an offset of the usual window setting multiplied by two.

The total number of test cases for the strategy and window test suite is six. Each of them will
be repeated three times to account for the variation in optimiser performance with different
trials. According to the tests from the previous chapter (for population size of 9D) nearly 90 %
of the trials achieved a satisfying solution within a 25 m/s deviation of the expected optimum.
Important to remark is that the expected optimum is not known yet, except for the values
produced by the CSU solution. However, that is a different problem compared to the model
used here. Also the robustness of the model used in the test suits in the previous chapter
might not result in the same robustness for the current model used for GTOC6. Therefore it
is hard to say how many trials are required to get decent results. In the previous chapter trials
of 50 or 10 were performed. However, 50 is by far impossible with respect to computational
effort. Also 10 is considered too much for the same reason, because the problem with 10 trials
had two thrust legs and one gravity assist. The current problem goes from two flybys with one
low-thrust arc to a total of five flybys with four thrust arcs. This is a considerable amount of
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computational effort on top of the problem with 10 trials. With the robustness of the simple
model of the previous chapter in mind it is decided to have three trials per test.

9.4 Objective

Two different objective functions are optimised for the GTOC6 sequence problem. First the
sequences are optimised for the total ∆V that is required for the low-thrust legs. This needs
to be kept as low as possible and at the same time the gravity-assist manoeuvres need to be
utilised to their full extent. The reason for first optimising ∆V is to compare the solutions
with the CSU solution and to see how well the trajectories are performing considering the
issues that are known with the spherical shaping method. Also a better understanding of the
performance of the optimisation strategies is obtained. The objective function for ∆V , or
fitness value f , is given in Equation (9.5).

f = ∆Vtot =

Nflybys−1
∑

i=1

(∆Vleg i + ∆Vpen i) (9.5)

Here ∆Vtot is the fitness value and ∆Vleg i the velocity change needed for low-thrust leg i.
Furthermore, ∆Vpen i is the penalty applied to leg i due to constraint violations. In the next
section more will be explained about the penalties.

The second objective function is a combination of the previous objective and the one defined
for the original GTOC6 problem. It is a multi-objective function, however, the DE algorithm
in PaGMO does not support multi-objective functions. Therefore the two objectives of
respectively optimising for total low-thrust ∆V and for moon face mapping points, are joined
in a weighted sum objective function. Note that the two objectives are contradicting each
other in the optimisation: whereas ∆V needs to be minimised, the mapping points on the
other hand are to be maximised. Therefore the weighted sum function in Equation (9.6) was
derived.

f = −


W∆V · 1
∑Nflyby−1

i=1

(

∆Vleg i+∆Vpen i

Nflybys−1

)

+ 1.0
+WM ·

∑Nflyby−1
i=1 WSFVi

Nflybys



 (9.6)

Here W∆V and WM are respectively the weights for the ∆V and moon face mapping points.
The summation of the ∆V is the same as in Equation (9.5), but is now placed in the
denominator to allow for maximisation like the moon points. The placement in the denominator
is also done to allow for better scaling with the moon points objective, because ∆V has a
considerable large range of values, especially due to high penalties, and therefore can possibly
overthrow the optimisation goal. In other words, the weights can be set to optimise for moon
points in particular, but due to the large value of ∆V the moon points are of no significance
in the objective value. Note the added 1.0 constant to avoid a division by zero, because a
solution with only coasting arcs is possible. Also the total ∆V is divided by the number of
legs (Nflybys − 1) to be able to compare the objective functions of the different subsets that
have different number of flybys (normalisation). Nearly the same is done for the summation
of the face values. Here the total is divided by the number of flybys, because the points are
scored per flyby. The values for the weights will be discussed in the next chapter.
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9.5 Penalties & Constraints

There are two penalties and one constraint that were not mentioned in the optimisation problem
before. Constraints like a minimum hyperbolic excess velocity for the flybys are defined by
boundaries of the optimisation problem. However the thrust constraint is checked afterwards,
when the legs have been computed already. This results in considerable computational effort
that is possibly wasted, because the solution is not possible in the first place. However, this
can only be checked afterwards in case of thrust constraint violation. The two penalties relate
to the mass penalty due to close proximity with Jupiter and the inefficiency of the spherical
shaping algorithm for increasing values of the inclination and relative RAAN steps.

The mass penalty for radiation from Jupiter has been explained in Chapter 2 and does not
require further elaboration. However, the black box constraints defined for the spherical
shaping method is another story. After some initial testing it turned out that a limited
number of trajectories proved to be viable solutions during optimisation. On top of that
adding the thrust constraint, which will be discussed next, resulted in even worse results.
This impeded the optimisation process significantly. To make sure the optimisation process
was not obstructed by the shaping penalty it was decided to leave out this penalty. The idea
of the penalty was to have less efficient solutions in the solution space, however it took away
the ease of the optimisation to get through the difficult solution space filled with many local
optima. Note that the D parameter suffered from undefined (NaN’s) and negative values that
caused ∆V penalties. However, these occurred mostly for considerable eccentric and inclined
orbits and the total occurrences were minor compared to the thrust constraint violations. The
latter was dominant and therefore slowed down the optimisation process significantly.

Finally there is the thrust constraint. As mentioned before the thrust can not be capped in
the spherical shaping method and has to be verified afterwards. An early adoption of the
thrust constraint in the GTOC6 optimisation model resulted in considerable unfavourable
solutions. This was due to the implementation which as soon as a thrust leg had violated the
thrust constraint, the complete solution was dropped. Dropped solutions were retained in the
solution set, but were assigned very high penalty values and therefore the solution space was
flattened with invalid solutions. The model was changed by letting violated solutions to be
continued with the addition of a penalty proportional to the violation of the thrust constraint
and also multiplied by a constant factor (100). This allowed the optimiser to continue with
the solutions and providing a smoother solution space to go through.

Also it turned out that the thrust constraint set by GTOC6, though not impossible, was
very strict. This also caused the optimiser to have trouble to go smoothly to the favourable
solutions. In order to improve the performance of the optimiser the thrust constraint was
widened by a factor of 10.0 to a maximum thrust of 1.0 N. The results was that more
viable solutions were found, including more solutions that satisfied the actual GTOC6 thrust
constraint. More on the results can be found in the next chapter.
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10
Results

A
fter a thorough analysis of the GTOC6 problem and the development of an algorithm
capable of computing low-thrust multiple gravity-assist trajectories and validating the

methods, the actual GTOC6 problem is tackled. The results of the two sequences that were
discussed in the previous chapter are elaborated upon in this chapter. For the ∆V optimisation
both sequences were considered whereas for the combined objective of ∆V and the score for
moon mapping, only the first sequence is simulated. The first sequence is chosen, because
it shows more challenging features like shorter orbital periods (faster dynamics) and close
proximity with Jupiter resulting in high mass penalties.

10.1 Initial Results

For the optimisation of the two sub-sequences a total of 36 cases were simulated. This
consisted of the two optimisation strategies times the three windows sizes and that multiplied
with three trials for each sequence. The subsets with two, three, four and five flybys were
given sufficient generations to be able to converge to a satisfying solution. For each subset
a different number of generations was used to comply with the population size, the number
of decision variables and the complexity for increasing number of gravity-assist manoeuvres.
The number of generations was respectively 2500, 10000, 20000 and 40000. Although the
values seem grotesque, they proved necessary for the problem.

The problems experienced considerably bad convergence and the solutions to all the sim-
ulations are not similar, even though the function values could be considered similar. All
simulations required to complete the full maximum number of available generations to finish
the optimisation. Even the final populations showed sufficient different individuals with
considerable differences in their function values. As result no proper convergence was detected
by the algorithm even though the champion of the population showed a converging trend.
It was possible to increase the tolerance on the build-in convergence check by the randDE
algorithm of PaGMO. However, a considerable high tolerance was needed to have convergence
before the maximum number of generations was reached. This showed that the problem has
difficulty with converging. As result the computational effort was enormous for the subsets.
Each subset with two, three, four and five flybys required on average computational times of
respectively 75 minutes, 14.5 hours, 50 hours and 7.5 days.
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Initial testing showed no viable solutions that are below the thrust limit of 0.1 N defined by
GTOC6. Possible reasoning here is that the implementation suffers from inefficient trajectories
for increasing inclinations and line of nodes changes. So the spacecraft is required to do a
large amount of thrusting whereas better trajectories that require less thrust are possible.
For this reasoning, it is possible that the 0.1 N thrust levels are too demanding combined
with the spherical shaping and the used optimisation problem and algorithm. As mentioned
in the previous chapter it was decided to increase the thrust limit to 1.0 N to allow for
better optimisation. The result was an improved optimisation with consistently better results.
Among the results were also solutions that satisfied the original thrust constraint. This showed
that allowing for more freedom in the optimisation creates a more smooth and efficient search
that is not obstructed significantly by the penalties of surrounding solutions in the search
space.

Another very important aspect is the following: though the spherical shaping method applies
thrust, it does not with a constant (maximum) force. Most GTOC6 contesters on the other
hand used reference trajectories for a local low-thrust optimiser afterwards that optimised for
maximum thrust. So a large amount of efficiency is lost here due to non-efficient thrusting
profiles. Also because of the non-constant nature of the spherical shaping method, there are
peaks to be expected which will make it harder to get proper solutions that are satisfying the
thrust constraints. On top of that spherical shaping should be used as initial guess/reference
trajectory and not as final solution, for which it is not sufficient. The same approach as
the participants used is recommended: to use the solutions as reference trajectories for local
optimisers.

Furthermore, the DE settings used and the custom use of the ’adaptive’ method randDE was
promising for the given test problems. However, for the main problems, it became clear that
the champion solutions are sometimes thrown away, whereas one would prefer to keep them.
This gives the population a setback that is not wanted. Due to the randomness of the control
parameters it is possible for the parameters to be chosen such that the promising individuals
will still be thrown away.. However, this was not foreseen and visible in the test problem.
For that particular problem it actually worked out considerably well. Therefore it should be
considered to add elitism to the algorithm to keep a small selection of optimal solutions in
the population.

Also note the penalty function for high levels of thrust. The maximum thrust is set to 1.0 N
to allow for more solutions, however still the solution space is very thin with proper solutions,
making it really hard for the optimiser to get through. It is clear from the results that ∆V
values of above 1000.0 m/s are most likely affected by the penalty factor of 100 to avoid the
high-thrust solutions. The effect can be seen as the huge drop in fitness value when a solution
is within the thrust constraint. As said before the thrust levels are not constant and many
GTOC6 participants actually showed constant maximum thrust for their solutions. Moreover
they used these kind of trajectories as input for their local optimisers later on.

10.2 Optimisation of the Sequences for ∆V

The results of optimising ∆V will be explained by discussing two cases. Each case represents
one of the two sequences with one of the six strategies. After that the results of the other
cases are discussed followed by analysis of the overall optimisation.
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10.2.1 Small Freedom and 2 Flyby Window Applied to Sequence One

The first case is the Eu-Eu-Eu-Io-Io sequence. Here a small freedom is applied around the
timing of the flybys for the smallest window of two flybys. A considerable large amount of
data has been produced by the optimisation and after processing the data, two tables with
output are generated which are given in Tables 10.1 and 10.2. The former table gives the
details on the flybys that are found by the optimisation using the defined strategy whereas
the latter shows the low-thrust arcs to connect the flybys. Both tables will be discussed.

In Table 10.1 three blocks are shown where each one of them represents one trial run. A trial
consists of four separate optimisation problems ranging from two to the complete five flybys
of the given sequence. For each subset the flyby numbers and the corresponding moons are
given. Furthermore the epoch of the flyby is shown together with the approaching hyperbolic
excess velocity V−∞ of the spacecraft and its altitude hflyby above the surface of the moon.
The last column is the mass mpost flyby of the spacecraft just after the flyby. This includes the
mass penalties and the propellant mass for the low-thrust arc preceding the flyby.

As mentioned before the solution of the preceding subset is used to define the search area for
the new subset. Here only the parameters epoch and the time-of-flight of each leg are used as
a baseline value. Around the baseline the offsets are computed based on the strategy. The
remaining parameters of the decision vector have their boundaries defined in Table 9.1.

Table 10.2 contains the information regarding the low-thrust arcs for all subsets and all trials.
As with the previous table, the flyby numbers and corresponding moons are given. However,
they now indicate the transfer trajectory and therefore two moons are supplied for each
entry to indicate the departure and arrival body. Furthermore, the epoch of the start of
the leg and time-of-flight are given. The column with the number of revolutions relates to
how many complete (integer) revolutions are performed during the trajectory. Finally the
last two columns provide the ∆V of the legs and the total of each subset is supplied as well.
Note that the first column is the optimisation objective ∆V which includes the penalties for
thrust constraint violation. Due to disappointing performance of sequence one related to
experiencing a dominating influence of the thrust penalties, the actual calculated ∆V by the
spherical shaping method is also given.

From the three trials performed with the small freedom and two flyby window strategy a few
things are very noticeable in the results. Starting with Table 10.1 there is a clear distinction in
the hyperbolic excess velocities between subsets with two or three flybys and four or five flybys.
For the former the optimisation finds V−∞ near the lower boundary condition value. The
gravity-assist altitudes vary over the supplied range [50.0 − 2000.0 km]. On the other hand for
the larger subsets (i.e. four and five flybys), V−∞ comes in the neighbourhood of the values
found in the CSU solution. Furthermore, the flyby altitudes are significantly lower indicating
that the GA’s are utilised better to change the trajectory instead of using low thrust. Note
that several altitudes have reached the lower boundary value of 50.0 km and have maximised
the potential of the flyby with respect to the altitude. It confirms that the optimisation
is indeed searching for the timings for matching the GA’s to avoid using low thrust. Note
that the last GA in each subset shows deviating values compared to the predecessors in the
subset, especially the flyby altitude. This is explained due to the fact that the last GA is
not connected to another thrust leg with a flyby. Therefore the conditions of leaving the last
moon do not influence the preceding sequence. This allows for more freedom on the last flyby
arrival conditions. A similar analogy holds for the first flyby. Now there is not a thrust leg in
advance determining the incoming conditions of the first flyby. Therefore only what occurs
after the first flyby determines the conditions for the first GA in the subset.
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Though the flybys are considerably utilised, it can be seen in Table 10.2 that the optimisation
finds grotesque values for ∆V . This includes the penalties for the thrust constraint violation
which is clearly present with these large ∆V ’s. For that reason the second column with the
actual ∆V ’s required for the low-thrust arcs is given. Immediately it can be seen that the
optimisation is not able to find the coasting arcs from the CSU solution. Also the values are
relatively large compared to the ∆V ’s found in general by CSU, which goes up till several
multitudes of 10.0 m/s.

Table 10.1: Results (3x) of subsets for the gravity-assist manoeuvres for the first sub-sequence Eu-Eu-
Eu-Io-Io. [Settings: small freedom and 2 flyby window]

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (15) Eu 59873.483 301.4 1743.8 1889.67

2 (16) Eu 59880.586 301.0 1320.2 1885.24

1 (15) Eu 59875.023 300.6 1595.9 1889.67

2 (16) Eu 59882.129 301.0 798.4 1885.22

3 (17) Eu 59889.235 300.9 1169.4 1882.06

1 (15) Eu 59873.288 1819.8 59.3 1889.67

2 (16) Eu 59880.393 2027.7 186.0 1865.84

3 (17) Eu 59887.389 2179.7 50.0 1839.57

4 (18) Io 59891.106 1858.9 1522.6 1811.07

1 (15) Eu 59871.511 1733.4 725.3 1889.67

2 (16) Eu 59878.568 1782.7 96.5 1863.58

3 (17) Eu 59883.860 1833.7 50.0 1834.43

4 (18) Io 59887.710 2282.8 50.0 1784.00

5 (19) Io 59891.253 2289.2 1678.4 1771.59

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (15) Eu 59881.681 356.3 964.6 1889.67

2 (16) Eu 59887.006 363.9 1877.0 1886.51

1 (15) Eu 59880.491 302.5 661.4 1889.67

2 (16) Eu 59887.594 300.4 115.5 1884.88

3 (17) Eu 59894.697 300.4 710.7 1880.47

1 (15) Eu 59882.101 1584.3 710.0 1889.67

2 (16) Eu 59887.428 1615.2 50.0 1868.07

3 (17) Eu 59894.453 1987.3 50.0 1833.13

4 (18) Io 59898.214 1846.5 1037.2 1801.56

1 (15) Eu 59880.325 1640.7 1225.9 1889.67

2 (16) Eu 59887.419 1788.5 653.3 1857.38

3 (17) Eu 59894.480 1813.8 50.0 1830.44

4 (18) Io 59898.308 2208.7 50.0 1772.46

5 (19) Io 59900.970 2195.5 1383.3 1761.23

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (15) Eu 59872.853 311.9 1030.8 1889.67

2 (16) Eu 59878.191 306.0 586.6 1886.63

1 (15) Eu 59873.810 309.9 1602.0 1889.67

2 (16) Eu 59880.911 311.6 85.4 1886.34

3 (17) Eu 59886.262 312.3 534.4 1883.03

1 (15) Eu 59875.081 1438.0 1038.5 1889.67

2 (16) Eu 59880.405 1468.3 50.0 1867.94

3 (17) Eu 59887.397 1906.2 50.0 1830.41

4 (18) Io 59891.179 1832.0 470.8 1794.90

1 (15) Eu 59873.309 1705.6 606.3 1889.67

2 (16) Eu 59880.377 1783.3 1010.0 1860.31

3 (17) Eu 59887.437 1827.1 50.0 1833.06

4 (18) Io 59891.252 2178.2 50.0 1774.87

5 (19) Io 59893.914 2161.9 536.9 1762.28

1 Number between parenthesis is the actual flyby number in the CSU solution.
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Table 10.2: Results (3x) of subsets for the low-thrust arcs for the first sub-sequence Eu-Eu-Eu-Io-Io.
[Settings: small freedom and 2 flyby window]

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59873.483 7.10 1 2.0 2.0

∆Vtot = 2.0 2.0

1 (15-16) Eu-Eu 59875.023 7.10 1 1.0 1.0

2 (16-17) Eu-Eu 59882.129 7.10 1 3.0 3.0

∆Vtot = 4.0 4.0

1 (15-16) Eu-Eu 59873.288 7.10 1 225.0 225.0

2 (16-17) Eu-Eu 59880.393 7.00 1 255.0 255.0

3 (17-18) Eu-Io 59887.389 3.72 1 65439.0 294.0

∆Vtot = 65919.0 774.0

1 (15-16) Eu-Eu 59871.511 7.06 1 249.0 249.0

2 (16-17) Eu-Eu 59878.568 5.29 1 56420.0 281.0

3 (17-18) Eu-Io 59883.860 3.85 1 174816.0 534.0

4 (18-19) Io-Io 59887.710 3.54 1 80.0 80.0

∆Vtot = 231565.0 1144.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59881.681 5.33 1 3.0 3.0

∆Vtot = 3.0 3.0

1 (15-16) Eu-Eu 59880.491 7.10 1 8.0 8.0

2 (16-17) Eu-Eu 59887.594 7.10 1 3.0 3.0

∆Vtot = 11.0 11.0

1 (15-16) Eu-Eu 59882.101 5.33 1 198.0 198.0

2 (16-17) Eu-Eu 59887.428 7.03 1 59029.0 347.0

3 (17-18) Eu-Io 59894.453 3.76 1 80511.0 328.0

∆Vtot = 139738.0 873.0

1 (15-16) Eu-Eu 59880.325 7.09 1 296.0 296.0

2 (16-17) Eu-Eu 59887.419 7.06 1 261.0 261.0

3 (17-18) Eu-Io 59894.480 3.83 1 238514.0 619.0

4 (18-19) Io-Io 59898.308 2.66 1 86.0 86.0

∆Vtot = 239157.0 1262.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59872.853 5.34 1 2.0 2.0

∆Vtot = 2.0 2.0

1 (15-16) Eu-Eu 59873.810 7.10 1 4.0 4.0

2 (16-17) Eu-Eu 59880.911 5.35 1 5.0 5.0

∆Vtot = 9.0 9.0

1 (15-16) Eu-Eu 59875.081 5.32 1 200.0 200.0

2 (16-17) Eu-Eu 59880.405 6.99 1 66606.0 375.0

3 (17-18) Eu-Io 59887.397 3.78 1 96986.0 372.0

∆Vtot = 163792.0 947.0

1 (15-16) Eu-Eu 59873.309 7.07 1 263.0 263.0

2 (16-17) Eu-Eu 59880.377 7.06 1 265.0 265.0

3 (17-18) Eu-Io 59887.437 3.82 1 238087.0 620.0

4 (18-19) Io-Io 59891.252 2.66 1 100.0 100.0

∆Vtot = 238715.0 1248.0

1 Numbers between parenthesis are the actual flyby numbers in the CSU solution and define the
departure and arrival point of the leg.

