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Summary 
 

Following the approved Long-Term Agreement on Energy Efficiency (MJA-3), TU Delft has set the 

target to improve its energy efficiency by 40% by 2020, compared to 2005 levels. In order to reach 

this goal, 25% of the total energy consumption should be generated by renewable sources by 2020 

and the total CO2 emissions should be reduced by half [1]. Several projects are being launched in 

TU Delft with the main focus of improving energy management to reduce the electricity and heating 

consumption in the campus buildings. The optimization of the current heating system has a crucial 

role to play in ensuring the transition towards a more sustainable campus. This is due to the fact 

that heating accounts for 47% [2] of the total primary energy demand and it is estimated that 

between a 10 to 20% [2] of the energy generated in the heat networks is lost. 

The optimization of the district heating grid involves lowering the current supply temperature range 

of the district heating system (DHS) from 130 – 80°C (conventional DHS) to 80 – 40°C (medium 

temperature DHS). This temperature reduction will lead to the increase of the full loading hours of 

the two CHP units, the reduction of transport heat losses, the possibility to use waste heat and the 

implementation of other renewable sources such as geothermal energy. In order to minimize the 

supply temperature, the Smart Grid Innovation Programme (‘Innovatieprogramma Inteligente 

Netten’ - IPIN) was launched. 

This thesis is part of IPIN which builds and implements a prototype of a dynamic heating network 

via a Model Predictive Control system (MPC). This MPC system is formed by two simulation 

packages: (1) LEA (Low Energy Architecture), developed by Deerns, which estimates the 

temperature supply at building level (primary supply temperature) by predicting the energy demand; 

and (2) Wanda, developed by Deltares, which determines the required supply temperature at the 

central heating plant (secondary supply temperature). This project focuses on the heating prediction 

at building level and was initiated by Deerns under the IPIN project. 

LEA is a physics-based simulation tool (simulator) which gives good estimations of the thermal 

energy demand of the building. However, as every physics-based model it requires a large number 

of input parameters that are unknown and need to be estimated. The estimation of parameters for 

a large scale implementation is a very time-consuming task which requires tedious expert work. 

Moreover, the estimation of parameters could lead to the introduction of input data errors, 

decreasing the accuracy of the heating demand prediction and the performance of the thermal grid. 

This thesis was proposed in order to give an optimal solution to the inconvenience mentioned 

above. 

The goal of this research is to study the possibility of using simple and fast data-driven statistical 

models to obtain the heating demand of the building with enough accuracy and physical meaning. 

The scope of the project is limited to the buildings being tested for the current phase of IPIN (phase 

2). These are 3mE (Faculty of Mechanical, Maritime and Materials Engineering), IO (Industrial 

Design) and TPM (Technology, Policy and Management).  

Before starting the procedure of building the model, the data set needs to be studied and selected. 

Two type of data sets were available: (1) simulated data set (calculated by the simulator) and (2) 

actual data sets (building measurements). By comparing the two data sets, a mismatch between 

simulated and actual data was observed. The causes of the mismatch between actual and 

simulated data were studied by comparing the actual buildings and the simulator. Firstly, the 

accuracy of the simulator was evaluated in order to rule out that the source of this mismatch was 

due to a possible inaccuracy in thermal balance of the simulator. This analysis concludes that LEA 

gives a good estimate of the hourly and annual heating demand. Then, the actual cases were 

compared with the simulator by analysing the most influencing parameters in each case and 

evaluating the consequences on the data set choice for building the mathematical model. From this 
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study, it is concluded that the actual data sets are too incomplete to build the mathematical model 

on and the missing parameters cannot be substituted by the estimated parameters. Moreover, it is 

proven that the simulated data sets are an accurate representation of the actual data set and their 

use will contribute to a mathematical model with a better energy and comfort performance. 

Therefore the mathematical model is built based on the simulated data set. 

Once the data set is selected, the multivariate linear models can be built. The major challenge of 

this part is to find the combination of parameters able to define a correlation which predicts with 

high accuracy the heating demand for any building. The selection of parameters is based on the 

thermal energy balance principle of a building. In order to increase the accuracy of the regression 

model, a new equation is defined in cases where a static variable is influencing the correlation of 

the linear regression (slope of the least square). In this case study, two equations are distinguished 

following season changes and three are distinguished for the different operating modes of the 

building. Each model built is statistically validated by a statistical search procedure. The search 

procedure analyses the residual of the data set, and quantifies the significance level of both the 

variables’ coefficients and the total model.  

In order to build a model that could be applied in the present case study, the selection of parameters 

is restricted to measurable data at the buildings of the TU Delft campus. With this purpose, it is 

decided to go an extra mile and obtain a multivariate model independent from all parameters 

unknown or difficult to obtain. As a result, the final model obtained is independent on building & 

system characteristics and the influencing parameters that are difficult to measure are replaced. 

The resulting model is defined by weather data, indoor air temperatures and the internal heat gains 

of the building. The coefficients of the variables are related to the building and systems 

characteristics and they are obtained by training the model with historical data. 

The model obtained has a high predictive potential and accuracy level. The data collected from the 

previous season (2.5 months) are able to predict the next month with an accuracy in the range of 

73.5 - 99% (weekdays and opening hours). It is expected that the range of the prediction accuracy 

could be raised up to 90-99% when the equation for weekdays is subdivided in two: (1) including 

only Mondays and (2) including only Tuesdays-Fridays. Moreover, the model shows a physical 

relation with the input coefficients, making it possible to get a better insight of the influence of the 

different parameters in the building response.  

In addition to the development of this model (main research question), the calibrations performed 

previous to this thesis are evaluated and a faster and more accurate calibration procedure is 

recommended.  

This study concludes that the multivariate linear regression model is a more suitable predictive tool 

than a physics-based model (e.g. LEA) for large scale implementations. Any physics-based 

simulator (and therefore, LEA) is beyond the complexity limits of this case study because some of 

the most influencing parameters are unknown and therefore estimated, leading to the introduction 

of input data errors in the simulated results. 
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1 

1 Introduction 

 Energy transition 

Since the industrial revolution, the energy demand have experienced a growing rise. Fossil fuels 

have been the base of the worldwide energy production and its use gave place to an exponential 

increase of the Greenhouse Gases (GHGs). The Fourth Assessment Report of the 

Intergovernmental Panel on Climate Change (IPCC) estimated that between 1970 and 2004, global 

greenhouse gas emissions due to human activities rose by 70%, being the main reason of the 

global warming [3]. Besides the damaging effects that the GHSs have on the climate change, the 

depletion of the fossil fuels and the expected increase in the energy consumption (related to the 

world population growth and higher life standards), makes necessary the shift from fossil fuels to 

renewable sources. 

In order to ensure a future energy security and mitigate the climate change, the Intended Nationally 

Determined Contributions INDC of the European Union (EU) sets out the following targets for 2030 

compared with 1990 levels [4].: 

 Reducing the GHG emissions at least by 40%; 

 increasing the share of renewable energy to at least 27% (of final energy consumption); 

 improving the energy efficiency by at least 27% 

The 2030 framework builds on the target to reduce EU GHG emissions by 20% by 2020. Figure 1 

presents the energy share from renewable energy sources in the EU member states for 2014 and 

the targets set for 2020. It is observed that the EU is on track of meeting with the targets set for 

2020, however The Netherlands is at the bottom of the most European ladder in terms of renewable 

energy production. In 2014 only a 5.6% of the energy consumed was produced by renewable 

sources [5].  

 

Figure 1 Share of total primary energy from renewable sources in the EU member states, 
2014 and 2020 (%) [5] 
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 Renewable energies in the built environment 

The built environment consumes more than the 40% of the global energy used and contributes up 

to 30% of the global GHGs emissions [6]. Due to the growth in new construction in developing 

economies and the inefficiencies of the existing building stock worldwide, the GHGs emissions 

related to the built environment are increasing annually. Between 1971 and 2004 the yearly GHGs 

emissions related to the built environment have increased at an annual rate of 2.5% for commercial 

buildings and at 1.7% for residential buildings [7]. Space and water heating in European households 

accounts for 79% of total final energy use (192.5 Mtoe) and the 84% of heating is still generated 

from fossil fuels while only 16% is generated from renewable energy [8]. In order to fulfil the 

European climate and energy goals, the heating sector in building must sharply reduce its energy 

consumption and cut its use of fossil fuels [8]. Figure 2 shows the energy intensity levels in 

European domestic and commercial buildings for 2013 and 2030 [4].  

 

Figure 2 European Union energy intensity levels in domestic and commercial buildings, 2013 and 
2030  

The building sector has a large potential for reducing the energy consumption in both new and 

existing buildings. By applying  proven and commercial technology, the energy consumption can 

be reduced by a 30 till 80% with potential net profit [6]. Reducing the energy consumed 

corresponding to heating and cooling in buildings can be achieved by improving the building design 

and insulations when renovating buildings, providing better information and control of energy use 

via energy management solutions, and upgrading heating and cooling equipment to the most 

efficient technologies [6].  

The use of fossil fuels can be cut down by using renewable heating and cooling technologies such 

as reusing waste heat, biomass boilers, geothermal energy or combined heat and power units which 

produce both heat and electricity. The implementation of renewable energy systems  into the 

existing energy system involves the integration of the different smart grids and the coordination 

between energy supply and demand in order to obtain a good efficiency of the overall energy 

system [9], [10]. Therefore, it is expected that smart thermal grids will play a key role to make full 

use of the potential of distributed renewable technologies. The next section explains the role and 

challenges of the smart heating grids to reach the corresponding energy reductions and the 

integration of renewable energy systems. 
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 From current district heating grids towards smart thermal grids 

This section gives an overview of the different district heating generations and describes the role 

and challenges that may encounter the next district heating generation in the framework of the 

future energy systems. The definition of the concept of 4th Generation District Heating (4GDH) and 

smart thermal grid [9] given in this section, is based on the trend followed by the historical 

development of district heating systems and the existing motivation and need to transform the 

current energy system.  

 Tendency of district heating systems 

Figure 3 shows the evolutionary tendency of the different district heating systems in history. This 

presents the main characteristics of the 3 known district heating generations and the 4th predicted 

district heating network [9].  

 

 

Figure 3 Comparison of the different Generations of District Heating (GDH) [9]. 

The first generation of district heating systems (1880-1930) was characterised for using steam as 

heat carrier. The high steam temperatures lead to high heat losses, however the main drive to 

change these systems was to reduce the risk of accidents due to the explosions of steam boilers. 

In the second generation (1930-1980), the heat carrier was pressurised hot water at supply 

temperatures above 100 oC. These systems decreased the heat losses, increased fuel savings and 

comfort by using combined heating & power (CHP). The third generation of systems (1980-today) 

also uses pressurized water as the main heat carrier, but at temperatures lower than 100 oC, 

lowering the heat losses (increase of the energy efficiency). The main motivation for using these 

systems is to decrease the dependency of oil and increase the security of energy supply (motivated 

by two previous oil crisis). Therefore, there is a focus on energy efficiency related to CHP by 

replacing oil by other fuels such as coal, biomass and waste [9]. 
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According to the trend followed by the three previous DHGs, the 4DHG should develop towards 

lower distribution temperatures and the introduction of the new energy sources.  

 Role and challenges of the district heating technology for reaching a sustainable 
energy system 

The transition from current energy systems (based on fossil fuel and nuclear energy) towards the 

future energy systems (based on renewable energy systems) leads to an increase in the fluctuation 

of the energy supply. As a result, the current energy system needs to be transformed into a smart 

energy system which focuses on the integration of electricity, heating, cooling and transport sectors, 

and on using the energy demand flexibility as well as energy storage [9]. This implies the integration 

of the different smart grids (electricity grids, district heating and cooling grids, gas grids and different 

fuel infrastructures) and the coordination between them to achieve the optimal solutions for each 

individual sector and for the overall system [9], [10]. 

District heating consists in a network of pipes connecting the thermal energy demand and supply 

sides, allowing any available source of heat to be used (centralised or distributed heat producing 

units). Therefore, district heating systems plays a crucial role in the implementation of future 

sustainable energy systems. However, the current district heating system has to be developed in 

order to decrease grid losses, exploit synergies, and increase the efficiencies of low temperature 

production units [11], [12], [9]. In order to reach this goal, the future district heating will have to 

overcome the following challenges [9]: 

1. Supplying low temperature district heating to existing and new low energy buildings.  

2. Distributing heat in networks with low grid losses. 

3. Using low temperature heat sources (waste heat and renewable heat sources such as solar 

or geothermal heat) 

4. Being coordinated with the other energy grids to become an integrated part of the smart 

energy system. 

5. Ensuring suitable planning, cost and motivation structures in relation to the operation and 

strategic investments related to the transformation into future sustainable energy systems.  

In order to achieve the above mentioned challenges, it is important to coordinate the energy 

performance of the buildings and the district heating systems to improve the energy efficiency of 

the total system. The requirements that a building may fulfil to reach this synergy between thermal 

energy demand and supply, can be summarized in the following two requirements [9]: (1) reducing 

the heating demand in buildings for a better balance between the energy needed during winter and 

summer, (2) smart control of heating demand for an optimal operation of the buildings and district 

heating systems. 

The reduction of heating demand in buildings must guarantee that comfort is achieved at lower 

supply temperature, giving rise to lower temperature supply differences between winter and 

summer [9]. This will lead to facilitating the use of the same systems for cooling and heating, 

enhancing the implementation of renewable energy sources (low temperature heat sources), 

decreasing grid losses, and increasing the efficiencies in the production units [9]. The smart control 

system of the heating demand in buildings optimizes the operation of buildings and district heating 

systems by: 

1. matching demand and supply; 

2. shaving heating peak loads in order to maintain the heating supply constant. This leads 

to an optimal operation of the district heating systems and avoids high investments to 

cover the high peak loads. 

The focus of this master thesis is on the smart control of heating demand by searching for 

mathematical models able to predict future energy demand during the operation of the buildings. 
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This master thesis is part of the ongoing Smart Grid Innovation Programme (‘Innovatieprogramma 

Inteligente Netten’ - IPIN), which aims at transforming the current TU Delft district heating grid into 

a smart thermal grid. The data used were obtained from the case study of different buildings at TU 

Delft. This case study and its context are explained in the next section. 

 Transformation of the TU delft District Heating Grid towards a Smart Thermal 
Grid: IPIN project 

Following the approved Long-Term Agreement on Energy Efficiency (MJA-3), TU Delft has set the 

target improving its energy efficiency by 40% by 2020, compared to 2005 levels. In order to reach 

this goal, 25% of the total energy consumption should be generated by renewable sources by 2020 

and the total CO2 emissions should be reduced by half [1]. With this purpose, several projects are 

being launched with the main focus of reducing the electricity and heating consumption in the 

campus buildings by improving energy management.  

The optimization of the current heating system has a crucial role to play in ensuring the transition 

towards a more sustainable campus. This is due to the fact that heating consumption accounts for 

47% [2]  of the total energy consumption in TU Delft campus and it is estimated that between a 10 

to 20% [2] of the energy generated in the heat networks is lost. This loss is due to a non-optimal 

use of the heating generation systems and the transport heat losses taking place in the distribution 

network.  

With the purpose of optimizing the current heating generation & distribution system and introducing 

other energy sources (low temperature heat sources), the Smart Grid Innovation Programme 

(‘Innovatieprogramma Inteligente Netten’ - IPIN) was iniciated. IPIN aims at lowering the current 

supply temperature range of the district heating grid from 130 – 80°C (conventional DHG) to 80 – 

65°C (medium temperature DHG) and ensuring a constant heating supply. This will lead to:  

 optimising of the use of gas boilers (continuous operating mode due to a constant heating 

supply);  

 reducing the transport heat losses;  

 increasing of the full loading hours of the two CHPUs;  

 using the waste heat (eg. heat coming from the CHP’s flue gas);  

 and introducing other renewable sources such as geothermal energy (which supply heat at 

approximately 70oC).  

0 gives a more detailed information about the current district heating system at TU Delft campus 

(heating distribution and generation) and how the transformation towards a smart heating grid will 

lead to the improvements described above. 

As it is explained in section 1.3.2 and 0, in order to improve the energy performance of the total 

heating system, it is important to coordinate the energy demand of the buildings and the district 

heating system. The synergy between thermal energy demand and supply can be reached by 

reducing the heating demand in buildings and implementing a smart control of heating demand in 

buildings. The smart control of the heating demand will ensure a more constant operation leading 

to an optimal operation of the district heating systems.  

Most of the TU Delft buildings have large heating consumptions since they were built under the 

building regulations of the 1950s and 1960s. In order to decrease the heating demand in TU Delft 

buildings, large-scale renovations (eg. increasing building insulations) will be the most logical option 

from the energy point of view, but it requires a very large investment [1]. In order to reach the MJA-

3 goal in an affordable manner, it was decided to lower the supply temperature of the heating grid 

to integrate renewable energy sources.  

IPIN develops and implements a prototype of a dynamic heating network via a Model Predictive 

Control system (MPC) developed by Deerns and Deltares. This MPC adjusts the supply 
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temperature at both the heating generation (central heating plant) and heating distribution stations 

(situated at the buildings). In order to lower the supply temperature of the TU Delft District Heating 

Grid (DHG) without compromising a strong decrease on the comfort level, the MPC predicts and 

balances the heating demand & supply by taking into account all factors influencing the thermal 

energy demand in the DHG at the building, systems and pipeline level. Therefore, it includes the 

physical characteristics of the buildings & systems, the use & operation, weather data and thermal 

dynamism in the pipeline system. This makes a difference with the current control system which 

calculates the supply temperature only based on the outdoor temperature, neglecting the other 

influencing parameters. In the current phase of IPIN project (phase 2), the MPC prototype is being 

implemented in branch North 2 (see 0 for further details). 

Figure 4 shows the schematic overview of the Model Predictive Control system. The MPC system 

is formed by two simulation packages: (1) LEA (Low Energy Architecture), developed by Deerns, 

which predicts the thermal energy demand and needed temperature supply at building level 

(primary supply temperature); (2) Wanda, developed by Deltares, which simulates hydraulic and 

thermal transients in pipeline systems. Based on the primary supply temperature calculated by LEA, 

Wanda is used to determine the energy source usage and the required supply temperature at the 

central heating plant (secondary supply temperature). This project focuses on the heating prediction 

at building level (green part). 

Heating prediction at building level: LEA 

Heating Distribution 

Heating prediction in pipelines’ network: 

WANDA 

Heating Generation 

Central Heating Plant 

(CHP) 

Model Predictive Control (MPC) 

Primary Supply 
Temperature 

Secondary Supply 
Temperature 

Figure 4 Overview of the Model Predictive Control system [own illustration] 
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2 Research outline 

 Problem definition 

As it was explained in the previous section, the prediction of the heating demand in the TU Delft 

buildings is being calculated by LEA (see section 6.1 for further details). This is a physics-based 

simulation tool which gives good estimations of the thermal energy demand of the building. 

However, it requires more than 120 inputs in each case study. These inputs can be classified in 

weather data, physical characteristics of the building & systems, and operational characteristics. 

The last two types of parameters were estimated by an inventory of inputs (visiting the place and 

interviewing the building operators). However, not all parameters were able to be properly 

estimated. Therefore, a validation with actual historical consumption data was performed for each 

of the 20 buildings at TU Delft campus (see section 6.2.1). 

The use of the mentioned physics-based model and the working procedure involved, lead to the 

following main challenges for large scale implementation. 

1. Very time-consuming method 

More than 120 parameters for 20 different buildings had to be estimated. The inventory of 

these parameters and the validation procedure were very time demanding tasks, which 

could impact future implementation in other projects. 

2. Expert work required 

The use of LEA, as every physics-based tool requires high expertise level. A team of 4 

experts was formed in order to make the required validations and adjustments in the 

model for its communication with other softwares (see section 6.2 for further details about 

the calibrations and validations). 

3. Introduction of errors 

The estimation of the required parameters could introduce input data errors to the model, 

which could lead to a reduction in the accuracy of the simulated results (see section 3.1.3). 

4. Mismatch between actual and simulated data. 

For some of the buildings, the study showed a big mismatch between the actual and 

simulated data (see chapter 7). This mismatch could affect the efficiency of the Model 

Predictive Control system leading to a lower performance of the smart thermal grid.  

5. Challenging method to get a good understanding of the most influencing parameters 

The complexity of the model (containing hundreds of physical equations) challenges the 

understanding, evaluation and influence of the different parameters on the output.  

6. High computer power demand 

LEA model is based on hundreds of equations which need to be run every time step, 

demanding high computer power. This is not a big deal for the current computers, however 

it limits its implementation to a computer hardware (like PLCs used in control systems). 

When a model demands less computer power, the prediction of the energy demand can be 

calculated with simpler hardware such as buildings’ controllers or mobile phones (through 

an application). 
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 Objective and research questions 

The main purpose of this research is to study the possibility of using simple and fast data-driven 

statistical models to obtain the heating demand of the building. This model should give a solution 

to the challenges encountered by using physics-based models. Therefore, the following objectives 

should be reach. 

1. Simplicity to avoid the introduction of input errors, reduce expertise of the user and time 
spent for its implementation. 

2. Fast calculation in order to facilitate its implementation in simpler hardware and reduce the 
operational cost related to software licenses. 

3. Accuracy to be able to control the smart thermal grid at a high performance. 

4. Physical relation with the input coefficient parameters in order to make the interpretation of 
the results easy and being able to get a better insight of the influence of the different 
parameters in the building response. 

Therefore, this study answers the following main research question:  

 Is it possible to predict the heating demand of a building through a simple 
and fast mathematical model with enough accuracy and physical meaning? 

In order to answer this research question, the following sub questions are also approached in the 

different research phases of this study: 

1. Literature review (chapter 3) 

a. What type of prediction model and statistical methodology are the best approach 
to fulfil the objective mentioned above? 

b. Which are the expected most influencing parameters on actual heating demands 
in this case study? 

c. Which are the reasons that may cause a mismatch between actual and simulated 
heating demand in buildings? 

2. Analysis real case study (chapter 5) 

a. Which are the main building and operating characteristics in each case study? 

b. How many equations are necessary to build the statistical model?  

c. How should the data set be selected to build each equation? 

d. Is the actual data set provided complete enough to build the statistical model? 

3. Analysis physics-based simulator and validation (chapter 6) 

a. Which are the main assumptions of the physics-based simulator used? Are there 
model assumptions which could affect the simulated results? 

b. Is the physics-based simulator accurate enough to generate a representative data 
set to build the statistical model? 

4. Comparison real case study (buildings) and simulator (chapter 7) 

a. Which are the most influencing key indicators and dynamic parameters in each 
building for the actual and simulated data? How do they interfere on the actual and 
simulated heating demand in each case?  

b. Why is there a mismatch between actual and simulated heating demand? 

c. Were the parameters correctly estimated during the calibration procedure 
performed prior to this thesis? In which cases do the calibrations need to be 
validated?  

d. Is there a better calibration procedure to estimate the parameters in this case 
study? 
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e. Is it acceptable to substitute the missing parameters of the actual data set by 
estimated parameters? If not, is it acceptable to replace the actual data set by the 
simulated data set to build the mathematical model? 

5. Model design & validation (chapters 8, 9 and 10) 

a. Which is the best combination of variables to obtain an accurate predictive model? 

b. Is the model satisfying the fitting accuracy required? 

c. Are all the variables included in the model available in this case study? If not, is it 
possible to neglect or replace the variables? 

d. What are the physical interpretations deducted from the coefficient of the 
parameters? 

e. Which is the best model to apply in each case? 

f. What is the model predictive potential? 
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3 Literature review 
This chapter aims to give direction in the design of a mathematical model which satisfies the 

research requirements described in chapter 2.  

In the first place, the state-of-the-art of the different prediction model techniques is studied and the 

optimal complexity of building models is analysed. The results of this review lead to the selection 

of the most appropriate prediction model for the present case study. 

In the second place, the mismatch between actual and simulated data found during the calibration 

period may be signs of inaccurate actual or simulated data. In order to make a good selection of 

the data set to be used for the construction of the mathematical model, the possible reasons for the 

gap between actual and simulated data were studied. 

Finally, the most influencing parameters on actual heating demand are analyse. The result of this 

study gives good insights of the physical and operational characteristics of the buildings and 

systems to be considered in the current case study in order to build the mathematical model.  

 Prediction model techniques and optimal complexity 

 Classification and overview prediction model techniques 

There are several categorisation systems to classify the different existing prediction methodologies 

(see [13]–[17] for further references). Most of the authors classify these methods into white-box 

models, gray-box models and black-box models [16], [17]. 

 White-box models (also called law-driven models): are based on building physics 

equations, therefore they are dependent on a large amount of building’s inputs (design 

requirements). Physic-based simulation tools such as TRNSYS, EnergyPlus, SIMBAD [18] 

are examples of white-box methods. 

 Gray-box models (parameters estimation): are a combination between a white-box and a 

black-box by using limited building physics in combination with statistical methodologies. 

Examples of this type of method include some engineering calculations such as the degree-

day method [19] or international standards [20], [21]. 

 Black-box models (also called data-driven models): use statistical models which relates a 

set of influential inputs parameters to measured outputs, therefore they require training 

data (historical data) but a very small quantity of inputs. Examples of black-box method 

include all statistical methods such as regression models [18], [22], [23] or Fourier series 

model [24]–[26]. 
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 Comparison between different prediction model techniques 

The selection of the prediction model technique for a certain application will depend on the 

knowledge of the system modelled (physical equations and availability of inputs) and aim of the 

application [13], [18]. This section gives an overview of the advantages, limitations and applications 

of the different model techniques. 

The engineering calculations (grey-box models) are easy and fast to use and they normally show 

a clear relation to physical parameters. Some of these tools do not take into consideration the 

dynamic processes of the building (eg. dynamic heat transfer) or they make more simplifications 

than the physics-based simulation methodologies, leading to a lower accuracy level in predicting 

the energy demand of the building. As a result, they are used in early design stage of buildings 

design and during energy audits, where energy performance estimations are sufficient for 

evaluating the performance and predicting the impacts of energy conservation measures [13].  

Physics-based simulation tools (white-box models) are very effective for modelling individual 

buildings (existing or at design stage). However, the accuracy of the modelled results will be highly 

influenced by the expertise of the modeller and knowledge on the system modelled such as the 

physical equations and the input parameters available [13], [18]. These tools require a large amount 

of detailed input data, such as physical characteristics of the building & systems and operational 

characteristics (eg. internal heat gains profiles, temperature set points, etc), which are uncertain in 

most of the real life cases increasing the potential error in the predictions ( see section 3.1.3 for 

further details).  

Statistical simulation tools (black-box, sometimes grey-box models) provide fast and simple 

prediction models which are normally developed using a survey database. These models have a 

much lower number of input data which can be easily known. The main disadvantages of these 

tools are that they lack a clear relation to physical parameters, resulting in a difficult interpretation 

of the results and difficulties identifying errors [13].  

 Model uncertainties related to the complexity 

As it was mentioned above, the selection of the approach to be used will depend on the purpose of 

the model and knowledge of the system modelled [13], [18]. The selection of a more complex model 

does not mean a better solution. This section explains how the complexity of the model is limited 

by the number of inputs available.  

The type of errors in a verified model are classified as follows: 

 Abstraction errors: due to the boundary conditions of the model (eg. using an incomplete 

model of a physical system) 

 Input data errors: uncertainties introduced by the estimation of parameters (unknown 

parameters) 

 Numerical errors: due to the discretization steps chosen in the modelling 

The numerical error can be controlled by decreasing the discretization steps. However, the 

abstraction and input data errors are difficult to quantify, increasing the modelling uncertainty and 

influencing the gap between actual and modelled outputs [27]. 

Figure 5 shows that when the model complexity rises, the gap between actual and modelled outputs 

(potential error) decreases while the predictive uncertainty increases.  This is due to the fact that 

when the modelling complexity increases, the model equations define with more detail the reality, 

leading to a reduction of the potential error. However, the increase in complexity also leads to the 

higher amount of parameters to solve the physical equations involved, rising the predictive 

uncertainty (abstraction errors and input data errors). The predictive uncertainty decreases at a 

higher level of knowledge on the system modelled (physical equations and input parameters). 

Therefore, the system knowledge available will determine the complexity of the model for which the 

model error has its minimum (see sum line in Figure 5 [27]), this corresponds with the optimal 
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complexity. ”There is no sense in going beyond this complexity, as the overall error in the model 

uncertainty will not decrease” [27].  

 

 

 

  

 Favorable side Unfavorable side 

Figure 5 Model uncertainty versus complexity. 
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 Overview and selection statistical methods 

For the last decade, several statistical (mathematical) models have been used for thermal energy 

demand prediction. The methods most commonly used are regression models, Fourier series 

models and Artificial Neural Network (ANN) models. 

ANN models are a machine learning technique which operates in a black-box principle, which does 

not require detailed information of the system and is trained based on historical datasets (input and 

outputs variables) [13]. The application of this method is especially interesting to solve complex 

problem with many parameters. An example of this type of problems is the automated estimation 

of the numerous input data parameters used by a physics-based software (physical characteristics 

of the building & systems and operational characteristics) based on large historical dataset [28]. 

During the first phase of this project, the possibility of using this method in order to develop a model 

which could estimate the different input parameters needed by a physics-based model was studied. 

However, at the time of the definition of this project, the parameters for the 20 different buildings 

were already estimated and this method did not guarantee a simpler and fast final equation. 

Therefore, it was decided to proceed with a method which could provide an equation that fulfilled 

all requirements set (see section 2). 

During this study, both regression and Fourier series models were explored. Both models present 

one equation dependent on multiple independent variables. The multivariable regression model 

combines the different independent variables according to a linear or polynomial relation between 

the independent and dependent variable [24]. In the Fourier series approach, the relation between 

the independent variable and the dependent variable is a combination of sine and cosine functions 

[24]. This could be useful to model the daily and annual periodicity of the variables in order to obtain 

the profiles of thermal heating demand. The functional form of these two approaches are 

represented as follows: 

Regression approach: 

𝑄ℎ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + ∑ 𝐶𝑖 ∙ 𝑋𝑖

𝑛

𝑖=1

 

Where Qh is the hourly thermal energy demand, Ci are the corresponding coefficient of the 

dependent variable, ‘X’ is the dependent parameter and ‘I’ the index of dependent variables 

selected for the model. 

Fourier series approach: 

𝑄ℎ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + ∑ 𝑋𝑖

𝑛

𝑖=1

[∑[ 𝛼𝑥 ∙  sin (
2𝜋𝑑

𝑃𝑥
) + 𝛽𝑥

182

𝑥=1

∙  cos (
2𝜋𝑑

𝑃𝑥
)  ] + ∑[ 𝛾𝑦 ∙  sin (

2𝜋ℎ

𝑃𝑦
) + 𝛿𝑦

11

𝑦=1

∙  cos (
2𝜋ℎ

𝑃𝑦
)  ]] 

Where the first Fourier series with subscript ‘x’ represent the annual periodicity and the second 

Fourier series with subscript y the diurnal periodicity. ‘d’ is the number of the day with respect to 

the year (from 1 to 8760) and ‘h’ is the hour with respect the day (from 1 to 24). Px is the annual 

periodicity and Py the diurnal periodicity for a specific frequency. 

The Fourier series approach is more complex than the regression approach since it contains several 

terms for every parameter, increasing the total number of parameters to be analysed. The 

advantage of this approach is that it achieves a single equation able to predict the thermal energy 

demand all year round since it takes into account the annual periodicity of the different variables. 

However, this advantage was not useful for this project since the heating demand data set available 

was limited to the seasons when only heating demand was required, neglecting the periods when 

both heating and cooling are required. Therefore, it was decided to build the mathematical model 

following the regression approach.   
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 Influencing parameters on the thermal energy demand 

 Most influencing parameters on the actual thermal energy demand 

Building simulations tools are considered to be unreliable at predicting the energy performance of 

buildings [29]. The lack of knowledge of the system modelled (as mentioned in section 3.1.3), such 

as limited information about the buildings´ characteristics, installations [29] and an underestimation 

of the role of the occupant´s behaviour [30], [31], could lead to a wrong estimation of these 

parameters and inaccurate thermal energy predictions.  

Several researches analyse the most influencing parameters on the actual heating. This section 

presents the most relevant parameters according to several authors [29-34]. 

Most influencing building characteristics according to the energy performance of the 

building and heating systems installed 

Ioannou [29] studies the most influential parameters in residential buildings by making a sensitivity 

analysis for building parameters and occupancy. It was found out that the most influencing 

parameters vary with the type of energy label (from class A to class F) and the type of heating 

system installed. Table 1 shows the most influential physical parameters resulting from this study 

excluding the influence of the occupancy behaviour.  

Table 1 Most influencing physical parameters on the actual heating demand 
according to the performance of the dwelling and heating system implemented [29]. 

Type heating system  

Label dwellings  

Radiator heating system Floor heating system 

Class A Windows U-value, windows g-value, wall conductivity 

 

Class F Wall conductivity;  

windows g-value; 

orientation of the building 

wall conductivity; 

floor conductivity; 

windows g-value  

The dwellings of class A showed that the most influencing parameters are independent from the 

heating system installed, being windows U-value, windows g-value and wall conductivity the most 

influencing parameters for both dwelling types. 

For the dwellings of class F, the wall conductivity is the most influencing factor for both heating 

system types. The floor conductivity has a more influencing effect than the windows g-value in the 

cases when floor heating systems are installed due to the importance of the heat flux through the 

floor [29]. For the buildings with radiator heating systems installed, the parameters related with solar 

gains (windows g-value and orientation of the building) are the most influencing parameters after 

the wall conductivity. 

Behavioural influence (called operational characteristics for office buildings)  

When behavioural parameters are introduced by varying the thermostat settings and ventilation 

flow rate, the influence of the physical parameters on the simulated heating demand is reduced 

[29]. As a result, the thermostat settings and the ventilation flow rate become the most influencing 

variables for both type of dwellings. 

