
CREAT ING THE MED IAL AX IS TRANSFORM FOR B I L L IONS OF
L IDAR PO INTS US ING A MEMORY EFF IC IENT METHOD

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Geomatics

by

Marco Lam

January 2016

Marco Lam: Creating the Medial Axis Transform for billions of LiDAR points
using a memory efficient method (2016)
cb This work is licensed under a Creative Commons Attribution 4.0 Inter-
national License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was made in the:

3D geoinformation group
Department of Urbanism
Faculty of Architecture & the Built Environment
Delft University of Technology

Supervisors: Prof.dr. J.E. Stoter
Ir. R. Peters Msc.

Co-reader: Ir. P. Nourian

http://creativecommons.org/licenses/by/4.0/

ABSTRACT

Using Light Detection And Radar (LiDAR) large parts of the earth’s geogra-
phy can be captured an represented as a 3D pointcloud. The whole eleva-
tion dataset of the Netherlands (AHN2) is currently available and captured
using this technique, it contains around 640 billion points. These massive
dataset in its current form is well suited for visualisation and certain forms
of analysis, as the 3D points are the outer boundary of objects. However, the
Medial Axis Transform (MAT) is another way to represent these objects. As
it represents the inner/outer skeleton of the objects some features become
more easily detectable and it could be used as a tool in point cloud analysis.

The MAT can be created from pointclouds using various methods, how-
ever the shrinking ball algorithm is used as it is relative simple to implement,
more storage efficient and easier to parallellize compared to other methods.
Yet the computation of it for a massive dataset such as the AHN2/3 is trou-
blesome as it does not fit inside the main memory of the computer.

This thesis focusses on how to scale the MAT so it can be computed for
massive datasets using a main memory efficient approach. Two methods (i.e.
tiling and streaming based algorithms) are proposed. They both subdivide
the pointcloud dataset in to manageable subsets, so that the MAT can be
computed on these smaller sets. However, the tiling approach relies heavily
on temporal storage on the external memory (harddisk) by creating smaller
tiles. whilst the streaming approach tries to manage it within the Main
memory by scanning the input dataset multiple times and storing tiles in
the main memory.

This thesis concludes that using both methods it is possible to compute
the MAT of a dataset which is larger than the main memory. The tiling
approach seems suited as the temporal storage of the external memory is
about the same size as the output data, further more the main memory us-
age can be regulated easily as the amount of tiles which will be processed
at the same time can be chosen. The streaming approach shows potential
to be efficient as well in computing the MAT. However, because streaming
computations loads the input data sequentially and processes it using a lim-
ited memory buffer, outputting data and freeing memory space is needed.
In this thesis a first step in finding a way to achieve that is made, however it
is not functioning that well. As such the data outputting can not be as rapid
as it should be when using streaming algorithms.

iii

ACKNOWLEDGEMENTS

This report is the result of a master thesis on Geomatics at the Delft Univer-
sity of Technology. For this result, I want to thank super visors Professor dr.
Jantien Stoter and Ir. Ravi Peters for their input, knowledge and guidance.

Furthermore I want to thank my co-reader Ir. Pirouz Nourian, whose
detailed comments helped me improve my report.

Additionally, I want to thank my Friends, in particular Fleur, Rene and
Hans who helped me continue working during the evenings and weekends.

And most importantly, I want thank my family and Roxanne, who have
always supported and encouraged me with everything I do.

v

CONTENTS

1 introduction 1

1.1 Datasets . 2

1.2 Research objectives . 2

1.3 Workflow . 3

1.4 Scope . 3

1.5 Outline . 3

2 background information and related work 5

2.1 Spatial data structures . 5

2.2 Medial Axis Transform . 9

2.3 Applications of MAT . 11

2.4 computation of the MAT . 15

2.5 Memory Hierarchy . 20

2.6 Strategies for scaling GIS algorithms 20

3 computing buffers for the medial axis transform 27

3.1 Time and Memory complexity 27

3.2 Challenges of processing smaller datasets 29

3.3 Regular Buffer . 31

3.4 Reduced buffer . 33

3.5 Thinned reduced buffer . 34

3.6 Summary . 44

4 scaling the medial axis transform 45

4.1 Approach: Tiling algorithms 47

4.2 Approach: Streaming algorithm 60

4.3 Merging the output . 68

4.4 Differences between approaches 69

4.5 summary . 70

5 implementation, experiments and comparison 73

5.1 Implementation . 73

5.2 Datasets . 76

5.3 data quality . 76

5.4 External memory usage . 78

5.5 Internal memory usage . 79

5.6 Computation time . 81

5.7 Discussion . 84

5.8 Summary . 85

6 conclusion, discussion and future work 87

6.1 conclusions . 87

6.2 discussion . 89

6.3 Future Work . 90

a thinned reduced buffer results 95

b extra implementation results 99

vii

viii Contents

c reflection 101

L I ST OF F IGURES

Figure 1.1 The medial axis visualized for a building 1

Figure 1.2 Introduction: workflow 3

Figure 2.1 Region quadtree . 6

Figure 2.2 Optimized Point Quadtree 6

Figure 2.3 Unbalanced and balanced kd-tree 7

Figure 2.4 Nearest Neighbour Search KD-tree 8

Figure 2.5 Subdivision of the dataset for the kd-tree and opti-
mized kd-tree . 8

Figure 2.6 Morton code . 9

Figure 2.7 Creating medial axis 10

Figure 2.8 inner and outer MAT 10

Figure 2.9 MAT of a rectangle . 11

Figure 2.10 Domain Decomposition Lemma 12

Figure 2.11 Powercrust . 12

Figure 2.12 Surface reconstructed from strongly simplified MA . 13

Figure 2.13 Simplification using LFS 14

Figure 2.14 Regular point representation vs splat representation . 14

Figure 2.15 Visibility analysis using the medial balls 15

Figure 2.16 Radius calculation . 15

Figure 2.17 MAT computation using voronoi 16

Figure 2.18 Explanation of the algorithm of Ma 17

Figure 2.19 Radius calculation . 17

Figure 2.20 Noise in a dataset . 19

Figure 2.21 Sequence of Shrinking ball algorithm with noise . . . 19

Figure 2.22 Minkowski Sum . 22

Figure 2.23 D&C used to compute the voronoi diagram 23

Figure 2.24 Spatial coherence . 24

Figure 2.25 Workflow spatial finalizer 24

Figure 2.26 Streaming Delaunay Triangulation 25

Figure 3.1 Overview methodology 27

Figure 3.2 Pointcloud dataset split up in 2 subsets order 29

Figure 3.3 Border issues when computing MAT 30

Figure 3.4 Unfinished points . 30

Figure 3.5 Point needing data from outside the tile 32

Figure 3.6 Buffers on 2 subsets . 32

Figure 3.7 Determining which MAT in the buffer region is final 33

Figure 3.8 Reduced buffer . 34

Figure 3.9 The medial ball is tangent to more than one boundary
point . 35

Figure 3.10 finished or unfinished 36

Figure 3.11 Creating test sets . 38

Figure 3.12 Analysis area . 38

Figure 3.13 Invalid inner MAT of a point 39

Figure 3.14 Rotterdam Dataset with reduced buffer 40

Figure 3.15 Histogram: Rotterdam Dataset with reduced buffer . 40

Figure 3.16 Thin objects errors . 41

Figure 3.17 Normal calculation of planar plane 41

Figure 3.18 Outliers in the air . 42

ix

x List of Figures

Figure 3.19 Noise in the dataset . 42

Figure 3.20 Outer medial axis deviations 43

Figure 3.21 Inner medial axis deviations 43

Figure 4.1 Subdividing a Geographic Pointcloud using 2D grid 45

Figure 4.2 MAT computation for a single point with buffers . . 46

Figure 4.3 Segmentation of a dataset 47

Figure 4.4 Buffers around the tiles 48

Figure 4.5 Workflow tiling process 48

Figure 4.6 Dataset subdivided in 200m x 200m tiles 49

Figure 4.7 Buffer regions . 50

Figure 4.8 Buffer regions . 51

Figure 4.9 Dataset split in 64 tiles 52

Figure 4.10 Dataset is split up in to 2 collections 54

Figure 4.11 Dataset is split up in to 4 collections 55

Figure 4.12 Subdivision using kd-tree 56

Figure 4.13 Skinny vs square collections 57

Figure 4.14 Reduced buffer . 57

Figure 4.15 4x4 collection of tiles 58

Figure 4.16 Spatial Finalizer Workflow 60

Figure 4.17 Neighbouring cells . 61

Figure 4.18 Illustration of the problem of using spatial finalizer
with buffers . 62

Figure 4.19 Waiting times for tiles 62

Figure 4.20 Waiting tile for tiles . 63

Figure 4.21 Maximum NN scan area 64

Figure 4.22 Maximum NN scan area 65

Figure 4.23 Merging order . 68

Figure 5.1 Workflow scheme for streaming and tiling approach 74

Figure 5.2 Location datasets . 77

Figure 5.3 Difference in output of streaming and tiling 77

Figure 5.4 AHN3 datasets: acsmat main memory usage 81

Figure 5.5 AHN3 datasets: acsmat Computation Time 83

Figure 5.6 AHN3 c 67hz1: Process Times 83

Figure 5.7 Computation time comparison (Regular buffers/Re-
duced buffers) . 85

Figure A.1 maximum NN scan area 95

Figure A.2 maximum NN scan area 95

Figure A.3 maximum NN scan area 96

Figure A.4 maximum NN scan area 97

Figure A.5 maximum NN scan area 98

L I ST OF TABLES

Table 3.1 MAT Datastructure . 28

Table 3.2 computation memory usage for either the inner or
outer MAT!, separated in amount of points 28

Table 3.3 Unfinished points Delfgauw 31

Table 3.4 Unfinished points Woerden 31

Table 3.5 Errors in MAT calculation with preprocessing 39

Table 4.1 normalizing coordinates 49

Table 4.2 MAT computation memory usage 58

Table 4.3 MAT computation memory usage (Streaming approach) 68

Table 4.4 Main differences between the tiling and streaming
method . 69

Table 5.1 Amount of collections per segmentation method . . . 75

Table 5.2 External memory usage MAT (800 x 800m dataset of
Rotterdam puntenwolk) 78

Table 5.3 External memory usage of the tiling and streaming
algorithm on parts of the rotterdam pointcloud . . . 78

Table 5.4 External memory usage of the tiling on AHN3 sets . 79

Table 5.5 Maximum memory usage for several sizes collections
using the tiling approach (800 x 800 m) 79

Table 5.6 Main memory usage of streaming approach 80

Table 5.7 Maximum memory usage for several sizes collections
using the tiling approach (1600 x 1600 m) 80

Table 5.8 Steps both approaches make and the description . . . 81

Table 5.9 Processing time of parts of the tiling process (800 x
800m) . 82

Table 5.10 Processing time of parts of the tiling process (1600 x
1600m) . 82

Table 5.11 Processing time of parts of the streaming process (800

x 800 m) . 82

Table 5.12 Processing time of parts of the streaming process (1600

x 1600 m) . 83

Table B.1 Maximum memory usage for several sizes collections
(1600 x 1600 m) . 100

xi

L I ST OF ALGOR ITHMS

2.1 Shrinking Ball Algorithm . 18

4.1 Tiling approach . 53

4.2 Streaming approach . 67

xiii

ACRONYMS

AHN3 Dutch: Actueel Hoogtebestand Nederland; English: current
elevation map of the Netherlands

LiDAR Light Detection And Ranging

MAT Medial Axis Transform

MA Medial Axis

SF Spatial Finalizer

xv

1 INTRODUCT ION

The shape of objects is usually described by their outer boundaries. Using
Light Detection And Ranging (LiDAR) large parts of the earth’s geography
can be captured and represented as a pointcloud. While the outer bound-
aries are useful for further analysis and visualisation, another way to rep-
resent objects is Medial Axis Transform (MAT), which could be seen as the
inner and outer skeleton of the object (see Figure 1.1). Using its properties,
objects become more easily detectable and several features become more
apparent. As such the MAT could be seen as a tool in pointcloud analysis.
For instance, MAT already has the width or height of a object in its datas-
tructure represented by a radius. The medial axis is always a dimension
lower than the representation of an object using the outer boundary, as such
shape characteristics can be identified more easily. Applications involving
MAT are surface reconstruction [Amenta et al., 2001], Simplifying shapes
[Tam and Heidrich, 2003][Berger and Silva, 2012], Simplifying point clouds
[Ma, 2012][Peters, 2014b] and visibility analysis without surface reconstruc-
tion from pointclouds [Peters et al., 2015]. These will be elaborated more in
Section 2.

Figure 1.1: The medial axis visualized for a building (a) building represented by
points of the outer boundary (b) top view of the building represented by
the medial axis (c) side view of the building represented by the medial
axis

1

2 introduction

1.1 datasets

The datasets used during this project are 3D pointclouds captured using
airborne (LiDAR). This is done by using ultraviolet, visible, or near infra-
red light to image objects. As these distances are measured from the air,
typically the horizontal planes are better captured than vertical planes (such
as walls).

The Netherlands is one of the few countries which has a high resolu-
tion LiDAR dataset comprising the nations terrain, the AHN3 (dutch: Actueel
Hoogtebestand Nederland; English: current elevation map of the Nether-
lands). The point density of the dataset is about 8 point per m2 and therefore
it contains more than 600 billion height measurements. The AHN3 is mainly
necessary for water- and weir management of government agencies. Using
this large dataset it can be determined how water flows from the land, how
high the water level in ponds is and how much water rivers can discharge.
Furthermore the dataset could be used for other kinds of management, such
as 3D-mapping, permits and enforcement of it [Rijkswaterstaat, 2014].

Municipalities are maintaining their on LiDAR datasets as well. The Rot-
terdam dataset has an average point density of 30 points per m2 with peak
densities of 60 points per m2 [Peters, 2014b].

However, due to the large size of the dataset it is hard to process the
complete dataset. To create the 3D MAT of the dataset the current available
algorithm needs to be scaled.

While algorithms to compute the 3D MAT work on small datasets, it could
be troublesome for massive pointcloud datasets. This is because to run this
algorithm ,all the data points are stored in the main memory. For larger
datasets this is impossible to do. Therefore smart solutions need to be
thought of to ensure that all the data can be processed with limited memory.

1.2 research objectives

1.2.1 Research question

The main research question is:

• How can the 3D medial axis point approximation using the shrinking
ball algorithm be scaled in a memory efficient way for a large dataset
which does not fit in the internal memory?

For the answer of the main research question the following sub questions
need to be resolved:

1. What are the challenges in scaling the 3D medial axis using the shrink-
ing ball algorithm?

2. How to design and implement several methods for scaling the shrink-
ing ball algorithm?

3. How do the methods compare to each other?
In terms of memory usage, computation time and output quality.

1.3 workflow 3

1.3 workflow
The research questions/objectives mentioned previously have been com-
pleted sequentially (See Figure 1.2). As not all ideas worked out, it was
an iterative process. The MAT was first analysed, while performing a litera-
ture research on scaling methods. This has lead to several implementations
on the scaling level and MAT computation level. Finally these implementa-
tions were tested and compared to each other using several real-life datasets.
The benchmarks of these tests gave an insight in to how to compute the MAT

for massive datasets efficiently.

Literature Research

Scaling methods

Implementation Comparison

MAT computation
 adjustments

Figure 1.2: workflow

1.4 scope
For this thesis only topographic point cloud datasets will be used. The re-
sulting scaling algorithm will therefor only work on datasets with similar
characteristics as topographic point clouds. This means that most of the
points should be spread in 2 of the 3 directions (in the case of the AHN x
and y direction) and have limited points spread in the the zenith direction
(in case of the AHN the height). Therefore regions can be formed as it was
a 2D dataset.

The estimation of the normal vectors should be correct to create the MAT

for an object. However, as normal vectors are estimated for pointclouds,
they are not always correct. As the project is about scaling the algorithm,
solving this problem with incorrect normals will not be addressed.

1.5 outline
In chapter 2 the background information an related work is presented. The
nature and features of the MAT are explained and applications for it are de-
scribed. Several methods to compute the MAT are given, where the shrinking
ball algorithm is explained in more detail as it is used in the rest of the thesis.
An overview of related scalable GIS algorithms/methods is finally given.

Chapter 3 focusses on the MAT computation itself, the usage and need of
buffers is explained and the possibility of a reduced buffer method where
points are left out is evaluated.

In chapter 4 the two main approaches to scale the MAT are introduced,
namely the Tiling algorithm and Streaming algorithm. The way they chunk
the dataset in processable parts is explained and how they use it to compute
the MAT (explained in the previous chapter).

4 introduction

In chapter 5 the two approaches are implemented on real world datasets
and compared to each other in terms of data quality, process time, main
memory usage as well as secondary memory usage.

Chapter 6 will provide the conclusions drawn during the research. How-
ever, as some additional research could be done to improve both approaches,
some recommendations are made as well.

2 BACKGROUND INFORMAT ION AND
RELATED WORK

This chapter will provide the background information and related work.
These will form the basis used to create the methodology. As the data
used for this thesis is geographical data, spatial data structures will be first
explained. Followed by the MAT in which its properties and applications
will be discussed. A few computation methods to get the MAT will then be
introduced, with the shrinking ball algorithm explained more thoroughly, as
it is the chosen method in this thesis. Finally, the possible scaling methods
will be presented.

2.1 spatial data structures

As the large amounts of spatial data need to be accessed and processed
rapidly using queries, spatial data structures are used to organize the data.
To be able to access the data quickly the spatial databases sort the data based
on their spatial keys, so that the sorting is applied on the space occupied
by the data. These techniques are called spatial indexing methods [Samet,
1995]. Spatial data structures can be characterized in 2 types: space-driven
and data-driven. The quadtree is an example of a space-driven data struc-
ture, as it is partitioning the embedded space. The kd-tree is an example
of a data-driven data structure, it is partitioning the data items themselves
[Vitter, 2007].

A hierarchical tree structure can be defined recursively as a collection of
nodes. Each node is a data structure consisting of a value and a list of
reference nodes. Simply said, a tree structure has a root value and subtrees
of children with one parent node.

2.1.1 Region Quadtree

The quadtree [Finkel and Bentley, 1974] is a tree data structure in which
each node has 4 children (see Figure 2.1). Each of these 4 nodes represents
a bounding box, while all of those 4 together cover the entire area of its
root node. The way this structure of quadtree is created is by recursively
subdividing the cells in to 4 equal-sized subcells until each cell contains a
point. A quadtree usually takes O(n log n) time to build with n points.

5

6 background information and related work

Figure 2.1: Region quadtree (Image from Wikipedia,2005)

Optimized point quad tree

The optimized point quad (Figure 2.2) tree differs from the region quadtree
in that it does not subdivide in 4 equal-sized subcells. It looks at the points
inside each cell and subdivides it in such a way that each of the 4 subcells
does not contain more than half of the points of the parent cell. [Finkel and
Bentley, 1974]

Figure 2.2: Optimized point Quadtree

2.1.2 KD-tree

The difference between a KD-tree [Bentley, 1975] and a quadtree is that it
splits alternately in the x and y direction (in case of a 2 dimensional dataset).
As a result each node only has 2 children. Whilst there are many ways to
construct a kd tree, the one applicable for this thesis is the so called ”optimal

https://en.wikipedia.org/wiki/Quadtree

2.1 spatial data structures 7

tree”. This kd-tree is created by choosing to split the dataset at the median
point. Then for both sides of the subsets a median point is chosen and both
datasets are split again, but in the alternative dimension/direction. Another
method, is the an unbalanced kd-tree, which is made by choosing the split
in such a way that both halves are subdivided uniformly in space. However,
this could lead to empty nodes, see Figure 2.3. As the balanced kd-tree is a
data-driven data structure, point deletion is harder than with a space-driven
data structure. The splitting using a cutting plane/line will change when
new points are deleted, therefore large parts of the data structure might
need to be rebuilt. The creation of a kd-tree can be achieved in O(nlogn)
time.

