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Abstract

An Application Programming Interface (API) provides a specific set of functional-
ities to a developer, with the aim of enabling reuse. APIs have been investigated from
different angles such as popularity usage and evolution, to get a better understanding
of their various characteristics. For such studies software repositories are mined for
API usage examples. However, the mining algorithms used for such purposes do not
take type information into account, thus making the results imprecise.

In this thesis, we aim to rectify this by introducing fine-GRAPE, an approach that
produces fine-grained API usage information by taking advantage of type information
while mining API method invocations and annotations. fine-GRAPE establishes a
connection between a method invocation and the class of the API to which the method
belongs. By means of fine-GRAPE, we investigate API usages from Java projects
hosted on GitHub. We select five of the most popular APIs across GitHub Java projects
and collect historical API usage information by mining both the release history of these
APIs and the code history of every project that uses them.

We use the resulting dataset to perform four separate analyses. The first measures
the lag time of each client by leveraging the version information that has been col-
lected. We see that in most cases clients do not upgrade the version of the API that
they are using to the latest version. The consequence of this is that the lag time that
each client displays is quite high. The second study investigates the percentage of API
features that are used by using the type information in the dataset. The results of this
study show that a very small percentage of an API is actually used by clients in the
real world. Our third study aims to show the relation between popular features and
software quality. Finally, the fourth study analyzes the reaction of clients to the dep-
recation of API artifacts. Our deprecation study shows that most clients do not really
react to deprecated entities.
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Chapter 1

Introduction

An Application Programming Interface (API) is a set of functionalities provided by a third-
party component (e.g., library and framework) that is made available to software developers.
APIs are extremely popular as they promote reuse of existing software systems [47].

The research community has used API usage data for various purposes such as measur-
ing of popularity trends [66], charting API evolution [27], and API usage recommendation
systems [61].

For example, Xie et al. have developed a tool called MAPO wherein they have at-
tempted to mine API usage for the purpose of providing developers API usage patterns
[91]. Based on a developers’ need MAPO recommends various code snippets mined from
other open source projects. This is one of the first systems wherein API usage recommenda-
tion leveraged open source projects to provide code samples. Another example is the work
by L’́ammel et al. wherein they mined data from Sourceforge and performed an API usage
analysis of Java clients. Based on the data that they collected they present statistics on the
percentage of an API that is used by clients.

One of the major drawbacks of the current approaches that investigate APIs is that
they heavily rely on API usage information (for example to derive popularity, evolution,
and usage patterns) that is approximate. In fact, the state of the art considers as “usage”
information what can be gathered from file imports (e.g., import in Java) and the occurrence
of method names in files.

This data is an approximation of the real situation as there is no type checking to verify
that a method invocation truly does belong to the API in question and that the imported
libraries are used. Moreover, previous work was based on small sample sizes in terms
of number of projects analyzed. This could result in an inaccurate representation of the
phenomena under study.

With the current work, we try to overcome the aforementioned issues by devising fine-
GRAPE (fine-GRained APi usage Extractor), an approach able to extract type-checked API
method invocation information from Java programs and we use it to collect detailed histori-
cal information on five APIs and how their public methods are used over the course of their
entire lifetime by 20,263 client projects.

In particular, we collect data from the open source software (OSS) repositories on
GitHub. GitHub in recent years has become the most popular platform for OSS devel-
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1. INTRODUCTION

opers, as it offers distributed version control, a pull-based development model, and social
features [11]. We consider Java projects hosted on GitHub that offer APIs and quantify their
popularity among other projects hosted on the same platform. We select 5 representative
projects (from now on, we call them only APIs to avoid confusion with client projects) and
analyze their entire history to collect information on their usage. We get fine-grained infor-
mation about method calls using a custom type resolution that does not require to compile
the projects.

The result is an extensive dataset for research on API usage. It is our hope that our data
collection approach and dataset not only will trigger further research based on finer-grained
and vast information, but also make it easier to replicate studies and share analyses.

Based on the dataset that we have created, we perform four separate analyses namely:
an investigation into the upgrade behavior of clients of an API, a measurement of the per-
centage of an API that is being used, an investigation into relation between software quality
and popular parts of APIs and finally a study into the effect of deprecation of API artifacts
on the clients of the API.

Structure of this thesis. The background on API usage datasets is presented in chap-
ter 2. Chapter 3 presents the approach that has been applied to mine this data. For the ease
of future users of this dataset an overview of the dataset and some introductory statistics of
it can be found in the same chapter. Chapter 4 presents the first three applications on this
dataset. In chapter 5 we discuss the results from our study on the reaction to deprecated API
artifacts. Finally, in chapter 6 we summarize our contributions, list some future work and
conclude this thesis.
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Chapter 2

Background and Related Work

2.1 Background

Software Engineering is the discipline wherein a software engineer “writes a software com-
ponent that will be combined with components written by other software engineers to build
a system” [35]. To facilitate easy integration, components have to well documented and
should be easy to reuse. This is where APIs come in, as they are essentially components
written by a third party that perform a specific function.

APIs expose their functionality in multiple ways. The most standard manner to access
an API artifact is to make a method invocation on one of its classes. These method invoca-
tions can be static as in the case of the Apache Commons IO API or they could be on an
instantiated class as in the case of Google Guava. Another way APIs for APIs to expose
their functionality is by way of annotations. In Java, annotations are primarily used to insert
metadata in a Java class. Annotations provided by APIs are a simple and lightweight man-
ner of adding functionality to a client class. API classes can also be extended to add new
functionality or replace existing functionality. Other ways to access and API can be through
REST or SOAP based interfaces, however these are not the focus of our study.

Studying usage of APIs is not new. The earliest papers in this field were published
starting 1999. In the early days there was an absence of open source platforms available to
find API client code. As an alternative, research was conducted by mining of programming
language library usages in large open source projects such as Linux or Eclipse. Despite this
limitation, a number of analyses was done on the usage of the APIs. The first technique
used by Michail [65] employed data mining of association rules regarding APIs. The next
improvement that was made while mining APIs was to use search engines such as Google
and Yahoo to find code that matches a certain structure. This technique is called structural
mining. Around 2006, researchers started targeting the open source projects hosted by the
Apache foundation. The techniques employed to mine data from these projects were either
pattern matching, frequent itemset selection and import statement matching. Even though
Apache provides a rich source of client code, the amount of data is not that large. In the
modern day the rise of platforms such as Sourceforge and GitHub has provided to be a boon
to researchers as they host many millions of lines of client code, a number that eclipses that
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2. BACKGROUND AND RELATED WORK

of Apache. This lead to most researchers migrating to these project around the year 2008.
The mining techniques generally employed here are: frequent itemset mining, AST parsing,
building of code and pattern matching.