Although the study described above dealt with household dwellings, it seems logical to assume that 

the equivalent parameters in office buildings also will have a high influence [33]. In this case, the 

behavioural parameters in dwellings will correspond to the operational characteristics in office 
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buildings (temperature set points and ventilation flow rate), which are also related to the occupancy 

of the building. 

Thermal mass influence 

The influence of the thermal mass of the building on the heating & cooling energy demands is 

highlighted by several researches [32], [34]. The internal thermal mass provided in floors and walls 

absorbs and store internal heat gains. This effect modifies the thermos-physical behaviour of the 

building, reducing indoor air temperature fluctuations and increasing time lag [32], [34]. As a result, 

increasing the thermal mass of the building leads a decrease in peak cooling and heating 

transmission loads and an increase in the time lag. The optimization of the thermal mass can result 

in maximum savings in yearly thermal energy demand of about 17% for cooling and 35% for heating 

[32]. There is a minimum critical amount of thermal mass that a building should contain in order to 

be able to have a potential of energy savings in the range between 90-97% [32]. 

The insulation in walls does not counteract the effect of the thermal mass, but it has an influence. 

Figure 6 shows the transmission load variation with time of day in August, January, and November 

with thermal mass thickness ( Lmas ) of 20 cm and 5 cm for 2 walls with the same insulation value 

(R-value=2.86 m2 K/W). (a) presents the results for wall W1 (outside insulation) and (b) for wall W2 

(inside insulation). When the thermal mass is increased, load fluctuation is damped and the peaks 

are reduced in both cases (insulation placed inside and outside). However, when the insulation is 

placed outside, the increase of the thermal mass provides more damping of load fluctuation and 

smaller peak load than when the insulation is placed inside, leading to higher energy-saving 

potentials [32]. This is due to the fact that by placing the insulation outside, the thermal energy is 

storage in the inside wall, being later dissipated to the inside through the same surface, leading to 

the corresponding beneficial effect in the indoor climate.  
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Figure 6 Transmission load variation with time of day in August, January, and November 
with thermal mass thickness ( Lmas ) of 20 cm and 5 cm; (a) for wall W1 (outside insulation 
R-value=2.86 m2 K/W) and (b) for wall W2 (inside insulation, R-value=2.86 m2 K/W) [32] 
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 Gap between actual and predicted heating demand in buildings 

Large differences between actual and predicted energy performance in buildings are observed, 

ranging from 30% up to 100% [30], [35]–[37]. This difference could be due to different influencing 

parameters in predicted and actual energy demands.  

Majcen studies the influence of several parameters on the actual and predicted heating demands 

by grouping these parameters in 3 different groups: (1) dwelling characteristics, (2) household 

characteristics, (3) occupant behaviour. The dwelling characteristic group includes both building 

and installations (heating & ventilation) characteristics. The household characteristic group is 

referred to parameters such as incomes or number of occupants. While the occupant behaviour is 

related to the way the household operates the house, such as ventilation habits, setting thermostat 

temperature or occupancy profile.  

Figure 7  shows the effect expected on the different parameter group on actual and theoretical 

heating demands, where the thickness of the arrows represent the expected influence magnitude. 

The study is made in The Netherlands where the space heating is mostly done by gas systems, 

therefore more than the 95% of gas consumed is for heating proposes. Therefore, the gas use can 

be translated as heating demand [38]. 

 

 

Figure 7 effects of different parameter groups on actual and theoretical heating demands 
(gas use) [38]. 

The conclusions of this study shows that the theoretical calculations are dominated by the dwelling 

characteristics while in the actual heating demand, the household characteristics and the occupant 

behaviour are the most influencing groups of parameters. This is due to the fact that in the 

theoretical calculations, the occupant behaviour are included as a normalized parameter, 

depending mostly on building and system characteristics (dwelling characteristics) [38]. 

In the present research, the TU Delft buildings are all owned and operated by the university, 

therefore the household characteristic group is not relevant. However, the occupant behaviour 

could have an influence in buildings where the thermostat or heaters can be manipulated. The 

occupant behaviour will be refer to as operating characteristics in the next pages of this report.  
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 Conclusions 

This literature review gave directions to this study with regards to the selection of the prediction 
model, most influencing parameters on actual thermal energy demand, and the gap between actual 
and simulated heating demand in buildings. As a result of this review, the following conclusions are 
drawn: 

Concerning the selection of the prediction model technique and statistical method. 

 The maximum accuracy of a building model is determined by the optimal complexity which is 
defined by the information available. 

The selection of the optimal prediction technique for buildings is determined by the optimal 

complexity level which is dependent on the information available (building & installation 

characteristics, operating characteristics). The more complex is the model (higher number of 

physical equations), the higher the amount of parameters needed. Therefore, a more complex 

model will only be more accurate than a simpler one when all the required parameters are 

known. This limits the complexity of the building model to the information available. 

 The accuracy of the thermal energy demand prediction can be improved by using grey-box or 
black-box models instead of white-models since the first two use a smaller amount of 
parameters in accordance with the limited information available in buildings. 

The information available in buildings is limited, especially in older buildings. Since physical 

models (white-box models) require a large amount of parameters (most of them unknown), it is 

concluded that the use of physical models for the thermal energy prediction is not the optimal 

prediction technique. The accuracy of the output can be improved by using techniques 

depending on a smaller amount of parameters (grey-box or black-box models) which can be 

determined more easily. 

 Multivariate regression approach is selected for this case study due to its simplicity, fast 

calculation and good performance for short term data set. 

For this case study, statistical methods are selected as the optimal approach considering the 

required objectives of simplicity and fast calculation. The regression approach is preferred over 

the Fourier series as the first one is simpler and better for short term data set (seasonal). The 

main challenge of using this technique to build the mathematical model is to make it physical 

meaningful and to reach the required accuracy to control and optimize the heat demand of the 

buildings. 

Regarding the study of the most influencing parameters on actual heating demand. 

 The accuracy and simplicity of the mathematical model will rely on the selection of the most 

influencing parameters on the thermal energy demand. 

 It is important to have a good understanding of the operating characteristics of the building 

(thermostat settings and ventilation flow rates) since their influence on the heating demand is 

higher than the building characteristics (physical parameters) for all performance level 

buildings. 

 A good knowledge of the type of heating systems and the related influencing parameters is aim 

since they may vary the influencing variables (especially in buildings with lower energy 

performance) 

 From all building characteristics parameters, the most influencing one is the U-value of the 

walls. Therefore, it is important to have the exact U-values of walls, while the U-values and g 

values of the windows can be estimated.  

 In buildings with a lower thermal energy performance, the parameters related to solar gains, 

such as windows g-value and orientation of the building, may have a higher influence on the 

heating demand of the building. 
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 The thermal mass effect modifies the thermos-physical behavior of the building (thermal 

inertia), influencing the thermal energy savings, hourly heating demand fluctuations and 

reaction to heat fluxes. 

The increase in the internal thermal mass of the building reduces indoor air temperature 

fluctuations and increases time lag, leading to shaving heating demand peaks and a delayed 

reaction to heat fluxes. 

 The thermal inertia of the building is enhanced by placing the insulation layer outside 

The location of the insulation in walls influences the effect of the thermal mass. In order to 

optimize its beneficial effect on thermal energy savings and damping fluctuations, the insulation 

layer should be placed outside. 

Concerning the study of the gap between actual and predicted heating demand. 

 The most influencing parameters may differ from actual and simulated heating demands, 

leading to large differences between actual and predicted heating demands. 

The simulated heating demand is dominated by the building and installations characteristics, 

while the operating characteristics of the building has almost no influence since these 

parameters are normalized in the theoretical calculations. In contrast, the actual heating 

demand is mostly influenced by the operating characteristics, the building and installations 

characteristics may have less influence.  
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4 Research methodology 
 

This chapter gives an overview of the research methodology followed in this study. The 

methodology has been changed during the research process due to enhanced insights.  

Figure 8 illustrates the flow scheme of the final methodology followed. The continuous arrows 

indicate the path followed in this study. The complete research procedure can be divided in 3 main 

parts: (1) Analysis of the actual case study (chapter 5) and physics based model (chapter 6); (2) 

analysis differences between simulated & actual data and data set selection (chapter 7); and (3) 

statistical models design & validation. 

The initial plan of this master thesis was to build a statistical model based on actual data and 

simulated data (with a physics-based simulator) which would involve only part (3). However, after 

analysing the real case study, it is concluded that some of the actual inputs are wrong estimated, 

and therefore the actual data set is considered incomplete. Therefore, only the data base generated 

by the physic-based model (simulated data) was used for the design of the mathematical model 

(multivariate linear models) and further analysis were needed. This aspect increased the scope of 

this thesis by including parts (1) and (2). These two new parts gave valuable insights which are 

contributing to improvements in IPIN project at the TU Delft District Heating Grid. 

The accuracy of the simulated data was evaluated by studying the accuracy of the physics-

simulator. As a result, several improvements are applied in the model and a validation test is 

performed (chapter 6). From this study, it is concluded that the simulated data are accurate to build 

the mathematical model. 

Based on the knowledge gained on both actual case study and simulator, the actual and simulated 

heating energy demand patterns are compared and the gap between them is studied (chapter 7). 

From this analysis, it is concluded that the simulated data can replace the actual data and that this 

replacement will lead to a mathematical model providing a better energy and comfort performance. 

As a result, the simulated data were used to build the mathematical model. 

The multivariate linear models were built by making correlations of several parameters with the 

corresponding heating demand. The design of the multivariate linear model is an iterative process 

which leads to several models with different parameters and accuracies. Firstly, the parameters to 

be introduced in the model are analysed and selected. The combination of the selected parameters 

are statistically validated by applying a statistical search procedure. The search procedure validates 

the model at each step by analysing the residuals of the data set, and quantifying the significance 

level of both the variables’ coefficients and the total model. Therefore, the accuracy and fitting profile 

of the total model is obtained and analysed. When the accuracy of the model is not enough to be 

implemented in this case study, further improvements are included and a new model is built. The 

process finishes when the predictive accuracy of the model is high enough to apply this model in 

this case study. 

The process of the multivariate linear models design has followed both reasoning methods: (1) 

deductive reasoning (theoryhypothesisobservationconfirmation) and (2) inductive reasoning 

(observationpatternhypothesistheory). The inductive reasoning is used to analyse the 

pattern and relationship between the most influencing parameters, leading to a preselection of 

parameters (see chapter 7). The final selection of parameters is done through deductive reasoning 

by selecting them according to the building’s thermal energy balance principle (see chapters 8 and 

0).  
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Figure 8 Flow scheme master thesis methodology [own illustration]. 
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5 Description and analysis actual case study 
This master thesis analyses the thermal energy behaviour of three buildings at the TU Delft 

Campus. This chapter gives an overview of the case study and presents a description of the 

physical and operational characteristics of the buildings & systems for the three buildings studied. 

The knowledge gained in this chapter is key to analyse the actual data set and determine the 

number of equations to build the multivariate linear regression model.  

 Overview case study 

Most of the buildings at TU Delft campus are connected to the TU Delft District Heating Grid (DHG). 

The DHG is divided in 4 different branches: North 1 (Noord 1), North 2 (Noord 2), South 1 (Zuid 1) 

and South 2 (Zuid 2). The buildings studied in this master thesis corresponds to the buildings being 

tested for the current phase of IPIN (phase 2), which are the ones connected to branch North 2. 

These are 3mE (Faculty of Mechanical, Maritime and Materials Engineering), IO (Industrial Design) 

and TPM (Technology, Policy and Management).  

Figure 33 shows an overview of the different heating distribution stations of branch North 2 and the 

situation of the different buildings analysed ( 3mE in green, IO in yellow and TPM in blue), and the 

Central Heating Plant (CHP). Branch North 2 contains a total of 11 heat distribution stations of 

which 1 is situated in TPM, 2 in IO and 3 in 3mE [1]. For further details regarding the current district 

heating system at TU Delft campus (heating distribution & generation), please refer to 0. 

 

 

Figure 9 Overview heat distribution stations branch North 2 of TU Delft District Heating Grid  
[1]. 
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 Building characteristics 

This section gives an overview of the building characteristics for IO, TPM and 3mE, and draw some 

hypothesis regarding the thermal behaviour for each of these buildings. Table 2 presents the most 

relevant parameters for the three buildings according to the literature review done in section 3.3. 

Other parameters are presented in Appendix 5. These parameters were estimated during the first 

phase of IPIN by doing a building inventory or calibrations with real measurements (see section 

6.2.1 for further details). For the analysis done in this section, it is assumed that these parameters 

corresponds to the reality. 

Table 2 Main building Characteristics of the buildings analysed 

Parameter Units TPM IO 3mE 

Gross floor area m2 12,000 23,300 36,402 

Total indoor air volume m3 20,580 46,972.8 64,213.128 

Specific air volume m3/m2 floor 1.71 2.02 1.76 

Ratio envelop area/gross floor area - 0.175 0.687 1.34 

Specific thermal mass of the building* Kg/m2 floor 600 250 300 

U-value of windows* W/m2 K 3 2.5 2.2 

U-value of roof & wall* W/m2 K 0.25 0.4 0.4 

Ratio windows area/façade area - 0.098 0.236 0.56 

Ratio windows area/floor area - N: 0.016 

E: 0.0008 

S: 0.007 

W: 0.002 

N: 0.023 

E: 0.03 

S: 0.02 

W: 0.03 

NE: 0.05 

SE: 0.12 

SW: 0.05 

NW: 0.12 

*parameters estimated by calibrations (see section 6.2.1 for further details). 

3mE is the oldest of the three buildings, it was built in 1953 and renovated in 2003 [40]. It has an 

architectural design were facades and large windows are predominant. IO is dating from 1973 and 

it was renovated in 2000 [40]. Its shape is more compact and the facades have less windows. TPM 

is the newest and has the most compact shape of the three buildings, it was built in 2001. 

The dates of the buildings indicate the building regulations under which they were built, giving a 

good indication of the envelop properties. Most of the heat is lost through the building envelop 

(roof+windows+walls), therefore its insulation level and envelop to floor area ratio are good 

indicators of the correlation with the outdoor weather conditions. The insulation in walls/roof and 

windows for IO and 3mE are similar, these are estimated to have a U-value of 0.4 and 2.5 W/m2 K, 

respectively. TPM have a higher insulation level in walls but a lower insulation level in windows, 

0.25 and 3 W/m2 K, respectively. However, the percentage of windows in the façade is smaller than 

IO and 3mE, therefore TPM is better insulated than IO and 3mE. Besides that, TPM has the smallest 

envelop to floor area ratio, followed by IO (6 times higher) and 3mE (almost 10 times higher). 

Therefore, according to the envelop insulation and envelop to floor area ratio, it is expected that 

TPM has the lowest correlation with the outdoor weather conditions, followed by IO and 3mE. 
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The solar gains of a building are influenced by the quantity, orientation and properties of the 

windows and thermal energy performance (see section 3.3). The highest windows to façade area 

ratio is in 3mE, therefore it is expected to be the building with the highest solar radiation influence, 

followed by IO and TPM. The penetration of the solar radiation inside the building is produced during 

the morning (East facade) and afternoon (West facade) since the sun has a certain angle with the 

vertical plane. According to the windows to floor area ratio, during the morning 3mE is the building 

receiving the highest solar radiation, followed by IO. During the afternoon, both buildings may have 

similar solar gains. The solar gains in TPM are expected to be negligible. According to the literature 

review, it is expected a higher influence of the solar gains for the buildings with lower thermal energy 

performance. In this case, the buildings with lower expected energy performance are also the 

buildings with the highest windows area ratio. Therefore, the previous classification is in line with 

this theory. 

Internal thermal mass provided in floors and interior walls can absorb and store penetrating solar 

radiation and internally generated heat. Therefore, for building with higher thermal mass, this effect 

will reduce the air temperature elevation during daytime and decrease the heating demand peaks. 

Besides that, the occurrence of peak temperatures and heating demand are expected to be delayed 

for several hours (see section 3.3 for further details). This effect is expected to be more pronounced 

in TPM (600Kg/m2) than in 3mE and IO (300 and 250 Kg/m2, respectively). However, the solar 

radiation and internal heat gain will promote the thermal mass effect. Therefore, it is expected a 

higher thermal mass influence effect in 3mE than in IO. 
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 Thermal systems and operating characteristics 

This section describes the thermal systems, temperature controller and different operating 
modes for each of the buildings studied. Further details regarding the installations, set points and 
use of the building can be found in Appendix 5. 

 Cooling and heating systems 

The heat needed to acclimatize IO and TPM is completely supplied by TU Delft heating network 

and the cooling is through electrical air conditioning systems [40]. TPM has one heating distribution 

unit, while IO has two units (see Figure 33 in section 5.1). 

3mE is partly heated and cooled an underground heat and cold storage system with are also 

connected to heat pumps (aquifer system) [40]. The remaining heating demand is supplied by the 

TU Delft heating network and the remaining cooling demand by an air conditioning system. 3mE 

has 8 heating distribution units (see Figure 33 in section 5.1). 

Influence of cooling on heating demand 

During moderated weather months in which both heating and cooling are present during the same 

day, the cooling mode will influence the heating demand. This combination of heating and cooling 

may have also an influence in the thermos-dynamic behaviour of the wall [32]. Therefore, this 

phenomena may vary the most influencing parameters on the heating demand for winter and 

autumn/sprint or their correlation coefficients between them. If this hypothesis is correct, the 

accuracy of the mathematical model will rise by building one equation for winter (only heating being 

used) and one equation for autumn/sprint (heating and cooling being used). 

 Temperature control system 

The influence of the heating system on the heating demand will depend on the temperature control 

system installed in each building. This section analyses the type of operating systems running in 

the three buildings analysed. It is distinguished two types of operating systems: (1) operating with 

indoor air temperature controller (TPM) and (2) operating without indoor air temperature controller 

(IO & 3Me). Independent on the operating system installed in the building, the heaters can be 

manipulated by the people present in the building by opening and closing the valves in the heaters 

in the three buildings. 

1. Buildings operated with indoor air temperature controller 

The operating system of TPM has an indoor air temperature controller. Therefore, the thermal 

energy demanded by the building will corresponds to the required energy to reach the required 

indoor air temperature (defined by the indoor air temperature set point). In this way, the heaters 

turn on (Qdemand>0) when the indoor air temperature is lower than the indoor air temperature set 

point. When the indoor air temperature is higher than the indoor air temperature set point, the 

heaters turn off and the cooling air handling units turn on (Qdemand<0).  

Temperature control system influencing the heating demand 

Since the heating demand is regulated by the indoor air temperature, it is expected that the heating 

demand will have a strong correlation with the indoor air temperature and the dynamic variables 

influencing the indoor air temperature profile during day time. These are: internal heat loads, solar 

gains, infiltrations, mechanical ventilation and indoor surface temperature (influenced by the 

thermal mass in floors and indoor walls).  

2. Buildings operated without indoor air temperature controller 

The buildings operated without indoor air temperature controller are IO and 3mE. Therefore, the 

heating demand is dependent on the controllers installed in the supply side (heating distribution 

units and/or central heating plant) instead of the demand side (building). The building analysed 

have 2 types of supply systems, TU Delft heating network and the aquifer system. The heat supplied 
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to IO is only delivered by TU Delft heating network, while the heat at 3mE is supplied by both TU 

Delft heating network and the aquifer system.  

Temperature control system influencing the heating demand 

The heat supplied by the TU Delft heating network is limited by the supply temperature in the current 

central heating plant which is controlled by the heating curve, dependent on the outdoor 

temperature (see 0 for further details). Therefore, it is expected that the actual heating demand of 

the building presents a strong dependency on the outdoor temperature. 

Since these indoor air temperature control system does not interact with the building (only with the 

supply systems), one may think that there is no correlation between the heating demand and the 

indoor air temperature. However, the heaters can be manipulated by the users (users act as 

operating control system) of the building which may lead to a correlation with the indoor air 

temperature and the dynamic variables influencing the indoor air temperature. This correlation is 

expected to be irregular, and thus softer than in the buildings with indoor air temperature controller. 

 Operating modes 

The TU Delft buildings present 3 different operating mode: (1) weekdays during opening hours, (2) 

weekends during opening hours, (3) closing hours. During the different operating modes, the 

temperature set point, internal heat gain and ventilation flow rate vary. The temperature set points 

and ventilation only vary during opening and closing hours (see Table 3), while the internal heat 

gain also varies from weekdays and weekends (see Figure 3). Since these parameters are unknown 

for the real data set, they were estimated during the first phase of IPIN by performing calibrations 

with real measurements (see section 6.2.1 for further details). For the analysis done in this section, 

it is assumed that these parameters corresponds to the reality. 

A description of the different operating modes is given below.  

1. Weekdays during opening hours  

a. The heaters are turned on and the people in the buildings are able to turn them off. The 

temperature set point is only applicable for TPM where the indoor air temperature is 

controlled in the range between 21 and 24oC. For IO and 3mE, the heat delivered to 

the building is not controlled by the indoor air temperature, therefore the temperature 

set points are not applicable in these cases.  

b. The ventilation during opening hours is higher than during closing hours. The 

infiltrations are 0 during closing hour, while during opening hours it is assumed 0.3, 0.1 

and 0 for TPM, IO and 3mE. 

c. The internal heat gain profile is similar for the three buildings, increasing gradually 

during the morning, reaching its maximum point at midday, and decreasing gradually 

in the afternoon. The absolute value of the estimated specific internal heat gain varies 

per building (W/m3 air volume), being 3mE the one with the highest specific internal 

heat gain and IO with the lowest (see Figure 3).   

2. Weekends during opening hours. The parameters related to the temperature, ventilation and 

infiltrations are the same than during weekdays. The internal heat gain during weekends is 

estimated to be half of the estimated internal heat gain during weekdays. The internal heat gain 

profile is considered to be the same during weekends and weekdays. 

3. During closing hours (weekdays and weekends), the heaters are normally turned off and they 

only turn on when the indoor air temperature is below 17oC. This temperature control is installed 

in the three buildings. 
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Table 3 Parameters related with the different operating modes during opening and closing 
hours. 

Parameters Units TPM IO 3mE 

  Opening Closing Opening Closing Opening Closing 

Schedule* PM 7-22 22-7 7-22 22-7 7-22 22-7 

T*Set point oC 21-24oC 15-28oC 20-24oC 17-28oC 21-24oC 15-28oC 

Ventilation*  [air changes/hour] 3 1.5 2 0.5 2 1.5 

*parameters estimated through calibrations (see section 6.2.1 for further details). 

 

 

Figure 10 Estimated specific internal heat gain profile for IO, TPM and 3Me during 1 operating 
week (from Monday till Sunday). 

Operating modes interfering in the correlation of variables 

The different operating modes interfere in the correlation with the different variables, decreasing 

the accuracy of the mathematical model. For example, when the set point temperature is 17oC and 

the outdoor temperature is 17oC, the building may not require heating, however if the temperature 

set point is 25oC the building is releasing heat to the outdoor environment, therefore heat may be 

required. This phenomena leads to a different linear correlation of the heating demand with the 

indoor air temperature (see section 6.3.2). The same can be applied for the internal heat gain and 

ventilation. 

It is concluded that in order to obtain a better linear correlation between the different variables and 

the heating demand, it will be necessary to make a different equation for each operating mode. This 

will lead to a better fitting of the mathematical model. 
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 Conclusions 

This chapter described and analysed the physical and operational characteristics of the buildings 

& systems for the three buildings studied at TU Delft campus. This analysis leads to the following 

conclusions. 

Concerning the number of equations necessary to build the multivariate linear regression 

model. 

 It may be necessary to build a different multivariable model for moderated weather months 
(heating and cooling operating during the same day) and cold months (only heating). 

The thermo-dynamic behaviour of the wall may be affected when both heating and cooling are 
operating during the same day. This effect may vary the most influencing variables or their 
correlation coefficients of the heating demand during winter and moderated seasons (autumn 
and sprint). 

 The accuracy of the mathematical model will be increased by defining one equation for each 
operating mode. 

The different operating modes affect the correlation between the different variables and the 
heating demand, decreasing the accuracy of the multivariable model. Therefore, in order to 
obtain an accurate predictive model, it is necessary to build a different multivariable equation 
for each operating mode: (1) weekdays during opening hours, (2) weekends during opening 
hours and (3) closing hours. 

Regarding the selection of the data set to build the multivariate linear regression model. 

 The data set will be selected according to the operating mode and type of months for which the 
equation is being built. 

 In order to optimize the thermal energy and comfort of a building, the mathematical model 
should be built based on an actual heating demand data set of a building with indoor air 
temperature controller. 

The buildings with indoor air temperature controller supply heat only when the building need it, 
decreasing the heating demand of the building and increasing the indoor comfort. Therefore, 
only the data survey of TPM could be used in this case study. 

 The existing data set could be incomplete. If some of the missing parameters are necessary to 
build the mathematical model, they should be replaced by estimated parameters. 

In order to use the data survey of TPM, the parameters introduced in the mathematical model 

should be known. The unknown parameters are estimated by calibrating the simulated heating 

demand with the actual heating demand (see section 6.2.1). The substitution of missing 

parameters by estimated parameters in the actual data set could be acceptable when the 

calibration is accurate enough.  Chapter 7 evaluates the accuracy of the calibration process.  
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6 Description and validation physics-based 
simulator 

The aim of this chapter is to analyse the accuracy of the physics-based simulator used to create 
the simulated data set. Therefore, this study is key to know whether the simulated data sets are 
accurate to build the mathematical model.  

With the purpose mentioned above, the first section describes the thermal energy principle of the 
model and analyses the main assumptions. The second and third section evaluate the performance 
of the thermal energy balance according to the Dutch validation energy test ISSO-54 and a thermal 
sensitivity analysis. 

Previous chapter indicated some of the parameters of the buildings and systems estimated through 
a calibration procedure before the start of this thesis. Section 6.2.1 explains the calibration process 
and the main parameters evaluated. The accuracy of the calibrations and the estimated parameters 
is evaluated in chapter 0.   

 Description simulator 

 Overview and analysis of main assumptions 

LEA (Low Energy Architecture) is a simulation program developed by Deerns that calculates the 

hourly energy needed for heating, cooling, humidification, lighting, ventilation and equipment. The 

thermal energy is predicted by calculating the energy demand required to reach a corresponding 

indoor air temperature set point(s) every time step. Therefore, LEA simulates a building operated 

with an indoor air temperature controller. 

LEA simulates the heating demand of the building by modelling a single-zone (instead of multi-

zone). Thus, the entire building is represented by a single temperature node, assuming that all the 

different rooms in the building have the same use function and that in all rooms the same climate 

prevails. Several studies confirm that modelling the building as multi-zone and single-zone does 

not produce large differences between the simulated results [29]. Therefore, this assumption is 

considered to be a good approximation of the real case study. 

Figure 11 illustrates the thermal model scheme of LEA with the different physical phenomena 

considered.  
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The energy demand for a certain time interval is predicted by calculating the heat transmission 

through the construction (from floor to ground, facades and roof), mechanical ventilation, 

infiltrations, solar heat gains, internal heat gains (people, lighting and equipment) and heat 

accumulation in the thermal mass (indoors). The transmission losses due to thermal bridges are 

neglected. In more recent buildings, the proportion of heat loss due to thermal bridging is typically 

10–15%. This may rise to 30% in better insulated low-energy buildings when insulation and 

construction details are not properly realized [41]. Therefore, this assumption may have some 

effects underestimating the simulated heating demand calculations. Section 4.3 of Appendix 4 

shows how the thermal bridges can be calculated according to ISO 2007 [42]. 

The thermal mass of a building defines its thermal inertia which influences the hourly and yearly 

thermal demand profile. LEA only absorbs heat in the indoor thermal mass. This means that the 

solar radiation absorbed by the wall outer surface is neglected. In principle this assumption seems 

to be a good approximation of reality for buildings with wall insulation since a large percentage of 

the solar radiation stored in the wall outer surface is ultimately dissipated to outside through the 

same surface [32]. Therefore, the thermal inertia influencing the indoor climate corresponds to the 

indoor thermal mass which is located in indoor floors and ceilings. LEA accumulates the total mass 

of the building in the floor. The heat accumulated in the thermal mass is transmitted through 

convection along the total area of indoor surfaces which are in contact with the indoor air (floors 

and ceilings). Further details regarding the heat accumulation in LEA can be found in section 2.2 of 

Appendix 2. 

The model is built by combining static and dynamic modelling. All the heat balances corresponding 

to the room model are calculated considering steady state conditions (static modelling), while the 

energy balances corresponding to the floor model (heat accumulation) are calculated in an 

unsteady state (dynamic modelling). The dynamic modelling of the thermal mass represent the 

Q facades 

Q thermal mass 

Figure 11 Thermal model scheme of LEA with the different physical phenomena considered 
[own illustration]   
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thermos-dynamic behaviour of the wall by using the method finite-difference approximations for 

one-dimensional unsteady conduction. The accuracy of this method is dependent on the Fourier 

number defined. When the Fourier number is optimized, this method gives a good approximation 

of the cyclic temperature variations at the indoor thermal mass layer [25]. Refer to Appendix 2 for 

further details regarding to the room and floor model. 

Figure 12 shows the resistance network corresponding to the thermal model scheme of LEA. The 

convective heat transfer, radiation heat transfer, conduction heat transfer, accumulation, ventilation 

and air movements are translated into the symbols indicated in the legend. 

 

Figure 12 Resistance network of the thermal model scheme of LEA [own illustration]. 

 

 Thermal energy balance principle 

The building heating demand depends on the amount of heat transferred through the building 

envelop and accumulated in the building. Therefore, these heat fluxes can be divided in 5 main 
categories: internal heat gains (𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙), solar heat gains (𝑄𝑠𝑜𝑙𝑎𝑟), envelop losses/gains (𝑄𝑔𝑟𝑜𝑢𝑛𝑑 +

𝑄𝑒𝑛𝑣𝑒𝑙𝑜𝑝), ventilation (𝑄𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛) and infiltrations (𝑄𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑠). The indoor thermal mass 

accumulates the heat absorbed by the solar radiation and internal heat gains. This heat flux 

(𝑄𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑚𝑎𝑠𝑠) can be assumed to be transferred only with the indoor climate through the total 

surface of the indoor thermal mass. The thermal energy balance in LEA is described according to 

the following equation:  

𝑸𝒅𝒆𝒎𝒂𝒏𝒅 = 𝑸𝒈𝒓𝒐𝒖𝒏𝒅 + 𝑸𝒆𝒏𝒗𝒆𝒍𝒐𝒑 + 𝑸𝒊𝒏𝒇𝒊𝒍𝒕𝒓𝒂𝒕𝒊𝒐𝒏𝒔 + 𝑸𝒗𝒆𝒏𝒕𝒊𝒍𝒂𝒕𝒊𝒐𝒏 + 𝑸𝒕𝒉𝒆𝒓𝒎𝒂𝒍 𝒎𝒂𝒔𝒔 + 𝑸𝒔𝒐𝒍𝒂𝒓 +

𝑸𝒊𝒏𝒕𝒆𝒓𝒏𝒂𝒍   

(1) 
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Where, 𝑄𝑔𝑟𝑜𝑢𝑛𝑑  and 𝑄𝑒𝑛𝑣𝑒𝑙𝑜𝑝 are the heat transmission through the floor and the building envelop 

(walls, windows and roof), respectively. 𝑄𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑚𝑎𝑠𝑠 corresponds to the heat transmitted through 

the total area of indoor surfaces in contact with the indoor air, which simulates the thermos-dynamic 

behaviour of the indoor surface (thermal capacitance). 𝑄𝑠𝑜𝑙𝑎𝑟 and 𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 are the solar heat gains 

and internal heat gains (people, lighting and equipment), respectively, added to the indoor climate 
through radiation and convection. 𝑄𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑠 and 𝑄𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛 are the heat transmitted due to 

infiltrations and ventilations, respectively.  Table 4 gives a physical description of the above 

mentioned heat fluxes. For further details regarding the energy balances and the heat fluxes, please 

refer to Appendix 2. 

Table 4 Description of the heat fluxes present in the thermal energy balance of LEA  

Heat flux Physical description Parameters definition 

Qground 𝑄𝑔𝑟𝑜𝑢𝑛𝑑 = 𝑈𝑓𝑙𝑜𝑜𝑟 .  𝐴𝑓𝑙𝑜𝑜𝑟 . (𝑇𝑔𝑟𝑜𝑢𝑛𝑑 − 𝑇𝑖)  𝐴𝑓𝑙𝑜𝑜𝑟 : area ground floor (building footprint) 

𝑈𝑓𝑙𝑜𝑜𝑟: heat transfer coefficient of floor 

𝑇𝑔𝑟𝑜𝑢𝑛𝑑 : surface temperature of the ground 

(soil) 

𝑇𝑖 : indoor air temperature 

Qenvelop 𝑄𝑒𝑛𝑣𝑒𝑙𝑜𝑝 = ∑ 𝑈𝑒𝑛𝑣𝑒𝑙𝑜𝑝
𝑗

. 𝐴𝑒𝑛𝑣𝑒𝑙𝑜𝑝
𝑗

. (𝑇𝑜 − 𝑇𝑖)

𝑖

 j: for each façade/roof of orientation 

𝑈𝑒𝑛𝑣𝑒𝑙𝑜𝑝
𝑗

 heat transfer coefficient of envelop 

𝐴𝑒𝑛𝑣𝑒𝑙𝑜𝑝
𝑗

 the surface of the facade/roof 

𝑇𝑜 : outdoor air temperature 

Qinfiltrations 𝑄𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = (𝑚𝑜𝑝𝑒𝑛𝑖𝑛𝑔𝑠

+ 𝑚𝑐𝑟𝑎𝑐𝑘𝑠). 𝐶𝑝𝑎𝑖𝑟 (𝑇o − 𝑇i ) 

 

𝑚𝑐𝑟𝑎𝑐𝑘𝑠 = 𝑉𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 ∙ 0.15 ∙ (
𝑉𝑤𝑖𝑛𝑑

2

𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
2 )

2/3

 

𝑚𝑜𝑝𝑒𝑛𝑖𝑛𝑔𝑠 = �̇�𝑜𝑝𝑒𝑛𝑖𝑛𝑔𝑠.. 𝜌𝑎𝑖𝑟 

𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒: 5m/s 

𝑉𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔: volume of the building 

�̇�𝑜𝑝𝑒𝑛𝑖𝑛𝑔𝑠: volume flow rate (m3/s), hourly 

dependent on the weekly and weekend 

schedule 

𝜌𝑎𝑖𝑟: air density 

Qventilations 𝑄𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑚𝑣𝑒𝑛𝑡.. 𝐶𝑝𝑎𝑖𝑟 (𝑇out AHU − 𝑇i ) Cpair : heating capacity of air (J/kg.K) 

𝑚𝑣𝑒𝑛𝑡. : mass flow rate of the ventilation air 

(kg/s). 