(a) (b)

Figure 2.3: (a) unbalanced kd-tree, unnecessary partitioning can be seen in the
graph, the grey regions are empty nodes. The depth is 6. (b) balanced
kd-tree, depth is 2 (Image from A. Sud)

Nearest Neighbour Search

The kd-tree is probably the most popular data structure used for searching
in multidimensional space [Shakhnarovich et al., 2006]. A method to get
the nearest neighbour for point p is to follow the path from the root till the
terminal node (i.e. the node which contains a point in the lowest level of the
graph). By determining from the root whether point p is to the left or the
right of the cutting line it is decided to which path it should go. When this
is done iteratively, eventually the process will end with the terminal node
i.e. the closest neighbour (See Figure 2.4). On average the search complexity
is O(logn) [Bentley, 1975]. However in a worst case scenario, the search
complexity can be O(n). This happens on situations where search query
needs to go through every point, to find the nearest neighbour.

http://ir.canterbury.ac.nz/bitstream/10092/7870/1/thesis_fulltext.pdf

8 background information and related work

Figure 2.4: Nearest Neighbour Search KD-tree. (Adjusted image from E. Fox)

Optimized KD-tree

While the regular KD-tree is created by alternately splitting in the x and
y direction. The optimized KD-tree splits the data set in the direction of
largest spread (Figure 2.5). This results in subsets which are potentially less
”skinny” than with the regular KD-tree generation [Friedman et al., 1977].

Regular kd-tree Optimized kd-tree

Figure 2.5: subdivision of the dataset for the kd-tree and optimized kd-tree

2.1.3 Space filling curves

A space-filling curve is a continuous curve whose range contains the entire
n-dimensional space. This continuous curve can be thought of as a path of
a continuously moving point through a n-d map. By doing so, the corre-
lation between the proximity of objects in space and the proximity of their
representation in the datastream (locality) is improved. In other words, it

http://courses.cs.washington.edu/courses/cse599c1/13wi/slides/lsh-hashkernels-annotated.pdf

2.2 medial axis transform 9

is a method to order a n-dimensional space in to a 1-dimensional stream.
While there are many forms of space filling curves, the Morton curve [Mor-
ton, 1966] is used in this case to sort the tiles (section 4.2.5). This is not the
best space filling curve to preserve locality [Jagadish, 1990], as the Hilbert
curve performs better. However the Morton curve is easy to compute, as
it maps the 1 dimensional list of tiles by interleaving the bits of the binary
representations of the X and Y values of the coordinate values (See Figure
2.6).

(a)

y: 0
000

1
001

2
010

3
011

4
100

5
101

6
110

7
111

000000 000001

000010 000011

000100 000101

000110 000111

001000 001001

001010 001011

001100 001101

001110 001111

010000 010001

010010 010011

010100 010101

010110 010111

011000 011001

011010 011011

011100 011101

011110 011111

100000 100001

100010 100011

100100 100101

100110 100111

101000 101001

101010 101011

101100 101101

101110 101111

110000 110001

110010 110011

110100 110101

110110 110111

111000 111001

111010 111011

111100 111101

111110

x: 0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

111111

(b)

Figure 2.6: Wikipedia,2015 (a) Four iterations of the Z-order curve (continuous line)
(b) mapping the 1 dimensional list of tiles by interleaving the bits of the
binary representations of the X and Y values of the coordinate values

2.2 medial axis transform
Blum [1967] originally spoke of the transformation for extracting new de-
scriptors of shape which he called the Medial Axis (MA) and the Medial
Axis Function (MAF). Philbrick et al. [1968] named it later the Medial Axis
Transform (MAT). Blum [1973] posited several ways of defining what the
MAT is. The one most similar to the algorithm used during in this thesis
is the Maximal Disk Formulation (Figure 2.7): Against each location on the
boundary a ball is placed in such a way that the ball is tangent to the bound-
ary. When the ball starts to grow it will eventually touch another part of the
boundary. When that happens the ball will have the following properties:

• It is completely within the boundaries of the shape for the interior MAT

• It is tangent to more than one boundary point

A ball with these properties is called a medial ball. Figure 2.7 shows the
MAT for a surface, a continuous field. In this thesis however, a geographic
pointcloud is used (a set of sampled points on the surface). As such the MAT

will also consist out of a set of discrete points (see Figure 2.9). Figure 2.8
shows that the MAT can be created for the inner and outer part of an object
(inner and outer MAT).

The locus of centers of the created balls is called the medial axis (MA). The
medial axis including the radii (r) belonging to each point is the MAT (x, y,
r). When this is done in 3D the MAT will include a z direction (x, y, z, r).

https://en.wikipedia.org/wiki/Z-order_curve

10 background information and related work

(a)

(b)

(c)

Figure 2.7: (a) The object is a rectangle. The red dot is the analysed location on
the boundary. The circle is tangent to the boundary on the red dot. It
touches the boundary on the other side, this is the maximum ball which
will fit in the object at the location of the red dot. The center of this
circle is displayed as a green dot. (b) Same procedure is done on another
location. (c) When all locations are processed the locus of centers of all
circles form the medial axis displayed in green

Figure 2.8: inner and outer MAT

2.2.1 Properties of MAT

Peters [2014a] names a few other valuable properties:

• Complete
The MAT describes the shape of an object. So while the MAT is cre-
ated using the bounbary representation of an object, the boundary of
the collection of medial balls represents the boundary of the original
shape. Figure 2.9 displays the MAT as red points, the blue points rep-
resent the outer boundary of a rectangle.

2.3 applications of mat 11

Figure 2.9: MAT of a pointcloud
gray medial balls; red medial axis; blue outer boundary representation

• Topology preserving
The MAT preserves the topology of the original shape.

• Compact
The dimension of the MAT is 1-dimension lower than that of the
boundary representation of the object. As can be seen in Figure 2.9,
the outer boundary is a 2 dimensional surface, while the MAT consists
out of 1 dimensional lines (en-captured in the 2-dimensional surface).
Therefore a MAT is easier to analyse.

• Hierarchy
The hierarchical structure of the MAT allows traversal of different ele-
ments that defines an object

• Medial
The MA is centered in an object. As it is in the center of 2 boundary
points.

• Sensitivity
Small changes in an object lead to huge changes in the MAT.

2.3 applications of mat
As mentioned before, the MAT can be used for spatial analysis. There are
several advantages of using MAT to model geometrical objects [Blum, 1973].

• The location of features is known
The MAT is the objects center

• Thickness information of objects can be extracted

• Shape characteristics (curvature, symmetry) can be identified in a intu-
itive and accurate way by analysing a skeleton; as such Feature recog-
nition [Prinz, 1988] is made easier.

• If a medial axis is composed of a set of connected branches, its struc-
ture is a graph. Each individual branch of the skeleton is associated
with different parts of the object. The branches of the medial axis can
separate the shape into simple segments [Grsoy, 1989]. Using the Do-
main Decomposition Lemma a given domain can be split in to smaller
subdomains (i.e. datasets can be subdivided and merged while pre-
serving whole attributes). The MAT is represented by the union of the
domains [Choi et al., 1997] (see Figure 2.10).

12 background information and related work

Figure 2.10: The idea of Domain Decomposition [Choi et al., 1997]. The union of
the 3 subdomains will result in the MAT of the original domain

• The property that the MAT is always represented one dimension lower
than the boundary representation is widely used in many applications
[Liu, 2011]. For instance shape centers are used in map creation to put
text annotations. It can also be used for shape matching, when the
structures are similar, while their posture is different.

2.3.1 Surface reconstruction

Amenta et al. [2001] reconstructed surfaces of a 3D object by approximating
the MAT of an object (see Figure 2.11). Sample points of the object are then
interpolated if they lie on the union of the inner and outer medial balls (so
called powercrust method).

Figure 2.11: left: inner medial balls; right: interpolation of sample points using the
powercrust method(Images from Amenta et al. [2001])

2.3.2 Simplifying shapes

Tam and Heidrich [2003] and Berger and Silva [2012] presented a way for
simplifying the shape of 3D objects by manipulating the MAT. They decom-
posed the axis into parts and removed a subset to reduce the complexity of
the resulting object (Figure 2.12).

2.3 applications of mat 13

(a) (b)

(c) (d)

Figure 2.12: (a) Original MA, (b) Surface reconstruction from boundary points
(c) Strongly simplified MA, (d) Surface reconstructed from strongly sim-
plified MA (Images from Tam and Heidrich [2003])

2.3.3 Segmentation

Berger and Silva [2012] performed pointcloud segmentation using medial
kernels. Which is a similarity measure defined as the likelihood of two
points belonging to a common interior medial ball. By using these medial
kernels to perform random walks in the pointcloud, restricting to regions
with similar medial balls.

2.3.4 Simplifying point clouds

Ma [2012][Peters, 2014b] demonstrated using the shrinking ball algorithm a
way to selectively simplify point clouds while preserving features of objects.
This could be achieved by determining the local feature size (LFS) [Dey
et al., 2001], which is the shortest distance to the MA for each point on the
boundary of objects. Points positioned far away from the MAT are of lesser
importance to the shape of an object than points nearby. By simplifying
(removing less important points) using LFS the features of objects will be
therefore be preserved (Figure 2.13).

14 background information and related work

(a) (b)

Figure 2.13: LFS-based simplification
(a) Original dataset (b) After simplification (Images from Peters [2014b])

2.3.5 Visualisation by point splatting

For visualization splats (1 dimensional circles) in the direction of the normal
vector could be placed. The size of these splats are determined by their
proximity to the LFS. This provides better visibility of objects when points
are sparse [Peters, 2015] (see Figure 2.14).

Figure 2.14: regular point representation vs splat representation [Peters, 2015]

2.3.6 Visibility analysis

Usually visibility analysis is applied on 3D city models which are often
created from aerial point clouds. By using the MAT, visibility analysis be
used on a point cloud directly without the need to compute a 3D city model.
By modelling the urban environment as a union of medial balls, which are
then used to construct a depth map that is used for point visibility queries
[Peters et al., 2015] (see Figure 2.15).

2.4 computation of the mat 15

(a) (b) (c)

Figure 2.15: Visibility analysis using the medial balls in 3 steps (Images from Peters
et al. [2015])
(a) Approximating MAT from point cloud (b) Computing depthmap (c)
Point visibility querying

2.4 computation of the mat
There are several algorithms to compute the MAT. A few of these are intro-
duced here.

2.4.1 Tracing based algorithms

The tracing algorithm [Sherbrooke et al., 1995][Reddy and Turkiyyah, 1995]
computes the medial axis by tracing its paths. Observe Figure 2.16, the com-
putation starts tracing from a seam-end Point, like a vertex of a polyhedron.
It traces the seam till it encounters a junction point or Seam-end. As a junc-
tion point is a location where multiple seams intersect, the tracing continues
at those seams. When the trace meets a seam-end point, the tracing for that
part stops.

Figure 2.16: Classification of MA Points (Image from [Sherbrooke et al., 1995])
Seam point: point which is equidistant to at least 3 boundary points
Seam-end Point: location where the seam ends at the boundary of the
object
Junction Point: location where multiple seams meet

2.4.2 Voronoi based algorithms

The vertices in a voronoi diagram are closely related to the MA, as 3 or more
boundary points are equidistant to the voronoi vertice (similar property as

16 background information and related work

the MA has). By creating the voronoi ball (e.g. a ball which has multiple
boundary points on its boundary, and a voronoi vertice as center) the inner
and outer voronoi vertices can be determined. As inner voronoi balls and
outer voronoi balls intersect shallowly, if at all [Amenta et al., 2001].

a b

c

Figure 2.17: Two-dimensional example of MAT approximation [Amenta et al., 2001]
(a) Pointcloud representing the outer boundary of an object, edges rep-
resenting the voronoi diagram. The vertices of the voronoi diagram
approximate the medial axis. (b) On the voronoi vertices a voronoi ball
is placed which touches the outer boundary of the object. (c) The inner
medial axis is determined by the union of inner balls and outer balls.

2.4.3 Shrinking ball algorithm

The shrinking ball algorithm uses a ball which shrinks till it fits inside an
object. [Ma, 2012][Jalba et al., 2013] Let us first define that V is the set of
sample points on a surface and N the corresponding normal vectors. A ball
B is represented with a center α and a radius β (B(α, β)). If this B touches at
least 2 or more points in V and contains no points in its interior, this ball is
called a medial ball. The medial axis of V is defined as the locus of centers
of the medial balls.

To compute the medial ball per point p in V, a ball B is placed with its
center c0 on Lp (a line through p along the direction of normal vector n).
The initial radius of B is rinit and is given by a sufficiently large number
(Figure 2.18a). By decreasing r iteratively, the medial ball is obtained. At
each iteration step a nearest neighbour search takes place, to find the point
p̃i in V closets to ci where i is denoted as the ith iteration step. Ball B is
then recomputed with point p and p̃i on its boundary, while having ci on
Lp. This is iteratively performed for point p, till there are no closest points
to center ci other than p and p̃i (Figure 2.18b, c, d). The final ball B is then
the medial ball.

2.4 computation of the mat 17

(a) (b)

(c) (d)

Figure 2.18: (a) largest ball; (b) blue dot is closest to the previous balls center; (c)
blue dot is closest to the previous balls center; (d) blue dot is closest
to the previous balls center and there is no other dot inside the ball
(images from R. Peters)

To calculate the radius of the ball the following formula is used:

r =
d(p1, p2)

2cosθp1

(2.1)

Where d(p1, p2) is the distance between the 2 final points and θ is the angle
between vector (p1, p2) and the vector (p1, c) (see Figure 2.19). While the
process and equation 2.1 are described for a 2D dataset, the same method
applies in 3D.

Figure 2.19: Radius calculation

The shrinking ball algorithm is chosen for the thesis because it is rela-
tively simple to implement, more storage efficient and easier to parallelize
compared to other methods (e.g. voronoi, tracing methods). The paralleliza-
tion can be done by splitting the pointcloud dataset in N equal sized chunks
and process each chunk per thread.

Starting radius r

As mentioned in the previous paragraph, the computation starts with a
large radius medial ball and shrinks till no other points are inside the ball.

18 background information and related work

Algorithm 2.1: Shrinking Ball Algorithm (V, N) Ma [2012]
Input: Pointcloud Dataset V, Normal Vectors N
Output: cp: Medial axis, rp radii p

1 Function COMPUTE MA POINT(V,N)
2 for each p ∈ V do
3 i← −1;
4 if p is the new element then
5 p̃i ← a randomly chosen point, p̃i ∈ V − {p};
6 rinit ← COMPUTE RADIUS(p, p̃−i);
7 # compute sufficiently large rinit

8 r0
p ← rinit

9 repeat
10 i← i + 1;
11 ci

p ← p− ri
pnp;

12 p̃i ← the closest point from ci
p, p̃−i ∈ V − {p};

13 ri+1
p ← COMPUTE RADIUS(p, p̃−i);

14 until ri
p = ri+1

p ;
15 cp ← ci

p; rp ← ri
p; p̃← p̃i;

16 if p is not the last element of V then
17 q← next sample in V;
18 rinit ← COMPUTE RADIUS(q, p̃)

19 return {cp}, {rp} ;

20 Function COMPUTE RADIUS(p, p̃)

21 θ = arccos np∗(p− p̃)
d(p,p̃) ;

22 r = d(p,p̃
2cosθp

;

23 return r;

However, how big should the starting ball size be? As the medial axis is
in the centre of the objects and the radius of it describes the width of the
object itself, the starting size for shrinking should be as big as the largest
object detectable. Let us assume that one wants the inner and outer MAT of
the built environment. As the datasets used in are parts of the Netherlands,
nearly all human-made objects are less than 200 meters tall (apart from
the top 5 highest buildings [Hoving, 2012]). The optimal starting radius
therefore should be 100 meters.

Normal calculation

To numerically compute the normal vector for points, a point set in the
neighbourhood is usually used. By computing a plane that best fits the point
set a normal vector can be extracted. Hoppe et al. [1992] proposed a method
where the k nearest neighbours are being used to fit a plane by using the
total least squares method. And while there are numerous improvements
on this method, the normal calculation for points remains just an estimation.
Errors may occur when points are not well spread or at ”corners” of objects
(as corners can not have a well defined normal vector).

2.4 computation of the mat 19

Other methods are Least Squares Analysis and Principal Component Anal-
ysis, the latter has an advantage, as it has the possibility to examine the
quality of the fit.

Handling noise

As mentioned in section 2.2.1, the MAT is sensitive to even small irregu-
larities on the surface (see Figure 2.20), it is necessary to use de-noising
measures.

(a) (b)

Figure 2.20: (a)Square 2D object with its inner MAT (b) Square 2D object with a
outlier (noise) in its topline, MAT is effected by this

Amenta et al. [2001] suggests to make use of the so-called separation an-
gle. Which is the angle between the medial point and the two corresponding
surface points. As balls with smaller separation angles are more likely to
be influenced by noise, a thresholds are set. Whenever the separation an-
gle is smaller than the threshold or difference in two consecutive separation
angles is bigger than a second threshold the ball is rejected. Observe Fig-
ure 2.21, the 5th ball has a much lower separation angle than the others,
therefore the last ball will be flagged as noise and the previous ball is taken.

noisy ball

good ball

1

2

3
4

5

Figure 2.21: Sequence of Shrinking ball algorithm with noise [Peters, 2014b]

20 background information and related work

2.5 memory hierarchy
Computer systems contain a hierarchy of memory levels, each of which has
their own characteristics. For this thesis the simplest input/output (I/O)
model (two-level memory hierarchy) will be considered, where the two lev-
els [Nodine, 1992]:

• Small, but fast internal memory.
Also known as the main memory or RAM of the computer.

• Large, but slow external memory.
Also known as the hard disk (or solid state disk).

When applications process large amounts of data, the I/O communication
between these two levels of memory is usually the bottleneck. This is due to
that accessing the internal memory takes several tens of nanoseconds (10−8

seconds), while accessing data from a disk can take several milliseconds
(10−3 seconds).

Data that is too large for the internal memory can be stored temporary
on the external memory. However, the communication between the internal
memory and the external memory is often a bottleneck for large-scale appli-
cations. External-memory algorithms reduce this bottleneck by optimizing
the efficiency of fetching and accessing data stored in slow external memory
(such as disks) [Vitter, 2007][Silvia et al., 2002].

J.S. Vitter explains that there are two general categories of problems in re-
ducing I/O costs:

• Batched problems, no preprocessing is done and the entire file of data
items must be processed (e.g. Streaming)

• Online problems, where a computation is done in response to a con-
tinuous series of query operations. (e.g. making use of a datastructure
with a spatial index)

Furthermore the I/O performance of algorithms can be expressed in terms
of the bounds the following 4 operations:

• Scanning (streaming), which involves sequential reading or writing of
the elements in a file

• Sorting, which places the elements of a file into a sorted order

• Searching, which looks online through N sorted elements

• Outputting the answers to a query in a blocked output-sensitive man-
ner.

The first 2 of these bounds (Scanning and Sorting) apply to batched prob-
lems, while the latter two (Search and Output) apply to online problems.

2.6 strategies for scaling gis algorithms
Voronoi diagram is a widely studied problem in computational geometry,
there are many different standard algorithms used to compute it I/O effi-
ciently. Sack and Urrutia [2000] lists a few of these.

2.6 strategies for scaling gis algorithms 21

2.6.1 Divide and conquer

The Divide and conquer (D&C) approach solves a large problem by [Das-
gupta et al., 2006]:

• subdividing it in to sub-problems which are smaller instances of the
same type of problem (divide)

• recursively solving these sub-problems (conquer)

• combining the answers to solve the original large problem

Therefore D&C could be used to solve problems involving datasets which
do not fit in the internal memory, as it subdivides the problem in smaller
pieces. In the upcoming subsections several methods for subdividing a large
spatial dataset will be explained.

In case of a pointcloud the large amount of points form an issue, as it
does not fit in the main memory when it is being processed. A top-down
Level-by-Level segmentation can be used to divide the problem in to smaller
parts [Danner, 2007]. The first step in this process, is to take the complete
dataset as a whole. If the amount of points in the dataset is larger than a
certain threshold kmax (the maximum amount of points a segment can have)
the complete dataset is split in four parts (leafs). Then the same procedure is
followed for the four leafs iteratively till the threshold of all leafs is smaller
than kmax. Advantages of creating subproblems by this top-down segmen-
tation is that it works well for subdividing a pointcloud into squares/boxes,
however, it does not lead directly to homogeneous segments [Lindenbergh,
2014]. The spatial data structures mentioned in section 2.1 could be used
to perform the segmentation. By subdividing the dataset either using a
space-driven method (e.g. quadtree) or a data-driven method (e.g. kd-tree).

Buffer

Subdividing a dataset in to smaller subsets could cause issues, often points
near the boundary of the subset need data from outside the subset. A way
to get that data is to make use of a buffer region, where the data is loaded
as well to eliminate these boundary issue. According to ESRI a buffer is
defined as a zone around a map feature measured in units of distance or
time [ESRI, 2012]. When one wants to create a buffer around a certain object,
the Minkowski sum can be used by adding each vector of object A to each
vector in object B (Image 2.23).