There are various end goals when it comes to mining of API usage. For each of these
end goals there is a specific granularity of API usage that has to be collected. By granularity
we consider the amount of information on the usage of the API artifact that is collected. The
finest level of granularity is the method level and the annotation level usage of APIs. At
this level all the method invocations on the various classes of the API and the usage of
API annotations are collected. The next level is the API class level granularity. Here a
connection is made between the imports of API classes as defined in the import statements
of a class file and the API classes that are in use. The coarsest level of granularity is the API
usage. The usage generally consists of API boiler plate code such as class instantiation and
the invocation of a couple of methods that help setup a certain feature of an API. Collection
of API usage can be performed on or more of these granularities based on the needs of a
researcher.

Collection of API usage samples is not in itself a goal. There are generally more com-
plex reasons behind the collection of usage. One research avenue in this area is to rec-
ommend API usage samples based on the past usage of the API; For example, there are
multiple search engines that can take the specification of desired functionality and suggest
API usage patterns based on that. API usage patterns can also be used in the field of bug
detection. For instance, if a developer does not follow a typical usage pattern of an API,
there is a chance that the developer is doing something wrong and a warning can be issued.
One of the main reasons to mine this kind of data is to inform an API developer as to how
their API is being used and as what parts of the API are popular and why that is the case.

Currently, a large number of studies try employing various techniques to mine APIs.
These techniques can mine the usage data at different granularities. The granularity of the
data to be collected is generally dictated by the end goal. In the following sections we take
a look at the various techniques employed and the end goals that are achieved to see as to
how and why API usages are mined.

2.2 Existing API mining techniques

Previous work mined API usage samples, for example in the context of code completion,
code recommendation, and bug finding. We see which techniques have been applied in the
past.

One of the more popular API usage mining techniques is that used by tools such as
MAPO [91] by Xie et al., S6 [75] by Steve Reiss and SNIFF [21] by Chatterjee et al.. These
tools all find code samples by either querying open source repositories such as Sourceforge
or by mining code search engines such as Codase [3]. They then run an AST parser over
the mined code samples to extract usage patterns. The upsides of this technique is that it is
fast and can be implemented in multiple languages. However, one major drawback is that
the ASTs mined from these code samples are type-resolved, thus there is a chance that the
patterns mined are not accurate. Tools such as S6 have tried to overcome this by creating a
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2.3. Use cases for API Usage datasets

context aware AST parser that is able to couple type information to the various AST nodes.
Researchers have developed tools such as Dynamine [59], JADET [88], Alattin [84]

and PR-Miner [55], All of which rely on the same mining technique i.e., frequent itemset
mining [9]. The idea behind this technique is that statements that occur frequently together
can be considered to be a usage pattern. This technique just as the previous one can result
in a high number of false positives, due to the lack of presence of type information for each
of the statements being parsed.

The earliest technique that was employed in mining API usage was used by the tool
CodeWeb [65] that was developed by Amir Michail. More recently it has been employed
in the tool Sourcerer [10] as well. This technique employs a data mining technique that is
called generalized association rule mining. An association rule is of the form (

∧
xεX x)⇒

(
∧

yεY y). This implies that for an event x that takes place, then an event y will also take
place with a certain confidence interval. The generalized association rule takes not just this
into account but also takes a node’s descendants into account as well. These descendants
represent specializations of that node. This allows this technique to take class hierarchies
into account while mining reuse patterns.

One of the most robust techniques developed is based on bytecode analysis. This has
been employed by Bruch et al. [18] for the purpose of building their code completion tool.
The idea behind this technique is that built class files of Java projects contain all the type
based information for all the method invocations made by that java file. This information
can be recovered by parsing the class files. To obtain these class files it is necessary to build
every client project of an API, and this can prove to be troublesome as not all clients build
due to various failures and there are often missing unresolved dependencies.

Another popularly used technique is called pattern matching and has been employed
most successfully by Milvea et al. in their tool AKTARI [66]. First, to correctly identify the
API that is being used in a Java class, the import statements are first parsed. Based on the
API that is being used, an attempt is made to match the names of all method invocations that
are used to the names of the methods in the API that is being referenced in that file. Based
on the connection that is made on the names, a usage pattern is distilled. This technique can
at times be imprecise due to the fact that method names are not always unique and could
relate to different APIs.

Recently, Moreno et al. [68] presented a technique to mine API usages using type re-
solved ASTs. To acquire the type-resolved ASTs their technique has to build all the client
projects and then use an AST parser on the Java code to retrieve the type-resolutions. As
previously mentioned in the context of bytecode analysis, this could result in the loss of
data, as some client projects may not build.

2.3 Use cases for API Usage datasets

There are four major lines of work related to the mining of API usage samples. They are:
bug detection, code completion, API recommendation and API property inference. In this
section we talk about how each line of work requires the mining of API usages.
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2. BACKGROUND AND RELATED WORK

• Bug detection: In the field of bug detection, API usage patterns are mined to find
erroneous usage patterns in client code. The general method of operation of each tool
that has been developed in this line of work is to compare the code of a client that
uses a specific API against the similar usages of the API that can be mined from open
source platforms. If there is a discrepancy between the client code and the popularly
used usage patterns, then there might be a chance that the client code is buggy.

• Code completion: Code completion tools use mined API usage datasets to infer the
popular ways in which API methods are invoked on API classes. With the informa-
tion contained in the dataset, one can draw conclusions as to what the most popular
features of an API are and these features are the ones that are suggested prominently
by a code completion tool.

• API recommendation: In the field of API recommendation, we see a lot of tools that
mine API usages on the fly. The aim of these tools is to provide a developer with API
usage samples for a specific API such that it is easier for the developer to use that
API. These tools ranked the API usage samples that are retrieved based on criteria
such as relevance and popularity.