2 ∆V without the penalties for thrust constraint violation.

The large ∆V ’s are associated with large thrust demand during the trajectory. In Figures
10.1 - 10.4 the thrust profiles are shown for the legs in each subset for the first trial. For the
subsets with two or three flybys the ∆V for the legs is low, which translates to thrust profiles
that are even below the GTOC6 constraint, see Figures 10.1 and 10.2. However, when the
subset increases to four and five flybys, the parameters defining the flyby trajectory change
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significantly. This is also very visible in the thrust profiles found in Figures 10.3 and 10.4. The
thrust magnitude goes beyond the GTOC6 constraint and as mentioned before the constraint
had to be widened with a factor 10 to allow for a smooth optimisation. Although, increasing
the thrust constraint was fruitful, it is still surpassed by a few legs resulting in high ∆V
penalties. As a consequence, the optimisation is focussed on minimising the penalties instead
of the actual ∆V of the legs. All trials experience this, and actually all strategy cases for
sequence one had the same problem.

Figure 10.1: Thrust profile of the subset Eu-Eu (trial 1) for sequence one with small freedom and 2
flyby window strategy.

Besides the penalties, several low-thrust arcs require considerable amounts of ∆V to reach
their destination. Apparently, the spherical shaping method is generating thrust arcs that
require large accelerations to maintain the transfer trajectory. This could be due to the
accuracy limitations of the shaping method as discussed in Chapter 4. To verify this, the
orbital elements for the legs of the subset with five flybys are examined. They are given in
Table 10.3.

From the data in the Table 10.3 it is remarkable that the differences in RAAN for the thrust
legs are relatively small, which is required to keep the accuracy high of the spherical shaping
method. For the given inclinations and RAAN’s the error in ∆V is roughly 50.0 m/s according
to Figure 4.12 and 4.13. On top of that is the actual ∆V required for non-inclined change
of RAAN (reference trajectory). Note that the accuracy tests where performed for different
inclinations and RAAN, but the remaining elements were kept the same between the departure
and arrival orbit. Furthermore, legs two and three show the largest thrust violations in Figure
10.4. Though RAAN is not changed significantly, the elements argument of periapsis ω and
true anomaly θ differ completely. The effect of changing the former two elements (difference
in departure and arrival value) during the transfer was not taken into account during the
accuracy tests and could therefore be a possible reason for the high ∆V besides the error of
RAAN. This was also noted by Roegiers (2014). On top of that, both legs are in an inclined
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Figure 10.2: Thrust profile of the subset Eu-Eu-Eu (trial 1) for sequence one with small freedom and 2
flyby window strategy.

Figure 10.3: Thrust profile of the subset Eu-Eu-Eu-Io (trial 1) for sequence one with small freedom and
2 flyby window strategy.
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Figure 10.4: Thrust profile of the subset Eu-Eu-Eu-Io-Io (trial 1) for sequence one with small freedom
and 2 flyby window strategy.

plane and leg three has a descent eccentricity. Also both legs require thrusting for decreasing
the semi-major axis a. It is clear that the spherical shaping method is not able to find the
coasting arc from the CSU solution and that it has trouble shaping the legs with proper values
for ∆V which are to needed in order to fulfil the full GTOC6 problem. As consequence of the
large ∆V the mass of the spacecraft also decreases faster, which translates to an additional
loss of mass of 20 − 30 kg, due to propellant consumption, compared to the CSU solution.

Also remark that the number of complete revolutions is always one for all legs in every subset.
This was set as the upper boundary condition based on the preceding literature study. This
was to avoid long time-of-flights to map the moons in a relatively short time. Another reason
to avoid multiple revolutions is the computational effort required for the spherical shaping
method. For every revolution additional control points have to be verified and computed.
These scale linear with computational effort and therefore allowing up till several revolutions
could potentially result up to several times the current simulation durations as well. However,
looking at the CSU solution, several legs show multiple revolutions to come back to the same
moon (resonances, multitude of orbital periods). The latter can result in more favourable
moon positions for the following flybys and thus lower ∆V for the thrust legs or even zero in
case of a coasting arc. Finally in Figure 10.5 the trajectory is shown of trial 1.

In Figure 10.6 the evolution of the champion solutions for each trial is shown. It shows that
the champions convergence to their solution for large numbers of generations. Also it can
take a large number of generations for the objective to improve. Furthermore, the solutions
do tend to converge to the same neighbourhood. However, note that the scale is very large
due to the enormous values for ∆V . That the optimiser has difficulty with large sets of flybys
can be seen in the difference in the number of generations of the trials. For example, trial one
is roughly 5000 generations behind on trial three for ∆V = 0.75 × 106 m/s. Though it does
seem that the trials have converged after roughly 35,000 generations.
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Table 10.3: Orbital elements of the low-thrust legs of sub-sequence one.

Element Unit Leg 1d Leg 1a Leg 2d Leg 2a

a [km] 6.756 12 × 108 6.647 22 × 108 6.771 53 × 108 6.530 69 × 108

e [-] 0.07154 0.08157 0.01656 0.03551

i [◦] 6.72 6.67 7.76 7.76

ω [◦] 271.29 283.63 99.32 127.91

Ω [◦] 208.78 204.14 203.90 201.95

θ [◦] 267.32 254.65 79.20 230.50

Element Unit Leg 3d Leg 3a Leg 4d Leg 4a

a [km] 5.606 02 × 108 5.227 57 × 108 4.237 55 × 108 4.235 14 × 108

e [-] 0.19171 0.19441 0.01444 0.01909

i [◦] 5.18 5.17 7.52 7.52

ω [◦] 172.02 176.45 113.34 105.07

Ω [◦] 202.74 202.83 202.70 202.70

θ [◦] 185.60 3.12 66.36 74.63

Figure 10.5: Best trajectory solution to the Eu-Eu-Eu-Io-Io sequence (trial 1) with small freedom and
two flyby window strategy.

10.2.2 Full Freedom and 2 Flyby Window Applied to Sequence Two

The second case discussed here is the Ga-Ga-Ca-Ca-Ga sequence. For this case the full freedom
is applied to the timing constraints of the optimisation problem. Also a window of two flybys
is used to define the flybys with more freedom with respect to epoch and time-of-flight. Again,
a considerable amount of data was generated and has been processed in similar tables as with
the previous case in the previous section. In Table 10.4 the data of the flybys is given and
the information on the legs of the subsets are given in Table 10.5. Both tables contain three
trials.

Looking at the results a complete different picture is painted by optimisation of sequence two.
First of all, there are no large values for ∆V as found in the results of sequence one. It is



96 CHAPTER 10 RESULTS

Figure 10.6: Evolution of the champion for the Eu-Eu-Eu-Io-Io sequence with small freedom and two
flyby window strategy.

unambiguous that the optimisation has found thrust legs with near zero ∆V . Even for the
large subset of five flybys two out of the three trials is able to find trajectories that utilise the
full potential of flybys to change the course to the next moon. Note that the computation
of ∆V suffers from accuracy due to the number of control points as mentioned in Section
4.5.3. The number of control points needed to be kept small to keep the simulation time
within reasonable bounds given the complexity of the problem. The champion solutions of all
the strategy results could have been verified afterwards with an increased accuracy for ∆V .
However, due to time constraints this was not possible. This is left as future work and the
results here are used as preliminary results. The results also confirm for the spherical shaping
method, that (near) coasting arcs are possible with the RFT fix.

Continuing with the results a similar feature can be seen as with sequence one. The hyperbolic
excess velocities are converging to nearly the same values for the same moon transfers
(resonances). There is one small difference with sequence one. In the latter both subsets with
two or three flybys differ significantly with respect to V−∞ whereas for sequence two it is
alone the first subset of two flybys that deviates from the so called norm. The values for V−∞

are not the same compared to the CSU solution, but are in the relative neighbourhood.

Aside from the first subset of each trial, the other subsets have significantly lower flyby
altitudes compared to the CSU solution. However, the solutions found by the optimisation
are able to find (near) coasting arcs for all legs, compared to three coasting arcs and one
thrust arc. Note that strictly speaking the legs are not considered coasting arcs, because ∆V
is not equal to zero. However, the values are negligible small. Another remark is that the last
two trials have found a similar solution and at completely different epochs. Furthermore, the
first trial starts around one third of a day earlier and ends the sequence of five flybys with a
smaller difference resulting in a considerable worse solution (150 m/s compared to ∼ 0 m/s).
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Table 10.4: Results (3x) of subsets for the gravity-assist manoeuvres for the first sub-sequence Ga-Ga-
Ca-Ca-Ga. [Settings: full freedom and 2 flyby window]

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (103) Ga 60522.177 335.6 1449.6 1098.51

2 (104) Ga 60532.919 336.5 1537.3 1097.43

1 (103) Ga 60524.012 1471.5 854.0 1098.51

2 (104) Ga 60538.326 1471.5 119.7 1097.39

3 (105) Ca 60555.856 1251.5 1316.9 1096.84

1 (103) Ga 60523.625 1320.3 1878.3 1098.51

2 (104) Ga 60537.928 1325.0 686.3 1096.37

3 (105) Ca 60555.405 1070.3 122.5 1076.97

4 (106) Ca 60588.796 1056.5 1162.1 1075.29

1 (103) Ga 60524.166 1519.6 1082.3 1098.51

2 (104) Ga 60538.476 1520.4 144.1 1097.17

3 (105) Ca 60556.730 1330.4 50.0 1094.31

4 (106) Ca 60581.844 1328.8 426.1 1090.56

5 (107) Ga 60599.593 1667.6 1250.2 1088.16

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (103) Ga 60529.484 328.2 955.0 1098.51

2 (104) Ga 60540.223 329.0 710.4 1097.42

1 (103) Ga 60527.668 1470.6 673.6 1098.51

2 (104) Ga 60538.411 1467.6 118.3 1097.52

3 (105) Ca 60555.979 1262.6 1119.8 1096.98

1 (103) Ga 60527.694 1467.6 470.6 1098.51

2 (104) Ga 60538.437 1464.7 130.4 1097.49

3 (105) Ca 60556.047 1267.6 361.7 1096.93

4 (106) Ca 60581.150 1255.1 973.7 1096.91

1 (103) Ga 60524.516 1545.6 678.5 1098.51

2 (104) Ga 60538.830 1545.6 63.2 1096.88

3 (105) Ca 60556.882 1407.3 119.6 1096.33

4 (106) Ca 60581.998 1399.0 632.9 1096.33

5 (107) Ga 60599.696 1738.3 1032.6 1096.05

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (103) Ga 60513.305 348.7 215.1 1098.51

2 (104) Ga 60524.048 348.3 1720.4 1097.40

1 (103) Ga 60511.794 1483.3 766.9 1098.51

2 (104) Ga 60526.108 1483.3 201.1 1097.06

3 (105) Ca 60543.821 1267.1 889.2 1096.51

1 (103) Ga 60511.683 1456.0 102.6 1098.51

2 (104) Ga 60525.997 1469.0 52.9 1096.85

3 (105) Ca 60543.872 1248.0 313.7 1095.58

4 (106) Ca 60568.960 1261.3 961.1 1095.18

1 (103) Ga 60512.206 1611.0 76.0 1098.51

2 (104) Ga 60526.520 1611.0 62.4 1096.79

3 (105) Ca 60544.427 1346.4 50.4 1096.22

4 (106) Ca 60569.502 1364.8 57.5 1096.22

5 (107) Ga 60587.350 1530.8 913.8 1095.67

1 Number between parenthesis is the actual flyby number in the CSU solution.

Compared to sequence one the second sequence does not require large ∆V and is not influenced
by penalties. This is also translated to the thrust profiles of trial two which are provided in
Figures 10.7 - 10.10. As mentioned before ∆V =∼ 0.0 m/s is not equal to zero and therefore
not an actual coasting arc. It is not surprising that the legs require insignificant amounts to
no thrust at all. The thrust constraint of 1.0 N and more importantly the GTOCT6 constraint
of 0.1 N are both satisfied for all the subsets. Finally in Figure 10.11 the trajectory is shown
of trial 2.
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Figure 10.7: Thrust profile of the subset Ga-Ga (trial 2) for sequence two with full freedom and 2 flyby
window strategy.

Figure 10.8: Thrust profile of the subset Ga-Ga-Ca (trial 2) for sequence two with full freedom and 2
flyby window strategy.
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Figure 10.9: Thrust profile of the subset Ga-Ga-Ca-Ca (trial 2) for sequence two with full freedom and
2 flyby window strategy.

Figure 10.10: Thrust profile of the subset Ga-Ga-Ca-Ca-Ga (trial 2) for sequence two with full freedom
and 2 flyby window strategy.



100 CHAPTER 10 RESULTS

Table 10.5: Results (3x) of subsets for the low-thrust arcs for the first sub-sequence Ga-Ga-Ca-Ca-Ga.
[Settings: full freedom and 2 flyby window]

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (103-104) Ga-Ga 60522.177 10.74 1 2.0 2.0

∆Vtot = 2.0 2.0

1 (103-104) Ga-Ga 60524.012 14.31 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60538.326 17.53 1 ∼0.0 ∼0.0

∆Vtot = ∼0.0 ∼0.0

1 (103-104) Ga-Ga 60523.625 14.30 1 21.0 21.0

2 (104-105) Ga-Ca 60537.928 17.48 1 341.0 341.0

3 (105-106) Ca-Ca 60555.405 33.39 1 31.0 31.0

∆Vtot = 393.0 393.0

1 (103-104) Ga-Ga 60524.166 14.31 1 4.0 4.0

2 (104-105) Ga-Ca 60538.476 18.25 1 41.0 41.0

3 (105-106) Ca-Ca 60556.730 25.11 1 67.0 67.0

4 (106-107) Ca-Ga 60581.844 17.75 1 38.0 38.0

∆Vtot = 150.0 150.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (103-104) Ga-Ga 60529.484 10.74 1 2.0 2.0

∆Vtot = 2.0 2.0

1 (103-104) Ga-Ga 60527.668 10.74 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60538.411 17.57 1 ∼0.0 ∼0.0

∆Vtot = ∼0.0 ∼0.0

1 (103-104) Ga-Ga 60527.694 10.74 1 1.0 1.0

2 (104-105) Ga-Ca 60538.437 17.61 1 ∼0.0 ∼0.0

3 (105-106) Ca-Ca 60556.047 25.10 1 ∼0.0 ∼0.0

∆Vtot = 1.0 1.0

1 (103-104) Ga-Ga 60524.516 14.31 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60538.830 18.05 1 ∼0.0 ∼0.0

3 (105-106) Ca-Ca 60556.882 25.11 1 ∼0.0 ∼0.0

4 (106-107) Ca-Ga 60581.998 17.70 1 ∼0.0 ∼0.0

∆Vtot = ∼0.0 ∼0.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (103-104) Ga-Ga 60513.305 10.74 1 2.0 2.0

∆Vtot = 2.0 2.0

1 (103-104) Ga-Ga 60511.794 14.31 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60526.108 17.71 1 ∼0.0 ∼0.0

∆Vtot = ∼0.0 ∼0.0

1 (103-104) Ga-Ga 60511.683 14.31 1 10.0 10.0

2 (104-105) Ga-Ca 60525.997 17.86 1 13.0 13.0

3 (105-106) Ca-Ca 60543.872 25.09 1 7.0 7.0

∆Vtot = 30.0 30.0

1 (103-104) Ga-Ga 60512.206 14.31 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60526.520 17.91 1 ∼0.0 ∼0.0

3 (105-106) Ca-Ca 60544.427 25.08 1 ∼0.0 ∼0.0

4 (106-107) Ca-Ga 60569.502 17.85 1 ∼0.0 ∼0.0

∆Vtot = ∼0.0 ∼0.0

1 Numbers between parenthesis are the actual flyby numbers in the CSU solution and define the
departure and arrival point of the leg.

2 ∆V without the penalties for thrust constraint violation.

In Figure 10.12 the evolution of the champion solutions for each trial is shown. Note that
trial one is missing due to data loss during the simulation. The results show that convergence
to the solution of ∆V = 0.0 m/s for trial two and three takes large numbers of generations.
The limit of 40,000 generations for the optimisation is just sufficient for getting to the optimal
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Figure 10.11: Best trajectory solution to the Ga-Ga-Ca-Ca-Ga sequence (trial 2) with full freedom and
two flyby window strategy.

value. It shows that the five flyby problem is difficult to optimise, although the two trials
here did converge in the end.

10.2.3 Result of Strategies

Before all strategies are analysed it is important to note that sequence one is dominated by
thrust constraint violation penalties. Sequence two, on the other hand, has not experienced
any thrust violations at all. A difference therefore exists in the goal of the optimisation. The
penalties are related to the ratio of the maximum thrust violation with respect to the maximum
thrust constraint, which is not a linear relation with ∆V due to the varying thrust constraint
profiles, for example see Figure 10.3. Therefore the objective is shifted from optimising ∆V
to optimising the thrust constraint violation penalties.

Although lowering the penalties is in essence also decreasing ∆V , it is not focussed on finding
the optimal ∆V that is actually required. Instead it is optimising for the least stringent
penalty until the solutions are satisfying the thrust constraint after which the objective is
purely ∆V again (without penalties).

In the previous sections the results for the strategies full and small freedom with two flyby
window have been shown and discussed. The remaining results of the simulations for the
different strategies can be found in Appendix D. For each strategy the two tables, as seen in
the previous sections, are shown with the corresponding data.

The moon transfers that involve the same moon suffer from the limited accuracy of the shaping
method of the RFT fix as was with the discussion of the strategy for the first sequence. As
shown before, the quality of the shaping method drops significantly when the same semi-major
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Figure 10.12: Evolution of the champion for the Ga-Ga-Ca-Ca-Ga sequence with full freedom and two
flyby window strategy.

axis is used and the RAAN parameter changes by one degree already. This happens in several
cases. Through optimisation, the population tends to converge to solutions where the RAAN
is mostly rotated by the gravity assists. However, the latter does not always seem to work for
moon transfers between different moons, especially after a resonance pattern while visiting
the same moon, what happens in both sequences. This could also be due to insufficient
convergence of the problem.

As was mentioned in the two discussed strategies in the previous sections, the hyperbolic
excess velocity before the flybys V−∞ of the smaller subsets showed significant differences
with the larger subsets. For these subsets also the flyby altitudes start dropping in order to
make better use of the flyby. Several solutions show altitude drops to 50.0 km making them
use the flyby to the maximum extent possible. A further distinction can be made between
the two sequences for all strategies. For sequence one both subsets with two and three flybys
show solutions that do not reoccur in the consecutive subsets whereas for sequence two this is
only the case for the first subset. This leads to the question whether these smaller subsets are
relevant for the other subsets, because they do not lead to similar results that help improve
the optimisation. One of the reasons is that the first and second subset are relatively easy
and provide solutions that are not viable for the larger subsets. The latter experience more
difficulties with optimisation, due to the larger decision vector, the larger problem and the
combination of many local optima with bad convergence performance. Therefore it can be
said that the first two subsets do not necessarily improve the optimisation. Instead optimising
the complete sub-sequence of five flybys at once is more time efficient, also because the results
are quite varied. However, the latter is also due to the limited accuracy of the spherical
shaping method.

To continue with V−∞ for the first sequence, both the two and three flyby window show good
results for having nearly similar values of V−∞ for swinging by the same moon. The one
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flyby window strategy on the other hand does not show this characteristic very well, which is
most likely due to restricted freedom of the preceding flyby. This strategy can be translated
as a patch method by adding one flyby add the time with sufficient freedom. However, the
preceding flybys do not have sufficient freedom around there epochs to reach similar V−∞

values. On the other hand, for the second sequence all windows strategies are able to find
similar V−∞ values, for both full and small freedom around the epochs of the flybys. As
mentioned before with the two discussed test cases, the first and last flyby of a subset tend to
show deviating values. Especially the last flyby shows deviating results compared to the other
flybys in the subset with respect to the altitude. This was explained to be contributed to that
these flybys are at the end of the sequence. Therefore they are not restricted to satisfy the
next low-thrust arc.