22 background information and related work

(a)

(b)

Figure 2.22: Minkowski Sum
(a) Object A and B (b) Each vector of B added to each vector in A

An example of using D&C is the computation of a voronoi diagram. To
compute the voronoi diagram, [Shamos and Hoey, 1975] uses the D&C ap-
proach to subdivide a set of point sites S into subsets L and R of similar
sizes. This is done by a split line in the dataset. Then for both subsets the
voronoi diagrams VL and VR are computed recursively. The challenge is to
find the split line and the merging of both voronoi diagrams. If the sites in S
are presorted by the x- and y- coordinates it is easy find the split lines. The
merging of VL and VR can be achieved by computing the voronoi edges of
V(S) that separate regions of sites in L from regions in R.

2.6 strategies for scaling gis algorithms 23

(a)

(b)

Figure 2.23: D&C used to compute the voronoi diagram (images from R.Muhamma)
(a) Split line dividing VL and VR (b) Unwanted red lines are removed
at the rightside of the split line, same is done for the blue lines

2.6.2 streaming algorithms

In streaming algorithms, data is presented as a sequence of items. The
sequence streams from the external memory to the internal memory where
it can be processed. As the stream can not go back to data which was already
sent, therefore sometimes it needs a few extra passes. Wu et al. [2011] names
four requirements in the use of a streaming algorithm:

1. Sequential data access
Data should not be randomly accessed, but read as as one or multiple
continuous data streams.

2. Linear execution
Operations on the elements of the input stream should be chained and
linked together using a pipeline.

3. Data locality
Operations on elements involving other elements should be relative
close in the datastream. Using geographic datasets, Isenburg et al.
[2006a] calls this ”spatial coherence”. Which is correlation between
the proximity in space of geometric entities and the proximity of their
representation in the stream. This could be achieved by sorting all
the points in such a manner (such as making use of a space filling
curve) that it is usable for streaming. However Real-world datasets
should already have enough of spatial coherence due to the way they
are acquired (see Figure 2.24).

http://www.personal.kent.edu/~rmuhamma/Compgeometry/MyCG/Voronoi/DivConqVor/divConqVor.htm

24 background information and related work

4. Memory recycling
Streaming computations loads the input data sequentially and pro-
cesses it using a limited memory buffer. By outputting it directly af-
terwards, memory space is freed and therefore it is suitable for data-
intensive applications.

Figure 2.24: LiDAR dataset of Baisan Run at Broadmoaor, Maryland (6 million
points). Colors illustrate spatial coherence in the gridcells; each cen-
ter of the cell is colored by arrival time of the first point in the stream
and the border is colored by arrival time of the last point in the stream.
The color represents a certain moment in time [Isenburg et al., 2006a].

Spatial finalizer

Isenburg et al. [2006a] spatial finalizer works by reading data from a dataset
in 3 times (Figure 2.25):

1. The first pass is used to detect the outer boundary of all the points.
After the first pass a grid is created to fit within the boundaries.

2. At the second pass all points are counted within each grid cell.

3. In the final pass, the known amount of points from the step 2 is sub-
tracted by each point which falls within that cell while reading the file.
When the counter reaches zero, the points of that cell are exported out
of the spatial finalizer to be processed further in the pipeline. After
each exported cell a finalization tag is placed, used to notify that there
are no more points within that cell.

As the spatial finalizer reads a file from start to end multiple times, the
algorithm takes O(n) time.

2.6 strategies for scaling gis algorithms 25

1st pass 2nd pass 3rd pass
Bounding box

Create
grid

Count points per box Add �nalization tag
when a box counter reaches 0

output points of box
+

Finalization tag

Figure 2.25: workflow spatial finalizer

Isenburg et al. [2006a] uses this streaming algorithm to compute the De-
launey Triangulation in a pipeline. As an individual cell arrives from the
spatial finalizer to the delauney triangulator, triangulation begins. All the
points within this cell will be processed, however, as points near the border
might need data from a neighbouring cell, these triangles will not be done
yet. It is possible to determine which triangles are final, as the triangle cir-
cumcircle do not intersect a space which has not yet arrived from the SF (see
Figure 2.26).

Figure 2.26: Points on the top have been processed and their triangles written out.
All the visible triangles are active. A few circumcircles have been drawn
to show that they intersect with unarrived space. [Isenburg et al., 2006b]

Using the streaming Delauney triangulator to create a geographic TIN,
can be further processed to create a DEM raster grid [Isenburg et al., 2006b].

Constantin et al. [2010] exploits the streaming algorithm with finalizer
to apply the Quadric Error Metric in conjunction with edge contraction to
simplify meshes.

2.6.3 External memory algorithms

External memory algorithms use the external memory for temporal stor-
age of datastructures which do not fit inside the main memory. External
memory access is minimized by explicitly controlling the data movement
and data layout, where the goal is to exploit locality in order to reduce the
I/O costs Vitter [2007]. Agarwal et al. [2006] used a quadtree to compute a
Digital Elevation Model.

3 COMPUT ING BUFFERS FOR THE
MED IAL AX IS TRANSFORM

The computation of the MAT for massive datasets using shrinking ball algo-
rithm could be split up into two stages. As massive amounts of points will
not fit in to the main memory, in the first stage, the dataset is ”chunked” to
ensure that the smaller datasets processed fit in the memory. The second
stage is the MAT computation itself. Figure 3.1 displays these stages with
their possibilities. In this chapter the MAT computation will be discussed.
Chapter 4 will describe how the chunking algorithms work.

Massive Pointcloud Dataset

Preprocessing

Tiling Stream

Process with bu!er Process all points

MAT output

Stage - Chunking

Stage - MAT

Figure 3.1: Overview of the methodology

3.1 time and memory complexity

As mentioned in Section 2.4.3, the shrinking ball algorithm is used in this
thesis, as it is simple to implement, storage efficient and easy to parallellize.

3.1.1 Time complexity

The shrinking ball algorithm (section 2.1) shows that each point p in dataset
V is processed to get the MAT. For each of the points p iteratively the closest
point to the center of the medial ball is calculated. As in the worst case all
the points are passed, the time complexity is O(n2) with n points (excluding
the nearest neighbour search). However in practice it exhibits a more linear
growth rate O(n) as it is uncommon that all neighbours need to be visited
Ma [2012].

To calculate the nearest neighbour a kd-tree query is used. This query has a
time complexity of O (logn) on average, yet in the worst case it is O(n). As

27

28 computing buffers for the medial axis transform

such, the time complexity to compute the MAT for dataset V is O (n3) in the
worst case. While in practice it might be more O(nlogn).

3.1.2 Internal memory complexity

Excluding the kd-tree which needs to be built, the only data apart from
the input which is collected is the resulting MAT. The memory complexity
therefore is O(2(K + 1) n). Where K is the dimension of the input data and
addition of 1 is due to the radius.

However, the true memory usage is larger, as the kd-tree itself will take a
lot of memory as well (depending on the implementation method it will be
larger than O(K n)). Furthermore although the normal vectors are consid-
ered as input data, it should be computed as well.

3.1.3 Time and Memory usage in practice

In practice the shrinking ball algorithm exhibits near-linear growth rates
O(n) when looking for the nearest neighbours [Ma, 2012]. Querying a near-
est neighbour search using a kd-tree usually can be done in O(logn). There-
fore in practice the Time complexity should be O(nlogn).

The maximum amount of points computable is limited by the amount of
main memory addressable by the program. During the process 4 groups of
elements will mainly take up the memory, which are displayed in table 3.2.

The MAT algorithm loads the coordinates, normals and computes the MA.
These datasets consists out of points/vectors with 3 32-bit floating points (12

byte). The KD-tree used on large datasets for fast querying neighbours takes
up roughly 35 byte per point (test in practice). The resulting MAT consists
out of the coordinates (12 byte) for the Medial axis and the radius (4 byte)
for the inner radius as well as outer (Table 3.1). As such the hard disk space
needed to store the MAT should be 2 2

3 of the size of the input dataset.

x y z radius

32 bit float 32 bit float 32 bit float 32 bit float

Table 3.1: MAT Datastructure

Points Coordinates Normals KD tree MAT Total

500.000 6 MB 6 MB 18 MB 8 MB 38 MB
1.000.000 12 MB 12 MB 35 MB 16 MB 75 MB
2.000.000 24 MB 24 MB 70 MB 32 MB 150 MB
4.000.000 48 MB 48 MB 140 MB 64 MB 310 MB

Table 3.2: computation memory usage for either the inner or outer MAT!, separated
in amount of points

The table 3.2 shows that the amount of memory necessary to compute
the MA increases in size linearly with the amount of points. Therefore it
can be assumed that when one can address 2 GB of memory (on a 32-bit
system), the maximum amount of points computable is about 28 million.
When a 64-bit system is used, theoretically a lot more main memory could
be allocated.

3.2 challenges of processing smaller datasets 29

3.2 challenges of processing smaller datasets

In section 2.4.3 the shrinking ball algorithm is chosen as method to compute
the MAT. However, before chunking the dataset into manageable pieces, the
scalability of the shrinking ball algorithm needs to be addressed. Using for
example ’divide and conquer’, subsets of the dataset are created, of which
each has their own boundary. Yet, it is possible that points of one sub-
set need points from another subset during the computation of the MAT.
Figure 3.2 shows an example of how the medial ball could be used to deter-
mine which points might need extra data from the neighbouring tile, as it is
shown in 2D the medial ball is expressed as a medial circle. Furthermore the
merging of smaller datasets back to a large one could also cause problems.

p
0

Figure 3.2: Top view of a pointcloud dataset split up in 2 subsets (expressed by the
dashed lines). Some points (i.e. p0) around the borders of both subsets
need points from the other side to compute the MAT

3.2.1 Border issues when computing MAT

Points which might need points from another subset are detectable by com-
puting the MAT with only the given subset points. If the medial circle/ball
extends to a part outside the subset, it might need points from outside to be
sure that the correct MAT is created. As shown in figure 3.2, the red dot in-
deed needs points from a neighbouring subset to compute the correct MAT.
However, this is not always the case, as shown in figure 3.3. The medial
circle of the green point extends to another subset, yet it did not need any
points from that neighbouring subset. This can only be known when the
points of the neighbouring subset are analysed.

30 computing buffers for the medial axis transform

p
0

p
1

p
0

p
1

Figure 3.3: The medial ball of point p1 was correct without the need of points in the
neighbouring subset. The p0 needs to further process the MAT with the
data from the neighbouring subset.

When analysing a small piece of a real world urban dataset (see figure 3.4)
it becomes apparent that many points around the border of a subset might
need points from the neighbouring subset to be sure that their MAT is final1.

Figure 3.4: Points with a successfully created medial axis are displayed in grayscale.
Points which are not finished processing because they need to know the
location of points outside the region are displayed in red or purple. They
represent the inner and outer MAT respectively

To test how many points will need more information around the border, a
few samples of the AHN2 are used.

1 A final MAT will not change when extra points from neighbouring subsets are added in the
process

3.3 regular buffer 31

Sample 1.1 Sample 1.2

Area 410m x 470m 750m x 600m
Points 188530 361661

Unfinished points 27288 24457

14,5% 8,0%
Starting radius 100m 100m

Table 3.3: Unfinished points Delfgauw

Sample 2.1 Sample 2.2

Area 447m x 460m 631m x 658m
Points 200469 405068

Unfinished points 46405 65924

23,5% 19%
Starting radius 100m 100m

Table 3.4: Unfinished points Woerden

The occurrence area is the area where unfinished points can occur. The
unfinished points cannot be just anywhere in the region (see Figure 3.4).
As described in Section 2.4.3 ”Starting radius rinit” is the maximum size a
medial ball can be. As such unfinished points can only appear at a distance
of 2rinit to the boundary.

As discussed, MAT computations near the boundary of the subset often
need additional data from outside. To solve this issue there are 2 options:

• Load a buffer region around the subset, so that points near the initial
boundary have the opportunity to compute the MAT correctly using
points in the buffer.
This will be elaborated in section 3.3

• If multiple subsets are processed sequentially, of which said subset
is one of, the unfinished MAT could be post-processed together with
another subset, see Section 3.4.

Merging the data

Merging data could lead to boundary errors. However, as the the resulting
output is the MAT, which is a list of x, y, z, r values. As such there is no link
between the medial balls, or with the original input data.

This means that when a dataset is subdivided in smaller subsets, the MAT
for the whole dataset is simply the collection of MATs of the subsets.

3.3 regular buffer
As divide and conquer is focused on subdividing the problem in to indi-
vidual subproblems, the large dataset will need to be subdivided in smaller
portions including buffers to ensure that all points are correctly computed
(Section 2.6.1). To determine the buffer region size, a closer look at the al-
gorithm provides the answer. Observe image 3.5, in the worst case scenario,
a point has a normal vector in the x direction. The medial ball created will

32 computing buffers for the medial axis transform

be aligned to the normal vector, as a result the medial ball will have the
possibility to connect to a point 2*r away from the observed point.

z

y

x

Figure 3.5: A block near the edge of a subset border with its normal vector in red
and a 3-dimensional medial ball in dashed grey

200m 200m

S1 S2

(a)

200m

Process
Region

bu�er

Rmax
p1

Rmax
p2

(b)

Figure 3.6: (a) To process the subset S1, extra data is needed expressed by the dashed
red line. For the Subset S2 the same holds, it needs extra data as ex-
pressed by the dashed green line
(b) Subsets are collections of points which will be processed to retrieve
the MAT and points which just function as a buffer. The process points
and buffer points fall in the region bounded by the red dotted line. As
shown by Points p1 and p2, points within the buffer region can not be
processed because they might need points from outside the subset

As concluded in Section 2.4.3 (Starting Radius r), the starting radius for
the current work is 100 meters. Therefore the medial ball has the possibility
of being in the middle of points up to 200 meters apart. As such, the buffer
region around the subsets needs to be 200 meters as well (image 3.6). The

3.4 reduced buffer 33

MAT in the buffer regions will not be computed, the buffer region points are
merely there to assist the MAT computations within the subset.

3.4 reduced buffer

As mentioned previously, the two subsets have their own separate, non-
overlapping buffer (Figure 3.6). In the example 400 m of buffer is used.
However, there is a way to reduce the buffer size, as it is possible to deter-
mine which points do not have a final MAT.

By determining which points are not final, the MAT of points in the buffer
region could be computed as well. This is done by tagging which points
in the buffer region are unfinished (points within the process region are
certainly finished). When these tagged buffer points are used in another
subset, they can be processed further.

Observe Figure 3.8, subset S1 and S2 share the same buffer region of 200

m, therefore they will both load this buffer region when they are processed,
this is called a reduced buffer. Let us assume that subset S1 will first be
processed including the buffer region, sequentially followed by subset S2.
Figure 3.7, shows two points in the buffer region. Point p1 has a final MAT

because its medial ball lies within the bounded region of the subset. The MAT

of Point p2 is not final as its medial ball lies partially outside the bounded
region. When subset S2 is computed, the MAT of p2 is processed further,
while the MAT of p1 will remain untouched.

200m

Process
Region

bu�er

p1

p2

Figure 3.7: Determining which MAT in the buffer region is final

An advantage of using the reduced buffer instead of regular buffer, is that
it is more memory efficient. Larger parts of the subsets could be removed
after it is processed. In Figure 3.8, the process region of subset S1 could
be deleted after it has been computed with the shared buffer. The buffer is
already pre-processed using S1, so when it is computed again with subset
S2 there will be no boundary issues. This aspect is especially useful in cases
where the subsets are small but have relatively large buffers.

34 computing buffers for the medial axis transform

200m

S2

S1 bu�er

bu�er

Figure 3.8: Subset S1 and S2 share the same buffer

3.5 thinned reduced buffer

The problem of points from subset A needing points from subset B cannot be
resolved, It is possible however, to analyse which points do not need points
from outside its own subset. Furthermore it might be possible to detect
which points inside a subset might not be needed for analysing points in
another subset. In section 2.2 two properties of a medial ball are mentioned.
Using those properties the following assumptions can be made:

1. The medial ball is completely within the boundaries of a shape.
This means that there are no points outside the ball which can con-
tribute to the computation of the MAT. Therefore a point which has
medial ball that does not cross the boundary of the subset does not
need any data from outside the subset. (Also explained in section 3.2)

2. The medial ball is tangent to more than one boundary point
This could be interpreted as: the centre of medial ball lying on a line
in the direction of the normal vector of a point. See Figure 3.9, where
medial point c1 lies on a line in the direction of the normal vector of
point p1 and p2. When this is translated to a pointcloud, it means that
for each point there is only one medial ball that is shared with points
which are equidistant from the center of the medial ball (d(p1, c1) =
d(p2, c1)). Therefore it can be said that for the surface points which
form a medial ball lying completely within the boundaries of a subset,
no points from outside sets will need these points to create another
medial ball, see Figure 3.9.

3.5 thinned reduced buffer 35

c1

p1

p2

Figure 3.9: The medial ball is tangent to more than one boundary point

If it is known which MAT is final in the buffer region and which points
are not needed any more in the computation of the MAT for other tiles, then
these points can be removed from the dataset. In doing so a thinned buffer
(i.e. a buffer which has points removed) will remain, which has two main
advantages:

1. Reduction of memory usage
As points are left out of the buffer region, because they are unneces-
sary, the main memory usage during MAT computation will reduce.

2. Reduction in computation time
The creation of a kd-tree takes less time when less points are used.
As nearest neighbour quering has a O(logn) complexity with n points
(Section 2.1.2), there is a slight speed up as well.

36 computing buffers for the medial axis transform

(a)

(b)

Figure 3.10: The red points might need points from other tiles to compute the final
MAT. While the green dots already finished their MAT. As can be seen,
the green points which have a final MAT in (a) are not needed to be
able to compute the MAT of points in the additional tile added in (b).
The MAT of the green points in (a) are not effected by the additional
points in the new tile from (b)

3.5 thinned reduced buffer 37

3.5.1 Outliers due to making use of a thinned buffer

The previous assumptions based on the properties of the MAT work for multi-
dimensional objects, as they are meant for surfaces (or higher dimensional
objects). However, they do not always apply for pointclouds. The following
two issues will cause deviations when using the shrinking ball algorithm on
pointclouds:

• The medial ball is tangent on more than one boundary point on Sur-
faces and higher dimensional objects. In pointclouds the medial ball
touches two points as well, but the shrinking ball algorithm only as-
sures that the medial ball is tangent to one point.

• The normal vector computations of points are just an estimation (See
section 2.4.3 ”Normal calculation”).

3.5.2 Data quality

The computation of the MAT is the same as with the buffer version, however,
all the points will be processed. Afterwards some extra processing is needed
to check which MAT computation is finalized.

check for (un)finished points

The hypothesis is that points adhering to the following two rules can be left
out of the dataset without influencing the result of the computation of the
MAT for other points:

1. If a point has medial ball that does not cross the boundary of the
subset, it does not need any data from outside the subset.

2. If rule 1 is true for a point p1, there are no other points from other
subsets which need to use p1 for the computation of the medial ball.

This means points of which both the inner and outer medial ball are com-
pletely inside boundary of the subset, do not need to be used any more by
the process, not even for other tiles. Therefore these points can be omitted.
Points of which either the inner or/and outer medial ball lie partially out-
side the subset, might be needed to process points from other subsets, these
cannot be omitted.

Datasets were preprocessed to test the hypothesis in the following man-
ner:

A cluster of 3x5 tiles is divided into subsets of 1x5 and 2x5 as shown in
Figure 3.11 (a) and (b). After the division the MAT is computed for the 1x5

cluster. The points which have a medial ball along the right border of the
cluster are stored (c and d). Then the 2x5 cluster and the points of (d) are
combined as shown in (e).

38 computing buffers for the medial axis transform

(a) (b)

(c) (d)

(e)

Figure 3.11: (a) Dataset consisting out of 3x5 tiles containing points
(b) Dataset is split up into 2 subsets (1x5) (2x5)
(c) The MAT of subset (1x5) is computed
(d) Based on the medial balls, it is decided which points may be left out
of subset (1x5). Points near the right border have a higher chance that
their medial ball cross the right boundary.
(e) The reduced subset (1x5) and complete subset (2x5) are combined
to compute the MAT

The MAT will be computed for the whole resulting preprocessed dataset,
described in Figure 3.11 (e). The middle part of it will be compared to the
original dataset as described in Figure 3.12.