• API property inference: Finally, API property inference research is done to expose
certain usage characteristics of APIs. For example, a study into the trends of API
usage was performed by Mileva et al. [66]. Here they mined API usages to see as to
what version of an API a client was using and what factors led to the client upgrading
or downgrading that version. Other work includes that of Stylos et al. [82] where they
tried to enhance documentation of APIs by looking at popular usages of the API.
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Chapter 3

The Approach - fine-GRAPE

3.1 Foreword

The approach detailed here was originally published in the paper “A dataset for API Us-
age” in the data track at MSR 2015. This paper has been subsequently invited to a journal
extension to the EMSE journal where it is currently under submission with the title “fine-
GRAPE: fine-Grained APi usage Extractor – An Approach and Dataset to Investigate API
Usage”. I was the first author on both these papers and they were written in collaboration
with Dr. Alberto Bacchelli.

3.2 Introduction

In the past we have seen approaches such as frequent itemset mining and pattern matching
to be the preferred API usage mining techniques. Other than the technique that is based on
bytecode analysis none of the other techniques take type information into account. This can
lead to inaccuracies in the analysis that is performed on the data that is gathered using one of
these techniques. We aim to rectify this by presenting a powerful, scalable and type-aware
approach to mine API usages from open source platforms.

In this chapter we present the 2-step approach that we use to collect fine-grained type-
resolved API usage information. (1) We collect data on project level API usage from
projects mining open source code hosting platforms (we target such platforms due to the
large number of projects they hosted) and use it to rank APIs according to their popularity
in order to select an interesting sample of APIs to form our dataset; (2) We apply our
technique, fine-GRAPE, to gather fine-grained type-based information on API usages and
collect historical usage data by traversing the history of each file of each API client.

3.3 Mining of coarse grained usage

In the construction of this dataset, we limit ourselves to the Java programming language,
one of the most popular programming languages currently in use [7]. This reduces the
types of programs that we can analyze, but has a number of advantages: (1) Due to the

7



3. THE APPROACH - FINE-GRAPE

popularity of Java there would be a large source of API client projects available for analysis
(2) Java is a statically typed language, thus making the collection of type-resolved API
usages easier. (3) It allows us to have a more defined focus and more thoroughly test and
refine fine-GRAPE Future work can be conducted to extend it to other typed-languages,
such as C#.

To ease the collection of data regarding project dependencies on APIs, we found it
useful to focus on projects that use build automation tools. In particular, we collect data
from projects using Maven, one of the most popular Java build tools. Maven employs the
use of a Project Object Model (POM) files to describe all the dependencies and targets of
a certain project. POM files contain artifact ID and version of each project’s dependency,
thus allowing us to know exactly which APIs (and version) a project uses. The following is
an example of a POM file entry:

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.8.2</version>

</dependency>

3.4 Fine-grained API usage

To ensure that precise API usage information is collected, one has to reliably link each
method invocation or annotation usage to class in the API to which it belongs. For our
purpose this can be achieved in four ways:

Text matching: This is one of the most frequently used techniques to mine API usage.
For example, it has been used in the investigation into API popularity performed by
Mileva et al. [66]. The underlying idea is to match explicit imports and corresponding
method invocations directly in the text of source code files.

Bytecode analysis: Each Java file when compiled produces one or more class files. Class
files contain Java bytecode that is platform independent. Another technique to mine
API usage is to parse byte code in these class files to find all method invocations
and annotation usages along with the class to which they belong to. This approach
guarantees accuracy as the class files contain all information related to Java program
in the Java file in question.

Partial program analysis: Dagenais et al. have created an Eclipse plugin called Partial
Program Analysis (PPA) [25]. This plugin is able to parse incomplete files and re-
cover type bindings on method invocations and annotations, thus identifying the API
class to which a certain API usage belongs.

AST analysis: Syntactically correct Java files can be transformed into an Abstract Syntax
Tree (AST). An AST is a tree based representation of code where each variable dec-
laration, statement or invocation forms a node of the tree. This AST can be parsed by
using a standard Java AST parser. The Java AST parser can also recover type based

8



3.4. Fine-grained API usage

information at each step which aids in ensuring accuracy when it comes to making a
connection between an API invocation and the class it belongs to.

All four of the aforementioned approaches can be applied for the purpose of collecting
API usage data, but come with different benefits and drawbacks.

The text-matching-based approach proves especially problematic in the case of im-
ported API classes that share method names, because method invocations may not be dis-
ambiguated without type-information. Although some analysis tools used in dynamic lan-
guages [30] handle these cases through the notion of ‘candidate’ classes, this approach is
sub-optimal for typed languages where more precise information is available.

The bytecode analysis approach is more precise, as bytecode is guaranteed to have the
most accurate information, but it has two different issues:

1. Processing class files requires these files to be available, which, in turn, requires being
able to compile the Java sources and, normally, the whole project. Even though the
projects under consideration use Maven for the purpose of building, unfortunately,
this does not guarantee that they can be built. If a project is not built, then the
class files associated with this project cannot be analyzed, thus resulting in a dropped
project.

2. To analyze the history of method invocations it is necessary to checkout each version
of every file in a project and analyze it. However, checking out every version of a
file and then building the project can be problematic as there would be an ultra-large
number of project builds to be performed. In addition to the time costs, there would
still be no warranty that some data would not be lost due build failure.

The partial program analysis approach has been extensively tested by Dagenais et al.
to show that method invocations can be type resolved in incomplete Java files. This is a
massive advantage as it implies that even without building each API client one can still
conduct a thorough analysis of the usage of an API artifact. However, the implementation
of this technique relies on Eclipse context, thus all parsing and type resolution of Java files
can only be done in the context of an Eclipse plugin. This requires that each and every Java
file is imported into an Eclipse workspace before it can be analyzed. Unfortunately, this
approach does not scale to a large number of projects.

Due to the various issues related to first three techniques, we find that the most suit-
able technique to employ is the AST based one. This technique utilizes the JDT Java AST
Parser [86], i.e., the parser used in the Eclipse IDE for continuous compilation in back-
ground. This parser handles partial compilation: When it receives in input a source code
file and a Java Archive (JAR) file with possibly imported libraries, it is capable of resolving
the type of methods invocation and annotations of everything defined in the code file or in
the provided jar.

