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Abstract

Abstract

One of the most commonly used seismic analysis methods, over the last few decades is the equivalent lateral
force method. This procedure, which was initially intended for elastic design of structures, has been extended
to inelastic design, with the incorporation of the behaviour factor q or with the integration of response spec-
trum procedures with non-linear static pushover analysis. The behaviour factor, which is meant to reduce the
elastic forces, depends on the ductility capacity of each structure. However, the connection between the ductil-
ity ratio and the behaviour factor has been approximated by employing an elastic-perfectly plastic hysteretic
system, which is a very simplistic form of inelastic behaviour. Meanwhile, the last decades, a number of non-
linear effects, that develop during the cyclic loading of an earthquake on different types of structures have
been identified. The influence of those effects on the response of single degree of freedom (SDoF) systems
subjected to seismic load has been recognized by various authors.

The purpose of this work is to enhance the understanding of the impact of various typically observed effects on
the seismic response of structures. Models that incorporate the effects of strength hardening, stiffness degra-
dation, strength deterioration and pinching are examined and their response is compared to the response of
the elastic-perfectly plastic system. The non-linear models are subjected to an ensemble of 167 earthquake
ground motions, which is divided into eight different groups according to the magnitude of the earthquake, the
significant duration, the soil conditions while one more group consists of signals similar to the ground motions
of the area of Groningen. The response measures that are examined have been selected through an extensive
investigation of various damage indices and measures proposed in the literature. Through this investigation, it
is concluded that the measures of the maximum displacement response, the residual displacement, the total
hysteretic energy, the total dissipated by viscous damping energy and the total input energy are sufficient to
describe the response of a structure subjected to seismic load.

The results of this investigation showed that these non-linear effects influence more the response of the sys-
tems with short eigen-period. The effect that seems to affect the most the response is the pinching effect.
Additionally, it is shown that there is high dependency between the frequency content and the deviations of
the response calculated by the models that incorporate this non-linear effects and the response calculated by
elastoplastic model.
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1 Introduction

Nowadays, the seismic design of a structure can be performed through several different methods. Among
them, the most commonly used in the design codes, are the equivalent lateral force analysis, the modal re-
sponse spectrum analysis and the time history analysis (Eurocode 8; NEHRP 2009). Despite the fact that the
last metho is more sophisticated, the most popular ones are the equivalent lateral force analysis and the modal
response spectrum analysis. There are mainly two reasons for this. Firstly, these methods are meant for regular
structures, that can be well represented by single degree of freedom systems; and indeed, the majority of
structures around the world can be classified as regular. Secondly, they are very simple methods based on
response spectra, which are used for decades.

The response spectrum method is based on the fact that the dynamic load of an earthquake is treated as static
lateral load distributed along the height of the structure according to the fundamental mode of vibration of the
structure. Initially, this method was developed for elastic design of structures. However, with the introduction
of the inelastic design spectra it has been extended to structures which are expected to respond inelastically to
the design earthquake (Kappos 1998). The inelastic design spectra are constructed based on the reduction of
the ordinates of the elastic design spectra by a behaviour factor (q). The behaviour factor is linked to the con-
cept of ductility capacity:L of a structural system, through relationships that are defined by assuming that the
inelastic behaviour of structures can be represented by elastic-perfectly plastic hysteretic models (Bozorgnia &
Campbell 2004; Bojérquez & Ruiz 2004; Akkar 2014).

However, several authors (Park et al. 1988; Reinhorn et al. 1988; Kunnath et al. 1990; Sivaselvan & Reinhorn
1999; Sivaselvan & Reinhorn 2000; Ibarra et al. 2005; Sivaselvan 2013; Kottari et al. 2014) through laboratory
tests have proved that the behaviour of structural systems subjected to cyclic lateral load deviates from the
behaviour of elastic-perfectly plastic model. This observation triggered the motivation of this study to examine
guantitatively the degree that the response of a structure subjected to ground motion would change if instead
of the simplistic elastoplastic model, a more advanced model that accounts for several non-linear effects would
have been used.

It is a fact that a lot of earlier studies (Rahnama & Krawinkler 1993; Sashi K Kunnath et al. 1997; Oh et al. 2000;
Oh et al. 2000; Sivaselvan & Reinhorn 2000; Naeim et al. 2000; Ruiz-Garcia & Miranda 2003; Medina &
Krawinkler 2004; Rodgers, Janise E.; Mahin 2004; FEMA P440A 2009) have already investigated these non-
linear effects. Nevertheless, all of them examined either the influence of only one of those effects, or the influ-
ence of all of these effects considering only the maximum inelastic displacement as a response measure. This is
done by determining the magnitude of the maximum inelastic displacement for models that account for the
non-linear effects and compare it with the magnitude of the maximum inelastic displacement of the elastic-
perfectly plastic model.

However, this study attempts to take the whole investigation one step further in five different ways. Firstly, by
employing a very advanced general hysteretic model developed by Ray and Reinhorn (2014). This model, which
combines characteristics of earlier models (Park et al. 1987; Sashi K Kunnath et al. 1997; Sivaselvan & Reinhorn
2000), has been proved to capture accurately the non-linear effects of ductile and brittle materials as well.
Secondly, by evaluating the level of the impact of the non-linear effects according to five different response
parameters; the maximum inelastic displacement, the residual displacement, the total dissipated hysteretic
energy, the total viscous dissipated energy and the total input energy. These choices are the result of an exten-
sive literature review of damage indices at an initial stage of this study.

Thirdly, by dividing the whole ensemble of 167 ground motions into eight different groups according to the
earthquake magnitude, the significant duration, the soil conditions and one group that consists of signals simi-
lar to the ground motions in Groningen. In this way, it can be observed, which type of ground motion charac-
teristics influence more each of the non-linear behaviours. Fourthly, by presenting the different types of re-
sponse in contour plots in respect of the yield force (Fy) and the initial elastic period. In addition to this diagram

! Ductility capacity is defined as the ratio between the ultimate displacement and the yield displacement of a structural
system, as they determined through monotonic test.
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a complementary diagram that presents the Fourier spectrum of the input motion is added, in order to exam-
ine also the influence of the signals in terms of their frequency content. Finally, in contrast with the previous
researchers who assume that the yield force of all the models is equal to the yield force of the elastoplastic
model, in this study it is assumed that the yield force of the elastoplastic model is equal to the maximum force
of the system that incorporates the non-linear behaviours. This concept is closer to the procedure that is fol-
lowed from the design codes to envelope the real force-displacement diagram. Therefore, the outcomes of this
study can be used for the improvement of the design procedures.

1.1 Study objectives

The primary objective of this study is to give a better insight of the influence of several non-linear effects on
the response of structural systems subjected to seismic loads. Secondary, objective is to evaluate these out-
comes for the Groningen case where the structures usually have short eigen-period and the signals have signif-
icantly different frequency content compared to the tectonic earthquakes.

These objectives are accomplished by following two different types of investigation:

1. Inthe first one, a single model was examined
1.1. The model is calibrated to fit the force-displacement curve of a pushover test of a masonry building
that represents the structures in Groningen.
1.2. The calibrated model is subjected to signals that represent the ground motions in Groningen and in
order to calculate the maximum force and displacement response.
1.3. The same structure under the same load is calculated by the response spectrum method and the re-
sults are compared
2. Inthe second one a sensitivity analysis was performed:
2.1. Through an extensive literature review of the proposed damage indices, the response measures that
can represent the behaviour of a structural system subjected to cyclic lateral load are identified.
2.2. An additional literature review reveals the non-linear effects that appear during the cyclic loading of a
structure.
2.3. An advanced hysteretic model that captures these effects is chosen and according to that several sys-
tems are modeled.
2.4. A careful selection of ground motions, to which the structural systems are subjected, took place.
2.5. The influence of the non-linear effects is examined, by comparing various forms of response of the
enhanced models to the more simplistic elastoplastic system.

1.2 Study scope

The scope of this study is to identify the sensitivity on the seismic response of various non-linear effects, of
models that already have been proposed in the literature. In this manner, no attempt is made for the develop-
ment of a new hysteric model or for the proposal of a new damage index. However, the author is confident
that the observations of this research can set the basis of the construction of new rules, regarding the predic-
tion of the response of inelastic systems.

Furthermore, this research focuses on single degree of freedom systems and therefore all the observations that
are drawn correspond to structures for which the fundamental mode of vibration dominates the dynamic re-
sponse of the system during earthquake excitation. There are two reasons for this choice. Firstly, a large num-
ber of simple structures in the real world can be reduced to single degree of freedom systems, with fair accura-
cy. Secondly, the investigation of multi degree of freedom systems, implies more than one natural periods,
each one corresponding to a different vibration mode. On top of that the degree of participation of each of
those modes should be taken into account as an additional parameter. Given the fact that the response of non-
linear single degree of freedom systems subjected to seismic load is rather complex, both on the implementa-
tion and the interpretation, the involvement of a larger number of natural periods may lead to ambiguous and
confusing results. In this respect, the results presented in this thesis must always be viewed in relation to sim-
ple structures or structures in which the dynamic response is dominated by a single mode of vibration
throughout the excitation.
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Additionally, the sensitivity analysis does not focus on one type of structures, but instead it attempts to en-
compass a broad spectrum of structural systems and materials. This means that the developed models are not
calibrated to real laboratory tests; but rather than that they refer to idealized structural systems which appear
two levels (a moderate and a high) of strength hardening, stiffness degradation, strength deterioration and
pinching. These predefined levels have been incorporated to show the trend of the deviations compared to the
elastic perfectly-plastic system. The later system is the basis of the current design codes.

1.3 Report structure

The report has been constructed in a way such that it presents the distinctive stages of the project. More spe-
cifically, the first chapter explains the conception of the study, the objectives that the author set and the scope
of the study

The second chapter, focuses on the description of the main effects that have been observed on various struc-
tural systems subjected to cyclic lateral load through laboratory tests. More precisely, the evolution of the
effects of strength hardening, stiffness degradation, strength deterioration and pinching is explained through a
sequence of figures. In addition, earlier findings of the response of systems that incorporate these effects are
included at the end of each paragraph.

In the third chapter, the development of the various models that are employed in this study is presented. First-
ly, a brief overview of the hysteretic models is given that have been proposed in the literature, along with the
general model that it is chosen in this particular study. This is followed by a description of the numerical meth-
od that has been applied and a more analytical presentation of the technics according to which the inelastic
effects are incorporated in the models.

The fourth chapter introduces the ensemble of the ground motions that have been used as external loads to
the single degree of freedom systems. Characteristics of the signals, including the magnitude, the peak ground
acceleration, the significant duration, the fault distance, the mechanism of the event etc., can be seen howev-
er, in the Appendix C.

In the fifth chapter, a very detailed overview of the damage indices is provided as developed by various authors
for structures subjected to seismic load. The damage indices have been classified into different categories,
according to the response parameter examined. The primary reason for this overview is to identify which re-
sponse parameters are sufficient to characterize the behaviour of a structure.

In the sixth chapter, the results of the analyses are presented and discussed. The significance of the non-linear
effects of strength hardening, stiffness degradation, strength deterioration and pinching are evaluated for the
response parameters chosen in the previous chapter. The results are presented in the form of contour plots
which illustrate the response of the elastoplastic systems normalized by the response of the advanced systems,
with respect to the yield force and the reference elastic period chosen.

Finally, in the seventh chapter, several conclusions are drawn and recommendations for future studies are
given.
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2 Seismic response of inelastic systems

2.1 Hysteresis

Hysteresis is a non-linear behaviour that is encountered in several physical phenomena (e.g. plasticity, electrici-
ty, inelasticity, friction, magnetism) and as a term appears in various disciplines (e.g. science, engineering,
chemistry, economics, biology and experimental psychology). According to Visintin (1994), hysteresis is charac-
terized by memory and it is rate independent (rate independent memory effect).

However, in nature the response of structural systems is never independent of the rate of the applied load.
Therefore, when the effect of the rate needs to be taken into account, viscosity is introduced. As a matter of
fact, typically in seismic response of structures both viscosity and hysteresis contribute to the overall energy
dissipated by the structure. Nevertheless, the viscous phenomena can be neglected and only hysteretic phe-
nomena are encountered when the load is applied at a very low rate. In structural engineering, hysteresis is a
phenomenological concept based on the fitting of experimental data and is usually depicted as a diagram of
the response parameter (f(x)) versus the input parameter (X) (Figure 2.1 (c)) (Charalampakis 2009).

2.2 Elastic-perfectly plastic behaviour

In the literature, most of the studies that examine the behaviour of non-linear systems subjected to seismic
load, assume that the cyclic response of the system can be described by an elastic-perfectly plastic model. This
means that the yield force and the stiffness of the system are considered constant throughout the entire load-
ing history, by being assigned to predefined values.

This behaviour can be captured by a simple non-degrading elastic-perfectly plastic hysteretic model (Figure
2.2). In such a model, the loading branch of the force-deformation diagram is linear elastic until the yield force
is reached. After the yield force is reached, the stiffness of the system becomes zero until the force becomes
smaller than the yield force. Regarding the unloading branch, its stiffness is equal to the (initial) stiffness of the
loading branch. Despite its simplicity, such an assumption deviates from reality as it has been proven in exper-
imental studies (Goel & El-tayem 1987; Venti & Engelhardt 1999; Elwood & Moehle 2003; Uriz & Mahin 2004;
Liu & Astaneh-asl 2004).

Various studies (Park et al. 1988; Reinhorn et al. 1988; Kunnath et al. 1990; Sivaselvan & Reinhorn 1999;
Sivaselvan & Reinhorn 2000; Ibarra et al. 2005; Sivaselvan 2013; Kottari et al. 2014) have already observed
more complicated behaviour in different materials and structural systems. These studies argue that the behav-
iour of a structural system can be captured more accurately when a hysteretic model incorporates the effects
of strength hardening, stiffness degradation, strength deterioration and pinching. In the following paragraphs,
these effects are explained and results of earlier studies which examined their influence on the maximum dis-
placement are discussed.

(a)
Ax(t) (c)

/\/\/\/\/\A/ _—
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Figure 2.1. Hysteretic behaviour. (a) Input time history x(t), (b) response time history f(t), (c) hysteretic response diagram.
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Figure 2.2. Elastic-perfectly plastic hysteretic loop. Figure 2.3. Hysteretic loop with strength hardening (bilinear).

2.3 Strength hardening

As explained above, the elastic-perfectly-plastic behaviour is a rough approximation of the real inelastic behav-
iour of structures subjected to lateral cyclic loading. It has been observed that the strength of many materials,
structural elements and structural systems, does not remain constant after the yield force is exceeded; but
instead it keeps increasing with a different rate, possessing some kind of strength hardening.

On material level, this phenomenon is called strain hardening. This is because in several non-brittle materials
(e.g. metals and polymers) the strength is increasing, when after yielding they are subjected to large strain
levels (Degarmo et al. 2003; Van Melick et al. 2003). On the structural element level, strength hardening occurs
due to delayed mobilization of the entire cross-section after yielding (FEMA P440A 2009). On the structural
system level, strength hardening is a result of the sequential yield of all the individual elements that compose
the structural system (FEMA P440A 2009).

In the force displacement diagram, the strength hardening is represented by incorporating a positive post-yield
stiffness (Figure 2.3). In the literature, very often, the post-yield stiffness is given as a ratio (stiffness ratio) of
the initial elastic stiffness of the system. When the stiffness ratio is unity the post-yield stiffness is equal to the
initial elastic stiffness and practically the system remains elastic. On the other hand, when the stiffness ratio is
zero the post-yield stiffness is zero and the bilinear model yields to the elastic-perfectly plastic model (Figure
2.2).

Ruiz-Garcia and Miranda (2003) investigated the influence of the strength hardening by comparing the maxi-
mum inelastic displacement of elastic-perfectly plastic systems to the one of bilinear systems with varying post-
yield stiffness. They concluded that the maximum inelastic displacement is in general smaller for bilinear sys-
tems. This decrease becomes more apparent on systems with short structural period. The same authors (Jorge
Ruiz-Garcia & Miranda 2006) examined the effect of the strength hardening on the residual displacements. The
conclusion of this study is that the residual displacement (as response parameter) is more sensitive to the
strength hardening, compared to the maximum inelastic displacement.

2.4 Stiffness degradation

Stiffness degradation is a phenomenon usually observed in structural elements or systems which are subjected
to cyclic lateral load. It has been shown to occur due to geometric non-linear effects and it becomes more se-
vere with increasing deformations (Kunnath et al. 1990). The effect of this phenomenon becomes stronger
when a structure is subjected to several large load reversals. The main cause of stiffness degradation in steel
elements is fatigue (Whitworth 1998), while in reinforced concrete elements stiffness degrades due to crack-
ing, loss of bond or interaction with high shear or axial stresses (FEMA P440A 2009).

Park et al. (1988) have suggested an empirical rule that predicts accurately the stiffness degradation of a sys-
tem. According to this rule, the unloading branch of the force-displacement diagram targets a pivot point on
the extrapolated branch of the initial elastic stiffness at a distance aF, on the force axis, of the opposite side.
Fy represents the yield force of the system and ais a parameter that controls the level of stiffness degradation.

10
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Figure 2.4. Evolution of stiffness degradation of a reinforced concrete column element subjected to cyclic lateral load.

When ais small the stiffness degradation effect is large and when a is very large (>200) there is almost no stiff-
ness degradation.
The effect of stiffness degradation of a reinforced concrete column element is illustrated in the Figure 2.4. In
this figure, it can be seen that larger displacement (further to the yield point), leads to higher stiffness degrada-
tion. Through geometry, Sivaselvan & Reinhorn (2000) defined the stiffness degradation factor R, according to
which the magnitude of the decreased stiffness of the unloading branch can be determined. In the formula that
these authors proposed (Eq. (2.1)) F; and X; are the force and the displacement respectively at the it step of
the loading time history and Ky is the initial elastic stiffness of the system. Most of the advanced hysteretic
models implement this simple rule to capture the stiffness degradation effect of a structural system.
_ R+aR,

R—K%+aﬁ (2.2)
Various studies have been conducted (Rahnama & Krawinkler 1993; Oh et al. 2000; Naeim et al. 2000; Medina
& Krawinkler 2004; Rodgers, Janise E.; Mahin 2004; FEMA P440A 2009) for the evaluation of the effects of
stiffness degradation by comparing the maximum displacement of stiffness degrading systems to the maximum
displacement of elastoplastic and bilinear systems. These studies have concluded that moderate and long peri-
od single degree of freedom degrading systems lead to maximum displacements similar to the elastoplastic and
bilinear system. On the other hand, the maximum displacements of short period single degree of freedom
degrading systems, are larger than the one experienced by elastoplastic and bilinear systems.