(a) (b)

Figure 3.12: The center tiles of datasets (a) and (b) are compared to each other to
test the hypothesis
(a) Original dataset
(b) Thinned dataset from Figure 3.11e

3.5 thinned reduced buffer 39

This testing procedure has been applied to the fictional pointcloud dataset
as well as the Rotterdam dataset (see Section 5.2). From the analyses of the
middle part it can be seen that 0.04% of the MAT has not been correctly
processed for the Rotterdam subset (see Table 3.5). Errors defined as: MAT

computed using the reduced thinned buffer method, which are unequal to
a MAT computed without reduced thinned buffers.

Rotterdam Dataset

MAT points 5946483

Errors outer MAT 1692

Errors inner MAT 901

Table 3.5: Errors in MAT calculation with preprocessing

Figure 3.14 displays the original dataset as well as the preprocessed dataset
which will be compared to each other in order to find outliers. The prepro-
cessed dataset clearly has fewer points in the tiles on the left side, it has been
reduced in size by a half. Furthermore several objects have been removed
as well.

When both of the mentioned datasets were processed some deviations in
their MAT have been detected. Both the inner and outer MAT have deviations
as can be seen in Figure 3.15). While most deviations are smaller than 5

meters, there are a few extreme errors reaching to 70 meters. Furthermore
the inner MAT has less errors than the outer MAT. The reason for this is
that the chance that a point computation actually needs another point from
outside the boundary is much larger with the outer MAT. This is because the
inner MAT has much less chance to compute a valid MAT, as there are less
objects underground in a geographic dataset (see Figure 3.13). Underground
there are less objects to create the MAT with, consequentially the MAT will
not actually be computed. The result is a so called invalid MAT: a MAT where
the radius is the initial radius (200 m).

invalid MAT

Figure 3.13: Invalid inner MAT of a point

40 computing buffers for the medial axis transform

(a) (b)

Figure 3.14: Rotterdam Dataset (a) Original dataset (b) Preprocessed dataset

(a) (b)

Figure 3.15: Rotterdam Dataset (a) Inner medial axis deviation (b) Outer medial axis
deviation

3.5.3 Thin objects

Many errors occur due to thin objects. These are objects which are repre-
sented by a set of points which lie on a planar surface. These are objects
which are either thin in the real-world or objects which are represented in
the dataset as a thin object. A fence expressed in points is for instance a
thin object, as it lies on a planar surface and has a width of only one single
point.

Although a building itself is not considered as a thin object, it could be
that it is represented as a thin object in the pointcloud. Due to data capturing
method, some objects are not translated well from the real-world. Point-
clouds are often collected by means of an air plane, data is then captured
from above, as such the horizontal planes (i.e. roofs) are well represented,
however, the vertical planes (i.e. walls) are not represented equally due to
the capturing angle. So although buildings do not classify as a thin object,
their roofs often got a good point density, while the walls consist of consid-
erably less points in the dataset.

3.5 thinned reduced buffer 41

(a) (b)

Figure 3.16: (a) The roof has been thinned away, because of incorrect normal estima-
tion (b) Walls visualised

Figure 3.16 shows a situation where this forms a problem. The MAT of
points on a roof near the boundary of the tile, might not be computed cor-
rectly. This issue is due to the miscalculation of the normal vector, as it is
impossible to have a normal vector at the border points of the roof in case
it was actually a 2D plane. As Figure 3.17 (a) shows, the plane itself has a
normal pointed perpendicular to the plane. It is not possible to compute the
normal for the edge of the plane, although it is imaginable in the case for
computing the MAT that the edge contains a set of normal vectors pointing
in all directions within a range of 180 degrees. Figure 3.17 (b) shows the
normals in case the planar plane is converted in to points. All the points
will have a normal direction perpendicular to the plane, when they are com-
puted using the method described in section 2.4.3 ”Normal calculation”. As
can be seen, the edges will also get a normal vector even though it does not
actually exist in the 2D representation of the plane. As the MAT is used to
determine whether a point should remain in the dataset or whether it is ob-
solete for further computations, this forms a problem. So although the MAT

computation method might be correct, using an incorrect normal vector, the
MAT result will be wrong.

(a) (b)

Figure 3.17: normal calculation of planar plane

3.5.4 Outliers in the data

The large deviations in MAT visible in the histograms (Figure 3.15) are due
to outliers in the original dataset. As the red dots in Figure 3.18 show, there
are points located above the city without any other close neighbours. These

42 computing buffers for the medial axis transform

points are not part of a larger object (i.e. it could be a bird) and therefore con-
sidered outliers. Apart from that they are outliers, their normals cannot be
computed correctly as they do not have any close neighbours. Occasionally
the normal computed is unfavourable, as the outlier might be removed in
the preprocessing. This will result in large deviations in the MAT calculation.
These points actually often get filtered out by the reduced buffer method.
While it can be discussed that leaving the outliers out of the computation is
actually the right way to process the MAT, doing it using this form of pro-
cessing is not the correct way. Several of these outliers will be removed by
chance, but not all of them, as such it is not a reliable way to filter outliers.

Figure 3.18: Outliers in the air

3.5.5 Noise in the Data

Several deviations in the MAT are due to noise. As explained in section 2.4.3
noise can have a huge influence on the computation of the MAT due to its
inherent sensitivity. Several of the red dots have been removed (through the
use of reduced buffers), while the green dots needed them for the computa-
tion of the MAT. Whilst the computed MAT would not have been necessarily
correct, given that the red as well as the green points are part of the same
plane. However, as the point removal is not consistent with every noisy
point, it is not a reliable method.

Figure 3.19: Noise in the dataset

Denoising is possible and actually necessary (as shown in section 2.4.3),
as it improves the quality of the formed MAT drastically. This can be seen in
Figure 3.20 for the outer MAT and in Figure 3.21 for the inner MAT.

3.5 thinned reduced buffer 43

(a) (b)

Figure 3.20: Outer medial axis deviations of the Rotterdam puntenwolk dataset
(a) with noise reduction (b) without noise reduction

(a) (b)

Figure 3.21: Inner medial axis deviations of the Rotterdam puntenwolk dataset
(a) with noise reduction (b) without noise reduction

However, denoising has a negative influence. During the MAT compu-
tation several iterations take place: in each iteration, a new medial ball is
computed smaller than the previous ball. When the separation angle be-
tween a medial point and its two surface points is smaller than a certain
threshold it will be considered an outlier. In that case the previous medial
point will be used. As large amount of points are removed from the dataset
by the preprocessing, there is a chance that the previous MAT is different
than when all the points are there.

Furthermore, the chance that differences between two consecutive separa-
tion angles exceed the maximum threshold becomes larger the more points
are left out, and the larger jumps between consecutive are.

In appendix A the same test has been performed on a fictional dataset.
However, it has smaller and less errors. The difference in amounts of errors
may be because the datasets are different. The fictional dataset does not
have any noise and the points are homogeneously spread. Although it is
hard to quantify the error causes, it seems that many errors come from the
noise and the lack of points in certain areas.

44 computing buffers for the medial axis transform

3.6 summary
In this section the Shrinking ball algorithm to compute MAT was examined
to evaluate its scalability. As boundary issues will occur when the MAT is
computed for just one subset, three forms of buffers were introduced to
eliminate that issue:

• (regular) buffer
The miskowski sum of a 2D disc with radius r and the subset. This is
done so that the point near the boundary of the subset will still have
the opportunity to compute the MAT with the extra buffer with size r
around the boundary.

• reduced buffer
Unlike the ’regular’ buffer, points in the reduced buffer get processed
as well. By tagging which points are final and storing their MAT compu-
tation progress, points in these buffers will be finalized by processing
them together with multiple subsets.

• thinned reduced buffer
The hypothesis was that if points have a final MAT, they do not have to
be used by points from another subset to compute the MAT. However,
this turns out not to be true in on every occasion for point clouds,
as their normals can not always be correctly computed. Because the
thinned reduced buffer cannot always provide the correct MAT, it is
not usable in its current state.

4 SCAL ING THE MED IAL AX IS
TRANSFORM

This research seeks to scale the MAT for geographic pointclouds. The pre-
vious chapter discussed the shrinking ball algorithm properties which will
affect the scaling by using subsets of a dataset. This chapter will continue
with the actual scaling of the shrinking ball algorithm.

As the input data is restricted to geographical pointclouds, certain advan-
tages come along. A property of these kinds of datasets is that they are
mostly flat, as they represent real world area’s. The points are well spread
in the x and y direction while having a relative low spread in the z direction.
Because of the limited differences in the z direction the datasets can be cut
as if they were 2 dimensional (see Figure 4.1).

Figure 4.1: Subdividing a Geographic Pointcloud using 2D grid

Two approaches to chunk the dataset into processable parts are intro-
duced: tiling and streaming. These approaches are different because:

• The tiling approach subdivides the dataset in to smaller datasets, stor-
ing them temporary on the external memory.

• The streaming approach reads the input file several times and tries not
to create temporary smaller datasets on the external memory (prefer-
ably the whole process apart from reading the input data and writing
the output data takes place inside the main memory).

Both of these methods split a large dataset in to tiles to compute the MAT.
The size of these tiles are depended on the buffer size chosen, which is 200

meters in this case as discussed in section 2.4.3 ”Normal calculation”. To
compute a single point an area of 400 x 400 m is needed as shown in Figure
4.2.

45

46 scaling the medial axis transform

4 R

4
 R

p

Figure 4.2: To compute the MAT for a single point p, it should have a region buffer
containing surrounding points. This region buffer should be 2*rinit

4.1 approach: tiling algorithms 47

4.1 approach: tiling algorithms

The tiling approach is a D&C algorithm. It involves subdividing the dataset
in to the minimum sized tiles and then merge them (segmentation) to create
processable sets (collections) which will fit inside the memory during the
MAT computation (see Figure 4.3). Two methods to create these collections
are:

• Creating a grid
The tiles produced in the tiling process are used to process the MAT
(processing individual tiles).

• Creating collections by tree-based segmentation
Tiles go through a segmentation process in which groups of tiles form
a collection, which will be used to compute the MAT.

(a) (b)

(c)

(d)

Figure 4.3: segmentation of a dataset to get collections
(a) Dataset
(b) Dataset split up to equal sized tiles (grid)
(c) The gridded tiles are used to compute the MAT

(d) The tiles are merged to form collections to compute the MAT as a set

To avoid boundary issues, buffers are placed around the subsets in the
collections (see Figure 4.4). In chapter 3, two buffer types were introduced:

• ”Regular” buffer method
Buffer tiles surround the processable tiles, however, the MAT will not
be computed for the points in the buffer tiles

• Reduced buffer method
The MAT for points in the buffer will be computed as well and tagged
to determine whether they are final or not.

48 scaling the medial axis transform

(a)

(b)

Figure 4.4: Buffers around the process tiles
(a) tiles with buffers
(b) collections with buffers

The use of the reduced buffer method will reduce the amount of collec-
tions made during the segmentation part, which should in general mean
faster processing time. However, several tiles will be computed multiple
times, which will slow the process down, as explained in section 3.4. Figure
4.5 shows the possibilities to use the tiling process on a geographical dataset
to compute the MAT.

Segmentation

Tiling
Computing normals

Bu�er types

Massive Pointcloud Dataset

Preprocessing

Grid Tree-based
Segmentation

・ Quadtree
・ KD-tree
・ Optimized KD-tree

Compute MAT

Bu�er Reduced Bu�er

Figure 4.5: Workflow tiling process

4.1 approach: tiling algorithms 49

4.1.1 Preprocessing

As determined earlier the minimum buffer is based on the maximum size
of the objects which should be detected. In section 2.4.3 it was said that
this should be 200 meters, as built objects in the Netherlands are usually
lower or more slender than that. The complete dataset will therefore be
subdivided in subdatasets of pieces of 200m x 200m. These tiles will be the
smallest pieces of which collections are made of (See Figure 4.6).

200m

20
0m

Figure 4.6: dataset subdivided in 200m x 200m tiles

The coordinates could contain high numbers, this is when the chosen
coordinate is far away from the origin, which is the case when datasets are
used with coordinate reference system: RD New (Section 5.2). To reduce
the amount of digits of the numbers in the coordinates, the center of the
dataset is chosen to be the origin of the local reference system for the x and
y direction (e.g. a part of the AHN3, see table 4.1). By doing so, the absolute
value of the x and y is minimal. If all the values can be expressed using
six or less significant decimal integers, 32 bit floating point precision values
could be used (IEEE Computer Society [2008]). This has an advantage that it
is twice smaller in size than using the more precise double precision format.
As can seen from the given example in table 4.1, if the pre-normalized x and
y values are expressed in 32-bit float, they will have dm precision, while the
post-normalized values are on mm precision.

x y z

pre-normalized min 50000.0 357824 -1.280

max 54999.9 362499.9 71.136

post-normalized min 2500.00 -2337.81 -1.280

max 2499.99 2337.81 71.136

Table 4.1: normalizing coordinates

Normal vector calculation

The normal vectors of the points are calculated by simply computing it per
created tile. To reduce errors near the borders of each tile, a buffer using
other tiles is taken in to the computation as well, see Figure 4.7. However,
as the normal calculation is just an estimation, small errors may occur (see
section 2.4.3 normal calculation). This process could be optimized, but it is
considered out of scope.

50 scaling the medial axis transform

Process Tile

Bu�er Tile

Figure 4.7: Buffer regions

4.1.2 grid-based segmentation (buffer method)

The method to compute the MAT using the grid based segmentation is sim-
ilar to the normal computation. For each tile the MAT is computed indi-
vidually, to remove border errors a buffer is placed around it (Figure 4.7).
The process tile including its surrounding buffer tiles are processed, while
only the MAT of the process tile is computed. This is not a very memory
efficient method, as some tiles may contain more data, while others may
contain less. This is due to that points in a dataset is are not necessary
spread homogeneous.

4.1.3 tree based segmentation (buffer method)

To group the tiles in to larger collections, a space driven or data-driven seg-
mentation can be used. The advantage of segmentation on tiles is that the
process is fast. An AHN3 tile (dataset) of 5000 x 6250 m will be subdivided
in 800 tiles with the size of 200 x 200 m. The segmentation of 800 tiles to
create collections is much faster than grouping points in the original point-
cloud which may contain millions of points. Space driven and data driven
segmentations have their own advantages. The advantage of a space driven
segmentation is that it creates subsets which have the same aspect ratio in
size as the original dataset. A data driven segmentation assures that the
each subset contains roughly half of all the points of its parent. In Figure
4.8 a data-driven segmentation has been performed on an AHN3 dataset, col-
lections differ from shape and size. This is the effect of the data-driven
segmentation, as all the collections contain roughly the same amount of
points. This means that the points are not homogeneously spread over the
dataset.

4.1 approach: tiling algorithms 51

Figure 4.8: Data-driven segmentation performed on AHN3 dataset c 37en2

Different colours represent different collections, buffers are not included
in the image

Segmentation

The output of the segmentation should be several collections Si which are
subsets of the dataset (where i is the number of the subset). Each collection
contains 2 lists:

• List of Process Tiles (Pi)

• List of Buffer Tiles (Bi)

Both of these lists contain tiles Tx,y where x and y are their minimum x and
y value of the points in the tile respectively. The process tiles and buffer tiles
are in separate lists, as the points of the buffer tiles will not be processed.

By grouping the smaller 200m x 200m tiles larger collections can be formed.
We start by taking all the tiles as a single collection S0 and keep dividing it
in to smaller collections until all the tiles of the sets of collections fit inside
the main memory during processing of the MAT. To decide the splitting lo-
cation 2 spatial data structures are proposed, a space-driven one (based on
a quadtree) and a data-driven one (based on a kd-tree).

The method to subdivide the total dataset in to smaller subsets using
the top-down Level-by-Level segmentation is described in section 2.6.1. By
making a small adjustment on the algorithm it can be applied so that it will
create collections with buffers with the use of tiles.

Let us assume a dataset of 1600m x 1600m with the minimum x and y
values of the points being 0, the dataset will first be tiled in to smaller tiles
of the size 200m x 200m (see Figure 4.9). Therefore will be 64 tiles Tx,y where
x and y range from 0 to 1400 with intervals of 200. The amount of points in
each tile will be stored temporary and linked to that certain tile.

52 scaling the medial axis transform

12 24 23 23 43 45 78 76

11 24 22 26 54 78 65 54

43 45 21 43 65 23 45 34

32 54 54 23 54 45 65 65

13 35 23 43 56 43 76 76

13 21 15 43 57 45 54 45

43 10 13 12 67 23 34 34

34 9 10 10 50 34 30 30

x
y

of
Points

200 400 600 800 1000 1200 1400

20
0

40
0

60
0

80
0

10
00

12
00

14
00

0

0

Figure 4.9: Dataset split in 64 tiles, number in each tiles represent the number of
points it has

The method starts with the creation of the initial collection S0, which has
all the 64 tiles in the process tiles list P0. If the amount of points of N (process
tiles P0 + buffer tiles B0) is larger than a predefined maximum kmax, the collec-
tion should be split up in to 2 new collections (S0 and S1, where the original
S0 is replaced by a new collection). Both newly created collection collections
will contain a part of the ”process tiles” P0 of the original collection, so that
P0 + P1 contain all the 64 tiles. The newly created collections S0 and S1 do
have to generate a list of buffers B0 and B1 ensuring that the collections are
individually processable when the MAT is computed. The splitting of the
parent dataset depends on the type of tree data structure used:

• space-driven tree structure

• data-driven tree structure

4.1 approach: tiling algorithms 53

Algorithm 4.1: Tiling approach (S, kmax)
Input: List of collections S, maximum amount of points kmax

1 Function SEGMENTATION(S, kmax)
2 i← 0;
3 j← 0;
4 repeat
5 t← 1 for each P, B ∈ S do
6 if COUNTPOINTS(P, B) > kmax then
7 Subdivide S in to P0 and P1;
8 B0 ← get buffer tiles around P0;
9 B1 ← get buffer tiles around P1;

10 Append P0, B0 to S;
11 Append P1, B1 to S;
12 Remove P, B from S;
13 t← 0

14 until t == 1;
15 for each P, B ∈ S do
16 COMPUTE MA POINT(P, B);

17 Function COUNTPOINTS(P, B)
18 N = 0;
19 for each Tx,y ∈ P do
20 N += number of points in Tx,y;

21 for each Tx,y ∈ B do
22 N += number of points in Tx,y;

23 return N;

Algorithm 4.1 shows a more detailed description of the algorithm of the
tiling approach.

space-driven subdivision

Let us look at Figure 4.9 again. The dataset is a ready subdivided in to 64

tiles. The process starts with collection S0, which has all the 64 tiles in its
”process tiles” list P0. If N > kmax the collection must be split up into two
smaller collections S0 and S1. By using a space-driven tree structure it is
a simple matter of splitting the dataset in the middle in to 2 pieces. This
will be done in the x direction, we will therefore get a list P0 containing
the tiles T0...600,0...1400 and a list P1 with T600...1400,0...1400. Because the original
dataset is split up, boundary issues might occur during MAT computations,
therefore buffers should be added as well to be able to compute the MAT.
Buffer tile lists B0 and B1, containing T800,0...1400 and T600,0...1400 respectively,
see Figure 4.10.

54 scaling the medial axis transform

Process Tiles

T0,0

T0,200

T0,400

T0,600

T0,800

T0,1000

T0,1200

T0,1400

T200,0

T200,200

T200,400

T200,600

T200,800

T200,1000

T200,1200

T200,1400

T400,0

T400,200

T400,400

T400,600

T400,800

T400,1000

T400,1200

T400,1400

T600,0

T600,200

T600,400

T600,600

T600,800

T600,1000

T600,1200

T600,1400

Bu�er Tiles

T800,0

T800,200

T800,400

T800,600

T800,800

T800,1000

T800,1200

T800,1400

process tiles bu�er tiles

200 400 600 800 1000 1200 1400

20
0

40
0

60
0

80
0

10
00

12
00

14
00

0

0

P0 B0

(a)

200 400 600 800 1000 1200 1400

20
0

40
0

60
0

80
0

10
00

12
00

14
00

Process Tiles

T800,0

T800,200

T800,400

T800,600

T800,800

T800,1000

T800,1200

T800,1400

T1000,0

T1000,200

T1000,400

T1000,600

T1000,800

T1000,1000

T1000,1200

T1000,1400

T1200,0

T1200,200

T1200,400

T1200,600

T1200,800

T1200,1000

T1200,1200

T1200,1400

T1400,0

T1400,200

T1400,400

T1400,600

T1400,800

T1400,1000

T1400,1200

T1400,1400

Bu�er Tiles

T600,0

T600,200

T600,400

T600,600

T600,800

T600,1000

T600,1200

T600,1400

process tilesbu�er tiles

0

0

P1 B1

(b)

Figure 4.10: Dataset is split up in to 2 collections with an equal amount of tiles:
(a) Collection S0, with process tiles list P0 and buffer tiles B0
(b) Collection S1, with process tiles list P1 and buffer tiles B1

Each of the newly formed collection is then evaluated. If N > kmax for
that collection, it will be subdivided again 1, this time in the y direction, see
Figure 4.11. This will iterate till all collections Si comply to N > kmax. Each
time a collection is split, the ”cutting” direction switches from x to y and
the other way around.