We created fine-GRAPE that utilizes the aforementioned AST parsing technique that is
able to collect the entire history of usage of API artifacts over different versions. In practice,
we downloaded all the JAR files corresponding to the releases of the API projects chosen.
This had to be done manually from the Maven central site, however in the future we plan
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3. THE APPROACH - FINE-GRAPE

on automating this process. Then, fine-GRAPE uses Git to obtain the history of each file
in the client projects and runs on each file retrieved from the repository and the JAR with
the corresponding version of the API that the client project declares in Maven at the time of
the commit of the file. The fine-GRAPE leverages the visitor pattern that is provided by the
JDT Java AST parser to visit all nodes in the AST of a source code file of the type method
invocation or annotation. These nodes are type resolved and are stored in a temporary data
structure while we parse all files associated with one client project. This results in accurate
type-resolved method invocation references for the considered client projects through their
whole history. Once the parsing is done for all the files and their respective histories in the
client, all the data that has been collected is transformed into a relational database model
and is written to the database.

An API usage dataset can also contain the information on the method, annotations and
classes that are present in every version of every API for which usage data has been gathered
such that any kind of complex analysis can be performed. In the previous steps we have
already downloaded the API JAR files for each version of the API that is used by a client.
These JAR files are made up of compiled class files, where each class file relates to one Java
source code file. fine-GRAPE then analyzes these JAR files with the help of the bytecode
analysis tool ASM [19], and for each file the method, class and annotation declarations
are extracted. For each of these mined artifacts we can also see if they have been marked
as deprecated. In Java a deprecated entity is generally marked in source code with the
annotation @deprecated, the corresponding artifact is also marked as deprecated in the
database.

3.5 A Dataset for API Usage

Our dataset is constructed using data obtained from the open source code hosting platform
GitHub. GitHub stores more than 10 million repositories [38] written in different languages
and using a diverse set of build automation tools and library management systems.

3.5.1 Coarse-grained API usage: The most popular APIs

To determine the popularity of APIs on a coarse-grained level (i.e., project level), we parse
POM files for all GitHub based Java projects that use Maven (ca. 42,000). The POM files
were found after looking at the master branch of approximately 250,000 active Java projects
that are hosted on GitHub.1 Figure 3.1 shows a partial view of the results with the 20 most
popular APIs in terms of how many GitHub projects depend on them.

This is in-line with a previous analysis of this type published by Primat as a blog
post [73]. Interestingly, our results show that JUnit is by far the most popular, while Primat’s
results report that JUnit is just as popular as SLF4J. We speculate that this discrepancy can
be caused by the different sampling approach (he sampled 10,000 projects on GitHub, while
we sampled about 42,000 on GitHub), further research can be conducted to investigate this
aspect more in detail.

1As marked by GHTorrent [38] in September 2014
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Figure 3.1: Popularity of APIs referenced on Github

3.5.2 Selected APIs

We used our coarse-grained analysis of popularity as a first step to select API projects to
populate our database. To ensure that the selected API projects offer rich information on
API usage and its evolution, rather than just sporadic use by a small number of projects, we
consider projects with the following feature: (1) have a broad popularity for their public
APIs (i.e., they are in the top 1% of projects by the number of client projects), (2) have
an established and reasonably large code base (i.e., they have at least 150 classes in their
history), (3) and are evolved and maintained (i.e., they have at least 10 commits per week
in their lifetime). Based on these characteristics, we eventually select the five APIs summa-
rized in Table 3.1, namely Spring, Hibernate, Guava, and Guice and Easymock. We decide
to remove JUnit, being an outlier in popularity and having a small code base that does not
respect our requirements. We keep Easymock, despite its small number of classes and rel-
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atively low amount of activity in it’s repository (ca. 4 commits per week) to add variety to
our sample. The chosen APIs are used by clients in different ways: e.g., Guice clients use it
through annotations, while Guava clients instantiate an instance of a Guava class and then
interact with it through method invocations.

In the following, a brief explanation of the domain of each API:

1. Guava is the new name of the original Google collections and Google commons
APIs. It provides immutable collections, new collections such as multiset and mul-
timaps and finally some new collection utilities that are not provided in the Java SDK.
Guava’s collections can be accessed by method invocations on instantiated instances
of the classes built into Guava.

2. Guice is a dependency injection library provided by Google. Dependency injection
is a design pattern that separates behavioral specification and dependency resolution.
Guice allows developers to inject dependencies in their applications with the usage of
annotations.

3. Spring is a framework that provides an Inversion of Control(IoC) container. This
allows developers to access Java objects with the help of reflection. The Spring
framework comprises of a lot of sub projects, however we choose to focus on just
the spring-core, spring-context and spring-test modules due to their relatively high
popularity. The features provided by Spring are accessed in a mixture of method
invocations and annotations.

4. Hibernate Object Relational Mapping (ORM) provides a framework for mapping
an object oriented domain to a relational database domain. It is made up of a number
of components that can be used, however we focus on just two of the more popular
one i.e., hibernate-core and hibernate-entity manager. Hibernate exposes its APIs as
a set of method invocations that can be made on the classes defined by Hibernate.

5. Easymock is a testing framework that allows for the mocking of Java objects during
testing. Easymock exposes its API to developers by way of both annotations and
method invocations.

3.5.3 Data Organization

We apply the approach outlined in Section 3.2 and store all the data collected from all the
client GitHub projects and API projects in a relational database, precisely PostgreSQL. We
have chosen a relational database because the usage information that we collect can be
naturally expressed in forms of relations among the entities. Also we can leverage SQL
functionalities to perform some initial analysis and data pruning.

Figure 3.2 shows the database schema for our dataset. On the one hand we have in-
formation for each client project: The PROJECTS table is the starting point and stores a
project’s name and its unique ID. Connected to this we have PROJECTDEPENDENCY table,
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Table 3.1: Subject APIs

Unique Entities
API & GitHub repo Inception Releases

Classes Methods
Guava
google/guava

Apr 2010 18 2,310 14,828

Guice
google/guice

Jun 2007 8 319 1,999

Spring
spring-framework

Feb 2007 40 5,376 41,948

Hibernate
hibernate/hibernate-orm

Nov 2008 77 2,037 11,625

EasyMock
easymock/easymock

Feb 2006 14 102 623

ProjectDependency
pd_id INT

name VARCHAR(45)

version VARCHAR(45)

date_commit DATE

pr_id INT

Indexes

Projects
pr_id INT

project_name VARCHAR(45)