2.5 Strength deterioration

Strength deterioration refers to the reduction of the lateral strength of a structure that is subjected to cyclic
lateral load. In some hysteretic models this reduction of strength is expressed as a function of the maximum
displacement of each cycle (Rahnama & Krawinkler 1993), while in others as a function of the dissipated hys-
teretic energy (Park et al. 1988; Rahnama & Krawinkler 1993). As a result, models which are based on the for-
mer rule experience reduction of strength after the end of each cycle (cyclic strength deterioration), whereas
models that are based on the latter rule experience strength reduction after each time step (in-cycle strength
deterioration). However, most real-life structural systems experience the strength deterioration as a combina-
tion of the aforementioned mechanisms. This behaviour has been recognised by various authors
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Figure 2.5. Evolution of cyclic strength deterioration of reinforced concrete column element subjected to cyclic lateral load.
Level of yield strength: (a) at the initial stage, (b) after the first loading cycle, (c) after the second loading cycle and (d) after
the third cyclic load.

(Park & Ang 1985; Reinhorn et al. 1988; Rahnama & Krawinkler 1993; Sivaselvan & Reinhorn 1999; Sivaselvan &
Reinhorn 2000; Medina & Krawinkler 2004; Sivaselvan 2013; Kottari et al. 2014) who developed strength dete-
rioration hysteretic models that incorporate both effects.

In the Figure 2.5, the initial yield strength of a reinforced concrete column element is illustrated (Figure 2.5 (a)),
along with the level of strength deterioration experienced during the first (Figure 2.5 (b)), the second (Figure
2.5 (c)) and the third (Figure 2.5 (d)) loading cycle. In this sequence of subfigures, it becomes apparent the way
with which the accumulation of hysteretic dissipated energy in combination with the increase of the maximum
displacement leads to the decrease of the initial yield force in every loading cycle.

In this particular study the strength deterioration is integrated through the relationship introduced by
Sivaselvan & Reinhorn (2000). This relationship (Eq. (2.2)) takes into account the effect of both the evolution of
the maximum deformation and the accumulation of hysteretic energy on the strength deterioration. The max-
imum deformation is considered through the first term of Eqg. (2.2), which accounts for the maximum defor-
mation (Xmay appeared until the i time step and it is normalised by the ultimate displacement (X.;).

The hysteretic energy is considered through the second term of Eq. (2.2), which accumulates the hysteretic
energy (EH;) that is dissipated by the model until the i" time step (Eq. (2.3)) and it is normalised by the ulti-
mate hysteretic energy that the model is expected to sustain (EH,;) (i.e. The energy that is dissipated when the
structural element is forced by a monotonic displacement until it reaches the ultimate displacement (X, (Eq.
(2.4)). The first term of Eq. (2.3) accumulates the total energy dissipated until the i™ time step, whereas the
second term subtracts the elastic energy until the same time step. The deterioration parameters f; and S, of
Eqg. (2.2) control the degree that the maximum displacement and the accumulation of hysteretic energy affect
the deterioration of strength respectively.

e [ (YR B EH,
FYi B Fyo ! [ Xt ! 1_:82 EHuII (2.2)
X F2
EH, :IE Cix——— (2.3)
o 2R.K,
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Several researchers (Oh et al. 2000; Naeim et al. 2000; Medina & Krawinkler 2004; Rodgers, Janise E.; Mahin
2004; FEMA P440A 2009) that investigated the influence of the strength deterioration on the maximum dis-
placement, have proved that in moderate and long-period systems the maximum displacement is insensitive to
strength deterioration. In contrast, in structural systems with short period, the presence of strength deteriora-
tion may lead to noticeable increase of the maximum displacement

2.6 Pinching

Another phenomenon that has been observed in structures subjected to cyclic lateral load is pinching. The
term refers to the characteristic reduction of the actual area of the loops on the force-deformation diagram
close to the point of origin after unloading. This shrinkage indicates large reduction in stiffness during the re-
loading, after unloading has occurred; which is followed by recovery of stiffness after a certain displacement.
The introduction of such a behaviour leads to reduction of the amount of dissipated energy.

This phenomenon is observed mainly in brittle materials and it can be caused by different mechanisms. More
specifically, in reinforced concrete elements, pinching is a result of opening of cracks when the element is
forced to one direction. During the load reversal, sudden drop of stiffness will be observed until the cracks
close and partial stiffness recovery occur. In timber elements, pinching is mainly a result of the opening and
closing of gaps or pull-out of nails. Pinching is also observed in masonries primarily due to opening and closing
of cracks (FEMA P440A 2009).

The behaviour of a reinforced concrete column element that experiences the pinching effect during cyclic lat-
eral load is demonstrated in Figure 2.6. In the beginning, only a few closed cracks appear in the left side of the
element (Figure 2.6 (a)). This is followed by load reversal, which leads to the development of open cracks in the
right side of the element (Figure 2.6 (b)). This results in sudden drop of the stiffness, when the element is
pushed towards the direction of the open cracks (Figure 2.6 (c)), until the cracks close and the stiffness partially
returns to the initial level (Figure 2.6 (d)). If the element is forced to further deformation, cracks may open on
the other side of the element as well (Figure 2.6 (e)). When the load changes direction, the stiffness reduces
again (Figure 2.6 (f)) until the moment that the cracks shut (Figure 2.6 (g)). This behaviour is repeating, causing
increase of the pinching effect in every subsequent loading cycle.

Similar to the effects of strength hardening, stiffness degradation and strength deterioration, several studies
(Oh et al. 2000; Naeim et al. 2000; Medina & Krawinkler 2004; Rodgers, Janise E.; Mahin 2004; FEMA P440A
2009) have shown that in moderate and long-period structural systems, pinching does not affect significantly
the maximum displacement. Meanwhile, the maximum displacement of systems with short structural period
seems to be sensitive to the pinching effect, with increasing sensitivity as the structural period and the yield
strength of the system decrease (FEMA P440A 2009).

As a concluding remark of this chapter it is underlined that the degree of stiffness degradation, strength deteri-
oration and pinching behaviour depends not only on the characteristics of the system (such as the material
characteristics, the structural system, the type of connections etc.), but also on the load history (such as the
magnitude of the loading, the total duration, the number of loading cycles, the sequence of the loading cycles
etc.) (Rahnama & Krawinkler 1993; Miranda 1993; FEMA P440A 2009). Some of those characteristics are taken
into account in this study in the chapter 4.
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3 Non-linear single degree of freedom systems

3.1 Equation of motion of single degree of freedom system

The governing equation of a single degree of freedom non-linear system subjected to an earthquake motion is
given by the Eqg. (3.1). In this equation X(t), x(t), X(t) represent the relative displacement, the relative velocity
and the relative acceleration of the system respectively with respect to the ground, while ¥y(t) represents the
ground acceleration. Furthermore, mand C denote the mass and the damping coefficient of the system,
whereas F(X,x) represents the non-linear restoring force of the system (Oh et al. 2000; Chopra 2012).

m(t) + e Y+ R x ¥=— mix( X (3.1)

This behaviour is illustrated by the model of the Figure 3.9. The restoring force is a function of time and its
formulation depends on the inelastic characteristics of the system. In the simplest forms of: (i) elastoplastic
hysteretic system and (ii) bilinear with strength hardening hysteretic system, the response can be represented
by the models in the Figure 3.1 (a) and Figure 3.2 respectively. If additionally to this behaviour, stiffness degra-
dation, stiffness deterioration and pinching are considered, phenomenological models are developed as will be
explained in the following paragraphs.

Alternatively, the governing equation may be given in a normalized form (Eq. (3.2)), when the terms of both
sides of the Eq. (3.1) are divided by the product of the mass times the yield displacement (mx,#0).

) ) 2 X, (1)
() + 28eq fu(t) + @ F (%, %) = = i (3.2)
y
Where,
Kk B -
[ m . is the elastic circular frequency,
U = X :is the displacement ductility ratio and therefore: fi(t) = X and ji(t) = X ,
XV XV XV
Cc . . .
&= : is the damping ratio and
2may
y F (x5 E(x S )
F(x,X) = (%) = (x ¥ = R(x 3 : is the restoring force normalized by the initial yield force of
mafx, kX, Fyo
the system.

3.2 Overview of existing hysteretic models

During the process of building a model capable to capture accurately the non-linear behaviour of a structural
system, the most crucial aspect is the right development of the hysteretic rule. The literature related to hyster-
etic models is very rich. This is because, different structural systems develop different mechanisms when they
are subjected to cyclic load and in most cases hysteretic models have been formed based on the behaviour of
specific structural systems. However, all the proposed hysteretic models can be classified into two broad cate-
gories; the polygonal hysteretic models (PHM) and the smooth hysteretic models (SHM) (Sivaselvan & Reinhorn
2000; Reinhorn et al. 2009; Charalampakis 2009; Ray & Reinhorn 2014). A graphical representation of one loop
for each of these two types of hysteretic models can be observed in the combined forced-displacement dia-
gram of Figure 3.10.

3.2.1 Polygonal hysteretic models

In polygonal hysteretic models, every branch of the force displacement diagram follows a linear relationship,
according to the time history response of the system. The simplest model of this category is the bilinear hyster-
etic model (Figure 2.3). A more advanced hysteretic model that accounts also for the effect of stiffness degra-
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dation was developed by Clough and Johnston (1966). Takeda et al. (1970) proposed a rather complicated po-
lygonal hysteretic model that considers both the effect of stiffness degradation and strength deterioration. A
few years later, the hysteretic model of M. S. L. Roufaiel and Meyer (1987b) included also the pinching behav-
iour caused by load reversals.

Following these authors, the study of Park et al. (1988) suggested a polygonal hysteretic model that accounts
for the stiffness degradation, the strength deterioration and the pinching effect; known as “the three parame-
ter model”. Each of those parameters, is linked to one of the aforementioned non-linear behaviours. The
greatest innovation of this model is that the stiffness degradation of the unloading branch of the force-
displacement diagram is encountered through a pivot point (as it is mention in the paragraph 2.4). A more
general hysteretic rule, that can represent any of the aforementioned hysteretic models, was developed by
Sivaselvan and Reinhorn (1999). Main attribute of this model is that, the stiffness degradation and the strength
deterioration are specified by a backbone curve, typical of the structural system under investigation.

3.2.2 Smooth hysteretic models

The smooth hysteretic models, which employ non-linear formulations to capture the response of a system,
seem to represent better the continuous changes of the loading branches during yielding (Ray & Reinhorn
2014). Moreover, the total stiffness of the smooth hysteretic models can be represented by an appropriate
combination of component springs (reciprocal of structural elements). This decomposition of the whole model
into sub-models results to the easier construction of algorithms for the implementation of the model. The first
smooth hysteretic model was introduced by Bouc (1967) and extended by Wen (1976) and is known as the
Bouc-Wen hysteretic model. Although it has been proven that this model possesses several deficiencies
(Thyagarajan 1989; Charalampakis 2009), it is recognized that it sets the foundation for the development of
advanced smooth hysteretic models.

In this particular study an enhanced smooth hysteretic model proposed by Ray and Reinhorn (2014) is em-
ployed for the investigation of the effects of strength hardening, stiffness degradation, strength deterioration
and pinching on the response of non-linear systems. This model, which belongs to the category of smooth hys-
teretic models, is an extension of the models of Park et al. (1987), Sashi K Kunnath et al. (1997) and Sivaselvan
& Reinhorn (2000) and simulates a rate independent hysteretic behaviour which can capture quite accurately
the behaviour of ductile and brittle materials.

3.3 Hysteretic models

From the previous paragraphs, it becomes apparent that all the non-linear characteristics of the system are
included in the restoring force (F(t))of the system. This is achieved, on the one hand by updating the tangent
stiffness at every time step according to the hysteretic model that has been chosen and on the other hand by
decreasing directly the restoring force, when strength deterioration is considered.

3.3.1 Elastoplastic system

(a) (b) (c)
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Figure 3.1. Development of (a) elastoplastic hysteretic model and (b) its response on the restoring force-displacement dia-
gram. (c) Representation of hysteretic spring as N in parallel mechanical systems consisted of a spring and a slider in series.
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The simplest hysteretic model and at the same time the basis for the rest of the hysteretic models is the elastic-
perfectly plastic (or elastoplastic) hysteretic model. This type of hysteresis can be modeled by an elastic spring
in series with a slider with smooth transition (Figure 3.1(a)). In general, the onset of a slider begins suddenly
when the restoring force reaches a predefined value, usually the yield force of the system. A slider with smooth
transition can be represented by a group of parallel mechanical systems, where each of them is consisted of a
spring and a slider in series (Figure 3.1(c)) ((Sivaselvan 2013)). In that sense, a slider with smooth transition is
activated before the predefined limit is reached, allowing a gradual transition to that limit. It should be noted
that the combination of the spring and the slider with smooth transition is referred as hysteretic spring in this
study and its response in the force-displacement diagram is illustrated in the Figure 3.1 (b).

The behaviour of the elastoplastic hysteretic model can be captured by the continuous change of the instanta-
neous tangent stiffness Kingentproposed by Sivaselvan and Reinhorn (2000) (Eqg. (3.3)). In the relationship of
the tangent stiffness (Eq.(3.3)), Kyys Frysand Fpy refer to the elastic stiffness of the hysteretic spring, the force
of the hysteretic spring and the yield force of the hysteretic spring respectively. It is obvious that in the case of
elastic-perfectly plastic non-degrading hysteretic system the elastic stiffness of the hysteretic spring is equal to
the elastic stiffness of the overall system (Kyys=Ko).

(0.5+05sign( F,, o) (3.3)

ths

ktangent = khys 1- Fh

y

Furthermore, the exponent N of the Eq. (3.3) controls the level of smoothness of the transition between elastic
and post-elastic branch. Large values of N (N>10) lead to steep transition, that approximates the bilinear be-
haviour, while small values (2<N<10) lead to a gradual smooth transition. When this variable is larger than ten,
it can cause numerical instability in the solution (Ray & Reinhorn 2014). Meanwhile, small values (N<3) may
lead to violation of the Drucker postulate of loop-closing (Thyagarajan 1989; Sivaselvan & Reinhorn 2000;
Charalampakis 2009). For this reason, it is prudent to give N values in the range between five and ten. In this
study, the variable N has a value of eight for all the hysteretic models.

Additionally, it has been noticed that when load reversal occurs in the force-displacement diagram, sudden
transition is expected. This can be achieved through the signumfunction of Eqg. (3.3). More specifically, when
the signumproduct (Fry0X) is equal to or greater than zero (i.e. loading branch), the signumfunction returns 1;
while when the signumproduct is smaller than zero (i.e. unloading branch) it returns -1.

Moreover, in addition to the hysteretic spring, a viscous damper has been added to the model, in order to take
into account the influence of the loading rate. For consistency reasons, a constant value of 2% has been chosen
for the damping ratio of the dashpot of all the hysteretic models (i.e. the influence of different damping ratio is
not considered in this study). The response (i.e. the maximum displacement, the residual displacement and the
total hysteretic energy) of the elastoplastic model accommodates the basis with which the response of the rest
of the hysteretic models is normalized.

3.3.2 Bilinear with strength hardening system

The only difference of a bilinear with strength hardening hysteretic system compared to the elastoplastic hys-
teretic system, is that in the former possesses a reserved strength after yielding, which refers to as strength
hardening property. This behaviour can be modeled by adding a linear spring in parallel to the hysteretic spring
(Figure 3.2). The level of strength hardening is controlled by the stiffness ratio (ry), which represents the frac-
tion between the pre-yield and the post-yield stiffness of the overall system. In the extreme case that the stiff-
ness ratio is zero, the system performs elastoplastic behaviour, while when the stiffness ratio is unit the system
behaves elastically.

An alternative way to represent the behaviour of the overall hysteretic model is by illustrating the behaviour of
each type of spring of the system separately and subsequently combine these behaviours in the same fashion
that the springs are combined (Figure 3.3). In this way, the formulation of the overall hysteretic system be-
comes simpler. For instance, in the case of a strength hardening hysteretic system, due to the fact that the
hysteretic spring and the linear spring are in parallel, the overall stiffness in every time step is given by the
summation of the stiffness of the hysteretic spring and the stiffness of the linear spring.
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Therefore, the instantaneous tangent stiffness of the overall system can be computed by adding the stiffness of
the linear spring in the relationship of the tangent stiffness of the elastoplastic hysteretic system given by the
Eqg. (3.3) (Eq. (3.4)). It should be noted that the elastic stiffness of the hysteretic spring of a bilinear system with
strength hardening is equal to Ky (1-1)Ko, whereas the stiffness of the linear spring is equal to Kj,=rKo.
This is a choice which is made in order the elastic stiffness of the overall system to be Kq (Figure 3.4)).

N
ths

Kinger = Kin * K| 1- (0.5+0.5sigr( F,, ) (3.4)

hy

In this study three strength hardening levels are examined: (a) a low strength hardening level in which a stiff-
ness ratio of r,=20% is assigned, (b) a moderate strength hardening level in which a stiffness ratio of r,=40% is
assigned and (c) a high strength hardening level in which a stiffness ratio of r,=80% is assigned.

3.3.3 Bilinear system with stiffness degradation

Stiffness degradation may be perceived as a gradual decrease of the elastic stiffness of the hysteretic spring
(Knys =(1-RJKg). This behaviour is modeled accurately by the pivot rule, which is mentioned in the paragraph
2.4. This rule is implemented by the incorporation of the stiffness degradation factor R, (Eq. (2.1)). However,
the formula of this factor (Eq. (2.1)) is adjusted in order to consist of variables representative of the hysteretic
spring as can be seen in Eq. (6.5).

R+ thy

Khysxi + thy

(3.5)

This factor is updated at every time step and consequently multiplied by the stiffness of the hysteretic spring in
order to decrease its value (Eq. (3.6)).
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Figure 3.5. Pivot rule indicating the half planes of positive and negative yield force.
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Additionally, it should be noted that the yield force in Eq. (3.5) is considered positive or negative depending on
the half plane (defined by the initial elastic stiffness of the spring) in which the current state (x;,F;) lies (Figure
3.5).

Nevertheless, it has been observed (Reinhorn et al. 2009) that in addition to the degradation of the elastic
stiffness of the hysteretic spring, degradation appears also in the linear spring that represents the post-yield
stiffness. In this study, based on the formula suggested by Reinhorn et al. (2009), a one-parameter degradation
model that accounts for the maximum displacement (Xmay is applied (Eq. (3.7)). The control parameter (71)
takes values greater or equal to zero; with zero corresponding to non-degrading behaviour of the linear spring.
Furthermore, in Eq. (3.7) K initial refers to the initial value of the stiffness of the linear spring and X refers to
the ultimate displacement defined by monotonic load.