Looking at the epochs of the first flyby of each subset of the solutions of sequence one, there
are a few interesting observations. First, independent of the strategy, the epochs of the first
flyby are considerably different of the various trials for the same strategy. This shows that
the optimisation is probably not consistent in finding the optimal solution or there are too
many local optima in which the DE algorithm gets stuck. It is also possible that the problem
has not converged sufficient yet, even though a considerable large number of generations is
run for each subset. For the second sequence the same observation is made regardless of
the strategy and therefore it is considered to be characteristic of the problem to have many
local optima. This was also expected during the preceding literature research due to the
combination of continuous low-thrust legs and instantaneous gravity-assist manoeuvres. A
second observation is that the epoch of the first flyby of the first subset is a leading reference
value for the remaining subsets. Meaning that the consecutive subsets will start with an epoch
close by the solution of the previous subset. This means that feeding the champion of the
current solution has an influence on the following subsets. However, as mentioned before,
the first subset (and even the second subset for the first sequence) have completely different
results compared to the following subsets with respect to the utilisation of the GA’s.

The time-of-flight in the solutions is often nearly equal or in the neighbourhood of the orbital
period (same moon transfer) or of the synodic period (different moon transfer). An example
for sequence one is the often reoccurring 2:1 (moon 7.10 days:spacecraft 3.55 days) resonance
on the Eu-Eu transfer. Also the 1:1 resonance for the same moon sequence is present in
several trials among the strategies. For the Eu-Io transfer the time-of-flight is in nearly all
cases slightly larger than the synodical period (Table 9.3). The same or nearly the same TOF
is most likely not a better configuration here, because the spacecraft does not repeat that
same transfer in this sequence of the optimisation. Surprisingly for the second sequence not
one of the TOF represents a resonance transfer. Although some of the TOF’s come close to
the orbital periods or synodic periods, there is not one that is nearly equal. This introduces
an interesting question related to moon mapping of this sequence, because resonances are
often used to map two opposite faces on the moon by going forth and back between two
resonances Casalino (2012, 2014).

From the results it can be seen that the first two subsets, with two and three GA’s, most of
them give very good solutions. It is however when the sequence increases to four or five GA’s
that the quality drops significantly. Also the parameters seem to change more than by a slight
deviation: like the hyperbolic excess velocity changes significantly and also the flyby altitudes
start dropping in order to make better use of the flyby. Several solutions show altitude drops
to 50.0 km making them use the flyby to the maximum extent possible.

To add to the subset story, especially the first two subsets of the sub-sequences seem not to
contribute efficiently to the solution of the final subset. One of the reasons is that the first
two subsets are relatively too easy and provide solutions that are not viable for the larger
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subsets. The latter experiences more difficulties for optimisation, due to the larger decision
vector, the larger problem and the combination of many local optima with bad convergence
performance. Therefore it can be said that the first two subsets do not necessarily improve
the optimisation, maybe even doing the complete sub-sequence of five flybys at once is more
time efficient, also because the results are quite varied. However, the latter is also due to the
limited accuracy of the spherical shaping method.

To further elaborate on the larger subsets with four and five flybys. Both subsets show that
the problem is severely complex resulting, in case of sequence one, in enormous ∆V values.
This is due to the dependency of the flybys and the low-thrust arcs. Each flyby that is being
added to the subset increases the complexity and decreases the chance of finding proper
trajectories in the system. The dependency on the previous and the following legs and flybys
determines essentially the effective maximum number of flybys that can be optimised in one
series. It is clear that for sequence one the subset with five flybys, but also four, has difficulties
trying to find proper trajectories that do not need considerable amounts of ∆V . For sequence
two, both subsets are still capable of finding proper solutions. However for larger sequences
this might not work out anymore. A possible solution to this problem is either to split up the
full sequence of the GTOC6 problem in smaller subsets of, for example, a maximum of five
flybys. Another possibility would be to decouple the low-thrust arcs from the flybys. This can
be done by introducing coasting arcs and powered gravity-assist manoeuvres. After finding
the trajectory solution, the relative small thrust corrections during the powered flyby can be
removed by replacing the coasting arc with a low-thrust arc. This approach has also been
used by Novak (2012) to solve the Ea-Ea-Apolla trajectory discussed in Chapter 8.

So far the characteristics of the results of the strategies have been discussed. To get a better
picture of the most suitable strategy for optimising ∆V , the objective function value is
analysed of all strategies. In Figure 10.13 the results are shown for all strategies of the first
sequence. It is clear from the graph that the subsets with four and five flybys have very large
values compared to the smaller subsets. What is more difficult to see clearly is an optimal
strategy for tackling complex low-thrust gravity-assist trajectories. The three trials (same
color in graph) that are performed per strategy show no conclusive result for any of the
strategies. Each of them displays different behaviour in the sense that one trial performs
relatively well and another trial performs the worst.

In Figure 10.14 the same sequence and strategies are plotted, but now without the thrust
constraint penalties. The graph displays the actual ∆V for the subsets. As mentioned before,
optimising ∆V with penalties is not the same as optimising for the actual ∆V , which can be
seen in the last figure. For example, the full freedom and three flyby window strategy has two
trials that relatively do not perform well for optimisation of the former. However, looking at
∆V without the penalties there are now two trials of the same strategy that perform relatively
well. Though, there is a difference in optimisation objective and therefore the latter results,
without penalties, can not be used as conclusive results.

The second sequence showed much better results compared to sequence one. In Figure 10.15
the overview is given of the ∆V results for all strategies. One remarkable observation compared
to the results of sequence one, is that the several trials of different strategies show a significant
improvement of results going from the subset with four flybys to the subset of five flybys. In
case of sequence one the results only became worse for the subset of five flybys.

Again the results show a varied outcome for the three trials of each strategy. Also the full
freedom with three flyby window strategy does not perform well, relatively speaking. However,
this is the case for the subset of four flybys. The consecutive subset of five flybys is improved
significantly for two trials, whereas the result of the other trial became worse. Same as with
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Figure 10.13: The total ∆V of the subsets for all strategies for sequence one. Three trials per subset
are displayed with the same color.

Figure 10.14: The total ∆V of the subsets without thrust constraint violation penalties for all strategies
for sequence one. Three trials per subset are displayed with the same color.
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Figure 10.15: The total ∆V of the subsets for all strategies for sequence two. Three trials per subset
are displayed with the same color.

sequence one it is hard to determine the performance of the different strategies. Therefore a
closer look is taken at the robustness of the strategies.

10.2.4 Robustness of Strategies

To see how well the strategies performed the robustness is checked. Due to the varying
solutions and not having one singular optimal value for which the robustness can be defined
for as reference level, a different solution has to found. Here the best two trials out of three
are taken and the difference is used to determine the level of robustness. The closer the
difference to zero the more robust the strategy is to find optimal solutions. To define the two
best solutions the total sum is taken of the ∆V of each subset of the sequence. In other words,
not just the solution of the five flybys sequence counts, but also the smaller flyby sequence
sizes. Although sequence one does not experience improvement in ∆V after adding a flyby
(always increasing), this is the case for sequence two. To avoid taking only trials that perform
very well on the five flybys subset, but not well on all of the preceding smaller subsets, it is
decided to take the summation of ∆V of each subset in a trial. Doing so results in the two
best trials of each strategy test for which the differences are shown in Figures 10.16 and 10.17
for respectively sequence one and two.

For sequence one it follows that the small freedom with two flyby strategy performs the most
optimal. Furthermore, full freedom with either one or three flyby window gives the worst
robustness. Closely followed by the small freedom with one flyby strategy, it can be concluded
that for the first sequence using a one flyby window is not recommended. A window of two
flybys seems to show the most promising results for robustness. Note that the robustness here
is defined as the two best trials out of three which is a very limited selection. However, due to
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Figure 10.16: Robustness of the strategies defined as the difference in ∆V of the two best trials per
subset for sequence one.

the required computational resources, as mentioned before, it was decided to stick with three
trials.

Sequence two displays slightly different results compared to sequence one which are given
in Figure 10.17. It is clear though that the full freedom with the three flyby strategy is the
weakest of all strategies. Followed by the same freedom, but now with only one flyby window.
Also the other three flyby window (small freedom) does not perform well compared to the
others. This leads to the conclusions that sequence two does not favour the three flyby window
strategy. Combining the latter with the conclusion of sequence one leaves one with the two
strategies with a window of two flybys as potential optimal strategies. In case of sequence two
the preference is the full freedom strategy whereas for sequence one it is the small freedom
strategy. Note, as mentioned before that the number of trials is potentially not sufficient to
give a conclusive answer to which strategy is the most optimal. However, based on these
results in this section a window of two flybys is the optimal solution and both full and small
freedom are able to perform well.

For the strategy choice for the optimisation of ∆V and moon face points in the next section a
decision needs to be made. It was decided early on to optimise the first sequence, because of
the fast dynamics and the possible challenge for the optimisation of the moon face points.
However, this was decided when the sequences were not fixed yet halfway the thesis. The
optimisation would be influenced by Europa due to the additional points that are awarded,
because of its scientific interest. Though, with the sequence fixed this does not matter, still
sequence one is selected for the next simulation. For this reason it is decide to go with
the small freedom with two flyby window strategy, because it performed relatively well for
sequence one.
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Figure 10.17: Robustness of the strategies defined as the difference in ∆V of the two best trials per
subset for sequence two.

10.3 Optimisation of the Sequence One for ∆V and Moon Face

Points

The optimisation for ∆V and moon face points is performed with a weighted sum objec-
tive function (Equation (9.6)), because the DE algorithm does not support multi-objective
optimisation. For the problem three different sets of weights were used to solve the same
problem (sequence one) again, but now also including the mapping of the moons. The three
sets are W∆V = 10.0 and WM = 1.0, W∆V = 1.0 and WM = 1.0 and the last W∆V = 1.0
and WM = 10.0. With the first set the focus is put on optimising for ∆V and a little for the
points. The last set of weights is the other way around, the focus is now on the moon points.
Obviously, the second set is a compromise of both.

Furthermore, from the previous section the small freedom with two flyby strategy was selected.
Note that only the first sequence is tested though, due to time constraints. In the last section
of Appendix D the results are given for sequence one. In the following section the case with
the weight set W∆V = 1.0 and WM = 10.0 is discussed, followed by the discussion on the
results of the multi-objective optimisation.

10.3.1 W∆V = 1.0 and WM = 10.0 Applied to Sequence One

The last optimisation case is to test whether the designed low-thrust gravity-assist model can
be applied to find the most valuable moon faces present in the sequence. In this section the
results will be discussed, that was focussed mainly on optimising the moon face points due to
the weight WM = 10.0. Optimisation of ∆V is considered to be less of importance in this
case. The results of the optimisation can be found in Tables 10.6 and 10.7.
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The same kind of data is shown in the tables as was the case with the tables in the previous
section. There are two additional columns in Table 10.6 that give the face number and the
corresponding value (points) that were mapped with the flyby. Furthermore, in Table 10.7
besides the usual total ∆V values, the function value f for the combined objectives of ∆V
and moon face points is given. Note that the more negative f is the more optimal the result
is.

The first thing that is noticed from the results is again the very large ∆V values. This time
the values are even larger as compared to the similar optimisation of ∆V in Section 10.2.1.
The explanation is that the optimisation is more focussed on trying to find trajectories that
reach the high scoring faces of the moons, which is done considerably well when looking at
the column of the face values in Table 10.6. Even better, each subset within each trial of
this test case has reached the maximum score possible. Europa has faces with a maximum
value of six whereas Io has a maximum face value of three. Therefore the set of weights has
performed well for the moon face points. However, this is at the cost of more ∆V .

Compared to the test case in Section 10.2.1, the TOF, V−∞ and hflyby show more variation in
the values to reach certain moon faces. Again the first two subsets confirm that their values
in V−∞ and hflyby are very different from the larger subsets. It is also interesting to see that
the initial two subsets tend to often find face number 25, whereas in the final two subsets they
disappear. Except for the subset with five flybys in trial one. Furthermore, the ∆V is a factor
five or six higher. Though the actual ∆V required is only a factor two larger, the reason for
the high values is related to the thrust levels. In Figures 10.19 - 10.22 the thrust profiles are
given of each subset. From this follows that for the larger subsets (four and five flybys) all
legs fail for the thrust constraint. Also the magnitude of the thrust is high and therefore
explains the enormous ∆V . Also the consequence is that the mass of the spacecraft decreases
real fast due to the excessive amounts of propellant used for these manoeuvres. Finally in
Figure 10.18 the trajectory is shown of trial 2.

10.3.2 Performance of Sets of Weights

Looking at the results it is immediately clear that the relative set of weights have a desirable
effect with respect to one point, scoring moon points. In each solution the maximum score
is achieved, however, the cost is low-thrust arcs that violate the thrust constraint severely
causing considerable large penalties for ∆V . Apparently the weights are not chosen carefully
to allow for proper ∆V optimisation. The focus is too much on moon points, causing the
optimiser to be less strict finding proper ∆V solutions. Therefore the optimisation with
respect to moon points does not reveal a considerable amount of insight, except that the
∆V is influenced by the weights. However, the better set of weights can be derived from the
results.

Instead of looking at the objective value f , the total ∆V is used to check the performance of
the optimisation. This is because the maximum number of points is achieved for all cases and
therefore only ∆V is changing the objective value. However ∆V is more clear and insightful
than an objective value that combines ∆V and moon face points. In Figure 10.23 the total
∆V is shown per subset. It is clear that being fully focussed on the moon mapping with the
weights W∆V = 1.0 and WM = 10.0 causes the highest ∆V results. However, the solutions
to W∆V = 1.0 and WM = 1.0 follow closely. The last set is W∆V = 10.0 and WM = 1.0
which has a varied performance divided among the other results. With the given sets the
performance between optimising ∆V and moon face points has not been fully explored. This
would require more tuning of the weights to get better ratios to optimise for. However, due to
time constraints this is not performed, but it is considered for future work. To add on that, it
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Figure 10.18: Best trajectory solution to the Eu-Eu-Eu-Io-Io sequence (trial 2) with W∆V = 1.0 and
WM = 10.0.

Figure 10.19: Thrust profile of the subset Eu-Eu (trial 1) for sequence one with moon mapping.
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Table 10.6: Results (3x) of subsets for the gravity-assist manoeuvres for the sub-sequence Eu-Eu-Eu-Io-
Io. [Settings: small freedom and 2 flyby window and W∆V = 1.0 and WM = 10.0]

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] # Face Face value mpost flyby [kg]

1 (15) Eu 59885.256 302.3 452.3 18 6 1889.67

2 (16) Eu 59892.358 301.8 1532.4 24 6 1886.31

1 (15) Eu 59886.738 305.6 1914.3 20 6 1889.67

2 (16) Eu 59890.301 300.0 56.8 25 6 1885.75

3 (17) Eu 59893.858 300.0 898.2 18 6 1883.23

1 (15) Eu 59885.139 439.4 95.3 24 6 1889.67

2 (16) Eu 59890.310 565.7 1499.2 26 6 1861.02

3 (17) Eu 59894.264 1232.9 50.4 22 6 1817.12

4 (18) Io 59898.084 2176.6 1478.6 19 3 1736.04

1 (15) Eu 59884.302 507.6 472.1 16 6 1889.67

2 (16) Eu 59889.006 624.9 1574.3 25 6 1850.76

3 (17) Eu 59894.355 1078.3 52.6 23 6 1802.83

4 (18) Io 59898.372 1261.9 50.0 22 3 1686.28

5 (19) Io 59900.763 1317.6 800.2 26 3 1654.42

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] # Face Face value mpost flyby [kg]

1 (15) Eu 59883.221 303.8 108.4 25 6 1889.67

2 (16) Eu 59890.324 305.1 967.8 18 6 1886.48

1 (15) Eu 59881.526 301.4 767.4 25 6 1889.67

2 (16) Eu 59888.629 300.0 547.3 18 6 1886.27

3 (17) Eu 59895.730 300.0 856.4 24 6 1883.00

1 (15) Eu 59882.606 380.1 1998.5 24 6 1889.67

2 (16) Eu 59889.247 417.5 1999.7 17 6 1865.08

3 (17) Eu 59893.704 1723.3 268.1 16 6 1795.55

4 (18) Io 59898.045 1868.8 1099.1 20 3 1732.46

1 (15) Eu 59883.125 1121.8 1914.1 16 6 1889.67

2 (16) Eu 59888.537 900.1 74.5 17 6 1852.04

3 (17) Eu 59894.353 1212.9 50.4 21 6 1786.63

4 (18) Io 59898.505 1501.3 1288.4 15 3 1671.26

5 (19) Io 59902.034 1494.2 384.5 24 3 1661.33

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] # Face Face value mpost flyby [kg]

1 (15) Eu 59865.445 357.8 1594.5 25 6 1889.67

2 (16) Eu 59872.545 355.7 124.4 19 6 1886.22

1 (15) Eu 59866.397 304.0 716.6 18 6 1889.67

2 (16) Eu 59873.496 303.2 53.6 25 6 1884.93

3 (17) Eu 59880.602 300.0 1339.5 19 6 1879.99

1 (15) Eu 59865.985 369.3 414.0 19 6 1889.67

2 (16) Eu 59872.868 318.8 351.4 24 6 1864.82

3 (17) Eu 59879.875 1236.8 52.1 20 6 1785.03

4 (18) Io 59883.890 1840.8 1319.2 19 3 1703.98

1 (15) Eu 59864.636 469.1 1488.1 20 6 1889.67

2 (16) Eu 59871.666 1161.9 50.0 17 6 1828.72

3 (17) Eu 59876.934 1645.8 54.1 19 6 1754.36

4 (18) Io 59880.576 1583.2 440.9 20 3 1654.66

5 (19) Io 59883.209 1548.6 1036.5 19 3 1630.17

1 Number between parenthesis is the actual flyby number in the CSU solution.

might be very useful to try out an actual multi-objective optimiser. PaGMO contains such
an optimiser in the flavour of MOEA/D (Mambrini and Izzo, 2014), which creates a Pareto
front with solutions to the sub-problems. Here the sub-problems are each separate objective
function. The optimal Pareto front that follows from the optimisation is the line that denotes
the optimal solution to the multiple objectives. The user than has to define the compromise
of which objective is more important and read the corresponding optimal solution from the
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Table 10.7: Results (3x) of subsets for the low-thrust arcs for the first sub-sequence Eu-Eu-Eu-Io-Io.
[Settings: full freedom and 2 flyby window and W∆V = 1.0 and WM = 10.0]

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59885.256 7.10 1 6.0 6.0

f = -10.1527 ∆Vtot = 6.0 6.0

1 (15-16) Eu-Eu 59886.738 3.56 1 12.0 12.0

2 (16-17) Eu-Eu 59890.301 3.56 1 11.0 11.0

f = -10.0794 ∆Vtot = 23.0 23.0

1 (15-16) Eu-Eu 59885.139 5.17 1 42776.0 255.0

2 (16-17) Eu-Eu 59890.310 3.95 1 200383.0 455.0

3 (17-18) Eu-Io 59894.264 3.82 1 551468.0 882.0

f = -8.7500038 ∆Vtot = 794627.0 1592.0

1 (15-16) Eu-Eu 59884.302 4.70 1 91306.0 383.0

2 (16-17) Eu-Eu 59889.006 5.35 1 114024.0 488.0

3 (17-18) Eu-Io 59894.355 4.02 1 931540.0 1297.0

3 (18-19) Io-Io 59898.372 2.39 1 147156.0 340.0

f = -8.0000031 ∆Vtot = 1284026.0 2508.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59883.221 7.10 1 4.0 4.0

f = -10.2066 ∆Vtot = 4.0 4.0

1 (15-16) Eu-Eu 59881.526 7.10 1 6.0 6.0

2 (16-17) Eu-Eu 59888.629 7.10 1 5.0 5.0

f = -10.1499 ∆Vtot = 11.0 11.0

1 (15-16) Eu-Eu 59882.606 6.64 1 25157.0 231.0

2 (16-17) Eu-Eu 59889.247 4.46 1 451260.0 721.0

3 (17-18) Eu-Io 59893.704 4.34 1 273688.0 676.0

f = -8.7500040 ∆Vtot = 750105.0 1628.0

1 (15-16) Eu-Eu 59883.125 5.41 1 71265.0 368.0

2 (16-17) Eu-Eu 59888.537 5.82 1 367653.0 681.0

3 (17-18) Eu-Io 59894.353 4.15 1 1101802.0 1267.0

3 (18-19) Io-Io 59898.505 3.53 1 67.0 67.0

f = -8.0000026 ∆Vtot = 1540787.0 2384.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59865.445 7.10 1 7.0 7.0

f = -10.1319 ∆Vtot = 7.0 7.0

1 (15-16) Eu-Eu 59866.397 7.10 1 7.0 7.0

2 (16-17) Eu-Eu 59873.496 7.11 1 9.0 9.0

f = -10.1120 ∆Vtot = 16.0 16.0

1 (15-16) Eu-Eu 59865.985 6.88 1 217.0 217.0

2 (16-17) Eu-Eu 59872.868 7.00 1 299949.0 814.0

3 (17-18) Eu-Io 59879.875 4.02 1 580679.0 898.0

f = -8.7500034 ∆Vtot = 880845.0 1929.0

1 (15-16) Eu-Eu 59864.636 7.03 1 149539.0 617.0

2 (16-17) Eu-Eu 59871.666 5.27 1 328594.0 787.0

3 (17-18) Eu-Io 59876.934 3.64 1 813988.0 1134.0

3 (18-19) Io-Io 59880.576 2.63 1 80575.0 258.0

f = -8.0000029 ∆Vtot = 1372696.0 2796.0

1 Numbers between parenthesis are the actual flyby numbers in the CSU solution and define the
departure and arrival point of the leg.