Indexes

Classes
cl_id INT

class_name VARCHAR(45)

pr_id INT

Indexes

Class_history
ch_id INT

change_date DATE

author_name VARCHAR(45)

log_message VARCHAR(45)

actual_file LONGTEXT

cl_id INT

Indexes

Method_invocation
mi_id INT

name VARCHAR(45)

parent_class VARCHAR(45)

ch_id INT

Indexes

Annotation
an_id INT

name VARCHAR(45)

parent_class VARCHAR(45)

ch_id INT

Indexes

Api
api_id INT

api_name VARCHAR(45)

Indexes

Api_version
v_id INT

version VARCHAR(45)

date_created DATE

api_id INT

Indexes

Api_class
c_id INT

package_name VARCHAR(45)

class_name VARCHAR(45)

is_deprecated BOOLEAN

v_id INT

Indexes

Api_method
m_id INT

method_name VARCHAR(45)

is_deprecated VARCHAR(45)

c_id INT

Indexes

Figure 3.2: Database Schema For The Fine-grained API Usage Dataset

which stores information collected from the Maven POM files about the project’s dependen-
cies. We use a DATE COMMIT attribute to trace when a project starts including a certain de-
pendency in its history. The CLASSES table contains one row per each uniquely named class
in the project; in the table CLASS HISTORY we store the different versions of a class (includ-
ing its textual content, ACTUAL FILE) and connect it to the tables METHOD INVOCATION

and ANNOTATION where information about API usages are stored. On the other hand, the
database stores information about API projects, in the tables prefixed with API. The start-
ing point is the table API that stores the project name and it is connected to all its versions
(table API VERSION, which also stores the date of creation), which are in turn connected
classes (API CLASS) and their methods (API METHOD) that also store information about
deprecation. Note that in the case of annotations we do not really collect them in a separate
table as annotations are defined as classes in Java.
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A coarse-grained connection between a client and an API is done with a SQL query on
the tables PROJECTDEPENDENCY, API and API VERSION. The finer-grained connection is
obtained by also joining METHOD INVOCATION/ANNOTATION and API CLASS on parent
class names & METHOD INVOCATION/ANNOTATION and API METHOD on method names.

The full dataset is available as a PostgreSQL data dump on FigShare [78], under the
CC-BY license. For platform limitations on the file size the dump has been split in various
tar.gz compressed files, for a total download size of 51.7 GB. The dataset uncompressed
requires 62.3 GB of disk space.

3.5.4 Introductory Statistics

Table 3.2 shows an introductory view about the collected usage data. In the case of Guava
for example, even though version 18 is the latest (see Table 3.1), version 14.0.1 is the most
popular among clients. APIs such as Spring, Hibernate and Guice predominantly expose
their APIs as annotations, however we see also a large use of the methods they expose. The
earliest usages of Easymock and Guice are outliers as GitHub as a platform was launched
in 2008, thus the repositories that refer to these APIs were moved to GitHub as existing
projects.

Table 3.2: Introductory usage statistics

Most popular Usage across history
API

release Invocations Annotations
Guava 14.0.1 1,148,412 —
Guice 3.0 59,097 48,945
Spring 3.1.1 19,894 40,525
Hibernate 3.6 196,169 16,259
EasyMock 3.0 38,523 —

3.6 Comparison to existing datasets

The work of Lammel et al. is the closest to the dataset we created with fine-GRAPE. They
target open source Java projects hosted on the Sourceforge platform and their API usage
mining method relies on type resolved ASTs. To acquire these type resolved ASTs they
build the APIs client projects and resolve all of its dependencies. This dataset contains a
total of 6,286 client projects that have been analyzed and the invocations for 69 distinct
APIs have been identified.

Our dataset as well as that of Lammel et al. target Java based projects, though the clients
that have been analyzed during the construction of our dataset were acquired from GitHub
as opposed to Sourceforge. Our approach also relies on type resolved Java ASTs, but we do
not build the client projects as fine-GRAPE is based on a technique able to resolve parsing
of a standalone Java source file. In addition, the dataset by Lammel et al. only analyzes the
latest build. In terms of size this dataset is comprised of usage information gleaned from
20,263 projects as opposed to the 6,286 projects that make up the Lammel et al. dataset.
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3.6. Comparison to existing datasets

However, this dataset contains information on only 5 APIs whereas Lammel et al. identified
usages from 69 APIs.

15





Chapter 4

Investigating Properties of APIs

4.1 Foreword

The first two studies that have been performed here have been included in the paper “fine-
GRAPE: fine-Grained APi usage Extractor – An Approach and Dataset to Investigate API
Usage” which is currently in submission at the EMSE journal. On this paper I was the first
author and I was also in charge of aggregating the results and performing analysis. This
paper was co-written with Dr. Alberto Bacchelli. The third study is based on my work
in Atlanta at the Georgia Institute of Technology under the supervision of Dr. Alessandro
Orso. This study is still under work and is targeted for MSR 2016.

4.2 Introduction

In chapter 3 we see the technique fine-GRAPE has been developed which aids in the gath-
ering of type-checked API usages from large scale open source platforms such as GitHub.
Using this technique, we have constructed our own dataset for 5 APIs. An API usage dataset
and the approach used to create said dataset is not a large enough contribution, to this end
we perform a couple of analyses that showcase the data in this dataset.

API usage datasets are generally a by-product of some kind of empirical analysis study
that is performed or the development of a tool. An example of this can been seen in the work
of Sourcerer [10] where a large API usage database has been created and based on which an
API recommendation system has been developed. In this context we conduct experiments
based on an already created database. Our hope is that this shows the versatility of the
dataset constructed using our technique.

In this chapter we perform three studies on our dataset. The first study looks into the
API version upgrade behavior of clients of APIs. We see as to whether or not clients lag
behind the latest version of an API by a long time or by a short time. This can give us an
insight into whether or not clients find it beneficial to upgrade the version of the API being
used. The second study looks at the proportion of the various APIs that is being used. We
try to see as to what parts of an API are popular and what parts are unpopular among users.
We try to analyze as to what may contribute to making some of the features more popular
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than the other. The third study looks at the link between the popularity of API artifacts and
the code quality of those features. We postulate that the more popular the feature the more
bug reports will be filed about that feature. We investigate this hypothesis by way of four
research questions.