1 The subdivision takes place using only the process tiles, the buffer tiles do not have any influ-
ence on it

4.1 approach: tiling algorithms 55

process tiles bu�er tiles

200 400 600 800 1000 1200 1400

20
0

40
0

60
0

80
0

10
00

12
00

14
00

0

0

Process Tiles

T0,800

T0,1000

T0,1200

T0,1400

T200,800

T200,1000

T200,1200

T200,1400

T400,800

T400,1000

T400,1200

T400,1400

T600,800

T600,1000

T600,1200

T600,1400

Bu�er Tiles

T800,600

T800,800

T800,1000

T800,1200

T800,1400

P0

B0

T0,600

T200,600

T400,600

T600,600

(a)

Process Tiles

T800,800

T800,1000

T800,1200

T800,1400

T1000,800

T1000,1000

T1000,1200

T1000,1400

T1200,800

T1200,1000

T1200,1200

T1200,1400

T1400,800

T1400,1000

T1400,1200

T1400,1400

Bu�er Tiles

T600,600

T600,800

T600,1000

T600,1200

T600,1400

P0

B0

T800,600

T1000,600

T1200,600

T1400,600

200 400 600 800 1000 1200 1400

20
0

40
0

60
0

80
0

10
00

12
00

14
00

0

0

(b)

Process Tiles

T0,0

T0,200

T0,400

T0,600

T200,0

T200,200

T200,400

T200,600

T400,0

T400,200

T400,400

T400,600

T600,0

T600,200

T600,400

T600,600

Bu�er Tiles

T800,0

T800,200

T800,400

T800,600

T800,800

200 400 600 800 1000 1200 1400

20
0

40
0

60
0

80
0

10
00

12
00

14
00

0

0

P1

B1

T0,800

T200,800

T400,800

T600,800

(c)

Process Tiles

T800,0

T800,200

T800,400

T800,600

T1000,0

T1000,200

T1000,400

T1000,600

T1200,0

T1200,200

T1200,400

T1200,600

T1400,0

T1400,200

T1400,400

T1400,600

Bu�er Tiles

T600,0

T600,200

T600,400

T600,600

T600,800

200 400 600 800 1000 1200 1400

20
0

40
0

60
0

80
0

10
00

12
00

14
00

0

0

P1

B1

T800,800

T1000,800

T1200,800

T1400,800

(d)

Figure 4.11: Collections S0 and S1 are split up again, both create 2 new collections
based on their process tiles. Newly created collections Si (where is
ranges from 0 to 3), are displayed in (a), (b), (c) and (d) respectively

56 scaling the medial axis transform

data-driven subdivision

Subdividing the dataset using a kd-tree based segmentation is similar to the
previous data-driven segmentation. It only differs in where the cut should
be made, as the kd-tree is a data-driven data structure. Instead of the cutting
the dataset at the geometric middle of the dataset, it cuts it in such away that
both newly formed collections will have roughly the same amount of points.
As can be seen from Figure 4.12 the amount of points of both collections are
roughly the same, while collection (a) has en-captures a larger area than (b).

12 24 23 23 43 45 78 76

11 24 22 26 54 78 65 54

43 45 21 43 65 23 45 34

32 54 54 23 54 45 65 65

13 35 23 43 56 43 76 76

13 21 15 43 57 45 54 45

43 10 13 12 67 23 34 34

34 9 10 10 50 34 30 30

process tiles bu�er tiles

1609 Points

(a)

12 24 23 23 43 45 78 76

11 24 22 26 54 78 65 54

43 45 21 43 65 23 45 34

32 54 54 23 54 45 65 65

13 35 23 43 56 43 76 76

13 21 15 43 57 45 54 45

43 10 13 12 67 23 34 34

34 9 10 10 50 34 30 30

process tilesbu�er tiles

1643 Points

(b)

Figure 4.12: 1st subdivision using kd-tree

Optimized kd-tree

As the kd-tree is a data-driven data structure, it does not take in to account
the spatial aspect ratio of the formed tiles. However, this can cause skinny
tiles, as explained in section 2.1.2. When creating segments, square tiles are
more preferred. Observe Figure 4.13, the use of the skinny collection (a) will
need 33 tiles to be loaded, while the square collection (b) only needs to load
25. Because skinny subsets have more buffer tiles than square shaped sub-
sets, splitting a dataset will in general lead to more subsets if they are skinny
instead of square. This will result in to more collections and longer process-
ing time when actually computing the MAT. Therefore square subsets are
preferred. As mentioned in section 2.1.2, the optimized kd-tree generally
will lead to more square subsets.

4.1 approach: tiling algorithms 57

(a) (b)

Figure 4.13: (a) skinny collection, containing 33 tiles (b) square collection, containing
25 tiles

Computing MAT

For Pi in each collection Si the amount of points Nprocess is calculated before
the corresponding buffer in collection B is appended to it. The MAT is
then computed for each collection for the first Nprocess points in the dataset.
This way the shrinking ball algorithm knows that only the first few subsets
need to be processed, while the rest of the collection are the buffer tiles (see
Section 2.4.3). After each tile out of the collection is processed, the MAT is
directly stored on the hard disk.

4.1.4 reduced buffer

The segmentation process using a reduced buffer (section 3.4) is essentially
the same as the regular buffer method. It only uses a smaller buffer region,
see Figure 4.14. The MAT computation is different, while in the regular
buffer method the MAT is not computed for points in the buffer region, the
reduced buffer method does compute the MAT. This means that there will
be errors in the boundary as the MAT might need points from neighbouring
tiles to be computed. This is solved by computing the MAT in the buffer re-
gion multiple times with multiple collections using that buffer as explained
in section 3.3. Disadvantages will be that the processing time might be in-
creased due to that the buffer tiles need to processed multiple times.

pr
oc

es
s

til
es

bu
�e

r t
ile

s

pr
oc

es
s

til
es

bu
�e

r t
ile

s

Figure 4.14: shared buffer

4.1.5 Space complexity

The tiling method makes extensive use of the internal and external memory.

58 scaling the medial axis transform

Internal memory

The memory usage is directly related to the amount of points in each col-
lection. As mentioned in the introduction of section 3, processing 1 million
points uses roughly 71 MB of memory in case all those points were to be
processed.

Process Tiles

Bu�er Tiles

Figure 4.15: 4x4 collection of tiles: 4 process tiles, 12 buffer tiles

Let us assume a cluster consisting of 4x4 tiles of 1 million points each (see
Figure 4.15). In this case 12 tiles are buffer tiles and 4 tiles are process tiles.
The complete dataset of coordinates (3 ∗ 4 byte floating point) needs to be
loaded in. The KD tree needs to be computed for all these points as well (35
bytes per coordinate), however only the normals for 4 processable tiles need
to be loaded. And the MAT output can be stored and thus removed from
the memory after each tile is processed. In total 816 MB of main memory is
needed to process these 4 million points, see table 4.2. The amount of main
memory usage grows more or less linearly with the amount of input points.

Type Points Coordinates Normals KD tree MAT

Process Points 4 million 48 MB 48 MB 140 MB 16 MB
Buffer 12 million 144 MB 0 MB 420 MB 0 MB

Table 4.2: MAT computation memory usage

External memory

The tiling approach makes extensive use of the external memory, as the
temporary tiles as well as normal vectors are stored. This results in the
need of twice the space the original dataset uses. However, the inner and
outer MAT could be up to 33% bigger than the tiles and normal vectors. The
tiles and normal vectors are 3 32-bit floating numbers {x, y, z}, while the
inner and outer MAT consist out of 4; {x, y, z, r}.

It would seem as if the temporal external memory usage of the tiles and
normals are irrelevant as in the best case they are smaller than the inner and
outer MAT. However, not all computed MAT need to be stored, if the MAT
can not be correctly computed because there are no neighbouring points
within the initial radius, the MAT output is not valid. These final MAT
outputs with a radius which is just the initial value, should be removed
from the dataset. As such, the MAT could be much smaller than expected.

4.1 approach: tiling algorithms 59

4.1.6 time complexity

Tiling could be done by sequentially reading an input dataset, therefore it
can be done in O(n) time when there are n points in the dataset. Usually
there are not many tiles created in the tiling process, for instance, a AHN3

tile can usually be subdivided in 800 tiles (or less) of 200m x 200m.
The segmentation performed on these tiles therefore will not take long

either. Of each tile the amount of points per tile needs to be known be-
fore the segmentation can take place. As the space-driven segmentation
splits a collection in half, it is has a O(1) complexity. Using the data-driven
segmentation, the amount of points in both halves of the splitted collection
should be roughly the same, this involves summing points of tiles T and has
therefore a O(T) complexity. Do notice that the amount of tiles T is much
smaller than the amount of point n in the tiling process. Therefore the time
complexity of the segmentation process is inferior to the tiling method.

The time complexity of the MAT computation of the tiling approach will
be discussed later in section 4.4.1.

60 scaling the medial axis transform

4.2 approach: streaming algorithm
In streaming algorithms, data is presented as a sequence of items. The data
is streamed from the external memory to the internal memory where it can
be processed. As the stream can not go back to data which was already
sent, therefore sometimes it needs a few extra passes. The main advantage
of using a streaming algorithm is the limited use of the hard drive, the
relative slow memory (as mentioned in section 2.6.2)

4.2.1 Spatial finalizer

The spatial finalizer (SF) mentioned in section 2.6.2, is implemented for the
streaming approach, this computes the MAT in 3 steps (see Figure 4.16):

1. Spatial finalizer
The SF creates a grid of empty tiles fitting within the boundary of the
pointcloud dataset, followed by counting how many points are in each
grid tile. Then the pointcloud file is read sequentially again, while
each point is stored in the empty tiles, when a tile has all its points, it
is send out to the next step.

2. Collector
The collector receives tiles of points from the SF, these are stored in the
memory as well. It waits till it can form collections (1 process tile and
its buffers) and sends the collection to compute the MAT. Afterwards
the process tile is omitted from the memory while the buffer tiles re-
main. These buffer tiles will eventually become process tiles as well
when their surrounding tiles have arrived as well.

3. MAT computation
The MAT is computed using the collections send from the collector.

Point Cloud Collector MAT computationSpatial
Finalizer

points tiles subsets

Stores points temporary Stores tiles of points
temporary

spatial coherence
essential

second order
spatial coherence

essential

Figure 4.16: Workflow from pointcloud to MAT computation

4.2.2 Second order spatial coherence

A huge advantage of the streaming approach over the tiling approach is that
data (tiles) does not need to be stored temporary on the hard disk, they are
”streamed” from the file, to the SF, to the collector. The spatial coherence
of datasets are usually good enough (section 2.6.2). However, this is only
taking in to account the spatial coherence of points within a tile.

In section section 2.6.2 the spatial coherence is defined as:
correlation between the proximity in space of geometric entities and the
proximity of their representation in the data file stream.

As explained earlier in section 3.2.1 the shrinking ball algorithm is not able

4.2 approach: streaming algorithm 61

to compute the MAT for all the points in a single tile with just the data from
that same cell. This means that for the SF to work, the streamed tile needs
to wait for neighbouring tiles to arrive in the collector to be sure that the
MAT can be computed. If a streamed tile does not need to wait long for
neighbouring tiles to arrive, it has a good second order spatial coherence.

The second order spatial coherence is then defined as:
The correlation between the proximity in space of the geometric tiles and
the proximity of their representation in the stream of tiles.

In this case, the stream of tiles is provided by the SF.

regular buffer method

Using the regular buffer method, computable points within a certain area
need to have a buffer around them to ensure that MAT computed will be
correct. As Figure4.17 shows, the points in the red tile need a buffer shown
as green tiles around itself to ensure that the correct MAT is computed.

Figure 4.17: The red process tile needs points from the neighbouring green buffer
tiles to be sure that it has created the MAT completely

As the use of the streaming algorithm with SF only outputs each tile once,
the red process tile can not be removed from the memory, until it is not
needed any more in the process. This means that it can only be removed
after the its surrounding buffer tiles are processed as well. However, to pro-
cess the buffer tiles as a process tile, the tiles around it need to be in the ap-
plication as well (see Figure 4.18(a)). This means that before the red tile can
be deleted, its 24 surrounding tiles need to have arrived (see Figure 4.18(b)).
Using this knowledge a complete dataset is analysed (see figure 4.19), about
half of the tiles need to wait for 50 sequential other tiles to arrive before they
can be removed. It would seem inevitable that with huge datasets many tiles
need to be stored temporary on the harddrive. As streaming methods tries
to avoids extensive harddrive access, this is unwanted. Therefore the regular
buffer method will not be used in the streaming approach.

62 scaling the medial axis transform

(a) (b)

Figure 4.18: (a) Green cell needs its surrounding cells as well (b) All the green cells
need to have arrived, before the red cell can be deleted from the mem-
ory

6 8 71 75 6 8 63 70 137 137 190 60 6 8 7 9

6 9 72 80 6 11 70 76 10 9 58 63 8 6 4 11

11 15 80 85 13 15 74 81 15 13 62 68 9 13 11 17

6 8 71 75 6 8 67 71 6 8 57 61 6 8 7 7

11 14 77 83 9 13 70 77 7 10 56 63 3 6 5 202

12 10 73 82 10 14 71 78 8 11 59 64 4 8 7 203

3 6 69 74 3 5 66 69 2 7 50 52 0 2 9 202

13 17 80 84 13 16 69 73 8 9 49 53 1 2 204 202

9 10 75 82 9 11 64 72 5 6 205 205

3 6 67 74 3 8 61 65 3 5

14 18 77 81 12 14 66 71 11 13 12 170

10 12 71 82 12 11 61 70 7 9 8 12

5 8 67 75 7 6 57 64 4 8 7 8 178

7 11 72 77 11 7 56 64 6 10 7 9

1 5 66 76 5 4 53 63 1 4 3 176

0 3 64 75 2 1 50 62 0 2 2 177

0 >50number of tiles arrive before all surrounding
tiles are in

Figure 4.19: Tiles of the AHN3 dataset (c 67hz1.laz), the number in each tile repre-
sents the wait time. The wait time is expressed as how many sequential
tiles need to arrive from the SF before all 24 surrounding tiles have
returned.

4.2 approach: streaming algorithm 63

reduced buffer method

Using the reduced buffer method, all points including the buffer itself will
be computed. Points in the buffer area however, might need further compu-
tation to ensure that they get the correct MAT.

To check whether this may cause a problem, the time it takes for all the
surrounding tiles to arrive needs to be found. Time is expressed here as
how many tiles arrive before all the surrounding tiles are in. Image 4.20

shows how long each tile needs to wait till all the 8 surrounding tiles arrive
from the SF for a part of the Rotterdam pointcloud. While many tiles are
displayed in red indicating that they have a long waiting time, most of the
tiles are green. The amount of active tiles at the most was 121, meaning that
the SF probably still needs to store certain tiles temporary on the hard disk.

6 8 5 75 6 8 3 66 134 135 135 55 3 7 6 9

0 3 0 74 0 5 2 66 3 3 2 59 5 3 0 8

7 11 9 79 7 9 7 75 9 7 5 62 3 7 4 12

4 6 3 75 6 8 5 71 6 8 5 61 6 8 5 7

1 5 4 74 0 4 0 69 0 3 0 59 0 3 0 199

12 10 7 82 10 14 10 78 8 11 8 64 4 8 5 199

0 3 0 71 0 2 3 67 0 5 2 52 0 2 7 196

4 8 6 75 4 7 5 68 3 4 4 53 1 2 202 195

9 10 9 82 9 11 6 72 5 6 163 204

0 3 0 72 0 5 2 62 0 2

4 8 6 72 3 6 5 64 4 6 4 165

10 12 9 79 9 9 8 70 7 9 5 11

0 3 0 69 3 3 2 60 0 4 1 4 170

6 10 6 73 7 4 3 63 5 9 3 7

1 5 2 75 4 4 3 63 1 4 1 176

0 3 0 74 1 1 0 62 0 2 0 177

0 >50number of tiles arrive before all surrounding
tiles are in

Figure 4.20: Tiles of the AHN3 dataset (c 67hz1.laz), the number in each tile repre-
sents the wait time. The wait time is expressed as how many sequential
tiles need to arrive from the SF before all 8 surrounding tiles have re-
turned.

4.2.3 Improving second order spatial coherence

As can be seen from the buffer method (Figure 4.19) and the reduced buffer
method (Figure 4.20), the second order spatial coherence is not everywhere
good, several tiles need to wait more than 50 sequential tiles, before their
surrounding tiles have arrived. This is to be expected, because whilst the
data is processed in 2 dimensions, it is stored as well as read as a 1 di-
mensional list/clusters of points. Insuring that this 1 dimensional stream of

64 scaling the medial axis transform

points is sorted, could therefore improve the second order spatial coherence
(locality). By grouping the points in tiles and sorting the tiles a space filling
curve of tiles can be created.

After sorting the dataset using the z order curve (see Section 2.1.3), the
locality of individual tiles seems to have improved slightly. Still many tiles
need to wait a long time before the surrounding tiles arrive as shown in
Figure 4.21. Before sorting a tile needs to wait on average 25.28 tiles before
it can be computed. The maximum of it lies at 181. After sorting the average
waiting time is 15,82 tiles and the maximum lies at 128. Figure 4.22 shows
the amount of tiles in the memory during processing of each tile, these
numbers are lower than the waiting time numbers because although some
tiles might need to wait for 100 other tiles to be loaded, in the mean time
some are removed from the memory after processing. Yet the maximum
waiting time for a tile in a unsorted dataset it 39, after sorting the maximum
is 24.