2 ∆V without the penalties for thrust constraint violation.

Pareto front. The multi-objective optimiser is not part of this thesis, but recommended for
further research.
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Figure 10.20: Thrust profile of the subset Eu-Eu-Eu (trial 1) for sequence one with moon mapping.

Figure 10.21: Thrust profile of the subset Eu-Eu-Eu-Io (trial 1) for sequence one with moon mapping.



114 CHAPTER 10 RESULTS

Figure 10.22: Thrust profile of the subset Eu-Eu-Eu-Io-Io (trial 1) for sequence one with moon map-
ping.

Figure 10.23: The total ∆V of the subsets for all strategies for sequence one with moon mapping.



11
Conclusions & Recommendations

T
his chapter is the closure of the thesis and gives the conclusions of this research. Also
recommendations are mentioned and future work is proposed to improve the research

and methodology.

11.1 Conclusions

The focus of this thesis is on preliminary trajectory optimisation in complex moon systems.
More specifically, the main interest is focussed on finding effective ways to optimise moon
sequences using low-thrust propulsion and flybys. This was phrased into the following research
question which will be answered here:

Evaluate the quality of different optimisation strategies for Galilean moon mapping trajectories
using one-body dynamics, gravity-assist manoeuvres and low-thrust propulsion.

The thesis work started with an extensive analysis of the current best known solution to the
GTOC6 problem by the Chinese CSU. From this followed various interesting observations.
First the low-thrust propulsion is used very limited during the mapping phase of GTOC6.
The flybys take care of the largest changes in the orbital parameters. Furthermore, the
CSU solution was able to map nearly all the moon faces using inclinations up till 12.0 ◦ and
eccentricities up till 0.35.

After the analysis the spherical shaping method was verified to see whether it was able to create
trajectories with sufficient accuracy, similar to the ones of CSU. The spherical shaping method
developed for Tudat by Roegiers (2014) had several drawbacks. First the thrust could not be
constrained and therefore had to be checked afterwards. During optimisation this resulted
in a large number of solutions being discarded afterwards for violating the thrust constraint.
The overall performance of the method is that trajectories can be made for inclinations up
till 45.0 ◦ and eccentricities up till 0.45. Furthermore, the method experiences inaccuracies in
∆V for increasing inclinations and for differing and varying values for departure and arrival
RAAN, as well as the argument of periapsis and the true anomaly. Roegiers (2014) developed
a reference frame transformation that improved the accuracy. Also other problems like not
being able to have a coasting arc in an inclined plane were solved with the fix. However, the
spherical shaping method still suffers from limited accuracy.
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A low-thrust multiple gravity-assist optimisation model was developed for the GTOC6 problem.
Here the gravity-assist model from Tudat was used and also the half-plane test to determine
which moon face was mapped by the flyby was developed and incorporated into the model.
With the model an extensive test was performed to select a suitable DE algorithm. It followed
from two test cases that the large complexity for gravity-assist sequences favours random
selected control parameters during the evolution. This feature was made possible due to an
incorrect implementation of the adaptive algorithm jDE while testing the algorithms. The
implementation is named randDE. Furthermore, it followed that the combination of low-thrust
arcs and gravity-assist manoeuvres would cause problems with convergence due to the large
decision vectors and the slow convergence for the test problems.

With the selected optimisation algorithm randDE the GTOC6 problem was prepared. A
framework was developed to test several optimisation strategies. Two sequences of the CSU
solution were taken to be tested for two different optimisation cases. One on the optimisation
of ∆V and another one on the optimisation of ∆V and the moon face points.

Several optimisation strategies with different window sizes have been applied allowing for a
wide variation of the freedom around the epochs of the flybys. With sequence one, Eu-Eu-Eu-
Io-Io, showing very unsatisfying solutions due to thrust constraint violation. Sequence two,
Ga-Ga-Ca-Ca-Ga showed more promising results that were similar to the CSU solution. From
the results it followed that the strategies made it possible to find the gravity assists needed to
avoid using low-thrust propulsion. However, not very consistent answers were found, and the
initial two subsets of the computations for the remaining subsets are most of the time not
a leading factor for the optimisation. Therefore the two subsets should be considered to be
removed. However, the impact of that on the epochs of the remaining subsets has not been
tested. For the optimisation with the different strategies there was not a conclusive answer to
which strategy is the most optimal. From the results did follow that using a window of two
flybys is the most suitable option. Whether the full or small freedom should be applied was
left in the middle. For the final problem the small freedom strategy was used due to the fact
that that strategy performed well in sequence one.

Furthermore, sequences with four or five GA’s are considered complex and the size of the
decision vector and problem create performance issues for (rand)DE. The current approach of
increasing the subsets and optimising everything again is not very efficient and does likely not
yield better results compared to just running the five GA problem in the first place. However,
this was not verified.

Also using low-thrust in this stage of optimisation might not be the most suitable solution
for tackling these large complex moon problems. Especially, because the low thrust is not
used for major trajectory changes. This is done by the flybys and therefore it might be more
preferable to use Lambert (ballistic) arcs with powered gravity assists to scope the search
space. This also decouples the legs from the flybys in order to improve the performance of
finding proper trajectories. Afterwards the powered gravity assist can be removed by replacing
the Lambert arcs with low-thrust arcs using a local optimiser. Compared to ballistic legs,
the low-thrust approach creates significant complexity for preliminary optimisation. The
continuous spectrum of solutions of the low-thrust arc combined with the infinitely possibilities
for the conditions before the flyby make the solution space a true maze for the optimiser.

The final optimisation of ∆V and the moon face points turned out to work very well for
mapping the faces of the moons. In all cases the maximum score was achieved for the moon
faces. However, since the first sequence was used again, enormous values for ∆V were found.
From the results it was concluded that the weight sets for the weighted sum function were
not adequate enough to optimise the problem. This should be further investigated and it is
recommended to do this with an actual multi-objective optimiser, like MOEA/D.
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To summarise, the spherical shaping method is a decent and elegant algorithm for shaping
low-thrust trajectories. However, the performance in its current implementation in Tudat is
insufficient for complex low-thrust multiple gravity-assist problems with respect to computa-
tional effort and accuracy. Though for the optimisation of the second sequence very good
results were achieved by several trials. These solutions required almost no thrust at all and
therefore were not affected by the accuracy issues of the spherical shaping method. However,
this was not the case for sequence one. From this it is also concluded that such complex moon
problems should preferably be solved with ballistic arcs combined with powered gravity assists
followed by a local optimiser as mentioned above. With respect to the optimisation strategy,
using a two flyby window allowed for the more optimal solutions compared to the one and
three flyby windows strategies. For the full or small freedom around the epochs of the flybys
the result was a non-conclusive answer, because they both performed relatively well in one
sequence and on average in the other sequence.

11.2 Recommendations

This thesis is a thorough analysis of optimisation of trajectories in complex moon systems.
However, sufficient elements could have been done different or improved this thesis. These
form the recommendations listed below .

Spherical Shaping Method

The first recommendation involves improvements to the spherical shaping code with respect
to nodal change (RAAN). Large errors are introduced that have to be overcome with penalty
functions to keep the unwanted solutions away. Preferably the low-thrust method should
give solutions that have zero error as in that all solutions are equally treated by optimisation
algorithms. The spherical shaping method is rather new and the same holds for the imple-
mentation of Tudat which already came with recommendations by Roegiers (2014). Several
improvements on the shortcomings of the spherical shaping method are

1 find an improved solution for the reference frame transformation fix to avoid excessive
∆V for the trajectories. This could be partly the reason due to the assumption of
only out-of-plane thrust and tangential thrusting. Radial thrusting is not present and
although tangential is considered more efficient for escaping objects and to get far away
with minimal effort, it might be that radial thrusting is the missing key element for
better trajectories while rotating RAAN.

2 find a way to incorporate thrust limitations, currently the optimisation algorithm has
to filter out the valid trajectories after computing them. Together with the many
constraints, this severely limits the freedom of the optimiser. It is better that the
spherical method is able to find proper trajectories that fit the maximum thrust profile.

3 use time as an independent variable for numerical verification (propagation). Currently,
only the angular values can be converted after shaping the trajectory to the corresponding
time steps. It would be convenient to create solutions with a certain fixed time step.

4 increase the accuracy ∆V computation without increasing the computation time signifi-
cantly.

Following the previous recommendation, based on the results of this thesis it is recommended
that the spherical shaping method in its current implementation is not suitable for problems
where the departure and arrival conditions differ significantly. Even in the case of the low-
thrust multiple gravity-assist trajectories it is debatable if the spherical shaping should be
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used. The flyby can overcome the accuracy problems by taking the responsibility for the
required change of the trajectory, though this is essentially taking out the low-thrust arc.

Optimisation

As mentioned before, the randDE algorithm is not really adaptive. The control parameters
are defined randomly for every generation. This worked out well for the test problem used for
DE tuning. However, it was assumed that the performance would be similar for the larger
subsets. The latter are in essence different problems and therefore the randDE algorithm
could actually perform worse compared to the actual adaptive algorithms of PaGMO.

The next point is that the convergence of the optimisation will be stopped after a certain
maximum number of generations. This will be at the cost of more suitable solutions or
better solutions, that could impact the remainder of the sequence. However, at the cost of
computation time. Therefore a compromise is necessary to fulfil the optimisation requirement.
Especially for the results of sequence one it is questionable, whether the maximum number of
generations was sufficient.

With respect to optimisation, different optimisation algorithms should be tried out. For this
thesis this was too elaborate and time consuming to test and verify. However it is shown
by Izzo et al. (2009) that mixing different algorithms in many cases has similar if not an
improved outcome. Also because the advantages are used of the many methods. This is
a general optimisation recommendation, but especially applies for trajectory optimisation.
Also, because of the complex and large search space and the resulting solution space with
many local optima, it is recommended to not stick to one particular algorithm. Furthermore,
PaGMO is equipped with these capabilities and is relatively easy to use and should definitely
be looked into by future students researching complex trajectories. On top of that, from the
results on tuning the DE algorithm it was concluded that adaptive algorithms should have
the preference, because they save a significant amount of time on tuning which in most cases
is very problem dependent.

Sequence optimisation

Although the optimisation model with its decision vector was designed well. There is always
room for improvement. In specific the flyby angles defining the orientation of the hyperbolic
excess velocity could be improved. Instead of angles defined in the Jovicentric frame the local
moon centred frame should be used. This might improve the search space. The current angles
have all kinds of values, because the angles are ’dependent’ on position. At the normalised
position [1,0,0] a 90 degrees rotation angle (planar) equals a similar velocity boost as a 270
degrees rotation at the position [-1,0,0]. Due to time constraints and efficiency of the problem
algorithm it was decided not to work this out. Also the efficiency of the algorithm could
actually be decreased, because additional computations are required to transform from moon
centred to Jovicentric frame.

A suggestion to improve the optimisation of the subsets of the sequence is, to use the champion
of the previous subset completely instead of using alone the epoch and TOF values as guidance
for the next subset. The champion could be injected into the initial population of the next
subset to advance the evolution. However, it should be noted that since the champion is based
on a different problem (less flybys/legs), an adverse effect is also possible due to the injection
of the champion.
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Different sets of weights should be tried out for the multi-objective optimisation problem
(moon face points). The sets used in this thesis were all strongly focussed on maximising the
moon points. Also an actual multi-objective optimiser should be considered, like MOEA/D to
get a better result and insight into the multi-objective problem.

Finally, optimising five flybys or even four is requiring enormous amounts of computational
effort. Therefore, it should be looked into using a moving window going through the sequence.
In other words the flybys that were outside the window should be fixed instead of given a
small freedom. This might result in similar results while saving expensive computational
time.

Branch and Bound

Branch and bound was originally planned to be used to generate the sequences of flybys.
However, this part is not performed at all due to time constraints and being a considerable
load of work together with the preceding work for a Master’s thesis. This could become
a thesis on its own to find optimal sequences. Same holds for the different moon hopping
techniques as defined in the literature research (Hoving, 2014).
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A
Galilean Moon System Data

This appendix holds the data of the Galilean moons and Jupiter needed for orbital calculations.
The Keplerian orbit elements of the satellites can be found in Table A.1 whereas the physical
constants of the moons are given in Table A.2. The remaining constants are displayed in
Table A.3.

Table A.1: Keplerian orbit elements of the Galilean Satellites at Epoch = 58 849.0 MJD. (Petropoulos,
2012)

Orbit Element Unit Io Europa

Semi-major axis a [km] 422029.68714001 671224.23712681

Eccentricity e [-] 4.308524661773 × 10−3 9.384699662601 × 10−3

Inclination i [◦] 40.11548686966 × 10−3 0.46530284284480

LAN Ω [◦] -79.640061742992 -132.15817268686

Arg. of pericentre ω [◦] 37.991267683987 -79571640035051

Mean anomaly M0 [◦] 286.85240405645 318.00776678240

Orbit Element Unit Ganymede Callisto

Semi-major axis a [km] 1070587.4692374 1883136.6167305

Eccentricity e [-] 1.953365822716 × 10−3 7.337063799028 × 10−3

Inclination i [◦] 0.13543966756582 0.253554332731555

LAN Ω [◦] -50.793372416917 86.723916616548

Arg. of pericentre ω [◦] -42.876495018307 -160.76003434076

Mean anomaly M0 [◦] 220.59841030407 321.07650614246

Table A.2: Satellite physcial constants. (Petropoulos, 2012)

Satellite Radius RS [km] µS [km3/s2]

Io 1826.5 5959.916

Europa 1561.0 3202.739

Ganymede 2634.0 9887.834

Callisto 2408.0 7179.289
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Table A.3: Other constants and conversions. (Petropoulos, 2012)

Parameter Unit Value

Gravitational parameter of Jupiter µ [km3/s2] 126686534.92180

Jupiter radius RJ [km] 71492.0

Standard acceleration due to gravity g [m/s2] 9.80665

Day [s] 86400

Year [days] 365.25



B
The Football Grid

This appendix relates to the performance index used to map the Galilean satellites. The
moons are mapped by dividing the surface into a football grid (uniform icosahedron) which
has 32 faces, consisting of 20 pentagons and 12 hexagons. The coordinates of the vertices
used in the 32 faces are defined in the body-fixed reference frame and are given in Table
B.1. In Table B.2 the vertices can be found that make up each pentagon and hexagon. The
sides of the pentagons and hexagons have a length of 2 and the vertices lie on a sphere. The

golden ratio p = φ =
(

1 +
√

5
)

/2 is used to define the radius of this sphere which equals to

r =
√

9φ+ 10.
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Table B.1: Football grid coordinates, p = φ =
(

1 +
√

5
)

/2. (Petropoulos, 2012)

Vertex number b1 b2 b3

1 -3p -1 0

2 -3p 1 0

3 -(1 + 2p) -2 -p

4 -(1 + 2p) -2 p

5 -(1 + 2p) 2 -p

6 -(1 + 2p) 2 p

7 -(2 + p) -1 -2p

8 -(2 + p) -1 2p

9 -(2 + p) 1 -2p

10 -(2 + p) 1 2p

11 -2p -(2 + p) -1

12 -2p -(2 + p) 1

13 -2p (2 + p) -1

14 -2p (2 + p) 1

15 -2 -p -(1 + 2p)

16 -2 -p (1 + 2p)

17 -2 p -(1 + 2p)

18 -2 p (1 + 2p)

19 -p -(1 + 2p) -2

20 -p -(1 + 2p) 2

21 -p (1 + 2p) -2

22 -p (1 + 2p) 2

23 -1 -2p -(2 + p)

24 -1 -2p (2 + p)

25 -1 0 -3p

26 -1 0 3p

27 -1 2p -(2 + p)

28 -1 2p (2 + p)

29 0 -3p -1

30 0 -3p 1

Vertex number b1 b2 b3

31 0 3p -1

32 0 3p 1

33 1 -2p -(2 + p)

34 1 -2p (2 + p)

35 1 0 -3p

36 1 0 3p

37 1 2p -(2 + p)

38 1 2p (2 + p)

39 p -(1 + 2p) -2

40 p -(1 + 2p) 2

41 p (1 + 2p) -2

42 p (1 + 2p) 2

43 2 -p -(1 + 2p)

44 2 -p (1 + 2p)

45 2 p -(1 + 2p)

46 2 p (1 + 2p)

47 2p -(2 + p) -1

48 2p -(2 + p) 1

49 2p (2 + p) -1

50 2p (2 + p) 1

51 (2 + p) -1 -2p

52 (2 + p) -1 2p

53 (2 + p) 1 -2p

54 (2 + p) 1 2p

55 (1 + 2p) -2 -p

56 (1 + 2p) -2 p

57 (1 + 2p) 2 -p

58 (1 + 2p) 2 p

59 3p -1 0

60 3p 1 0
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Table B.2: List of vertices that make up each face of the football grid. (Petropoulos, 2012)

Face number Vertex numbers

1 59 60 58 54 52 56

2 52 54 46 36 44

3 18 10 8 16 26

4 2 6 10 8 4 1

5 9 5 2 1 3 7

6 17 9 7 15 25

7 43 51 53 45 35

8 51 55 59 60 57 53

9 60 58 50 49 57

10 58 54 46 38 42 50

11 4 8 16 24 20 12

12 1 4 12 11 3

13 7 3 11 19 23 15

14 53 57 49 41 37 45

15 41 49 50 42 32 31

16 21 31 32 22 14 13

17 32 42 38 28 22

18 38 28 18 26 36 46

19 24 34 44 36 26 16

20 20 24 34 40 30

21 19 11 12 20 30 29

22 39 29 30 40 48 47

23 23 19 29 39 33

24 23 33 43 35 25 15

25 37 27 17 25 35 45

26 37 41 31 21 27

27 13 14 6 2 5

28 14 22 28 18 10 6

29 48 40 34 44 52 56

30 47 48 56 59 55

31 33 39 47 55 51 43

32 27 21 13 5 9 17
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C
Leg Optimisation Results

This appendix holds the results of the test suite for tuning the DE algorithm and the adaptive
variant. For each figure the settings for F and CR are found on the x- and y-axis in case
of normal DE. In case of adaptive DE the 10 schemes applied are shown on the axis. The
crossover scheme is set on the x-axis whereas the selection and mutation schemes can be
found on the y-axis. The colour shows the number of occurrences (i.e. percentage) that the
threshold has been passed for that setting and is an indication of the robustness of the tested
algorithm. Inside the coloured circles there are two values. The top one equals the previous
percentage value in case the colour is not clear. The bottom value indicates the number of
generations until the threshold value has been reached. This threshold value is either set to
the expected optimum or the that same with a certain deviation added.
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C.1 Ea-Ea-Apollo with threshold of 8764.34 m/s

Figure C.1: Optimisation tuning results for the best/1/bin scheme. Threshold for ∆V = 8764.29 m/s.

Figure C.2: Optimisation tuning results for the best/1/exp scheme. Threshold for ∆V = 8764.29 m/s.
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Figure C.3: Optimisation tuning results for the rand/1/bin scheme. Threshold for ∆V = 8764.29 m/s.

Figure C.4: Optimisation tuning results for the rand/1/exp scheme. Threshold for ∆V = 8764.29 m/s.
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Figure C.5: Optimisation tuning results for the rand-to-best/1/bin scheme. Threshold for ∆V =
8764.29 m/s.