Structure of the chapter. Section 4.3 presents the first study about the nature of client
migration to new versions of an API. In section 4.4 we present the second study on the
percentage of features of an API that are used. Section 4.5 elaborates on the third analysis
performed on the connection between API popularity and software quality. In section 4.6
we discuss the limitations of the dataset when it comes to performing the aforementioned
case studies. Finally we conclude the chapter in section 4.7.

4.3 Study 1: Do clients of APIs migrate to a new version of the
API?

As with other software systems, APIs also evolve over time. A newer version may replace
an old functionality with a new one, may introduce a completely new functionality, or may
fix a bug in an existing functionality. Some infamous APIs, such as Apache Commons-IO,
are stagnating since long time without any major changes taking place, but to build our API
dataset we took care of selecting APIs that are under active development, so that we could
use it to analyze as to whether clients react to a newer version of an API.

4.3.1 Methodology

API Version: 7
Release Date: August 2010

API Version: 8
Release Date: October 2010

Client Code
Commit Date: November 2010
Version Used: 7

Lag Time
API Timeline

Client Timeline

Figure 4.1: An example of the lag time metric inspired by McDonnell et al. [64]

We use the lag time metric, as previously defined by McDonnell et al. [64], to determine
the amount of time a client is behind the latest release of an API that it is using. Lag time is
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defined as the amount of time elapsed between a client’s API reference and the release date
of the latest version. A client lags if it uses an old version of an API when a newer version
has already been released. For example, in Figure 4.1, client uses API version 7 despite
version 8 being already released. The time difference between the client committing code
using an older version and the release date of a newer version of the API is measured as the
lag time.

In practice, we consider the commit date of each method invocation (this is done by
performing a join on the METHOD INVOCATION and CLASS HISTORY tables), determine
the version of the API that was being used by the client at the time of the commit (the
PROJECT DEPENDENCY table contains information on the versions of the API being used
by the client and the date at which the usage of a certain version was employed), then
consider the release date of the latest version of the API that existed at the time of the
commit (this data can be obtained from the API VERSION table in the database), and finally
combine this information to calculate the lag time for each reference to the API and plot the
probability density.

Lag time can indicate how far a project is at the time of usage of an API artifact, but it
does not give a complete picture of the most recent state of all the clients using an API. To
this end, we complement lag time analysis with the analysis of the most popular versions of
each API, based on the latest snapshot of each client of the API (we achieve this by querying
the PROJECT DEPENDENCY table to get the latest information on clients).

4.3.2 Results

Results are summarized in four figures. Figure 4.2 shows the probability density of lag time
in days, as measured from API clients, and Figure 4.3 shows the distribution of this lag
time. Figure 4.3 shows frequency of adoption of specific releases: the three most popular
ones, the latest release (available at the creation of this dataset), and all the other releases.
Table 4.1 further specify the dates in which these releases were made public and provides
absolute numbers. Finally, Figure 4.5 depicts the frequency and number of releases per API.
The data we have ranges from 2004 to 2014, however for space reasons we only depict the
range 2009 to 2014. Each year is divided into 3 slots of 4 month periods, and the number
of releases in each of these periods is depicted by the size of the black circle.

Guava. In the case of the 3,013 Guava clients on GitHub the lag time varies between 1
day and 206 days. The median lag time for these projects is 67 days. The average
amount of time a project lags behind the latest release is 72 days. Figure 4.2 shows the
cumulative distribution of lag time across all clients. Since Guava generally releases
5 versions on average per year, it is not entirely implausible that some clients maybe
one or two versions behind at the time of usage of an API artifact.

Although the latest (as of September 2014) version of Guava is 18, the most popular
one is 14 with almost one third of the clients using this version (as shown in Fig-
ure 4.3). Despite 4 versions being released after version 14 none of them figure in
the top 5 of most popular versions. Version 18 has been adopted by very few clients
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Figure 4.2: Probability density of lag time in days, by API
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Figure 4.3: Proportion of release adoption, split in the 3 most popular, the latest, and all the
other releases, by API

(41 out of 3,013). None of the other newer versions (16 and 17) make it in the top 5
either.

Spring. Spring clients lag behind the latest release up to a maximum of 304 days. The
median lag time is 33 days and the first quartile is 15 days. The third quartile of the
distribution is 60 days. The average amount of lag time for the usages of various API
artifacts is 50 days. Spring is a relatively active API and releases an average of 7
versions (including minor versions and revisions) per year (Figure 4.5).

At the time of collection of this data, the Spring API had just released version 4.1.0
and only a small portion (30) of projects have adopted it. The most popular version
is 3.1.1 (2,013 projects) as is depicted in Figure 4.3. We see that despite the major
version 4 of the Spring API being released in December 2013, the most popular major
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Table 4.1: Publication date, by API, of the 3 most popular and latest releases, sorted by the
number of their clients

API Release Release Date Num of clients (%)
14 03-2013 868 (29%)
13 08-2012 557 (19%)
11 02-2012 291 (10%)

Guava

18 08-2014 41 (1%)
3.1.1 02-2012 2,013 (14%)
3.0.5 10-2010 1,602 (11%)
3.1.0 12-2011 1,489 (10%)

Spring

4.1.0 10-2014 30 (0.2%)
3.6.10 02-2012 376 (6%)
4.1.9 12-2012 352 (6%)
3.3.2 06-2009 288 (5%)

Hibernate

4.3.6 07-2014 32 (0.5%)
3.0.0 03-2011 536 (83%)
2.0.0 07-2009 53 (8%)
1.0.0 05-2009 14 (2%)

Guice

4.0.0-b4 03-2014 3 (0.5%)
3.0.0 05-2010 211 (33%)
3.1.0 11-2011 190 (29%)
2.5.2 09-2009 55 (9%)

Easymock

3.2.0 07-2013 42 (6%)

version remains 3. In our dataset, 344 projects still use version 2 of the API and 12
use version 1.

Hibernate. The maximum lag time observed over all the usages of Hibernate artifacts is
271 days. The median lag time is 18 days, and the first quartile is just 10 days. The
third quartile is also just 26 days. The average lag time over all the invocations is 19
days. We see in Figure 4.2 that most invocations to Hibernate API do not lag behind
the latest release considerably, especially in relation to the other APIs, although a few
outliers exist. Hibernate releases 17 versions (including minor versions and revisions)
per year (Figure 4.5).