_ e

Kin = Klin,initial [1_’71 = (3.7)
Xyt

In this study eight different models based on the stiffness degradation are formulated; with two varying levels

of stiffness degradation of the pre-yield and of the post-yield stiffness. These levels are applied to elastoplastic

model in one hand and to bilinear with moderate strength hardening model on the other hand.

3.3.4 Bilinear system with strength deterioration

Referring to the bilinear model of Figure 3.2, strength deterioration can be conceived as the gradual deteriora-
tion of the slider. While the slider deteriorates, the onset limit after which the slider starts to move, which is
referred to as yield force, decreases. The level of decrease in every time step is controlled by the Eq. (2.2),
based on the maximum displacement and the hysteretic energy. Due to the fact that the slider is part of the
hysteretic spring, Egs. (2.2) - (2.4) are modified in order the variables to be expressed according to the notation
of the hysteretic spring.

o | ][, _EMH
Ry = Fpo| 1-| = 1--12 (3.8)
v e [ Xh,ult J ( 1_:82 EHultj
Xnys Fh2
EH = | R, 0x-——"2—— (3.9)
'([ ” Z(Rk - rk) Ko
F X
EHUII :%-‘- thO(Xh,ult - th) (3.10)

Strength degradation is eventually incorporated in the total hysteretic model by updating the yield force for
every time step (Fy,) calculated by the Eq. (3.8), in order to determine the instantaneous tangent stiffness of
the overall system expressed by the Eq. (3.6).

In this study eight different models based on the strength deterioration are formulated, with two varying levels
of strength deterioration based on the maximum displacement and two varying levels of strength deterioration
based on the hysteretic energy. These levels are applied to elastoplastic model in one hand and to bilinear with
moderate strength hardening and moderate stiffness degradation model on the other hand.

3.3.5 Bilinear system with pinching

The formulation of the pinching effect is based purely on observations of laboratory tests that performed on
elements of different materials. As a result, all the relationships that have been proposed (Baber & Noori 1985;
Reinhorn et al. 2009; Ray & Reinhorn 2014) are based on phenomenological models. In the literature, the
pinching behaviour is described by an imaginary spring (slip-lock spring) with zero stiffness for zero displace-
ment and infinite stiffness when a particular displacement (Xs) is reached. This displacement is called slip (dis-
placement) and it is equal to the difference between the maximum displacement (X and the yield displace-
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ment (X,) of the overall system (Eq. (3.11)). Slip is zero if the system remains elastic and gradually increases
depending on the maximum displacement. As a result, the level of the pinching effect also increases while the
maximum displacement increases. The evolution of the stiffness, of the slip-lock spring, can be seen in the
Error! Reference source not found..

X = X =%, 20 (3.11)

When the slip-lock spring is attached in series with a hysteretic spring the pinching behaviour of an elasto-
plastic hysteretic system can be captured. Additionally, when this combined system is attached in parallel with
a linear spring (Figure 3.8), the response of a bilinear hysteretic system with stiffness hardening and pinching
can be captured (Error! Reference source not found.).

As it is observed by Ray and Reinhorn (2014), the stiffness of the slip-lock spring resembles the tangent func-
tion (Error! Reference source not found.) and accordingly it can be formulated. Based on this assumption, the
relationship between the force (Fgjp) and the displacement (Xsjp) of the slip-lock spring can be defined ((3.12)).

Fl‘p Xgip 7T
Slij :tm Slp_ 3.12
F ( Xs 2] ( )

S

Due to the fact that the slip-lock spring is in series with the hysteretic spring, they essentially share the same
force (Fgig=F nys. The crack-closing force (F) that appears in the Eq. (3.12) is expressed as a fraction of the yield
force of the hysteretic spring (Fy,) (Eq. (3.13)).

F=sF, (3.13)

Meanwhile, Ray and Reinhorn (2014) suggests that the slip (Xs) should be modified through the employment of
an adjustment factor (S;), because of uncertainties in the crack opening and the permeant deformations (Eq.
(3.14)).

X = %( Yoo ~ Xy) (3.14)

Furthermore, based on observations of laboratory tests, it has been noticed that the crack-closing force (Fs)
and the slip (Xs) change non-linearly with respect to Xy at large displacements. Therefore, it is suggested (Ray
& Reinhorn (2014)) that instead of constant values the factors s;and s, should vary according to the Eq. (3.15)
and Eq. (3.16). The degree of non-linear change of the crack-closing force (Fs) and the slip (Xs) is controlled by

the variables s;;and Sy, In addition, S;gand Syp express the initial values of s; and s,, whereas Siminand Symax
express the minimum and the maximum values of s;and s, respectively.

S =S [1— %ﬁjz Shin >0 (3.15)
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Figure 3.6. Evolution of the stiffness of the slip-lock spring  Figure 3.7. Response of bilinear hysteretic system with
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Figure 3.8. Behaviour of separate springs considered in a bilinear model with strength hardening and pinching.

The instantaneous tangent stiffness of the slip-lock spring is obtained through the derivative of the force of the
slip-lock spring (Fgip) (Eq. (3.12)) with respect to the displacement of the slip-lock spring (Xsiip) (Eq. (3.17)).

dr, Foo )
Kslip = e :EI_T 1+ e (317)
dXslip )g 2 Fs

Due to the fact that the slip-lock spring and the hysteretic spring are in series, their combined stiffness (Kyys sig
is given by the Eq. (3.18). Moreover, if the strength hardening is also considered in the hysteretic model, the
tangent stiffness of the linear spring (K;i,), which is attached in parallel, is added to the Eqg. (3.18) (Eq. (6.5)).
The behaviour of the separate springs, along with the way that they are combined to capture the overall re-
sponse of a hysteretic system with strength hardening and pinching is illustrated in the Figure 3.8.

K,,sK

K = hys"* slip
hys, slip Khys + K ip (318)
K sK sli
Kiys siip iin = K hy—+ Klp + Ky, (3.19)
hys slip

In this study four different models based on the pinching are formulated, which consider a moderate and a
high level of pinching effect applied to elastoplastic model on one hand and to bilinear with moderate strength
hardening, moderate stiffness degradation and moderate strength deterioration model on the other hand.

3.4 Method of solution

The last few years, several researchers (Caughey 1960; Miller & Butler 1988; Pratap et al. 1994; Pratap &
Mukherjee 1994; Wang 1996; Liu 2000; Liu & Huang 2004; Kalmar-Nagy & Shekhawat 2009; Bayat et al. 2010;
Bayat et al. 2011; Bayat & Pakar 2013) have suggested analytical solutions for the calculation of the response of
bilinear systems subjected to harmonic load. However, in the case of more advanced non-linear systems, or in
the case of arbitrarily varying with time excitation (e.g. earthquake motion), no solution has been proposed by
means of analytical methods. In these cases, the response is defined through numerical integration methods.

In this study, Newmark-B numerical integration method is used, because it is the most commonly used for
problems in structural dynamics. This method computes the solution at the i+1 time step, based on equilibri-
um condition at the i+1 time step. It is an implicit numerical integration method, in which the restoring force at
the i+1 step (Fis1) is a function of the unknown displacement at the same step (X+1). For this reason, an itera-
tive method is needed to guarantee convergence of the solution. For this study, the Newton-Raphson iterative
procedure is employed, through which the tangent stiffness of the system is updated in every iteration until
the convergence criterion is fulfilled. The calculation of the tangent stiffness and the restoring force in each
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Figure 3.9. Model of generalized single degree of freedom  Figure 3.10. Polygonal hysteretic model (PHM) versus Smooth
non-linear system. hysteretic model (SHM).

step depend on the values of the previous step and follows rules that originate from the choice of the hysteret-
ic model.

The MATLAB scrips through which these methods are implemented can be found in the Appendix A

3.5 Development of models

For this study a total of 22 different hysteretic models are developed. The parameters2 that have been chosen
for the calibration of these models can be seen in the Table 1. They have been chosen in such a way that the
several non-linear behaviours are examined: (1) separately and (2) combined. Those models are idealized hys-
teretic models are and in that sense, they do not explicitly correspond to real structures.

In addition to these models, a separate model has been calibrated in such a way that fits the force-
displacement diagram of a pushover test (Ravenshorst et al. 2016). The pushover laboratory test was per-
formed by Delft university of technology in a masonry assemblage. The loading cycles can be seen in Figure
3.11, while the hysteresis loops are presentenced in Figure 3.12. Through impact test, the first natural frequen-
cy of the assemblage in the direction that the load is applied, before the beginning of the pushover test has
been determined equal to f= 4.05Hz; therefore, the initial natural period of the structure is T = 0.25s. Fur-
thermore, the initial elastic stiffness is evaluated equal to k = 15.5kN/mm through the two first loading quarter-
cycles of the pushover test, assuming that no substantial damage has occurred to the structure. Based on the
initial natural period and the initial elastic stiffness, the mass of the equivalent SDoF system can be estimated:

m T? 0.25?
T =2m,|— = m=— k=——15500000 = m= 24.560kg (3.20)
k ar ar
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Figure 3.11. Loading cycles for pushover test of masonry Figure 3.12. Hysteresis loops of pushover test of masonry
assemblage. assemblage.

*The role of each parameter is explained in the paragraph that corresponds to each non-linear behavior, in
section 3.3.
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Model . a m B B Su S Sic S Simir Sme
1. Elastoplastic 0 - - - - - - - - - -
2. Moderate strength hardening 0.2 - - - - - - - - - -
3. High strength hardening 0.4 - - - - - - - - - -
4. Extreme strength hardening 0.8 - - - - - - - - - -
5. Elastoplastic with low stiffness
. 0 20 - - - - - - - - -
degradation
6. Elastoplastic with high stiffness
. 0 4 - - - - - - - - -
degradation
7. Model"ate strength hal"denmg & 02 20 01 i i i i i i i i
low stiffness degradation
8. Moderate st{'ength harden/ng & 0.2 20 0.6 i i i i i i i i
moderate stiffness degradation
9. Moderate strength hardening &
. ; 0.2 4 0.1 - - - - - - - -
moderate stiffness degradation
10. Moderate strength hardening & 02 4 06 i i i i i i i i
high stiffness degradation ) )
11. Elasto.plasflc with low strength 0 i i 01 01 i i i i i i
deterioration
12. Elastoplastic W'Ith modemte 0 i i 01 05 i i i i i i
strength deterioration
13. Elastoplastic w'/th moderate 0 i i 05 01 i i i i i i
strength deterioration
14. E/astc?plasf. with high strength 0 i i 0.5 05 i i i i i i
deterioration
15. Moderate strength hardening &
moderate stiffness degradation & 0.2 10 0.2 0.1 0.1 - - - - - -
low strength deterioration
16. Moderate strength hardening &
moderate stiffness degradation & 0.2 10 0.2 0.1 0.5 - - - - - -
moderate strength deterioration
17. Moderate strength hardening &
moderate stiffness degradation & 0.2 10 0.2 0.5 0.1 - - - - - -
moderate strength deterioration
18. Moderate strength hardening &
moderate stiffness degradation & 0.2 10 0.2 0.5 0.5 - - - - - -
high strength deterioration
19. Elastoplast. with low pinching 0 - - - - 1.5 1.5 0.6 0.3 0.2 0.8
20. Elastoplast. with high pinching - - - - 4 4 0.3 0.6 0.05 1
21. Moderate strength hardening &
moderate stiffness degradation & 515 o5 g5 02 15 15 06 03 02 08
moderate strength deterioration
& low pinching
22. Moderate strength hardening &
moderate stiffness degradation & ) 15 o5 g5 02 4 4 03 06 005 1

moderate strength deterioration
& high pinching

Table 1. Selection of parameters for the calibration of the hysteretic models.
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The rest of the parameters for the calibration of the model are chosen through an automatic iterative proce-
dure according to a script that the author build which performs 10° different combinations. The values that give
the best fit to the laboratory test are presented in the Table 2, while the hysteresis loops of the calibrated
model subjected to the same loading cycles as the pushover test of the masonry assemblage are illustrated in
Figure 3.13 for comparison with the hysteresis loops of the laboratory test.

Parameters Value

Initial stiffness (Kg) 15.5 kN/mm

Mass (m) 24560 kg

Initial yield force (Fyc) 58 kN

Stiffness ratio (ry) 0.022

Stiffness degradation (a), (#71) 1.6, 274

Strength deterioration (f1), (82) 0.25, 0.38

Pinching (1), (S2), (Su1), (S22), (Simi), 0.63, 0.39, 1.95  1.95, 0.1,
(Somav) 0.95

Table 2. Calibration parameters to fit the pushover laboratory test.

50

Force [kN]
o

Lab test '
Numerical model

-100 -50 0 50 100
Displacement [mm]

Figure 3.13. Comparison of hysteresis loops from laboratory test and from the calibrated SDoF model.
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4 Earthquake ground motions

In this study, the total of 22 different hysteretic models, that are presented in section 3.3, are subjected to 167
different earthquake motions. 160 of these ground motions are obtained through the database of Pacific
earthquake engineering research center (PEER), selected in such a way that they satisfy the following require-
ments: (a) they are recorded on accelerographic stations in which enough information is given regarding the
geotechnical conditions, so that the soil can be classified in the appropriate site class according to Eurocode 8;
(b) they are recorded on free field stations or on the first floor of low-rise buildings; (c) the magnitude of the
recorded earthquakes is larger than 3.5; (d) the distance from the fault rapture plane to the accelerographic
station is less than 10km (i.e. shallow events); (e) the maximum useable period, as a result of the signal pro-
cessing3, is at least 4 sec. A detailed list of all the ground motions which are used in this study can be seen in
the Appendix C.

Despite the fact that the study of the response of non-linear systems with regard to the total sample of ground
motions may already lead to valuable observations, the ground motions are divided into different ensembles,
for the reasons are explained in the following paragraph.

4.1 Ensemble of ground motions

The response of an inelastic system subjected to a ground motion is a very complex phenomenon, affected by
the choice of the hysteretic model and by the characteristics of the input ground motion. It is very probable
that some of the characteristics of the ground motion affect more than others the inelastic response of the
system. This, opinion has been already expressed in earlier studies by Rahnama and Krawinkler (1993) and by
Ruiz-Garcia and Miranda (2006) who examined the influence of the soft soil on the response of several
hysteretic mondels and by Ruiz-Garcia and Miranda (2003 and 2006) who examined the influence of the
earthquake magnitude and the influence of the distance to the source on the response of several hysteretic
mondels.

However, such influences may altogether disappear when the response is averaged for the total ensemble of
the ground motions. Therefore, the total ensemble of the ground motions is divided into different groups with
common characteristics and subsequently the response of the systems is averaged for each group separately.
More specifically, the ground motions are separated into: (a) two categories based on their magnitude, (b) two
categories based on their significant duration, (c) three categories based on the soil conditions, (d) one more
group which consists of signals that resembles the ground motions in Groningen.

4.1.1 Classification based on earthquake magnitude

The earthquake magnitude is the most commonly used parameter for the characterization of an earthquake
event. It is related to the energy which is released in the earthquake source and it is measured in several scales.
Most of the accelerograph stations, define the magnitude in terms of: the local magnitude (M,), usually re-
ferred to as "Richter magnitude", the surface-wave magnitude (M,), the body-wave magnitude (M) and the
moment magnitude (M,,) (L.Kramer 1997; Kramer & Stewart 2004; Chopra 2012; Akkar 2014).

In this particular study, the magnitude of the earthquakes is expressed in moment magnitude. A distinction of
the ground motions is made depending on whether their magnitude is larger or smaller than 5.5, based on the
limit that the Eurocode 8 has set. The group of the moderate earthquakes, which have magnitude lower than
five (M,,<5.5), is consisted of 66 ground motions, while the group of the strong earthquakes, which have magni-
tude larger than five (M,,>5.5) is consisted of 94 ground motions.

4.1.2 Classification based on significant duration

In the literature, there is a large number of studies that proposed different indices for the measurement of the
duration of a ground motion (Bommer & Martinez-Pereira 1999). Most of them are based either on the con-
cept of the bracketed duration or on the concept of the significant duration. The bracketed duration is de-
scribed as the total time elapsed between the first and the last excursion of a specified level of acceleration,

*The cut-off frequency of the high-pass filter applied to these signals is smaller than 0.25Hz (f <0.25Hz or
T>4s).
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whereas the significant duration represents the time interval between the moments at which a specified per-
centage of wave energy is released. In this study, the significant duration ts.g5is chosen to represent the dura-
tion of the ground motion. This measure, which is developed by Trifunac & Brady (1975), accumulates the time
between the moments where 5% and 95% of the total Arias intensity is attained.

Based on the significant duration ts_g5 the total ensemble is divided into two groups. The first group contains 65
ground motions with significant duration shorter than 10s, while the second group contains 95 ground motions
with duration longer than 10s.

4.1.3 Classification based on soil class

The importance of the soil conditions in the earthquake engineering is well recognized by several studies and
seismic design codes. In most of the design codes the classification of the soil is based on the average shear-
wave velocity at a depth between 0 and 30 meters (V). Following the provisions of the Eurocode 8, regarding
the soil classification, three different groups of ground motions are formed. The first group corresponds to the
ground types A and B, which refer to rock or very stiff soil with V$7>360m/s and consists of 81 ground mo-
tions. The second group corresponds to the ground type C, which refers to stiff soil with 180<Vs33<360m/s and
consists of 76 ground motions. The third group corresponds to the ground type D, which refers to soft soil with
Vs30<180m/s and consists of 3 ground motions.

4.1.4 Signals similar to Groningen area

Additionally to the previous 160 ground motions, an ensemble of seven ground motions that resembles the
ground motions that appear in the area of Groningen has been collected for this study. This is because the
earthquakes in Groningen as induced, shallow, with short duration and low magnitude earthquakes possess
different characteristics from the other 160 ground motions that are examined her.

For the production of these signals the following procedure was followed:

e  Signals that were spectrally that have been matched to a uniform hazard spectrum at -350 m, (pub-
lished by (KNMI 2016)) were collected by Deltares.

e Deltares performed calculations of site response between 350 m and 30 m depth.

e The signals at 30m depth were provided to Witteveen+Bos by Deltares.

e Witteveen+Bos derived the surface signals.

The ground acceleration time-histories of these seven signals can be seen in the Appendix C.