𝑇out AHU: Temperature of the ventilation air 

coming out of the air handling unit (AHU). 

Qthermal mass 𝑄𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑚𝑎𝑠𝑠 = 𝑖 .  𝐴𝑖𝑛𝑑𝑜𝑜𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠 . (𝑇𝑠
𝑡 − 𝑇𝑖)  𝐴𝑖𝑛𝑑𝑜𝑜𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠: total area of indoor surfaces 

in contact with the indoor air. 

i : indoor combined heat transfer 

coefficients for convection and radiation 

Ts
t indoor surface temperature 
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Qsolar 𝑄𝑠𝑜𝑙𝑎𝑟 = 𝑄𝑠𝑜𝑙 𝑑𝑖𝑟𝑒𝑐𝑡 + 𝑄𝑠𝑜𝑙 𝑑𝑖𝑓. + 𝑄𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑒  The solar radiation entering in the building 

is calculated from the annual and daily solar 

angle. The diffuse and direct solar radiation 

are calculated from the global horizontal 

solar radiation according to monthly 

average of the reference year.  

Qinternal 𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑛𝑝𝑒𝑜𝑝𝑙𝑒 . 𝑄𝑏𝑜𝑑𝑦 + 𝐴𝑐𝑒𝑖𝑙𝑖𝑛𝑔𝑠 . 𝑄𝑙𝑖𝑔ℎ𝑡

+ 𝐴𝑓𝑙𝑜𝑜𝑟 . 𝑄𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 
npeople is the number of people 

Aceilings : total area of all the ceilings 

Afloor : total area of the floor 

Qbody , 𝑄𝑙𝑖𝑔ℎ𝑡  and 𝑄𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 corresponds to 

the heat gain per person, light bulb and 

equipment unit, respectively. 

 Calibration parameters and validation of the simulator 

The first part of this section describes the calibration procedure to estimate the building and system 

parameters before the start of this thesis. The second part explains the validation of LEA and 

improvements done during this thesis.  

 Calibration parameters LEA with actual heating demand 

During the first phase of IPIN, the physical characteristics of the building & systems, and use & 
operation of the building were obtained for each of the 20 buildings involved in IPIN project. For 
each building, around 120 parameters were first estimated by making an inventory, then some of 
these parameters were calibrated by comparing the simulated heating demand with the actual 
heating demand (measurements taken during 2015/2016). This calibration was performed before 
the start of the thesis. 

Figure 12 illustrates the flow scheme of the calibration activity which consists in an iterative process. 
At every time step, the value of one parameter was changed, a new simulation was run and a new 
comparison between the simulated and actual heating demand was done. This process continued 
until a reasonable fitting of the simulated data with the actual data was reached. During this task, 
the following parameters were varied between a logical ranges of values: 

 Physical characteristics of buildings design & systems:  

1. Insulations values (roof, walls, floors and windows);  

2. coefficient of solar radiation through windows (ZTA); 

3. heat recovery efficiency of the HVACs. 

 Use & Operation: 

4. Opening hours; 

5. internal heat gains; 

6. ventilation flow rate during day and night. 

7. temperature set points; 

8. infiltrations; 

The main variables changed were the ones related to the use & operation of the building by 
changing the opening time, internal heat gains and ventilation during the night time. The opening 
hours were calibrated by matching the start and the end of the heating demand; the ventilation flow 
rate during night was varied to define the minimum heating ventilation capacity; and the internal 
heat load to match the heating demand drop during day time. 
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For some buildings, it was difficult to reach a good fitting during the day, even when the heating 
load was decreased to 0 W/m2. In these cases, reasonable assumptions of the previous parameters 
were made and the following parameters were changed: ventilation flow rate during the day, HVACs 
heating recovery efficiency and the coefficient of solar radiation entering in the room through the 
glass (ZTA). If the match between actual and simulated data was still not good enough, then the 
thermal insulation and the temperature set points were changed. 

 

 

The parameters calibrated has an interaction with several dynamic variables affecting the simulated 

heating demand and creating a knock-on effect on the other calibrated parameters. This means 

that a wrong estimation on one of these parameters will have consequences downstream, leading 

to a wrong estimation of the next parameter. Therefore, in order to complete successfully this task, 

the actual and simulated data need to be comparable. Thus, the physics-based simulator should 

be a good representation of the real case study in order to obtain output data comparable with the 

actual data. Chapter 0 analyses whether the actual and simulated data are comparable, and 

therefore if the calibration of the parameters was done accurately. 

Due to the mismatch between the simulated and actual data in some buildings during the calibration 

procedure, there were doubts about the accuracy of the thermal energy balance of the physics-

based model, therefore a further evaluation of the physics-based simulator was done. Next section 

explains the improvements done in the physics-based model and the validation performed.  

  

Figure 13 Validation procedure of buildings’ inputs in order to use physic-based model as 
energy predictor [own illustration] 

Physical 
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Use & Operation 

(Estimated) 

Weather 

(Historical) 

Actual demand Simulated demand 

Physics-based 
model 

Calibration process 



6. Description and Validation Physics-based simulator 

 

 

37 

 Energy Diagnose and improvements 

The performance of LEA was officially validated in the past, however during IPIN some minor 
changes were done to adapt the software to its new function. It was not expected that these minor 
changes would have an effect on the thermal energy performance of LEA. Nevertheless, the 
mismatch observed between the simulated and actual data was an indication that these data set 
were not comparable. In order to rule out that the source of this mismatch was a low performance 
of LEA, during this master thesis a new validation to the software was done.  

The performance of the thermal energy balance of the version LEA.exe was analysed according to 
the Dutch validation energy test ISSO-54: ‘Energy Diagnose Reference’ [43]. The heating demand 
supplied by the radiators is analysed by applying the tests from A.1.1.01 until A.1.1.16. These tests 
evaluate the annual heating demand by varying the U-values, thermal mass, opening hours, natural 
ventilation and internal heat gains (people, lighting, appliances and solar). Appendix 3 gives a 
detailed explanation about the procedure followed to perform this test in LEA and the results 
obtained in each of the tests. 

The annual heating demand in all the tests performed were within the bandwidth of the reference 

values. Therefore, it was concluded that the heat balance used in the calculation method of LEA.exe 

makes a good estimation of the annual heating demand. However, this test does not analyse the 

hourly thermal energy demand of the building, therefore the hourly fluctuation of the heating 

demand was not evaluated. This means that a low prediction of heating demand during summer 

could compensate the high heating demand prediction during winter, leading to a good prediction 

of the annual heating demand. 

A good accuracy for the hourly heating demand is key for the correct performance of the model 
predictive control, and therefore the smart thermal grid. Thus, a thermal analysis of LEA is done by 
performing a sensitivity analysis and in depth evaluation of the results of IO. This analysis gives 
good indications about if the hourly heating demand responds correctly to the input changes. 
Section 6.3 discusses the main observations during the sensitivity analysis and Appendix 6 
presents further results. Besides this validation, some improvements are done in the inputs used 
for the simulations. Refer to Appendix 4 for further details.  
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 Thermal analysis simulator 

This sensitivity analysis studies the influence of the thermal mass and insulation level on the hourly 

heating demand profile and the correlation with the outdoor temperature. The thermal mass and 

the insulation of the facades are the selected parameters to perform this analysis due to their high 

influence on the hourly heating demand. The effect of these two parameters is studied for IO by 

varying the thermal mass of the building and the insulation of the facades (only walls part) and roof. 

This effect is studied during winter period, when only heating is required. 

 Analysis of the hourly heating demand 

Figure 14 presents the simulated hourly heating demand profile for IO during the last week of 

November 2015 and the first two weeks of December 2015. Both graphs show the results when the 

R-values of both walls and roof are 1 and 5, respectively. Graph above shows the results for IO 

with a thermal mass of 600 kg/m2, while graph below for a thermal mass of 250 kg/m2. 

In both cases (graphs above and below), the hourly heating demand presents a higher value for a 

low insulation level than for a high insulation level. This difference is accentuated after midday, 

indicating that a higher percentage of the heat added to the building during the morning (through 

the heaters and the internal heat gains) stays in the building with higher insulation level. As a result, 

the heating demand after midday drops faster for a building with high insulation level than for a 

building with low insulation level. 

When the thermal mass is higher (graph above), the heating demand peaks increase before midday 

and decrease after midday due to the thermal mass effect (thermal storage capacity). A building 

with higher thermal mass has more thermal storage capacity, therefore more energy is required to 

reach the same surface temperature during heating hours (before midday) than a building with 

lower thermal mass. Since the heat is exchanged between the indoor surfaces and the indoor air, 

a building with a higher thermal mass will take more time to reach the indoor air temperature set 

point than a building with lower thermal mass. After the temperature set point is reached, the heat 

stored in the thermal mass is released to the indoor environment when the indoor air temperature 

decreases, reducing the heating demand. Therefore, the higher the thermal storage capacity 

Figure 14 Simulated hourly heating demand profile for IO with façades and roof insulation R-
value=1 W/(m2K) and R-value=5 W/(m2K); (above) for a thermal mass of 600 kg/m2 and (below) 
for a thermal mass of 250 kg/m2. Weather data from 21st November – 11th December 2015. 
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(thermal mass), the less heating demand is required after reaching the indoor air temperature set 

point. 

It is important to mention that LEA has two different functions, one for heavy buildings (thermal 

mass > 100 kg/m2) and another for light buildings (thermal mass  100 kg/m2). Both cases studied 

in this analysis (600 and 250 kg/m2) are considered heavy buildings, and therefore modelled in LEA 

as heavy buildings. The differences observed will be more marked when a building with thermal 

mass lower than 100 kg/m2 is simulated. 

 Linear correlation analysis hourly heating demand versus outdoor temperature 

Figure 16.a and Figure 16.b present the scatterplot for the hourly heating demand of IO versus the 

outdoor temperature when IO is simulated with a thermal mass of 600 kg/m2 and 250 kg/m2, 

respectively. Graphs above shows the relationship for both high and low insulations levels; graphs 

in the middle for a low insulation level (R-value 1 W/(m2K)); and graphs below for a higher insulation 

level (R-value=5 W/(m2K)). 

 

For all cases, it is observed two different well defined cloud of dots which corresponds to the two 

different operating modes (during day and night). The indoor air temperature set point and the 

ventilation flow rate are lower during night than during day, leading to less heat required for the 

same outdoor temperature. This indicates that the different operating modes affects the linear 

relationship of the heating demand with the influencing variables (eg. outdoor temperature, solar 

radiation, etc.). Therefore, it is very important to build a different mathematical model for each 

operating mode. 

The dispersion of the cloud indicates the linear correlation of the Y-axis with the parameter in the 

X-axis. In this case, the higher is the dispersion of dots in the cloud, the weaker is the linear 

correlation with the outdoor temperature and the higher is the influence with other parameters (eg. 

Figure 16.a Influence of the outdoor 
temperature on the heating demand for IO with 
a thermal mass of 600 kg/m2; (above) façades 
and roof insulation R-value=1 W/(m2K) and R-
value=5 W/(m2K), (middle) R-value=1 W/(m2K) 
and (below) R-value=5 W/(m2K). Weather data 
from 5th October 2015 - 14th January 2016. 

Figure 16.b Influence of the outdoor 
temperature on the heating demand for IO 
with a thermal mass of 250 kg/m2; (above) 
façade insulation R-value=1 W/(m2K) and R-
value=5 W/(m2K), (middle) R-value=1 W/(m2K) 
and (below) R-value=5 W/(m2K). Weather data 
from 5th October 2015 - 14th January 2016. 



6. Description and Validation Physics-based simulator 

 

 

40 

internal heat gains, solar gains, etc). The clouds of dots in Figure 16.a and Figure 16.b show a 

higher dispersion for a lower thermal mass than for a higher thermal mass building. This indicates 

that the heating demand dependency with the outdoor temperature is stronger for a heavier building 

than for a lighter building. This is due to the fact that a heavier building has a higher thermal inertia 

which has a damping effect on the heating demand fluctuations, leading to a lower influence of the 

other factors interfering in the heating demand (internal heat gains and solar gains), and vice versa.  

The slope of the cloud of points corresponds to the heat losses with the outdoor environment 

(building envelop and ventilation losses) [44]. The higher the slope, the more heat losses. Figure 

16.a and Figure 16.b shows that the slope increases with a lower insulation level, indicating a higher 

heating demand for the same outdoor temperature. This slope difference is more marked at a lower 

thermal mass, meaning that the insulation has higher influences in buildings with lower thermal 

mass. This is because the heat stored in the building acts as a buffer, damping the heating demand 

fluctuations. 

The hourly heating demand fluctuation and its correlation with the outdoor temperature were as 

expected according to the parameters varied. Therefore, it is concluded that the heat balance of 

LEA.exe gives accurate simulated data that can be used for building the mathematical predictive 

model.  
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 Conclusions 

This chapter analysed the accuracy of the simulator and simulated data sets. With this purpose, the 
main assumptions of the simulator are analysed and the performance of the thermal energy balance 
is validated. From this study, the following conclusions are drawn. 

Regarding the model assumptions. 

 LEA simulates buildings operated with an indoor air temperature controller (thermostat). 

 The building is simulated as a single-zone. The simulated results obtained with a multi-zone 
and single-zone model are similar [29]. 

 The transmission losses due to thermal bridges are neglected. This assumption may have 
some effects underestimating the simulated heating demand calculations [41]. 

 LEA only absorbs heat in the indoor thermal mass (not in the outdoor wall layer). This 
assumption approximates good a building with wall insulations where the heat stored in the wall 
outer surface is ultimately dissipated to outside through the same surface [32]. 

 The thermo-dynamic behaviour of the wall is simulated with dynamic model by using the 
method finite-difference approximations for one-dimensional unsteady conduction. This method 
gives a good approximation of the cyclic temperature variations at the indoor thermal mass 
layer when the Fourier number is optimized [25]. 

Concerning the accuracy of the physics-based model. 

 According to the validation energy test (ISSO-54 [43]) and the thermal analysis, it is concluded 
that LEA makes a good estimation of both hourly and annual heating demand.  

Regarding the selection of the data set to build the multivariate linear regression model. 

 It is assumed that LEA gives accurate simulated data that can be used for building the 
mathematical predictive model. 

 Further analysis needs to be done in order to evaluate whether the simulated data are a good 
replacement of actual data. This study is presented in chapter 0.  
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7 Comparison actual case study and 
simulator 

A gap between the actual and simulated heating demand in the buildings was observed. Previous 

chapter analysed whether the cause of this mismatch could be due to the lack of accuracy of the 

simulator. After a detailed evaluation of the thermal balances and the energy performance via 

validation energy tests, it was concluded that LEA gives a good estimation of the hourly and annual 

heating demand. Therefore, further research is done to search the source of the mismatch between 

actual and simulated data. This chapter explains this gap by analysing the differences between the 

actual case study and the simulator. 

The aim of this chapter is to study the causes of the mismatch between actual and simulated data, 

and analyse their consequences on the data set choice for building the mathematical model. With 

this purpose, the most influencing parameters on actual and simulated data are analysed and 

compared via a qualitative analysis. Based on the result of this study, the calibrations performed 

previous to this thesis are evaluated in order to determine whether the actual data set is suitable 

for building the multivariate linear regression analysis. In addition, this analysis leads to a guideline 

for evaluating the calibrations and recommend a faster and more accurate calibration procedure.  

 Mismatch between actual and simulated data 

This section presents the mismatch between actual and simulated data observed at the start of this 

thesis. Figure 17 shows the measured and simulated heating demand profile for the three buildings 

for a representative week. The simulated heating demand is calculated by LEA. The heating 

demand is expressed in absolute units. Therefore, 3mE presents the highest heating demand while 

in TPM the lowest as 3mE is the building with the highest volume of air and TPM with the lowest 

volume of air. 

 

Figure 17 Measured & simulated hourly heating demand profile for the week 12th – 18th October 2015 
for IO, TPM and 3Me, respectively. 
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For IO and 3mE, the measured data do not show a constant decrease of the heating demand during 
midday and the hourly pattern of both buildings is very similar during weekdays. These are 
indications that the heat supplied to both buildings is controlled by the same system (supply side: 
central heating plant by the heating curve), instead of being controlled by the demand side 
(building). In contrast, the measured data for TPM show a different pattern that the measured data 
in IO and 3mE, and the profile matches very well with the simulated data. These observations 
suggest that the heat supplied to TPM is controlled by the building. 

Next sections study and discusses with details the causes and consequences of this mismatch 
between simulated and measured data. 

 Analysis gap between actual and simulated data 

The gap between actual and simulated data could be due to the fact that the most influencing 

parameters differ from actual and simulated data as different variables interact in each case. This 

section presents a qualitative analysis of the most influencing dynamic parameters on simulated 

and actual data.  

This study results in a qualitative matrix which ranks the influence of the dynamic parameter for 

each building by studying the interaction of the different key indicators. The key indicators are 

physical characteristics or operational characteristics which differentiate the three buildings 

analysed and influences the heating demand of each building. Therefore, for the simulated heating 

demand, the key indicators are based only on the building characteristics, while for the actual 

heating demand, the key indicators are based on both the building and operational characteristics 

(different temperature control systems installed in each building and the manipulation of the 

radiators). Since the key indicators differ for actual and simulated data, the influence on the dynamic 

parameter could vary for each case. Matrix 1 presents the matrix for the simulated data and Matrix 

2 for the actual data. Section 7.2.3 compares these two matrices and gives an insight on the 

differences between actual and simulated data.  

 Analysis of the most influencing dynamic parameters on simulated data 

This section compares the influence of the dynamic parameters (within one operating mode) on the 

simulated data for each of the buildings studied by analysing the interaction of the different key 

indicators. This study results in a qualitative matrix which ranks the influence of each dynamic 

variable by comparing the three buildings between each other (horizontal comparison). This means 

that the matrix does not rank the influence of the different variables for one building (vertical 

comparison). 

The key indicators are physical characteristics which differentiate the three buildings analysed and 

influences the simulated heating demand. In this case, the three buildings have an indoor air 

temperature controller (demand side control), therefore the buildings characteristics are the 

predominant factors interfering in the influence of the dynamic variables. 

The parameters studied are selected according to the thermal energy balance of the simulator. All 

parameters are dynamic (time dependent value) within one operating mode. This is because a 

different mathematical equation will be built for each operating mode (see section 5.3.3).  

Mechanical ventilation and temperature set points are not included since they have a constant value 

for the same operating mode. During closing hours (night time), the solar radiation, manipulation of 

radiators and internal heat gains will not take place since they are null, and therefore static 

parameter. 

Matrix 1 presents the qualitative analysis of the most influencing dynamic parameters on simulated 

heating demands during opening hours for TPM, IO and 3mE. The matrix should be read 

horizontally, instead of vertically since the ranking is done comparing the corresponding dynamic 

variable between the different buildings. 
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Matrix 1 Qualitative comparison between TPM, IO and 3mE of the most influencing dynamic 
parameters on simulated heating demands during opening hours (read horizontally instead 
of vertically). 

Dynamic variables 

Simulated data 

TPM IO 3mE 

Key Indicators for simulated data  
(building characteristics having an effect on the 
influence of the dynamic variables on the heating 
demand) 

Weather         

Outdoor temperature       ↓Insulation, ↑envelop to floor area ratio 

wind speed       ↓Insulation, ↑envelop to floor area ratio 

Solar radiation       
↑windows to floor area ratio, ↑façade orientations (W 

E, S), ↓thermal inertia 

Building parameters         

Indoor air temperature       indoor air temperature control system 

Indoor surface temperature       
↓thermal inertia, (↑solar gains), (↑internal heat 

gains) 

Operating characteristics         

Manipulation of radiators       *No applicable 

Internal heat gain       (↑ internal heat gains), ↓thermal inertia 

          

    High influence 

    Moderated influence 

    Negligible/null influence 

() These are dynamic variables, but their heat flux interact with other key indicators 

↑↓ The increase or decrease of this key indicator contributes to a higher influence of the dynamic variable. 

The manipulation of the radiators do not play a role in the simulated data as it does in the actual 
data, therefore its influence is null. 

The indoor air temperature in LEA is determined by the indoor air temperature set point for the three 

buildings. This simulates a building with indoor air temperature control system where its heating 

demand is dependent on the indoor air temperature. As a result, the indoor air temperature will 

have a high influence on the heating demand. 

The wind and the outdoor temperature influence are dependent on the insulation and envelop to 

floor area ratio. Therefore, these parameters are expected to have its highest influence in 3mE 

since it is the building with the lowest envelop performance. For IO and TPM, the influence is 

expected to be moderated. 

The solar gains are influenced by the windows characteristics and this effect will be promoted by a 

low thermal inertia. According to the windows to floor area ratio and windows orientation, the solar 

radiation is expected to have the highest influence in 3mE, followed by IO, and a negligible effect 

in TPM. Moreover, the high thermal inertia in TPM damps the indoor air temperature fluctuations, 

leading to an even lower solar gain influence. 

According to the specific internal heat gains, it is expected the highest internal heat gain influence 

in 3mE, followed by TPM and IO. However, the thermal inertia will decrease the effect of the internal 

heat gains in TPM. As a result, it is expected a moderated influence in TPM and IO and a high 

influence in 3mE. 

The influence of the indoor surface temperature is increased by higher solar and internal heat gains, 

and lower thermal inertia which promotes higher indoor surface temperature fluctuations. Therefore, 

it is expected that the indoor surface temperature has its highest influence on 3mE due to a high 

amount of solar gains, internal heat gains and a relative small thermal inertia. The lowest influence 

is expected in TPM due to a high thermal inertia and low solar heat gains. 
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 Analysis of the most influencing dynamic parameters on actual data 

This section studies the most influencing parameters on the actual data. The key indicator are 

physical or operational characteristics which differentiate the three buildings analysed and 

influences the actual heat supplied to the building. In this case study, the key indicators are 

dependent on the building characteristics, the different temperature control systems installed in 

each building (described in chapter 5) and the manipulation of the radiators. In this case, TPM have 

an indoor air temperature controller (demand side control), while IO and 3mE are controlled by the 

supply temperature controller in the central heating plant (supply side control). This qualitative 

analysis is done according to the values estimated for the different parameters during the calibration 

procedure. 

Matrix 2 presents the qualitative analysis of the most influencing dynamic parameters on actual 

heating demands during opening hours for TPM, IO and 3mE. 

Matrix 2 Qualitative comparison between TPM, IO and 3mE of the most influencing dynamic 
parameters on actual heating demands during opening hours (read horizontally instead of 
vertically). 

Dynamic variables 

Actual data 

TPM IO 3mE 

Key Indicators for actual data 
(building or operational characteristics having an 
effect on the influence of the dynamic variables on 
the heating demand) 

Weather         

Outdoor temperature       
↓Insulation, ↑envelop to floor area ratio, temperature 

control system / manipulation of radiators 

wind speed       
↓Insulation, ↑envelop to floor area ratio, temperature 

control system / manipulation of radiators 

Solar radiation       

↑windows to floor area ratio, ↑façade orientations (W 

E, S), ↓thermal inertia, temperature control system / 

manipulation of radiators 

Building parameters         

Indoor air temperature       temperature control system / manipulation of radiators 

Indoor surface temperature       
↓thermal inertia, (↑solar gains), (↑internal heat gains), 

↑indoor air temperature fluctuations 

Operating characteristics         

Manipulation of radiators       lack of indoor air temperature controller 

Internal heat gain       
(↑ internal heat gains), ↓thermal inertia, temperature 

control system / manipulation of radiators 

          

    High influence 

    Moderated influence 

    Negligible/null influence 

() These are dynamic variables, but their heat flux interact with other key indicators 

↑↓ The increase or decrease of this key indicator contributes to a higher influence of the dynamic variable. 

The influence of the weather parameters is correlated with the façade properties. The wind an 
outdoor temperature will have its highest influence in the buildings with lower insulation and higher 
envelop to floor area ratio. Considering these building characteristics, the outdoor temperature and 
wind will have the highest influence on 3mE. It is expected that IO have a similar influence than 
3mE on the outdoor temperature due to a similar insulation level and the same type of temperature 
control system (outdoor temperature dependent), which may neglect the effect of a lower façade to 
floor area ratio. However, a lower façade to floor area ratio may lead a moderated influence of the 
wind in IO due to a lower heat transfer coefficient of the outdoor facade with the outdoor 
environment and less infiltrations. TPM has the highest insulation and the lowest envelop to floor 
area ratio, therefore it is expected a moderated influence with both the outdoor temperature and 
wind. 

The manipulation of radiators in the building will have a moderated influence in all buildings since 

the radiators can be closed and opened by the people. This influence is intensified in IO and 3mE 
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where the indoor air temperature is not controlled by the building control system and the people are 

expected to act as the indoor air temperature controllers. 

The thermal inertia may have a delaying effect on the solar radiation and internal heat gain, and it 

influences the indoor surface temperatures. According to the thermal mass, it is expected that TPM 

has the highest thermal inertia since it is the heaviest of the three buildings. 

According to the windows characteristics analysed (windows to floor area ratio and orientation of 

the windows), the solar radiation is expected to have the highest influence in 3mE, followed by IO, 

and a negligible effect in TPM. However, the temperature control system at 3mE and IO may 

moderate the solar gain effect in these buildings since the users will be the only heating demand 

moderators when the indoor air temperature rises. Therefore, the solar radiation influence at 3mE 

and IO may be directly related with the manipulation of radiators. As a result, it may be expected a 

moderated influence of the solar radiation in 3mE and IO. In contrast, in TPM the solar radiation is 

expected to have a negligible effect. Even though, the temperature control system installed at TPM 

may make visible the solar gains, the little solar radiation entering in the building and the high 

thermal inertia of the building are predominating factors, leading to a negligible effect. 

Just as the solar heat gains influences, the internal heat gains will be promoted by a low thermal 

inertia and indoor air temperature control system. In this case, IO and TPM are expected to have 

the lowest influence of the internal heating gains. IO has the lowest specific heat gains and the 

temperature control system (independent on indoor air temperature) does not make visual its effect. 

The high thermal inertia in TPM will decrease the internal heat gain effects. At 3mE it is expected 

a moderated effect since it has the highest specific heat gains, but the temperature control system 

decreases this effect.  

The influence of the indoor air temperature will be dependent on different parameters due to the 

different temperature control systems installed in each building. In TPM it is expected that the indoor 

air temperature control system has a higher influence than the manipulation of radiator, leading to 

a strong correlation between the indoor air temperature and the heating demand. In contrast, in IO 

and 3mE, the manipulation of radiators is expected to be the only influencing factor of the indoor 

air temperature moderation, therefore it is expected a moderated correlation for both buildings.  

The main indicators of the influence of the indoor surface temperature on the actual heating demand 

are the thermal energy sources which increase the surface temperature (internal heat gains and 

solar radiation), the thermal inertia of the building (internal thermal mass) which indicates the indoor 

surface fluctuations, and the indoor air temperature fluctuations determined by the indoor air 

temperature control system. The driving force that releases the heat accumulated in the floor is the 

temperature difference between the indoor air temperature and the indoor surface temperature, 

therefore higher indoor air and surface fluctuations will promote this phenomena. The release of 

this heat leads to the decrease of the heating demand. It is expected that 3mE has the biggest 

influence of the indoor surface temperature due to higher solar gains and internal heating demand 

which increases the indoor surface temperature, and higher indoor air temperature fluctuations (due 

to the temperature control system) which increases the driving force of this phenomena. The 

influence of the indoor surface temperature in TPM is expected to be negligible due to a low driving 

force caused by a high thermal inertia (low indoor surface temperature fluctuations) and the indoor 

air temperature control system (low indoor air temperature fluctuations).  

From this study, it is concluded that the interaction of the different key indicators has a large impact 

on the influence of the dynamic variables. The key indicators may differ for each case study, 

therefore it is aim to have a good insight of each case study in order to know which key indicators 

may be predominant and obtain a good analysis. In this analysis, it is considered that the 

temperature control systems and the manipulation of the radiators have a predominating role, 

therefore their interference with the other key indicators related with the building characteristics and 

internal heat gains was marked in some cases, leading to large influences on the dynamic variables. 
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 Comparison of the most influencing parameters for actual and simulated data 

Section 7.2.1 and section 7.2.1 analysed the influence of the dynamic parameters on the actual 

and the simulated data, respectively. This qualitative study ranked the influence of the dynamic 

parameter for each building by studying the interaction of the different key indicators.Matrix 1 (see 

section 7.2.1) and Matrix 2 (see section 7.2.1) illustrate the comparison of the dynamic parameters 

for the three buildings during opening hours on actual and simulated data, respectively. This section 

compares these two matrices and gives an insight on the differences between actual and simulated 

data. 

The influence of the dynamic parameters differs from Matrix 2 (actual data) and Matrix 1 (simulated 

data) due to different key indicators that interacts with each other. For both actual and simulated 

data, the building characteristics and the internal heat gains are assumed to have the same values 

for each building, and therefore the same influence on the dynamic parameters. However, for the 

actual data the different temperature control systems and the manipulation of radiators are 

additional key indicators that dominates the influence of the dynamic parameters, leading to an 

increase of the differences between actual and simulated data. 

The physics-based simulator (LEA) predicts the energy demand required to reach the 

corresponding indoor air temperature set point(s). Therefore, the simulated data are comparable to 

a building with indoor air temperature control system (thermostat) where radiators cannot be 

manipulated. Since TPM has an indoor air temperature controller, the influence of the dynamic 

parameters are considered to be similar for both actual and simulated data. Therefore, the actual 

and simulated data may be comparable with each other. Nonetheless, for the real data it is expected 

to find some irregularities in the heating demand pattern due to the manipulation of the radiators. 

These irregularities may be easily identified by a discontinuous pattern in the heating demand. 

In IO and 3mE the actual heating demand is controlled by the outdoor temperature since the 

building does not have indoor air temperature controllers. As a result, the outdoor temperature is 

expected to have a stronger relationship for IO and 3mE on the actual data than on the simulated 

data, increasing the difference between actual and simulated data. This difference is expected to 

be more notable in IO than in 3mE as IO has a better envelop performance than 3mE, leading to a 

lower relationship with the outdoor temperature than 3mE in the simulated data. 

The lack of indoor air temperature control system (thermostat) in IO and 3mE leaves the control of 

the indoor air temperature to the people inside the building which are able to manipulate the 

radiators, becoming irregular moderators of the indoor air temperature. Therefore, the influence of 

the indoor air temperature and the parameters affecting the indoor air temperature (especially solar 

gains and internal heat gains) may decrease for the actual data in IO and 3mE. These three 

parameters are also expected to have a more irregular hourly profile for the actual data than for the 

simulated data. The difference between actual and simulated data (influence of the solar gains and 

internal heat gains) is expected to be more marked in 3mE than in IO. This is due to the fact that 

3mE has a higher heat flux of solar gains and internal heat gains than IO.  

The indoor surface temperature is expected to be comparable in all cases for actual and simulated 

data. However in IO and 3mE, it may be expected a higher influence for the actual data than for the 

simulated data. This is due to the fact that the indoor air temperature fluctuates more in the actual 

cases than in the simulated ones due to the lack of indoor air temperature controller, promoting the 

release of the heat accumulated in the surface. For the same reason, in the simulated data a higher 

influence of the surface temperature is expected in the moments that the indoor air temperature 

changes, this is during opening and closing hours as the indoor air temperature set points change. 

From this study, it is concluded that the effect of the most influencing parameters differ from 

simulated and actual data due to the interference of different key indicators. The simulated heating 

demand is dominated by the building characteristics, while the actual heating demand is mostly 

influenced by the different types of temperature control system and the manipulation of the 

radiators. As a result, the actual and simulated data are not comparable. Since the calibration of 
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the parameters (see section 6.2.1) was based on the comparison of these actual and simulated 

data, it is expected that the parameters are not correctly estimated, especially in IO and 3mE. 

Next section analyses the hypothesis drawn in this section and whether the parameters were 

correctly estimated. The result of this analysis will define if the actual data missing in the data set 

can be substitute by the estimated parameters. 

 Calibration evaluation and new calibration procedure recommended 

From the previous section, it was concluded that some calibrations were not done accurately as the 
actual and simulated data were not comparable. This is applicable to the buildings without indoor 
temperature control system and in the cases that the cooling effect was not taken into account for 
the calibrations. Therefore, it is recommended to evaluate the calibrations for the buildings 
calibrated under the above mentioned conditions. The analytical procedure followed in this section 
could be applied in the rest of the buildings at TU delft campus that their calibration needs to be 
evaluated. 

This section analyses the accuracy of the calibration procedure by comparing the simulated heating 
demand with both actual data set (2016 and 2015). The results of this section proves the hypothesis 
drawn in the previous section and determines whether the actual data set is suitable to be used for 
building the multivariate linear regression analysis.  