Version 4.3.6 of Hibernate is the latest release that available on Maven central at the
dataset creation time. A very small portion of projects (32) use this version, and the
most popular version is version 3.6.10, i.e., the last release with major version 3. We
see that a large number of clients have migrated to early versions of major version
4. For instance, version 4.1.9 is almost (352 projects versus 376 projects) as popular
as version 3.6.10 (shown in Figure 4.3). Interestingly, in the case of Hibernate, from
our data we see that there is not a clearly dominant version as all the other versions
of Hibernate make up about three fourths of the current usage statistics.
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Figure 4.4: Lag time distribution in days, by API

Guice. Among all usages of the Guice API, the largest lag time is 852 days. The median
lag time is 265 days and the first quartile of the distribution is 80 days. The average
of all the lag times is 338 days. The third quartile is 551 days, showing that a lot of
projects have a very high lag time. Figure 4.2 shows the cumulative distribution of
lag times across all Guice clients. Guice is a young API and, relatively to the other
APIs, releases are few and far between (10 releases over 6 years, with no releases on
2010 or 2012, Figure 4.5).

The latest version of Guice that has been released, before the construction of our
dataset, is the fourth beta of version 4 (September 2014). Version 3 is unequivocally
the most adopted version of Guice, as seen in Figure 4.3. This version was released
in March of 2011 and since then there have been betas for version 4 released in 2013
and 2014. We speculate that this release policy may have led to most of the clients
sticking to an older version and preferring not to transition to a beta version.

Easymock. Clients of Easymock display a maximum, median, and average lag time of 607,
280, and 268 days, respectively. The first quartile and third quartile in the distribution
are 120 and 393 days, respectively. Figure 4.2 shows the large number of projects
that have a large amount of lag, relatively to the analyzed projects. Easymock is a
small API, which had 12 releases, after the first, over 10 years (Figure 4.5).

The most recent version of Easymock is 3.3.1, released in January 2015. However,
in our dataset we record use of neither that version nor the previous one (3.3.0). The
latest used version is 3.2.0, released in July 2013, with 42 clients. Versions 3.0.0 and
3.1.0 are the most popular (211 and 190 clients) in our dataset, as seen in Figure 4.3.
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2009 2010 2011 2012 2013 2014 2015

Guava

Spring

Hibernate

Guice

Easymock

Release Period (size grows with number of releases done in that period)

Period with the most popular release

Point of data 
  collection

Period with the 2nd most popular release

Period with the 3rd most popular release

Figure 4.5: Release frequency for each API from 2009 (the dataset covers from 2004)

Version 2.5.2 and 2.4.0 also figure in the top three in terms of popularity, despite
being released in 2009 and 2008.

4.3.3 Discussion

Our analysis lets emerge an interesting relation between the frequency of releases of an
API and the behavior of its clients. By considering the data summarized in Figure 4.5, we
can clearly distinguish two classes of APIs: ‘frequent releaser’ APIs (Guava, Hibernate and
Spring) and ‘non-frequent releaser’ APIs (Guice and Easymock).

For all the APIs under consideration we see that there is a tendency for clients to hang
back and to not upgrade to the most recent version. This is especially apparent in the case
of the ‘frequent releaser’ APIs Guava and Spring: For these APIs, the older versions are far
more popular and are still in use. In the case of Hibernate, we cannot get an accurate picture
of the number of clients willing to transition because the version popularity statistics are
quite fractured. This is a direct consequence of the large number of releases that take place
every year.

For Guice and Easymock (‘non-frequent releaser’ APIs), we see that the latest version
is not popular. However, for Guice the latest version is a beta and not an official release,
thus we do not expect it to be high in popularity. In the case of Easymock, we see that
the latest version (i.e., 3.3.1) and the one preceding that (i.e., 3.3.0) are not at all be used.
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In general, we do see that most clients of ‘non-frequent releaser’ APIs use a more recent
version compared to clients of ‘frequent releaser’ APIs.

By looking at Figures 4.2 and 4.4, we also notice how the lag time of ‘frequent releaser’
APIs’ clients is significantly lower than of ‘non-frequent releaser’ APIs’ clients. This re-
lation may have different causes: For example, ‘non-frequent releaser’ APIs’ clients may
be less used to update the libraries they use to more recent versions, they may also be less
prone to change the parts of their code that call third-party libraries, or code that calls APIs
that have non-frequent release policy may be more difficult to update. Testing these hy-
pothesis goes beyond the scope of this paper, but with our dataset researchers can do so
to a significant extent. Moreover, using fine-GRAPE, information about more APIs can be
collected to verify whether the aforementioned relations hold with statistically significant
samples.

4.4 Study 2: How much of an API is broadly used?

Many APIs are under constant development and maintenance. Some API producers do this
to evolve features over time and improve the architecture of the API; others try to introduce
new features that were previously not present. All in all, many changes take place in APIs
over time [41]. Here we analyze which the features (methods and annotations) introduced
by API developers are taken on board by the clients of these APIs.

This analysis is particularly important for developers or maintainers to know whether
their efforts are useful and to decide to allocate more resources (e.g., testing, refactoring,
performance improvement) in more used parts of their API, as resulting returns on invest-
ment may be greater. Moreover, API users may have more interest in reusing popular API
features, as they are probably better tested through users [83].

4.4.1 Methodology

For each of the APIs, we have a list of features in the API METHOD and API CLASS ta-
bles [78]. We also have the usage data of all features per API that has been accumulated
from the clients in the METHOD INVOCATION and ANNOTATION tables. Based on this,
we can mark features of the API have been used by clients. We can also count how many
clients use a specific feature, thus classifying each feature as: (1) hotspot, in the top 15%
of features in term of usage; (2) neutral, features that have been used once or more but not
in the top 15% and (3) coldspot, if not used by any client. This is the same classification
used by Thummalapenta and Xie [83] in a similar study (based on a different approach) on
the usage of frameworks’ features.

To see which used features were introduced early in an APIs lifetime, we can use the
API VERSION table to augment the date collected above with accurate version information
per feature; then, for each of the used features, we see which version is the lowest wherein
that feature has been introduced.
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4.4.2 Results

The overall results for our analysis are summarized in Figures 4.6, 4.7, and 4.8. The first
shows a percentage breakdown of usages of API features (left-hand side) and classes (right-
hand side); the second and third report the probability distribution of the logarithm of the
number of clients per API features, for ‘non-frequent releaser’ APIs and ‘frequent releaser’
APIs, respectively.