Figure C.6: Optimisation tuning results for the rand-to-best/1/exp scheme. Threshold for ∆V =
8764.29 m/s.
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Figure C.7: Optimisation tuning results for the best/2/bin scheme. Threshold for ∆V = 8764.29 m/s.

Figure C.8: Optimisation tuning results for the best/2/exp scheme. Threshold for ∆V = 8764.29 m/s.
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Figure C.9: Optimisation tuning results for the rand/2/bin scheme. Threshold for ∆V = 8764.29 m/s.

Figure C.10: Optimisation tuning results for the rand/2/exp scheme. Threshold for ∆V = 8764.29 m/s.
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Figure C.11: Optimisation tuning results for jDE (adaptive, scheme 1). Threshold for ∆V =
8764.29 m/s.

Figure C.12: Optimisation tuning results for jDE (adaptive, scheme 2). Threshold for ∆V =
8764.29 m/s.
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C.2 Ea-Ea-Apollo with threshold of 8764.34 + 25 m/s

Figure C.13: Optimisation tuning results for the best/1/bin scheme. Threshold for ∆V = 8764.29 +
25.0 m/s.

Figure C.14: Optimisation tuning results for the best/1/exp scheme. Threshold for ∆V = 8764.29 +
25.0 m/s.
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Figure C.15: Optimisation tuning results for the rand/1/bin scheme. Threshold for ∆V = 8764.29 +
25.0 m/s.

Figure C.16: Optimisation tuning results for the rand/1/exp scheme. Threshold for ∆V = 8764.29 +
25.0 m/s.
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Figure C.17: Optimisation tuning results for the rand-to-best/1/bin scheme. Threshold for ∆V =
8764.29 + 25.0 m/s.

Figure C.18: Optimisation tuning results for the rand-to-best/1/exp scheme. Threshold for ∆V =
8764.29 + 25.0 m/s.
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Figure C.19: Optimisation tuning results for the best/2/bin scheme. Threshold for ∆V = 8764.29 +
25.0 m/s.

Figure C.20: Optimisation tuning results for the best/2/exp scheme. Threshold for ∆V = 8764.29 +
25.0 m/s.
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Figure C.21: Optimisation tuning results for the rand/2/bin scheme. Threshold for ∆V = 8764.29 +
25.0 m/s.

Figure C.22: Optimisation tuning results for the rand/2/exp scheme. Threshold for ∆V = 8764.29 +
25.0 m/s.
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Figure C.23: Optimisation tuning results for jDE (adaptive, scheme 1). Threshold for ∆V = 8764.29 +
25.0 m/s.

Figure C.24: Optimisation tuning results for jDE (adaptive, scheme 2). Threshold for ∆V = 8764.29 +
25.0 m/s.
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D
Sequence Optimisation Results

This appendix holds the results of the optimisation strategy test suite for GTOC6.
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D.1 Optimisation of Sequence Eu-Eu-Eu-Io-Io for ∆V

D.1.1 Full Freedom and One Flyby Window

Table D.1: Results (3x) of subsets for the gravity-assist manoeuvres for the first sub-sequence Eu-Eu-
Eu-Io-Io. [Settings: full freedom and 1 flyby window]

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (15) Eu 59884.083 413.2 1886.6 1889.67

2 (16) Eu 59889.434 411.8 1521.5 1886.61

1 (15) Eu 59883.234 304.9 899.4 1889.67

2 (16) Eu 59888.557 300.0 50.0 1886.22

3 (17) Eu 59895.662 300.0 102.8 1881.93

1 (15) Eu 59882.187 1438.8 50.7 1889.67

2 (16) Eu 59887.478 1449.8 50.0 1867.61

3 (17) Eu 59894.459 1917.1 50.0 1828.46

4 (18) Io 59898.223 1804.6 1874.1 1794.05

1 (15) Eu 59882.187 971.7 50.0 1889.67

2 (16) Eu 59887.465 1183.1 50.0 1858.40

3 (17) Eu 59894.488 1633.0 50.0 1814.73

4 (18) Io 59898.310 1902.3 50.0 1756.39

5 (19) Io 59900.972 1888.2 1064.8 1743.07

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (15) Eu 59898.322 498.9 1906.2 1889.67

2 (16) Eu 59901.876 499.3 1619.1 1886.44

1 (15) Eu 59899.902 302.6 1322.8 1889.67

2 (16) Eu 59903.458 302.9 75.6 1887.97

3 (17) Eu 59910.549 300.0 1218.7 1882.37

1 (15) Eu 59899.851 1413.4 255.7 1889.67

2 (16) Eu 59905.141 1426.6 50.0 1867.37

3 (17) Eu 59912.123 1925.5 50.0 1827.03

4 (18) Io 59915.877 1801.9 450.8 1792.17

1 (15) Eu 59898.315 1763.0 76.0 1889.67

2 (16) Eu 59905.373 1805.7 205.6 1865.10

3 (17) Eu 59912.295 1856.1 50.0 1834.88

4 (18) Io 59916.098 2049.1 50.0 1780.34

5 (19) Io 59919.640 2080.4 441.9 1771.36

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (15) Eu 59864.881 305.1 783.4 1889.67

2 (16) Eu 59870.191 304.5 1168.3 1886.60

1 (15) Eu 59863.338 300.0 363.3 1889.67

2 (16) Eu 59866.894 301.6 526.2 1887.93

3 (17) Eu 59873.998 301.3 699.8 1884.58

1 (15) Eu 59862.750 1936.8 124.5 1889.67

2 (16) Eu 59866.310 2028.7 50.6 1879.02

3 (17) Eu 59873.266 2231.4 50.0 1850.60

4 (18) Io 59876.987 1866.1 1627.1 1825.90

1 (15) Eu 59861.015 1077.5 61.1 1889.67

2 (16) Eu 59866.285 1083.9 50.0 1867.72

3 (17) Eu 59873.293 1620.1 50.0 1824.63

4 (18) Io 59877.086 1761.4 50.0 1758.53

5 (19) Io 59879.747 1738.9 511.1 1743.92

1 Number between parenthesis is the actual flyby number in the CSU solution.
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Table D.2: Results (3x) of subsets for the low-thrust arcs for the first sub-sequence Eu-Eu-Eu-Io-Io.
[Settings: full freedom and 1 flyby window]

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59884.083 5.35 1 3.0 3.0

∆Vtot = 3.0 3.0

1 (15-16) Eu-Eu 59883.234 5.32 1 6.0 6.0

2 (16-17) Eu-Eu 59888.557 7.11 1 2.0 2.0

∆Vtot = 8.0 8.0

1 (15-16) Eu-Eu 59882.187 5.29 1 203.0 203.0

2 (16-17) Eu-Eu 59887.478 6.98 1 72709.0 392.0

3 (17-18) Eu-Io 59894.459 3.76 1 91439.0 360.0

∆Vtot = 164351.0 955.0

1 (15-16) Eu-Eu 59882.187 7.05 1 289.0 289.0

2 (16-17) Eu-Eu 59887.465 7.02 1 87338.0 441.0

3 (17-18) Eu-Io 59894.488 3.82 1 240237.0 628.0

4 (18-19) Io-Io 59898.310 2.66 1 109.0 109.0

∆Vtot = 327973.0 1467.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59898.322 3.55 1 4.0 4.0

∆Vtot = 4.0 4.0

1 (15-16) Eu-Eu 59899.902 3.55 1 3.0 3.0

2 (16-17) Eu-Eu 59903.458 7.09 1 13.0 13.0

∆Vtot = 16.0 16.0

1 (15-16) Eu-Eu 59899.851 5.29 1 206.0 206.0

2 (16-17) Eu-Eu 59905.141 6.98 1 76729.0 405.0

3 (17-18) Eu-Io 59912.123 3.75 1 93684.0 365.0

∆Vtot = 170619.0 976.0

1 (15-16) Eu-Eu 59898.315 7.01 1 233.0 233.0

2 (16-17) Eu-Eu 59905.373 6.92 1 297.0 297.0

3 (17-18) Eu-Io 59912.295 3.80 1 201108.0 566.0

4 (18-19) Io-Io 59916.098 3.54 1 55.0 55.0

∆Vtot = 201693.0 1151.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59864.881 5.31 1 2.0 2.0

∆Vtot = 2.0 2.0

1 (15-16) Eu-Eu 59863.338 3.56 1 3.0 3.0

2 (16-17) Eu-Eu 59866.894 7.10 1 5.0 5.0

∆Vtot = 8.0 8.0

1 (15-16) Eu-Eu 59862.750 3.56 1 99.0 99.0

2 (16-17) Eu-Eu 59866.310 6.96 1 34836.0 276.0

3 (17-18) Eu-Io 59873.266 3.72 1 46590.0 251.0

∆Vtot = 81525.0 626.0

1 (15-16) Eu-Eu 59861.015 5.27 1 202.0 202.0

2 (16-17) Eu-Eu 59866.285 7.01 1 76104.0 434.0

3 (17-18) Eu-Io 59873.293 3.79 1 294095.0 711.0

4 (18-19) Io-Io 59877.086 2.66 1 23611.0 124.0

∆Vtot = 394012.0 1471.0

1 Numbers between parenthesis are the actual flyby numbers in the CSU solution and define the
departure and arrival point of the leg.

2 ∆V without the penalties for thrust constraint violation.
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D.1.2 Full Freedom and Two Flyby Window

Table D.3: Results (3x) of subsets for the gravity-assist manoeuvres for the first sub-sequence Eu-Eu-
Eu-Io-Io. [Settings: full freedom and 2 flyby window]

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (15) Eu 59871.760 351.9 263.5 1889.67

2 (16) Eu 59877.070 352.1 1889.3 1886.34

1 (15) Eu 59870.083 300.1 53.3 1889.67

2 (16) Eu 59875.439 301.6 50.5 1885.39

3 (17) Eu 59882.543 300.0 494.6 1882.27

1 (15) Eu 59869.674 2630.9 1079.8 1889.67

2 (16) Eu 59876.766 2741.3 1601.6 1871.54

3 (17) Eu 59883.790 2896.9 50.0 1847.57

4 (18) Io 59887.481 2031.6 1064.9 1831.00

1 (15) Eu 59869.717 1549.6 836.9 1889.67

2 (16) Eu 59876.807 1736.3 262.5 1857.29

3 (17) Eu 59883.868 1759.9 50.0 1830.43

4 (18) Io 59887.703 2147.2 50.0 1772.17

5 (19) Io 59890.364 2129.7 1208.0 1763.22

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (15) Eu 59901.742 351.9 274.5 1889.67

2 (16) Eu 59908.847 351.5 834.2 1885.21

1 (15) Eu 59901.021 308.9 685.1 1889.67

2 (16) Eu 59908.126 308.8 138.4 1885.27

3 (17) Eu 59915.232 308.6 1239.9 1880.95

1 (15) Eu 59900.264 2343.6 160.3 1889.67

2 (16) Eu 59907.366 2363.5 204.5 1884.72

3 (17) Eu 59912.164 2363.7 50.0 1880.16

4 (18) Io 59915.848 1945.1 991.8 1876.82

1 (15) Eu 59901.981 1346.2 203.2 1889.67

2 (16) Eu 59907.312 1350.7 50.0 1869.99

3 (17) Eu 59912.177 1642.3 50.0 1838.35

4 (18) Io 59915.945 1757.3 50.0 1776.58

5 (19) Io 59918.605 1725.8 818.6 1760.43

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (15) Eu 59878.027 358.0 1633.7 1889.67

2 (16) Eu 59885.130 360.0 1745.1 1885.01

1 (15) Eu 59877.036 308.3 1576.5 1889.67

2 (16) Eu 59882.386 307.1 235.9 1886.66

3 (17) Eu 59889.490 303.9 97.1 1881.74

1 (15) Eu 59877.164 1400.4 210.2 1889.67

2 (16) Eu 59882.495 1404.1 50.0 1869.98

3 (17) Eu 59887.374 1752.4 50.0 1836.94

4 (18) Io 59891.170 1791.3 1164.8 1811.04

1 (15) Eu 59876.348 1425.0 126.4 1889.67

2 (16) Eu 59881.667 1398.9 50.0 1867.84

3 (17) Eu 59886.870 1676.4 50.0 1832.61

4 (18) Io 59891.025 1915.4 50.0 1773.39

5 (19) Io 59893.577 1946.2 765.7 1762.59

1 Number between parenthesis is the actual flyby number in the CSU solution.
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Table D.4: Results (3x) of subsets for the low-thrust arcs for the first sub-sequence Eu-Eu-Eu-Io-Io.
[Settings: full freedom and 2 flyby window]

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59871.760 5.31 1 5.0 5.0

∆Vtot = 5.0 5.0

1 (15-16) Eu-Eu 59870.083 5.36 1 15.0 15.0

2 (16-17) Eu-Eu 59875.439 7.10 1 5.0 5.0

∆Vtot = 20.0 20.0

1 (15-16) Eu-Eu 59869.674 7.09 1 167.0 167.0

2 (16-17) Eu-Eu 59876.766 7.02 1 231.0 231.0

3 (17-18) Eu-Io 59883.790 3.69 1 21054.0 165.0

∆Vtot = 21452.0 563.0

1 (15-16) Eu-Eu 59869.717 7.09 1 299.0 299.0

2 (16-17) Eu-Eu 59876.807 7.06 1 260.0 260.0

3 (17-18) Eu-Io 59883.868 3.84 1 239553.0 622.0

4 (18-19) Io-Io 59887.703 2.66 1 60.0 60.0

∆Vtot = 240172.0 1241.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59901.742 7.11 1 1.0 1.0

∆Vtot = 1.0 1.0

1 (15-16) Eu-Eu 59901.021 7.11 1 2.0 2.0

2 (16-17) Eu-Eu 59908.126 7.11 1 1.0 1.0

∆Vtot = 3.0 3.0

1 (15-16) Eu-Eu 59900.264 7.10 1 18.0 18.0

2 (16-17) Eu-Eu 59907.366 4.80 1 25.0 25.0

3 (17-18) Eu-Io 59912.164 3.68 1 23.0 23.0

∆Vtot = 66.0 66.0

1 (15-16) Eu-Eu 59901.981 5.33 1 179.0 179.0

2 (16-17) Eu-Eu 59907.312 4.87 1 44307.0 311.0

3 (17-18) Eu-Io 59912.177 3.77 1 256198.0 658.0

4 (18-19) Io-Io 59915.945 2.66 1 31154.0 141.0

∆Vtot = 331838.0 1289.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59878.027 7.10 1 4.0 4.0

∆Vtot = 4.0 4.0

1 (15-16) Eu-Eu 59877.036 5.35 1 2.0 2.0

2 (16-17) Eu-Eu 59882.386 7.10 1 5.0 5.0

∆Vtot = 7.0 7.0

1 (15-16) Eu-Eu 59877.164 5.33 1 179.0 179.0

2 (16-17) Eu-Eu 59882.495 4.88 1 60006.0 326.0

3 (17-18) Eu-Io 59887.374 3.80 1 50400.0 266.0

∆Vtot = 110585.0 771.0

1 (15-16) Eu-Eu 59876.348 5.32 1 202.0 202.0

2 (16-17) Eu-Eu 59881.667 5.20 1 79835.0 351.0

3 (17-18) Eu-Io 59886.870 4.15 1 237114.0 619.0

4 (18-19) Io-Io 59891.025 2.55 1 90.0 90.0

∆Vtot = 317241.0 1262.0

1 Numbers between parenthesis are the actual flyby numbers in the CSU solution and define the
departure and arrival point of the leg.

2 ∆V without the penalties for thrust constraint violation.
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D.1.3 Full Freedom and Three Flyby Window

Table D.5: Results (3x) of subsets for the gravity-assist manoeuvres for the first sub-sequence Eu-Eu-
Eu-Io-Io. [Settings: full freedom and 3 flyby window]

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (15) Eu 59890.030 383.4 558.0 1889.67

2 (16) Eu 59895.344 379.1 929.5 1886.62

1 (15) Eu 59898.187 300.1 1266.2 1889.67

2 (16) Eu 59905.293 300.3 496.5 1885.31

3 (17) Eu 59908.853 300.0 1061.4 1882.12

1 (15) Eu 59898.369 1397.1 193.8 1889.67

2 (16) Eu 59903.703 1393.9 50.0 1869.95

3 (17) Eu 59908.580 1756.4 50.0 1836.56

4 (18) Io 59912.357 1790.3 1017.6 1809.62

1 (15) Eu 59897.900 1810.5 1200.3 1889.67

2 (16) Eu 59903.230 1766.1 2000.0 1867.81

3 (17) Eu 59908.538 1810.1 50.0 1842.69

4 (18) Io 59912.415 2292.1 50.0 1791.90

5 (19) Io 59915.075 2270.5 577.2 1780.28

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (15) Eu 59882.662 370.0 111.2 1889.67

2 (16) Eu 59889.768 368.5 1176.3 1886.59

1 (15) Eu 59888.901 300.0 1549.0 1889.67

2 (16) Eu 59896.003 300.0 197.5 1886.34

3 (17) Eu 59903.101 302.7 425.9 1882.95

1 (15) Eu 59887.458 2090.0 780.8 1889.67

2 (16) Eu 59894.555 2206.0 241.2 1871.56

3 (17) Eu 59901.525 2283.6 50.0 1842.27

4 (18) Io 59905.247 1886.5 1538.4 1816.48

1 (15) Eu 59885.681 1174.5 265.7 1889.67

2 (16) Eu 59892.650 1349.5 1847.1 1865.36

3 (17) Eu 59897.698 1501.7 50.0 1815.13

4 (18) Io 59901.768 1736.4 50.0 1742.38

5 (19) Io 59904.428 1706.6 936.9 1728.89

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (15) Eu 59869.426 305.0 310.1 1889.67

2 (16) Eu 59874.768 300.0 146.4 1886.71

1 (15) Eu 59874.445 304.1 323.3 1889.67

2 (16) Eu 59877.992 301.7 51.8 1886.35

3 (17) Eu 59883.324 306.2 1945.2 1882.10

1 (15) Eu 59873.266 2492.4 1829.1 1889.67

2 (16) Eu 59880.349 2593.9 792.2 1873.28

3 (17) Eu 59887.345 2670.0 50.0 1845.87

4 (18) Io 59891.041 1983.5 1102.4 1827.89

1 (15) Eu 59873.019 1106.0 1494.0 1889.67

2 (16) Eu 59878.337 1093.9 51.7 1875.33

3 (17) Eu 59883.419 1508.5 50.0 1838.65

4 (18) Io 59887.517 1876.2 53.2 1776.16

5 (19) Io 59890.059 1891.1 1029.7 1769.24

1 Number between parenthesis is the actual flyby number in the CSU solution.
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Table D.6: Results (3x) of subsets for the low-thrust arcs for the first sub-sequence Eu-Eu-Eu-Io-Io.
[Settings: full freedom and 3 flyby window]

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59895.344 5.31 1 2.0 2.0

∆Vtot = 2.0 2.0

1 (15-16) Eu-Eu 59898.187 7.11 1 2.0 2.0

2 (16-17) Eu-Eu 59905.293 3.56 1 5.0 5.0

∆Vtot = 7.0 7.0

1 (15-16) Eu-Eu 59898.369 5.33 1 180.0 180.0

2 (16-17) Eu-Eu 59903.703 4.88 1 62562.0 330.0

3 (17-18) Eu-Io 59908.580 3.78 1 54926.0 277.0

∆Vtot = 117668.0 787.0

1 (15-16) Eu-Eu 59897.900 5.33 1 202.0 202.0

2 (16-17) Eu-Eu 59903.230 5.31 1 45738.0 237.0

3 (17-18) Eu-Io 59908.538 3.88 1 178245.0 535.0

4 (18-19) Io-Io 59912.415 2.66 1 88.0 88.0

∆Vtot = 224273.0 1062.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59882.662 7.11 1 3.0 3.0

∆Vtot = 3.0 3.0

1 (15-16) Eu-Eu 59888.901 7.10 1 6.0 6.0

2 (16-17) Eu-Eu 59896.003 7.10 1 7.0 7.0

∆Vtot = 13.0 13.0

1 (15-16) Eu-Eu 59887.458 7.10 1 166.0 166.0

2 (16-17) Eu-Eu 59894.555 6.97 1 287.0 287.0

3 (17-18) Eu-Io 59901.525 3.72 1 52890.0 264.0

∆Vtot = 53343.0 717.0

1 (15-16) Eu-Eu 59885.681 6.97 1 231.0 231.0

2 (16-17) Eu-Eu 59892.650 5.05 1 126904.0 512.0

3 (17-18) Eu-Io 59897.698 4.07 1 330858.0 776.0

4 (18-19) Io-Io 59901.768 2.66 1 21796.0 114.0

∆Vtot = 479789.0 1633.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59869.426 5.34 1 1.0 1.0

∆Vtot = 1.0 1.0

1 (15-16) Eu-Eu 59874.445 3.54 1 6.0 6.0

2 (16-17) Eu-Eu 59877.992 5.33 1 15.0 15.0

∆Vtot = 21.0 21.0

1 (15-16) Eu-Eu 59873.266 7.08 1 149.0 149.0

2 (16-17) Eu-Eu 59880.349 7.00 1 267.0 267.0

3 (17-18) Eu-Io 59887.345 3.70 1 25257.0 180.0

∆Vtot = 25673.0 596.0

1 (15-16) Eu-Eu 59873.019 5.32 1 121.0 121.0

2 (16-17) Eu-Eu 59878.337 5.08 1 102054.0 365.0

3 (17-18) Eu-Io 59883.419 4.10 1 274208.0 653.0

4 (18-19) Io-Io 59887.517 2.54 1 47.0 47.0

∆Vtot = 376430.0 1184.0

1 Numbers between parenthesis are the actual flyby numbers in the CSU solution and define the
departure and arrival point of the leg.