The data set of 2015 and 2016 correspond to the measurements taken before and after the 
implementation of LEA, respectively. Therefore, for the data set of 2015, IO and 3mE do not have 
indoor air temperature control system, while for the data set of 2016, the indoor air temperature is 
controlled by LEA. The weather data used for both the simulations and this analysis corresponds 
to Rotterdam which is the closest meteorological station from TU Delft campus. 

 Calibrations analysis with data set 2015 

For the data set 2015, the measured indoor air temperature was not available or incorrectly 
measured. The hourly actual heating demand cannot be analysed since the measured and actual 
data are not comparable. Therefore, it is decided to analyse the correlations between the specific 
heating demand and some of the most influencing variables. 

This analysis is focused on weekdays during opening hours since there are more variables 
influencing the heating demand. The correlation is analysed for the outdoor temperature, global 
horizontal solar radiation, wind speed, indoor air temperature and internal heat gains. For weekdays 
during opening hours the most meaningful correlations are for the outdoor temperature and global 
horizontal solar radiation, and therefore these are the correlations studied in this section. Appendix 
9 and Appendix 10 shows the correlations for the rest of the variables during weekdays (opening 
and closing hours separately) and weekends for the data set 2015 and 2016, respectively. 

In order to compare the heating requirement of the three buildings analysed, the simulated and 

measured heating demand for the different buildings is expressed in specific heating demand. The 

specific heating demand is usually represented in [W/m2], however, in this report it is expressed in 

[W/m3] in order to take into account the variable height of the building. For this transformation, it is 

used the total air volume estimated by LEA for each of the buildings (this is 46,972.8 m3 for IO, 

20,580 m3 for TPM and 64,213.128 m3 for 3Me). 
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Insights from the analysis of the outdoor temperature influence 

Figure 18 illustrates the scatter plot and the corresponding least square between the specific 
heating demand and outdoor temperatures during weekdays and opening hours for both actual and 
simulated data. Table 5 shows the coefficients of the least square for each case, defined as 

 𝑌 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝑠𝑙𝑜𝑝𝑒 ∙ 𝑋. 

Refer to Appendix 9 for further details regarding the influence of the outdoor temperature during 
weekends.  

 

Figure 18 Influence outdoor temperature on the buildings’ simulated (above) and actual 
(below) heating demand during weekdays and opening hours for October 2015. 

 

Table 5 Least square coefficients values for the linear correlation between outdoor 
temperatures versus simulated heating demand 

Data sets  Simulated data Measured data 

Buildings  constant slope constant slope 

IO 17 -0.91 19 -1 

3mE 32 -1.7 25 -1 

TPM 19 -0.75 17 -0.87 

As it was explained in section 6.3.2, the dispersion of the data points in the cloud and the slope of 

the least square gives information about the linear correlation between the Y-axis and the X-axis. 

The higher is the dispersion of data points in the cloud, the weaker is the linear correlation of the 

variable analysed and the stronger is the influence of other parameters. The slope of the least 

square indicates the influence and or dynamism of the parameter analysed on the heating demand. 

Therefore, a vertical and horizontal slope indicates that there is not influence of the parameter 

analysed. A vertical slope shows that the analysed parameter is static (constant value for all heating 

demand), while the horizontal slope indicates that the analysed parameter is dynamic (changes for 

the heating demand). 
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In this case, the slope indicates the energetic quality of the building envelop and ventilation losses. 
The smaller the slope, the higher the quality [44]. In the graph below (measurements), it is observed 
that IO and 3mE have the same slope (similar energy performance) while TPM has a lower slope. 
Therefore TPM presents a higher performance than IO and 3mE. The slope of IO and TPM is 
slightly smaller for the simulated than for the measured data, indicating that the energy performance 
of IO and TPM was slightly overestimated. In contrast, the energy performance of 3mE was 
underestimated. As a result, the insulation values should be increased for 3mE and slightly 
decreased for IO and TPM, and vice versa for the ventilation losses and infiltrations. 

It is interesting to observe that the cloud of data points is higher for 3mE than for IO. This means 
that 3mE consumes more energy than IO to heat up the same amount of air, being both buildings 
comparable in their heat losses performance (identical slope). It could be due to an underestimation 
of the total air of volume in 3mE or and overestimation of the total air of volume in IO due to a wrong 
approximation of the building dimensions. Considering that the total air volume is correctly 
estimated, this observation indicates that the indoor temperature set point for 3mE (estimated to be 
21oC) is higher than for IO (estimated to be 20oC) and that the heat recovery efficiency of the heating 
systems are smaller for 3mE than for IO. Since the heat supplied at IO and 3mE is not controlled 
by the indoor air temperature set point, the second reason is expected to be the main cause for this 
difference. The estimated heat recovery efficiency for the AHU for 3mE is estimated to be 0.2, while 
for IO is estimated to be 0.3. In addition, it is expected more heat losses in the heat distribution 
stations at 3mE than in IO as in 3mE there are 8 stations, while in IO there are 2 stations. 

For both actual and simulated data, the scatterplot shows a higher dispersion for 3mE, followed by 
TPM and IO. This means that the influence of other variables is stronger in 3mE than in TPM and 
IO. This is mainly due to higher solar gains in 3mE than in IO and TPM (see Figure 19). For IO and 
3mE the dispersion for the simulated data is higher than for the measured data. This means that 
the actual heating supply has a stronger correlation with the outdoor temperature than the simulated 
heating demand. This was expected since the simulated heating demand is controlled by the indoor 
air temperature, while in the actual cases, IO and 3mE does not have indoor air temperature 
controller. In contrast, the dispersion of the cloud for TPM is similar for both the simulated and 
actual heating demand as the actual building has an indoor air temperature controller, making both 
data set comparable. 
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Insights from the analysis of the influence of the global horizontal solar radiation 

Figure 19 illustrates the scatter plot and the corresponding least square between the specific 
heating demand and the global horizontal solar radiation during weekdays and opening 
hours for both actual and simulated data.  

6 shows the coefficients of the least square for each case, defined as  𝑌 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝑠𝑙𝑜𝑝𝑒 ∙ 𝑋. 

Refer to Appendix 9 for further details regarding the global horizontal solar radiation during 
weekends.  

 

Figure 19 Influence global horizontal solar radiation on the buildings’ simulated (above) 
and actual (below) heating demand during weekdays and opening hours for October 2015. 

 

6 Least square coefficients values for the correlation between global horizontal solar 
radiation versus simulated heating demand 

Data sets  Simulated data Measured data 

Buildings  constant slope constant slope 

IO 7 -0.0086 8.2 -0.005 

3mE 14 -0.015 14 -0.0071 

TPM 10 -0.0034 7.2 -0.0025 

 

Indicates the accuracy in the calibration of the parameters related with the solar radiation entering 
in the building (eg. percentage windows, coefficient of solar radiation (ZTA)). However, it is 
important to note that this solar radiation correspond to the total solar radiation on a horizontal 
plane. This may be the main reason of obtaining a lower relation between the actual heating 
demand and the solar radiation. The sun is entering in the building through the E, W and South 
facades, therefore a better comparison can be made by analysing the solar radiation incident on 
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the East, West and South vertical planes, respectively. This will give information about the windows 
characteristics in each façade of the building. 

The dispersion of points decrease at a higher global horizontal solar radiation, meaning that the 
correlation increases at a higher solar radiation and vice versa. This proves that for winter period 
the solar radiation has a smaller influence on the heating demand than for moderated months (sprint 
or autumn) during which the solar radiation has a higher intensity. In order to know more about the 
estimated percentage of windows and ZTA, this analysis should be done with the solar radiation on 
the corresponding vertical plane. 

 Calibration analysis with data set 2016 

Since 10th of September 2016, LEA was implemented in IO, TPM and 3mE. Therefore, the heating 

supply in the three buildings is controlled by the heating demand predicted by LEA (based on the 

simulated indoor air temperature according to the estimated indoor air temperature set points). 

During the implementation period, actual and simulated data were recorded for both indoor air 

temperature and heating demand, leading to a new actual data set (actual data 2016). Since LEA 

is the temperature controller in the three buildings, the actual and simulated data are comparable 

in this new data set, allowing the calibrations to be validated. 

The aim of this section is to evaluate the accuracy of the estimated parameters by analysing the 

actual data of 2016 and simulated data for both indoor air temperature and heating demand of the 

building for each building. Figure 20 and Figure 21 present the hourly measured and simulated 

indoor air temperature and heating demand profile, respectively for TPM, IO and 3mE. The data in 

both figures correspond to a representative week during the validation period (from 10th until 16th of 

September 2016).  

 

 

 

 

Figure 20 Measured & simulated hourly heating demand profile for IO, TPM and 3Me from for the 
period 10th – 16th October 2016 
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For a correct interpretation of the results, it is very important that the measured indoor air 

temperature is representative of the average indoor air temperature of the total air volume in the 

building and the measured heating demand corresponds to reality. For the measured heating 

demand in 3mE, it is detected a measurement error during the first hours of the morning on 

Wednesday (between hour 6870 and 6880) and during the weekend (between hour 6920 and 

6960). This measurement error is detected by a flat heating demand profile in both cases, while the 

indoor air temperature profile follows the expected profile. The rest of the measurement data are 

assumed to be representative of the actual case. 

For TPM, it is observed that the measured and simulated indoor air temperature are in phase, 

therefore the thermal inertia of TPM in the actual case is the same than in the simulated case. This 

indicates that the thermal mass of the building is well estimated during the calibration procedure. 

Besides that, the amplitude of the indoor air temperature is 3oC higher for the measured data than 

the simulated data, indicating that the building is receiving more heat in the actual situation. Figure 

20 shows that the actual heating supplied presents slightly higher peaks than the simulated heating 

demand during day time. The peaks observed in the actual heating demand are in phase with the 

temperature peaks. Therefore, it may be that the additional heat increasing the indoor air 

temperature is caused mainly by the manipulation of radiators. Additionally, the actual heating 

supply peaks have a constant pattern during all weekdays, which could be an indication that the 

people inside the building have a constant routine in opening and closing the valves (unlike it was 

expected). 

Figure 21 Measured & simulated indoor air temperature profile from 10th – 16th October 2016 for 
TPM (above), IO (middle) and 3Me (below). 
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For both IO and 3mE, the measured indoor air temperature shows a lower fluctuation and a delay 

with respect the simulated indoor temperature. The delay in IO is around 3 hours while in 3mE 

around 2 hours. In IO, the actual heating supplied and the heating demand simulated are in phase, 

indicating that the observed delay is due to an underestimation of the thermal mass. In 3mE, the 

heat is supplied later than the simulated heating demand, indicating that this delay is due to both 

an underestimation of the thermal mass and a delay in the heat supply. 

A higher thermal mass leads to increasing the heating demand peaks during the opening hours due 

to a higher heat capacity in the building. This phenomena is observed in IO, where the peaks for 

the supplied heating are higher than for the simulated heating demand (probably due to 

manipulation of radiators). In contrast, in 3mE the peaks of the supplied heating demand are lower 

than in the simulated heating demand, and this difference constantly repeated every day. This could 

indicate an overestimation of the heating capacity of the heating supply systems (heating 

distribution stations and/or radiators). Since the heat supplied in IO is higher than predicted and in 

3mE is lower, the measured indoor temperature in IO is higher than the simulated one, while in 

3mE is lower.  

The analysis done in this section proves the hypothesis drawn in the previous section that the 

estimations of the parameters were incorrect in IO and 3mE as the actual data set of 2015 and 

simulated data were not comparable. For TPM the parameters are correctly estimated and the 

manipulation of radiators is mainly the only factor affecting the difference between actual and 

simulated data. Since the manipulation of radiators have a great impact on the actual indoor air 

temperature (3oC of difference), this parameter should be measured and included in the 

mathematical model. 

As a result, it is concluded that both actual data set (2015 and 2016) are incomplete to be used and 

the missing parameters cannot be substituted by the estimated parameters as it would lead to 

inaccuracies in the mathematical model due to input data errors. 

In addition, it was observed that the quality of the measurement data is aim to obtain a good 

interpretation of the results, leading to a correct validation of the calibration. Therefore, the data 

collected should be a good representation of the reality and comparable with LEA. In this case, the 

actual heating demand should corresponds to the total heat supplied by all heating supply systems 

installed in the building, while the indoor air temperature should represent the average temperature 

profile of the total air volume contained in the building. This should include the measurements of 

rooms at each orientation side of the building and the rooms which contains a higher volume of air 

(eg. canteen, big lecture/study rooms, etc.) 
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 New calibration procedure recommended 

This section gives insights of another calibration procedure recommended for the validation of the 

calibrations done and future estimations of building, systems and operating parameters. With this 

propose, the correlation between the actual heating demands of IO for the data set of 2015 and 

2016 are compared. The data set of 2015 corresponds to the measurements collected before the 

implementation of LEA, while the data set of 2016 is collected after the implementation of LEA in 

IO. Figure 22 presents the data set for 2015 above and the data set for 2016 below.  

 

The data set of 2016 also includes the month of November, increasing the amount of data points 

for a colder period than for the data set of 2015. As a result, the constant of the least square 

equation is slightly increased. Since the indoor temperature is controlled for the data set of 2016, 

the dispersion of the data points decreases with respect the data set 2015. However, the slope 

does not show appreciable variations. This is due to the fact that the slope is only influenced by the 

heat losses related characteristics which are constant for each building. This means that both the 

insulation of the building envelop, and the parameters related to the ventilation losses can be 

calibrated by comparing the actual and simulated data. 

The same calibration procedure can be applied to evaluate the windows characteristics (windows 

percentage and ZTA) by analysing the slope of the linear correlation between the heating demand 

and the solar radiation. However, the solar radiation should correspond with the global solar 

radiation for the vertical plane corresponding to the orientation of the façade analysed. 

In order to apply this calibration procedure correctly, the comparison of the slopes have to be done 

for the same operating mode (temperature set point and heating activated or deactivated). This is 

due to the fact that a different indoor temperature will lead to a different temperature differential (T 

= indoor temperature – outdoor temperature), and therefore the heat flux will differ for the same 

envelop & windows characteristics and ventilation losses. See Appendix 9 and Appendix 10 for 

further details regarding the slope differences between opening and closing hours. Please note that 

the slopes during weekends are not meaningful since the opening and closing hours are not 

distinguished in the graphs. 

For temperatures below than 12oC, the data set of 2016 shows a higher scatter than the data set 

of 2015. This gives indications that the implementation of LEA in IO has contributed to a lower 

dependency of the heating demand on the outdoor temperature and higher dependency on other 

influencing parameters, as it was expected. However, this fact cannot be strongly confirmed since 

Figure 22 Actual heating demand for IO during weekdays and opening hours before (above) 
and after (below) the implementation of LEA in the building, respectively. The measurements 
above corresponds to the data set of 2015 (month of October) and below to the data set of 
2016 (from 3rd October 2016 until 25th November 2016) 
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the data sets analysed can differ due to other parameters influencing the indoor air temperature 

parameters such as the solar gains, internal heat gains or the manipulation of radiators. 

This calibration procedure can be implemented to evaluate other parameters by studying other 

patterns according to the European prototype for evaluation of building performance [44]. 

 Conclusions 

This chapter analysed the causes of the mismatch between actual and simulated data, and study 

their consequences on the data set choice to build the mathematical model. The following 

conclusions are drawn as result of this analysis. 

Regarding the mismatch between actual and simulated heating demand: 

 The gap between actual and simulated data results from the fact that the most influencing 
parameters differ from actual and simulated data as different key indicators are interfering. 

The actual heat supplied to the building is influenced by the different types of temperature 
control system and the manipulation of the radiators. Since these two factors are not playing a 
role in the simulator, the simulated heating demand is dominated by the building characteristics. 

 The gap between simulated and actual data is higher for IO and 3mE than for TPM. As a result, 
the actual and simulated heating demand for IO and 3mE are not comparable, while they can 
be compared for TPM.  

In TPM, the manipulation of radiators is the only key indicator which differ from actual and 
simulated data. However, in IO and 3mE both the manipulation of radiators and the supply 
temperature control system vary from actual and simulated data. The last one have a great 
impact on the actual heat supplied, leading to a large mismatch between actual and simulated 
data.  

Regarding the calibration of the estimated parameters (performed before the start of this 

thesis): 

 The thermal mass for the buildings without indoor air temperature control system (3mE and IO) 
is underestimated as a result of a poor calibration performed with incomparable data sets. 

 The insulation parameters of the building envelope (windows and wall) should be increased for 
3mE and slightly increased for IO and TPM.  

 The ventilation losses and infiltrations should be decreased for 3mE and slightly increased for 
IO and TPM. 

  It is observed that IO and 3mE have the same envelop characteristics, however the specific 
heating demand at 3mE is higher than in IO. This low energy performance of 3mE may be due 
to a lower energy performance in the heat distribution systems. This conclusion is based on the 
assumption that the total air volume of the buildings is correctly estimated. 

 The calibration procedure based on the analysis of the least square on the scatter plot (section 
7.3.3 ) gives better insights on the accuracy of the parameters estimated than the calibration 
procedure followed before to this thesis. 

Regarding the selection of the data set to build the multivariate linear regression model. 

 Both actual data set (2015 and 2016) are incomplete to build the mathematical model and the 
missing parameters cannot be substitute by the estimated parameters, therefore the 
mathematical model will be built based on the simulated data set. 

In all buildings there are evidences that the manipulation of the radiators are causing notable 

differences of the heat supplied. Therefore, in order to implement the mathematical model with 

actual data, the manipulations of the radiators should be measured and included in the 

mathematical model. Besides that, the parameters for IO and 3mE are not correctly estimated, 

therefore the estimated dynamic variables (internal heating demand) cannot be substituted.  
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8 Multivariate linear model based on 
building’s thermal energy balance 
principle 

This chapter describes the methodology followed to build the multivariate linear models of this study 

and presents the results of the first model proposed. The major challenge of building these models 

was to find the combination of parameters able to define a correlation which predict the heating 

demand for any building with high accuracy.  

The constants and variables defining the model are based on the thermal energy balance principle 

of a building. The resulting model is defined by weather data and measurable temperatures. The 

coefficients of the variables correspond to the building and systems characteristics and they are 

obtained by training the model with historical data. In this way, the model obtained limits the demand 

of measured data to few measurable parameters, leaving out all parameters related with building & 

system characteristics (which are unknown in most of the cases). 

Based on the findings from previous chapters, the number of equations of the model are defined 

and the data sets for each equation are selected. The design of several equations and use of the 

corresponding data set is key to increase the accuracy of the model. 

The statistical validation of each model is done by applying a statistical search procedure. The 

search procedure validates the model at each step by analysing the residual of the data set, and 

quantifying the significance level of both the variables’ coefficients and the total model. The 

following section explains in details the multivariate regression method and the search procedure 

followed. 

 Description statistical methodology 

 Multivariable regression 

As it was explained in section 3.2, this study uses the regression approach to obtain a mathematical 

model able of predicting the heating demand. Since there are more than one independent variable 

related to the dependent variable, a multivariable regression model is created. The analytical form 

of the general linear model is expressed as follows. 

𝑄ℎ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + ∑ 𝐶𝑖 ∙ 𝑋𝑖

𝑛

𝑖=1

 

Where Qh is the hourly heating demand, Ci are the corresponding coefficient of the dependent 

variable, X is the dependent parameter and ‘i’ the index of dependent variables selected for the 

model. 

In this case study, the independent parameters change hourly, therefore the general linear model 

is expressed in matrix term as follows: 

𝑄 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝑋 × 𝐶 

Where: 

 Q is the matrix of the predictors (hourly predicted heating demand) with dimension nx1 (one column 

matrix) 

 X is the matrix of the variables with dimension nxp. The variables are the hourly values of the inputs 

selected for the regression analysis such as solar radiation, outdoor temperature, indoor air 

temperature, heat gains, etc. Each variable is represented in one column of the matrix  
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 C is the matrix of the coefficients of the variables (unique for each model) with dimension px1 (one 

column matrix) 

 ‘n’ is the number of hours predicted and ‘p’ the number of variables introduced in the model 

Therefore, for an annual data set (8760 hours in one year), the multiple regression expressed in 

matrix form is represented as follows: 

[
𝑄1

⋮
𝑄8760

] = [

1 𝑋1,1 ⋯ 𝑋1,𝑝

⋮ ⋮ ⋱ ⋮
1 𝑋8760,1 ⋯ 𝑋8760,𝑝

] [

𝐶0

⋮
𝐶𝑝

] 

Where C0 represents the constant of the regression analysis. 

The previous matrix form is expressed by the following system of equations: 

{

𝑄1 = 𝐶0 + 𝐶1 ∙ 𝑋1,1 + ⋯ + 𝐶𝑝 ∙ 𝑋1,𝑝

…
𝑄8760 = 𝐶0 + 𝐶1 ∙ 𝑋8760,1 + ⋯ + 𝐶𝑝 ∙ 𝑋8760,𝑝

 

In order to solve this system of equations, the coefficients of the variables and the constant (matrix 

C) are estimated by training the model with historical data set (Q and X are known). The model is 

trained using regression analysis, which calculates the quantitative relation between the matrix Q 

(dependent variable) and matrix X (independent variables). This quantitative relation corresponds 

to the constant and variables’ coefficients (matrix C). The values of the variables’ coefficients 

indicates the contribution of the different variables to the predicted heating demand. It is impossible 

to find a matrix C that perfectly fits all equations. The search procedure (model training) aims at 

finding the values of C that fits the best all Q/X points. 

The values of matrix C are influenced by the type and number of variables introduced in the model 

and the historical data set selected. Therefore, it is important to make a good selection of the 

parameters introduced in the model (predictor variables) and data set beforehand (section 8.3).  

The most influencing parameters analysed in previous chapters are used as candidates for 

predictor variables. This means that every possible combination of variables needs to be tried to 

find the best fitting equation (or model). Therefore, several linear equations are built and compared 

for each selected data set. In order to build up models with statistical significance and compare 

them between each other, a search procedure (forward or backward search method) and statistical 

criteria for the predictor selection is used by applying the Matlab stepwise regression function 

available in the statistical toolbox in Matlab R2015b [45] , [46] (see Appendix 11). The following 

section explains the search procedure and statistical criteria used by this function to analyse the 

statistical significance of the multilinear model. Further details regarding search procedures and 

statistical criteria can be found in Sá 2007 [46]. 
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 Search procedure and statistical criteria used to analyse the statistical significance 
of the multilinear model 

The stepwise regression function fits a regression model of the dependent variable (Qh) depending 

on the independent variables (Xi) for performing multilinear models based on the statistical 

significance in a regression. This function introduces variables consecutively to the model (forward 

search method) based on their significance until a satisfactory model is found. At the beginning of 

the procedure, the residuals of the data set are analysed. In each step, the statistical significance 

of the model and each individual parameters’ coefficients are analysed. Therefore, the analyses 

involved in this function can be classified in 3 groups: (1) analysis of the residuals of the data set, 

(2) analysis of the individual significant level of the variable coefficients estimated, (3) analysis of 

the significance level of the model. These analyses are done based on the different statistical 

criteria described below. 

1. Analysis of the residuals of the data set 

The statistical criteria used to analyse the residuals of the data set are the mean, variance and 

distribution. The mean of the residuals should be approximately zero for every value of X, the 

variance approximate constant for all values of X and the distribution should follow a Normal 

distribution. 

2. Analysis of the individual significant level of the variables’ coefficients estimated 

The individual significant level of the variables’ coefficients, estimated in each regression model, 

are analysed by using the p-value and t-statistics for the coefficient estimates. The p-value and the 

t-statistics are statistical criteria used to test the hypothesis and significance level of the 

independent variable.  

The p-value indicates the significance level of the null hypothesis [46], this is the significant level of 

the coefficient calculated for the dependent variable. The significant level selected for the null 

hypothesis (or entrance tolerance value) is 5% (p-value<0.05), meaning that there is at least a 95% 

of confidence level that the coefficient presents the correct correlation between the independent 

parameter and the dependent parameter. Every time that a new parameter is inserted in the model, 

the coefficient of the parameters changes and the p-value and t-statistics are recalculated. The 

minimum p-value for a term to be removed (exit tolerance value) is 0.10. These tolerance values 

corresponds to the default values given by stepwise regression function [45]. Therefore, only the 

variables with p-value<0.05 will be introduced in the model while the variables with p-value>0.1 will 

be removed. 

The t-statistics measures the significance of the predictors and is defined as the ratio of the 

estimated parameter from its notional value and its standard error [46]. Therefore, the variables 

with higher t-statistics have a higher contribution to the fit of the curve. As a result, the order of 

priority to insert the variables will be based on the variables with higher t-statistics within the 

tolerance values described above.  

3. Analysis of the significance of the model 

The analysis of the significance of the model is aim to avoid the addition of too many parameters 

which could lead to over-fitting the model. An over-fitted model describes random error instead of 

the underlying relationship, leading to a poor predictive performance, as it overreacts to minor 

fluctuations in the training data [47]. The criteria used to analyse the significance of the model are 

the coefficient of determination (R2), the coefficient of determination adjusted (R2 adjusted) and 

Root Mean Square Errors (RMSE).  

R2 indicates the proportion of the variance that is predictable from the dependent variable, therefore 

it indicates the goodness of fit of the model and it has to be maximised. Normally, R2 increases by 

adding more variables to the model, however a higher fit could lead to an over-fitted model. 

Therefore, in order to avoid the overfitting, RMSE and adjusted R2 are also analysed. The RMSE 

is the square root of the mean variance of residuals, therefore this is minimized [46]. The adjusted 

https://en.wikipedia.org/wiki/Random_error
https://en.wikipedia.org/wiki/Predictive_inference
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R2 is a modified version of R-squared that has been adjusted for the number of predictors in the 

model. It compares the explanatory power of regression models that contain different numbers of 

predictors, increasing when the new term improves the model more than would be expected by 

chance [46]. 

Figure 23 summarizes the search procedure and criterion used for a correct selection of predictor 

variables. Further details regarding the interactive stepwise function in Matlab can be found in 

Appendix 11. 

 

 

Figure 23 Flow scheme of the search procedure and statistical criteria used for predictor 
selection [own illustration].  

  

Analysis data set 
residuals

•Mean~0
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•RMSE minimised
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 Definition of the number of equations 

Since the scope of IPIN is limited to the heating demand, the mathematical model presented in this 

study predicts the heating demand during a period of time that only heating is required. A different 

mathematical model will be needed to calculate the cooling demand since the most influential 

parameters for the cooling demand differ from the ones for the heating demand. Furthermore, the 

thermo-dynamics of the walls differ during the moderated months. As a result, in order to calculate 

the heating and cooling demand for all year round, it is expected that 3 different models will be 

needed (one for each type of season): (1) heating prediction during winter (or period when only 

heating is required), (2) cooling prediction during summer, (3) heating and/or cooling prediction 

during moderated months (when both cooling and heating are required during the same day). 

Each operating mode of a building requires a different equation. The TU Delft buildings present 3 

different operating mode: (1) weekdays during opening hours, (2) weekends during opening hours, 

(3) closing hours. During the different operating modes, the temperature set points and ventilation 

flow rate vary, affecting the correlation between the variables (equation coefficients), and therefore 

the model accuracy. In order to increase the accuracy of the model, a different equations to predict 

the heating demand is required for each different operating mode.  

This study presents the corresponding equation for weekdays during opening hours (operating 

mode (1)). This is because the model of this operating mode is the most challenging to build as 

several parameters influence the heating demand. During closing hours, the prediction of the 

heating demand is dependent on less parameters (absence of solar and internal heat gains), 

increasing the correlation with the outdoor and indoor temperature (see Appendix 9, Figure 63 and 

Figure 68). The linear regression with only these 2 parameters leads to high prediction accuracy. 

 Data set selection 

As concluded in chapter 7, the existing actual data sets (2015 and 2016) are incomplete and the 

missing parameters cannot be replaced by the estimated parameters since the calibrations were 

not performed accurately. Therefore, the simulated data set is selected to build the mathematical 

models presented in this chapter and chapter 9. It was proven in previous chapters that the 

simulated data set are accurate and acceptable to replace the actual data set.  

The simulated data set selected corresponds to the period of time from 5th of October of 2015 until 

14th January 2016. This period of time is chosen since only heating is required, avoiding the 

influence of cooling. The model presented in this report correspond to operating mode (1) which is 

built by selecting only the hours corresponding to weekdays during opening hours. 

 Model development and selection of parameters 

There are numerous factors that influence the energy performance of a building, such as the 

building’s thermal characteristics, architecture, the operation of systems, building use and outdoor 

weather conditions. The major challenge of this study was to find the combination of the most 

influencing variables which lead to a high accuracy of the heating demand prediction. Several 

models with different linear and polynomial combinations were built, but the accuracy reached was 

not higher than the 60%. Therefore, it was decided to create a combination of parameters based 

on a simplified thermal energy balance of a building and leaving out all parameters related with 

building & system characteristics (which are in most of the cases unknown). 

Section 6.1.2 described the thermal energy balance of the physics-based simulator (LEA) and 

defines equation (1). This equation can be rewritten in function of the temperature differences [oC], 

solar gains [W/m2], internal heat gains [W/m3 of indoor air volume], and wind speed [m/s] leading 

to the specific heating demand [W/m3 of indoor air volume] described by equation (2).  
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𝑸𝒅𝒆𝒎𝒂𝒏𝒅 [
𝒘

𝒎𝟑] = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 + 𝑪𝟏 (𝑻𝒈𝒓𝒐𝒖𝒏𝒅 − 𝑻𝒊𝒏𝒅𝒐𝒐𝒓) + 𝑪𝟐 (𝑻𝒐𝒖𝒕𝒅𝒐𝒐𝒓 − 𝑻𝒊𝒏𝒅𝒐𝒐𝒓) +

𝑪𝟑𝐕𝒘𝒊𝒏𝒅
 (𝑻𝒐𝒖𝒕𝒅𝒐𝒐𝒓 − 𝑻𝒊𝒏𝒅𝒐𝒐𝒓) + 𝑪𝟒 (𝑻𝒐𝒖𝒕 𝑨𝑯𝑼 − 𝑻𝒊𝒏𝒅𝒐𝒐𝒓 ) + 𝑪𝟓 (𝑻𝒊𝒏𝒅𝒐𝒐𝒓 𝒔𝒖𝒓𝒇𝒂𝒄𝒆𝒔

𝒕 − 𝑻𝒊𝒏𝒅𝒐𝒐𝒓) + 𝑪𝟔 𝑸𝒔𝒐𝒍𝒂𝒓 +

𝑪𝟕 𝑸𝒊𝒏𝒕𝒆𝒓𝒏𝒂𝒍  

(2) 

Where, Ci are the constant coefficients corresponding to each heat flux. The constant coefficients 

depend mainly on the building characteristics in each building and the ventilation profiles for each 

operating mode. Therefore, the values C1, C2 and C3 will be constant for the same building and will 

vary between buildings. C3 will depend on the infiltration rate of the building and C4 on the ventilation 

profile for each of the operating modes defined. C6 and C7 gives a correlation between the solar 

gains and internal heat gains, respectively. The coefficients of each of the defined parameters are 

obtained by using the matlab function ‘stepwise’ (available in statistical toolbox).  

Table 7 gives the physical equivalence of each of the constant coefficients based on the thermal 

energy balance of LEA (equation (2). Since the equation above is a regression model (including a 

constant), these coefficient are just related to these physical parameters, but their values are not 

equal. 
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Table 7 Physical description of the constant correlation coefficients considered 

Coefficients Physical equivalence Parameters definition 

C1 𝐶1~𝑈𝑓𝑙𝑜𝑜𝑟 .  𝐴𝑓𝑙𝑜𝑜𝑟  𝐴𝑓𝑙𝑜𝑜𝑟 : area ground floor (building footprint) 

𝑈𝑓𝑙𝑜𝑜𝑟: heat transfer coefficient of floor 

C2 𝐶2~ ∑ 𝑈𝑒𝑛𝑣𝑒𝑙𝑜𝑝
𝑗

. 𝐴𝑒𝑛𝑣𝑒𝑙𝑜𝑝
𝑗

𝑖

 j: for each façade/roof of orientation 

𝑈𝑒𝑛𝑣𝑒𝑙𝑜𝑝
𝑗

 heat transfer coefficient of envelop 

𝐴𝑒𝑛𝑣𝑒𝑙𝑜𝑝
𝑗

 the surface of the facade/roof 

C3 𝐶3~ �̇�𝑜𝑝𝑒𝑛𝑖𝑛𝑔𝑠 ∙ 𝜌𝑎𝑖𝑟 + 𝑉𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 ∙
0.15

53

∙ 𝜌𝑎𝑖𝑟  

𝑉𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔: volume of the building 

�̇�𝑜𝑝𝑒𝑛𝑖𝑛𝑔𝑠: volume flow rate (m3/s) hourly 

dependent on the weekly and weekend schedule 

𝜌𝑎𝑖𝑟: air density 

C4 𝐶4~𝑚𝑣𝑒𝑛𝑡.. 𝐶𝑝𝑎𝑖𝑟 Cpair : heating capacity of air (J/kg.K) 

𝑚𝑣𝑒𝑛𝑡. : mass flow rate of the ventilation air 

(kg/s) 

C5 𝐶5~𝑖 .  𝐴𝑖𝑛𝑑𝑜𝑜𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠  𝐴𝑖𝑛𝑑𝑜𝑜𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠: total area of indoor surfaces in 

contact with the indoor air. 

i : indoor combined heat transfer coefficients 

for convection and radiation 

C6 Effect variation total horizontal solar radiation 

on the heating demand 

 

C7 Effect variation total internal heat gains on the 

heating demand 

 

 

The significant value of the independent variable is evaluated by the p-value and the t-statistics (as 

explained in section 0) but not by the magnitude of the coefficient since the order of magnitude of 

the variables differ. The temperature differences vary around the range of magnitude between 15 

and 30, the solar radiation between 0 and 900 [W/m2] and the internal heat gains between 0 and 

3.8 [W/m3]. The symbols of the coefficients do not have a physical meaning since they depend on 

the constant and variables combination. 