3 4 7 3 13 6 4 18 5 10 5 14 6 3 34 4

1 3 6 3 14 4 3 18 0 6 3 14 6 2 32 3

8 10 13 9 21 9 7 23 9 15 10 22 10 6 36 4

3 4 7 4 17 5 3 17 2 7 3 17 6 4 36 3

1 3 5 3 17 168 167 181 2 6 3 18 4 3 35 3

97 142 146 148 114 166 0 180 72 74 72 89 74 72 103 5

1 45 0 50 15 67 69 109 3 6 0 18 5 3 102 0

2 44 48 49 16 5 4 43 4 9 5 18 5 4 104 5

11 12 15 10 23 12 64 106 105 15 10 25 12 7 106 3

1 3 7 3 15 7 59 0 96 7 3 17 7 3 105 3

3 5 11 5 17 7 58 94 95 8 5 19 7 5 106 4

3 1 9 3 17 5 3 37 3 6 3 19 5 3 104 3

19 17 24 22 36 37 35 69 20 23 21 37 38 36 137 5

2 3 6 3 4 5 3 52 3 5 3 4 5 3 135 3

2 3 7 4 6 5 4 54 4 7 4 6 5 4 137 4

0 1 5 1 5 3 1 52 1 5 1 5 3 1 135 1

(a)

2 3 9 3 23 3 7 3 87 3 7 3 24 3 10 3

2 3 9 3 24 4 9 5 89 4 9 5 26 2 9 3

2 3 9 3 24 3 8 3 88 3 8 3 24 3 9 3

10 11 16 12 32 11 16 12 96 12 17 13 33 12 17 11

1 3 6 3 23 3 7 3 86 3 7 3 23 3 8 3

3 5 8 5 24 5 9 5 88 5 9 6 25 5 9 5

1 3 6 3 22 3 7 3 86 3 6 3 23 3 8 0

42 44 50 44 64 43 48 43 128 44 50 45 65 44 50 45

2 3 9 3 25 3 9 3 89 3 8 3 24 3 9 3

2 3 9 3 25 4 10 3 88 4 9 5 25 3 9 3

2 3 10 3 24 3 7 3 86 3 7 3 24 3 9 3

11 10 18 11 33 12 17 13 96 12 17 12 33 11 17 11

3 2 9 3 25 3 8 3 87 3 9 3 25 3 9 3

2 3 9 3 25 4 9 5 88 4 9 4 25 3 9 3

2 3 9 3 24 3 7 3 86 3 7 3 24 3 9 3

0 1 7 1 23 2 6 2 85 2 6 2 22 1 7 1

(b)

Figure 4.21: The number in each tile represents the wait time. The wait time is ex-
pressed as how many sequential tiles need to arrive from the SF before
all 8 surrounding tiles have returned.
(a) unsorted
(b) sorted using Z-order index

4.2 approach: streaming algorithm 65

32 31 32 30 30 26 25 25 25 24 22 21 19 19 18 4

31 30 32 30 30 26 25 25 26 23 21 21 19 18 18 4

30 29 30 30 30 27 26 26 24 23 23 23 19 19 19 5

29 28 29 30 30 27 27 26 23 23 23 23 19 19 19 6

28 27 29 30 30 8 15 14 23 23 23 23 19 19 19 7

38 0 7 6 34 9 16 13 27 27 29 28 27 27 27 9

38 1 8 5 34 10 11 12 27 27 30 27 27 27 27 10

39 2 3 4 35 28 26 26 28 27 27 27 27 27 27 10

39 38 39 39 39 34 16 23 22 27 27 27 27 27 27 11

38 37 39 39 39 34 17 24 21 27 27 27 27 27 27 12

37 39 38 39 39 34 18 19 20 28 27 27 27 27 27 14

35 37 36 39 39 34 34 33 29 28 27 27 27 27 27 14

30 29 30 32 32 33 35 35 24 24 26 26 27 29 29 16

29 28 29 32 32 33 35 35 24 24 26 26 27 29 29 16

26 25 28 31 32 33 34 35 23 24 25 26 27 28 29 17

27 24 27 30 31 32 33 34 22 23 24 25 26 27 28 16

(a)

24 23 24 22 22 20 19 18 17 15 14 13 12 8 7 3

23 22 23 22 22 20 20 18 18 15 15 13 13 7 7 4

22 21 22 22 22 20 20 18 18 15 15 13 13 7 7 5

21 20 21 21 21 20 20 20 20 15 15 15 15 11 11 8

20 19 21 21 21 20 20 20 20 15 15 15 15 11 11 9

19 18 19 22 21 20 20 20 20 15 15 16 15 11 11 11

18 17 19 21 21 20 20 20 20 15 15 15 15 11 11 12

13 12 13 13 13 17 17 17 17 20 20 20 20 19 19 16

12 11 12 13 13 17 17 18 17 20 20 20 20 19 19 17

11 10 11 13 13 17 17 17 17 20 20 20 20 19 19 18

9 11 10 13 13 17 17 17 17 20 20 20 20 19 19 19

6 8 7 9 9 15 15 17 17 18 18 20 20 22 22 20

6 5 6 9 9 15 15 17 17 18 18 20 20 22 22 21

5 4 5 9 9 14 15 16 17 17 18 19 20 22 22 22

2 1 4 8 9 14 15 16 17 17 18 19 20 21 22 23

3 0 3 7 8 13 14 15 16 16 17 18 19 20 21 22

(b)

Figure 4.22: The number in each tile T represents the amount of tiles already in the
main memory, when that tile T arrives from the SF

(a) unsorted
(b) sorted using Z-order index

4.2.4 Streaming process

The reduced buffer method is chosen to be used in this approach instead of
the buffer method. As the reduced buffer method has a higher likelihood
that cells will be released from the main memory earlier than with the buffer
method is used.

general overview

The process starts with the streaming application, loading the data and pip-
ing the points including a finalizer indicating that all the points from a
cell have been transferred. The collector reads the points from the cell and
stores them in the memory, when all surrounding cells have been trans-
ferred, it sends it out to compute their normals when needed and computes
the MAT. The MAT of the center cell (the only cell which is not a buffer cell)
is then stored on the secondary memory and all its attributes/elements are
removed from the main memory. This process continues, till all cells have
been processed.

The tasks of the collector can be subdivided in four parts:

• collection of tiles

• detection of surrounding tiles

• computing normals and MAT

• storing MAT results

These will be explained in more details.

collection of tiles

As the points are received from the SF, they are stored in the main memory.
When the finalizer tag arrives (which indicates that all points from a certain
tile has been passed along), it is known that all the points of that certain cell

66 scaling the medial axis transform

have arrived. Along with this tag comes a ID number, which is the location
of the cell in the dataset. This ID number is the location on the Z-order
curve. All the points will be stored as 32-bit float in an instance with the ID
number as the key.

detecting surrounding cells

After a new tile has arrived, the process starts of checking surrounding tiles.
For each tile Tx,y currently in the memory, the availability of surrounding
tiles2 is checked. If all are available, Tx,y and its surrounding tiles (which
functions as the buffer) are grouped and send to the next stage for comput-
ing the normals and MAT.

computing normals and MAT

For each of the buffer tiles and Tx,y the normals are computed and stored
temporary in the main memory as well, if necessary. It is possible that sev-
eral of the tiles have already been in this stage, and therefore their normals
have been already computed. After the normals have been computed the
MAT is computed. If some of the buffer tiles have already been in this stage,
they also already will have computed their MAT before. This means that
the radii of the previous computation(s) is still stored for each point of that
cell in the main memory. Instead of using the initial radius (of 100 meter),
the stored radius from the previous computation is then used in the new
computation of the MAT. When points within a buffer tile has a MAT which
lies with in the boundary of the subset, it does not need to be computed
any further (as it is final). To reduce computation time, that point will get
tagged, so that in upcoming datasets, the MAT will not be processed again.

storing MAT results

After the MAT has been computed, the radii results of buffer tiles are stored
in the main memory, the MA is omitted, as it can be directly computed from
the coordinates in computation with the normals and radii. The MAT of the
Tx,y is stored on the hard disk and the complete instance is omitted from the
main memory, as it will not be needed any more in any future processes.

Algorithm 4.2 shows a detailed description of the algorithm. Please note,
that DS is a finite stream of points with intermediate finalization tags. These
finalization tags got a x and y value of the tile captured in its Morton code
(section 2.1.3) and indicates that all the points from tile Tx,y has arrived. Be-
fore ”COMPUTE STREAMING MA” previous calculated radii of the points
is loaded to replace the standard rinit, if they are available. After ”COM-
PUTE STREAMING MA” the radii of the MAT is stored for the points to be
used in future computations, as is needed when the reduced buffer method
is used.

2 8 surrounding tiles, which will function as buffer in the subset: Tx−1,y−1, Tx−1,y, Tx−1,y+1,
Tx,y−1, Tx,y+1, Tx+1,y−1, Tx+1,y, Tx+1,y+1

4.2 approach: streaming algorithm 67

Algorithm 4.2: Streaming approach (DS)
Input: Spatial finalizer output: Datastream element DS is either

Point p or finalization tags z

1 T = emptyarray;
2 Tiles = emptyarray;
3 while true do
4 if DS == type p then
5 Append DS to T;

6 if DS == type z then
7 Determine x, y value of DS;
8 Tx,y ← T ;
9 Append Tx,y to Tiles;

10 Empty T;
11 CHECK SURROUNDING();

12 if DS == empty then
13 Break;

14 Function CHECK SURROUNDING()
15 for each Tx,y ∈ Tiles do
16 t = 1;
17 Lp = Empty list;
18 Ln = Empty list;
19 for i = -1; i ¡= 1; i ++ do
20 for j = -1; j ¡= j; i ++ do
21 if Tx+i,y+j exists then
22 if normals not calculated yet for Tx+i,y+j then
23 Nx+i,y+j ← COMPUTE NORMALS(Tx+i,y+j);

24 append Tx+i,y+j to Lp;
25 append Nx+i,y+j to Ln;

26 else t = 0;

27 if t == 1 then
28 COMPUTE STREAMING MA(Lp, Ln);
29 Storing MAT of Tx,y to hard disk;

30 remove Tx,y from Tiles;
31 remove Nx,y;

4.2.5 Memory consumption

Unlike the tiling method it is much harder to estimate how much memory
the process takes. While tiling method loads only the tiles which it actually
needs to process certain points, the streaming method uses the tiles/points
which are outputted by the SF. This does not mean that the tiles can be used
directly to process points, as it might need to wait for neighbouring tiles.

Observe Figure 4.22.a, the maximum amount of active tiles in the main
memory during the streaming process is 39. Depending on whether they
are already pre-processed as a reduced buffer they might already have their
normals calculated and their temporary MAT radius computed. If each
of those tiles would have 1 million points and 9 tiles will be processed,
it is estimated that it will take between the 1 and 2 GB of main memory.

68 scaling the medial axis transform

This depends on whether other parts of the dataset already computed the
Normals and MAT’s (see Table 4.3).

Type Points Coordinates Normals KD tree (MA)T

Process Points 9 million 108 MB 108 MB 315 MB 144 MB
Buffer Points 30 million 360 MB 0∼360 MB 0 MB 0∼240 MB

Table 4.3: MAT computation memory usage (Streaming approach)

4.2.6 external memory usage

Predicting the external memory usage by the streaming method is hard
to do. Preferably the method will not use the external memory at all to
store data temporary. However, if the dataset is large, the locality (second
order spatial coherence) is bad or the main memory is not sufficiently large
enough, storing on the external memory is needed.

4.2.7 Time consumption

The streaming approach, is very efficient when the spatial coherence is
present. As it creates and outputs tiles after just reading the input file 3

times. Therefore the time complexity is O(n) for n points. The time com-
plexity for the use of reduced buffers will be explained in section 4.4.1.

4.3 merging the output

The output MAT of both methods is a collection of subsets the size of the
tiles input. These can be merged to form a larger dataset. Instead of just
merging them randomly, using the z-order curve locality along the tiles can
be created as shown in Figure 4.23 (see Section 2.1.3).

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

Figure 4.23: Merging the 16 tiles in the presented order is gives an overall better
locality over the dataset compared to random merging

4.4 differences between approaches 69

4.4 differences between approaches
In this chapter 2 different approaches were discussed:

• The tiling method

• The streaming method, using a spatial finalizer

The main differences between these 2 methods are shown in table 4.4.

Tiling Streaming

Extensive use of external memory Avoids extensive use of external
memory

Making large collections of tiles possible Making small collections of tiles
Can make use of regular buffers To be efficient, should make use of

reduced buffers

Table 4.4: Main differences between the tiling and streaming method

4.4.1 Difference in main memory usage and computation time

Both approaches can be split up in separate stages. As already shown in
chapter 3, the first stage is the chunking stage, the second is the actual
MAT computation. As the approaches differ a lot in the chunking stage, the
computation time cannot be compared as time complexity. They both use
the same MAT computation however, where the tiling approach uses regular
buffers and the streaming approach uses reduced buffers.

chunking stage: tiling vs streaming

Using the tiling approach the amount of points each collection may have
can be chosen during the segmentation, and therefore the maximum main
memory usage can be easily regulated. As the tiles are stored temporary on
the hard disk, collections can be made by loading the tiles in to the main
memory. The streaming approach however reads the input data sequentially,
and stores the tiles temporary in the main memory. It depends on the spatial
coherence as well as the secondary spatial coherence on how much main
memory is used. Therefore it is expected that the streaming approach will
have a higher main memory usage than the tiling approach, while the tiling
approach makes more extensive use of the hard disk.

Because the tiling approach writes and reads tiles from the slower hard
disk, it will be more time consuming than the streaming approach, which
stores tiles as well, but inside the faster main memory.

MAT stage: regular buffer vs reduced buffer

The regular buffer and reduced buffer both make use of the same MAT algo-
rithm. As discussed in section 3.1.1, the worst case scenario time complexity
of the MAT computation is O(n3). However, this assumes all n points are be-
ing processed as well as used in the kd-tree. As this is not the case for the
tiling approach (as buffers are not being processed) as well as the streaming
approach (although buffer tiles are being processed as well, when a MAT is
final, the point might be used in the kd-tree, but the MAT does not need to be
recomputed). Therefore the worst case scenario for computing the MAT can

70 scaling the medial axis transform

be expressed as O(n2m) where n is the amount of points which are going to
be processed (process points) and m the amount of points in total which are
in the kd-tree (process points + buffer points).

The MAT of dataset V is the sum of computations of all the collections. It
is not easy to compare the regular buffer and reduced buffer with regards
to time complexity, because although they use the same algorithm, their n
and m inputs are not the same. However, it can be assumed that the re-
duced buffer will be slower than the regular buffer because of the following
reasons:

• With the regular buffer approach nregular is always smaller than mregular.
While in the worst case scenario, nreduced = mreduced with the reduced
buffer approach (as buffer points are processed as well).

• Let us assume that the number of processable points is nregular,i and
nreduced,i for the regular buffer method and reduced buffer method
respectively, where i is the ith collection. The reduced buffer approach
processes buffer points multiple times to retrieve the final MAT. The
regular buffer approach processes all points a single time, therefore it
can be said that:

c

∑
i=0

nregular,i <
c

∑
i=0

nreduced,i

• The reduced buffer method omits tiles after each computation, the
number of points in later collection decreases, meaning that the first
collections will have a significant higher nreduced,i than the last few col-
lections. Furthermore as the reduced buffer method computes buffer
tiles as well, nreduced,i at the beginning will have a much higher value
than nregular,i. The regular buffer method has a nregular,i which does
not deviate much further in the process, as no tiles are removed.

Based on combination of these 3 assumptions it can be said that the re-
duced buffer approach will probably be slower. As the time complexity is
exponential, high fluctuations in input size will take longer to compute than
a constant size input. Furthermore the expected input n in general is larger
in the case of the reduced buffer approach.

4.5 summary

4.5.1 Tiling approach

The tiling approach makes extensive use of the hard disk, by storing tiles
Tx,y (where x, y are the geographic location of each tile) temporary on it. As
each tile Tx,y is easily accessible, collections Si could be made. Collections
Si consist out of a list of process tiles Pi and a list of buffer tiles Bi.

To make these collections (clusters) a top-down segmentation is suggested,
either a space-driven or data-driven datastructure is used. This is achieved
by first placing all the tiles Tx,y in a single collection S0 and keep iteratively
splitting the amount of processable tiles Tx,y in half, where both halves of
the data are stored in new collections Si replacing the parent one. When
all the collections contain a amount of points which will fit inside the main
memory, the process is ended.

4.5 summary 71

The internal memory usage can easily be regulated by just taking larger
or smaller collections of tiles. As tiles are stored temporary on the hard disk
and the normals will be stored there as well, the external memory usage will
be two times the size of the input dataset. However, as the inner and outer
MAT will take a maximum of 2.6 times the input dataset of disk space, the
external memory used during the computation should be available anyway.

4.5.2 Streaming approach

Unlike the tiling method, the streaming approach minimizes writes to the
hard disk. The streaming does this by reading sequentially each data entry
in a file multiple times. Using the spatial finalizer, the MAT is computed in
3 steps:

• Spatial Finalizer (SF)
Reads the data entries sequentially from the input file multiple times
and outputs the tiles.

• Collector
Receives sequentially the tiles from the spatial finalizer and stores
them temporary in the main memory. When its surrounding tiles,
which function as the buffer arrives, it computes the MAT. After the
MAT is computed, tiles which are not needed further in the process are
omitted from the main memory.

• MAT computation
Computes the MAT and stores the radii of points in the buffer tiles
temporary, so that they can be used in future computations.

The use of the reduced buffer method is necessary, as using regular buffers
will increase the main memory use. This is because:

• Using regular buffers, the process tile Tx,y can not be deleted until its
24 surrounding tiles have arrived. (its surrounding tiles need Tx,y as
well when the MAT is computed for them).
Using the reduced buffer method only the surrounding 8 tiles of pro-
cess tile Tx,y need to available and Tx,y can be omitted after the MAT is
computed.

• The second order spatial coherence could be better, tiles which are
close to each other in geometric sense, are not necessary close to each
other in the sequence of tiles outputted by the SF.

5 IMPLEMENTAT ION , EXPER IMENTS
AND COMPAR ISON

In this chapter the previous described approaches are implemented on sev-
eral real-world datasets. The results are evaluated based on their the out-
put quality, computation time and memory usage (main memory and hard
disk).

5.1 implementation

Figure 5.1 shows the workflow for both approaches. Apart from code writ-
ten for this thesis, masbcpp1 has been implemented/adjusted and lastools2

has been used as well.

In the tiling approach, the datasets were cut in to 200m x 200m tiles using
las tile from the lastools package. The normal computations are computed
using compute normals from masbcpp. The segmentation has been written
in the python programming language (using pointio3 library). The MAT is
computed using code based on compute ma from masbcpp.

In the streaming approach, the tiles were piped from the spatial finalizer
(SF) to the collector. The collector (analyze input) is written in C++ which
was merged with compute normals from the masbcpp. The MAT is then com-
puted using the same compute ma from tiling approach. The code makes
use of the libraries: cnpy, kdtree2, psapi, tclap and vrui.

Finally the quality control and checks were performed using Python.

The developed code is available at https://github.com/Rissos/scalingMAT.

1 masbcpp by R. Peters
https://github.com/tudelft3d/masbcpp

2 lastools by M. Isenburg
http://www.cs.unc.edu/ isenburg/lastools/

3 pointio by R. Peters
https://github.com/Ylannl/pointio

73

https://github.com/Rissos/scalingMAT
https://github.com/tudelft3d/masbcpp
http://www.cs.unc.edu/~isenburg/lastools/
https://github.com/Ylannl/pointio

74 implementation, experiments and comparison

DatasetDataset

Tiling Spatial Finalizer

Clustering

Compute Normals

Compute MAT

Compute Normals

Compute MAT

Analyse input

LAS tools

Own work python

Own work C++

Adjusted code from:
https://github.com/tudelft3d/masbcpp

Adjusted code from:
https://github.com/tudelft3d/masbcpp

Tiling Method Streaming Method

Figure 5.1: Workflow scheme for both approaches used

5.1.1 hardware

The tests were performed on a laptop (windows) equipped with an Intel
Ci5-4300U @ 1,9 GHz and SK Hynix 256 GB Solid State Disk. The amount
of main memory used is limited by the use of a c++ compiler for 32-bit
(therefore only 2 GB of main memory could be addressed).

Tests on larger datasets were performed on a system (linux) equipped
with Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz and 512 GB Solid State
Disk.

5.1.2 Tiling Implementation

The tiling approach has been implemented through a python script as well
as a program build in c++. The python script does the preprocessing and
builds the collections, while the c++ program computes the MAT based on
the output of the python script. It starts by first using lastile to split the
dataset in to smaller las4 tiles of 200 by 200m. The python script then reads
the las datafiles and converts them to npy5 while adjusting each coordinate
to comply with a local reference. After that it computes the normal vectors
for each individual tile. Then the python script forms grid-like collections
or collections based on a quadtree/kd-tree. For each collection of tiles in-
cluding buffer it creates a ASCII file containing the path to the npy files in
the collection and calls the c++ program to compute the MAT based on the
list of npy files.

4 LAS file format is a public file format for the interchange of 3-dimensional point cloud data
data between data users ASPRS [2013]

5 npy: binary file in NumPy a fundamental package for scientific computing in Python

5.1 implementation 75

preprocessing

Because it is known that the bare minimum size of each subset should be
400m x 400m and the buffer size should be 200 meters, it is chosen to precut
the dataset in to pieces of 200m x 200m. These tiles are the smallest sub-
section of the binary tree. To produce these tiles lastile of lastools is used,
which cuts a dataset or list of datasets in to tiles with a size predefined by
the user. Then all the .las tiles are converted to .npy.

The Principal Component Analysis (using k=10 nearest neighbours) is
used to compute the normals of each single tile is computed using its sur-
rounding tiles are buffers.

Segmentation method

All available metadata of the individual tiles are then loaded in to a matrix.

The 3 segmentation methods are tested on 4 large datasets of the AHN3,
see table 5.1. The maximum amount of point per collection indicates the size
of the collection (a dataset can be subdivided in a few large collections or
many smaller collections) These datasets differ from each other in content as
some of them are smaller in geometric size. There is no best segmentation
method for collections with many points (> 20 million), however, the
optimized KD-tree method worked best with smaller sized collections (<
18 million points). The quadtree method does seem to work in all occasions
(when one of the others worked as well), the kd-tree and optimized kd-tree
method struggled sometimes with smaller sized collections. Overall there
are no significant differences.

c 37en2 c 67hz1 c 11hz2 c 37gn1

Max Points
per collection qt kd okd qt kd okd qt kd okd qt kd okd

50 mil 23 21 23 12 11 12 23 25 25 10 9 9

40 mil 31 33 32 14 16 16 35 32 31 14 15 15

30 mil 48 50 47 26 24 25 51 53 50 24 21 21

20 mil 90 89 91 44 44 44 95 103 100 41 41 41

18 mil 111 114 109 56 50 48 122 121 117 50 50 48

15 mil 154 - 147 74 74 - - - - 66 68 65

Table 5.1: Amount of collections per segmentation method; qt = Quadtree; kd = KD-
tree; okd = Optimized KD-tree
The highlighted values indicate the best solution for the size of collection

5.1.3 Streaming Implementation

One of the main advantages of the streaming method is that writing to
the hard disk is minimized. As such only the reduced buffer method is
implemented, section 4.2 shows that the regular buffer method longer wait-
ing times introduces per cell and thus also take more main memory. The
downside is that processing time will increase, as certain parts need to be
processed multiple times. As the SF loads the datafile and pipes the tiles to
the collector, no preprocessing is needed.