Soil Duration
) A&B C D . ts%-05%<10s ts9,.05%>10s
Magnitude Magnitude
M, <5 41 19 0 M,,<5 53 7
M,,>5 40 57 3 M,,>5 42 58
Table 3. Distribution of ground motions in terms of Table 4. Distribution of ground motions in terms of Magnitude
magnitude and soil class. and significant duration.
Soil A&B C D Reverse  Strike
Duration Normal  Reverse

Mechanism Oblique slip

t59.954,<10s 53 41
t5%_95%>105 28 35 2 11 21 14 114

Table 5. Distribution of ground motions in terms of Table 6. Distribution of ground motions in terms of the generation
significant duration and soil class. mechanism of the earthquake.
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5 Response parameters of engineering interest

In this chapter an extensive overview of proposed in the literature damage indices takes place. The purpose of
this investigation is to give a better understanding of the response parameters that may play a key role on the

damage of a structural system. In a subsequent chapter, those response parameters are calculated for a set of

earthquake ground motions applied on various inelastic systems and their values are compared to the ones

calculated for the elastoplastic system.
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5.1 Classification of damage indices

Main goal of most of the current design procedures is the safety against collapse (Fajfar 1992). More specifical-
ly the inelastic design spectra in the existing design codes are given according to uniform ductility levels, which
however, represent only the collapse limit state. A more useful design procedure would allow the designers to
design according to a preferable damage limit other than the collapse limit state (Bracci et al. 1989).

This is called performance based design and the damage index is the tool that specifies the level of the perfor-
mance of a structure that is subjected to an earthquake. The damage index is always normalized and takes
values that range between 0 and 1; with O the structure remains in the elastic region and no damage occurs,
while with 1 the state of collapse has been reached. A damage parameter that do not follow the previous rule,
it is a damage variable (or measure) and not a damage index (Cosenza & Manfredi 2000). A performance based
design can be applied not only for the design of new structures but also for the evaluation of existing ones.
More specifically, given a design earthquake and a desirable performance level, the design of a new structure
can be performed. On the other hand, given the characteristics of an existing structure and a possible upcom-
ing earthquake, the performance level of the existing structure can be determined.

The idea of quantifying the state of damage of a structure by a single number on a predefined scale is very
attractive due to its simplicity. However, the development of such an index is extremely complex, because it
should be applicable to different structural systems, quantifying stages from the initiation of the first crack until
the total collapse of the structure. Two types of approaches are usually followed in the formulation of damage
indices; empirical and theoretical approaches. The empirical damage models, are based on statistical analyses
of observed damages of different structural systems after the occurrence of an earthquake. Despite the fact
that a procedure like this entails a high degree of subjectivity, it provides useful information for the general
performance of various structural systems. In contrast, theoretical damage models can be more rational, but
due to the fact that they consider the seismic response of a structural system based on its characteristics, they
involve extra degrees of complexity (Ghobarah et al. 1999).

Several comprehensive review works of existing damage indices have been carried out by various authors
(Rodriguez Gomez & S. 1990; Kappos 1997; Ghobarah et al. 1999; Cosenza & Manfredi 2000; Rodriguez &
Padilla 2009; Velde 2010; Sinha & Shiradhonkar 2012; Nyarko et al. 2014). A collection of damages indices
which have been presented in the above studies combined with additional damages indices is given in the fol-
lowing paragraphs; where their performance is discussed and critically evaluated.

5.1.1 Local damage indices

The damage indices are classified as local damage indices and global damage indices depending on whether
they quantify the damage state of individual members or of the entire building. The local damage indices are
further classified regarding their ability to capture the accumulation of the inelastic energy. In this sense the
damage indices are divided into cumulative and non-cumulative damage indices. Additionally, the local damage
indices are classified as deformation-based damage indices, stiffness-based damage indices, energy-based
damage indices and combined damage indices.

5.1.1.1 Non-cumulative damage indices

Non-cumulative damage indices do not explicitly account for the time history of the seismic response of a
structure, but instead they consider the maximum value of a response parameter that appear in the time histo-
ry response. This response parameter, usually is deformation-based, stiffness-based or combined.

5.1.1.1.1 Deformation based damage indices

e Ductility ratio and damage index DM

The ductility ratio is a quantity that expresses the ratio between the maximum deformation (X, and the yield
deformation (x,) of a system (Eq. (5.1)) (Newmark & Emilio 1971). It is widely used in the seismic design proce-
dures for the calculation of the inelastic response spectra. Alternatively, the ductility ratio can be expressed as
the ratio between the maximum curvature (pmad and the yield curvature (¢y) (Eq. (5.2)), or the ratio between
the maximum rotation (6nay) and the yield rotation (6,) (Eq. (5.3)).
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— X
p(x) == .
() X (5.1)
b
1(9) ) (5.2)
_Hmax
yw}—% (5.3)

The ductility ratio itself is a damage variable and not a damage index, because it does not include characteris-
tics of the capacity of the structure. The adoption of the ductility as a damage index, is achieved by the Eq. (5.4)
(Powell & Allahabad 1988). This equation implies that failure occurs when the ductility demand (u) exceeds the
ductility capacity of the structural system, which is determined through experiments under monotonic load
(tw)- In the case that the ductility demand is smaller or equal to one the damage index is smaller or equal to
zero and the system will remain undamaged. On the other hand, if the ductility demand is equal to the ductility
capacity the damage index is 1 and collapse will occur.

1 0, if H<l
DM = ”_1= DM, if 1sus<py, (5.4)
S N )

According to the definition of this damage index, it is evident that the collapse of the structural system is ex-
pected for the maximum plastic displacement, independently of the number of plastic cycles and the amount
of energy dissipated during the inelastic excursion. For that reason a large number of earlier studies (Fajfar
1992; Fajfar & Krawinkler 1997; Rodriguez & Aristizabal 1999; Bojérquez & Ruiz 2004; Teran-gilmore et al.
2005; Hancock & Bommer 2006; Bojorquez et al. 2010) prove that the performance of structures subjected to
long duration ground motions cannot be adequately characterized through the ductility ratio alone.

e Inter-story drift
The inter-storey drift (ID) expresses the maximum relative deformation between two consecutive storeys (X'+l-
X) normalized by the storey height (H) (Eq. (5.5)).
X=X
ID = (5.5)
H
In 1981, Sozen M. suggested the calibration of this variable, in order to be able to express the percentage of

damage of a structure (D) through the Eq. (5.6).
D =50ID (in percentage) —25 (5.6)

Through the analysis of tests on structural elements and small-scale structures it is shown that for inter-storey
drift smaller than one per cent, non-structural elements may be damaged, while for inter-storey drift larger
than four per cent, irreparable damage of structural elements or even collapse will occur (Velde 2010). Collapse
has been observed (Roufaiel & Meyer 1982) for inter-storey drift larger than six per cent.

Due to the fact that the maximum inter-storey drift does not account for the cumulative damage caused by
plastic deformations, collapse is expected to occur when a predefined limit of inter-storey drift is exceeded.
However, this predefined limit should vary for structures with different ductility ratio, because the maximum
deformation of the collapse stage is related to the ductility capacity (Ghobarah et al. 1999). Through this re-
mark, it becomes apparent that the limits expressed above are questionable and the inter-storey drift damage
index, as defined by Sozen, (Eq. (5.6)) is unreliable.

*  Maximum permanent drift

By replacing the maximum relative deformation by the permanent deformation caused by seismic loading, the
index ID of the previous paragraph is transformed to maximum permanent drift. Stephens and Yao (1987)
defined the values of maximum permeant drift that correspond to four structural damage levels. More specifi-
cally, if the permanent drift is zero and the inter-stotey drift does not exceed one per cent, the structure is safe,
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while if the permanent drift is 0.5 per cent or one per cent the structure is lightly damaged or damaged respec-
tively. Furthermore, if at the end of the excursion aperiodic motion appears at the top storey the structure is
heavily damaged. Same as in the case of the inter-storey drift, this measure does not account for the different
levels of ductility that exist in different structural systems.

5.1.1.1.2 Stiffness based damage indices

e Stiffness ratio

The stiffness ratio represents the initial elastic stiffness divided by the reduced secant stiffness (Lybas & Sozen
1977). The term secant stiffness describes the slope of the line that connects the point of origin with the maxi-
mum displacement response in the force displacement diagram. Strictly speaking, the stiffness ratio does not
describe a damage index but a damage variable. However, it is mentioned here because a lot of future re-
searchers got inspired by this measure.

e Flexural damage ratio and Modified flexural damage ratio

Based on the idea of the stiffness ratio, Banon et al. (1981) proposed the flexural damage ratio (FDR). This
damage variable is given by the Eq. (5.7), where M, and ¢, indicate the ultimate bending moment as a result of
pushover analysis and its corresponding curvature, while Mpaxand gmaxare the maximum bending moment due
to seismic load and its corresponding curvature. It is worth mentioning that it has been observed a very strong
relationship between the flexural damage ratio and the damage indices based on the maximum inelastic de-
formation. As a matter of fact, it has been proven (Banon & Veneziano 1982) that the correlation coefficient
between the flexural damage ratio and the ductility ratio is 0.95.

FOR= P (5.7
max 7" u

Quantification of the intermediate damage stages takes place through calibration of the flexural damage ratio
against experimentally observed structural damage due to earthquake in the field or through tests in the labor-
atory. However, due to the differences in the characteristics of the expected earthquakes (duration, frequency
content, magnitude etc.) and the ones used for the calibration process, the application of this damage variable
requires caution.

Examining Eq. (5.7), it is clear that flexural damage ratio does not vary between zero and one, therefore it can-
not be employed as a damage index. For this reason, Roufaiel and Meyer (1987) subtracted from both the nu-
merator and the denominator of Eq. (5.7) the quantity (¢,/M,), which is equal to one divided by the initial
elastic stiffness, resulting to the modified flexural damage ratio (Eq. (5.8)).

oo _ Py

M M,
u Ty

M, M,

e Slope ratio

Slightly different from the stiffness ratio, the slope ratio is defined as the ratio between the slope of the loading
and the slope of the unloading branch of the force-displacement diagram. This measure implies that damage
occurs due to degradation of stiffness during a seismic loading. Laboratory tests (Toussi & Yao 1983) have
shown that (in contrast to the definition of damage index given at the beginning of this chapter) a structure will
remain undamaged when the slope ratio is equal to 1 and it is severely damaged when the slope ratio is smaller
than 0.2.

5.1.1.1.3 Combined non-cumulative damage index

e Deformation Damage

In 1989, Bracci et al. proposed a combined damage index in order to express the damage level in terms of the
maximum inelastic displacement and the stiffness degradation. The formula that is suggested is given by the
Eq. (5.9).
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_ Fmax
D| :u (5_9)
P
K,
Where: X . : maximum displacement (or curvature) response due to earthquake loading,
X, : ultimate displacement (or curvature) for monotonic loading,
e : force (or moment) at maximum displacement (or curvature) response due to earthquake
loading,
F, : force (or moment) at ultimate displacement (or curvature) for monotonic loading,
krrﬂx : stiffness of the unloading branch at the maximum displacement (or curvature).
kLj : Stiffness of the unloading branch at the ultimate displacement (or curvature)

Similar to the aforementioned non-cumulative damage indices, this damage index cannot capture the accumu-
lation of inelastic energy of a structure subjected to an earthquake and therefore attention should be paid
when it is used.

5.1.1.2 Cumulative damage indices

The application of cumulative damage models is a more rational choice for the evaluation of damage states of
structures subjected to earthquakes. This is because they quantify the damage by taking into account the time
history of the response. In that sense, they are able to describe the evolution of damage over time. The dam-
age level is measured either by accumulating the plastic deformations or by employing a term related to the
hysteretic energy dissipated throughout the whole excursion. Shortcoming of the cumulative damage indices is
their inability to predict the collapse caused by a single excessively large deformation.

5.1.1.2.1 Deformation based damage indices

*  Normalized cumulative rotation

In 1982 Banon and Veneziano proposed a damage index (Eq. (5.10)) which is expressed by the accumulation of
plastic rotations of every half inelastic cycle (¢max- ¢y), normalized by the ultimate rotation determined through
monotonic loading (¢y).

Z|¢max,i _¢y|
NCR= -2
¢u

Despite the fact that this is a relatively easy-to-compute index, its application is limited due to lack of calibrated
values that correspond to different damage states.

(5.10)

e Normalized cumulative plastic deformation

Based on the hypothesis of failure of small axially-loaded mild-steel specimens due to low-cycle fatigue (Yao &
Munse 1962), Stephens and Yao (1987) developed a damage index (Eq. (5.11)) that accounts for the accumula-
tion of plastic deformation; with the vision to be applied on different structural systems subjected to various
cyclic loads. In Eq. (5.11) Ax" indicates the deformation increment from the maximum negative to the maxi-
mum positive displacement of the i cycle, while AX;; is the deformation increment from the maximum negative
displacement of the i cycle to the displacement of failure defined by one-cycle test. The exponent (1-br) ac-
counts for the fatigue damage, where b is a deformation ratio coefficient. The variable r represents the relative
deformation ratio, defined as the deformation increment from the maximum negative to the maximum posi-
tive displacement (4x%") divided by the deformation increment from the maximum positive to the maximum
negative displacement (4x; ) of the i cycle (Eq. (5.12)).
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In an attempt to simplify the aforementioned damage function, constant value of the fatigue exponent (1-br) is
suggested equal to 1.77 (Stephens & Yao 1987) and the normalization factor 4%, is taken equal to 10% of the
floor height. It should be noted that these values are established on the basis of laboratory tests on reinforced
concrete structural components, therefore their direct application to different structures contains large uncer-
tainty.

e Cumulative cyclic inelastic deformation

Cumulative cyclic inelastic deformation is a damage model proposed by Wang and Shah (1987), in which the
accumulation of damage depends on the maximum displacement, experienced by the structure in every load-
ing cycle. The dependency is captured by the cyclic loading parameter f (Eqg. (5.13)) which indicates the sum of
the maximum displacements in each cycle (x;) divided by the ultimate displacement determined through mono-
tonic loading test (X,) and multiplied by a constant (C) which is less than 1.

_~e X
p=Cy —~ 5.13
2% (5.13)

The damage index is given by an exponential form (Eq. (5.14)) in which the coefficient 5 is determined from
experimental data.

¢ -1

g -1

D= (5.14)
It is noted that this damage index is very sensitive to the choice of the constants C and #, which are related to
the member design properties. Unless a relationship is established between these constants and the design
properties, the method is difficult to be applied in more general cases (Wang & Shah 1987). In the case of a
well-reinforced members the constants C and 7 is recommended (Sreekala et al. 2011) to have values of 0.1
and 1 respectively.

e Cumulative displacement ductility
Based on the concept of ductility ratio, the cumulative displacement ductility (Park 1988) represents the sum of
the displacement ductility of cycles with reversed loading (Eq. (5.15))

U= i(%} (5.15)

This variable should be used with caution on damage assessment of structures. This is because, smaller number
of loading cycles with higher ductility per cycle may result in different damage state compared to bigger num-
ber of loading cycles with lower ductility per cycle, although they appear to have the same cumulative dis-
placement ductility. For instance, 16 cycles with displacement ductility =1 in each direction will cause signifi-
cantly less damage than 2 cycles with displacement ductility 4=8 in each direction, even if in both cases the
cumulative displacement ductility is 2u=32) (Park 1988).

e low-cycle fatigue model

Based on the assumption that the structural members under cyclic load follow a rule similar to the Manson-
Coffin relationship (a relationship between plastic strain and low-cycle fatigue), Jeong and Ilwan (1988) devel-
oped an index for the estimation of the damage level of structures subjected to seismic load. The relationship
in Eq. (5.16) shows that the number of cycles (N) that leads to failure at a given ductility ratio (u) to the power
of an empirical constant (9), is a positive constant (C), which can be determined through laboratory tests.

N =C (5.16)
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By using the Miner’s rule, (that assumes that the damage accumulation is a linear function of the number of

cycles of constant amplitude cyclic loading) the incremental damage caused by n; cycles of ductility ratio y;is

given by:

S

Di :i = nNA4
N. C

(5.17)

By assuming that the damage is independent of the sequence of application of the loading cycles during the
excursion, the total damage is given by the Eq. (5.18).

n
D=3D, :Z_'/" (5.18)
i=1 i=1 C
Although this damage index is very attractive due to its simplicity, Jeong and lwan (1988) recognised that it
should be used only for a crude estimation of the actual structural damage, due to the assumptions that are

involved.

e Cumulative plastic rotation damage index that incorporates the primary and follower cycles concept
Inspired by an energy-based damage index (Kratzig et al. 1989), Mehanny and Deierlein (2001) developed a
damage index that tracks the cumulative inelastic deformations. The damage index, which is described by Eq.
(5.19), consists of the primary half cycle (PHC) inelastic rotation (Gpnc), the sum of the follower half cycle (FHC)
inelastic rotations (frgnc) and the ultimate inelastic rotation defined by monotonic loading test (6,).

The term primary half cycle (PHC) refers to the half-cycle that corresponds to the maximum inelastic rotation
until the n™ cycle, whereas, the term follower half cycle (FHC) refers to the inelastic rotation of the rest of the
half-cycles. PHC and FHC can be updated in every half cycle, giving the opportunity to determine the damage
level of the structure at the corresponding moment. The exponents a and f are coefficients that were calibrat-
ed through tests for different structural systems, depending on whether the maximum rotation or the accumu-
lation of inelastic rotations contributes more on the structural damage of the structural system.

(6w +( 560 |

D, = i (5.19)
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The damage index is calculated separately for the positive rotations (D,") and for the negative rotations (D,
through the Eqg. (5.19). The two components are combined in a single damage index (Eq. (5.20)), in which y
represents a third calibrated coefficient.

D=¢(p;) +(D;) (5.20)

5.1.1.2.2 Energy based damage indices

Damage indices that account only for the accumulation of energy, implicitly accept that each structure has the
capacity to dissipate a given amount of energy. When this amount of energy is exceeded the structure is ex-
pected to collapse.

e Work damage index

Gosain et al. (1977) adopting the theory expressed above, proposed a damage index that accumulates the work
produced in every cycle i for which the force is larger than 75% of the yield force, normalized by the work done
when the yield point is reached (Eq. (5.21)). The work produced in each cycle is given by the product of the
maximum force of each cycle (F;) multiplied by the corresponding displacement (x;). Meanwhile, the work done
when the yield point is reached is given by the product of the yield force (Fy) multiplied by the yield displace-
ment (X,).