The only coefficient comparable between buildings is C6 (solar gains). This is because the heating 

demand is in specific units [W/m3 of indoor air volume] and the solar radiation is the same for the 

three buildings. The variables related to the temperature differences are not comparable between 

buildings since they depend on the indoor temperature set point which differs in each building. The 

internal heat gains are expressed in specific units, but they have different magnitude for each 

building.  
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 Results and discussions 

The model obtained shows an excellent fitting profile for the three buildings studied, 98.6% for IO, 

99.6% for 3Me and 97.52% for TPM. Table 8 shows the coefficients and statistical parameters of 

the model. 

Table 8 Coefficients and statistical parameters of the multivariate regression for the specific 
heating demand prediction (W/m3) for IO, 3mE and TPM, respectively. Data set: weekdays 
during opening hours from 5th October 2015 until 14th January 2016. 

 
IO 3mE TPM 

Constant -6.09 -52.65 61.14 
C1 -0.90 -10.50 11.65 
C2 -0.76 0.45 -2.49 
C3 -0.01 -0.01 -0.01 
C4 0 7.17 -7.93 
C5 -2.50 -7.37 -7.33 
C6 0.0012 0.0019 0.0009 
C7 -1.92 -0.77 -1.43 

Adjusted R2 98.60% 99.59% 97.50% 

RMSE 0.48 0.52 0.66 

This table shows the statistical parameters used to analyse the significance of the model. The other statistical 
parameters (used to analyse the data set residuals and significant level of the variables’ coefficients) are within 
the limit values. 

For the three buildings, the variables (𝑇𝑖𝑛𝑑𝑜𝑜𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠 − 𝑇𝑖𝑛𝑑𝑜𝑜𝑟) and (𝑇𝑜𝑢𝑡𝑑𝑜𝑜𝑟𝑠 − 𝑇𝑖𝑛𝑑𝑜𝑜𝑟) are the 

most influencing parameters on the hourly heating demand profile. Only including these two 

variables in the model, the three buildings reach a goodness fit between 96 – 99%. This shows that 

the most influencing parameters on the hourly heating demand of the building are the envelop 

characteristics and the thermal mass of the building. 

Figure 24 illustrates the fitting profile for the multivariate regression model built in this chapter 

(model 1) for IO, 3mE and TPM, respectively. It is observed that the regression model follows the 

pattern of the heating demand predicted by the simulator with a high accuracy for the three 

buildings. It is observed that the regression model does not reach some maximum peaks. The 

difference is in all cases less than a 10% of the specific heating demand. Since this inaccuracy is 

localized and follows a constant pattern, it can be mathematically corrected if needed. 

The high accuracy of this model make this equation able to be implemented in practice. However, 

the temperature of the indoor surfaces is a parameter which is not available in the real case study. 

When the variable (𝑇𝑖𝑛𝑑𝑜𝑜𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠 − 𝑇𝑖𝑛𝑑𝑜𝑜𝑟) is neglected from the equation, the fitting drops to 

79.3% for IO, 53% for 3mE and 63.5% for TPM (See model 1b in Appendix 12, section 12.1 for 

further details on the results obtained) due to the influence of the thermal mass on the heating 

demand. As a result, the indoor surface temperature should be replaced by a known variable in 

order to be applied in this case study. In the next chapter a new model independent from the indoor 

surface temperature is presented.
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Figure 24 Fitting profile of the multivariate regression model for the specific heating demand prediction defined by equation (2) for IO (above), 

3mE (middle) and TPM (below), respectively. Data set: weekdays during opening hours from 5th October 2015 until 14th January 2016. 
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9 Multivariate linear model improvement 
towards application into practice 

Previous chapter developed a multivariate linear regression model (model 1) very accurate in 

function of the temperature differences, internal and solar gains. However, one of the most 

influencing parameters (indoor surface temperature) is an unknown parameter in this case study. 

Therefore, it is decided to go a step further and develop a model in which the indoor surface 

temperature could be replaced by existing variables, and therefore could be put into practice for the 

heating demand prediction of the buildings at TU delft campus. 

This chapter builds a model independent on the indoor surface temperatures. With this purpose, a 

sequence of different models are analyse and developed. Each step gave place to a sub model 

(called model 2a, 2b and 2c) as follows. 

1. Building a multivariate linear regression model with independent temperatures, instead of 

the temperature differences (model 1). Model 2a includes the indoor surface temperature. 

2. The influence of the indoor surface temperature is analysed by neglecting this variable. 

This step gives place to model 2b. 

3. The indoor surface temperature is replaced by known variables (model 2c). 

 Regression model with independent parameters (including and excluding the 
indoor surface temperature) 

The model developed in this section includes the same variables than model 1, however the input 

parameters correspond to the independent temperatures (instead of the temperature differences). 

This model is described by equation (3).  

𝑄𝑑𝑒𝑚𝑎𝑛𝑑 [
𝑤

𝑚3] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝐶𝑎 (𝑇𝑜𝑢𝑡𝑑𝑜𝑜𝑟) + 𝐶𝑏 (𝑇𝑖𝑛𝑑𝑜𝑜𝑟) + 𝐶𝑐(V𝑤𝑖𝑛𝑑
 ) + 𝐶𝑑 (𝑇𝑔𝑟𝑜𝑢𝑛𝑑) +

𝐶𝑒  (𝑇𝑜𝑢𝑡 𝐴𝐻𝑈) + 𝐶𝑓 (𝑇𝑖𝑛𝑑𝑜𝑜𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠
𝑡 ) + 𝐶𝑔 𝑄𝑠𝑜𝑙𝑎𝑟 + 𝐶ℎ 𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  

(3) 

Table 9 gives the physical equivalences of the correlation coefficients of model 2. The equivalences 

of the coefficients of model 2 with respect model 1 are also indicated (see section 8.4 for further 

details).  
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Table 9 Physical equivalences of the correlation coefficients considered 

Coefficients Physical equivalence 

Ca 𝐶𝑎~ 𝐶2 + 𝐶3 
 

Cb 𝐶𝑏~ − 𝐶1 − 𝐶2 − 𝐶3 − 𝐶4 − 𝐶5 

Cc 𝐶𝑐~ 𝐶3~ �̇�𝑜𝑝𝑒𝑛𝑖𝑛𝑔𝑠 ∙ 𝜌𝑎𝑖𝑟 + 𝑉𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 ∙
0.15

53
∙ 𝜌𝑎𝑖𝑟 

Cd 𝐶𝑑~𝐶1~𝑈𝑓𝑙𝑜𝑜𝑟.  𝐴𝑓𝑙𝑜𝑜𝑟 

Ce 𝐶𝑒~𝐶4~𝑚𝑣𝑒𝑛𝑡.. 𝐶𝑝𝑎𝑖𝑟 

Cf 𝐶𝑓~𝐶5~𝑖.  𝐴𝑖𝑛𝑑𝑜𝑜𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠 

Cg 𝐶𝑔~𝐶6 

Ch 𝐶ℎ~𝐶7 

 

The outdoor temperature coefficient (Ca) depends on the envelop characteristics and infiltrations in 

the building. The indoor air temperature coefficient (Cb) depends on the coefficients of the ground 

temperature, air outflow temperature of the AHU, infiltrations, outdoor temperature and indoor 

surface temperature. Therefore, a variation in one of the dependent coefficients will influence Ca 

and Cb, and vice versa. 

As it was explained in the previous chapter (section 8.4), the significant value of the independent 

variable is evaluated by the p-value and the t-statistics, but not by the magnitude of the coefficients 

since their order of magnitude differs between each other. The symbols of the coefficients are 

missing physical meaning as they depend of the constant and the combination of variables in the 

equation.  

In this model, the independent coefficients (from Cc until Ch) can be compared between buildings 

since the heating demand is in specific units [W/m3 of indoor air volume] and the variables are 

independent. 

The fitting of this model is analysed including and excluding the indoor surface temperature for the 

three buildings during week days and opening hours (see section 9.3.1 and Appendix 12 for details 

on the results). Including the indoor surface temperature, the goodness of fit is very similar to model 

1 (98.52% for IO, 99.58% for 3mE and 97.47%) for TPM. When the indoor surface temperature is 

excluded, the accuracy of the model for the three buildings is decreased (down to 80% for IO, 

52.9% for 3mE and 63.52% for TPM). Therefore, it is key to replace the indoor surface temperature 

in order to improve the fitting for the three buildings. Next section gives an overview of the procedure 

followed to substitute the indoor surface temperature by other known variables.  



9. Multivariate Linear Model Improvement Towards Application into Practice 

 

 

71 

 Regression model with indoor surface temperature replaced 

This section explains the procedure applied to build an accurate multivariate linear regression 

model independent on the indoor surface temperature. In the first place, the surface temperature 

profile and its dependency with other variables is analysed in order to replace it by other known 

parameters. Once the dependent parameters are studied, the accuracy of this relationship is 

measured by performing a regression analysis for the indoor surface temperature. Finally, these 

parameters are included in the final equation, leading to model 2c. 

 Analysis of the indoor surface temperature 

Analysis of the dependent parameters 

The indoor surface interchanges heat with the indoor air temperature and the thermal mass below 

(floor layers below) which also accumulates heat from internal and solar gains. Figure 25 shows 

the daily pattern of the indoor surface temperature, indoor air temperature, internal heat gains and 

solar gains for IO during a representative week for the data set 2015. The Y-axis is unit less since 

the magnitudes are normalized. 

The indoor surface temperature is in phase with the indoor air temperature. However, the internal 

and solar heat gains are delayed, indicating that the thermal mass takes time to accumulate the 

internal and solar gains. The indoor surface temperature is delayed 1 hour (1 time step) with respect 

the internal heat gain profile and 3 hours with respect the maximum global horizontal solar radiation. 

The delay of the solar radiation is higher than the internal heat gain because the solar radiation 

enters in the building after midday, when the sun has a certain angle with the vertical to be able to 

enter through the windows and reach the floor.  

Figure 25 Normalized profiles of the indoor air temperature, internal heat gain, global 
horizontal solar radiation and surface temperature (modelled in LEA) for IO during a 
representative week (5th - 11th October ‘15) 
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Figure 26 shows the daily course of the solar radiation for summer and winter. During winter, the 

global horizontal solar radiation (h) is delayed 3 hours with respect the global vertical solar radiation 

on the west façade (w). Since the heat accumulation time is 1 hour (1 time step), the solar radiation 

around 14:00 is the radiation that has its highest influence on the increase of the indoor surface 

temperature.   

 

 

Figure 26 Daily course solar radiation at horizontal and vertical surfaces in summer and 
winter [48]. 

According to these observations, the indoor surface temperature is replaced by the internal heat 
gain 1 hour later (Qinternal,1a), the solar heat gain 3 hours later (Qsolar,3a) and the indoor air temperature 
in phase. In this way, the solar radiation profile on the inclination plane at 14:00 is simulated with 
the values of the global horizontal solar radiation. This assumption can be done during winter since 
the solar radiation on the different planes is similar (see solar radiation on the horizontal plane (h) 
and on the vertical planes (e,w) ). However, during spring and summer time, it is advised to make 
an average between the horizontal plane radiation and the vertical plane radiation profiles (when 
the solar radiation on the corresponding plane is not available).  
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Analysis of the hourly profile of the indoor surface temperature 

Figure 28 shows the hourly indoor surface temperature profile including all hours (weekdays and 
weekends) for the data set studied for IO, 3mE and TPM, respectively.  

Figure 27 Simulated hourly indoor surface temperature profile. Data set: weekdays and 
weekends during opening and closing hours from 5th October 2015 until 14th January 2016.   
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During weekdays, the indoor surface temperature simulated by LEA shows a different pattern for 

Mondays than from Tuesday until Friday. Every Monday at the first hour of the morning, the indoor 

surface temperature is lower than the first hour of the rest of the weekdays. This is because during 

the weekend, the indoor air temperature set point is lower, the internal heat gains are smaller and 

the range of opening hours decreases. As a result, the indoor surface temperature drops slowly 

during the weekend, reaching its weekly minimum on Monday at 7:00. From Tuesday until Friday, 

the building is cooling down only during closing hours (9 hours), and as consequence the decrease 

of the indoor surface temperature is less marked than during the weekends. This phenomena leads 

to a higher increase of the indoor surface temperature on Mondays than during the rest of the 

weekdays. On Mondays, the indoor surface temperature increases by 2.5oC for IO, 4.5oC for 3mE 

and 2oC for TPM. In contrast, from Tuesday until Friday, the indoor surface temperature is increased 

by 1.5oC for IO, 2.5oC for 3mE and 0.5oC for TPM. As a consequence, the indoor surface 

temperature pattern on Mondays differs from the rest of the weekdays. This phenomena leads to 

an irregular data set (2 different patterns) which could result on a poor linear correlation.9.2.1 

The weekly pattern of the indoor surface temperature for TPM is more stable than for IO and 3mE 

due to a higher thermal mass in TPM. This means that the indoor surface temperature in TPM is 

less dependent from other parameters which could reduce the success of the replacement by other 

variables.  

For IO and TPM, the maximum temperature reached on Mondays is around 0.5oC lower than the 

maximum temperature reached on the rest of the weekdays (which corresponds to the indoor air 

temperature set point). In contrast, for 3mE the maximum temperature reached is similar every 

weekday. Moreover, for all buildings the indoor air temperature set point is satisfied, meaning that 

the indoor air temperature is satisfied even when the indoor floor temperature is 0.5oC lower. 

Therefore, the extra heat accumulated in the floor of 3mE (leading to 0.5oC extra) should come from 

other heat source (internal or solar gains). If this is the case, in 3mE the indoor surface temperature 

will present a stronger correlation with the solar radiation and internal heat gains accumulated in 

the floor than in IO and TPM. 

The accuracy of the replacement of the indoor surface by the variables mentioned above is 

quantified for the three buildings by performing a linear regression analysis for the indoor surface 

temperature. Next section presents the results of the regression model of the indoor surface 

temperature.  
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 Results regression model of the indoor surface temperature 

The regression model of the indoor surface temperature is performed during opening hours for IO, 
TPM and 3mE. The best fitting is found for 3mE (63%), followed by IO (52.44%) and TPM (23%). 
As it was mentioned above, 3mE shows the most accurate correlation due to a stronger influence 
of the internal heat gains and solar gains than IO and TPM (as the ratio windows to floor area and 
internal gains are the highest). In contrast, TPM presents the lowest correlation due to a high 
thermal mass and the low influence of the solar and internal gains. IO has the same thermal mass 
than 3mE, but lower heat and solar gains, decreasing the explanation power of these two 
parameters. 

Equation (4) corresponds to the multivariate regression model obtained for the indoor surface 

temperature for IO during weekdays and opening hours. Figure 28 illustrates the surface 

temperature modelled for IO by the regression model (equation (4)) and LEA, respectively. 

𝑇𝑖𝑛𝑑𝑜𝑜𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = −26.3 + 0.04 (𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙,1𝑎) + 2.25 (𝑇𝑖𝑛𝑑𝑜𝑜𝑟) +  0.004(𝑄 solar,3a)
 
 

(4) 

As explained in previous section, the two different patterns shown by the indoor surface 
temperature (Mondays and Tuesday-Friday) can lead to inaccuracies in the regression model. This 
effect is appreciable in the estimation of all minimums and the maximum on Mondays. A lower 
minimum on the first hour of Monday lowers the least square of the linear correlation, as a result 
the higher minimums (from October until mid-November from Tuesday until Friday) are 
underestimated. An overestimation of the maximums occurs especially on Mondays since the 
regression is higher due to the other weekdays. This effect is visualised in the three buildings. The 
accuracy of the model can be improved by separating the data sets in 2 and building a regression 
model for each data set: (1) for Mondays during opening hours and (2) from Tuesdays until Fridays 
during opening hours. 

  

Figure 28 comparison surface temperature regression model versus the surface 
temperature physical model. Data set: weekdays during opening hours from 5th October 
2015 until 14th January 2016. 
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 Regression model with surface temperature replaced 

The indoor surface temperature is replaced by the three above mentioned variables and is 

expressed by equation (5), leading to model 2c. 

𝑄𝑑𝑒𝑚𝑎𝑛𝑑 [
𝑤

𝑚3] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝐶𝑎 (𝑇𝑜𝑢𝑡𝑑𝑜𝑜𝑟) + 𝐶𝑏 (𝑇𝑖𝑛𝑑𝑜𝑜𝑟) + 𝐶𝑐(V𝑤𝑖𝑛𝑑
 ) + 𝐶𝑑  (𝑇𝑔𝑟𝑜𝑢𝑛𝑑) +

𝐶𝑒  (𝑇𝑜𝑢𝑡 𝐴𝐻𝑈) + 𝐶𝑓,𝑖𝑛𝑡1𝑎 (𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙,1𝑎) + 𝐶𝑓,𝑠𝑜𝑙𝑎𝑟3𝑎  (𝑄𝑠𝑜𝑙𝑎𝑟,3𝑎) + 𝐶𝑔 (𝑄𝑠𝑜𝑙𝑎𝑟) + 𝐶ℎ (𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙)  

(5) 

This replacement improves substantially the accuracy of the model. The fitting rises by 30% for 

3mE, 11.3% for IO and 9.48% for TPM. Section 0 shows and discusses the comparison between 

the three models built in this chapter for IO (for further details on the fitting profile and results 

obtained for 3mE and TPM, see comparison model 2b and 2c in Appendix 12).  

 Physical meaning of the coefficients 

The influence of the building parameters on the variables’ coefficients is analysed by means of a 
sensitivity analysis by varying the most influencing building characteristics. The thermal mass, 
insulation level and windows fraction is increased, leading to an equation with different 
coefficients. The new coefficients are compared with the coefficients of the baseline scenario. In 
the next chapter, the results of this analysis are presented and discussed. 
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 Results and discussions 

This section presents the result and discussions of model 2 developed in this chapter described by 

equation (6). The first subsection compares the results of the three sub models developed (model 

2a, 2b and 2c). The second subsection compares the final model (model 2c) for the three buildings. 

The last subsection analysis the influence of different building parameters on the coefficients of the 

variables. 

𝑄𝑑𝑒𝑚𝑎𝑛𝑑 [
𝑤

𝑚3] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝐶𝑎 (𝑇𝑜𝑢𝑡𝑑𝑜𝑜𝑟) + 𝐶𝑏 (𝑇𝑖𝑛𝑑𝑜𝑜𝑟) + 𝐶𝑐(V𝑤𝑖𝑛𝑑
 ) + 𝐶𝑑  (𝑇𝑔𝑟𝑜𝑢𝑛𝑑) +

𝐶𝑒  (𝑇𝑜𝑢𝑡 𝐴𝐻𝑈) + 𝐶𝑓 (𝑇𝑖𝑛𝑑𝑜𝑜𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠
𝑡 ) + 𝐶𝑓,𝑖𝑛𝑡1𝑎 (𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙,1𝑎) + 𝐶𝑓,𝑠𝑜𝑙𝑎𝑟3𝑎  (𝑄𝑠𝑜𝑙𝑎𝑟,3𝑎) + 𝐶𝑔 (𝑄𝑠𝑜𝑙𝑎𝑟) +

𝐶ℎ (𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙)  

(6) 

 Comparison model 2 with indoor surface temperature included, excluded and 
replaced. 

Table 10 presents the corresponding coefficients and statistical parameters for model 2a, 2b and 

2c for IO during weekdays and opening hours. Figure 29 illustrates the fitting profile of the hourly 

heating demand predicted for IO by the regression models 2a, 2b and 2c, respectively. Appendix 

12 shows the results of the equations and the fitting profile for the three sub models for 3mE and 

TPM. 

Table 10 Coefficients and statistical parameters of the multivariate regression model 2 for 
the specific heating demand prediction (W/m3) for IO with indoor surface temperature 
included (model 2a), indoor surface temperature excluded (model 2b) and indoor surface 
temperature replaced (model 2c). Data set: weekdays during opening hours from 5th October 
2015 until 14th January 2016. 

Coefficients Ts included 
(model 2a) 

Ts excluded 
(model 2b) 

Ts replaced 
(model 2c) 

Constant -17.69 147.63 32.34 

Ca -0.82 -0.97 -0.92 

Cb 4.23 -6.37 -0.65 

Cc 0.14 0.19 0.16 

Cd 0 0 0 

Ce 0 0 0 

Cf -2.50 - - 
Cf,int1a - - -11.42 

Cf,solar3a - - -0.009481 

Cg 0.0013505 -0.000059 -0.000676 

Ch -1.93 -4.62 8.44 

Adjusted R2 98.52% 79.42% 90.70% 

RMSE 0.48 1.82 1.22 

Ts: indoor surface temperature 

- Coefficient corresponding to a variable excluded/neglected in the multivariate regression model 

This table shows the statistical parameters used to analyse the significance of the model. The other statistical 
parameters (used to analyse the data set residuals and significant level of the variables’ coefficients) are within 
the limit values. 
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Figure 29 Fitting profile of the multivariate regression model for the specific heating demand prediction defined by model 2 for IO with indoor surface temperature 
included (above), excluded (middle) and replaced (below), respectively. Data set: weekdays during opening hours from 5th October 2015 until 14th January 2016. 
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Table 10 shows that the coefficients of the ground temperature and the outflow temperature of the 

AHU is zero ( Cd = Ce = 0). This is because the ground temperature has a constant value in the 

model and the out coming temperature of the AHU has small variations, therefore they are static 

(or semi-static) parameters and their contribution to the model is zero. 

As mentioned earlier, the magnitude and symbol of the coefficients are dependent on the 

combination of variables. This is appreciable by comparing the coefficients of the three models 

above (model 2a, 2b and 2c). For example, when the indoor surface temperature is excluded (model 

2b), the coefficient of the indoor air temperature (Cb) and the constant changes symbol with respect 

model 2a. This is because Cb is influenced by the indoor surface temperature coefficient (Cf), 

interfering in the correlation and changing the symbol of Cb. As the indoor surface coefficient 

changes, the outdoor temperature coefficient also changes. As a result of this changes, the 

constant value and the internal heat gain coefficient are also influenced. 

Table 10 and Figure 29 show that the model with the indoor surface temperature included (model 

2a) presents the best fit for the three buildings (98.52%for IO, 99.58% for 3mE and 97.47% for 

TPM). The profile of the hourly specific heating demand shows the same accurately pattern than in 

model 1. As in model 1, model 2a presents some maximum peaks that are not reached by a 10%, 

leading to a minor underestimation of the heating demand during the first hours in the morning. The 

pattern of this error is constant and localized, therefore it can be corrected mathematically if needed. 

The most influencing parameters in the model for the three buildings are the outdoor temperature 

and the indoor surface temperature. By introducing only these two parameters, the fitting profile 

shows an accuracy of 96% for TPM, 97% for IO and 99% for 3mE. Therefore, when the indoor 

surface temperature is available, the model can be simplified to these two variables.  

When the indoor surface temperature is excluded, the fitting profile for the three buildings decreases 

substantially (79.42% for IO, 52.9% for 3mE and 63.52% for TPM), therefore a higher number of 

variables are added to rise the fitting up. The mismatch between the patterns followed by the 

heating demand predicted by the regression model and the simulator are mainly located in the 

minimum and maximum points for IO. However for 3mE and TPM, the error pattern is irregular 

which make it difficult to correct mathematically. These differences are between a 30% and 90% 

which are inacceptable, making the implementation of model 2b impossible.  

The replacement of the indoor surface temperature leads to great improvements on the heating 

demand profile in comparison with model 2b. This is especially notable in 3mE where the fitting 

rises by more than a 30%. In IO the fitting increases by 11.3% and in TPM by 10%. The replacement 

is more significant in 3mE than in IO and TPM as the internal heat gains and solar radiation (higher 

ratio windows to floor area) replacing the indoor surface temperature (𝑄𝑖𝑛𝑡,1𝑎 , 𝑄𝑠𝑜𝑙𝑎𝑟,3𝑎) has a higher 

influence on the internal surface temperature. The final model with the indoor surface temperature 

replaced shows a fitting profile of 83.2% for 3mE, 73% for TPM and 90.7% for IO. Next section 

compares this final equation and the fitting profile for the three buildings.  
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 Comparison model with indoor surface temperature replaced for the three buildings 

This section presents the results of the model with the indoor surface temperature replaced (model 

2c), and therefore the model that can be implemented to predict and control the heating demand at 

the buildings of TU Delft. Figure 30 presents the fitting profile of the regression model for the specific 

heating demand prediction for IO, 3mE and TPM, respectively. Table 11 shows the coefficient of 

the variables and the statistical parameters of this model for the three buildings. 

Table 11 Coefficients and statistical parameters of the multivariate regression model with 
indoor surface temperature replaced (model 2c) for the specific heating demand prediction 
(W/m3) for IO, 3mE and TPM, respectively. Data set: weekdays during opening hours from 
5th October 2015 until 14th January 2016. 

Coefficients IO 3mE TPM 

Constant 32.34 827.98 918.42 

Ca -0.92 -9.08 -8.57 

Cb -0.65 -5.25 -9.73 

Cc 0.16 -0.02 0.02 

Cd 0 0 0 

Ce 0 -34.08 -34.55 

Cf - - - 
Cf,int1a -11.42 -7.09 -6.86 

Cf,solar3a -0.009481 -0.02 0.000086 

Cg -0.000676 0.0062 0.006 

Ch 8.44 5.60 3.49 

Adjusted R2 90.70% 83.2% 73% 

RMSE 1.22 3.36 2.16 

- Coefficient corresponding to a variable excluded/neglected in the multivariate regression model 

This table shows the statistical parameters used to analyse the significance of the model. The other statistical 
parameters (used to analyse the data set residuals and significant level of the variables’ coefficients) are within 
the limit values. 

The final model shows the best fit for IO (90.7%), followed by 3mE (83.2%) and TPM (73%). This 

is because in IO, the fluctuations of the heating demand profile follows a more constant pattern than 

in 3mE and TPM. However, in the three buildings two different patterns of maximum peaks can be 

differentiated. The smaller peaks correspond to the first hours of the morning from Tuesday until 

Friday, while the bigger peaks correspond to the first hours of the Mondays. Therefore, these peaks 

are related to the different indoor surface temperature patterns explained in section 9.2.1. On 

Mondays morning, the heating demand increases with respect the other weekdays because the 

indoor surface temperature has cold down further during the weekends. Therefore, the accuracy of 

the regression model is decreased due to an interference of two different type of data sets. As a 

result, the peaks on Mondays morning are underestimated and the peaks from Tuesday until Friday 

are over estimated. 

When a higher accuracy is needed, the fitting can be easily improved by making 2 different 

regression equations: (1) including only Mondays and (2) including all weekdays from Tuesday until 

Friday. Therefore, the data set need to be divided accordingly, leading to 2 new data sets with a 

more uniform pattern. As a result, the accuracy of the regression model for 3mE and TPM will be 

increased. 

Even though both 3mE and TPM are equally influenced by the interference of two different patterns, 

the fitting profile for 3mE is still higher than for TPM. This is due to a higher influence of the internal 

heat gains and solar gains in 3mE (as explained in previous section), which is also reflected in the 

coefficients of the corresponding variables (Cf,int1a, Cf,solar3a,  Cg and Ch) as they are higher in 3mE 

than in TPM. As a result, these variables has more explanation power of the heating demand profile 

in 3mE than in TPM, leading to a better fit. 
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The coefficient corresponding to the air outflow temperature  of the AHU (Ce) is zero for IO, however 

for 3mE and TPM the weight of the coefficient is increased by 6 when compared with model 2a 

(including indoor temperature surface). This indicates that the weight of this variable is increased 

when other variables of the model are neglected. Therefore, if the accuracy of the model for 3mE 

and TPM is increased by dividing the current data set in two data sets, the model may be simplified 

(eg. (𝑻𝒐𝒖𝒕 𝑨𝑯𝑼) may be neglected). 
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Figure 30 Fitting profile of the multivariate regression model for the specific heating demand prediction defined by model 2c (indoor surface temperature replaced) 
for IO (above), 3mE (middle) and TPM (below), respectively. Data set: weekdays during opening hours from 5th October 2015 until 14th January 2016. Note: The 

simulation and regression model of IO is 24 hours forwards with respect TPM and 3mE (see maximum peak on the second week of November ‘15). This due to a mistake in the 
starting day of the year in LEA. This mistake is not corrected since it does not affect to the regression model as it is built with the simulated data set and all the variables 
corresponds to the correct hours of the day 
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 Physical meaning of the coefficients 

This section presents the results of the sensitivity analysis performed to analyse the influence of 
building parameters on the variables’. Table 12 shows the coefficients of the multivariate regression 
model with the indoor surface temperature replaced (model 2c) for 3 different scenarios. Scenario 
1 corresponds to the baseline of IO (original building characteristics values). In scenario 2 and 3 
the mass of the building and insulation level in walls and windows is duplicated, respectively. 

Table 12 Multivariate regression models for the specific heating demand (W/m3) for IO for 
the scenario 1 (baseline), scenario 2 (double specific mass) and scenario 3 (double 
insulation level in windows and walls); and their influences, respectively. Data set: 
weekdays during opening hours from 5th October 2015 until 14th January 2016. 

 Scenario 1 
(baseline A) 

Scenario 2 
(x2 mass) 

Influence 
scenario 
2 

Scenario 
3 
(x2 Rc) 

Influence 
scenario 
3 

constant 37.14 137.49 270.24% 32.19 -13.33% 
Ca -0.92 -0.96 3.72% -0.75 -18.62% 
Cb -0.89 -5.90 566.64% -0.87 -1.48% 
Cc 0.16 0.19 14.23% 0.16 -0.94% 

Cd 0 0 0 0 0 

Ce 0 0 0 0 0 

Cf - - - - - 
Cf,int1a -11.36 -6.59 -42.03% -8.41 -25.94% 
Cf,solar3a -0.012 -0.013 -24.45% -0.01 -17.81% 
Cg - - - - - 

Ch 8.26 4.52 -45.30% 6.09 -26.29% 

R2 90.7% 88.66%  83.65%  

- Coefficient corresponding to a variable excluded/neglected in the multivariate regression model 

This table shows the statistical parameters used to analyse the significance of the model. The other statistical 
parameters (used to analyse the data set residuals and significant level of the variables’ coefficients) are within 
the limit values. 

An increase in the specific mass of the building is detected in the coefficients of the variables which 
replaces the indoor surface temperature. These are: indoor air temperature, internal heat gain and 
solar gains accumulated in the floor (Qint,1a and Qsolar,3a). Since the building has higher mass, the 
effect of the internal heat gain and solar gains accumulated decreases (Cf,int1a and Cf,solar3a 

decrease). Therefore, the indoor air temperature becomes the most significant variable since it acts 
as the main substitutive of the indoor surface temperature. As a result of a variation in the 
coefficients of these variables, the constant value increases and the other coefficients are also 
affected. As a conclusion, an increase in the thermal mass will be notable by an strong increase of 
Cb and a decrease of Cf,int1a and Cf,solar3a (and vice versa when the thermal mass decreases).  

The increase of the insulation is directly detected in the outdoor temperature coefficient (Ca). The 
coefficient decreases (slope decreases) as a result of a lower influence of the outdoor temperature. 
A variation in the coefficient of the outdoor temperature influences the indoor air temperature 
coefficient, and therefore the coefficients of the variables influencing the indoor surface temperature 
are also affected (internal heat gain and solar heat gains). As a consequence of all variables 
variations, the constant changes. 

From this analysis, it is concluded that the variation of a coefficient influences several variables 
coefficients. However, the indoor air temperature coefficient is mainly influenced when the mass is 
varied, while the outdoor temperature coefficient varies when the insulation value changes. As a 
result, the indoor and outdoor temperature coefficients become the key indicators of a variation in 
the mass and insulation level, respectively. 

The influence of the solar radiation and the orientation of the windows is evaluated by creating 2 

new scenarios. Table 13 illustrates the coefficients of the multivariate regression model with indoor 

surface temperature replaced for scenarios 4 and 5. In scenario 5, the windows percentage is 

increased by 3 for the West façade. Since the windows have a lower insulation value than the walls, 
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a new baseline is created (scenario 4) with the same insulation value for both windows and walls 

(U-value= 0.4). In this way, the increase of the windows fraction will not interfere the insulation 

parameters.  

Table 13 Multivariate regression models for the absolute heating demand (W/m3) for IO for 
the scenario 4 (baseline B) and scenario 5 (fraction of windows increased by 3 in West 
facade); and their influences, respectively. Data set: weekdays during opening hours from 
5th October 2015 until 14th January 2016. 

 Scenario 4 
(baseline B) 

Scenario 5 
(windows x3 
West façade) 

Influence 
Scenario 5 

constant 28.99 28.42 -1.99% 

Ca -0.68 -0.68 -0.18% 

Cb -0.78 -0.76 -2.90% 

Cc 0.16 0.17 2.63% 

Cd 0 0 0 

Ce 0 0 0 

Cf - - - 

Cf,int1a -7.93 -7.88 -0.56% 

Cf,solar3a -0.0101 -0.0106 4.73% 

Cg 0.00427 0.00426 -0.26% 

Ch 6.19 6.01 -2.83% 

R2 81.66% 82%  

- Coefficient corresponding to a variable excluded/neglected in the multivariate regression model 

This table shows the statistical parameters used to analyse the significance of the model. The other statistical 
parameters (used to analyse the data set residuals and significant level of the variables’ coefficients) are within 
the limit values. 