2 ∆V without the penalties for thrust constraint violation.
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D.1.4 Small Freedom and One Flyby Window

Table D.7: Results (3x) of subsets for the gravity-assist manoeuvres for the first sub-sequence Eu-Eu-
Eu-Io-Io. [Settings: small freedom and 1 flyby window]

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (15) Eu 59895.887 342.0 106.7 1889.67

2 (16) Eu 59902.993 341.4 830.3 1886.69

1 (15) Eu 59895.865 300.6 1811.6 1889.67

2 (16) Eu 59902.965 301.0 134.8 1885.18

3 (17) Eu 59906.522 301.4 1016.1 1883.40

1 (15) Eu 59895.487 1822.4 552.0 1889.67

2 (16) Eu 59902.580 1913.9 83.5 1865.53

3 (17) Eu 59907.834 1978.8 50.0 1835.78

4 (18) Io 59912.195 1852.2 1911.2 1786.51

1 (15) Eu 59895.721 1870.7 1358.8 1889.67

2 (16) Eu 59902.785 1795.8 1257.3 1869.96

3 (17) Eu 59908.040 1816.8 50.0 1836.33

4 (18) Io 59912.199 2017.5 50.0 1780.86

5 (19) Io 59914.757 2023.4 1142.4 1773.09

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (15) Eu 59867.011 330.7 1996.8 1889.67

2 (16) Eu 59872.353 336.2 380.5 1886.73

1 (15) Eu 59867.026 302.7 1478.1 1889.67

2 (16) Eu 59874.130 304.4 650.6 1886.42

3 (17) Eu 59881.235 305.7 1293.3 1883.40

1 (15) Eu 59866.221 1998.3 532.4 1889.67

2 (16) Eu 59873.291 2161.5 61.0 1868.79

3 (17) Eu 59880.291 2325.9 50.0 1845.96

4 (18) Io 59884.015 1917.6 1082.6 1819.91

1 (15) Eu 59866.432 1010.9 757.3 1889.67

2 (16) Eu 59873.526 1261.4 76709 1861.29

3 (17) Eu 59880.358 1562.8 50.0 1819.40

4 (18) Io 59884.174 1794.5 50.0 1756.29

5 (19) Io 59886.835 1778.5 1014.8 1741.88

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (15) Eu 59868.130 325.6 1797.6 1889.67

2 (16) Eu 59875.235 324.1 630.7 1886.47

1 (15) Eu 59869.596 301.5 310.9 1889.67

2 (16) Eu 59876.701 301.3 51.8 1885.33

3 (17) Eu 59880.254 300.0 1684.7 1882.29

1 (15) Eu 59868.328 921.9 51.5 1889.67

2 (16) Eu 59875.409 1231.7 1703.1 1856.28

3 (17) Eu 59880.288 1670.4 50.0 1820.82

4 (18) Io 59884.110 1773.4 1638.8 1790.28

1 (15) Eu 59867.905 1959.9 1308.7 1889.67

2 (16) Eu 59874.995 1878.4 1627.2 1857.67

3 (17) Eu 59880.305 1917.8 50.0 1831.35

4 (18) Io 59884.150 2259.9 50.0 1781.92

5 (19) Io 59886.811 2243.6 1017.6 1770.73

1 Number between parenthesis is the actual flyby number in the CSU solution.
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Table D.8: Results (3x) of subsets for the low-thrust arcs for the first sub-sequence Eu-Eu-Eu-Io-Io.
[Settings: small freedom and 1 flyby window]

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59895.887 7.10 1 1.0 1.0

∆Vtot = 1.0 1.0

1 (15-16) Eu-Eu 59895.865 7.10 1 4.0 4.0

2 (16-17) Eu-Eu 59902.965 3.56 1 4.0 4.0

∆Vtot = 8.0 8.0

1 (15-16) Eu-Eu 59895.487 7.09 1 229.0 229.0

2 (16-17) Eu-Eu 59902.580 5.26 1 60518.0 293.0

3 (17-18) Eu-Io 59907.834 4.36 1 159608.0 509.0

∆Vtot = 220355.0 1031.0

1 (15-16) Eu-Eu 59895.721 7.06 1 183.0 183.0

2 (16-17) Eu-Eu 59902.785 5.26 1 79897.0 334.0

3 (17-18) Eu-Io 59908.040 4.16 1 207140.0 576.0

4 (18-19) Io-Io 59912.199 2.56 1 56.0 56.0

∆Vtot = 287276.0 1149.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59867.011 5.34 1 1.0 1.0

∆Vtot = 1.0 1.0

1 (15-16) Eu-Eu 59867.026 7.10 1 4.0 4.0

2 (16-17) Eu-Eu 59874.130 7.10 1 2.0 2.0

∆Vtot = 6.0 6.0

1 (15-16) Eu-Eu 59866.221 7.07 1 195.0 195.0

2 (16-17) Eu-Eu 59873.291 7.00 1 219.0 219.0

3 (17-18) Eu-Io 59880.291 3.73 1 53123.0 267.0

∆Vtot = 53537.0 681.0

1 (15-16) Eu-Eu 59866.432 7.09 1 270.0 270.0

2 (16-17) Eu-Eu 59873.526 6.83 1 75755.0 423.0

3 (17-18) Eu-Io 59880.358 3.82 1 278564.0 679.0

4 (18-19) Io-Io 59884.174 2.66 1 122.0 122.0

∆Vtot = 354711.0 1494.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59868.130 7.10 1 4.0 4.0

∆Vtot = 4.0 4.0

1 (15-16) Eu-Eu 59869.596 7.10 1 2.0 2.0

2 (16-17) Eu-Eu 59876.701 3.55 1 3.0 3.0

∆Vtot = 5.0 5.0

1 (15-16) Eu-Eu 59868.328 7.08 1 311.0 311.0

2 (16-17) Eu-Eu 59875.409 4.88 1 73539.0 354.0

3 (17-18) Eu-Io 59880.288 3.82 1 71623.0 319.0

∆Vtot = 145473.0 984.0

1 (15-16) Eu-Eu 59867.905 7.09 1 299.0 299.0

2 (16-17) Eu-Eu 59874.995 5.31 1 48340.0 251.0

3 (17-18) Eu-Io 59880.305 3.85 1 168191.0 524.0

4 (18-19) Io-Io 59884.150 2.66 1 84.0 84.0

∆Vtot = 216914.0 1158.0

1 Numbers between parenthesis are the actual flyby numbers in the CSU solution and define the
departure and arrival point of the leg.

2 ∆V without the penalties for thrust constraint violation.
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D.1.5 Small Freedom and Three Flyby Window

Table D.9: Results (3x) of subsets for the gravity-assist manoeuvres for the first sub-sequence Eu-Eu-
Eu-Io-Io. [Settings: small freedom and 3 flyby window]

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (15) Eu 59878.226 330.9 217.4 1889.67

2 (16) Eu 59885.332 330.3 359.3 1886.70

1 (15) Eu 59878.725 300.1 1667.6 1889.67

2 (16) Eu 59882.280 301.1 51.3 1888.09

3 (17) Eu 59887.589 302.6 1597.3 1885.04

1 (15) Eu 59878.659 1459.2 102.3 1889.67

2 (16) Eu 59883.949 1469.0 50.0 1867.40

3 (17) Eu 59890.931 1916.8 50.0 1829.18

4 (18) Io 59894.708 1825.5 770.9 1794.41

1 (15) Eu 59878.539 1685.5 716.6 1889.67

2 (16) Eu 59883.834 1775.3 1849.8 1864.96

3 (17) Eu 59890.899 1774.2 50.0 1837.01

4 (18) Io 59894.755 2233.1 50.0 1780.15

5 (19) Io 59897.416 2217.0 1134.9 1765.48

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (15) Eu 59887.747 304.5 972.3 1889.67

2 (16) Eu 59893.097 303.9 1791.9 1886.67

1 (15) Eu 59890.411 397.6 924.5 1889.67

2 (16) Eu 59897.512 394.7 1152.5 1886.63

3 (17) Eu 59902.835 388.5 1297.8 1882.86

1 (15) Eu 59889.269 1450.4 1664.9 1889.67

2 (16) Eu 59894.558 1459.3 50.0 1867.45

3 (17) Eu 59901.535 1898.8 50.0 1829.47

4 (18) Io 59905.312 1821.2 1417.5 1793.72

1 (15) Eu 59889.425 1136.1 288.3 1889.67

2 (16) Eu 59894.697 1153.1 51.5 1868.64

3 (17) Eu 59901.584 1558.4 52.1 1831.51

4 (18) Io 59905.387 1737.5 50.0 1763.70

5 (19) Io 59908.048 1725.3 1005.6 1749.76

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (15) Eu 59858.994 327.9 239.7 1889.67

2 (16) Eu 59864.342 324.0 738.7 1886.41

1 (15) Eu 59859.504 300.0 1181.4 1889.67

2 (16) Eu 59866.610 301.0 1433.4 1885.60

3 (17) Eu 59871.958 302.4 1420.3 1882.11

1 (15) Eu 59857.727 1327.2 140.1 1889.67

2 (16) Eu 59862.990 1322.2 50.0 1868.16

3 (17) Eu 59869.747 1795.2 50.0 1819.08

4 (18) Io 59873.546 1805.5 501.1 1790.91

1 (15) Eu 59857.544 1012.3 216.9 1889.67

2 (16) Eu 59862.819 1039.8 93.9 1867.67

3 (17) Eu 59869.777 1601.9 50.0 1826.46

4 (18) Io 59873.454 1948.9 50.0 1770.70

5 (19) Io 59876.961 1933.8 793.6 1757.19

1 Number between parenthesis is the actual flyby number in the CSU solution.
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Table D.10: Results (3x) of subsets for the low-thrust arcs for the first sub-sequence Eu-Eu-Eu-Io-Io.
[Settings: small freedom and 3 flyby window]

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59878.226 7.10 1 1.0 1.0

∆Vtot = 1.0 1.0

1 (15-16) Eu-Eu 59878.725 3.56 1 3.0 3.0

2 (16-17) Eu-Eu 59882.280 5.31 1 2.0 2.0

∆Vtot = 5.0 5.0

1 (15-16) Eu-Eu 59878.659 5.29 1 206.0 206.0

2 (16-17) Eu-Eu 59883.949 6.98 1 69338.0 382.0

3 (17-18) Eu-Io 59890.931 3.78 1 92978.0 364.0

∆Vtot = 162522.0 952.0

1 (15-16) Eu-Eu 59878.539 5.30 1 231.0 231.0

2 (16-17) Eu-Eu 59883.834 7.07 1 270.0 270.0

3 (17-18) Eu-Io 59890.899 3.86 1 234259.0 604.0

4 (18-19) Io-Io 59894.755 2.66 1 123.0 123.0

∆Vtot = 234883.0 1228.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59887.747 5.35 1 2.0 2.0

∆Vtot = 2.0 2.0

1 (15-16) Eu-Eu 59890.411 7.10 1 5.0 5.0

2 (16-17) Eu-Eu 59897.512 5.32 1 10.0 10.0

∆Vtot = 15.0 15.0

1 (15-16) Eu-Eu 59889.269 5.29 1 205.0 205.0

2 (16-17) Eu-Eu 59894.558 6.98 1 69151.0 380.0

3 (17-18) Eu-Io 59901.535 3.78 1 98059.0 375.0

∆Vtot = 167415.0 960.0

1 (15-16) Eu-Eu 59889.425 5.27 1 192.0 192.0

2 (16-17) Eu-Eu 59894.697 6.89 1 65258.0 370.0

3 (17-18) Eu-Io 59901.584 3.80 1 317501.0 727.0

4 (18-19) Io-Io 59905.387 2.66 1 116.0 116.0

∆Vtot = 383067.0 1405.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59858.994 5.35 1 4.0 4.0

∆Vtot = 4.0 4.0

1 (15-16) Eu-Eu 59859.504 7.10 1 2.0 2.0

2 (16-17) Eu-Eu 59866.610 5.35 1 7.0 7.0

∆Vtot = 9.0 9.0

1 (15-16) Eu-Eu 59857.727 5.26 1 197.0 197.0

2 (16-17) Eu-Eu 59862.990 5.76 1 125569.0 499.0

3 (17-18) Eu-Io 59869.747 3.80 1 61115.0 294.0

∆Vtot = 186881.0 990.0

1 (15-16) Eu-Eu 59857.544 5.28 1 185.0 185.0

2 (16-17) Eu-Eu 59862.819 6.96 1 81163.0 413.0

3 (17-18) Eu-Io 59869.777 3.68 1 230304.0 595.0

4 (18-19) Io-Io 59873.454 3.51 1 120.0 120.0

∆Vtot = 311772.0 1313.0

1 Numbers between parenthesis are the actual flyby numbers in the CSU solution and define the
departure and arrival point of the leg.

2 ∆V without the penalties for thrust constraint violation.



152 APPENDIX D SEQUENCE OPTIMISATION RESULTS

D.2 Optimisation of Sequence Ga-Ga-Ca-Ca-Ga for ∆V

D.2.1 Full Freedom and One Flyby Window

Table D.11: Results (3x) of subsets for the gravity-assist manoeuvres for the first sub-sequence Ga-Ga-
Ca-Ca-Ga. [Settings: full freedom and 1 flyby window]

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (103) Ga 60514.521 314.3 431.3 1098.51

2 (104) Ga 60525.265 314.7 581.3 1097.42

1 (103) Ga 60515.381 1462.0 496.0 1098.51

2 (104) Ga 60526.120 1467.4 60.8 1097.50

3 (105) Ca 60543.255 1246.9 1797.3 1096.93

1 (103) Ga 60515.123 1329.9 883.0 1098.51

2 (104) Ga 60525.865 1327.6 50.0 1093.25

3 (105) Ca 60543.439 1090.0 544.6 1077.88

4 (106) Ca 60566.22 1084.9 884.4 1077.35

1 (103) Ga 60515.669 1399.7 200.5 1098.51

2 (104) Ga 60526.405 1405.4 50.0 1097.46

3 (105) Ca 60544.811 1286.1 50.0 1087.83

4 (106) Ca 60569.852 1297.8 267.2 1080.94

5 (107) Ga 60587.379 1485.7 1584.7 1080.43

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (103) Ga 60485.715 354.1 144.7 1098.51

2 (104) Ga 60500.026 355.0 1557.6 1096.93

1 (103) Ga 60486.464 1448.3 457.9 1098.51

2 (104) Ga 60500.778 1448.3 81.9 1097.41

3 (105) Ca 60518.504 1258.1 667.0 1096.87

1 (103) Ga 60486.774 1396.1 954.6 1098.51

2 (104) Ga 60501.078 1404.3 122.7 1096.41

3 (105) Ca 60518.396 1169.0 50.0 1089.49

4 (106) Ca 60543.384 1155.8 1120.8 1088.50

1 (103) Ga 60486.700 1478.9 769.0 1098.51

2 (104) Ga 60501.006 1478.9 66.0 1097.08

3 (105) Ca 60519.387 1258.1 74.4 1089.66

4 (106) Ca 60544.404 1244.3 76.6 1088.29

5 (107) Ga 60562.298 1437.4 1235.7 1086.20

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (103) Ga 60488.667 310.9 1696.9 1098.51

2 (104) Ga 60499.394 310.8 1411.8 1097.27

1 (103) Ga 60486.687 1467.8 621.0 1098.51

2 (104) Ga 60500.993 1467.5 107.4 1096.24

3 (105) Ca 60518.084 1258.7 1363.8 1095.69

1 (103) Ga 60486.422 1441.2 1113.1 1098.51

2 (104) Ga 60500.736 1441.2 50.0 1097.40

3 (105) Ca 60518.258 1230.5 50.0 1092.31

4 (106) Ca 60543.244 1218.5 1273.1 1092.30

1 (103) Ga 60486.860 1473.8 802.0 1098.51

2 (104) Ga 60501.171 1472.8 61.0 1096.72

3 (105) Ca 60519.107 1342.6 135.4 1095.91

4 (106) Ca 60544.115 1324.1 58.8 1095.76

5 (107) Ga 60562.084 1554.4 1680.9 1093.70

1 Number between parenthesis is the actual flyby number in the CSU solution.
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Table D.12: Results (3x) of subsets for the low-thrust arcs for the first sub-sequence Ga-Ga-Ca-Ca-Ga.
[Settings: full freedom and 1 flyby window]

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (103-104) Ga-Ga 60514.521 10.74 1 2.0 2.0

∆Vtot = 2.0 2.0

1 (103-104) Ga-Ga 60515.381 10.74 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60526.120 17.14 1 ∼0.0 ∼0.0

∆Vtot = ∼0.0 ∼0.0

1 (103-104) Ga-Ga 60515.123 10.74 1 77.0 77.0

2 (104-105) Ga-Ca 60525.865 17.57 1 269.0 269.0

3 (105-106) Ca-Ca 60543.439 22.78 1 10.0 10.0

∆Vtot = 356.0 356.0

1 (103-104) Ga-Ga 60515.669 10.74 1 1.0 1.0

2 (104-105) Ga-Ca 60526.405 18.41 1 164.0 164.0

3 (105-106) Ca-Ca 60544.811 25.04 1 125.0 125.0

4 (106-107) Ca-Ga 60569.852 17.53 1 4.0 4.0

∆Vtot = 294.0 294.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (103-104) Ga-Ga 60485.715 14.31 1 2.0 2.0

∆Vtot = 2.0 2.0

1 (103-104) Ga-Ga 60486.464 14.31 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60500.778 17.73 1 ∼0.0 ∼0.0

∆Vtot = ∼0.0 ∼0.0

1 (103-104) Ga-Ga 60486.774 14.30 1 8.0 8.0

2 (104-105) Ga-Ca 60501.078 17.32 1 115.0 115.0

3 (105-106) Ca-Ca 60518.396 24.99 1 18.0 18.0

∆Vtot = 141.0 141.0

1 (103-104) Ga-Ga 60486.700 14.31 1 6.0 6.0

2 (104-105) Ga-Ca 60501.006 18.38 1 124.0 124.0

3 (105-106) Ca-Ca 60519.387 25.02 1 25.0 25.0

4 (106-107) Ca-Ga 60544.404 17.89 1 33.0 33.0

∆Vtot = 188.0 188.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (103-104) Ga-Ga 60488.667 10.73 1 4.0 4.0

∆Vtot = 4.0 4.0

1 (103-104) Ga-Ga 60486.687 14.31 1 14.0 14.0

2 (104-105) Ga-Ca 60500.993 17.09 1 ∼0.0 ∼0.0

∆Vtot = 14.0 14.0

1 (103-104) Ga-Ga 60486.42 14.31 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60500.736 17.52 1 81.0 81.0

3 (105-106) Ca-Ca 60518.258 24.99 1 ∼0.0 ∼0.0

∆Vtot = 81.0 81.0

1 (103-104) Ga-Ga 60486.860 14.31 1 3.0 3.0

2 (104-105) Ga-Ca 60501.171 17.94 1 5.0 5.0

3 (105-106) Ca-Ca 60519.107 25.00 1 3.0 3.0

4 (106-107) Ca-Ga 60544.115 17.97 1 27.0 27.0

∆Vtot = 38.0 38.0

1 Numbers between parenthesis are the actual flyby numbers in the CSU solution and define the
departure and arrival point of the leg.