76 implementation, experiments and comparison

5.2 datasets

To test the approaches 2 pointclouds are used, the AHN3 and Rotterdam pun-
tenwolk. The AHN3 has a point density on average of 8 points/m2, while
the Rotterdam puntenwolk has on average a point density of 30 points/m2.
More details about both datasets has been presented in section 5.2. The
AHN3 is downloadable in tiles, while Rotterdam puntenwolk is download-
able as a whole. Figure 5.2 shows the datasets used:

• AHN3

– c 67hz1 : Zeeland, Zuiddorpe
Relative small dataset (5000m x 4700m) (2, 8 ∗ 108 points)

– c 37gn1 : Zuid Holland, Rotterdam Relative small dataset (5000m
x 3000m) (2.4 ∗ 108 points)

– c 37en2 : Zuid Holland, Delft
Regular dataset (5000m x 6250m) (5, 2 ∗ 108 points)

– c 11hz2 : Groningen, Appelscha
Regular dataset (5000m x 6250m) (5.1 ∗ 108 points)

• Rotterdam dataset

From the Rotterdam Dataset two smaller subsets are extracted. These
were used on the consumer laptop to compute the MAT. The one of these
subsets was specifically chosen to fit completely in the main memory during
processing, whilst the other dataset does not fit. The AHN3 datasets are
contain large quantities of points, whilst it possible to compute the MAT on
the consumer laptop using the scaling options, it would take significantly
more time than the smaller ones. The AHN3 has a accuracy up to 0.05 m
[Rijkswaterstaat, 2015].

5.3 data quality

The output of the tiling and streaming method should be the same. How-
ever, there are some apparent differences. Whilst both methods use the
same algorithm to process the data, the output data is not the same. The
de-noising which takes place, does not work similar in both approaches. Al-
though they do have the same method for de-noising, the way the streaming
approach handles the input data differs from the tiling method. Removing
tiles from the collection (which is done by the streaming approach) has in-
fluence on the de-noising. The tiling method is in this case effected by noise
in Figure 5.3, whilst the streaming method is able to filter it out. This issue
will not be further discussed, as it is an issue which is not effected by the
”basic” workings of the MAT algorithm.

5.3 data quality 77

c_67hz1

c_37gn1

c_37en2

c_11hz2

88800, 432800

89600, 433600

88000, 432000

Figure 5.2: location datasets

(a) (b)

Figure 5.3: Difference in output due to a single point inside the yellow circle(a)
Tiling (b) Streaming

78 implementation, experiments and comparison

5.4 external memory usage

The memory usage can be subdivided in 2 parts; main memory and external
memory. Both approaches have first been tested on small size datasets of
the Rotterdam puntenwolk. However, the streaming approach did not seem
suited in its current state to be tested on larger datasets (will be explained
in section 5.8), therefore only the tiling method has been further analysed
using the larger AHN3 datasets.

In section 4.4 the distinct differences in how the 2 approaches external
memory were summarized. The tiling approach makes extensive use of the
external memory, by storing tiles temporary on it. The streaming approach
avoids writing too much data on the external memory as it stores the tiles on
the main memory. Ideally the streaming approach will just read the input
datafile and outputs the MAT on the external memory, without needing to
make use of temporary writes during the computation.

As the MAT consist out of x,y,z,r, it is expected that the output (i.e. inner
and outer MAT)should be 2.6 times the size of the input datafile (i.e. point-
cloud x,y,z). However, this should still be filtered as some values are not
valid (as explained in section 3.5.2). In table 5.2 can be seen that the Inner
MAT has much less valid values than the Outer MAT.

Outer [points] Inner [points] Memory usage [MB]

Total MAT 21889415 21889415 700

valid 21334948 10706325 513

Table 5.2: External memory usage MAT (800 x 800m dataset of Rotterdam punten-
wolk)

5.4.1 Small size datasets

Both approaches have first been tested on the small sized datasets of the
Rotterdam puntenwolk, table 5.3 presents the results.

As can be seen the streaming method does not need to make use of storing
data temporary on the external memory during the processing of subset
(800 x 800m). However, a processing the larger subset (1600 x 1600m) does
result in storing temporary data on the hard disk as the internal memory
runs full. This is because the second order spatial coherence drops as the
datasets grow larger.

The tiling method does make extensive use of the external memory. Com-
pared to the output MAT the difference is not very big.

Dataset Approach Computation [MB] Output MAT

800 x 800

Tiling 494 513

Streaming - 510

1600 x 1600

Tiling 1828 1706

Streaming 340 1747

Table 5.3: External memory usage of the tiling and streaming algorithm on parts of
the rotterdam pointcloud

5.5 internal memory usage 79

Large size datasets

The MAT of the AHN3 datasets is sometimes larger and sometimes smaller
than the temporary tiles used by the streaming method (see Table 5.4).

Dataset Computation [GB] Output valid MAT

c 67hz1 13.6 8.2
c 37gn1 11.4 10.8
c 37en2 25.2 22.7
c 11hz2 24.5 25,3

Table 5.4: External memory usage of the tiling on AHN3 sets

The MAT output size on the external memory can be smaller than the
temporary tiles which are needed during the computation. Hypothetically
it is possible that the MAT turns out to be non-existing (0 MB), for instance
when the dataset is just a straight plane and no MAT can be computed. As
the radius of each point will be infinite when the MAT is computed and
thus none of those MAT will be included in the output. In this situation the
temporary tiles stored by the tiling method would need much more space
than the output MAT. However, without pre-analysing a dataset, it cannot be
known how much big the output MAT will be. Therefore one has to assume
the worst case: all the MAT are valid. In this case a much larger part of the
external memory needs to be reserved for the MAT, which is much more
than the temporary files need.

5.5 internal memory usage
Both approaches subdivide the dataset in to tiles and recombine collections
of tiles to form subsets. For these subsets the MAT is then computed. In both
situations, the amount of points per subset will determine the internal mem-
ory usage. As the tiling approach will only have the loaded subset in the
memory, the main memory usage is solely occupied with that. The stream-
ing approach has both the subset as well as other tiles which come from
the SF in the main memory. Therefore it is forced to make small collections,
while the tiling approach does not necessarily need to do this.

5.5.1 small size datasets (800 x 800 m)

Using the tiling method, the size of the collections can be chosen. As ex-
pected, when more collections are formed the size of the maximum mem-
ory usage decreases as well (See Table 5.5). There is not a large difference
between the memory usage of 16 collections and 4 in this dataset (1.3% in-
crease in internal memory usage). This is due to the buffers formed around
the computed tiles, as the use of smaller sized collections become less effec-
tive due to the buffer process point ratio.

collections 1 2 4 16

Max memory 1342 1068 835 824

Table 5.5: Maximum memory usage for several sizes collections using the tiling ap-
proach (800 x 800 m)

80 implementation, experiments and comparison

The streaming approach performs slightly worse than the tiling approach
when using 16 collections. The maximum memory usage of the stream-
ing approach takes place during the computation of the first collection, in
which tile # 13 is processed including its buffer tiles (See Table 5.6). Because
buffers are processed as well and tiles are removed after a collection has
been processed, the amount of memory usage drops along the process. This
can be seen in table 5.6, as the later collections need less memory to be pro-
cessed (the last processed collection only consumes 158 MB of memory, as
the collection only contains 1 tile).

Part # Max memory [MB] tiles in collection Tiles in memory

13 953 6 7

15 641 3 6

0 736 4 9

1 849 5 8

2 681 4 9

3 805 6 8

12 825 6 8

14 506 3 7

8 539 4 7

9 590 4 6

11 406 2 5

10 290 1 4

4 524 4 4

6 411 3 3

7 246 2 2

5 158 1 1

Table 5.6: Main memory of parts of the streaming process (small dataset)
Part # is the number of the tile being processed together with its buffer
tiles (collection)
Max memory is the max main memory usage during the computation of
the collection, this takes place just after the MAT is computed
Tiles in collection, is the number of tiles in the collection
Tiles in memory, is the total number of tiles temporary stored in the main
memory regardless whether they are in the current collection or not

5.5.2 small size dataset (1600 x 1600 m)

The 1600 x 1600 m dataset is 4 times larger than the previous set. As such
the tiling method cannot compute the MAT with less than 8 collections (as
the main memory is not large enough to compute larger subsets). Table 5.7,
shows that using 64 collections does not give a huge saving in main memory
use compared to using 16 collections.

Collections 8 16 64

Max memory [MB] 1569 1059 927

Table 5.7: Maximum memory usage for several sizes collections using the tiling ap-
proach (1600 x 1600 m)

The streaming approach has a maximum memory use of 1277 MB (see
Appendix B for the complete table), which is much higher than the 927

5.6 computation time 81

MB of the 64 collections tiling approach. The streaming approach actually
reaches the limits of main memory capacity, as such it had to store 340MB
of data temporary on the hard disk to be able to continue processing data
(see Section 5.4.1).

5.5.3 large size datasets

Similar as with the smaller sized datasets, the larger AHN3 subsets uses
less main memory during the computation when more collections are used.
From Figure 5.4 it can be clearly seen that there is a exponential drop in
memory usage.

However, at a certain moment the memory usage stabilizes in the graph.
This is because the decrease of points by splitting collections in to smaller
collections is less when the collections are already small, as buffers still need
to be applied.

0

5000

10000

15000

20000

25000

0 100 200 300 400 500 600 700 800

M
ai

n
M

em
or

y
U

sa
ge

 [M
B]

Collections

Maximum main memory usage

c_67hz1 c_37gn1 c_11hz2 c_37en2

Figure 5.4: AHN3 datasets: acsmat main memory usage

5.6 computation time
This section presents the computation time of both approaches. The time
complexity has been described in chapter 4. As can be seen in Figure 5.1,
the steps both approaches uses are not the same. However, both approaches
do make use of the same basic steps (see Table 5.8). Apart from the total
computation time, these 4 steps will be also evaluated, to see where time
differentiations between the 2 approaches derives from.

Tiling Streaming

Creating Tiles Create and store tiles on Tiles are being outputted by SF

the hard disk

Loading Tiles Loading the tiles from the Reading tile output of SF

hard disk

Create KD-tree Create the KD-tree

Compute MAT Using regular buffers Using reduced buffers

Table 5.8: Steps both approaches make and the description

82 implementation, experiments and comparison

5.6.1 Small datasets

Tiling

The tiling approach does not show big differences in the total computation
time, as can be seen from both Table 5.9 and 5.10. However, the loading
time as well as KD-tree creation time increases when more collections are
formed. This is to be expected, as having more collections leads to having
more buffer tiles and thus more points needing to be loaded; e.g. just having
1 collection means in this case that there are no buffer tiles, while having 16

collections means that there are 84 buffer tiles.

Collections 1 2 4 16

Tiles creation [s] 2.91

loading [s] 0,736 0,892 1,346 3,757

KD Tree [s] 7,946 12,197 16,557 44,788

MAT compute [s] 583,121 546,087 556,834 546,004

Total [s] 591,803 559,176 574,737 594,549

Table 5.9: Processing time of parts of the tiling process (800 x 800m)

Clusters 8 16 64

Tiles creation [s] 20.6
loading [s] 8.829 6.122 17.332

KD Tree [s] 55.275 77.413 183.402

MAT compute [s] 1621.603 1542.722 1553.975

Total [s] 1685.707 1626,257 1754,709

Table 5.10: Processing time of parts of the tiling process (1600 x 1600m)

Streaming

Using the streaming approach, collections contain less tiles further in the
process (as tiles are omitted during the process). This causes a huge differ-
ence in processing times for each collection as can be seen in Table 5.11, the
first collection to be processed takes 314.10 seconds, while the twelfth col-
lection only takes 0.53 seconds. This is also because tiles which have been
processed before (as a buffer tile), process faster then tiles which have not
been processed before. The four times larger 1600 x 1600 m dataset shows
same results (Table 5.12), the individual collections have the same maximum
and minimum computation time, while the total time takes roughly 4 times
longer.

Process # [s] Create and load tiles KD Tree [s] MAT compute [s]

Max 1 - 3.55 312.55

Min 12 - 0.39 0.14

Total 4.62 23.93 749.83

Table 5.11: Processing time of parts of the streaming process (800 x 800 m)

5.6 computation time 83

Process # Create and load tiles KD Tree [s] MAT compute [s]

Max 44 - 4.61 312.30

Min 64 - 0,34 0.05

Total 14.03 97.23 2789.06

Table 5.12: Processing time of parts of the streaming process (1600 x 1600 m)

5.6.2 Large datasets

Performing the tiling approach on the AHN3 datasets, shows that using more
collections result in to longer processing times. As can be seen in Figure
5.5, the increase in computation time grows linearly with the amount of
collections used. Subsets c 11hz2 and c 37en2 need about twice the amount
of time to process compared to c 67hz1 and c 37gn1, this is because the
former has about twice the amount of points the latter has.

0
500

1000
1500
2000
2500
3000
3500
4000

0 100 200 300 400 500 600 700 800 900

Co
m

pu
ta
tio

n
Ti

m
e

[s
]

Collections

Computation Time

c_67hz1 c_37gn1 c_11hz2 c_37en2

Figure 5.5: AHN3 datasets: acsmat Computation Time

The large increase in computation times when more collections are used,
is caused by the kd-tree building (see Figure 5.6). The loading tiles as well
as the MAT computation itself do not increase a lot.

0
100
200
300
400
500
600
700
800
900

0 100 200 300 400 500

Pr
oc

es
s

Ti
m

e
[s

]

Collections

c_67hz1 process time

Loading data Creating KD-tree Compute MAT

Figure 5.6: AHN3 c 67hz1: Process Times

84 implementation, experiments and comparison

5.7 discussion

In section 4.4.1 some theoretical estimations were made on memory usage
and computation time. The result of the implementation should reflect that.

5.7.1 Memory usage

As expected, the streaming approach uses more memory than the tiling
approach. With larger datasets, which will have a worse locality (having a
larger 2-dimension space converted to 1-dimension space to be able to store
it as a file). As the streaming approach is dependent on the locality, large
datasets will quickly fill up the main memory and eventually it needs to
store the tiles temporary on the hard disk when the main memory is full.

The tiling approach stores all the temporary tiles on the hard disk and
has therefore a lower main memory consumption.

5.7.2 Computation time

As discussed in section 4.4.1, the first stage in the tiling approach (e.g. tiling
and segmentation) should be a slower process than the streaming approach
(e.g. reading the input file multiple times and output the tiles without writ-
ing temporary files on the hard disk). This is also reflected in practice, as
table 5.10 shows that the first stage in the tiling approach takes 20.6 + 17.332

seconds to create the tiles and load them when the dataset is split up into
64 collections. The streaming approach is able to do that in 14.03 seconds
(Table 5.12).

The second stage, i.e. the actual MAT computation, should be in favour
of the buffer approach (section 4.4.1). As the tiling approach uses regular
buffers and streaming uses reduced buffers, not all results can be compared
to see differences with the use of regular buffers and reduced buffers. The
tiling approach has the possibility to create large collections, while stream-
ing approach will create small collections. There are 16 of these small collec-
tions in the 800 x 800 m dataset, and 64 in the 1600 x 1600 m. They consist
out of the same collections as the tiling approach, when using 16 and 64 col-
lections respectively. Therefore the relative computation time of both buffer
methods can be compared using these values. Figure 5.7, shows the com-
putations for both the regular buffer and reduced buffer using data from
Tables 5.9, 5.10, 5.11 and 5.12. It shows that although the reduced buffers
have lower kd-tree building times, the MAT computation time is much larger
compared to the regular buffers.

The lower kd-tree building times are caused due to that reduced buffers
remove tiles during the process, therefore collections will have less tiles.
Thus the kd-tree will get smaller and faster to build. However, to be able
to remove tiles, more processing has to take place; the MAT will be also
computed for buffer tiles and checks have to take place to see if they are
final or not. This will make the MAT computation slower.

As the streaming approach using reduced buffers performs worse than
the tiling approach in terms of computation time and memory usage, it was
not applied on the larger datasets.

5.8 summary 85

5.7.3 tiling approach on larger datasets

Figure 5.4 and 5.5 shows that the memory usage drop exponentially while
the computation time rises linearly with increasing collections. As such
it would seem wise to just create more collections, to reduce the memory
usage. However, there is not much difference in memory usage when 800

collections are made or 150, while the processing time does increase when
more collections are used. This is because points in a geographical datasets
are not homogeneously spread. Furthermore the 800 collections are not
obtained by segmentation, but by using all the tiles individually together
with a buffer. Of these 800 tiles, probably just a few have a high amount of
points (a higher point density). If the collection with the largest amount of
points can be found, this should be the threshold kmax for when the actual
segmentation is performed on the dataset. This will ensure that the all the
collections will have a similar small amount of points (minimal memory
usage) and relative fast processing time. The focus lies on the memory part,
as that is the one which drops exponentially, so more advantages can be
obtained from it.

0

500

1000

1500

2000

2500

3000

streaming tiling streaming

]s[e
miT noitatup

moC

Regular vs Reduced Buffers (computation time)

KD-tree MAT Computation

tiling

Rotterdam Puntenwolk
800 x 800 m

Rotterdam Puntenwolk
1600 x 1600 m

Figure 5.7: Computation times using regular buffers and reduced buffers

5.8 summary
Out of the three presented segmentation methods none was the best in every
occasion (see Figure 5.1). The Optimized KD-Tree implementation did per-
form the best in cases where there were smaller sized collections. The KD
methods in general were not always computable on smaller sized collections
when the Quadtree implementation was.

In general the test results has shown that the tiling approach outperforms
the streaming approach in computation time as well as main memory usage.
The streaming approach does use less external memory (on small datasets).
However, as the possible output MAT is larger than temporary tiles stored by
the tiling approach, the temporary external memory usage is less important.

In section 4.4 it was discussed that the streaming approach would be
faster in creating collections compared to the tiling approach and that the

86 implementation, experiments and comparison

reduced buffer method should be slower than the regular buffer method.
Section 5.6.1 shows that this is indeed true, as the tiling approach needs
to write the tiles and then load tiles from the hard disk, it is slower than
the streaming approach, which stores tiles in the faster main memory. The
streaming approach does seem to be significantly slower as well.

While transferring data through a pipeline from program to program
(done by the streaming method) is much faster than reading and writing
from the external memory (done by tiling). These differences are negligi-
ble compared to the computation time of the shrinking ball algorithm. For
instance in the medium sized rotterdam dataset, the creation of tiles takes
20.6 seconds, the segmentation took 0.1 second and the loading of collec-
tions in the worst case 17 seconds. The streaming method is able to transfer
the data in binary in 14 seconds. However these differences are quite small
compared to the MAT compute time of 1754.7 seconds.

6 CONCLUS ION , D ISCUSS ION AND
FUTURE WORK

Using the methodology and implementations presented in this thesis it was
possible to compute the MAT using the shrinking ball algorithm on massive
datasets. In chapter 5 the 2 basic scaling methods were implemented and
compared to each other. In section 6.1 conclusions are drawn from these
experiments. However both methods do have their limitations, these will
be discussed and several recommendations can be made for future research
6.2.

6.1 conclusions
In the search for a memory efficient way to compute the MAT for large
datasets several sub-questions have been answered.

What are the challenges in scaling the 3D medial axis using the shrinking ball algo-
rithm?

In the computation of the MAT using the shrinking ball algorithm a cer-
tain starting radius should be chosen. This will be the maximum size of an
object you can detect. This start radius can be used to create buffers for each
subset, as no other points outside of the dataset + buffer can be of influence
on the MAT result.

An advantage of the MAT using the shrinking ball algorithm is that the com-
puted medial points of coordinates are independent on the results of other
medial points. They only rely on the normal vectors of the computed co-
ordinate and the surrounding points. As such, using a divide-and-conquer
method will not introduce merging problems when the MAT computed us-
ing collections with buffers.