" F
D, = z_’? F,/F, 2075 (5.21)
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It is clear that the approximation of the inelastic dissipated energy with the product of the inelastic force times
the inelastic displacement is a rather rough assumption. Therefore, this damage index in most cases is inappro-
priate.

e Energy dissipation index

In 1986 Darwin and Nmai, searching for a more realistic measure for the quantification of the performance of
an actual structural member, they proposed the energy dissipation index (Eq. (5.22)). This index describes the
ratio between the total energy dissipation capacity of a beam (Ey) (calculated analytically or defined through
cyclic loading tests) and the elastic energy stored in the beam at yield. The latter quantity can be approximated
by half of the product of the yield force times the yield displacement (0.5F, x,).

Ed
%Fyxy (5.22)

e Energy dissipation index that incorporates the primary and follower cycles concept

Another, more complex, energy-based damage index (Eqg. (5.23)) has been developed by Kratzig et al. (1989).
The method is based on the concept of primary half cycle (PHC) and follower half cycles (FHC), which has been
addressed in a previous paragraph. Primary half cycle (PHC) is the one whose dissipated energy is greater com-
pared to the previous half cycles and the corresponding dissipated energy is noted as Epyc. The half cycles that
have dissipated energy smaller than primary half cycle are accordingly denoted as follower half cycles (FHC)
and the corresponding dissipated energy is noted as Eryc. Additionally, the variable E; in Eq. (5.23) indicates
the total energy absorbed through a monotonic test that leads to failure.

n

Z EPHC,i + z EFHC,i

D=+ o (5.23)
Ef +z EFHC,i
i=1

The damage index should be calculated separately for the positive half-cycles (D) and for the negative half-
cycles (D7) through the Eq. (5.23). The two components should be combined in an overall damage index (Eq.
(5.24)).

D=D"+D -D'D” (5.24)

This damage index is able to quantify damage caused by a big number of low-amplitude cycles, as well as dam-
age caused by a single high-amplitude cycle. This means that it considers not only fatigue-type damage, but
also damage due to large deformation.

5.1.1.3 Combined damage indices

The combined damage indices are considered as the most rational among the local damage indices, because
they characterize the damage state of structures in terms of deformations and accumulation of energy (Velde
2010). This is because, it has been recognized that both cumulative and non-cumulative effects contribute to
the damage and possibly to the failure of structures.

e Park & Ang (1985)

Probably, the most well-known combined damage index (Eq. (5.24)), which has a substantial influence on vari-
ous studies, is proposed by Park and Ang (1985). This damage index is defined by the linear combination of the
maximum displacement (Xna Normalized by the ultimate displacement determined by monotonic loading (X,)
and the dissipated energy (E) normalized by the product of the yield force (Fy) multiplied by the ultimate dis-
placement determined by monotonic loading (x,). Additionally, the term which accounts for the accumulation
of energy is multiplied by a coefficient that accounts for the strength deterioration (f).

(5.25)
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Despite of its wide use, this damage index appears to have some shortcomings, which have been pointed out
by various authors (Ghobarah 2001; Bozorgnia & Bertero 2002; Mihaita 2013) aiming to its improvement. More
specifically, the strength deterioration coefficient (f) is difficult to be determined because the methodology is
not well defined. Furthermore, the linear combination of the deformation-based term and the energy-based
term in such a highly non-linear problem is questionable. Additionally, in the case that a structure experiences
only elastic response, the damage index should be equal to zero. However, DIpa will be greater than zero be-
cause the integral of the J'dE of the Eq. (5.25) accounts also for the elastic energy. Meanwhile, a structure that

experiences a deformation equal to the ultimate deformation in the first loading cycle it is expected to collapse
and the damage index to be equal to unity. Nevertheless, by observing the Eq. (5.25) it is clear that the DIpawill
be greater than unity due to accumulation of the energy. In the following paragraphs, a number of damage
indices suggested by authors who tried to correct these shortcomings will be presented.

e Chaietal (1995)

An attempt for the improvement of the Park and Ang damage factor was made by Chai et al., who proposed to
subtract from the dissipated energy of Eq. (5.25), the inelastic energy dissipated by the structure under mono-
tonic loading at deformation equal to Xmax(Emon)- In this way, the authors present a damage index (Eq. (5.26))
that is equal to one when the structure experiences deformation equal to the ultimate deformation in the first
loading cycle. Evidently, the strength deterioration parameter () needs to be calibrated again and that is the
reason that in Eq. (5.26) it is denoted as ﬁ*.

dE-
chh:ﬁ‘*ﬂ*j Emon

(5.26)
X Fx,

e Bozorgnia & Bertero (2002)

Furthermore, in 2002 Bozorgnia and Bertero made a step further to the correction of the imperfections detect-
ed in the Park and Ang damage index (Dlpp), by introducing an improved cumulative damage index (Eq. (5.28)).
The first difference between this index and the Dlp, is the replacement of the deformation quantities by ductil-
ity ratios (Eq. (5.27)).

The displacement ductility («), defined as the ratio between the maximum displacement due to cyclic load
(Xmax divided by the yield displacement (x,). The elastic displacement ductility (), which is one in case of ine-
lastic behaviour and equal to the maximum elastic displacement (X¢) divided by yield displacement (x,) when
the structure experiences only elastic response. The monotonic displacement ductility capacity (u), that repre-
sents the ultimate displacement defined by monotonic loading (X,), divided by the yield displacement (x).

'u:ﬁ Iue:é M, :i
X, X, X,

The second difference refers to the fact that the dissipated energy, which in DIy, accounts also for the dissipa-
tion due to viscous damping, is replaced by the hysteretic energy (En), which accounts for the dissipated ener-
gy only due to inelastic deformations. The third difference is associated with the replacement of the product
Fyd, by the hysteretic energy capacity under monotonically increasing loading (Ey ). Lastly, the strength dete-
rioration parameter (f) has been replaced by a constant (a) which takes values in a range between zero and
one and its estimation is a result of comparisons between Dlps and Dlgg for a variety of structural systems and
ground motions.

(5.27)

DIBB :(1_a)/'1_/'1:ie-+aEH/EHu

. = (5.28)

By examining the damage index proposed by these authors (Eqg. (5.28)) it can be seen that when the response
remains elastic (u=ue and E=0) the damage index is indeed zero. Meanwhile, if the ultimate displacement
appears in the first cycle (Xmax=Xu, En=Enyand ue=1), the damage index is unity. Those two remarks summarize
the level of improvement of the Park and Ang damage index.

In the same direction, various researchers (Nishigaki & Mizuhata 1983; Chung et al. 1987; Kunnath et al. 1990;
Niu & Ren 1996; Sashi K. Kunnath et al. 1997; He et al. 2014) suggested slightly different damage indices; main-
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ly by varying the constant multiplier of the energy term or by introducing different exponents for the defor-
mation term and the energy term.

e Colombo & Negro (2005)

In 2005 Colombo and Negro, proposed a more generalized damage index, which is able to capture the behav-
iour of brittle and ductile structural members, under seismic load, within the same formulation (Eq. (5.29)).
This index is linked to the reduction of the capacity of a structural member and it reaches unity when the struc-
tural strength drops to zero. The damage is consisted of three functions, with their associated weighting factors
(B1, B2, B3). The first function (f(S1,u)) corresponds to the maximum deformation experienced throughout the
whole excursion, while the other two are related to the energy dissipation in ductile (f(ﬁz,jdEducg) and in brittle
(f(ﬂg,IdEb,)) structural elements respectively.

Doy =1 f (B, 1) (B, | 4y ) OF (8. | 0B, (5.29)

The analytical expressions of these functions are given by the Eq. (5.30)-(5.32). The deformation-based function
(Eqg. (5.30)) consists of the maximum ductility demand (umay, the ultimate ductility capacity () of the structur-
al element and the parameter £, that accounts for the hardening/softening effects. The energy-based function
for ductile behaviour (Eq. (5.31)) attempts to describe the descending branch of the hysteresis loop and it in-
corporates the dissipated energy (JdE), the maximum hysteretic energy (E,) and the parameter [ that identi-
fies the point that the capacity starts to decrease. The brittle behaviour is captured by an exponential function
(Eq. (5.32)) of the dissipated energy (JdE) normalized by the maximum hysteretic energy (E, ). The exponential-
ity, represents the rapid progress of damage of a brittle structural element under cyclic load. The rate of the
strength deterioration is captured by the parameter fz.

B
t(B. )= (1—@j (5.30)
K,
jdE
(8, [ dE,.) = 05 1-tanh ﬂzE—n (5.31)
dE
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The damage index of Colombo and Negro has been characterized (Mirzaaghabeik & Vosoughifar 2015) as the
most advanced and complete, due to the fact that it is based on the material fracture theory; therefore it is
independent of the material used in the structure.

5.1.2 Global damage indices

Global damage indices are intended for the quantification of the damage of a structure as a whole. It has been
pointed out (Kappos 1997; Ghobarah et al. 1999) that global damage indices are less accurate and it is advised
to be used only as crude estimates of structural performance during a seismic event. The global damage indices
can be calculated directly from global factors or through weighted combination of local damage defined for a
number of structural elements.

5.1.2.1 Global damage indices in terms of global parameters

Global damage indices determined by global parameters can be divided into two categories those that are
related to deformation and those that are related to the softening of structures subjected to cyclic load.

5.1.2.1.1 Deformation-based index

In 1987, Roufaiel and Meyer proposed an index that defines the overall level of damage of reinforced concrete
frames. The damage index (Eq. (5.33)) is a function of the maximum roof displacement (Xoof mad, the roof dis-
placement at which the first member in the frame yields (X1, and the roof displacement at which the frame
is expected to fail (Xoof,). For this approach, it is assumed that the frame will deflect in the first mode and fail-
ure is expected due to excessive roof displacements.
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- Xroof. y

GDP = Xroof.max

— (5.33)
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5.1.2.1.2 Softening-based indices

Assessment of the time-history response of structures subjected to seismic load shows a significant softening
of the structure after a specific number of cycles. Based on this observation, Di Pasquale and Camak developed
two damage indices; the maximum softening and the final softening damage index.

*  Maximum softening
The first damage index (Eq. (5.34)) (Di Pasquale & Camak 1987), is based on the evolution of the fundamental
period during an earthquake event and it depends on the combined effect of the stiffness degradation and
plastic deformation. It consists of a ratio between the initial period of the structure (Tjyta) and the structural
period that corresponds to the maximum softening (Tad. The determination of the maximum softening re-
quires the calculation of the total history response.

T

DIS,M =1_ ;ﬂtial (534)

max

This damage index focuses only on the overall behaviour of the structure and does not provide any information
about the damage of individual structural members.

*  Final softening

The second damage index (Di Pasquale & Camak 1989) employs the natural period that corresponds to the final
softening (Tsna) instead of the maximum softening (Tmay (Eg. (5.35)). A direct advantage of this index is that it
can be defined from the initial period and the final period of the structure, determined by a vibration test in
the field after the earthquake event.

Tinitial ] (5_35)

final
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One drawback of this damage index is that information that concern the structural element damage or the
storey damage are neglected. Furthermore, it is noted that the stiffness of a structure in a loading position
differ from the stiffness in the zero-load position and therefore the determination of only the final period may
not be accurate.

Based on this damage index and on the fact that the square of the natural period is directly related to the stiff-
ness of a structural system, Ghobarah et al. (1999) proposed a damage index by replacing the fundamental
period terms, by parameters of stiffness (Eq. (5.36)).

K
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(5.36)

final

5.1.2.2 Weighted averages of member damage indices

e Weighted by local dissipated energy

In 1989 Seidel et al. developed a global damage model (Eq. (5.37)) based on the local damage index of Park and
Ang (Dlpa ) by introducing weighting factors. Those factors are related to the energy dissipated by the i" struc-
tural member (E;) normalized by the energy dissipated by all the members (N) during a seismic IoadZLEJ, In

that sense, higher weightage corresponds to more heavily damaged elements.

PAi

N E
Dtotal :Z N DI
= 2E

i=1

(5.37)

e Weighted by tributary gravity load
The local damage index proposed by Bracci et al. (1989), it can also be employed for the evaluation of the dam-
age of the total structure by incorporating an importance factor that involves the gravity load of each member
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(W) normalized by the total gravity load of the structure y° "W, (Eq. (5.38)). The parameter mis employed to

assign an additional degree of sensitivity to elements that are more important for the stability of the structure
(e.g. column components are more important than beams (Bracci et al. 1989)).

i I\YVI Dlim+1
i=1 ZV\/I

Dtotal = = (538)
S W oy

Both weighted models can be expressed in the level of the whole structure if the damage of the element i is
replaced by the damage of the story. Additionally, it has been stated (Kappos 1997; Sinha & Shiradhonkar
2012) that both types of weighted factors tend to give higher importance to members of lower storeys. Alt-
hough this is conceptually correct, ignores that failure of a soft storey typically leads to failure of the whole
structure.

5.2 Selection of response parameters

The initial idea of this study was to investigate the influence of the strength hardening, stiffness degradation
strength deterioration and pinching, with respect to the most efficient damage index. However, recognizing the
complexity that the damages indices entail, it is considered more preferable to evaluate only individual re-
sponse parameters and not their combination. Considering that in this study several inelastic effects of systems
subjected to cyclic load are examined separately, while the ground motions are also divided according to vari-
ous characteristics, the right choice of the most appropriate response parameters can lead to very clear conclu-
sions.

The literature rereview of the paragraph 5.1, plays a key role on the identification of the more important re-
sponse parameters, in terms of their connection to the structural damage. By examining the most well-known
damage indices it becomes apparent that some response parameters appear more often than others. These
response parameters are the maximum inelastic displacement and the hysteretic energy. On the one hand, the
maximum inelastic displacement represents the damage that may occur due to extensively large deformations.
On the other hand, the hysteretic energy represents the damage that may occur due to the accumulation of
the inelastic energy, caused by cyclic loading. Both of them, are considered very critical and they will be the
first two response parameters which will be evaluated in this study.

On top of that, the residual displacement is decided to be an additional response parameter, inspired by the
concept of the maximum residual drift. Moreover, this response parameter is considered by several authors
(Macrae & Kawashima 1997; Yazgan 2010; Bojorquez & Ruiz-Garcia 2011) to play a key role in the performance
of structural systems. Finally, it was decided the dissipated energy and the input energy to be examined as
response parameters as well.
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6 Study results

In this study two types of results are presented. The first one can be characterized as specific with practical
interest. This is because it refers to a single model that is calibrated in section 3.5 to fit the pushover test of the
masonry assemblage, which was performed in the Delft university of technology. This calibrated model is sub-
jected to an ensemble of seven different ground motions that resembles the ground motions of Groningen
(Appendix C). The resulting forces and displacement of this model are compared to the ones that are calculated
through the Nederlandse praktijkrichtlijn (NPR 9998) in order to find out if substantial differences appear.

The second type of results is more generic with scientific interest. This is because it evaluates the response of a
large number of SDoF hysteretic systems subjected to a large number of ground motions. The response calcu-
lated by these systems is compared to the response calculated by elastoplastic hysteretic systems, in order to
draw valuable conclusions regarding the influence of non-linear effects on the seismic response of SDoF sys-
tems.

6.1 Single calibrated model

6.1.1 Response spectrum method (NPR 9998)
By assuming that the soil conditions are normal, the elastic design forces are calculated based on the section
3.2.2.2.2 of the NPR 9998 as follows:

Firstly, the natural period and the level of damping ratio of the structure have to be estimated. The natural
period can be calculated if the mass and the elastic stiffness of the system are estimated. The elastic stiffness
will be graphically approximated through the backbone curve of the pushover test in such a way, that the curve
is idealized by an elastoplastic force-displacement relationship. The yield force of the elastoplastic curve is
assumed to be equal to the maximum force of the backbone curve. The equivalent elastic stiffness is calculated
by aiming to equate the Area 1 with the Area 2 of the Figure 6.1 and Figure 6.2.

Following this procedure, the equivalent elastic stiffness of the elastoplastic force-displacement relationship in
the positive side can be approximated Keguivaien, E6KN/mm, whereas in the negative side is Keguiva-
lent, =3.8kN/mm. Both values will be employed to calculate two different elastic periods, in order to observe
what are the differences in the response mesures based on the response spectrum method. The two elastic
periods are equal to T;=0.4s and T,=0.5s respectively.

Additionally, a damping ratio equal to 5% is chosen. Furthermore, the peak ground acceleration of the seven
ground motions that are examined in this section should be determined. It should be mentioned that in order
the response spectrum to be consistent with the group of ground motions, the importance factor kyg which is
normally given in tables of the design code, is chosen in such a way that the acceleration of the response spec-
trum for natural period T=0 to be equal to the peak ground acceleration (S,(T=0)=pga).
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Figure 6.1. Backbone curve of pushover test for masonry Figure 6.2. Backbone curve of pushover test for masonry
assemblage with equivalent stiffness on the positive side. assemblage with equivalent stiffness on the negative side.
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Due to the fact that the NPR9998 is still under development, the formulas for the calculations are not revealed
in this study. However, the calculated values of the parameters are presented in the Table 7. The design forces
have been calculated by multiplying the mass (m) of the system by the ordinate of the design response spec-

trum (S(T)).

Parameter Signal 1 Signal 2 Signal 3 Signal 4 Signal 5 Signal 6 Signal 7
pga(g) 0.213 0.203 0.203 0.177 0.185 0.215 0.217
Ss 0.440 0.409 0.409 0.333 0.356 0.445 0.455
S 0.131 0.122 0.122 0.099 0.106 0.132 0.135
Fa 1.454 1.491 1.491 1.593 1.560 1.449 1.438
Fy 2.266 2.278 2.278 2.308 2.299 2.264 2.260
Sus 0.641 0.610 0.610 0.531 0.556 0.645 0.654
Sw 0.297 0.277 0.277 0.229 0.244 0.300 0.305
Te(s) 0.681 0.674 0.674 0.656 0.662 0.682 0.683
Te(9) 0.136 0.135 0.135 0.131 0.132 0.136 0.137
Ti (9 0.40 0.40 0.40 0.40 0.40 0.40 0.40
T2(9) 0.50 0.50 0.50 0.50 0.50 0.50 0.50
m (kg) 24560 24560 24560 24560 24560 24560 24560
q 2.00 2.00 2.00 2.00 2.00 2.00 2.00
S(Ty) 0.641 0.610 0.610 0.531 0.556 0.645 0.654
S(T2) 0.641 0.610 0.610 0.531 0.556 0.645 0.654
Su(Ta) 0.320 0.305 0.305 0.266 0.278 0.322 0.327
Su(T2) 0.320 0.305 0.305 0.266 0.278 0.322 0.327
Design force (N) 77629 73901 73905 64383 67383 78159 79256
77629 73901 73905 64383 67383 78159 79256
i 25.47 24.24 24.25 21.12 22.11 25.64 26.00
Displacement (mm)
39.79 37.88 37.88 33.00 34.54 40.06 40.62

Table 7. Calculation of design forces and maximum displacements through response spectrum method.