The increase of the windows fraction in the West façade is directly reflected by an increase of the 
coefficient that simulates the solar radiation entering through the West façade (simulated as 
horizontal solar radiation 2 hours forwards), Cf,solar3a. Since the influence of the variable on the model 
increases, the fitting of the total model also increases.  
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10 Validation model predictive potential 
All models built in the present study are based on a data set containing 1096 hours which 

corresponds to the total opening hours during weekdays from 5th of October 2015 until 14th of 

January 2016. This chapter validates the predictive potential of model 2c (with indoor surface 

temperature replaced) on a short period of time.  

In order to obtain the minimum size of the population (number of hours) needed, several new 

regression models are built with different population sizes. The coefficients of the parameters for 

the new models are compared with the original model (population size = 1095 data).  

The results show that for the three buildings and the period of the year studied, a minimum of 825 

opening hours (corresponding to 2.5 months) is needed to predict the next 270 opening hours 

(approx. 1month). As a result, the data collected from the previous season are able to predict with 

high accuracy level the next month. This can be very convenient in cases where the data from 

previous years are not available. 

Table 14 compares the coefficients of the parameters corresponding to model 2c for the three 

buildings with a population size of 1095 data and 824, respectively. The coefficients of the 

parameters for the models with both population sizes are very similar. 

Table 14 Comparison coefficients and statistical parameters of the multivariate regression 
model 2c for the three buildings for a population of 1095 and 824 data, respectively. Data set 
1 (1095 data): weekdays during opening hours from 5th October 2015 until 14th January 2016. 
Data set 2 (824 data): weekdays during opening hours from 5th October 2015 until 19th 
December 2015. 

Coefficients 
IO 

(1095 data) 

IO 
(824 data) 

3mE 
(1095 data) 

3mE 
(824 data) 

TPM 
(1095 data) 

TPM 
(824 data) 

Constant 32.34 40.42 827.98 885.94 918.42 991.68 
Ca -0.92 -0.90 -9.08 -9.55 -8.57 -9.17 
Cb -0.65 -1.08 -5.25 -5.97 -9.73 -10.54 
Cc 0.16 0.19 -0.02 -0.05 0.02 0.02 
Cd 0 0 0 0 0 0 
Ce 0 0 -34.08 -36.24 -34.55 -37.39 
Cf - - - - - - 
Cf,int1a -11.42 -10.96 -7.09 -6.73 -6.86 -6.40 
Cf,solar3a -0.009481 -0.0088 -0.02 -0.0190 0.000086 0.0005 
Cg -0.000676 -0.0004 0.0062 0.0063 0.006 0.0060 
Ch 8.44 8.06 5.60 5.30 3.49 3.08 

Adjusted R2 90.70% 89.74% 83.2% 83.54% 73% 73.55% 

RMSE 1.22 1.24 3.36 3.28 2.16 2.07 

- Coefficient corresponding to a variable excluded/neglected in the multivariate regression model 

This table shows the statistical parameters used to analyse the significance of the model. The other statistical 
parameters (used to analyse the data set residuals and significant level of the variables’ coefficients) are within 
the limit values. 

When the population size is smaller than 825 data, the coefficients of the model differ significantly 

from the original model. In some cases, these models show a better fitting profile for the historical 

data, but the mismatch with the predicted data increases. The goodness of the fit expressed in 

Table 14 (Adjusted R2) corresponds to the historical data used in each case. The fitting profile for 

both historical and predicted data is illustrated in Figure 31. It is observed that the fitting profile for 

the predicted data is almost identical to the match observed in section 9.3.2 for the total population 

size.
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Figure 31 Fitting profile of the multivariate regression model 2c based on the data set October-December 2015 for IO, 3mE and TPM, respectively. 
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11 Final Conclusions 
From this research work, it is concluded that the proposed linear regression model shows a 

promising performance in order to become a fast and simple to use tool for predicting the heating 

demand in buildings. This model limits the demand of measured data to a few measurable 

parameters and weather data which make it suitable to be used in older buildings where building 

characteristics are unknown. Moreover, it shows a physical relation with the input coefficients, 

making it possible to get a better insight of the influence of the different parameters in the building 

response.  

This chapter presents the main conclusions regarding the multivariate linear model that was 

developed and the highlights related to the building procedure. Moreover, it gives an insight on the 

causes of the mismatch between actual and simulated data, and explains the consequences that 

this mismatch had on the calibrations of the estimated parameters. The evaluation of the 

calibrations is performed by using a new calibration method which is recommended for further 

validations. 

 Multivariate linear model 

In this study, several models are built and compared with each other. The general equation of the 
final model developed in this study is expressed as follows: 

𝑄𝑑𝑒𝑚𝑎𝑛𝑑 [
𝑤

𝑚3] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝐶𝑎 (𝑇𝑜𝑢𝑡𝑑𝑜𝑜𝑟) + 𝐶𝑏 (𝑇𝑖𝑛𝑑𝑜𝑜𝑟) + 𝐶𝑐(V𝑤𝑖𝑛𝑑
 ) + 𝐶𝑒  (𝑇𝑜𝑢𝑡 𝐴𝐻𝑈) +

𝐶𝑓 (𝑇𝑖𝑛𝑑𝑜𝑜𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠
𝑡 ) + 𝐶𝑔 (𝑄𝑠𝑜𝑙𝑎𝑟) + 𝐶ℎ (𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙)  

Depending on the parameters available in the case study, more or less variables will be needed to 

reach an acceptable correlation. Two main models (for weekdays during opening hours) are 

differentiated depending on whether the indoor surface temperature is an available parameter or 

not: 

1. Case study when the indoor surface temperature is available 

In this case, the model can be expressed in function of two parameters: (1) indoor surface 

temperature and (2) the outdoor temperature and is expressed according to the equation below. 

The fitting profile for this model shows an accuracy of 96% for TPM, 97% for IO and 99% for 3mE. 

 𝑄𝑑𝑒𝑚𝑎𝑛𝑑 [
𝑤

𝑚3] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 +  𝐶𝑎 (𝑇𝑜𝑢𝑡𝑑𝑜𝑜𝑟) + 𝐶𝑓 (𝑇𝑖𝑛𝑑𝑜𝑜𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠
𝑡 )  

2. Case study when the indoor surface temperature is not available 

In this case the indoor surface temperature should be replaced by additional terms because when 

the indoor surface temperature is excluded from the general equation, the fitting profile for the three 

buildings decreases to inacceptable levels (79.42% for IO, 52.9% for 3mE and 63.52% for TPM). 

The indoor surface temperature is replaced by the internal heat gains and solar radiation in phase 

with the indoor air temperature (which is proven to be in phase with the indoor surface temperature). 

In this case study, the internal heat gain is delayed by 1 hour.  When using the global horizontal 

solar radiation, this parameter is delayed by 3 hours (as it simulates the solar radiation profile on 

the inclination plane at 14PM). The delay time will vary on every case study and will depend on the 

thermal mass of the building (lower thermal mass, less delay time). This replacement will be more 

significant in buildings where the internal heat gains and solar radiation have a higher influence. 

The final model in which the indoor surface temperature replaced is expressed by the equation 

below and shows a fitting profile of 83.2% for 3mE, 73.5% for TPM and 90.7% for IO. For 3mE and 

TPM, the fitting can be improved by making 2 different regression equations: (1) including only 

Mondays and (2) including all weekdays from Tuesday until Friday. 
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𝑄𝑑𝑒𝑚𝑎𝑛𝑑 [
𝑤

𝑚3] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 +  𝐶𝑎 (𝑇𝑜𝑢𝑡𝑑𝑜𝑜𝑟) + 𝐶𝑏 (𝑇𝑖𝑛𝑑𝑜𝑜𝑟) + 𝐶𝑐(V𝑤𝑖𝑛𝑑
 ) +

𝐶𝑒  (𝑇𝑜𝑢𝑡 𝐴𝐻𝑈) + 𝐶𝑓,𝑖𝑛𝑡1𝑎 (𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙,1𝑎) + 𝐶𝑓,𝑠𝑜𝑙𝑎𝑟3𝑎  (𝑄𝑠𝑜𝑙𝑎𝑟,3𝑎) + 𝐶𝑔 (𝑄𝑠𝑜𝑙𝑎𝑟) + 𝐶ℎ (𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙)  

Concerning the optimal predictive methodology for this case study 

 Multiple linear regression model is a more suitable predictive tool than a physics-based 
model for this case study. The complexity level of this tool is in line with the knowledge 
available of this case study. Any physics-based simulator (and therefore, LEA) is beyond the 
complexity limits of this case study because main influencing parameters (dynamic parameters 
and key indicators) are unknown and therefore estimated. This leads to the introduction of input 
data errors in the simulated results. 

Regarding the significant value of the parameters and physical meaning of the coefficients 

 Significant value of the parameters. The significant value of the independent variable is 

evaluated by the p-value and the t-statistics, but not by the magnitude of the coefficients since 

their order of magnitude differs between each other.  

 Key indicators coefficients for the detection of the variation of a parameter. The variation 

of a coefficient in a multivariate linear regression influences several variables coefficients. 

However, there are some coefficients that are affected in a higher proportion than the others 

and act as key indicators of the variation of a parameter.  

 Mass variation. The indoor air temperature coefficient is the key indicator for a mass 
variation. The solar and internal gains coefficients are also affected but in a lower 
proportion. 

 Insulation level. The outdoor temperature coefficient is the key indicator for the 
variation of the envelop performance. 

 Fraction windows. The variation of the fraction windows in a particular façade is 
indicated by a change in the coefficient of the solar radiation profile on the 
corresponding inclination plane. 

 Symbols of coefficients. The symbols of the coefficients are missing physical meaning as 

they depend of the constant and the combination of variables in the equation. 

Concerning the number of equations necessary to build the multivariate linear regression 

model. 

A new equation will be defined when there is a static variable influencing the correlation of the linear 

regression (slope of the least square). This can be detected by a visual analysis of the scatter plot 

of the heating demand versus the outdoor temperature as 2 or more point clouds will be 

distinguished. For this case study, the following equations are distinguished: 

 Seasonal differentiation. It may be necessary to build a different multivariable model for (1) 
moderated weather months (heating and cooling operating during the same day) and (2) cold 
months (only heating) as the correlation may be affected when both heating and cooling are 
operating during the same day (due to the thermos-dynamic effect of the wall). 

 Operating mode differentiation. The different operating modes affect the correlation between 
the variables and the heating demand, therefore it is necessary to build a different multivariable 
equation for each operating mode: (1) weekdays during opening hours, (2) weekends during 
opening hours and (3) closing hours. 

 Day of the week differentiation (only needed when indoor surface temperature is not available). 
When the building cools down further during weekends than during weekdays, the heating 
demand pattern for Mondays may be differentiate. This phenomena is expected for buildings 
with low insulation level (lower than 2.5 W/m2) and/or too heavy buildings (thermal mass > 
300kg/m2) and/or buildings with low influence of the internal and solar gains. In these cases, 
the fitting can be improved by making 2 different regression equations: (1) including only 
Mondays and (2) including all weekdays from Tuesday until Friday.  
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Regarding the selection of the data set to build in the multivariate linear regression model. 

 The data set will be selected according to the equation built. Therefore, the data set will 
be classified according to the season, operating modes and day of the week (when needed). 

 The simulated data set is selected in this study as actual data sets are incomplete. Both 
actual data sets (2015 and 2016) are incomplete to build the mathematical model and the 
missing parameters cannot be substituted by the estimated parameters as they were not 
correctly estimated. In contrast, it is proven that the simulated data sets are accurate and 
representative of the actual data set. Therefore the mathematical model will be built based on 
the simulated data set. 

 Variables needed in a complete actual data set for the implementation of this equation.  

 Option 1: outdoor temperature and indoor surface temperature. 

 Option 2: outdoor temperature, global horizontal solar radiation, wind speed, internal 
heat gains, indoor air temperature and outflow temperature of the AHU (less relevant). 
In the cases where the radiators are manipulated intensively, it is advisable to measure 
this variable and include it in the equation. 

 Actual data set should correspond to a building where the heating demand is controlled 

by the indoor air temperature. The buildings with indoor air temperature controller supply 

heat only when the building need it, decreasing the heating demand of the building and 

increasing the indoor comfort. This will be necessary in order to build an equation that optimizes 

the thermal energy and comfort of the building. In this case study, only the data survey of TPM 

fulfilled this requirement.  

 The optimal size of the data set used to build a linear regression around 2.5 months 
(seasonal period). A smaller size could decrease the accuracy if the period selected is not 
representative while a higher size will decrease its accuracy due to the annual periodicity 
presented in the outdoor weather parameters. 

 

 The mismatch between the actual and simulated data 

The analysis of the gap between actual and simulated heating demand gives the following findings: 

 The gap between actual and simulated data results from the fact that the most 
influencing parameters differ from actual and simulated data as different key indicators 
are interfering. The simulated heating demand is dominated by the building characteristics, 
while the actual heating demand depends on the different types of temperature control system 
and the manipulation of the radiators. 

 Actual and simulated data in IO and 3mE are not comparable. The gap between simulated 
and actual data is higher for IO and 3mE than for TPM. As a result, the actual and simulated 
heating demand for IO and 3mE are not comparable, while they can be compared for TPM.  

As a consequence of these findings, it is concluded that the calibrations of the parameters 
(performed prior to this thesis) are not accurate since they were based on the comparison between 
actual and simulated data. Therefore, the calibrations were evaluated in this study and the main 
conclusions are presented in the next section. 
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 Regarding the calibration of the estimated parameters 

 Thermal mass. The thermal mass for the buildings without indoor air temperature control 
system (3mE and IO) is underestimated as a result of a poor calibration performed with 
incomparable data sets. 

 Insulations of the building envelop. The insulation parameters of the building envelope 
(windows and wall) should be increased for 3mE and slightly increased for IO and TPM.  

 Ventilation losses and infiltrations. The ventilation losses and infiltrations should be 
decreased for 3mE and slightly increased for IO and TPM. 

 Low energy performance in the heat distribution system at 3mE. It is observed that IO and 
3mE have the same envelop characteristics, however the specific heating demand at 3mE is 
higher than in IO. This low energy performance of 3mE may be due to a lower energy 
performance in the heat distribution systems. This conclusion is based on the assumption that 
the total air volume of the buildings is correctly estimated. 

 New calibration procedure recommended. The calibration procedure based on the analysis 
of the least square of the scatter plot (section 7.3.3 ) gives a better insights on the parameters 
estimated than the calibration procedure followed before to this thesis. 
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12 Recommendations and future 
developments 

 

For this case study, the multivariate linear regression model is a more suitable predictive tool than 

a physics-based model (e.g. LEA). This is mainly because the number of parameters in the 

regression model is smaller and limited to a few measurable parameters. Any physics-based 

simulator (and therefore, LEA) is beyond the complexity limits of this case study because some of 

the most influencing parameters are unknown and therefore estimated. The estimation of 

parameters leads to the introduction of input data errors in the simulated results and is a very time 

consuming task.  

As a result, the implementation of this data-driven predictive tool will save calibration time and will 

decrease the introduction of input data errors while providing a high accuracy of prediction. 

Moreover, the significant value of the parameters can be measured, giving a better insight of the 

influence of the different parameters in the building response than in the physics-based models. 

 

In order to apply the developed linear regression model into practice, the following work is 

recommended. 

 Training the model with actual data. For the application of this model into practice, the 
coefficients should be trained with actual data of buildings with indoor temperature control 
system (thermostat). For the buildings where the heating demand is not controlled by a 
thermostat, this should be installed before taking measurements. For the buildings at TU Delft, 
LEA can act as a thermostat once the calibrations are validated. 

 Testing the model for closing hours, weekends and moderated months. The model 
presented is built based on data for winter period during weekdays and opening hours because 
is the most complex and relevant period. This model should be tested during weekends, closing 
hours and moderated months for its implementation all year round. It is expected that during 
closing hours, the equation will be mostly dependent on the outdoor temperature. During 
moderated months, the solar radiation will have higher weight on the equation and the solar 
radiation profile on the inclination plane should be readjusted to the corresponding season. 

 Including day of the week differentiation (only needed when indoor surface temperature 
is not available). The heating demand pattern for Mondays may be different for extreme heavy 
buildings (thermal mass > 300kg/m2), and/or buildings with low insulation level, and/or buildings 
with low influence of the internal and solar gains. In these cases, the fitting can be improved by 
making 2 different regression equations: (1) including only Mondays and (2) including all 
weekdays from Tuesday until Friday. 

 

Next sections present the guidelines for training this model with actual data and for the validation 
of the calibrations, respectively. 
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 Guideline to train the multivariate regression model with actual data for TU 
Delft buildings. 

 

1. Data collection of the required parameters.  The data will be collected for around 2.5 
months from a similar season than the predicted season. The data can be from a previous 
year or 2.5 months before the prediction. 

a. Weather data: outdoor temperature, global horizontal solar radiation, wind speed. 

b. Building measurements: indoor air temperature, internal heat gains, heating 
demand of the building and outflow temperature of the AHU (less relevant).  

i. The indoor air temperature should represent the average temperature 
profile of the total air volume contained in the building. The representative 
sample depends on the physical distribution of the building and it should 
include the measurements of rooms at each orientation side of the building 
and the rooms which contains a higher volume of air (eg. canteen, big 
lecture/study rooms, etc.).  

ii. The actual heating demand should corresponds to the total heat supplied 

by all heating supply systems installed in the building. 

iii. Outflow temperature of the AHU should correspond to the average 
temperature proportional to the inflow air of each air handling unit. 

2. Analysis of the solar radiation and internal heat gains alignment with respect the 
indoor air temperature. The internal heating demand and solar radiation used should be 
delayed in order to align them in phase with the indoor air temperature. The alignment done 
in this thesis can be used for TPM. However, for IO and 3mE the alignment should be 
recalculated as the thermal mass used for these buildings in this thesis (estimated in the 
calibrations) is underestimated. As a result, it is expected that the solar radiation should be 
delayed by 4 or 5 hours (instead of 3 hours) and the internal heat gains around 2 or 3 hours 
(instead of 1 hour). 

3. Data set selection according to the type of equation. A good data set selection is key 
to obtain an accurate prediction of the heating demand.  

a. Seasonal. The data set selected should be representative of the season to be 

predicted (moderated months or winter period). Data from the previous year or the 

previous 2.5 months can be used. 

b. Operating modes. The data set will be divided according to the operating mode 

to be modelled. For the TU Delft buildings 3 data sets are created: (1) weekdays 

during opening hours, (2) weekends during opening hours, (3) closing hours.  

c. Day of the week. When it is distinguish a different hourly heating demand pattern 

for the Mondays than for the rest of the weekdays, the data set will be divided as 

follows: (1) including only Mondays and (2) including all weekdays from Tuesday 

until Friday. 

4. Search procedure. The training should be done using a search procedure able to analyse 
the data set residuals, and the significant level of the variables’ coefficients and the model. 
This study uses the interactive stepwise function available in Matlab 2015b in the statistical 
toolbox. 

 

  



12. Recommendations and Future Developments 

 

 

93 

 Guideline for the validation of the calibrations (to improve the implementation 
of LEA). 

 

In case that it is decided to continue the prediction of the heating demand in buildings with LEA, it 

is recommended to make a validation of the calibrations (performed prior to this thesis) in the 

following cases: 

 Buildings without thermostat (indoor air temperature control system). This is because in 
these cases the actual and simulated heating demand are not comparable, leading to wrong 
estimations of the parameters. For these buildings, the new calibration procedure proposed in 
section 7.3.3 is strongly recommended.  

 When the existence or absence of cooling mode was not taken into account for the prior 
calibration procedure. During the moderated months, the cooling influences the heating 
demand of the building. Therefore, the cooling mode should be activated to simulate the 
buildings with cooling mode and deactivated to simulate the buildings without cooling mode. 

 

For performing the validation of the calibrations, the following practices are recommended  

 New calibration procedure recommended. This research work recommends a new 
calibration procedure based on the analysis of the least square line on the scatter data is (see 
section 7.3.3 for further details). This calibration procedure is expected to be more accurate 
and less time consuming than the calibration procedure performed prior to this thesis. 

 Qualitative analysis prior the calibration. Before performing a calibration, it is recommended 
to make a qualitative analysis of the most influencing parameters on actual data, simulated data 
and the comparison between them for the current case study (see section 7.2 for further 
details). The identification of key indicators and their interaction on the most influencing 
parameters will give good indications about whether the actual and simulated data set can be 
compared. This procedure will avoid poor estimation of parameters, leading to time saving and 
preventing the introduction of input data errors in the heating demand predictions. 

 Actual data sample representative from reality and in line with the simulated data. In 
order to make a correct calibration of the parameters the actual and simulated data have to be 
comparable. Therefore, the simulator should be adapted to each case study and the actual data 
sample should be representative from reality and in line with the simulated data. Since LEA 
simulates the building as a single-zone, the simulated outputs corresponds to the total building. 
Therefore, the collection of data should be as explained in previous section. 
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Appendix 1 Current district heating system at 

TU Delft campus 

1.1 Heating distribution: Overview TU Delft District Heating Grid 

TU Delft District Heating Grid (DHG) supplies the heating needed to most of the buildings at TU 

Delft campus. Some buildings such as 3mE (Faculty of Mechanical, Maritime and Materials 

Engineering), EWI(Faculty Electrical Engineering, Mathematics and Computer Science) and the 

university library are partially heated and cooled by an underground heat and cold storage system 

combined with heat pumps [40]. The DHG is divided in 4 different branches: North 1 (Noord 1), 

North 2 (Noord 2), South 1 (Zuid 1) and South 2 (Zuid 2). Figure 32 presents the overview of the 

TU buildings connected to the different branches. 

 

Figure 32 Overview of the buildings connected to TU Delft District Heating Grid [49]. 

The buildings studied in this project and in the current phase of IPIN (phase 2) are the ones 
connected to branch North 2. These are 3mE (Faculty of Mechanical, Maritime and Materials 
Engineering), IO (Industrial Design) and TPM (Technology, Policy and Management). Figure 33 
shows an overview of the different heating distribution stations of branch North 2 for each of the 
buildings analysed: 3mE (green), IO (yellow) and TPM (blue). Branch 2 contains a total of 11 heat 
distribution stations, where 1 is situated in TPM, 2 in IO and 8 in 3mE [1]. 
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Figure 33 Overview heat distribution stations model branch North 2 of TU Delft 
District Heating Grid  [1]. 

1.2 Heating Generation: Description Central Heating Plant 

The heat distributed at the TU Delft DHG is generated in a Central Heating Plant (CHP) 
(represented in Figure 33 in red). The CHP has a total thermal capacity of 84 MW th and the heat is 
generated by combining 3 gas boilers and 2 Combined Heat & Power Units (CHPU). The gas boilers 
have a total thermal capacity of 15, 30 and 35 MW th, respectively, and the CHPUs 2MW th each one 
[1]. 

Figure 34 presents the scheme of the heating generation system at the TU delft Central Heating 
Plant.  

 

Figure 34 Scheme of the heating generation system at TU Delft Central Heating Plant 
[1]. 

The gas boilers heats up the water at high temperatures (between 100 and 130oC), while the 
CHPUs at medium temperatures (between 80 and 100oC) and work in a range temperature 
between 50 and 83°C  [1]. When the return water coming from the thermal grid has a lower 
temperature than 83oC, the water is (pre) heated with the CHPUs before being sent to the vessel. 
On the contrary, the CHPUs are bypassed when the return temperature is higher than 83oC. In both 
cases, the gas boilers supply the remaining heat to reach the required supply temperature when 
needed. Currently, the required supply temperature is just dependent on the outdoor temperature 
(maximum of 130oC when the outdoor temperature is -10oC) and according to the heating curve. 

Gas boilers  

Vessel 

CHPUs 
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The efficiency of the heating generation system increases at a continuous operating mode due to 
the start-up time needed for the gas boilers and CHPUs (average start-up time of the gas boilers 
approximately 1 hour, this is dependent on the capacity). A continuous operating mode for the gas 

boilers is determined by a constant heat supply, therefore: (𝑇𝑠𝑢𝑝𝑝𝑙𝑦 − 𝑇𝑟𝑒𝑡𝑢𝑟𝑛) ∙ �̇� = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, where 

Tsupply and Treturn are the water supply and return temperatures, respectively; and �̇� is the water flow 
rate (m3/s). While a continuous operating mode for the CHPUs is determined by both a continuous 

heat supply and a Treturn83oC. 

The heat consumption in the heating generation & distribution system is reduced at a lower supply 

temperature. In the heating generation system, a lower supply temperature reduces the T (Tsupply 
- Treturn), leading to a decrease in heating supply and contributing to a lower return temperature. A 
low temperature district heating grid will lead to a reduction in the transport heat losses due to a 
lower heat transference with the outdoor environment. 

According to the heating generation systems implemented in the TU Delft CHP, it is concluded that 
the following objectives need to be pursue in order to achieve a better energy performance of the 
current heating generation & distribution system: 

1. Continuous operating mode by: 

a. Constant heating supply: (𝑇𝑠𝑢𝑝𝑝𝑙𝑦 − 𝑇𝑟𝑒𝑡𝑢𝑟𝑛) ∙ �̇� = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. This optimizes the use 

of the gas boilers and CHPUs. 

b. Lowering return temperature (Treturn83oC). The use of the CHPUs is maximized 
and optimized. 

2. Lowering the supply temperature of the TU Delft DHG. This will reduce the heat 

consumption (lower T) and the transport heat losses.  

  



 

5 

Appendix 2 Energy balances in a building 

energy simulation model 

Section 6.1.1 explained the overview and the main assumptions of the thermal balances in LEA. 
This appendix gives a detailed explanation of the methodology used for the thermal balances in the 
room (static model) and the floor (dynamic model). 

2.1 Room model 

The thermal model of the room is calculated according to a steady state situation for every time 

interval. The energy demand of the building corresponds to the following thermal energy balance: 

𝑄𝑑𝑒𝑚𝑎𝑛𝑑 = 𝑄𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑚𝑎𝑠𝑠 + 𝑄𝑔𝑟𝑜𝑢𝑛𝑑 + 𝑄𝑒𝑛𝑣𝑒𝑙𝑜𝑝 + 𝑄𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑠 + 𝑄𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛 + 𝑄𝑠𝑜𝑙𝑎𝑟 + 𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 

Every time step, LEA predicts the energy demand (𝑄𝑑𝑒𝑚𝑎𝑛𝑑) required to reach the indoor air 

temperature according to the corresponding temperature set point (s).  

The calculation method of the different heat losses/gain are described below. The transmission 

losses due to thermal bridges (thermal losses occurring at the junction of walls, ceiling, floor or wall 

and windows frame) are neglected. 

Heat transmission through the envelop (𝑸𝒆𝒏𝒗𝒆𝒍𝒐𝒑): 

LEA calculates the heat transmission for each of the four facades (orientation dependent) and the 

roof. The heat transmissions for each façade and the roof are expressed according to the following 

equation: 

 𝑄𝑒𝑛𝑣𝑒𝑙𝑜𝑝 = ∑ 𝑈𝑒𝑛𝑣𝑒𝑙𝑜𝑝
𝑗

. 𝐴𝑒𝑛𝑣𝑒𝑙𝑜𝑝
𝑗

. (𝑇𝑜 − 𝑇𝑖)𝑖  

Where, for each façade/roof of orientation j, 𝑈𝑒𝑛𝑣𝑒𝑙𝑜𝑝
𝑗

 corresponds to the heat transfer coefficient and 𝐴𝑒𝑛𝑣𝑒𝑙𝑜𝑝
𝑗

 

the surface of the facade/roof. The heat transfer coefficient of each façade and roof is defined as follows. 

𝑈𝑒𝑛𝑣𝑒𝑙𝑜𝑝
𝑗

= (𝑈𝑤𝑖𝑛𝑑𝑜𝑤𝑠 . %𝑤𝑖𝑛𝑑𝑜𝑤𝑠 + 𝑈𝑤𝑎𝑙𝑙/𝑟𝑜𝑜𝑓. %𝑤𝑎𝑙𝑙) 

Where the heat transfer coefficient for the walls and roof is defined as 𝑈𝑤𝑎𝑙𝑙/𝑟𝑜𝑜𝑓 =
1

1

𝛼𝑖
+𝑅𝑐+

1

𝛼𝑜

 

Where, i corresponds to the indoor combined heat transfer coefficients for convection and 

radiation. The outdoor combined heat transfer coefficients (o) are dependent on the wind speed. 

In LEA, both i and o are assumed to be constant values. The heat transfer coefficient for the 

windows corresponds to a constant value, thus LEA assumes that it is independent from i and o. 

The thermal resistance of the composed wall (Rc) is dependent on the wall and roof characteristics. 

Aenvelop is the area corresponding to the roof or façade for the respective orientations. Ti corresponds 

to the indoor air temperature. To corresponds to the outdoor temperature.  

Heat transmission through the ground 

The heat transmission through the ground is calculated according to the following equation: 

𝑄𝑔𝑟𝑜𝑢𝑛𝑑 = 𝑈𝑓𝑙𝑜𝑜𝑟 .  𝐴𝑓𝑙𝑜𝑜𝑟 . (𝑇𝑔𝑟𝑜𝑢𝑛𝑑 − 𝑇𝑖) 

Where, 𝑇𝑔𝑟𝑜𝑢𝑛𝑑 corresponds to the surface temperature of the ground (soil) and  𝐴𝑓𝑙𝑜𝑜𝑟  the area 

corresponding to the ground floor surface. The heat transfer coefficient for the floor is defined as 

𝑈𝑓𝑙𝑜𝑜𝑟 =
1

1

𝛼𝑖
+𝑅𝑐
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Internal heat gains 

The internal heat gain refers to the energy flow produced by people, lighting and other electrical 

devices. Thus, the total internal heat gain is calculated according to the following equation. 

𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑄𝑖𝑛𝑡.𝑝𝑒𝑜𝑝𝑙𝑒 + 𝑄𝑖𝑛𝑡.𝑙𝑖𝑔ℎ𝑡 + 𝑄𝑖𝑛𝑡.𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒𝑠 

The internal heat gain comes as heat into the building through convection and radiation, therefore 

the percentage of the total internal heat transmitted by radiation and convection are differentiated 

in LEA.  

The quantity of heat released by the people will depend on the occupancy and the heat dissipated 

by a human body and is calculated by the following equation. 

𝑄𝑖𝑛𝑡.𝑝𝑒𝑜𝑝𝑙𝑒 = 𝑛𝑝𝑒𝑜𝑝𝑙𝑒 . 𝑄𝑏𝑜𝑑𝑦 

Where, npeople is the number of people and depends on the week and weekend schedule. Qbody [wh] 

corresponds to the heat gain per person which depends mainly on the type of activity deployed, 

therefore LEA assigns the heat gain depending on the use of the building.  

The internal heat gain due to artificial lighting is calculated according to the following equation. 

𝑄𝑖𝑛𝑡,𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔 = 𝐴𝑐𝑒𝑖𝑙𝑖𝑛𝑔𝑠 . 𝑄𝑙𝑖𝑔ℎ𝑡 

Where Aceilings is the total area of all the ceilings, therefore it is assumed that the lightings are 
distributed along the whole ceiling area. 𝑄

𝑙𝑖𝑔ℎ𝑡 [
𝑤ℎ

𝑚2]
 corresponds to the lighting power which is hourly 

dependent on the week and weekend schedule. 

The internal heat gain due to electrical appliances is calculated as follows. 

𝑄𝑖𝑛𝑡,𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒𝑠 = 𝐴𝑓𝑙𝑜𝑜𝑟 . 𝑄𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑛𝑐𝑒𝑠 

The appliances are assumed to be equally distributed along all the floor area (Afloor). The total power 

of all appliances (Qappliances [
𝑤ℎ

𝑚2]) is dependent on the use of the building and the week and weekend 

schedule. 

 

Solar heat gain 

The total solar gain is the amount of solar energy accumulated in the building. LEA 
calculates the percentage of solar heat gain transmitted by radiation and convection, and uses a 
different calculation method for direct, diffused and reflective solar radiation.  

𝑄𝑠𝑜𝑙𝑎𝑟 = 𝑄𝑠𝑜𝑙 𝑑𝑖𝑟𝑒𝑐𝑡 + 𝑄𝑠𝑜𝑙 𝑑𝑖𝑓. + 𝑄𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑒  

The total solar heat gain depends on the percentage of windows in the facade and façade 
orientation. The direct solar radiation depends on the reflection properties of the window glazing. 
The reflective solar radiation corresponds to the solar radiation reflected on the ground and is 
calculated based on the direct, diffused solar radiation and the albedo (ground reflection). Further 
details about the calculation of the reflective solar radiation can be found in the LEA’s function 
‘bereken zonbelasting’ 

 

Mechanical ventilation 

The ventilation air is preheated in an air handling unit (AHU) and enters in the room at a defined 

temperature (𝑇out AHU). The heat transferred through mechanical ventilation is calculated by the 

following equation. 

𝑄𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑚𝑣𝑒𝑛𝑡.. 𝐶𝑝𝑎𝑖𝑟 (𝑇out AHU − 𝑇i ) 

Where Cpair corresponds to the heating capacity of air (J/kg.K) and 𝑚𝑣𝑒𝑛𝑡. to the mass flow rate of 

the ventilation air (kg/s). The mass flow rate is defined as 𝑚𝑣𝑒𝑛𝑡. = �̇�𝑣𝑒𝑛𝑡.. 𝜌𝑎𝑖𝑟; where �̇�𝑣𝑒𝑛𝑡. is the 

volume flow rate of ventilation (m3/s) which is hourly dependent on the weekly and weekend 
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schedule. The calculation of the ventilation air (𝑇out AHU ) is described in the set of functions AHU 

(LBK). 

 

Infiltrations 

The infiltrations correspond to the outside air which enters into the buildings through cracks in the 

construction and openings. The infiltration losses are calculated as follows.  