Predicting which coordinates are not needed in the buffer to compute the
MAT for a tile is difficult. Based on whether the radius of a certain MAT
crosses the boundary of a tile has been proven not to be reliable enough.
Therefore the thinned reduced buffer will not work.

How to design and implement several methods for scaling the shrinking ball al-
gorithm?

Using the conclusions of the previous sub-question essentially different 2

methods can be created:

• Tiling method (D&C)
The dataset is subdivided in to minimum sized tiles (based on the
buffer size) and stored on the hard disk. From there collections in-

87

88 conclusion, discussion and future work

cluding buffers are made based on a quadtree/kdtree/grid. For each
individual collection MAT is then computed.

• Streaming method Instead of relying heavily on hard space, the stream-
ing method reads the complete dataset multiple times while comput-
ing the MAT on the fly.

How do the methods compare to each other?
In terms of memory usage, computation time and output quality.

The output of both methods are not the same. Some points in the orig-
inal dataset might be classified as noise or not depending on the chosen
method. Without noise reduction the output should be the same.

In general the tiling method outperforms the streaming method in both
computation time and main memory usage.

• The streaming method stores tiles in the main memory, till its sur-
rounding tiles have arrived. Therefore it will use up more main mem-
ory.

• While the tiling method makes more use of temporal secondary drive
storage, the MAT will eventually take about the same space.

• The tiling, segmentation and reading processes take longer than the
streaming process, however the differences are relatively small com-
pared to the whole process of computing the MAT.

Conclusions specific to tiling method:

• Using the tiling method the computation time becomes longer when
more small sized collections are created instead of less large sized col-
lections. This is mostly due to building up a kd-tree. As having more
collections means that there are more buffer tiles as well, although the
MAT is not computed for them, they are used in the building of the
kd-tree.

• The computation time grows linearly with the amount of collections,
while the memory usage decreases exponentially with the amount of
collections. Therefore it is more advantageous to compute many small
sized collections of similar size.

• In the top-down segmentation method to create collections during
tiling process there is no best separator, the space-driven (quadtree
based) method ensures that it will work more often, while the data-
driven (optimized kd-tree based) method clearly gives better results
when smaller sized collections are made

Conclusions specific to the streaming method (in the current stage):

• The streaming method has large MAT computation times, this is be-
cause most tiles are computed multiple times. And several checks are
performed to determine whether the MAT computed are final.

• The streaming method minimizes secondary drive writes, however,
with larger datasets, the secondary spatial coherence (locality) becomes
worse and temporary storage will be needed.

6.2 discussion 89

• The streaming method can not be used to its full potential yet (see
Discussion).

How can the 3D medial axis point approximation using the shrinking ball algorithm
be scaled in a memory efficient way for a large dataset which does not fit in the in-
ternal memory?

Based on this research, creating the MAT using the shrinking ball algorithm
should be performed using the tiling method with the segmentation method
based on the optimized KD-tree by making many similar small sized collec-
tions with buffers. However, if the reduced buffer method could be im-
proved, the streaming method could be optimized which will improve the
memory usage as well as computation speed.

6.2 discussion
The use of 32-bit float reduces the amount main memory usage during the
processes. As the AHN3 has subdecimeter precision, the 32-bit float rep-
resentation can only contain values between -9999.99 and 9999.99 without
the loss of precision. When larger datasets are inserted with similar point
precision, the use of 32-bit float will cause precision errors. Two solutions
could be useful:

• Make use of double precision
Higher precision values can be used, however, it cost twice as much
memory

• Use a local reference system per collection
Instead of using a local reference system for the whole dataset, create
one per collection. Do note that if collections differ in size a lot, it can
have differences in precision.

The shrinking ball algorithm makes use of a KD-tree to query nearest neigh-
bour searches. However deletion and insertion in the KD-tree is a time
consuming process as the whole tree might need to be rebuilt at every step,
another spatial index could perform better (space driven index e.g. octree).

While the Streaming method does not seem to perform very well. This
is because the shrinking ball algorithm is not well suited for it (yet). In Sec-
tion 2.6.2, the four requirements in the use for a streaming algorithm are
mentioned. Memory usage however, is not very well implemented. If the
thinned reduced buffer method from Section 3.5 worked, then each subset
piped from the streaming algorithm could be instantly processed instead of
waiting for it neighbours to arrive. MAT’s which are finalized could be writ-
ten away and the corresponding points can be omitted from the memory.

Both the streaming and tiling methods make use of the same de-noising
method (see Section 2.4.3). This is because the de-noising method is embed-
ded in the shrinking ball algorithm algorithm itself (not the scaling). How-
ever, the outputs differ in how they handle noisy points, this means that the
de-noising works differently depending on the sequence of data that comes
in. The tiling method loads all the points at once, while the streaming al-
gorithm can compute subsets multiple times and compute subsets without
finalizing MAT’s.

90 conclusion, discussion and future work

6.3 future work

6.3.1 Improving the streaming approach

At the current state the tiling method seems to outperform the streaming
method. However, some optimizations could be made to make the stream-
ing method perform better in computation time as well as memory usage.

• The reduced buffer method could be extended, in section 3.4 an at-
tempt is made to use the domain decomposition lemma on point-
clouds. On its own it does not perform all the time, however some
with some additions it might be possible to determine which coordi-
nates are needed for other tiles. If this works, less coordinates have to
be stored in the main memory by the streaming method and possibly
slightly reduce computation time as well. Some suggestions on what
might produce better results:

– Make sure edges remain in the dataset, in figure 3.17 it is shown
that edges do not really have a discrete normal vector. Although
it could be seen as a range of normal vectors. This also means
that many other points need these edges.

– leave a random thinned set of points, as the pointclouds are get-
ting higher point density, leaving out a few points will not affect
the results badly.

• While the optimization of the computation of the normal vector is
out of scope, it should be improved in the streaming approach us-
ing reduced buffers. To compute the MAT the normal vector should
be known a priori. However, in the streaming approach, the MAT is
also computed for the buffers. Yet the normal vectors cannot be cor-
rectly computed for the buffer tiles, as points on the boundary of the
buffer might need points from the neighbouring tiles to compute the
normals.

6.3.2 Improving the tiling approach

• To reduce the hard disk usage during the computation of the MAT the
normals could be computed between the segmentation and computa-
tion of the MAT.

• The collections are made using a ”top down” segmentation method,
while it is suited for subdividing a 2D/3D pointcloud into square
boxes. A ”bottom up” segmentation method might lead to more ho-
mogeneous segments.

• If the reduced buffer with removal of points (i.e. thinned reduced
buffer) proves to be effective by applying the previous mentioned al-
terations (or by any other means), this method could also be applied
on the tiling method. 1.

1 It has already been implemented in the segmentation stage, the MAT computation level should
be adjusted to work with it

B IBL IOGRAPHY

Agarwal, P. K., Arge, L., and Danner, A. (2006). From point cloud to grid
dem: A scalable approach 1. In Progress in Spatial Data Handling—12th
International Symposium on Spatial Data Handling. Springer.

Amenta, N., Choi, S., and Kolluri, R. K. (2001). The power crust. Proceedings
of 6th ACM Symposium on Solid Modeling, pages 249–260.

ASPRS (2013). Las specification version 1.4 - R13. ASPRS.

Bentley, J. L. (1975). Multidimensional binary search trees used for associa-
tive searching. Communications of the ACM, 18(9):509–517.

Berger, M. and Silva, C. T. (2012). Medial kernels. Computer Graphics Forum.

Blum, H. (1967). A transformation for extracting new descriptors of shape.
Models for the Perception of Speech and Visual Form.

Blum, H. (1973). Biological shape and visual science (part I). Journal of
Theoretical Biology.

Choi, H. I., Choi, S. W., and Moon, H. P. (1997). Mathematical theory of
medial axis transform. pacific journal of mathematics, 181(1).

Constantin, C., Brown, S., and J., S. (2010). Implementing streaming simpli-
fication for large labeled meshes. In Proceedings Algorithm Engineering
and Experiments.

Danner, A. (2007). I/O Efficient Algorithms and Applications in Geographic In-
formation Systems. PhD thesis, Department of Computer Science Duke
University.

Dasgupta, S., Papadimitriou, C. H., and Vazirani, U. (2006). Algorithms.

Dey, T., J Diesen, J., and Hudson, J. (2001). Decimating samples for mesh
simplification. Proc. 13th Canadian Conf. Comput. Geom.

ESRI (2012). knowledge base - gis dictionary. Online article.

Finkel, R. A. and Bentley, J. L. (1974). Quad trees: A data structure for
retrieval on composite keys. Acta Inf., 4:1–9.

Friedman, J. H., Bentley, J. L., and Finkel, R. A. (1977). An algorithm for
finding best matches in logarithmic expected time. ACM Transactions
on Mathematical Software.

Grsoy, H. N. (1989). Shape interrogation by medial axis transform for automated
analysis. Phd paper, Massachusetts Institute of Technology.

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. (1992).
Surface reconstruction from unorganized points. SIGGRAPH Comput.
Graph., 26(2):71–78.

Hoving, D. (2012). De 7 hoogste constructies van nederland. Online article.

91

92 BIBLIOGRAPHY

IEEE Computer Society (2008). IEEE Standard for Floating-Point Arithmetic.
IEEE Computer Society.

Isenburg, M., Liu, Y., Shewchuk, J., and Snoeyink, J. (2006a). Streaming
computation of delaunay triangulations. ACM Transactions on graphics
25.

Isenburg, M., Liu, Y., Shewchuk, J., Snoeyink, J., and Thirion, T. (2006b).
Generating raster dem from mass points via tin streaming. In Geographic
Information Science—GIScience 2006.

Jagadish, H. V. (1990). Linear clustering of objects with multiple attributes.
ACM SIGMOD Conf.

Jalba, A. C., Kustra, J., and Telea, A. (2013). Surface and curve skeletoniza-
tion of large 3d models on the gpu. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on.

Lindenbergh, R. C. (2014). Pattern recognition and classification. Lecture
slides course Geo-signal analysis, Dept. of Geoscience & Remote Sens-
ing TU Delft Netherlands.

Liu, L. (2011). Multi-Dimensional Medial Geometry: Formulation, Computation,
and Applications. PhD thesis, Washington University in St. Louis.

Ma, J. (2012). 3d medial axis point approximation using nearest neighbors
and the normal field. VC.

Morton, G. M. (1966). A computer oriented geodetic data base; and a new
technique in file sequencing. Technical report, IBM.

Nodine, M. H. (1992). Minimizing the Input/Output Bottleneck. PhD thesis,
Brown University.

Peters, R. (2014a). Feature aware Digital Surface Model analysis and generaliza-
tion based on the 3D Medial Axis Transform; PhD Research Proposal. PhD
thesis, TU Delft: Delft University of Technology.

Peters, R. (2014b). Towards medial axis-based point cloud simplification for
lidar point clouds.

Peters, R. (2015). Point clouds: 3d medial axis transform. Presented at
Geomatics Synthesis Project Symposium: Point Clouds 2015.

Peters, R., Ledoux, H., and Biljecki, F. (2015). Visibility analysis in a point
cloud based on the medial axis transform. In Eurographics Workshop on
Urban Data Modelling and Visualisation. Eurographics Association.

Philbrick, O., Cheng, G., Lley, R., Pollock, D., and Rosenfeld, A. (1968).
Shape description with the medial axis transform. In Pictorial Pattern
Recognition. Thompson Book.

Prinz, F. B. (1988). Geometric abstractions using medial axis transformation.
Technical report, Geometric abstractions using medial axis transforma-
tion.

Reddy, J. and Turkiyyah, G. (1995). Computation of 3d skeletons using a
generalized delaunay triangulation technique. Computer-Aided Design.

Rijkswaterstaat (2014). Het ahn.

BIBLIOGRAPHY 93

Rijkswaterstaat (2015). Ahn3 voor iedereen online
beschikbaar (ahn3 for everybody online available).
http://www.ahn.nl/nieuws/2015/september-2015/ahn3-voor-
iedereen-online-beschikbaar.html.

Sack, J.-R. and Urrutia, J. (2000). Handbook of Computational Geometry. Else-
vier.

Samet, H. (1995). Spatial data structures. In Kim, W., editor, Modern Database
Systems, pages 361–385. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA.

Shakhnarovich, G., Darrell, T., and Indyk, P. (2006). Nearest-Neighbors meth-
ods in Learning and Vision: Theory and Practice, chapter Introduction,
page 3. MIT Press.

Shamos, M. and Hoey, D. (1975). Closest-point problems. IEEE Symposium
on Foundations of Computer Science.

Sherbrooke, E. C., Patrikalakis, N. M., and Brisson, E. (1995). Computa-
tion of the medial axis transform of 3d polyhedral. Symposium on Solid
Modeling and Applications.

Silvia, C., Chiang, Y., Corra, W., El-sana, J., and Lindstrom, P. (2002). Out-of-
core algorithms for scientific visualivisual and computer graphics. In
Visualization’02 Course Notes.

Tam, R. and Heidrich, W. (2003). Shape simplification based on the medial
axis transform. VIS ’03 roceedings of the 14th IEEE Visualization 2003,
page 63.

Vitter, J. S. (2007). External memory algorithms and data structures: Dealing
with massive data. ACM Computer Sureys.

Wu, H., Guan, X., and Gong, J. (2011). Parastream: A parallel streaming
delaunay triangulation algorithm for lidar points on multicore architec-
tures. Computers & Geosciences.

A TH INNED REDUCED BUFFER
RESULTS

Figure A.1 displays the original dataset as well as the preprocessed dataset
which will be compared to each other in order to find outliers. The prepro-
cessed dataset has clearly fewer points in the tiles on the left side, it has
been reduced in size by half. Further more some objects have been removed
as well.

(a) (b)

Figure A.1: (a) Original dataset (b) Preprocessed dataset

(a) (b)

Figure A.2: Deviation of medial axis transform radius between the original dataset
and the preprocessed dataset (a) Inner medial axis radius deviation (b)
Outer medial axis radius deviation

95

96 thinned reduced buffer results

When both of the mentioned datasets are processed some deviations in
their MAT have been detected (see Figure A.2). The inner MAT seems to
give good results, there are few deviations and the deviations themselves
are quite small. The outer medial axis transform show much larger devia-
tions, their radius deviates up to 7 meters. The reason for this is that the
chance that a point computation actually needs another point from outside
the boundary is much larger with the outer medial axis transform.

a.0.3 Thin objects

One of the reasons for large deviations is that thin objects disappear. These
objects are a planar set of points with a width of just one point. Observe
the first case in Figure A.3, it displays partially 2 neighbouring sets of point
clouds. The red dashed line represents the border between them, the pi the
”to be computed” point, the qo is the original” point to which the MAT is
formed (e.g. in the original dataset), the qt is the ”actual” point to which
the MAT is formed (e.g. in the thinned dataset).

(a)

(b)

Figure A.3: (a) Front view (b) Top view

(a) shows at the left set a tree, marked by the red rectangle. In the original
dataset it is present, however, in the preprocessed dataset it was removed.
As a result qo to which the pi should form the MAT is also gone. The MAT
is therefore created with the qt.

Another case of incorrect normal computation is when points are very
close each other. While the object has a width of more than just 1 point, the
proximity of the points in the width is so small that errors occur. Observe

thinned reduced buffer results 97

Figure A.4, it displays a short wall with qo and its normal vector highlighted.
As a result of the formation of neighbouring points the normal vector is
different than one would expect. This is caused by the short width of this
wall. Because of this, the wall disappears during the preprocessing.

Figure A.4

98 thinned reduced buffer results

(a)

(b)

Figure A.5: (a) Front view (b) Top view

B EXTRA IMPLEMENTAT ION
RESULTS

Process # Main Tile # Max memory [MB]

1 21 497,319936

2 20 585,859072

3 23 582,144

4 22 719,93344

5 29 559,468544

6 28 613,482496

7 31 444,100608

8 53 642,510848

9 55 790,102016

10 61 916,811776

11 63 703,873024

12 60 1099,747328

13 62 835,260416

14 17 782,942208

15 16 859,623424

16 5 872,558592

17 19 807,366656

18 25 785,825792

19 18 766,980096

20 7 905,224192

21 24 719,937536

22 13 827,707392

23 4 800,309248

24 0 823,72608

25 1 774,750208

26 6 794,15296

27 2 799,1296

28 3 774,029312

29 12 816,61952

30 8 786,112512

31 9 742,125568

32 10 984,600576

33 11 1032,35584

34 32 1088,524288

35 33 1276,903424

36 34 1045,643264

37 35 1202,753536

38 44 1242,29632

39 46 926,06464

40 40 718,143488

41 41 774,701056

42 43 587,42784

99

100 extra implementation results

43 42 470,929408

44 14 704,282624

45 36 772,132864

46 38 709,943296

47 15 584,871936

48 37 675,92192

49 26 548,94592

50 48 786,624512

51 27 571,199488

52 30 547,360768

53 52 711,135232

54 54 731,648

55 49 586,715136

56 39 668,504064

57 45 976,994304

58 47 761,532416

59 50 548,12672

60 58 775,96672

61 51 425,586688

62 57 439,23456

63 59 376,025088

64 56 151,298048

Table B.1: Maximum memory usage for several sizes collections (1600 x 1600 m)

C REFLECT ION

The MAT is an alternative representation of geographical entities as massive
pointcloud. It is retrieved by converting (manipulating) a outer boundary
representing pointcloud. Two approaches for computing the MAT for large
pointclouds using the shrinking ball algorithm were proposed in this thesis.
The tiling approach however, proved to be the most efficient. The research
was conducted from November 2014 to January 2015. The initial planning
timeslots for literature research, studying of the existing algorithms, imple-
mentation of the approaches and comparison of them. In a later stadium, I
decided to partly switch from the use of the python programming language
to C++ as it would improve the processing time for the scaling approaches.
Looping over large volumes of data tends to be faster in C++. However, this
involved learning a new programming language took much time as well.
The research period was extended to include further experiments, analysis
and writing the report.

The methodical line of approach in Geomatics involves data capture, stor-
age, analysis and visualization, along with quality control. As the datasets
used were already available, there was no need to do it myself. Both scal-
ing implementations had to deal with storage of the large datasets either
temporary in on hard disk or in the memory, in such a way that it easy to
use during the process. But to get to the approaches, the effects of scaling
the shrinking ball algorithm on a pointcloud had to be analysed. Not all
methods (buffers) turned out to be usable, as geographical pointclouds do
have their flaws (i.e. points not homogeneously spread and noise). Quality
control for both implementations took place in sense of memory usage and
processing time.

Many applications and analysis are performed on the massive pointclouds
representing the outer boundaries of geographic entities. However, the MAT

enables faster and more intuitive methods for certain analysis and applica-
tions (i.e. analysing shape characteristics, retrieving thickness information
and pointcloud simplification). By scaling the MAT, these possibilities can
also be performed on massive pointclouds.

The final result are implementations of the tiling and streaming approach,
they were optimized to be used on geographical pointclouds. While the
tiling approach is currently the most efficient one, the streaming approach
has many opportunities to be improved.

101

colophon
This document was typeset using LATEX. The document layout was gen-
erated using the arsclassica package by Lorenzo Pantieri, which is an
adaption of the original classicthesis package from Andr Miede.

	1 Introduction
	1.1 Datasets
	1.2 Research objectives
	1.3 Workflow
	1.4 Scope
	1.5 Outline

	2 Background information and Related work
	2.1 Spatial data structures
	2.2 Medial Axis Transform
	2.3 Applications of MAT
	2.4 computation of the MAT
	2.5 Memory Hierarchy
	2.6 Strategies for scaling GIS algorithms

	3 Computing buffers for the Medial Axis Transform
	3.1 Time and Memory complexity
	3.2 Challenges of processing smaller datasets
	3.3 Regular Buffer
	3.4 Reduced buffer
	3.5 Thinned reduced buffer
	3.6 Summary

	4 Scaling the medial axis transform
	4.1 Approach: Tiling algorithms
	4.2 Approach: Streaming algorithm
	4.3 Merging the output
	4.4 Differences between approaches
	4.5 summary

	5 Implementation, experiments and comparison
	5.1 Implementation
	5.2 Datasets
	5.3 data quality
	5.4 External memory usage
	5.5 Internal memory usage
	5.6 Computation time
	5.7 Discussion
	5.8 Summary

	6 Conclusion, discussion and future work
	6.1 conclusions
	6.2 discussion
	6.3 Future Work

	A thinned reduced buffer results
	B Extra implementation results
	C Reflection