2 ∆V without the penalties for thrust constraint violation.
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D.2.2 Full Freedom and Three Flyby Window

Table D.13: Results (3x) of subsets for the gravity-assist manoeuvres for the first sub-sequence Ga-Ga-
Ca-Ca-Ga. [Settings: full freedom and 3 flyby window]

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (103) Ga 60495.180 315.9 1695.4 1098.51

2 (104) Ga 60509.491 315.7 150.7 1097.44

1 (103) Ga 60487.262 1465.3 1856.6 1098.51

2 (104) Ga 60501.523 1540.5 448.2 1092.83

3 (105) Ca 60520.078 1563.8 987.9 1089.00

1 (103) Ga 60487.070 1188.3 63.9 1098.51

2 (104) Ga 60501.264 1422.4 153.7 1086.88

3 (105) Ca 60519.112 1182.1 140.5 1077.51

4 (106) Ca 60543.264 1162.8 290.4 1073.83

1 (103) Ga 60486.673 1480.3 1980.8 1098.51

2 (104) Ga 60500.987 1480.3 50.0 1097.43

3 (105) Ca 60519.173 1309.7 50.0 1088.94

4 (106) Ca 60544.183 1294.4 50.1 1088.54

5 (107) Ga 60562.247 1479.5 326.7 1087.96

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (103) Ga 60495.750 423.2 782.8 1098.51

2 (104) Ga 60510.064 423.2 1513.7 1097.41

1 (103) Ga 60486.515 1419.7 161.2 1098.51

2 (104) Ga 60500.828 1423.5 53.4 1096.67

3 (105) Ca 60518.450 1252.3 1177.3 1094.85

1 (103) Ga 60486.784 1460.1 923.2 1098.51

2 (104) Ga 60501.096 1460.7 183.7 1096.74

3 (105) Ca 60518.486 1246.0 73.9 1094.46

4 (106) Ca 60543.478 1232.7 196.2 1094.42

1 (103) Ga 60486.604 1461.4 834.9 1098.51

2 (104) Ga 60500.914 1453.2 51.3 1096.98

3 (105) Ca 60519.040 1257.4 50.0 1090.28

4 (106) Ca 60544.046 1258.0 67.5 1087.05

5 (107) Ga 60562.345 1449.1 1960.0 1083.65

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (103) Ga 60517.338 322.5 939.2 1098.51

2 (104) Ga 60528.065 322.7 567.8 1097.45

1 (103) Ga 60527.984 1580.7 1987.1 1098.51

2 (104) Ga 60538.712 1546.3 51.9 1092.45

3 (105) Ca 60555.817 1303.1 970.8 1088.62

1 (103) Ga 60528.040 1303.0 1848.0 1098.51

2 (104) Ga 60538.448 1328.7 50.0 1093.51

3 (105) Ca 60555.878 1159.3 292.1 1083.68

4 (106) Ca 60580.982 1145.8 1096.0 1082.36

1 (103) Ga 60528.033 1504.9 349.0 1098.51

2 (104) Ga 60538.777 1503.6 249.4 1097.50

3 (105) Ca 60556.816 1381.1 60.9 1096.94

4 (106) Ca 60581.931 1372.6 162.8 1096.93

5 (107) Ga 60599.615 1703.7 926.6 1096.33

1 Number between parenthesis is the actual flyby number in the CSU solution.
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Table D.14: Results (3x) of subsets for the low-thrust arcs for the first sub-sequence Ga-Ga-Ca-Ca-Ga.
[Settings: full freedom and 3 flyby window]

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (103-104) Ga-Ga 60495.180 14.31 1 1.0 1.0

∆Vtot = 1.0 1.0

1 (103-104) Ga-Ga 60487.262 14.26 1 72.0 72.0

2 (104-105) Ga-Ca 60501.523 18.56 1 59.0 59.0

∆Vtot = 131.0 131.0

1 (103-104) Ga-Ga 60487.070 14.19 1 180.0 180.0

2 (104-105) Ga-Ca 60501.264 17.85 1 161.0 161.0

3 (105-106) Ca-Ca 60519.112 24.15 1 67.0 67.0

∆Vtot = 408.0 408.0

1 (103-104) Ga-Ga 60486.673 14.31 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60500.987 18.19 1 143.0 143.0

3 (105-106) Ca-Ca 60519.173 25.01 1 7.0 7.0

4 (106-107) Ca-Ga 60544.183 18.06 1 ∼0.0 ∼0.0

∆Vtot = 150.0 150.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (103-104) Ga-Ga 60495.750 14.31 1 2.0 2.0

∆Vtot = 2.0 2.0

1 (103-104) Ga-Ga 60486.515 14.31 1 16.0 16.0

2 (104-105) Ga-Ca 60500.828 17.62 1 23.0 23.0

∆Vtot = 39.0 39.0

1 (103-104) Ga-Ga 60486.784 14.31 1 2.0 2.0

2 (104-105) Ga-Ca 60501.096 17.391 1 31.0 31.0

3 (105-106) Ca-Ca 60518.486 24.99 1 1.0 1.0

∆Vtot = 34.0 34.0

1 (103-104) Ga-Ga 60486.604 14.31 1 7.0 7.0

2 (104-105) Ga-Ca 60500.915 18.18 1 111.0 111.0

3 (105-106) Ca-Ca 60519.092 25.02 1 70.0 70.0

4 (106-107) Ca-Ga 60544.107 18.15 1 33.0 33.0

∆Vtot = 221.0 221.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (103-104) Ga-Ga 60517.338 10.73 1 1.0 1.0

∆Vtot = 1.0 1.0

1 (103-104) Ga-Ga 60527.984 10.73 1 92.0 92.0

2 (104-105) Ga-Ca 60538.712 17.11 1 59.0 59.0

∆Vtot = 151.0 151.0

1 (103-104) Ga-Ga 60528.040 10.41 1 72.0 72.0

2 (104-105) Ga-Ca 60538.448 17.43 1 168.0 168.0

3 (105-106) Ca-Ca 60555.878 25.10 1 24.0 24.0

∆Vtot = 264.0 264.0

1 (103-104) Ga-Ga 60528.033 10.74 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60538.777 18.04 1 ∼0.0 ∼0.0

3 (105-106) Ca-Ca 60556.816 25.12 1 ∼0.0 ∼0.0

4 (106-107) Ca-Ga 60581.931 17.68 1 ∼0.0 ∼0.0

∆Vtot = ∼1.0 ∼1.0

1 Numbers between parenthesis are the actual flyby numbers in the CSU solution and define the
departure and arrival point of the leg.

2 ∆V without the penalties for thrust constraint violation.
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D.2.3 Small Freedom and One Flyby Window

Table D.15: Results (3x) of subsets for the gravity-assist manoeuvres for the first sub-sequence Ga-Ga-
Ca-Ca-Ga. [Settings: small freedom and 1 flyby window]

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (103) Ga 60486.255 316.7 259.4 1098.51

2 (104) Ga 60496.998 317.6 1917.7 1097.43

1 (103) Ga 60486.785 1492.6 504.3 1098.51

2 (104) Ga 60501.099 1492.6 323.8 1096.83

3 (105) Ca 60518.237 1244.5 1333.7 1096.28

1 (103) Ga 60486.450 1433.6 1078.6 1098.51

2 (104) Ga 60500.764 1433.6 50.0 1097.42

3 (105) Ca 60518.305 1230.1 50.2 1092.44

4 (106) Ca 60543.293 1217.8 390.1 1092.44

1 (103) Ga 60486.944 1663.0 658.4 1098.51

2 (104) Ga 60501.258 1663.0 54.8 1097.57

3 (105) Ca 60518.930 1372.9 492.7 1097.01

4 (106) Ca 60543.932 1356.2 50.0 1097.01

5 (107) Ga 60562.125 1551.1 761.35 1096.45

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (103) Ga 60510.368 335.7 1899.4 1098.51

2 (104) Ga 60521.094 336.2 1057.2 1097.47

1 (103) Ga 60512.221 1513.5 1087.2 1098.51

2 (104) Ga 60526.526 1514.4 51.3 1096.60

3 (105) Ca 60544.760 1378.7 742.3 1096.03

1 (103) Ga 60512.032 1507.4 428.6 1098.51

2 (104) Ga 60526.331 1514.4 420.1 1096.38

3 (105) Ca 60543.636 1224.5 50.3 1094.90

4 (106) Ca 60568.730 1237.0 1129.3 1094.71

1 (103) Ga 60512.024 1508.8 129.3 1098.51

2 (104) Ga 60526.337 1507.7 50.0 1097.48

3 (105) Ca 60544.433 1345.4 74.1 1092.16

4 (106) Ca 60569.506 1364.4 63.1 1092.09

5 (107) Ga 60587.352 1531.4 1217.1 1091.51

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (103) Ga 60497.582 356.5 649.8 1098.51

2 (104) Ga 60508.316 354.2 1005.2 1097.42

1 (103) Ga 60499.015 1499.4 634.3 1098.51

2 (104) Ga 60513.327 1499.3 194.2 1097.35

3 (105) Ca 60531.133 1229.1 174.5 1096.79

1 (103) Ga 60499.039 1448.7 478.5 1098.51

2 (104) Ga 60513.353 1448.6 54.1 1097.39

3 (105) Ca 60531.073 1211.5 50.6 1092.88

4 (106) Ca 60556.060 1223.4 1280.3 1092.87

1 (103) Ga 60499.417 1493.1 87.4 1098.51

2 (104) Ga 60513.731 1492.9 50.0 1097.55

3 (105) Ca 60532.063 1355.8 50.0 1095.69

4 (106) Ca 60557.034 1362.8 232.5 1095.68

5 (107) Ga 60574.665 1696.2 1022.4 1095.07

1 Number between parenthesis is the actual flyby number in the CSU solution.
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Table D.16: Results (3x) of subsets for the low-thrust arcs for the first sub-sequence Ga-Ga-Ca-Ca-Ga.
[Settings: small freedom and 1 flyby window]

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (103-104) Ga-Ga 60486.255 10.74 1 2.0 2.0

∆Vtot = 2.0 2.0

1 (103-104) Ga-Ga 60486.785 14.31 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60501.099 17.14 1 ∼0.0 ∼0.0

∆Vtot = ∼0.0 ∼0.0

1 (103-104) Ga-Ga 60486.450 14.31 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60500.764 17.54 1 80.0 80.0

3 (105-106) Ca-Ca 60518.305 24.99 1 ∼0.0 ∼0.0

∆Vtot = 80.0 80.0

1 (103-104) Ga-Ga 60486.944 14.31 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60501.258 17.67 1 ∼0.0 ∼0.0

3 (105-106) Ca-Ca 60518.930 25.00 1 ∼0.0 ∼0.0

4 (106-107) Ca-Ga 60543.932 18.19 1 ∼0.0 ∼0.0

∆Vtot = ∼0.0 ∼0.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (103-104) Ga-Ga 60510.368 10.73 1 1.0 1.0

∆Vtot = 1.0 1.0

1 (103-104) Ga-Ga 60512.221 14.31 1 4.0 4.0

2 (104-105) Ga-Ca 60526.526 18.23 1 ∼0.0 ∼0.0

∆Vtot = 4.0 4.0

1 (103-104) Ga-Ga 60512.032 14.30 1 8.0 8.0

2 (104-105) Ga-Ca 60526.331 17.31 1 16.0 16.0

3 (105-106) Ca-Ca 60543.636 25.09 1 3.0 3.0

∆Vtot = 27.0 27.0

1 (103-104) Ga-Ga 60512.024 14.31 1 2.0 2.0

2 (104-105) Ga-Ca 60526.337 18.10 1 85.0 85.0

3 (105-106) Ca-Ca 60544.433 25.07 1 1.0 1.0

4 (106-107) Ca-Ga 60569.506 17.85 1 1.0 1.0

∆Vtot = 89.0 89.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (103-104) Ga-Ga 60497.582 10.73 1 2.0 2.0

∆Vtot = 2.0 2.0

1 (103-104) Ga-Ga 60499.015 14.31 1 1.0 1.0

2 (104-105) Ga-Ca 60513.327 17.81 1 ∼0.0 ∼0.0

∆Vtot = 1.0 1.0

1 (103-104) Ga-Ga 60499.039 14.31 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60513.353 17.72 1 71.0 71.0

3 (105-106) Ca-Ca 60531.073 24.99 1 ∼0.0 ∼0.0

∆Vtot = 71.0 71.0

1 (103-104) Ga-Ga 60499.417 14.31 1 1.0 1.0

2 (104-105) Ga-Ca 60513.731 18.33 1 23.0 23.0

3 (105-106) Ca-Ca 60532.063 24.97 1 ∼0.0 ∼0.0

4 (106-107) Ca-Ga 60557.034 17.63 1 ∼0.0 ∼0.0

∆Vtot = 24.0 24.0

1 Numbers between parenthesis are the actual flyby numbers in the CSU solution and define the
departure and arrival point of the leg.

2 ∆V without the penalties for thrust constraint violation.
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D.2.4 Small Freedom and Two Flyby Window

Table D.17: Results (3x) of subsets for the gravity-assist manoeuvres for the first sub-sequence Ga-Ga-
Ca-Ca-Ga. [Settings: small freedom and 2 flyby window]

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (103) Ga 60498.370 303.2 237.2 1098.51

2 (104) Ga 60512.682 303.8 510.2 1097.50

1 (103) Ga 60499.284 1494.8 748.7 1098.51

2 (104) Ga 60513.598 1494.8 55.2 1097.08

3 (105) Ca 60531.551 1278.1 911.3 1096.54

1 (103) Ga 60498.974 1397.6 213.0 1098.51

2 (104) Ga 60513.269 1398.3 50.0 1096.09

3 (105) Ca 60530.872 1173.1 85.3 1088.95

4 (106) Ca 60555.862 1185.1 1234.0 1088.62

1 (103) Ga 60499.156 1506.7 349.9 1098.51

2 (104) Ga 60513.470 1506.7 112.7 1097.39

3 (105) Ca 60531.914 1329.2 50 1096.83

4 (106) Ca 60556.863 1328.9 612.4 1089.90

5 (107) Ga 60575.076 1453.1 1139.2 1089.35

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (103) Ga 60519.820 328.3 345.8 1098.51

2 (104) Ga 60530.559 327.5 1338.7 1097.45

1 (103) Ga 60516.440 1515.5 1214.1 1098.51

2 (104) Ga 60526.832 1516.0 178.0 1097.47

3 (105) Ca 60546.109 1602.7 1381.9 1096.88

1 (103) Ga 60515.116 1283.5 79.0 1098.51

2 (104) Ga 60525.857 1287.7 50.0 1097.52

3 (105) Ca 60543.183 1127.7 50.0 1082.47

4 (106) Ca 60568.287 1138.6 944.3 1082.47

1 (103) Ga 60511.814 1432.7 1820.2 1098.51

2 (104) Ga 60526.070 1446.9 50.0 1095.34

3 (105) Ca 60544.276 1219.3 145.4 1089.84

4 (106) Ca 60569.357 1239.0 55.6 1089.14

5 (107) Ga 60587.331 1434.2 150.4 1082.48

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (103) Ga 60521.695 332.2 1177.9 1098.51

2 (104) Ga 60532.439 332.7 1877.9 1097.46

1 (103) Ga 60524.295 1450.7 331.8 1098.51

2 (104) Ga 60538.609 1450.7 173.0 1097.08

3 (105) Ca 60555.598 1262.5 1301.0 1096.54

1 (103) Ga 60524.030 1468.8 274.0 1098.51

2 (104) Ga 60538.344 1468.8 162.8 1097.39

3 (105) Ca 60556.067 1265.2 66.0 1096.84

4 (106) Ca 60556.067 1253.0 585.3 1096.84

1 (103) Ga 60524.644 1671.8 126.2 1098.51

2 (104) Ga 60538.958 1671.8 392.0 1096.78

3 (105) Ca 60556.513 1384.7 224.2 1096.20

4 (106) Ca 60581.624 1374.1 98.26 1096.20

5 (107) Ga 60599.812 1501.8 938.4 1095.65

1 Number between parenthesis is the actual flyby number in the CSU solution.
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Table D.18: Results (3x) of subsets for the low-thrust arcs for the first sub-sequence Ga-Ga-Ca-Ca-Ga.
[Settings: small freedom and 2 flyby window]

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (103-104) Ga-Ga 60498.370 14.31 1 1.0 1.0

∆Vtot = 1.0 1.0

1 (103-104) Ga-Ga 60499.284 14.31 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60513.598 17.95 1 ∼0.0 ∼0.0

∆Vtot = ∼0.0 ∼0.0

1 (103-104) Ga-Ga 60498.974 14.29 1 25.0 25.0

2 (104-105) Ga-Ca 60513.269 17.60 1 119.0 119.0

3 (105-106) Ca-Ca 60530.872 24.99 1 6.0 6.0

∆Vtot = 150.0 150.0

1 (103-104) Ga-Ga 60499.156 14.31 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60513.470 18.44 1 ∼0.0 ∼0.0

3 (105-106) Ca-Ca 60531.914 24.95 1 124.0 124.0

4 (106-107) Ca-Ga 60556.863 18.21 1 ∼0.0 ∼0.0

∆Vtot = 124.0 124.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (103-104) Ga-Ga 60519.820 10.74 1 1.0 1.0

∆Vtot = 1.0 1.0

1 (103-104) Ga-Ga 60516.440 10.39 1 1.0 1.0

2 (104-105) Ga-Ca 60526.832 19.28 1 1.0 1.0

∆Vtot = 2.0 2.0

1 (103-104) Ga-Ga 60515.116 10.74 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60525.857 17.33 1 262.0 262.0

3 (105-106) Ca-Ca 60543.183 25.10 1 ∼0.0 ∼0.0

∆Vtot = 262.0 262.0

1 (103-104) Ga-Ga 60511.814 14.26 1 37.0 37.0

2 (104-105) Ga-Ca 60526.070 18.21 1 89.0 89.0

3 (105-106) Ca-Ca 60544.276 25.08 1 13.0 13.0

4 (106-107) Ca-Ga 60569.357 17.97 1 116.0 116.0

∆Vtot = 255.0 255.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (103-104) Ga-Ga 60521.695 10.74 1 1.0 1.0

∆Vtot = 1.0 1.0

1 (103-104) Ga-Ga 60524.295 14.31 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60538.609 16.99 1 ∼0.0 ∼0.0

∆Vtot = ∼0.0 ∼0.0

1 (103-104) Ga-Ga 60524.030 14.31 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60538.344 17.72 1 ∼0.0 ∼0.0

3 (105-106) Ca-Ca 60556.067 25.10 1 ∼0.0 ∼0.0

∆Vtot = ∼0.0 ∼0.0

1 (103-104) Ga-Ga 60524.644 14.31 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60538.958 17.56 1 ∼0.0 ∼0.0

3 (105-106) Ca-Ca 60556.513 25.11 1 ∼0.0 ∼0.0

4 (106-107) Ca-Ga 60581.624 18.19 1 ∼0.0 ∼0.0

∆Vtot = ∼0.0 ∼0.0

1 Numbers between parenthesis are the actual flyby numbers in the CSU solution and define the
departure and arrival point of the leg.

2 ∆V without the penalties for thrust constraint violation.