𝑄𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = (𝑚𝑜𝑝𝑒𝑛𝑖𝑛𝑔𝑠 + 𝑚𝑐𝑟𝑎𝑐𝑘𝑠). 𝐶𝑝𝑎𝑖𝑟  (𝑇o − 𝑇i ) 

Where, 𝑚𝑜𝑝𝑒𝑛𝑖𝑛𝑔𝑠 is the mass flow rate of air entering through openings which is defined as 

𝑚𝑜𝑝𝑒𝑛𝑖𝑛𝑔𝑠. = �̇�𝑜𝑝𝑒𝑛𝑖𝑛𝑔𝑠.. 𝜌𝑎𝑖𝑟; where �̇�𝑜𝑝𝑒𝑛𝑖𝑛𝑔𝑠 is a determine volume flow rate (m3/s) which is hourly 

dependent on the weekly and weekend schedule. 𝑚𝑐𝑟𝑎𝑐𝑘𝑠 corresponds to the mass flow rate of air 

entering through cracks in the building which is calculated dependent on the wind speed according 

to the following equation [NEN-EN 12207]. 

𝑚𝑐𝑟𝑎𝑐𝑘𝑠 = 𝑉𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 ∙ 0.15 ∙ (
𝑉𝑤𝑖𝑛𝑑

2

𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
2 )

2/3

 

 

Heat transmission through indoor surfaces (Qthermal mass) 

The heat accumulated in the building (and transferred to the indoor air) is determined by the heat 

transmitted through the indoor surfaces in contact with the indoor climate (𝑄𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑚𝑎𝑠𝑠). Therefore, 

the heat is transmitted through the total area of indoor surfaces in contact with the indoor air 
( 𝐴𝑖𝑛𝑑𝑜𝑜𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠). For buildings accumulating most of their heat in floors and ceilings, this indoor 

surface area corresponds to the total area of floors and ceilings in contact with the indoor air.  

The heat transmitted to the indoor surfaces is calculated as follows:  

𝑄𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑚𝑎𝑠𝑠 = 𝑖 .  𝐴𝑖𝑛𝑑𝑜𝑜𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠 . (𝑇𝑠
𝑡 − 𝑇𝑖) 

Where Ts
t is the temperature corresponding to the indoor surface and is calculated in the floor model 

(see section 2.2). 
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2.2 Floor model 

The thermal mass of the building is accumulated in the total mass of the building and the heat is 

transmitted through the indoor surfaces (floors and ceilings). The thermal model of the floor is 

calculated using the method finite-difference approximations for one-dimensional unsteady 

conduction (Millers,1999).  

The accuracy of this method will depend on the number of temperature nodes defined, these are 

determined in function of the number of slabs. LEA defines the number of slabs dependent on the 

total mass of the building. Table below shows the number of slabs in the building depending on the 

total mass of the building. 

Table 15 Number of slabs corresponding to the mass of the building 

Building mass [kg/ m2] Nslabs 

<100 2 

<250 3 

>250 4 

The thickness of each slab is directly proportional to the half of the total mass of the building and 

the total number of slabs according to the equation below.  

∆𝑥 =
𝑋

2∙𝑁𝑠𝑙𝑎𝑏
; where X is the sum of the total floor and ceilings thickness defined as:  

𝑋 [𝑚] =
𝑚𝑎𝑠𝑠 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 [

𝑘𝑔

𝑚2]

𝜌𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 [
𝑘𝑔

𝑚3]
;  

The equation of the nodes can be broken down in 3 characteristic equations: node at the surface 

of the indoor floor with heat accumulation in one side (node ‘s’), nodes at the inside of the indoor 

layer of the floor with heat accumulation in both sides (nodes ‘m’), node at the middle of the inside 

layer (node ‘mi’). Figure below shows the representation of the 3 characteristic nodes.  
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The heat balances according to the 3 mentioned characteristic equations are explained below.  

Heat accumulation in floor surface (Ts
t  Ts

t+t) 

The surface temperature of the indoor surfaces is calculated by considering the absorption of the 

solar radiation. The heat accumulated in the floor surface varies the surface floor temperature from 

Ts
t to Ts

t+t every time interval (t) and it is accumulated in both sides of the slab. The heat 

accumulated in node ‘s’ is assumed to be equal to the sum of the heat fluxes between the node 

temperature ‘s’ (Ts ) and ‘I’ (Ti), and the heat conduction between  the node temperature ‘s’ (Ts ) 

and ‘s+1’ (Ts+1). The heat fluxes connected to the indoor air temperature corresponds to the solar 

radiation, internal heat radiation, absorbed radiation and heat convection with the indoor air. 

Heat accumulation in interior nodes (Tm
t  Tm

t+t) 

For the interior nodes, it is assumed that the accumulation is equal to the sum of the 
conductions at both sizes. This calculation is based on the Fourier equation, expressed as follows: 

𝜌𝑖 ∗ 𝑐𝑝𝑖
∗

𝜕𝑇

𝜕𝑡
= 𝑘𝑖 ∗

𝜕2𝑇

𝜕𝑥2
 

 

The method used to solve this differential equation is the finite-difference approximations 
for one-dimensional unsteady conduction (Millers,1999).  

The heat balance in node m is expressed as follows: 

∙𝐴

Δ𝑥
∙ (𝑇𝑚−1

𝑡 − 𝑇𝑚
𝑡 )+

∙𝐴

Δ𝑥
∙ (𝑇𝑚+1

𝑡 − 𝑇𝑚
𝑡 ) =

 𝜌∙Δ𝑥∙𝑐𝑝

Δ𝑡
∙ 𝐴 ∙ (𝑇𝑚

𝑡+Δ𝑡 − 𝑇𝑚
𝑡); 

Where the heat transference phenomena taking place are the following: 

 Conduction transference between m and m-1:  
∙𝐴

Δ𝑥
∙ (𝑇𝑚−1

𝑡 − 𝑇𝑚
𝑡 ) 

 Conduction transference between m and m+1: 
∙𝐴

Δ𝑥
∙ (𝑇𝑚+1

𝑡 − 𝑇𝑚
𝑡 ) 

 Accumulation in node m from t to t+t: 
 𝜌∙Δ𝑥∙𝑐𝑝

Δ𝑡
∙ 𝐴 ∙ (𝑇𝑚

𝑡+Δ𝑡 − 𝑇𝑚
𝑡) 

 

The heat balance above is simplified in the following equation (Millers,1999): 

𝑇𝑚
𝑡+∆𝑡 = 𝐹𝑜 (𝑇𝑚−1

𝑡 + 𝑇𝑚+1
𝑡 ) + (1 − 2 ∙ 𝐹𝑜)𝑇𝑚

𝑡  

Where, Fo is the mesh Fourier number:𝐹𝑜 =
𝛼∙∆𝑡

∆𝑥2 ≤
1

2
, being  the thermal diffusion coefficient of the 

material (concrete in this case), expressed as 𝛼 =


𝜌∙𝐶𝑝
  

Heat accumulation in middle node (Tmi
t  Tmi

t+t) 

For the heat accumulation in the middle node, it is assumed an adiabatic surface condition. This 

means that the next node (mi+1) has the same temperature as node mi (Tmi = Tmi+1), thus there is 

no heat transferred neither accumulated between node mi and mi+1. Therefore, the accumulation 

in node mi is assumed to be equal to the conduction with the previous node (mi-1). As a result, the 

accumulation is only taking place in half side of the slab, therefore, x is divided by 2. 

The heat balance corresponding to the node ‘mi’ is expressed as follows: 



Δ𝑥
∙ 𝐴 ∙ (𝑇𝑚𝑖−1

𝑡 − 𝑇𝑚
𝑡 ) =

 𝜌∙(
Δ𝑥

2
)∙𝑐𝑝

Δ𝑡
∙ 𝐴 ∙ (𝑇𝑚𝑖

𝑡+Δ𝑡 − 𝑇𝑚𝑖
𝑡); 

Where the heat transference phenomena taking place are the following: 

 Conduction transference between mi-1 and m:  
∙𝐴

Δ𝑥
∙ (𝑇𝑚𝑖−1

𝑡 − 𝑇𝑚𝑖
𝑡 ) 

 Conduction transference between mi and mi+1=0 
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 Accumulation in node m from t to t+t: 
 𝜌∙(

Δ𝑥

2
)∙𝑐𝑝

Δ𝑡
∙ 𝐴 ∙ (𝑇𝑚𝑖

𝑡+Δ𝑡 − 𝑇𝑚𝑖
𝑡) 

This heat balance can be expressed by the following equation (Millers,1999): 

𝑇𝑚𝑖
𝑡+∆𝑡 = 2 ∙ 𝐹𝑜 ∙ 𝑇𝑚𝑖−1

𝑡 + (1 − 2 ∙ 𝐹𝑜)𝑇𝑚𝑖
𝑡  

Where, 𝐹𝑜 =
𝛼∙∆𝑡

∆𝑥2 ≤
1

2
  and  𝛼 =



𝜌∙𝐶𝑝
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Appendix 3 LEA Energy Diagnose 

The calculation method in LEA was verified by performing the energy test ISSO-54: ‘Energy 
Diagnose Reference’ [43]. This test validates the heating & cooling demand, air handling unit and 
other installations like the water heating, lighting and photovoltaic energy. In this case, only the 
annual heating demand is verified. 

The goal of this diagnose is to verify the accuracy of the heat balance in LEA’s calculation method. 

With this purpose, the heating demand supplied by the radiators is analysed by applying the tests 

from A.1.1.01 till A.1.1.16 (except A.1.1.13 since the result is not provided by BRL 9501). These 

tests are meant to analyse the annual heating demand by varying the U values, thermal mass, 

opening times, natural ventilation and internal heat gains (people, lighting, appliances and solar). 

The hourly heating demand cannot be analysed with ISSO-54, therefore other type of analyses will 

be needed to study the hourly heating demand fluctuations. In order to verify the calculation method 

used in the mechanical ventilation, other tests available in ISSO-54 can be performed. 
3.1 Methodology: assumptions and changes made 

The input data given in ISSO are prepared for commercial software, this means that LEA’s inputs 

vary in format. Therefore, in some cases, the code is changed in order to adapt the inputs of the 

ISSO study case into LEA. In some cases, test’s inputs are not used by LEA due to an 

approximation in the calculation method used. This section presents the assumptions and code 

changes done in order to adapt the ISSO inputs into LEA format. 

All the tests are based on the study case presented in test A.1.1.01 (baseline) and the inputs 

introduced in LEA can be found in the following section.  

Climate file 

The climate file used for the modelling of IO are obtained from KNMI. The horizontal diffused 

radiation is assumed to be 15% of the horizontal radiation (global radiation on the horizontal plane) 

and the horizontal direct radiation the other 85%. However, in order to analyse correctly the 

calculation method used in LEA, the weather file have to be as accurate as possible. Therefore, the 

weather data used are all measurements. For the horizontal diffused radiation, horizontal direct 

radiation, temperature and relative humidity, the weather file of Laure is used. The rest of the 

variables (wind direction, wind speed, relative pressure) are obtained from KNMI. 

The reflective coefficient albedo given by ISSO-54 is 0.2 (ISSO 54, section 2.1.1.1). This 

corresponds to the input: invoer.overig.reflectiecoefficient. 

Total building mass 

LEA requires the total building mass, however ISSO gives this information in terms of material 

specifications (material density, thickness and area). The total building mass is calculated 

considering that the different components of the roof, façade and floor covers all the surface area 

of the roof, façade and floor, respectively. For this calculation, all the building materials are taken 

into account (including the windows mass). The density of the windows indicated in ISSO is 2.5 

kg/m3. Considering that glass density is in the order of 2500 kg/m3, it is assumed that ISSO is not 

correct, therefore for the calculations it is assumed that the windows density is 2500 kg/m3. See 

appendix F for further details on the mass building calculation. 

Windows 

ZTA value changes with the sun angle of incidence. LEA calculates the angle of incidence of the 

sun, however, ZTA is a constant (it is not function of the angle of incidence). Therefore, the ZTA 

considered for the tests is a constant value of 0.831 which corresponds an angle of incident of 45o. 
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The LTA value is not used in the current version of LEA, therefore a 0 value is given. 

Shadow 

The specification of the tests do not include shadow, therefore all LEA input values for the shadow 

are 0. 

Internal gains 

The internal gains are calculated in LEA by the function ‘bereken_interne_warmtelast’. This function 

gives the output ‘int_wl’ (int_wl.personen, int_wl.apparatuur, int_wl.verlichting) which is used to 

calculate the internal heat gain profile. It is distinguished a total of three types of internal heat gain 

profiles in the tests realized, therefore three different type of functions are introduced in the code 

(input: functie type), these are the following: 

1. Functie.type=0. This option is used in the tests where the internal heat production is 

constant (all tests performed except A.1.1.07 - A.1.1.10). The constant value is introduced 

directly in the function. 

2. Functie.type=0.1. This option is used when the internal heat production is constant during 

the day and changes its value during summer and winter (tests A.1.1.07 and A.1.1.09) 

3. Functie.type=0.2. This option is used when the internal heat production has a variable daily 

and seasonal (summer and winter) profile. The inputs are changed from the input file 

(s.invoer.last). (tests A.1.1.08 and A.1.1.10) 

For further details on the code changes, see appendix G.  

The input ‘functie.type’ is also present in other functions such as ‘Bereken_bedrijfstijden’ and 

‘bereken_genzen’ (office limits calculation). Therefore, new cases for functie.type: 0, 0.1 and 0.2 

are added.   

LEA assume that a 30% of the internal heat is transmitted by radiation and the other 70% by 

convection (input: convection factor for people, lighting and equipments). ISSO test assumes that 

40% is transmitted by convection and 60% by radiation.  

 

Ventilation 

According to the tests specifications, the mechanical ventilation is cancelled for all the tests, 

therefore the air is renovated only by natural ventilation. The functions affected by this change are: 

‘Bereken_infiltratievoud’, ‘Ventilatiedebieten ‘,Bereken_coefficient’, ‘Doe_berekening’ and 

‘Simuleer_zwaar_gebouw’. The corresponding changes are made by adding a switch case for 

functie.type: 0, 0.1, 0.2. 

Heat transfer coefficient 

LEA uses the combined heat transfer coefficient for convection and radiation (used in balans (2), 

(3) and (6) in function: simuleer_zwaar_gebouw). Therefore, in the test it is used the combined heat 

transfer coefficient for convection and radiation (αi=8, αo=23). In the case of the indoor surfaces, 

there is a distintion between horizontal and vertical surfaces in case that there is upward and 

downward heat. Since LEA does not distinguish between upward and downward heat flows, the 

combined heat transfer coefficient for convection and radiation used is for vertical surfaces. 
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3.2 Inputs for the different tests respect to the baseline study case 

Table 16 shows the LEA’s code used and the inputs modified for each test performed with respect to the baseline case study (A.1.1.01). The baseline case 

study uses function type (functie.type)=0, has a constant internal heat production, natural ventilation of 1 change of the volume per hour and a daily 

temperature profile which does not differ from the week days and weekends. 

Table 16 Version LEA used and inputs modified for tests from A.1.1.01 till A.1.1.16 with respect to the baseline case study  

Test number Name LEA’s code used Input modified respect to the baseline 

A.1.1.01 (baseline) energy losses LEA.exe_for validation - 

Cristina_V2 

(baseline).  

A.1.1.02 continuous operation  LEA.exe_for validation - 

Cristina_V3 

Input functie.type=0 

Constant temperature set point: the set point is fixed all year 

and during night and day at 20oC 

A.1.1.03 distinction week/weekend LEA.exe_for validation - 

Cristina_V3 

Input functie.type=0 

Variable temperature set point:  

Monday-Friday: From 7-23h T=20oC and from 23-7h T=15oC 

Saturday-Sunday: From 0-24h, T=15 oC 

A.1.1.04 modified U/value LEA.exe_for validation - 

Cristina_V2 

Input functie.type=0 

modify U-value (input: dichtgevels.Rc) 

Roof Rc decreased from 2.95 to 1.   

External facades from 1.66 to 0.91.  

Floor keeps the same value: 25.1. 

A.1.1.05 modified ventilation quantity LEA.exe_for validation - 

Cristina_V2 

Input functie.type=0 

ventilatie.kantoor.natuurlijk=2 
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A.1.1.06 further increase fan/old LEA.exe_for validation - 

Cristina_V2 

Input functie.type=0 

ventilatie.kantoor.natuurlijk=4 

A.1.1.07 reduced internal heat production LEA.exe_for validation - 

Cristina_V3.  

Input functie.type=0.1 

Internal heat production is constant during the day and 

changes its value during summer and winter (this input is 

changed in fx:bereken_interne_warmtelast) 

summer: 240  

winter: 32 

A.1.1.08 variable internal heat production LEA.exe_for validation - 

Cristina_V3. 

Input functie.type=0.2 

Internal heat production has a variable daily and seasonal 

(summer and winter) profile. The inputs are changed from the 

input file (s.invoer.last).  

A.1.1.09 increased internal heat 

production 

LEA.exe_for validation - 

Cristina_V3. 

Input functie.type=0.1 

Internal heat production is constant during the day and 

changes its value during summer and winter (this input is 

changed in fx:bereken_interne_warmtelast). The internal 

heat is increased respect test 1.1.07 

summer: 800  

winter: 320 

A.1.1.10 variable/increased internal heat 

production 

LEA.exe_for validation - 

Cristina_V3. 

Input functie.type=0.2 

Internal heat production has a variable daily and seasonal 

(summer and winter) profile. The inputs are changed from the 

input sheet (s.invoer.last). 

A.1.1.11 impact glass percentage LEA.exe_for validation - 

Cristina_V2 

Input functie.type=0 
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modify % glass (input: dichtgevel.raamfractie) from 0.56 to 

0.28 

A.1.1.12 impact orientation LEA.exe_for validation - 

Cristina_V2 

Input functie.type=0 

window orientation changed.  

A.1.1.14 influence of ZTA-value LEA.exe_for validation - 

Cristina_V2 

Input functie.type=0 

Modify ZTA-value for 45oC from 0.31(baseline) to 0.64 

Convection factor changed from 0.012 to 0.039 

Note: LEA model does not use most of the parameters given, 

therefore only the parameters mentioned were introduced. 

A.1.1.15 influence U-value glass LEA.exe_for validation - 

Cristina_V2 

Input functie.type=0 

changed U value and ZTA (for 45oC). 

A.1.1.16 influence thermal mass LEA.exe_for validation - 

Cristina_V2 

Input functie.type=0 

Modify building mass: the calculation method of LEA 

accumulates all the mass of the building in the floor. 

Therefore, the mass of the building is recalculated for the 

lighter walls but it was not observed appreciable change in 

the total mass. The mass density stays at 82.93 kg/m2 

The Rc value of the external façade is changed to 1.65 m2 

k/W 
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3.3 Results and discussions 

This section presents the results obtained for the simulations performed for the tests case studies 

A.1.1.01-A.1.1.16 (except A.1.1.13). Table 17 presents the reference values (BRL 9501) and results for 

the annual heating demand for the tests performed in this diagnose. 

According to the results obtained, it is observed that the annual heating demand in all the tests 

performed lay within the bandwidth of the reference values. Therefore, the heat balance used in the 

calculation method of LEA.exe makes a good estimation of the annual heating demand, however this 

test does not verify the accuracy in the hourly heating demand. This means that the low prediction of 

heating demand during summer compensates the high heating demand prediction during winter, 

leading to a good prediction of the annual heating demand. 

A good accuracy for the hourly heating demand is key for the correct performance of the model 

predictive control, and therefore the Smart thermal grid. For that reason, the next sections studies the 

hourly heating demand by performing a multivariable and sensitivity analysis. 

It is important to remind that for all tests the mechanical ventilation was turned off, and therefore its 

possible influences on the heat balance are not analysed. 
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Table 17 Reference values (BRL 9501) and results of the simulations for the annual heating demand for the tests A.1.1.01-A.1.1.16 (based on 
weather reference year 1964/65). 

 Test  Description Reference values simulation results 

    Max(GJ/year) Min (GJ/year) Energy demand 
(kW.h/year) 

Energy demand 
(GJ/year) 

A.1.1.01 energy losses 30.2 20.2 7.97E+03 28.70 

A.1.1.02 continuous operation 35.7 23.8 9.17E+03 33.00 

A.1.1.03 distinction week/weekend 27.3 18.2 7.22E+03 26.01 

A.1.1.04 modified U/value 42.9 28.6 1.12E+04 40.40 

A.1.1.05 modified ventilation quantity 42.7 28.5 1.03E+04 37.19 

A.1.1.06 further increase fan/old 68.2 45.5 1.51E+04 54.34 

A.1.1.07 reduced internal heat production 33.9 22.6 8.88E+03 31.95 

A.1.1.08 variable internal heat production 32.8 21.8 8.53E+03 30.70 

A.1.1.09 increased internal heat production 18.6 12.4 4.99E+03 17.97 

A.1.1.10 variable/increased internal heat production 25.6 17.1 6.84E+03 24.63 

A.1.1.11 impact glass percentage 26.6 17.8 6.48E+03 23.33 

A.1.1.12 impact orientation 34.5 23 7.45E+03 26.83 

A.1.1.14 influence of ZTA-value 32.9 21.9 8.28E+03 29.80 

A.1.1.15 influence U-value glass 17.6 11.7 4.61E+03 16.59 

A.1.1.16 influence thermal mass 30.7 20.5 7.99E+03 28.75 
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Appendix 4 Corrections in LEA´s inputs 

4.1 Weather file 

For the validations of the measurements 2015/2016 done for IO, TPM and 3ME, two inaccuracies 

are observed: (1) the weather data used for the simulations are corresponding to De Bilt and (2) 

the horizontal direct and diffused solar radiation is not estimated properly. 

The outdoor weather parameters between the De Bilt and Rotterdam (considered the closest 

location to TU Delft) are compared in order to analyse the differences between the temperature, 

wind, global solar radiation and relative humidity. It was found that the outdoor weather parameters 

from these two locations are very different, especially for the outside temperature (differences up 

to 10oC). Therefore, it was decided to continue the multivariable analysis with the weather data 

obtained from Rotterdam (closest location to TU delft). 

4.2 Diffused and direct solar radiation 

The horizontal direct and diffused solar radiation is not available at KNMI, therefore a fraction of the 

global radiation is applied. The horizontal diffused radiation was assumed to be 15% of the 

horizontal global radiation and the horizontal direct radiation the other 85%. In order to check this 

assumption, the monthly average of the global, diffused and direct solar radiation on a horizontal 

plane for the collection of data ‘year 1964/1965’ and the ‘average from the years 1986 till 2005’ [1] 

was evaluated (see table below). 
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Table 18 Total global, diffuse and direct solar radiation on a horizontal plane [W/m2] 

It is observed that the fraction of diffuse and direct solar radiation is different than the initially 

assumed in LEA. A wrong estimation in the direct and diffused solar radiation causes high 

differences in the heating demand simulations, especially during midday. Figure 35 shows the 

hourly heating demand (ventilation no applied) at IO for: (1) the measurements, (2) simulations with 

weather data from De Bilt assuming solar diffused radiation a 15% of global solar radiation, (3) 

simulations with weather data from De Bilt assuming solar diffused radiation a variable % of global 

solar radiation (according to average 1986/2005) and (4) simulations with weather data from 

Rotterdam assuming solar diffused radiation a variable % of global solar radiation (according to 

average 1986/2005). 

year 1964/1965 average 1986/2005 

 
global diffuse direct %diffuse %direct global diffuse direct %diffuse %direct 

January 66 49 17 0.742 0.258 70 49 21 0.700 0.300 

February 136 91 45 0.669 0.331 131 83 48 0.634 0.366 

March 262 151 111 0.576 0.424 250 149 101 0.596 0.404 

April 339 204 135 0.602 0.398 393 218 175 0.555 0.445 

May 570 284 286 0.498 0.502 539 273 266 0.506 0.494 

June 539 296 243 0.549 0.451 526 291 235 0.553 0.447 

July 510 303 207 0.594 0.406 530 297 233 0.560 0.440 

August 434 243 191 0.560 0.440 464 262 202 0.565 0.435 

September 346 188 158 0.543 0.457 302 183 119 0.606 0.394 

October 184 113 71 0.614 0.386 188 119 69 0.633 0.367 

November 66 47 19 0.712 0.288 84 60 24 0.714 0.286 

December 50 39 11 0.780 0.220 51 38 13 0.745 0.255 
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Figure 35 hourly heating demand (ventilation no applied) at IO for: (1) the 
measurements, (2) simulations with weather data from De Bilt assuming solar diffused 
radiation a 15% of global solar radiation, (3) simulations with weather data from De Bilt 
assuming solar diffused radiation a variable % of global solar radiation (according to 
average 1986/2005) and (4) simulations with weather data from Rotterdam assuming solar 
diffused radiation a variable % of global solar radiation (according to average 1986/2005). 

According to this analysis, it was decided to correct the initial estimation of the monthly fraction of 

direct and diffused solar radiation by the estimation corresponding to the monthly average 

1986/2005. 

4.3 Future improvements 

In more recent buildings, the proportion of heat loss due to thermal bridging is typically 10–15%. 
This can rise to 30% in better insulated low-energy buildings when insulation and construction 
details are not properly realized [41]. According to ISO 2007 [42], the heat losses through thermal 
bridges are calculated using the following equation.  

𝑃𝑡𝑟𝑎𝑛𝑠.𝑏𝑟𝑖𝑑𝑔𝑒 = 𝜑 𝐿(𝑇o − 𝑇i ) [WK ] 

Where L is the length of the thermal bridge (m) and  the linear thermal transmittance of the thermal 

bridge W/(mK). The values of  are between 0.02 and 1. 
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Appendix 5 Inputs of the studied buildings 

This appendix collects the main inputs of the studied buildings (IO, TPM and 3mE) used by the 

simulator (physics-based software or LEA) to obtain the simulated heating demand. These inputs 

corresponds with the ones used in IPIN phase 2 during the second implementation of LEA (from 

10th September 2016 until 25th November 2016). 

The inputs are divided in the following 4 categories: (1) building characteristics, (2) use of the 

building, (3) installations and set points, and (4) coefficients (heat transfer coefficients and 

convective factors). Section 0 gives a description of some of the parameters. Sections 5.2, 5.3 and 

5.4 give the corresponding input values for IO, TPM and 3mE, respectively.  
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5.1 Inputs´ description 

Table 19 Description building characteristics used for the simulations (physics-based 
software) 

Building 
characteristics     

Building dimensions    

gross surface m² Total area of the floor 

fraction floor - 
This indicates the total surface of floor which is in contact with the internal 
air 

gross height m 
high from floor (0) to floor (1) (it takes into account the floor thickness. 
Therefore, it is air+concrete) 

ratio height - 
high from floor (0) to roof (0) (percentage of the real high. Therefore, 
space where there is air) 

specific mass of the building kg/m² bvo calculated in function: bereken_infiltratievoud 

surface facade m² total surface facade each orientation 

fraction windows - (surface glass +frame)/wall area 

Walls    

Rc-value m².K/W   

Glass    

U-value W/(m²·K) U-value glass + frame 

ZTA - 
Absolute zontoetredingfactor (absolute solar factor). coefficient of incident 
solar energy entering in the room through the glass. 

LTA - 

absolute lichttoetredingfactor (absolute light factor).light transmission 
coefficient. Percentage of light entering in the room through the galss. 
LTA=1-light absorbed by glass-light reflected by glass. 

Convective factor - 
convective factor of the windows. Indicates the percentage of solar 
energy that is absorbed by the air due to the convection. 

Shading effects - 

This is an input parameter to calculate the LTA, ZTA and CF in case there 
is shading effects. If there are no shading effects, then the ZTA, LTA and 
CF is given above. 0= no shadow, 1=indoor blinds, 2=outdoor blinds. 

indoor shading    

ZTA - 
coefficient of incident solar energy combined blinds+glass entering in the 
room. 

LTA - 

light transmission coefficient combined blinds+glass. Percentage of light 
entering in the room. LTA=1-light absorbed by glass-light reflected by 
glass. 

Convective factor - 
convective factor combined blinds+glass. Indicates the percentage of 
solar energy that is absorbed by the air due to the convection. 

solar radiation/facade 
surface 

W/m2 facade 
surface radiation values direct+diffused radiation 

outdoor shading    

ZTA - 
coefficient of incident solar energy combined blinds+glass entering in the 
room. 

LTA - 

light transmission coefficient combined blinds+glass. Percentage of light 
entering in the room. LTA=1-light absorbed by glass-light reflected by 
glass. 

Convective factor - 
convective factor combined blinds+glass. Indicates the percentage of 
solar energy that is absorbed by the air due to the convection. 

solar radiation/facade 
surface 

W/m2 facade 
surface radiation values direct+diffused radiation 
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Table 20 Description installations & set points used for the simulations (physics-based 
software) 

Installations and set points 
  

set points indoor climate    

minimum temperature during 
opening hours °C   

maximum temperature during 
opening hours °C   

minimum temperature during 
closing hours °C   

maximum temperature during 
closing hours °C   

minimal RH during opening hours %   

maximal RH during opening hours %   

minimal RH during closing hours %   

maximal RH during closing hours %   

mechanical ventilation  number of times that the volume of the air of the building needs to be changed 

ventilation during opening hours -   

ventilation during closing hours -   

ventilation during holidays period -   

Infiltrations  
infiltration causes due to the use of the building (eg. Opening windows, doors, etc). The 
infiltrations through the facade of the building is calculated in function of the wind speed. 

inflitrations during opening hours -   

infiltrations during closing hours -   

infiltrations during holidays period -   

Air Handling Unit (AHU)    

heat recovery site - 0 = no present; 1 = present 

type heat recovery - 0 = no heat recovery; 1 = heat recovery with on-off control; 2 = heat recovery model 

efficiency heat recovery -   

presence reheating - 0 = no present; 1 = present 

fan site - 0 = no present; 1 = present 

pressure drop across the fan Pa   

efficiency fan -   

efficiency engine -   

presence humidificator - 0 = no present; 1 = present 

efficiency humidificator -   

outlet water temperature at 
outdoor temperature 0°C or lower °C   

outlet water temperature at 
outdoor temperature 20°C or 
higher °C   

Heating instalations    

heat exchanger W 
Maximum heating capacity of the heat exchanger of the building between the heat coming 
from the grid and heating systems of the building 

AHU W maximum heating capacity, specified at a heating temperature range of 90-70C 

radiators W maximum heating capacity, specified at a heating temperature range of 90-70C 

floor heating W maximum heating capacity, specified at a heating temperature range of 90-70C 

radiation panels W maximum heating capacity, specified at a heating temperature range of 90-70C 

Working temperature limits 
building's heating systems inlet temperature limitations for frost protection 

Minimal inlet temperature for a 
outdoor temperature of 20C or 
higher °C   

Minimal inlet temperature for a 
outdoor temperature of 0C or 
lower °C   
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Table 21 Description coefficients used for the simulations (physics-based software) 

coefficients     

heat transfer coefficient 
between outdoor facade and 
outdoor air  W/m2/K 

αo: heat transfer coefficient of the floor/ceiling outdoors surface 

heat transfer coefficient 
between indoor facade and 
outdoor air  W/m2/K 

 αi: heat transfer coefficient of the floor/ceiling indoors surface 

convective factor people - % of people's heat which is convection 

convective factor lighting - % of lighting's heat which is convection 

convective factor equipment - % of equipments's heat which is convection 

reflective coefficient albedo - 

this is the coefficient of soil reflectance which is the amount of sun radiation 
reflected divided by the total amount of dominating radiation. it is used to 
calculate the reflection of the ground due to the sun radiation (function: 
grondreflectie).   
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5.2 Industrial Design (IO) 

Table 22 Building characteristics used for the simulations (physics-based software) of IO 

Building characteristics                           

Facade orientations     N NE E SE S SW W NW roof 

floor to 
ground 

floor to 
air 

Building dimensions               

gross surface m² 23300             

fraction floor - 0.8             

gross height m 3.6             

ratio height - 0.7             

specific mass of the building kg/m² bvo 250             

surface facade m²  1800 0 2460 0 1800 0 2460 0 7485 7485 0 

fraction windows -  0.3 0 0.3 0 0.3 0 0.3 0 0.4 0 0 

Walls               

Rc-value m².K/W  2.5 0 2.5 0 2.5 0 2.5 0 2.5 2.5 0 

Glass               

U-value W/(m²·K)  2.5 0 2.5 0 2.5 0 2.5 0 2.1 2.1 0 

ZTA -  0.2 0 0.2 0 0.2 0 0.2 0.2 0.6 0.6 0 

LTA -  0.6 0 0.6 0 0.6 0 0.6 0 0.6 0.6 0 

Convective factor -  0.024 0 0.024 0 0.024 0 0.024 0 0.024 0.024 0 

Shading effects -  0 0 0 0 0 0 0 0 0 0 0 

indoor shading               

ZTA - 0.42             

LTA - 0.21             

Convective factor - 0.45             

solar radiation/facade surface W/m2 facade surface 150             

outdoor shading               

ZTA - 0.19             

LTA - 0.43             

Convective factor - 0.05             

solar radiation/facade surface W/m2 facade surface 150                       
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Table 23 Coefficients used for the simulations (physics-based software) of IO 

coefficients     

     

heat transfer coefficient between outdoor 
facade and outdoor air  W/m2/K 28.49 

heat transfer coefficient between indoor 
facade and outdoor air  W/m2/K 3 

convective factor people - 0.7 

convective factor lighting - 0.7 

convective factor equipment - 0.7 

reflective coefficient albedo - 0.5 

 

 

 

Table 24 Inputs related to the use of Industrial Design used for the simulations (physics-
based software) 

Use     

Hourly intervals PM   

     

schedule    

opening time PM 7 

closing time PM 22 

days per week opened - 5 

internal heat gain (people) m² bvo per person 50 

     

Equipment    

internal heat gain (equipment) W/m² bvo 0 

     

lighting    

internal heat gain (lighting) W/m² bvo 0 
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Table 25 Installations & set points used for the simulations (physics-based software) of 
Industrial Design 