Where:
S :is the input spectral acceleration for short periods.
S :is the input spectral acceleration for long periods.
Fa : is the site coefficient for short periods.
F, . is the site coefficient for long period.
Sus : is the design spectral acceleration for short periods.
Svi :is the design spectral acceleration for long periods.
Ts : is the lower limit of the periods for which the spectral acceleration is constant, in s.
Te :is the upper limit of the periods for which the spectral acceleration is constant, in s.
T :is the fundamental period of a linear single degree of freedom system.
m . is the mass of the single degree of freedom system.
q :is the dimensionless behaviour factor that decreases the ordinates of the elastic spectrum.
(T : is the elastic response spectrum, in g.
(T :is the design response spectrum of ductile constructions, in g.

The bahaviour factor g controls the degree of the decrease of the elastic forces and it depends on the material
and the type of the structure. For masonries, the behavior factor takes vales between 1.5 and 2 and in this
study a behavior factor equal to 2 is chosen. It should be mentioned that in NPR 9998 a higher reduction com-
pared to these limits is also accepted, based on non-linear pushover analysis, but this is beyond the scope of
the thesis.
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Figure 6.3. Elastic (S¢(T)) and design (S4(T)) response spectrum
according to NPR 9998 for ground motion with pga=0.21g.

According to NPR 9998, when linear analysis is performed the displacements induced by the design seismic
action shall be calculated by multiplying the elastic deformations of the structural system by the behaviour
factor g4 which is employed to decrease elastic forces (Eq. (6.1)):

ds =0, [de (61)
Where:
ds :is the displacement of a point of the structural system induced by the design seismic action.
o .is the displacement behaviour factor, assumed equal to g unless otherwise specified.
de :is the displacement of the same point of the structural system, as determined by a linear

analysis based the design response spectrum (Eq. (6.2)).

d, = S,(7 EQ%T] (6.2

It can be noticed (Table 7) that the design forces for both estimated natural periods are the same. The reason
for this is that both periods belong to the plateau of the design spectrum (Figure 6.3); the horizontal part of the
design spectrum between Tg and Tc. In contrast, the estimated displacements differ for the two natural peri-
ods, because they have been estimated through the Eq. (6.2), in which it is obvious that they are a function of
the natural period.

6.1.2 Time history analysis of calibrated SDoF model

In this section the results of the maximum forces and the maximum displacements of the SDoF model which is
calibrated in section 3.5 and is subjected to an ensemble of seven ground motions similar to the ones in Gro-
ningen are presented (Table 8). The method of the solution of a SDoF system subjected to ground motion is
described in the section 3.4.

Parameter Signal1  Signal2  Signal3  Signal4  Signal5 Signal6  Signal 7
Max force (N) 58722 68564 68586 60561 65171 57688 72296
Max Displacement (mm) 29.71 34.61 30.03 21.68 33.05 24.11 45.43

Table 8. Maximum forces and maximum displacements calculated through time-history analysis.

6.1.3 Comparison

By comparing the maximum forces which are estimated by the response spectrum method with those calculat-
ed by the time history analysis of the calibrated SDoF system (Figure 6.4), it can be observed that in general
they are overestimated by the former method. This overestimation varies from 6% to 35 % depending on the
characteristics of the ground motion. By considering that the response spectrum method is a simplified method
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that allows a fast estimation of a structure subjected to earthquake load and taking into account that the over-
estimation of the results is on the safe side, the deviations can be acceptable.

However, when the maximum displacements are examined it can be noticed that there are large differences of
the results when they are calculated by those two methods of analysis. These differences, vary significantly
from signal to signal and they depend on the choice of the natural period of the structure. In the case that the
system is represented by the natural period T;=0.4s, the displacement is underestimated for the six ground
motions. This difference may be up to 75% less compared to the displacement calculated through the time-
history analysis of the calibrated SDoF system for the ground motion of the seventh signal. In contrast, if the
system is represented by natural period T,=0.5s, the response spectrum method overestimates the maximum
displacement calculated through the time-history analysis of the calibrated SDoF system for six of the signals.
However, even for this natural period the response spectrum method underestimates the displacement re-
sponse when the system is subjected to the seventh ground motion.

One possible reason for the underestimation of the maximum displacements by the response spectrum meth-
od of the NPR compared to the maximum displacements calculated through the time-history analysis of the
calibrated SDoF system, is the fact that the former method does not account for the permanent displacements
that may appear after a structure enters the non-linear regime. In contrast this phenomenon is present in the
latter method of analysis.
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Figure 6.5. Comparison of the maximum displacements
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and through time-history analysis of the calibrated SDoF
model.
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6.2 Sensitivity analysis

In this section, the degree of the influence of strength hardening, stiffness degradation, strength deterioration
and pinching on several response parameters of systems subjected to ground motions, is evaluated. In order to
do that 4116 idealized SDoF systems are developed. These systems are developed based on the 21 hysteretic
models (model 2 — model 22) of Table 1. For each model 196 different systems have been constructed with
varying period (T = 0.04s — 1.0s, with a time step of 0.02s) and varying yield force. The yield force has been
normalized by the maximum force of the corresponding elastic system. Four different ratios of yield force di-
vided by maximum elastic force are examined (Fy/Feima= 1, 0.75, 0.5, 0.25). When the ratio is equal to unity
the system is practically elastic and when the ratio is decreasing, we enter more into the non-linear regime. Let
us call these systems “advanced”, in order to distinguish them from the elastoplastic systems, once they incor-
porate enhanced non-linear behaviours.

These advanced systems are subjected to an ensemble of 167 different ground motions in order to evaluate:

¢ the maximum displacements,

¢ theresidual displacements (permanent displacement of the system at the end of the excursion),

¢ the total hysteretic energy (energy dissipated inelastically by the system),

e the total energy dissipated by the viscous damper,

e the total input energy (energy imparted to the system by the ground motion; which at the end of the
excursion is equal to the total of the energy dissipated by the viscous damper and the hysteretic en-
ergy),

¢ theratio of the hysteretic energy divided by the input energy.

Subsequently, these results are compared with the corresponding elastoplastic systems. In order to be con-
sistent in the comparisons, every elastoplastic system is chosen to have the same elastic period and to be able
to acquire the same maximum force as the advanced system with which is compared to. In order to achieve
this, the following steps are taking place:

1. The elastic period (Tg) of a SDoF elastic system is chosen and the elastic system is subjected to a ground
motion.

2. Through the elastic analysis of the SDoF system the maximum elastic force (Fe;ma) is calculated.

3. A non-linear system is developed with the same elastic period (Te), with yield force equal to Fy= Fejmaxor
Fy=0.75F¢ maxor Fy= 0.5F¢| maxor Fy=0.25 Fg maxand non-linear parameters according to one of the mod-
els (model 2 — model 22) of Table 1.

4. This system is subjected to the same ground motion and the six response parameters that are mentioned
in the bullets above are calculated.

5. At the same time the maximum force (Finemay Of the same non-linear system is calculated.
An elastoplastic system with the same elastic period (T and yield force equal to F' = Fine,maxis developed.

7. The elastoplastic system is subjected to the same ground motion and the six response parameters that are
mentioned in the bullets above are calculated.

8. Each response parameter calculated by the elastoplastic system is divided by the respective response pa-
rameter calculated by the advanced non-linear system.

These steps have been chosen by the author in order the resulting elastoplastic system to correspond to the
way that a backbone curve of a laboratory test is idealized by an elastoplastic force-displacement relationship,
according to the design codes (Figure 6.1).

The ratios that are produced on the last step of the previous procedure, indicate whether the response is over-
estimated or underestimated by the elastoplastic model, compared to each of the 21 hysteretic models. In that
sense, it is feasible to evaluate what is the influence of strength hardening, stiffness degradation, strength
deterioration and pinching on the response of a system.

The ratios of the results are presented in the form of contour plots, with respect to the initial elastic period of
the system and the yield force of the advanced systems divided by the maximum elastic force (Fy/Fema). The
color bar of the contour plots indicates that:
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¢ When the color is blue, the elastoplastic model underestimates the results compared to the results of
the advanced models.

¢ When the color is white, there is perfect match between the results of the elastoplastic model and the
results of the advanced models.

¢ When the color is yellow to red, the elastoplastic model overestimates the results compared to the re-
sults of the advanced models

Additionally, a complementary diagram that presents the Fourier spectrum of the input ground motion signals
with respect to the period has been incorporated (orange line), in order to give a better understanding of the
fluctuations that appear in the contour plots. This last diagram is employed in order to reveal the dynamics
behind the results.

The four non-linear behaviours that are investigated in this study are presented one by one in the following
paragraphs, where their influence to the response parameters is discussed. More emphasis is put on the results
of the maximum displacement, while when significant differences appear in the energies or the residual dis-
placements these are also mentioned. In general, in the following sections the results that correspond to the
group of long duration ground motions will be presented. When it is judged beneficial, these results are com-
pared to the results of other groups of ground motions or individual signals. The reader can find the plots of
the six response parameters calculated from the 21 hysteretic models as mean values of the 167 earthquakes
in the Appendix B.

6.2.1 Strength hardening

Firstly, the case in which the strength hardening effect is incorporated to the system is examined. Through the
Figure 6.7 - Figure 6.9 it can be noticed that when the stiffness ratio is increasing, the differences between the
elastoplastic model and the models that incorporate the strength hardening effect are fade out. This observa-
tion, which in the beginning seems paradoxical, is due to the choice to set the yield force of the elastoplastic

systems equal to the maximum force that appears in the advanced systems subjected to the same ground mo-
tion.

This effect can be explained through an example in terms of statics. If it is assumed that a system with stiffness
ratio ry = 0.2 and initial stiffness Kyis subjected to a load two times larger than the systems yield force (F=
2F,), the system will deform:

F F F F, 1.2Fy __F

Yy oy Ty o -6 63
K, rK, K, 02K, 02K, K, (6.3)

X =02 =

If we set the yield force of the elastoplastic system equal to F = 2F (this is what it has been done in this study),
the elastoplastic system subjected to the same load F = 2F, will deform:

2F
— y
er:() - KO (64)

It is obvious that the elastoplastic system seems to underestimate the displacement, because it remains elastic.
If instead the stiffness ratio was chosen equal to r, = 0.8, then the system would have deformed:
F F F F, _18F, F

=Yy Y = Y4 Y =225V
e THCTYK, K, 08K, 08K, K, (6.5)

Which, indicates that the difference with the elastoplastic system is much smaller.

This behaviour, of course applies when the system is subjected to static load. This fact seems to be more rele-
vant for systems with very short eigen-period (T, << 0.1s), at least for the mean response of the systems sub-
jected to long period earthquakes (Figure 6.7). The reason might be that in these systems the maximum dis-
placement is governed by the stiffness of the spring, due to the fact that most of the energy of the signal (judg-
ing by the Fourier spectrum of the signal) appears in periods T > 0.1s. This phenomenon becomes more appar-
ent when the yield force becomes smaller, because we enter more into the non-linear regime.
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r=0.2 subjected to long duration earthquakes. r=0.4 subjected to long duration earthquakes.
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Figure 6.9. Maximum displacement ratios for stiffness ratio  Figure 6.10. Maximum displacement ratios for stiffness ratio
r=0.8 subjected to long duration earthquakes. r=0.2 subjected to ground motion, record sequence no. 1551
(Table 9).

By observing the Figure 6.7 it can be seen that whether the maximum displacement response is overestimated
or underestimated by the elastoplastic system depends on the frequency content of the ground motion. More
specifically, for the periods close to the peaks of Fourier amplitude the elastoplastic system seems to overesti-
mate the response (yellow color in the contour plot); whereas, for the periods that are far from the peaks of
the Fourier amplitude elastoplastic system seems to underestimate the response (blue color in the contour
plot). This differences, are more apparent when the maximum displacement response is examined with respect
to a single ground motion (Figure 6.10).

By examining the residual displacements, it can be noticed that they are overestimated to a large degree by the
elastoplastic model. Due to the fact that the same color bar is used for every result for consistency reasons, it
cannot be seen clearly how large this overestimation is, but it is mentioned that the ratio in the case of the sys-

tems in Figure 6.11 it can reach as high values as 10. It should be underlined that, despite the fact that the
residual displacements have been recognized as a very reliable measure for the quantification of the perfor-
mance level of a structure subjected to earthquake load, it is not possible to be predicted approximately. This is
because the residual displacements are highly sensitive to the time history of the displacement response. More
specifically, this response measure depends on the number, the sequence and the direction of the large and
the small displacements, of the displacement response time-history.

When the hysteretic energy (Figure 6.12) is examined it is quiet peculiar the fact that for the case of low
strength hardening (r,=0.2) it is underestimated in the whole range of periods, despite the fact that the dis-
placements were overestimated by the elastoplastic model for small yield force and periods T > 0.25s. Accord-
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Figure 6.13. Hysteresis loops of an elastoplastic system and  Figure 6.14. Time-history of the sum of the hysteretic energy
a system with r=0.2, with T=0.84s and Fy/Fe‘max.for the last and the potential energy of an elastoplastic system and a
60% of the total loading cycles of the ground motion with system with ry=0.2, with T=0.84s and Fy/Fe'max.subjected to
record sequence no. 1106 (Table 9). the ground motion with record sequence no. 1106 (Table 9).

ing to this, the hysteretic energy would be also expected to be overestimated by the elastoplastic model for
the same region in the contour plot. This behaviour can be explained by examining the last 60% of loading
cycles of a SDoF system that was developed based on this model (model 2) and it has natural period T = 0.84s
and Fy/F® = 0.25 (Figure 6.13).

In this figure, it can be noticed that the last hysteresis Ioops4 of the elastoplastic model are much smaller than
the ones of the model that incorporates some degree of strength hardening. This is due to the reason that the
elastoplastic model results to large residual displacements and in the last cycles it is prone to oscillate around
these displacements, while the model that incorporates strength hardening tends to return closer to the initial
position. This phenomenon results to smaller cycles at the end of the excursion for the elastoplastic model.
This behavior can be also noticed in the time history that presents the energy of the spring (hysteretic energy
and potential energy) (Figure 6.14).

6.2.2 Stiffness degradation

When the stiffness degradation behavior is investigated independently from the strength hardening (Figure
6.15, Figure 6.16) it is noticed that the differences between the maximum displacement calculated by the elas-
toplastic model and the models that incorporate stiffness degradation are not very large. However, if another
group of ground motions is examined (Figure 6.17, Figure 6.18), large overestimations of the maximum

* The accumulation of the area of the hysteresis loops results to the hysteretic energy.
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Figure 6.17. Maximum displacement ratios for systems with  Figure 6.18. Maximum displacement ratios for systems with
low degree of stiffness degradation (model 5 Table 1) subject- high degree of stiffness degradation (model 6 Table 1) sub-
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Figure 6.19. Maximum displacement ratios for systems with  Figure 6.20. Maximum displacement ratios for systems with
low degree of stiffness degradation and stiffness ratio r,=0.2 high degree of stiffness degradation and stiffness ratio r,=0.2
(model 7 Table 1) subjected to long duration earthquakes. (model 10 Table 1) subjected to long duration earthquakes.

displacement response can be noticed. For this scenario, the most severe case seems to be the group of
ground motions that are similar to the earthquakes in Groningen. This behavior was expected, but it seems
that it is more apparent when the most of the energy of the signal is concentrated to a small period range, and
the eigen-period of the system, is much smaller than the aforementioned range of periods.
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Figure 6.21. Maximum displacement ratios for systems with  Figure 6.22. Maximum displacement ratios for systems with
low degree of strength deterioration (model 11 Table 1) sub- high degree of strength deterioration (model 14 Table 1)
jected to long duration earthquakes. subjected to long duration earthquakes.

The ground motions are far from a sinusoidal load, but in cases like in the Groningen ground motions, where
most of the peaks of the Fourier amplitude seem to appear in periods T > 0.3s, it might not be far from reality
to admit that for structures with short eigen-periods (T, << 0.2s) the maximum response is governed by the
stiffness of the system. Given that fact and due to the reason that stiffness degradation results to smaller stiff-
ness after a number of loading cycles the reason that the maximum displacements are underestimated by the
elastoplastic system (whose stiffness is not decreasing) can be explained.

Additionally, when the stiffness degradation is examined in addition to the strength hardening (Figure 6.21,
Figure 6.22), both effects are combined resulting to larger underestimation of the maximum displacement
response in the short period range (T < 0.25s).

6.2.3 Strength deterioration

When the strength deterioration is examined independently from the other non-linear behaviours (Figure 6.21,
Figure 6.22), it becomes apparent that the for short periods and low ratios of yield force divided by maximum
elastic force (Fy/Fe;ma) the maximum displacement is underestimated by the elastoplastic model. The degree
of underestimation is increasing when higher level of strength deterioration is present (Figure 6.22). Similarly,
when the level of strength deterioration increases, the range of periods on which the maximum displacement
is underestimated also increases.

The reason that strength deterioration seems to play a more important role in short period structures is due to
the fact that the strength deterioration is perceived and modelled as a quasi-static concept. More specifically,
regardless the fact that the strength degradation accounts for the loading cycles in terms of the amplitude and
the number of displacements, it does not account for the rate that the load is applied to the structure. In that
sense, when a structure has eigen-period much shorter than the range of periods where most of the energy of
the signals appears (according to the Fourier spectrum of the signal) the maximum displacement is governed by
spring force and the phenomenon becomes more static. Therefore, the strength deterioration as a quasi-static
behavior becomes more apparent.

When the strength deterioration is examined in addition to the non-linear behaviours of stiffness hardening
and stiffness degradation (Figure 6.22, Figure 6.23), all the effects are combined but it is still obvious that in
short period structures the response is underestimated by the elastoplastic model for the reason that is men-
tioned above. This behaviour can be very important when the Fourier spectrum resembles the group of ground
motions which are similar to the earthquakes in Groningen (Figure 6.25, Figure 6.26). This is not only because
the degree of overestimation is larger, but also because the range of the natural periods that are affected by
the strength deterioration behavior is twice as big as in the case of ground motions of long duration earth-
quakes. The reason for this is the same as in the case that stiffness degradation behavior is examined.
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Figure 6.23. Maximum displacement ratios for systems with
low degree of strength deterioration in addition to strength
hardening and stiffness degradation (model 15 Table 1) sub-
jected to long duration earthquakes.
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Figure 6.25. Maximum displacement ratios for systems with
low degree of strength deterioration in addition to strength
hardening and stiffness degradation (model 15 Table 1)
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6.2.4 Pinching
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Figure 6.24. Maximum displacement ratios for systems with
high degree of strength deterioration in addition to strength
hardening and stiffness degradation (model 18 Table 1) sub-
jected to long duration earthquakes.
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Figure 6.26. Maximum displacement ratios for systems with
high degree of strength deterioration in addition to strength
hardening and stiffness degradation (model 18 Table 1)
subjected to the group of earthquakes similar to Groningen.