160 APPENDIX D SEQUENCE OPTIMISATION RESULTS

D.2.5 Small Freedom and Three Flyby Window

Table D.19: Results (3x) of subsets for the gravity-assist manoeuvres for the first sub-sequence Ga-Ga-
Ca-Ca-Ga. [Settings: small freedom and 3 flyby window]

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (103) Ga 60507.549 315.6 127.9 1098.51

2 (104) Ga 60521.863 313.5 1201.6 1096.91

1 (103) Ga 60511.945 1484.8 684.7 1098.51

2 (104) Ga 60526.259 1484.8 258.4 1096.85

3 (105) Ca 60543.382 1224.1 1264.6 1096.29

1 (103) Ga 60511.622 1390.9 433.7 1098.51

2 (104) Ga 60525.904 1415.5 50.0 1095.88

3 (105) Ca 60543.625 1214.5 57.9 1091.57

4 (106) Ca 60568.721 1225.1 417.7 1090.96

1 (103) Ga 60511.750 1491.9 1002.9 1098.51

2 (104) Ga 60526.064 1491.9 102.7 1097.39

3 (105) Ca 60544.486 1336.4 50.0 1096.83

4 (106) Ca 60569.539 1335.4 439.2 1089.29

5 (107) Ga 60587.399 1461.6 717.3 1088.75

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (103) Ga 60502.093 307.3 185.3 1098.51

2 (104) Ga 60512.824 308.3 974.3 1097.41

1 (103) Ga 60503.260 1460.6 250.0 1098.51

2 (104) Ga 60513.639 1460.6 285.6 1097.51

3 (105) Ca 60530.695 1266.7 636.3 1096.96

1 (103) Ga 60502.933 1500.7 1213.0 1098.51

2 (104) Ga 60513.660 1502.4 60.4 1097.52

3 (105) Ca 60530.954 1250.5 745.1 1096.97

4 (106) Ca 60555.943 1263.3 990.5 1096.97

1 (103) Ga 60503.465 1530.6 1356.1 1098.51

2 (104) Ga 60513.860 1530.7 50 1097.50

3 (105) Ca 60532.157 1379.8 689.7 1096.49

4 (106) Ca 60556.556 1379.7 787.0 1096.49

5 (107) Ga 60574.957 1447.8 417.9 1095.94

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] mpost flyby [kg]

1 (103) Ga 60493.449 312.8 237.6 1098.51

2 (104) Ga 60507.762 312.3 1401.6 1097.44

1 (103) Ga 60490.717 1493.5 1342.9 1098.51

2 (104) Ga 60501.103 1493.5 1132.2 1097.51

3 (105) Ca 60518.035 1254.3 1548.2 1096.95

1 (103) Ga 60490.108 1326.9 488.9 1098.51

2 (104) Ga 60500.838 1322.5 50.0 1097.52

3 (105) Ca 60518.159 1148.5 50.0 1085.31

4 (106) Ca 60543.144 1137.7 983.3 1085.31

1 (103) Ga 60490.135 1286.4 669.0 1098.51

2 (104) Ga 60500.868 1295.6 50.0 1095.48

3 (105) Ca 60518.552 1235.7 50.0 1084.70

4 (106) Ca 60543.658 1242.4 50.0 1080.29

5 (107) Ga 60561.957 1514.2 939.2 1072.45

1 Number between parenthesis is the actual flyby number in the CSU solution.
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Table D.20: Results (3x) of subsets for the low-thrust arcs for the first sub-sequence Ga-Ga-Ca-Ca-Ga.
[Settings: small freedom and 3 flyby window]

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (103-104) Ga-Ga 60507.549 14.31 1 3.0 3.0

∆Vtot = 3.0 3.0

1 (103-104) Ga-Ga 60511.945 14.31 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60526.259 17.12 1 ∼0.0 ∼0.0

∆Vtot = ∼0.0 ∼0.0

1 (103-104) Ga-Ga 60511.622 14.28 1 28.0 28.0

2 (104-105) Ga-Ca 60525.904 17.72 1 67.0 67.0

3 (105-106) Ca-Ca 60543.625 25.10 1 11.0 11.0

∆Vtot = 106.0 106.0

1 (103-104) Ga-Ga 60511.750 14.31 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60526.064 18.42 1 ∼0.0 ∼0.0

3 (105-106) Ca-Ca 60544.486 25.05 1 135.0 135.0

4 (106-107) Ca-Ga 60569.539 17.86 1 ∼0.0 ∼0.0

∆Vtot = 135.0 135.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (103-104) Ga-Ga 60502.093 10.73 1 2.0 2.0

∆Vtot = 2.0 2.0

1 (103-104) Ga-Ga 60503.260 10.38 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60513.639 17.06 1 ∼0.0 ∼0.0

∆Vtot = ∼0.0 ∼0.0

1 (103-104) Ga-Ga 60502.933 10.73 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60513.660 17.29 1 ∼0.0 ∼0.0

3 (105-106) Ca-Ca 60530.954 24.99 1 ∼0.0 ∼0.0

∆Vtot = ∼0.0 ∼0.0

1 (103-104) Ga-Ga 60503.465 10.40 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60513.860 18.30 1 8.0 8.0

3 (105-106) Ca-Ca 60532.157 24.40 1 ∼0.0 ∼0.0

4 (106-107) Ca-Ga 60556.556 18.40 1 ∼0.0 ∼0.0

∆Vtot = 8.0 8.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (103-104) Ga-Ga 60493.449 14.31 1 2.0 2.0

∆Vtot = 2.0 2.0

1 (103-104) Ga-Ga 60490.717 10.39 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60501.103 16.93 1 ∼0.0 ∼0.0

∆Vtot = ∼0.0 ∼0.0

1 (103-104) Ga-Ga 60490.108 10.73 1 ∼0.0 ∼0.0

2 (104-105) Ga-Ca 60500.838 17.32 1 211.0 211.0

3 (105-106) Ca-Ca 60518.159 24.99 1 ∼0.0 ∼0.0

∆Vtot = 211.0 211.0

1 (103-104) Ga-Ga 60490.135 10.73 1 37.0 37.0

2 (104-105) Ga-Ca 60500.868 17.68 1 185.0 185.0

3 (105-106) Ca-Ca 60518.552 25.11 1 80.0 80.0

4 (106-107) Ca-Ga 60543.658 18.30 1 134.0 134.0

∆Vtot = 436.0 436.0

1 Numbers between parenthesis are the actual flyby numbers in the CSU solution and define the
departure and arrival point of the leg.

2 ∆V without the penalties for thrust constraint violation.
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D.3 Optimisation of Sequence Eu-Eu-Eu-Io-Io for ∆V and Moon

Face Points

D.3.1 W∆V = 10.0 and WM = 1.0

Table D.21: Results (3x) of subsets for the gravity-assist manoeuvres for the sub-sequence Eu-Eu-Eu-Io-
Io. [Settings: small freedom and 2 flyby window and W∆V = 10.0 and WM = 1.0]

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] # Face Face value mpost flyby [kg]

1 (15) Eu 59873.789 307.7 1479.3 19 6 1889.67

2 (16) Eu 59880.894 306.4 656.5 25 6 1885.20

1 (15) Eu 59873.631 311.7 403.2 24 6 1889.67

2 (16) Eu 59880.725 313.3 1171.4 18 6 1886.14

3 (17) Eu 59887.830 313.6 1345.1 25 6 1881.22

1 (15) Eu 59874.082 522.6 418.8 25 6 1889.67

2 (16) Eu 59879.598 578.1 1242.9 23 6 1861.21

3 (17) Eu 59886.584 1544.8 626.1 16 6 1777.71

4 (18) Io 59890.912 1866.0 685.8 16 3 1701.00

1 (15) Eu 59874.922 727.0 931.8 15 6 1889.67

2 (16) Eu 59880.127 648.2 181.6 18 6 1869.55

3 (17) Eu 59887.149 946.4 207.6 23 6 1819.31

4 (18) Io 59891.165 1455.8 298.9 21 3 1707.90

5 (19) Io 59893.705 1294.5 1873.0 15 3 1684.28

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] # Face Face value mpost flyby [kg]

1 (15) Eu 59874.523 305.4 1089.4 18 6 1889.67

2 (16) Eu 59878.076 306.7 1900.2 24 6 1888.01

1 (15) Eu 59873.528 300.0 1058.1 24 6 1889.67

2 (16) Eu 59880.633 300.0 74.7 19 6 1885.14

3 (17) Eu 59887.720 300.0 703.3 25 6 1880.74

1 (15) Eu 59875.082 502.4 567.9 15 6 1889.67

2 (16) Eu 59881.637 687.4 1639.5 18 6 1857.05

3 (17) Eu 59887.224 1464.5 62.3 20 6 1763.40

4 (18) Io 59891.062 1787.8 1577.1 24 3 1698.09

1 (15) Eu 59876.226 564.9 1352.7 18 6 1889.67

2 (16) Eu 59883.209 613.0 1999.7 24 6 1861.18

3 (17) Eu 59887.296 1242.7 124.9 21 6 1812.22

4 (18) Io 59891.156 1848.8 1354.3 21 3 1716.14

5 (19) Io 59893.702 1851.2 1354.1 26 3 1708.11

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] # Face Face value mpost flyby [kg]

1 (15) Eu 59869.810 310.4 1287.2 24 6 1889.67

2 (16) Eu 59875.162 308.9 818.7 25 6 1886.27

1 (15) Eu 59871.225 300.4 863.7 19 6 1889.67

2 (16) Eu 59878.320 300.0 110.1 25 6 1884.51

3 (17) Eu 59885.425 300.0 1286.0 18 6 1881.43

1 (15) Eu 59871.851 463.1 310.3 19 6 1889.67

2 (16) Eu 59878.957 626.4 115.9 23 6 1864.23

3 (17) Eu 59883.798 1372.5 50.9 21 6 1806.76

4 (18) Io 59887.864 1909.9 366.6 23 3 1732.94

1 (15) Eu 59870.529 503.0 614.3 25 6 1889.67

2 (16) Eu 59877.607 306.2 1920.7 19 6 1858.85

3 (17) Eu 59883.637 913.5 965.2 22 6 1799.33

4 (18) Io 59887.610 1355.9 50.0 20 3 1677.35

5 (19) Io 59890.269 1297.5 1137.4 17 3 1653.84

1 Number between parenthesis is the actual flyby number in the CSU solution.
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Table D.22: Results (3x) of subsets for the low-thrust arcs for the first sub-sequence Eu-Eu-Eu-Io-Io.
[Settings: full freedom and 2 flyby window and W∆V = 10.0 and WM = 1.0]

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59873.789 7.11 1 2.0 2.0

f = -4.09647 ∆Vtot = 2.0 2.0

1 (15-16) Eu-Eu 59873.631 7.09 1 7.0 7.0

2 (16-17) Eu-Eu 59880.725 7.11 1 7.0 7.0

f = -2.20927 ∆Vtot = 14.0 14.0

1 (15-16) Eu-Eu 59874.082 5.52 1 40538.0 269.0

2 (16-17) Eu-Eu 59879.598 6.99 1 368523.0 863.0

3 (17-18) Eu-Io 59886.584 4.33 1 458558.0 839.0

f = -0.8750346 ∆Vtot = 867619.0 1971.0

1 (15-16) Eu-Eu 59874.922 5.21 1 21001.0 184.0

2 (16-17) Eu-Eu 59880.127 7.02 1 130504.0 505.0

3 (17-18) Eu-Io 59887.149 4.02 1 971209.0 1226.0

3 (18-19) Io-Io 59891.165 2.54 1 66773.0 240.0

f = -0.8000336 ∆Vtot = 1189487.0 2155.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59874.523 3.55 1 3.0 3.0

f = -3.78519 ∆Vtot = 3.0 3.0

1 (15-16) Eu-Eu 59873.528 7.11 1 3.0 3.0

2 (16-17) Eu-Eu 59880.633 7.09 1 15.0 15.0

f = -2.01681 ∆Vtot = 18.0 18.0

1 (15-16) Eu-Eu 59875.082 6.56 1 46607.0 302.0

2 (16-17) Eu-Eu 59881.637 5.59 1 440756.0 986.0

3 (17-18) Eu-Io 59887.224 3.84 1 365928.0 727.0

f = -0.8750352 ∆Vtot = 853291.0 2015.0

1 (15-16) Eu-Eu 59876.226 6.99 1 254.0 254.0

2 (16-17) Eu-Eu 59883.209 4.09 1 225083.0 499.0

3 (17-18) Eu-Io 59887.296 3.86 1 653446.0 1042.0

3 (18-19) Io-Io 59891.156 2.55 1 61.0 61.0

f = -0.8000455 ∆Vtot = 878844.0 1856.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59869.810 5.35 1 6.0 6.0

f = -2.38975 ∆Vtot = 6.0 6.0

1 (15-16) Eu-Eu 59871.225 7.10 1 10.0 10.0

2 (16-17) Eu-Eu 59878.320 7.10 1 2.0 2.0

f = -2.41664 ∆Vtot = 12.0 12.0

1 (15-16) Eu-Eu 59871.851 7.11 1 222.0 222.0

2 (16-17) Eu-Eu 59878.957 4.84 1 285861.0 591.0

3 (17-18) Eu-Io 59883.798 4.07 1 417254.0 779.0

f = -0.8750427 ∆Vtot = 703337.0 1592.0

1 (15-16) Eu-Eu 59870.529 7.08 1 280.0 280.0

2 (16-17) Eu-Eu 59877.607 6.03 1 263257.0 611.0

3 (17-18) Eu-Io 59883.637 3.97 1 1187148.0 1363.0

3 (18-19) Io-Io 59887.610 2.66 1 71584.0 237.0

f = -0.8000263 ∆Vtot = 1522269.0 2491.0

1 Numbers between parenthesis are the actual flyby numbers in the CSU solution and define the
departure and arrival point of the leg.

2 ∆V without the penalties for thrust constraint violation.
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D.3.2 W∆V = 1.0 and WM = 1.0

Table D.23: Results (3x) of subsets for the gravity-assist manoeuvres for the sub-sequence Eu-Eu-Eu-Io-
Io. [Settings: small freedom and 2 flyby window and W∆V = 1.0 and WM = 1.0]

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] # Face Face value mpost flyby [kg]

1 (15) Eu 59889.420 321.8 182.0 25 6 1889.67

2 (16) Eu 59894.724 324.6 261.1 24 6 1886.15

1 (15) Eu 59887.855 300.0 1349.3 19 6 1889.67

2 (16) Eu 59894.957 301.0 50.5 25 6 1884.97

3 (17) Eu 59902.057 300.0 1417.0 16 6 1879.63

1 (15) Eu 59886.158 346.7 510.0 18 6 1889.67

2 (16) Eu 59892.964 577.7 52.2 26 6 1851.61

3 (17) Eu 59897.844 1477.9 108.5 22 6 1793.21

4 (18) Io 59901.751 1781.4 1466.5 24 3 1741.08

1 (15) Eu 59887.513 598.4 54.0 21 6 1889.67

2 (16) Eu 59892.795 988.1 50.0 24 6 1854.25

3 (17) Eu 59898.055 1373.9 51.1 23 6 1798.32

4 (18) Io 59901.839 1426.6 333.6 21 3 1703.93

5 (19) Io 59904.448 1472.1 1403.3 23 3 1675.63

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] # Face Face value mpost flyby [kg]

1 (15) Eu 59902.729 323.5 317.8 24 6 1889.67

2 (16) Eu 59906.280 320.6 343.6 17 6 1886.50

1 (15) Eu 59901.551 308.8 1755.4 18 6 1889.67

2 (16) Eu 59908.654 310.9 172.3 24 6 1885.23

3 (17) Eu 59912.215 307.6 1068.6 19 6 1880.97

1 (15) Eu 59901.410 340.5 81.1 25 6 1889.67

2 (16) Eu 59908.286 301.1 1367.1 18 6 1864.93

3 (17) Eu 59915.305 1235.9 58.0 21 6 1797.24

4 (18) Io 59919.405 1946.1 1625.0 24 3 1716.71

1 (15) Eu 59900.307 301.9 56.1 25 6 1889.67

2 (16) Eu 59905.984 300.6 2000.0 24 6 1857.46

3 (17) Eu 59912.046 1079.7 51.0 22 6 1791.47

4 (18) Io 59915.857 1847.5 50.0 19 3 1684.30

5 (19) Io 59918.474 1837.7 400.6 16 3 1645.03

#1
flyby

Moon Epoch [MJD] V−∞ [m/s] hflyby [km] # Face Face value mpost flyby [kg]

1 (15) Eu 59877.968 314.7 824.1 25 6 1889.67

2 (16) Eu 59885.071 312.4 550.3 19 6 1886.45

1 (15) Eu 59878.033 300.1 1111.6 18 6 1889.67

2 (16) Eu 59885.131 301.7 188.0 24 6 1886.13

3 (17) Eu 59890.460 307.5 92.1 25 6 1882.20

1 (15) Eu 59878.621 685.1 63.2 15 6 1889.67

2 (16) Eu 59885.185 950.7 230.8 18 6 1850.87

3 (17) Eu 59890.512 1268.0 55.1 20 6 1810.61

4 (18) Io 59894.679 2105.5 409.0 24 3 1724.58

1 (15) Eu 59877.694 300.8 1999.9 15 6 1889.67

2 (16) Eu 59883.759 478.3 50.1 18 6 1844.65

3 (17) Eu 59890.828 1107.1 50.1 23 6 1775.43

4 (18) Io 59894.710 1652.6 50.0 20 3 1659.16

5 (19) Io 59898.249 1581.2 177.7 25 3 1647.24

1 Number between parenthesis is the actual flyby number in the CSU solution.



D.3 OPTIMISATION OF SEQUENCE EU-EU-EU-IO-IO FOR ∆V AND MOON FACE
POINTS

165

Table D.24: Results (3x) of subsets for the low-thrust arcs for the first sub-sequence Eu-Eu-Eu-Io-Io.
[Settings: full freedom and 2 flyby window and W∆V = 1.0 and WM = 1.0]

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59889.420 5.31 1 7.0 7.0

f = -1.11821 ∆Vtot = 7.0 7.0

1 (15-16) Eu-Eu 59887.855 7.10 1 6.0 6.0

2 (16-17) Eu-Eu 59894.957 7.10 1 13.0 13.0

f = -1.09296 ∆Vtot = 19.0 19.0

1 (15-16) Eu-Eu 59886.158 6.81 1 67089.0 371.0

2 (16-17) Eu-Eu 59892.964 4.88 1 295768.0 602.0

3 (17-18) Eu-Io 59897.844 3.91 1 219065.0 566.0

f = -0.8750052 ∆Vtot = 581922.0 1539.0

1 (15-16) Eu-Eu 59887.513 5.28 1 99241.0 346.0

2 (16-17) Eu-Eu 59892.795 5.26 1 206079.0 571.0

3 (17-18) Eu-Io 59898.055 3.78 1 638602.0 1044.0

3 (18-19) Io-Io 59901.839 2.61 1 92325.0 294.0

f = -0.8000039 ∆Vtot = 1036247.0 2255.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59902.729 3.55 1 5.0 5.0

f = -1.16356 ∆Vtot = 5.0 5.0

1 (15-16) Eu-Eu 59901.551 7.10 1 4.0 4.0

2 (16-17) Eu-Eu 59908.654 3.56 1 16.0 16.0

f = -1.09319 ∆Vtot = 20.0 20.0

1 (15-16) Eu-Eu 59901.410 6.88 1 215.0 215.0

2 (16-17) Eu-Eu 59908.286 7.02 1 242796.0 698.0

3 (17-18) Eu-Io 59915.305 4.10 1 507287.0 873.0

f = -0.8750040 ∆Vtot = 750298.0 1785.0

1 (15-16) Eu-Eu 59900.307 5.68 1 46978.0 291.0

2 (16-17) Eu-Eu 59905.984 6.06 1 325292.0 682.0

3 (17-18) Eu-Io 59912.046 3.81 1 868467.0 1195.0

3 (18-19) Io-Io 59915.857 2.62 1 199762.0 429.0

f = -0.8000028 ∆Vtot = 1440499.0 2597.0

#1
leg

Moons Epoch [MJD] T OF [days] Nrev [-] ∆V [m/s] ∆V [m/s] 2

1 (15-16) Eu-Eu 59877.968 7.10 1 5.0 5.0

f = -1.17469 ∆Vtot = 5.0 5.0

1 (15-16) Eu-Eu 59878.033 7.10 1 8.0 8.0

2 (16-17) Eu-Eu 59885.131 5.33 1 12.0 12.0

f = -1.09145 ∆Vtot = 20.0 20.0

1 (15-16) Eu-Eu 59878.621 6.56 1 87677.0 369.0

2 (16-17) Eu-Eu 59885.185 5.33 1 106762.0 403.0

3 (17-18) Eu-Io 59890.512 4.17 1 540295.0 929.0

f = -0.8750041 ∆Vtot = 734734.0 1701.0

1 (15-16) Eu-Eu 59877.694 6.07 1 92990.0 445.0

2 (16-17) Eu-Eu 59883.759 7.07 1 177309.0 709.0

3 (17-18) Eu-Io 59890.828 3.88 1 948102.0 1301.0

3 (18-19) Io-Io 59894.710 3.54 1 14585.0 106.0

f = -0.8000032 ∆Vtot = 1232986.0 2561.0

1 Numbers between parenthesis are the actual flyby numbers in the CSU solution and define the
departure and arrival point of the leg.

2 ∆V without the penalties for thrust constraint violation.
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