Installations and set points     
     

set points indoor climate    

minimum temperature during opening hours °C 20 

maximum temperature during opening hours °C 24 

minimum temperature during closing hours °C 17 

maximum temperature during closing hours °C 28 

minimal RH during opening hours % 0 

maximal RH during opening hours % 100 

minimal RH during closing hours % 0 

maximal RH during closing hours % 100 

     

mechanical ventilation    

ventilation during opening hours - 2 

ventilation during closing hours - 0.5 

ventilation during holidays period - 0.5 

     

Infiltrations    

inflitrations during opening hours - 0.1 

infiltrations during closing hours - 0 

infiltrations during holidays period - 0 

     

Air Handling Unit (AHU)    

heat recovery site - 1 

type heat recovery - 1 

efficiency heat recovery - 0.3 

presence reheating - 0 

fan site - 1 

pressure drop across the fan Pa 1200 

efficiency fan - 0.7 

efficiency engine - 0.85 

presence humidificator - 0 

efficiency humidificator - 0.65 

outlet water temperature at outdoor 
temperature 0°C or lower °C 19 

outlet water temperature at outdoor 
temperature 20°C or higher °C 16 

     

Heating instalations    

heat exchanger W 3514080 

AHU W 787467 

radiators W 1510750 

floor heating W 0 

radiation panels W 0 

     

Working temperature limits building's heating systems   

Minimal inlet temperature for a outdoor 
temperature of 20C or higher °C 40 

Minimal inlet temperature for a outdoor 
temperature of 0C or lower °C 20 
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5.3 Technology, Policy and Management (TPM) 

Table 26 Building characteristics used for the simulations (physics-based software) of TPM 

Building characteristics  

                        
Facade orientations      N NE E SE S SW W NW roof floor to ground floor to air 

              

 
  

Building dimensions                
gross surface m²  12000             
fraction floor -  0.7             
gross height m  3.5             
ratio height -  0.7             
specific mass of the building kg/m² bvo  600             
surface facade m²   756 0 42 0 323 0 77 0 897.12 656.3 288 
fraction windows -   0.25 0 0.25 0 0.25 0 0.25 0 0 0 0 
                 
Walls                
Rc-value m².K/W   4 0 4 0 4 0 4 0 4 4 4 
                 
Glass                
U-value W/(m²·K)   3 0 3 0 3 0 3 0 2 2 2 
ZTA -   0.2 0 0.2 0 0.2 0 0.2 0 0.4 0.4 0.4 
LTA -   0.6 0 0.6 0 0.6 0 0.6 0 0.6 0.6 0.6 
Convective factor -   0.1 0 0.1 0 0.1 0 0.1 0 0.1 0.1 0.1 
Shading effects -   0 0 0 0 0 0 0 0 0 0 0 
                 
indoor shading                
ZTA -  0.4             
LTA -  0.2             
Convective factor -  0.4             
solar radiation/facade 
surface W/m2 facade surface 

 
300             

                 
outdoor shading                
ZTA -  0.2             
LTA -  0.2             
Convective factor -  0.2             
solar radiation/facade 
surface W/m2 facade surface 

 
300                       
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Table 27 Coefficients used for the simulations (physics-based software) of TPM 

coefficients     

     

heat transfer coefficient between outdoor 
facade and outdoor air  W/m2/K 28.49 

heat transfer coefficient between indoor 
facade and outdoor air  W/m2/K 8.29 

convective factor people - 0.7 

convective factor lighting - 0.7 

convective factor equipment - 0.7 

reflective coefficient albedo - 0.5 

 

 

 

Table 28 Inputs related to the use of TPM for the simulations (physics-based software) 

Use     

Hourly intervals PM   

     

schedule    

opening time PM 7 

closing time PM 22 

days per week opened - 5 

internal heat gain (people) 
m² floor surface 
per person 30 

     

Equipment    

internal heat gain (equipment) W/m² floor surface 0 

     

lighting    

internal heat gain (lighting) W/m² floor surface 0 
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Table 29 Installations & set points used for the simulations (physics-based software) of TPM 

Installations and set points     
     

set points indoor climate    

minimum temperature during opening hours °C 21 

maximum temperature during opening hours °C 24 

minimum temperature during closing hours °C 15 

maximum temperature during closing hours °C 28 

minimal RH during opening hours % 0 

maximal RH during opening hours % 100 

minimal RH during closing hours % 0 

maximal RH during closing hours % 100 

     

mechanical ventilation    

ventilation during opening hours - 3 

ventilation during closing hours - 1.5 

ventilation during holidays period - 0 

     

Infiltrations    

inflitrations during opening hours - 0.3 

infiltrations during closing hours - 0 

infiltrations during holidays period - 0 

     

Air Handling Unit (AHU)    

heat recovery site - 1 

type heat recovery - 1 

efficiency heat recovery - 0.3 

presence reheating - 0 

fan site - 1 

pressure drop across the fan Pa 1200 

efficiency fan - 0.7 

efficiency engine - 0.85 

presence humidificator - 0 

efficiency humidificator - 0.65 

outlet water temperature at outdoor 
temperature 0°C or lower °C 18 

outlet water temperature at outdoor 
temperature 20°C or higher °C 16 

     

Heating instalations    

heat exchanger W 1460000 

AHU W 375687 

radiators W 542502 

floor heating W 0 

radiation panels W 0 

     

Working temperature limits building's heating systems   

Minimal inlet temperature for a outdoor 
temperature of 20C or higher °C 40 

Minimal inlet temperature for a outdoor 
temperature of 0C or lower °C 20 
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5.4 Mechanical, Maritime and Materials Engineering (3mE) 

Table 30 Building characteristics used for the simulations (physics-based software) of 3mE 

Building characteristics                         

Facade orientations     N NE E SE S SW W NW roof 

floor to 
ground 

floor to 
air 

             

 
  

Building dimensions               

gross surface m² 36402             

fraction floor - 0.7             

gross height m 3.6             

ratio height - 0.7             

specific mass of the building kg/m² bvo 300             

surface facade m²  0 4799 0 10969 0 4799 0 10969 17529 14529 0 

fraction windows -  0 0.4 0 0.4 0 0.4 0 0.4 0.1 0 0 

Walls               

Rc-value m².K/W  0 2.5 0 2.5 0 2.5 0 2.5 2.5 2.5 0 

Glass               

U-value W/(m²·K)  0 2.2 0 2.2 0 2.2 0 2.2 2.2 2.2 0 

ZTA -  0 0.1 0 0.1 0 0.1 0 0.1 0.6 0.6 0 

LTA -  0 0.6 0 0.6 0 0.6 0 0.6 0.6 0.6 0 

Convective factor -  0 0.024 0 0.024 0 0.024 0 0.024 0.024 0.024 0 

Shading effects -  0 0 0 0 0 0 0 0 0 0 0 

indoor shading               

ZTA - 0.42             

LTA - 0.21             

Convective factor - 0.45             

solar radiation/facade surface W/m2 facade surface 150             

outdoor shading               

ZTA - 0.19             

LTA - 0.43             

Convective factor - 0.05             

solar radiation/facade surface W/m2 facade surface 150                       
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Table 31 Coefficients used for the simulations (physics-based software) of 3mE 

coefficients     

     

heat transfer coefficient between outdoor facade and outdoor air  W/m2/K 28.49 

heat transfer coefficient between indoor facade and outdoor air  W/m2/K 8.29 

convective factor people - 0.7 

convective factor lighting - 0.7 

convective factor equipment - 0.7 

reflective coefficient albedo - 0.5 

 

 

 

Table 32 Inputs related to the use of 3mE for the simulations (physics-based software) 

Use     

Hourly intervals PM   

     

schedule    

opening time PM 7 

closing time PM 22 

days per week opened - 5 

internal heat gain (people) 
m² floor surface 
per person 50 

     

Equipment    

internal heat gain (equipment) W/m² floor surface 0 

     

lighting    

internal heat gain (lighting) W/m² floor surface 8 
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Table 33 Installations & set points used for the simulations (physics-based software) of 3mE 

Installations and set points     
     

set points indoor climate    

minimum temperature during opening hours °C 21 

maximum temperature during opening hours °C 24 

minimum temperature during closing hours °C 15 

maximum temperature during closing hours °C 28 

minimal RH during opening hours % 0 

maximal RH during opening hours % 100 

minimal RH during closing hours % 0 

maximal RH during closing hours % 100 

     

mechanical ventilation    

ventilation during opening hours - 2 

ventilation during closing hours - 1.5 

ventilation during holidays period - 2 

     

Infiltrations    

inflitrations during opening hours - 0 

infiltrations during closing hours - 0 

infiltrations during holidays period - 0 

     

Air Handling Unit (AHU)    

heat recovery site - 1 

type heat recovery - 1 

efficiency heat recovery - 0.2 

presence reheating - 0 

fan site - 1 

pressure drop across the fan Pa 1200 

efficiency fan - 0.7 

efficiency engine - 0.85 

presence humidificator - 0 

efficiency humidificator - 0.65 

outlet water temperature at outdoor 
temperature 0°C or lower °C 18 

outlet water temperature at outdoor 
temperature 20°C or higher °C 16 

     

Heating instalations    

heat exchanger W 4044000 

AHU W 1076540 

radiators W 2661900 

floor heating W 37000 

radiation panels W 0 

     

Working temperature limits building's heating systems   

Minimal inlet temperature for a outdoor 
temperature of 20C or higher °C 40 

Minimal inlet temperature for a outdoor 
temperature of 0C or lower °C 20 
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Appendix 6 Sensitivity Analysis of Simulator 

6.1 Hourly heating demand 

 

  

Figure 36 Simulated hourly heating demand profile for IO with façade insulation R-value=1 W/(m2K) 
and R-value=5 W/(m2K); (above) for a thermal mass of 600 kg/m2 and (below) for a thermal mass of 
250 kg/m2. Weather data from 21st November – 11th December 2015. 
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6.2 Indoor versus outdoor temperature 

 

 

 

  

Figure 37 Outdoor temperature and simulated indoor temperature profile for IO with façade insulation R-
value=1 W/(m2K) and R-value=5 W/(m2K); (above) for a thermal mass of 600 kg/m2 and (below) for a thermal 
mass of 250 kg/m2. Weather data from 21st November – 11th December 2015. 
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6.3 Outdoor temperature 

 

Figure 38 Influence of the outdoor temperature on the heating demand for IO with a thermal mass of 
250 kg/m2; (above) façade insulation R-value=1 W/(m2K) and R-value=5 W/(m2K), (middle) R-value=1 

W/(m2K) and (below) R-value=5 W/(m2K). Weather data from 5th October 2015 - 14th January 2016. 

Figure 39 Influence of the outdoor temperature on the heating demand for IO with a thermal mass of 
600 kg/m2; (above) façade insulation R-value=1 W/(m2K) and R-value=5 W/(m2K), (middle) R-value=1 
W/(m2K) and (below) R-value=5 W/(m2K). Weather data from 5th October 2015 - 14th January 2016. 
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6.4 Direct solar radiation 
  

Figure 40 Influence of the direct solar radiation on the heating demand for IO with a thermal mass of 250 
kg/m2; (above) façade insulation R-value=1 W/(m2K) and R-value=5 W/(m2K), (middle) R-value=1 W/(m2K) 

and (below) R-value=5 W/(m2K). Weather data from 5th October 2015 - 14th January 2016. 

Figure 41 Influence of the direct solar radiation on the heating demand for IO with a thermal mass 
of 600 kg/m2; (above) façade insulation R-value=1 W/(m2K) and R-value=5 W/(m2K), (middle) R-
value=1 W/(m2K) and (below) R-value=5 W/(m2K). Weather data from 5th October 2015 - 14th January 
2016. 
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6.5 Diffused solar radiation 
 

Figure 42 Influence of the diffused solar radiation on the heating demand for IO with a thermal mass of 
250 kg/m2; (above) façade insulation R-value=1 W/(m2K) and R-value=5 W/(m2K), (middle) R-value=1 

W/(m2K) and (below) R-value=5 W/(m2K). Weather data from 5th October 2015 - 14th January 2016. 

Figure 43  Influence of the diffused solar radiation on the heating demand for IO with a thermal mass of 
600 kg/m2; (above) façade insulation R-value=1 W/(m2K) and R-value=5 W/(m2K), (middle) R-value=1 

W/(m2K) and (below) R-value=5 W/(m2K). Weather data from 5th October 2015 - 14th January 2016. 
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Appendix 7 Hourly profile heating demand and other 

parameters for data set 2015 

 

This appendix presents the hourly profile of the most influencing parameters during the measurement period of 2015 
(data set 2015). The selected period of time is from 1th October (hour: 6553) until 31th December 2015 (hour: 8760). 
During this period, only heating is required. The representative week selected is 12th – 18th October 2015. 

7.1 Hourly heating demand 

 

Figure 44 Measured & simulated hourly heating demand profile for IO, TPM and 3Me for the week 12th – 18th 
October 2015 
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Figure 45 Measured hourly heating demand profile for IO, TPM and 3Me for the week 12th – 18th October 2015 

7.2 Outdoor temperature 

 

Figure 46 Outdoor temperature profile for 1th October – 31th December 2015 (above) and 12th – 18th October 2015 
(below) 
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7.3 Global horizontal solar radiation 

 

Figure 47 Hourly global horizontal solar radiation profile for 1th October – 31th December 2015 (above) and 12th 
– 18th October 2015 (below). 

 

7.4 Wind speed 

 

 

Figure 48 Hourly wind speed profile for 1th October – 31th December 2015 (above) and 12th – 18th 
October 2015 (below) 
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7.5 Indoor air temperature 

 

Figure 49 Hourly indoor air temperature profile for 1th October – 31th December 2015 (above) and 12th – 18th 
October 2015 (below) 

7.6 Specific internal heat gain 

 

Figure 50 Hourly specific internal heat gain profile for 1th October – 31th December 2015 (above) and 12th – 18th 
October 2015 (below). 
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Appendix 8 Hourly profile heating demand and other 

parameters for data set 2016 

This appendix presents the hourly profile of the most influencing parameters during the last implementation period (from 

10th September 2016 until 25th November 2016).  

 

8.1 Hourly heating demand 

 

 

Figure 51 Measured & simulated hourly heating demand profile for IO, TPM and 3Me from for the 
period 10th – 16th October 2016 
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Figure 52 Measured & simulated heating demand TPM (above), IO (middle), and 3mE (below). 
Week period: 10th – 16th October 2016 
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8.2 Outdoor temperature 

 

Figure 53 Outdoor temperature profile from 10th September – 25th November ’16 (above) and 10th – 16th October 
’16 (below) 

 

8.3 Global horizontal solar radiation 
 

 

Figure 54 Global horizontal solar radiation profile from 10th September – 25th November ’16 (above) and 10th – 
16th October ’16 (below) 
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8.4 Wind speed 

 

Figure 55 Wind speed profile from 10th September – 25th November ’16 (above) and 10th – 16th October ’16 (below) 

 

8.5 Indoor air temperature 

 

Figure 56 Measured & simulated indoor air temperature profile for IO, TPM and 3Me from 10th September – 25th 
November ’16 (above) and 10th – 16th October ’16 (below) 
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Figure 57 Measured & simulated indoor air temperature profile for IO from 10th September – 25th November ’16 
(above) and 10th – 16th October ’16 (below) 

 

Figure 58 Measured & simulated indoor air temperature profile for TPM from 10th September – 25th 
November ’16 (above) and 10th – 16th October ’16 (below) 
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Figure 59 Measured & simulated indoor air temperature profile for 3Me from 10th September – 25th 
November ’16 (above) and 10th – 16th October ’16 (below) 

8.6 Specific internal heat gain 

 

Figure 60 Estimated specific internal heat gain profile for IO, TPM and 3Me from 10th September – 25th 
November ’16 (above) and 10th – 16th October ’16 (below) 
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Appendix 9 Impact of different parameters on the 

building heating demand of data set 2015 

This appendix shows the impact of the most influencing parameters on the simulated and actual heating demand of the 

buildings for October 2015 (part of data set 2015). The graphs include the data points and least square for each of the 

buildings.  

The period selected is after 1st of October 2015 which corresponds to the period in which only heating was required. 

The actual heating demand for IO and TPM is available from 1st October 2015 until 13th January 2016, while for 3mE 

only the month of October 2015. The least square for the month of October is representative of the period from October 

until January, therefore only the month of October is represented. 

9.1 Outdoor temperature 

 

 

Figure 61 Influence outdoor temperature on the buildings’ simulated heating demand during 
weekdays and opening hours for the period from 1st October until 13th January 2016. 

 

Figure 62 Influence outdoor temperature on the buildings’ simulated (above) and actual (below) 
heating demand during weekdays and opening hours for October 2015. 
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Table 34 Linear correlation outdoor temperature versus simulated and actual heating demand during weekdays 
and opening hours for October 2015. 

 simulated  measured  

 constant slope constant slope 

IO 17 -0.91 19 -1 

3mE 32 -1.7 25 -1 

TPM 19 -0.75 17 -0.87 

 

 

Figure 63 Influence outdoor temperature on the buildings’ simulated (above) and actual (below) 
heating demand during weekdays and closing hours for October 2015. 

 

Table 35 Linear correlation outdoor temperature versus simulated and actual heating demand during weekdays 
and closing hours for October 2015. 

 simulated  measured  

 constant slope constant slope 

IO 2 -0.13 4.7 -0.28 

3mE 7.8 -0.52 12 -0.69 

TPM 6.3 -0.43 11 -0.75 
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Figure 64 Influence outdoor temperature on the buildings’ simulated (above) and actual (below) 
heating demand during weekends (opening & closing hours) for October 2015. 

 

Table 36 Linear correlation outdoor temperature versus simulated and actual heating demand during weekends 
(opening & closing hours) for October 2015. 

 simulated  measured  

 constant slope constant slope 

IO 2 -0.11 2.3 -0.13 

3mE 6.7 -0.41 5.2 -0.26 

TPM 4.8 -0.3 3.5 -0.11 
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9.2 Global horizontal solar radiation 

 

 

Figure 65 Influence global horizontal solar radiation on the buildings’ simulated (above) and actual (below) 
heating demand during weekdays and opening hours for October 2015. 

Table 37 Linear correlation global horizontal solar radiation versus simulated and actual heating demand during 
weekdays and opening hours for October 2015. 

 simulated  measured  

 constant slope constant slope 

IO 7 -0.0086 8.2 -0.005 

3mE 14 -0.015 14 -0.0071 

TPM 10 -0.0034 7.2 -0.0025 

 

Figure 66 Influence global horizontal solar radiation on the buildings’ simulated (above) and actual (below) 
heating demand during weekends (closing and opening hours) for October 2015. 
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9.3 Indoor air temperature 

 

Figure 67 Influence indoor air temperature on the buildings’ simulated heating demand during weekdays and 
opening hours for October 2015. 

 

Figure 68 Influence indoor air temperature on the buildings’ simulated heating demand during weekdays and 
closing hours for October 2015. 

Table 38 Linear correlation indoor air temperature versus simulated and actual heating demand during 
weekdays and closing hours for October 2015. 

 simulated  measured  

 constant slope constant slope 

IO 8.5 -0.42 8.5 -0.42 

3mE 17 -0.75 17 -0.75 

TPM 16 -0.68 16 -0.68 
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Figure 69 Influence indoor air temperature on the buildings’ simulated heating demand during weekends 
(opening and closing hours) for October 2015. 

 

Table 39 Linear correlation indoor air temperature versus simulated and actual heating demand during 
weekends (opening and closing hours) for October 2015. 

 simulated  measured  

 constant slope constant slope 

IO 7.4 -0.34 7.4 -0.34 

3mE 13 -0.6 13 -0.6 

TPM -1.9 0.19 -1.9 0.19 
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Appendix 10 Impact of different parameters on the 

building heating demand of data set 2016 

This appendix shows the impact of the most influencing parameters on the simulated and actual heating demand of the 

buildings. The graphs include the data points and least square for each of the buildings. The actual heating demand of 

3Me was wrong, therefore the 3Me data set is excluded in the actual eating demand representations.  

The time set in LEA before the 3rd of October was not correct, leading to wrong heating demand predictions. Therefore 

the data set represented in this appendix corresponds to the period of time from the 3rd of October 2016 at 6:00 (hour 

of the year: 6630) until 25th November of 2016 at 13:00 (hour of the year: 7909).  

10.1 Outdoor temperature 

 

Figure 70 Influence outdoor temperature on the buildings’ simulated (above) / measured (below) heating 
demand during weekdays and opening hours 
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Figure 71 Influence outdoor temperature on the buildings’ simulated (above) / measured (below) 
heating demand during weekdays and closing hours 

 

 

Figure 72 Influence outdoor temperature on the buildings’ simulated (above) / measured (below) heating 
demand during weekends (openings + closing hours) 
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10.2 Global horizontal solar radiation 

 

 

Figure 73 Influence global solar radiation on the buildings’ simulated (above) / measured (below) 
heating demand during weekdays and opening hours 

 

Figure 74 Influence global solar radiation on the buildings’ simulated (above) / measured (below) heating 
demand during weekends (openings + closing hours) 
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10.3 Wind speed 

 

Figure 75 Influence wind speed on the buildings’ simulated (above) / measured (below) heating demand 
during weekdays and opening hours 

 

Figure 76 Influence wind speed on the buildings’ simulated (above) / measured (below) heating 
demand during weekdays and closing hours 
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Figure 77 Influence wind speed on the buildings’ simulated (above) / measured (below) heating demand during 
weekends (openings + closing hours) 
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10.4 Indoor air temperature 

 

Figure 78 Influence indoor air temperature on the buildings’ simulated (above) / measured (below) 
heating demand during weekdays and opening hours 

 

 

Figure 79 Influence indoor air temperature on the buildings’ simulated (above) / measured (below) 
heating demand during weekdays and closing hours 

  



       

61 

 

Figure 80 Influence indoor air temperature on the buildings’ simulated (above) / measured (below) heating 
demand during weekends (openings + closing hours) 
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10.5 Internal heat gain 

 

Figure 81 Influence internal heat gain on the buildings’ simulated (above) / measured (below) heating 
demand during weekdays and opening hours 

 

 

Figure 82 Influence internal heat gain on the buildings’ simulated (above) / measured (below) heating 
demand during weekdays and closing hours 
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Figure 83 Influence internal heat gain on the buildings’ simulated (above) / measured (below) heating 
demand during weekends (openings + closing hours) 
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Appendix 11 Appearance interactive stepwise 

regression function in Matlab 

 

Matlab stepwise regression function is available in the statistical toolbox of Matlab [45]. This function displays an 

interface for interactively controlling the stepwise addition and removal of the model parameters (see Figure 84). The 

first square shows the values corresponding to the data set residuals and variables’ coefficients. The second square 

presents a summary of the statistics parameters for the entire model and the third square shows the model history 

RMSE, which tracks the RMSE from step to step in order to compare the optimality of the different models.  

 

Figure 84 Interface stepwise regression function in Matlab R2015b 

The interface indicates the recommended next step. The recommended next step either adds the most significant 

parameter or removes the least significant parameter until the regression reaches a local minimum of RMSE. At each 

step, the coefficients of each parameter are recalculated for the new model and the new values for the statistical criteria 

are given. The method finishes when there is no step that can improve the model [45].  
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Appendix 12 Results regression models 

12.1 Multivariate linear regression model 1 (models 1a and 1b) 

The regression model 1a and model 1b correspond to the models developed in chapter 8 (Multivariate models based 

on the building’s thermal energy balance principle) described by the equation below. In model 1a all variables where 

considered, while in model 1b the variable (𝑻𝒊𝒏𝒅𝒐𝒐𝒓 𝒔𝒖𝒓𝒇𝒂𝒄𝒆𝒔
𝒕 − 𝑻𝒊𝒏𝒅𝒐𝒐𝒓) was neglected 

𝑸𝒅𝒆𝒎𝒂𝒏𝒅 [
𝒘

𝒎𝟑] = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 + 𝑪𝟏 (𝑻𝒈𝒓𝒐𝒖𝒏𝒅 − 𝑻𝒊𝒏𝒅𝒐𝒐𝒓) + 𝑪𝟐 (𝑻𝒐𝒖𝒕𝒅𝒐𝒐𝒓 − 𝑻𝒊𝒏𝒅𝒐𝒐𝒓) + 𝑪𝟑𝐕𝒘𝒊𝒏𝒅
 (𝑻𝒐𝒖𝒕𝒅𝒐𝒐𝒓 − 𝑻𝒊𝒏𝒅𝒐𝒐𝒓) +

𝑪𝟒 (𝑻𝒐𝒖𝒕 𝑨𝑯𝑼 − 𝑻𝒊𝒏𝒅𝒐𝒐𝒓 ) + 𝑪𝟓 (𝑻𝒊𝒏𝒅𝒐𝒐𝒓 𝒔𝒖𝒓𝒇𝒂𝒄𝒆𝒔
𝒕 − 𝑻𝒊𝒏𝒅𝒐𝒐𝒓) + 𝑪𝟔 𝑸𝒔𝒐𝒍𝒂𝒓 + 𝑪𝟕 𝑸𝒊𝒏𝒕𝒆𝒓𝒏𝒂𝒍  

 

Table 40 Coefficients and statistical parameters of the multivariate regression model 1 for the specific heating 
demand prediction (W/m3) for IO, 3mE and TPM, respectively. Data set: weekdays during opening hours from 
5th October 2015 until 14th January 2016. 

 
IO 3mE TPM 

Constant -6.09 -52.65 61.14 
C1 -0.90 -10.50 11.65 
C2 -0.76 0.45 -2.49 
C3 -0.01 -0.01 -0.01 
C4 0 7.17 -7.93 
C5 -2.50 -7.37 -7.33 
C6 0.0012 0.0019 0.0009 
C7 -1.92 -0.77 -1.43 

R2 98.60% 99.6% 97.52% 

Adjusted R2 98.60% 99.59% 97.50% 

RMSE 0.48 0.52 0.66 

This table shows the statistical parameters used to analyse the significance of the model. The other statistical parameters (used 
to analyse the data set residuals and significant level of the variables’coefficients) are within the limit values. 

 

Table 41 Coefficients and statistical parameters of the multivariate regression model 2 for the specific heating 
demand prediction (W/m3) for IO, 3mE and TPM, respectively. Data set: weekdays during opening hours from 
5th October 2015 until 14th January 2016. 

 
IO 3mE TPM 

Constant 60.82 469.95 363.05 
C1 7.40 89.13 67.27 
C2 -0.89 -14.62 -10.56 
C3 -0.02 -0.0013 -0.0036 
C4 0 -58.17 -43.43 
C5 - - - 
C6 -0.0002 0.0004 0.0074 
C7 -4.59 -0.26 -3.04 

R2 79.43% 53.19% 63.71% 

Adjusted R2 79.34% 52.93% 63.51% 

RMSE 1.83 5.63 2.51 

- Coefficient corresponding to a variable neglected in the multivariate regression model 

This table shows the statistical parameters used to analyse the significance of the model. The other statistical parameters (used 
to analyse the data set residuals and significant level of the variables’coefficients) are within the limit values. 
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Figure 85 Comparison fitting profile of the regression model 1a (above) and 1b (below) for IO. Data set: 
weekdays during opening hours from 5th October 2015 until 14th January 2016. 

 

 

Figure 86 Comparison fitting profile of the regression model 1a (above) and 1b (below) for 3mE. Data set: 
weekdays during opening hours from 5th October 2015 until 14th January 2016. 
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Figure 87 Comparison fitting profile of the regression model 1a (above) and 1b (below) for TPM. Data set: 
weekdays during opening hours from 5th October 2015 until 14th January 2016. 
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12.2 Multivariate linear regression model 2 (model 2a, 2b and 2c) 

The regression models 2a, 2b and 2c correspond to the models developed in chapter 9 (Multivariate linear model 

improvement towards application into practice) described by the equation below. In model 2a the indoor surface 

temperature is included, in model 2b the indoor surface temperature is excluded and in model 2c the indoor surface 

temperature is replaced. 

𝑄𝑑𝑒𝑚𝑎𝑛𝑑 [
𝑤

𝑚3] = 𝑐𝑜𝑛𝑠𝑡 +  𝐶𝑎 (𝑇𝑜𝑢𝑡𝑑𝑜𝑜𝑟) + 𝐶𝑏 (𝑻𝒊𝒏𝒅𝒐𝒐𝒓) + 𝐶𝑐(V𝑤𝑖𝑛𝑑
 ) + 𝐶𝑑 (𝑇𝑔𝑟𝑜𝑢𝑛𝑑) + 𝐶𝑒  (𝑻𝒐𝒖𝒕 𝑨𝑯𝑼) +

𝐶𝑓 (𝑻𝒊𝒏𝒅𝒐𝒐𝒓 𝒔𝒖𝒓𝒇𝒂𝒄𝒆𝒔
𝒕 ) + 𝐶𝑓,𝑖𝑛𝑡1𝑎 𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙,1𝑎 + 𝐶𝑓,𝑠𝑜𝑙𝑎𝑟3𝑎  𝑄𝑠𝑜𝑙𝑎𝑟,3𝑎 + 𝐶𝑔 𝑄𝑠𝑜𝑙𝑎𝑟 + 𝐶ℎ 𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  

 

Results for IO 

 

Table 42 Coefficients and statistical parameters of the multivariate regression model 2 for the specific heating 
demand prediction (W/m3) for IO with indoor surface temperature included (model 2a), indoor surface 
temperature excluded (model 2b) and indoor surface temperature replaced (model 2c). Data set: weekdays 
during opening hours from 5th October 2015 until 14th January 2016. 

Coefficients Ts included 
(model 2a) 

Ts excluded 
(model 2b) 

Ts replaced 
(model 2c) 

Constant -17.69 147.63 32.34 

Ca -0.82 -0.97 -0.92 

Cb 4.23 -6.37 -0.65 

Cc 0.14 0.19 0.16 

Cd 0 0 0 

Ce 0 0 0 

Cf -2.50 - - 
Cf,int1a - - -11.42 

Cf,solar3a - - -0.009481 

Cg 0.0013505 -5.89E-05 -0.000676 

Ch -1.93 -4.62 8.44 

Adjusted R2 98.52% 79.42% 90.70% 

RMSE 0.48 1.82 1.22 

- Coefficient corresponding to a variable excluded/neglected in the multivariate regression model 

This table shows the statistical parameters used to analyse the significance of the model. The other statistical parameters (used 
to analyse the data set residuals and significant level of the variables’ coefficients) are within the limit values. 
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Figure 88 Fitting profile of the multivariate regression model for the specific heating demand prediction defined 
by model 2 for IO with indoor surface temperature included (above), excluded (middle) and replaced (below), 
respectively. Data set: weekdays during opening hours from 5th October 2015 until 14th January 2016. 
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Results for 3mE 

Table 43 Coefficients and statistical parameters of the multivariate regression model 2 for the specific heating 
demand prediction (W/m3) for 3mE with indoor surface temperature included (model 2a), indoor surface 
temperature excluded (model 2b) and indoor surface temperature replaced (model 2c). Data set: weekdays 
during opening hours from 5th October 2015 until 14th January 2016. 

Coefficients Ts included 
(model 2a) 

Ts excluded 
(model 2b) 

Ts replaced 
(model 2c) 

Constant -219.06 1542.52 827.98 

Ca 0.78 -14.65 -9.08 

Cb 10.52 -16.39 -5.25 

Cc 0.15 0.04 -0.02 

Cd 0 0 0 

Ce 8.93 -58.27 -34.08 

Cf -7.36 - - 

Cf,int1a - - -7.09 

Cf,solar3a - - -0.02 

Cg 0.002 0.0005 0.0062 

Ch -0.78 -0.27 5.60 

Adjusted R2 99.58% 52.90% 83.2% 

RMSE 0.53 5.63 3.36 

- Coefficient corresponding to a variable excluded/neglected in the multivariate regression model 

This table shows the statistical parameters used to analyse the significance of the model. The other statistical parameters (used 
to analyse the data set residuals and significant level of the variables’coefficients) are within the limit values. 

 

  

Figure 89 Fitting profile of the multivariate regression model for the specific heating demand prediction defined 
by model 2 for 3mE with indoor surface temperature included (above), excluded (middle) and replaced (below), 
respectively. Data set: weekdays during opening hours from 5th October 2015 until 14th January 2016. 
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Results for TPM 

Table 44 Coefficients and statistical parameters of the multivariate regression model 2 for the specific heating 
demand prediction (W/m3) for TPM with indoor surface temperature included (model 2a), indoor surface 
temperature excluded (model 2b) and indoor surface temperature replaced (model 2c). Data set: weekdays 
during opening hours from 5th October 2015 until 14th January 2016. 

Coefficients Ts included 
(model 2a) 

Ts excluded 
(model 2b) 

Ts replaced 
(model 2c) 

Constant 156.13 1159.36 918.42 

Ca -2.14 -10.48 -8.57 

Cb 6.50 -13.18 -9.73 

Cc 0.15 0.05 0.02 

Cd 0 0 0 

Ce -6.08 -42.98 -34.55 

Cf -7.33 - - 
Cf,int1a - - -6.86 

Cf,solar3a - - 0.000086 

Cg 0.001 0.007 0.006 

Ch -1.43 -3.05 3.49 

Adjusted R2 97.47% 63.52% 73% 

RMSE 0.66 2.5 2.16 

- Coefficient corresponding to a variable excluded/neglected in the multivariate regression model 

This table shows the statistical parameters used to analyse the significance of the model. The other statistical parameters (used 
to analyse the data set residuals and significant level of the variables’ coefficients) are within the limit values. 

Figure 90 Fitting profile of the multivariate regression model for the specific heating demand prediction 
defined by model 2 for TPM with indoor surface temperature included (above), excluded (middle) and 
replaced (below), respectively. Data set: weekdays during opening hours from 5th October 2015 until 14th 
January 2016. 