By observing the maximum displacements calculated by systems that incorporate the pinching behaviour, with
or without combining it with the rest of the non-linear behaviours (Figure 6.27 - Figure 6.28), it is clear that
they are underestimated by the elastoplastic model. The maximum displacements are underestimated even
more by the elastoplastic model when the pitching effect is stronger. This behavior is not surprising, due to the
fact that the pinching effect is caused due to decrease of the stiffness to very low levels around the point of
origin. This gives the opportunity to the structure to move back to the position that it was half-cycle before
when the load reverses. Further increase of the load, displaces the structure even more in every cycle.

For the reasons that mentioned in previous section, it can be explained the fact that the underestimation of the
maximum displacements is larger when the phenomenon is less dynamic (short period structures).
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low pinching effect in addition to strength hardening, stiffnesshigh pinching effect in addition to strength hardening, stiff-

degradation and strength deterioration (model 21
subjected to long duration earthquakes.

Table 1)ness degradation and strength deterioration (model 22

Table 1) subjected to long duration earthquakes.
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7 Conclusions and recommendations

In this study the non-linear behaviours of strength hardening, stiffness degradation, strength deterioration and
pinching on the seismic response of SDoF systems is investigated. This investigation is performed in terms of:

e acalibration of a SDoF system to fit the pushover test of a real structure and
e asensitivity analysis of 5145 different hysteretic systems.

Main goal of the first part of the investigation is to figure out whether or not there are shortcomings in the
response spectrum method of the design code NPR 9998 regarding the calculation of maximum displacements.
For this reason, the calibrated system is subjected to seven ground motions that resemble the ground motions
in the area of Groningen in order to evaluate its response, based on a time-history analysis of a SDoF non-linear
system. In parallel, the response of the same structure is estimated through the linear inelastic response spec-
trum analysis method that is proposed by the NPR 9998. The comparison of the results showed that

e Regarding the maximum forces, the linear inelastic response spectrum analysis in general overesti-
mates the values which were calculated by the time-history analysis. This overestimation varies from
6% to 35%. Based on the fact that this is an approximated method and due to the reason that overes-
timation of the design forces is from the safe side, these deviations are acceptable.

e Regarding the maximum displacements, the linear inelastic response spectrum analysis in some cases
overestimates and in other cases underestimates the values that were calculated by the time-history
analysis. These differences depend on the choice of the eigen-period of the structure and the peak
ground acceleration. This observation makes the adequacy of the linear inelastic response spectrum
analysis method for the calculation of the maximum displacements questionable. It is worth mention-
ing, that the linear inelastic response spectrum analysis method does not account for the permanent
displacements and that is already a reason for the deviations compared to the time-history analysis.

Main goal of the second part of the investigation is to figure out the influence of the non-linear behaviours,
which were mentioned above, on idealized systems. This type of investigation reveals the tendency of some
non-linear behaviours to affect more than others some response parameters. The influence of the non-linear
behaviours is examined in comparison to the resulting response of equivalent elastoplastic systems. The elas-
toplastic systems have been developed in such a way that their force-displacement relationship envelopes the
maximum force of the models that incorporate non-linear effects. This method resembles the approach that
has been followed for the development of the behavior factor g which is employed by the linear inelastic re-
sponse spectrum analysis method in order to calculate the design forces. Therefore, the results of this study
may be valuable for the development of a more rational factor for the calculation of the design forces and
displacements.

In contrast with previous studies in this investigation the results are interpreted in the spectrum of dynamics,
by incorporating a complementary diagram of the Fourier spectrum of the input signal. The more important
results of this investigation can be summarized to the following:

¢ The behavior that seems to affect the most the maximum acceleration response is the pinching ef-
fect.

e Theresidual displacements in general are overestimated to a large degree by the elastoplastic model.

¢ Regarding the maximum displacements, their overestimation or underestimation by the elastoplastic
system seems to depend highly on the frequency content of the signal.

¢ Inthis work, it is observed that for short-period structures the elastoplastic model underestimates the
maximum displacement response, compared to models that incorporate strength hardening or stiff-
ness degradation or strength deterioration or pinching or combination of these effects.

e This phenomenon seems to be more apparent when the energy of the signal is concentrated in small
range of periods and the eigen-period of the system is much smaller than the mean period of this
range. An example such a ground motion is given by the group of the seven signals that are similar to
the ground motions of the area of Groningen.
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Taking into consideration these observations it becomes apparent that great care should be paid when the
maximum displacements are estimated by the linear inelastic response spectrum method of the design codes.
In addition, great care should be also paid when an elastoplastic model is used; because it may be assumed
that it is safe to employ such a model but in this study, it has been proven that depending on the input signal
and on the structural period this maybe not be the case.

Furthermore, in this study it is shown that regarding the maximum displacement response further investigation
is needed for the seismic response of buildings in Groningen. This is not only because most of the buildings in
that area have short eigen-period, but also because of the frequency content of the ground motions that were
recorded in the area. This combination has been shown in this study that leads to the largest underestimation
of the displacements by the elastoplastic model.

While this thesis was conducted a lot of questions has been raised. For some of them the answer is given by
the results but for others the answer hasn’t been given yet. Following, some of the questions are formed in
terms of recommendations for further work.

Firstly, most the biggest part of these study is based on idealized models. It is believed that the results will be
more valuable if the analyses are performed in terms of a large number of models that are calibrated in order
to fit the force-displacement diagrams of pushover tests that have been performed on several types of struc-
tures. Subsequently these models can be subjected to several ground motions and their response will be eval-
uated in comparison with an elastoplastic model.

Additionally, it has been mentioned that the hysteretic model which is used in this study is rate independent.
The load rate is taken into account by the viscosity. The first question that arises is to what extend is it accurate
to accept that only the viscosity can responsible for the rate that the load is applied. Secondly, how rational is
to assume that the viscous damper has a constant damping coefficient throughout the total excursion, when
non-linearity is examined. It is suggested a model that incorporates gradual change on the viscosity of the sys-
tem to be incorporated in a future model.

Furthermore, it would be very beneficial if a similar study would be performed in a shaking table of a laborato-
ry in which several structures with short eigen-periods (T < 0.25s) would be loaded by signals that resembles
the signals of Groningen in order to measure their response. At the same time the response would be calculat-
ed by an elastoplastic model with the same characteristics subjected to similar load. Though this it could be
shown if the remarks of this study can be validated or contradicted.

Finally, in this study it has been assumed that the models are isotropic. This means that initially they had the
same yield force and elastic stiffness in every direction, whereas the laws according to which the stiffness deg-
radation, the strength deterioration and the pinching effect evolve are also independent of the direction. Due
to the fact, that the real structures deviate from this model, it is advisable to investigate this behavior as well.
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Appendices

A MATLAB codes

A.1 Newmark beta method and Newton-Raphson iterations

%

% Newmark beta method for the solution of inelastic

% to ground motion. (c) Apostolos Bougioukos

%

% The location that the ground motion time-histor

file = dir ( ‘'Signals’ );

filea = ‘Signals\' , file(ii).name];

fileID = fopen(filea);

% Calls function that reads the ground motion sig

% NPTS: total number of samples in the signal

% Dt: time interval between samples

% recordings: the values of the samples

[NPTS,Dt,recordings] = fnc_Strong_motion(fileID);

% External force

F_external = m*recordings;

% Elastic period of system

periods = 1;

% vyield force of the system

fy= 1

% Damping ratio of the system

ksi=  0.02;

% Unit mass

m=1;

% Calculation of yield displacement

uy= (periods)"2*fy/(4*pi()*2*m);

% Calculation of elastic stiffness

k = fyluy;

% Calculation of damping coefficient

¢ = ksi*2*sqrt(m*k);

% Calculation of omega

omega_n = sqrt(k/m);

% Parameters of Newmark beta method

gamma = 1/2;

beta = 1/6;

% Initial conditions

X(1) = 0; u(1) = 0; x_max = 0;

%

% Initial calculations

%

% Define the function of the resisting force fs of

% Calculate a(1) acceleration at t=0.

% alphal, alpha2, alpha3: Are terms of the expressi

% force. These terms remain constant in every tim

kT(1) = k;

fs(1) = kKT(1)*x(1);

t = (O:NPTS-1)*Dt;

a(1) = -recordings(1);

alphal=1/(beta*Dt”2)*m + gamma / ( beta

alpha2 =1/ (beta*Dt) *m + (gamma/beta- 1

alpha3=(1/(2*beta)-1)*m+Dt*
(gamma/(2*beta)-1)*c;

SDoF system subjected

y is saved

nal and returns:

the inelastic system.

on of the residual
e step.

*Dt) *c;
)* ¢
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%
% Calculations for each time instan
%
% In the expression of the residual force we have t
% from iteration to iteration. These terms are co

% expression named p_unchanged.

% i represents the time instants.

% R is the residual force which is changing in ever
% Dx is the change in displacement from iteration t
% we give a value of 1 in order not to converge b
% iteration occurs.

% j represents the iteration.

% The iterations will continue till convergence occ

% Convergence criteria (one of them should be fulfi
% 1) Residual force less than a tolerance eR (in

% 2) Change in displacement less than a tolerance
% 107-8).

% 3) Incremental work done by the residual force
% change in displacement less than a tolerance ew
% tolerance).

eR =10"-3;

eu = 10"-3;

ew = 107-5;

i=0;

while i <NPTS-1
i=i+1;
X(i+1) = x(i);
u(i+1)  =u();
a(i+l) =af(i);

fs(i+1) = fs(i);

KT(i+1) = KT();

p_unchanged(i+1) = - recordings(i+1) + alphal *
alpha2 * u(i) + alpha3 * a

R(i+1) = 0.01;
%
% Calculation for each iteration, Newton-Ram
%

while  (abs(R(i+1)) > eR) ;

R(i+1) = p_unchanged(i+1) - fs(i+1) - alpha

kT_hat(i+1) = kT(i+1) + alphal;

Dx(i) = R(i+1) / KT_hat(i+1);

x(i+1) = x(i+1) + Dx(i);

du = x(i+1) - x(i);
% This fuction returns the tangent stiffness and re
% each iteration based on the hysteretic system we
% This part of the code will remain hidden but it m
% distributed uppon request.

[kT(i+1), fs] = fnc_Tangent_stiff( fs(i+1),
%
% Calculation of total velocity and relative acc
%

u(i+1) = gamma/ ( beta * Dt ) *( x(i+1) -
(1-gamma/ beta) * u(i) + Dt *
(1-gamma/(2*beta)) * a(i);

a(i+l) =1/ (beta*Dt"2)* (x (i+1)
1/ (beta*Dt) *u(i) -
(1/(2*beta)-1)*a();

End

t.

erms that do not change
llected and put into the

y iteration.
o iteration. Initially
efore the first

urs.
lled):

a range 10”-3 to 10”"-8).
eu (in arange 10"-3 to

acting through the
(near to computer

x(i) +

(i);

phson iterations

1 * x(i+1);

storing force in
have chosen.
ay be

x(i+1), du, k);
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%
% Calculations total acceleration
%

a_tot(i+1) = recordings(i+1) +a (i+1);
end

A.2 Function that reads ground motion files

%
% This script has been created ((c) Apostolos Bougi
% ground motion files in the format that are extrac
% motion database.

%
% This is a function that loads the file of the rec

% code as it has been downloaded from PEER, and re
% exerted by the strong motion to the SDOF system.
% It keeps the text of the file in different cell

% vector.

% Input of the function are:

% The name of the file of recordings, filelD.

% The mass of the system, m.

% Output of the function are:

% The Number of the records, NPTS [#].

% The time interval, Dt [sec].

% And the vector of the external force [N], versus

%
% The force versus time is simply calculated multip
% acceleration [m/s"2] with the mass m [kg] of the
% If the acceleration is given in G we multiply it

% In that case that the file is downloaded through
% always in g

%

oukos) in order to read
ted from PEER ground

ordings from the main
turns the external

and the data in a

time.

lying the ground motion
system.

with 9.81m/s"2.

the PEER database is

function  [NPTS,Dt,recordings] = Strong_motion_normalised(fi lelD)
tine= " ;
for k=1:4
tline = [tline, fgets(fileID)];
end
NPTS = str2double(regexp(tline, '(?<=NPTS=["0-9]*)[0-9]* , 'match' ));
Dt = str2double(regexp(tline, '(?<=DT=["0-9]*)[0-9]*\.?[0-9]+' , 'match' ));

C_data = textscan(filelD,
not = mod(NPTS,5);
if not>0
Nrows = fix(NPTS/5) + 1;
else
Nrows = fix(NPTS/5);
end
i=1;
recordings = zeros(1,Nrows*5);
for row = 1:Nrows
for col=1:5
if isnan(C_data{1,col}(row,1))
else
recordings(i) = C_data{1,col}(row,1)* 9
i=i+1;
end
end

'%f %f %f %6f %f  );

end
NPTS = length(recordings);
fclose(fileID);

.81;
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A.3 Fourier and power spectra

%

% Calculates and plots the Fourier and the Power spectrum of a signal
% (in periods) (c) Apostolos Bougioukos

%

file = dir ( 'Signals’ );

filea = 'Signals\' , file(ii).name];

filelD = fopen(filea);

[NPTS,Dt,recordings] = Strong_motion_normalised(fil elD);

% Calculate the root mean square
RMSAcc = rms(recordings)/9.81;
% Calculation of Fourier Amplitude through FFT
Fourier = abs(fft((recordings*Dt/9.81),NPTS));
% Calculation of Power Amplitude
Power = Fourier.”2/(pi()*Dt*NPTS*RMSAcc”2);
% Total time T_O of the signal
T_0 = (NPTS)*Dt;
f 0=1T_0;
for j=0:NPTS-1
if j>=0 && j<=NPTS/2
f(+1) =j*_0;
elseif  j>NPTS/2 && j<=NPTS-1
f(j+1) = -(NPTS-j)*f_0;
end
T(j+1) = L/A(j+1);
end
T _Fourier =T(1:NPTS/2);
Fourier_SP = Fourier(1:NPTS/2);
T _Power =T(1:NPTS/2);
Power_SP = Power(1:NPTS/2);
Figure
plot(T_Fourier, Fourier_SP)
Figure
plot(T_Power, Power_SP)

A.4 Inelastic response

Several scripts that control the non-linear behaviour of the inelastic systems have been built by the author of
this study. Each one incorporates different non-linear effects. None of these scripts will be presented here, but
may be distributed upon request.
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B Plots

In order to avoid a very extensive appendix, ratios of the 6 response parameters calculated for the 21 models
are presented as mean values of the total group of 167 ground motions. In the case that the 9 ground motion
groups would be presented here a total of 1134 plots should have been presented. However, the author of this
study can provide the reader with the plots upon request.

The ratios of the 6 response parameters:

Maximum displacements,

Residual displacements,

Total hysteretic energy,

Total dissipated energy,

Total input energy,

Fraction of the hysteretic energy divided by the input energy,

are presented in the following 21 pages, where each page represents one of the hysteretic models that are
presented in Table 1. It is reminded, that the contour plots present the ratios of the resulted response parame-
ters of the elastoplastic model normalized by the respective response calculated by the other
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Figure 0.1. Mean maximum displacement ratios for the Figure 0.2. Mean residual displacement ratios for the
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Figure 0.3. Mean total hysteretic energy ratios for the Figure 0.4. Mean total dissipated energy ratios for the
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Figure 0.5. Mean total input energy ratios for the
hysteretic model 2, subjected to all the ground motions.
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Figure 0.6. Mean ratios of the fractions of the hysteretic ener-

gy divided by the input energy for the hysteretic model 2,
subjected to all the ground motions.
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e Model 3 (High strength hardening)

2 2
1.8 1.8
o 0.08] o 0.08]
= 16 3 16
a 2 a
g 004 s 114 E S 4
< = < =
e c [ (=
2 002 g 412 8 5| 112
o @ o @Q
o g o g
w B 1 L a 1
o) ] 2
£E| 08 | (08
3 3
E 2
0.4 <2’§ 06 g 06
3 3
1,%— 06 \ 0.4 1,%— 04
\
=5 \ =
% 08 \ el b 0.2 % — ! 0.2
« 3 A N w - e 1 A
1 0.2 - . T 1 i 4 08 O
Elastic Period ( Elastic Period (
Figure 0.7. Mean maximum displacement ratios for the Figure 0.8. Mean residual displacement ratios for the
hysteretic model 3, subjected to all the ground motions. hysteretic model 3, subjected to all the ground motions.
2 2
1.8 1.8
o 0.08] o 0.08]
= 16 3 16
s s
E ol 114 E 0.044 o Mg
i g e 3
g 5| 12 2 5| 112
3 2 3 g
L w 1 w rd w 1
£ ; 3
D h =
g | {08 \ 8| o8
2 h! 2
0.4 T los 0.4 \ <N P
A\
3 3 g
5% 06 04 5% 06 \ 04
! - ! A
S 08 \\ S 02 S 08\ B 02
. T 08 1 0 > Yoo ey 08 1 0
1 02 0.4 0i6, ' 1 02 0.4 0i6, '
’ Elastic Period (5] ’ Elastic Period (8)
Figure 0.9. Mean total hysteretic energy ratios for the Figure 0.10. Mean total dissipated energy ratios for the
hysteretic model 3, subjected to all the ground motions. hysteretic model 3, subjected to all the ground motions.
2 2
; . 1.8 1.8
o 0.08] Vaal - o 0.08]
E peS 16 3 o 16
s s B
E 14 B 004 5 114
< N < 5
e F| 12 8 &) 112
3 > 3 =]
(s) = o a
i 5| 11 e £ 14
= -
b 5
§ 08 5 08
= w
0.4 0.6 0.4 & |06
72
3 3 =
’v% 0.6 0.4 1,%' 0.6 \ & 0.4
= - = h
% 02 % \ 02
¢ 08 b IR T U ¢ 08 \ IR T U
U N T 0‘6 08 1 0 W N T dﬁ 08 1 0
] 0.2 4 e it (6) ] 0.2 4 Beriad (8)
Elastic Period ( Elastic Period (
Figure 0.11. Mean total input energy ratios for the Figure 0.12. Mean ratios of the fractions of the hysteretic
hysteretic model 3, subjected to all the ground motions. energy divided by the input energy for the hysteretic model 3,

subjected to all the ground motions.

59



Effects of strength hardening, stiffness degradation, strength deterioration and pinching on the seismic response of SDoF

systems
e Model 4 (Extreme strength hardening)
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Figure 0.13. Mean maximum displacement ratios for the Figure 0.14. Mean residual displacement ratios for the
hysteretic model 4, subjected to all the ground motions. hysteretic model 4, subjected to all the ground motions.
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Figure 0.15. Mean total hysteretic energy ratios for the Figure 0.16. Mean total dissipated energy ratios for the
hysteretic model 4, subjected to all the ground motions. hysteretic model 4, subjected to all the ground motions.
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e Model 5 (Elastoplastic with low stiffness degradation)
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Figure 0.21. Mean total hysteretic energy ratios for the Figure 0.22. Mean total dissipated energy ratios for the
hysteretic model 5, subjected to all the ground motions. hysteretic model 5, subjected to all the ground motions.
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Figure 0.23. Mean total input energy ratios for the Figure 0.24. Mean ratios of the fractions of the hysteretic
hysteretic model 5, subjected to all the ground motions. energy divided by the input energy for the hysteretic model 5,

subjected to all the ground motions.

61



Effects of strength hardening, stiffness degradation, strength deterioration and pinching on the seismic response of SDoF

systems
e Model 6 (Elastoplastic with high stiffness degradation)
2 2
18 18
o 0.08 o 0.08]
= 16 3 16
a 2 a
g 0.04 | S 14 g 0.04 ] }‘QE 14
< = < =
e c [ (=
2 o002 £ 112 2 o002 g 112
2 8 3 g
i Vi AL w ! £
oy 4 o}/ 2
\ £E| 08 | (08
3 3
X £ 2
=
0.4 \\ z 06 0.4 2 06
3 b 3
1,%— 06 % 0.4 1,%— 086 0.4
\
% B 02 5 02
S 08\ N S 2  p————. -
b E-A_f—f*i—”_”ﬁ‘f_ii_ij 0.8 1 0 v " 0.8 1 0
1 0.2 - . T 1 i 4 08 O
Elastic Period ( Elastic Period (
Figure 0.25. Mean maximum displacement ratios for the Figure 0.26. Mean residual displacement ratios for the
hysteretic model 6, subjected to all the ground motions. hysteretic model 6, subjected to all the ground motions.
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Figure 0.27. Mean total hysteretic energy ratios for the Figure 0.28. Mean total dissipated energy ratios for the
hysteretic model 6, subjected to all the ground motions. hysteretic model 6, subjected to all the ground motions.
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Figure 0.29. Mean total input energy ratios for the Figure 0.30. Mean ratios of the fractions of the hysteretic
hysteretic model 6, subjected to all the ground motions. energy divided by the input energy for the hysteretic model 6,

subjected to all the ground motions.
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e Model 7 (Strength hardening with low stiffness degradation)
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Figure 0.31. Mean maximum displacement ratios for the Figure 0.32. Mean residual displacement ratios for the
hysteretic model 7, subjected to all the ground motions. hysteretic model 7, subjected to all the ground motions.
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Figure 0.33. Mean total hysteretic energy ratios for the Figure 0.34. Mean total dissipated energy ratios for the
hysteretic model 7, subjected to all the ground motions. hysteretic model 7, subjected to all the ground motions.
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Figure 0.35. Mean total input energy ratios for the Figure 0.36. Mean ratios of the fractions of the hysteretic
hysteretic model 7, subjected to all the ground motions. energy divided by the input energy for the hysteretic model 7,

subjected to all the ground motions.
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e Model 8 (Strength hardening with moderate stiffness degradation)
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Figure 0.37. Mean maximum displacement ratios for the Figure 0.38. Mean residual displacement ratios for the
hysteretic model 8, subjected to all the ground motions. hysteretic model 8, subjected to all the ground motions.
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Figure 0.39. Mean total hysteretic energy ratios for the Figure 0.40. Mean total dissipated energy ratios for the
hysteretic model 8, subjected to all the ground motions. hysteretic model 8, subjected to all the ground motions.
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Figure 0.41. Mean total input energy ratios for the Figure 0.42. Mean ratios of the fractions of the hysteretic
hysteretic model 8, subjected to all the ground motions. energy divided by the input energy for the hysteretic model 8,

subjected to all the ground motions.

64



Appendices

e Model 9 (Strength hardening with moderate stiffness degradation)

2 2
18 18
o 0.08 o 0.08]
= 16 3 16
a 2 a
g 0.04 | S 14 g 0.04 ] % 14
< = < =
e c [ (=
2 0.02] g g ) 2 .02 2 12
o @ o @Q
° g ° 8
w ¥ s 1 w I a 1
o) | oy B
£E| 08 = | {08
3 3
£ 2
0.4 % o6 0.4 8 os
=
3 3
=% 06 04 % 06 Dig
! !
S 08 \ oy 0.2 3 — 2 0.2
1 0.2 - . T 1 i 4 08 O
Elastic Period ( Elastic Period (
Figure 0.43. Mean maximum displacement ratios for the Figure 0.44. Mean residual displacement ratios for the
hysteretic model 9, subjected to all the ground motions. hysteretic model 9, subjected to all the ground motions.
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Figure 0.45. Mean total hysteretic energy ratios for the Figure 0.46. Mean total dissipated energy ratios for the
hysteretic model 9, subjected to all the ground motions. hysteretic model 9, subjected to all the ground motions.
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Figure 0.47. Mean total input energy ratios for the Figure 0.48. Mean ratios of the fractions of the hysteretic
hysteretic model 9, subjected to all the ground motions. energy divided by the input energy for the hysteretic model 9,

subjected to all the ground motions.
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systems
e Model 10 (Strength hardening with high stiffness degradation)
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Figure 0.49. Mean maximum displacement ratios for the Figure 0.50. Mean residual displacement ratios for the
hysteretic model 10, subjected to all the ground motions. hysteretic model 10, subjected to all the ground motions.
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Figure 0.51. Mean total hysteretic energy ratios for the Figure 0.52. Mean total dissipated energy ratios for the
hysteretic model 10, subjected to all the ground motions. hysteretic model 10, subjected to all the ground motions.
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Figure 0.53. Mean total input energy ratios for the Figure 0.54. Mean ratios of the fractions of the hysteretic
hysteretic model 10, subjected to all the ground motions. energy divided by the input energy for the hysteretic model

10, subjected to all the ground motions.

66



Appendices

e Model 11 (Elastoplastic with low strength deterioration)
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Figure 0.55. Mean maximum displacement ratios for the Figure 0.56. Mean residual displacement ratios for the
hysteretic model 11, subjected to all the ground motions. hysteretic model 11, subjected to all the ground motions.
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Figure 0.57. Mean total hysteretic energy ratios for the Figure 0.58. Mean total dissipated energy ratios for the
hysteretic model 11, subjected to all the ground motions. hysteretic model 11, subjected to all the ground motions.
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Figure 0.59. Mean total input energy ratios for the Figure 0.60. Mean ratios of the fractions of the hysteretic
hysteretic model 11, subjected to all the ground motions. energy divided by the input energy for the hysteretic model

11, subjected to all the ground motions.
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e Model 12 (Elastoplastic with moderate strength deterioration)
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Figure 0.61. Mean maximum displacement ratios for the Figure 0.62. Mean residual displacement ratios for the
hysteretic model 12, subjected to all the ground motions. hysteretic model 12, subjected to all the ground motions.
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Figure 0.63. Mean total hysteretic energy ratios for the Figure 0.64. Mean total dissipated energy ratios for the
hysteretic model 12, subjected to all the ground motions. hysteretic model 12, subjected to all the ground motions.
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Figure 0.65. Mean total input energy ratios for the Figure 0.66. Mean ratios of the fractions of the hysteretic
hysteretic model 12, subjected to all the ground motions. energy divided by the input energy for the hysteretic model

12, subjected to all the ground motions.
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Fourier Amplitude

Figure 0.67. Mean maximum displacement ratios for the
hysteretic model 13, subjected to all the ground motions.

Fourier Amplitude

Figure 0.69. Mean total hysteretic energy ratios for the
hysteretic model 13, subjected to all the ground motions.

Fourier Amplitude

Figure 0.71. Mean total input energy ratios for the
hysteretic model 13, subjected to all the ground motions.
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Model 13 (Elastoplastic with moderate strength deterioration)
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Figure 0.68. Mean residual displacement ratios for the
hysteretic model 13, subjected to all the ground motions.
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Figure 0.70. Mean total dissipated energy ratios for the
hysteretic model 13, subjected to all the ground motions.
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Figure 0.72. Mean ratios of the fractions of the hysteretic
energy divided by the input energy for the hysteretic model
13, subjected to all the ground motions.
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e Model 14 (Elastoplastic with high strength deterioration)
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Figure 0.73. Mean maximum displacement ratios for the Figure 0.74. Mean residual displacement ratios for the
hysteretic model 14, subjected to all the ground motions. hysteretic model 14, subjected to all the ground motions.
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Figure 0.75. Mean total hysteretic energy ratios for the Figure 0.76. Mean total dissipated energy ratios for the
hysteretic model 14, subjected to all the ground motions. hysteretic model 14, subjected to all the ground motions.
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Figure 0.77. Mean total input energy ratios for the Figure 0.78. Mean ratios of the fractions of the hysteretic
hysteretic model 14, subjected to all the ground motions. energy divided by the input energy for the hysteretic model

14, subjected to all the ground motions.
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Fourier Amplitude

Figure 0.79. Mean maximum displacement ratios for the
hysteretic model 15, subjected to all the ground motions.

Fourier Amplitude

Figure 0.81. Mean total hysteretic energy ratios for the
hysteretic model 15, subjected to all the ground motions.

Fourier Amplitude

Figure 0.83. Mean total input energy ratios for the
hysteretic model 15, subjected to all the ground motions.

Model 15 (Strength hardening, with stiffness degradation and with low strength deterioration)
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Figure 0.80. Mean residual displacement ratios for the
hysteretic model 15, subjected to all the ground motions.
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Figure 0.82. Mean total dissipated energy ratios for the
hysteretic model 15, subjected to all the ground motions.
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Figure 0.84. Mean ratios of the fractions of the hysteretic
energy divided by the input energy for the hysteretic model
15, subjected to all the ground motions.

71



Effects of strength hardening, stiffness degradation, strength deterioration and pinching on the seismic response of SDoF
systems

e Model 16 (Strength hardening, with stiffness degradation and with moderate strength deterioration)
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Figure 0.85. Mean maximum displacement ratios for the Figure 0.86. Mean residual displacement ratios for the
hysteretic model 16, subjected to all the ground motions. hysteretic model 16, subjected to all the ground motions.
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Figure 0.87. Mean total hysteretic energy ratios for the Figure 0.88. Mean total dissipated energy ratios for the
hysteretic model 16, subjected to all the ground motions. hysteretic model 16, subjected to all the ground motions.
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Figure 0.89. Mean total input energy ratios for the Figure 0.90. Mean ratios of the fractions of the hysteretic
hysteretic model 16, subjected to all the ground motions. energy divided by the input energy for the hysteretic model

16, subjected to all the ground motions.
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e Model 17 (Strength hardening, with stiffness degradation and with moderate strength deterioration)

2 2
18 18
o 0.08 o 0.08]
= 16 3 16
a 2 a
g 0.04 | S 14 g 0.04 ] }‘QE 14
< = < =
Py 5 5 g
2 0.02, g 12 2 0.02) g 1.2
o @ o @D
° g ° 8
w ¥ s 1 w ! a 1
oy 3 o} =]
‘-\‘ E| 08 % T | {08
3 3
A E A =1
04 \\ % o6 0.4 \ 8 os
3 X = 3
1‘%— 0.6 A\.‘ 04 1‘%— 0.6 0.4
5 :'\ 0.2 5 0.2
S 08 Y N S 2  p—— —
u E_‘_i_,,‘\_ff—ffﬂ"”_iﬁ" 08 1 0 U P = e 1 0
1 0.2 - . T 1 i 4 08 O
Elastic Period ( Elastic Period (
Figure 0.91. Mean maximum displacement ratios for the Figure 0.92. Mean residual displacement ratios for the
hysteretic model 17, subjected to all the ground motions. hysteretic model 17, subjected to all the ground motions.
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Figure 0.93. Mean total hysteretic energy ratios for the Figure 0.94. Mean total dissipated energy ratios for the
hysteretic model 17, subjected to all the ground motions. hysteretic model 17, subjected to all the ground motions.
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Figure 0.95. Mean total input energy ratios for the Figure 0.96. Mean ratios of the fractions of the hysteretic
hysteretic model 17, subjected to all the ground motions. energy divided by the input energy for the hysteretic model

17, subjected to all the ground motions.
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e Model 18 (Strength hardening, with stiffness degradation and with high strength deterioration)
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Figure 0.97. Mean maximum displacement ratios for the Figure 0.98. Mean residual displacement ratios for the
hysteretic model 18, subjected to all the ground motions. hysteretic model 18, subjected to all the ground motions.
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Figure 0.99. Mean total hysteretic energy ratios for the Figure 0.100. Mean total dissipated energy ratios for the
hysteretic model 18, subjected to all the ground motions. hysteretic model 18, subjected to all the ground motions.
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Figure 0.101. Mean total input energy ratios for the Figure 0.102. Mean ratios of the fractions of the hysteretic
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e Model 19 (Elastoplastic with low pinching effect)
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Figure 0.103. Mean maximum displacement ratios for the
hysteretic model 19, subjected to all the ground motions.
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Figure 0.105. Mean total hysteretic energy ratios for the
hysteretic model 19, subjected to all the ground motions.
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Figure 0.107. Mean total input energy ratios for the
hysteretic model 19, subjected to all the ground motions.

2
S 18
o 0.08 —
E A 16
= WV
& A
g 004 W S M4
< bt L
5 il g
2 002 g 112
3 2
w / £ 1
«
0 5
5| |os
3
2
2
0.4 & Hlos
"
w
w2 J 04
w\_: 0.6
% 02
W 5
IRma 0.6 0.8 ! 0
0.2

0.4
Elastic Period (8)

Figure 0.104. Mean residual displacement ratios for the
hysteretic model 19, subjected to all the ground motions.

2
BN 18
o 0.08 —
E W 16
s i
g 004 W ol 14
s i 8
2 o002 A 5| 112
3 2
g / gl
0, 8
8| o8
2
0.4 o Bos
"
w
e 04
w\_: 0.6
Rel -
3 02
\E, 0.8 o R
A i 1 0
v 0.6 0.8
4 02 0

4
Elastic Period (8)

Figure 0.106. Mean total dissipated energy ratios for the
hysteretic model 19, subjected to all the ground motions.
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Figure 0.108. Mean ratios of the fractions of the hysteretic
energy divided by the input energy for the hysteretic model
19, subjected to all the ground motions.
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*  Model 20 (Elastoplastic with high pinching effect)
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Figure 0.109. Mean maximum displacement ratios for the
hysteretic model 20, subjected to all the ground motions.
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Figure 0.111. Mean total hysteretic energy ratios for the
hysteretic model 20, subjected to all the ground motions.
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Figure 0.113. Mean total input energy ratios for the
hysteretic model 20, subjected to all the ground motions.
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Figure 0.110. Mean residual displacement ratios for the
hysteretic model 20, subjected to all the ground motions.
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Figure 0.112. Mean total dissipated energy ratios for the
hysteretic model 20, subjected to all the ground motions.
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Figure 0.114. Mean ratios of the fractions of the hysteretic
energy divided by the input energy for the hysteretic model
20, subjected to all the ground motions.
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e Model 21 (Strength hardening, with stiffness degradation, strength deterioration and low pinching)
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Figure 0.115. Mean maximum displacement ratios for the
hysteretic model 21, subjected to all the ground motions.
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Figure 0.117. Mean total hysteretic energy ratios for the
hysteretic model 21, subjected to all the ground motions.
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Figure 0.119. Mean total input energy ratios for the
hysteretic model 21, subjected to all the ground motions.
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Figure 0.116. Mean residual displacement ratios for the
hysteretic model 21, subjected to all the ground motions.
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Figure 0.118. Mean total dissipated energy ratios for the
hysteretic model 21, subjected to all the ground motions.
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Figure 0.120. Mean ratios of the fractions of the hysteretic
energy divided by the input energy for the hysteretic model
21, subjected to all the ground motions.
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e Model 22 (Strength hardening, with stiffness degradation, strength deterioration and high pinching)
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Figure 0.121. Mean maximum displacement ratios for the
hysteretic model 22, subjected to all the ground motions.
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Figure 0.123. Mean total hysteretic energy ratios for the
hysteretic model 22, subjected to all the ground motions.

2
18
o 0.08,
- 16
=]
2 0.04] .
2 ol |
: | ot
2 ooz W N
; =
) 2 1
0 ;
2| fos
0.4 .
2
©
N 0.4
T3 b
2 R VI 02
- | il el S e 1 :
: \ 0 0.6 0.8

4
Elastic Period (8)

Figure 0.125. Mean total input energy ratios for the
hysteretic model 22, subjected to all the ground motions.
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Figure 0.122. Mean residual displacement ratios for the
hysteretic model 22, subjected to all the ground motions.
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Figure 0.124. Mean total dissipated energy ratios for the

hysteretic model 22, subjected to all the ground motions.
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Figure 0.126. Mean ratios of the fractions of the hysteretic
energy divided by the input energy for the hysteretic model
22, subjected to all the ground motions.
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C Strong motion data
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Effects of strength hardening, stiffness degradation, strength deterioration and pinching on the seismic response of SDoF

systems
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Appendices

* Signals similar to Groningen ground motions
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FigureD.1. Signal 1: Signal spectrally matched to the ground motions recorded in Groningen.
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Signal 2: Signal spectrally matched to the ground motions recorded in Groningen.
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FigureD.3. Signal 3: Signal spectrally matched to the ground motions recorded in Groningen.
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FigureD.4. Signal 4: Signal spectrally matched to the ground motions recorded in Groningen.
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FigureD.5. Signal 5: Signal spectrally matched to the ground motions recorded in Groningen.
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FigureD.6. Signal 6: Signal spectrally matched to the ground motions recorded in Groningen.
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