Generally, we see that the proportion of used features is never higher than 20% (Fig-
ure 4.6) and that the number of clients that use the features has a heavily right skewed
distribution, which is slightly flattened by considering the logarithm (Figures 4.7 and 4.8).
Moreover, we do not see a special behavior in this context of clients of ‘non-frequent re-
leaser’ APIs vs. clients of ‘frequent releaser’ APIs.

In the following, we present the breakdown of the usage based on the definitions above.

Hotspots Normal Coldspots (unused)

Guava Spring Hibernate Guice Easymock Guava Spring Hibernate Guice Easymock
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Percentage breakdown of usages of features Percentage breakdown of usages of classes

Figure 4.6: Percentage breakdown of usage of features for each of the APIs
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Figure 4.7: Probability distribution of (log) number of clients per API features, by ‘non-
frequent releaser’ APIs

Guava. Only 9.6% of the methods in Guava are ever used; in absolute numbers, out of
14,828 unique public methods over 18 Guava releases, only 1,425 methods are ever
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Figure 4.8: Probability distribution of (log) number of clients per API features, by ‘frequent
releaser’ APIs

used. Looking at the used methods, we find that 214 methods can be classified as
hotspots. The rest (1,211) are classified as neutral spots. The most popular method
from the Guava API is newArrayList from the class com.google.common.collect.Lists
class and it has 986 clients using it.

Guava provides 2,310 unique classes over 18 versions. We see that only 235 (10%)
of these are ever used by at least client. Furthermore, only 35 of these classes can be
called hotspots in the API. A further 200 classes are classified as neutral. And we can
classify a total of 2,075 classes as coldspots as they are never used. The most popular
class is used 1,097 times and it is com.google.common.collect.Lists.

With Guava we see that 89.4% of the usages by clients of Guava relate to features
that have been introduced in version 3 that was released in April 2010. Following
which 7% of the usages relate to features that were introduced in version 10 that was
released in October 2011.

Spring. Out of the Spring core, context and test projects, we see that 7.4% of the features
are used over the 40 releases of the API. A total of 840 features have been used out
of the 11,315 features in the system. There are 126 features that can be classified as
hotspots. Consequently, there are 714 features classified as neutral. The most popular
feature is addAttribute from the class org.springframework.ui.Model and has
been used 968 clients.

The Spring API provides a total of 1,999 unique classes. Out of these there are only
319 classes that are used by any of the clients of the Spring API. We can classify 48
of these classes as hotspot classes and the other 271 can be classified as neutral. We
classify 1,680 classes as coldspots as they are never used. The most popular class has
2,417 clients and it is org.springframework.stereotype.Controller.

Looking deeper, we see that almost 96% of the features of Spring that are used by
clients are those introduced in Spring version 3.0.0 that was released in December
2009.

26



4.4. Study 2: How much of an API is broadly used?

Hibernate. From the Hibernate core and entitymanager projects we see that only 1.8% of
the features are used. 756 out of the 41,948 unique public features provided over 77
versions of Hibernate have been used by clients in GitHub. Of these, 114 features that
can be classified as hotspots and a further 642 features can be classified as neutral.
The getCurrentSession method from the class org.hibernate.SessionFactory
is the most popular feature, used by 618 clients.

Hibernate is made up of 5,376 unique classes. Out of these only 245 classes are used
by clients. We can classify 37 of these classes as hotspots. The rest 208 classes are
classified as neutral. We find that Hibernate has 5,131 coldspot classes. The most
popular class is org.hibernate.Session with 917 clients using it.

In the case of Hibernate over 82% of the features that have been used were introduced
in version 3.3.1 released in September 2008 and 17% of the features were introduced
in 3.3.0.SP1 released in August 2008.

Guice. Out of the unique 11,625 features presented by Guice, we see that 1.2% (138) of
the features are used by the clients of Guice. There are 21 features that are marked
as being hotspots, 117 features marked as being neutral, and 11,487 classified as
coldspots. The most popular provided by the Guice API is createInjector from
class com.google.inject.Guice and is used by 424 clients.

The Guice API is made up of 2,037 unique classes that provide various features. Out
of these only 61 classes are of any interest to clients of the API. We find that 9 of these
classes can be classified as hotspots and the other 52 as neutral spots. This leaves a
total of 1,976 classes as coldspots. The most popular class provided by Guice is
com.google.inject.Guice and there are 424 clients that use it.

Close to 96% of the features of Guice that are popularly used by clients were intro-
duced in its first iteration which was released on Maven central in May 2009.

Easymock. There are unique 623 features provided by Easymock, out of which 13.4%
(84) are used by clients. This implies that 539 features provided by the API are never
by used by any of the clients and are marked as coldspots. 13 features are marked
as hotspots, while 71 features are marked as neutral. the The most popular feature is
getDeclaredMethod from the class org.easymock.internal.ReflectionUtils

and is used by 151 clients.

Easymock being a small API consists of only 102 unique classes. Out of these only 9
classes are used by clients. Only 1 can be classified as a hotspot class and the other 8
are classified as neutral spots. This leaves 93 classes as coldspots. The most popular
class is org.easymock.EasyMock and is used by 205 clients.

We observe that 95% of the features that are used from the Easymock API were
provided starting version 2.0 which was released in December 2005.
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4.4.3 Discussion

We see that for Guava, Spring and Easymock, the percentage of usage of features hovers
around the 10% mark. Easymock has the largest percentage of features that are used among
the 5 APIs under consideration. This could be down to the fact that Easymock is also the
smallest API among the 5. Previous studies such as that by Thummalapenta and Xie [83]
have shown that over 15% of an API is used (hotspot) whereas the rest is not (coldspot).
However, the APIs that they analyzed are very different to the ones that are here as they are
all smaller APIs comparable to the size of Easymock, however none of them are of the size
of the other APIs such as Guava and Spring. Also, their mining technique relied on code
search engines and not on type resolved invocations.

In the case of Hibernate and Guice we see a much smaller percentage (1.8% and 1.2%
respectively) of utilization of features. This is far lower than that of other APIs in this study.
We speculate that due to the fact that the most popular features that are being used are also
those that were introduced very early in the APIs life (version 3.3.1 in the case of Hibernate
and version 1.0 in the case of Guice). These features could be classified as core features
of the API. Despite API developers adding new features, there may be a tendency to not
deviate from usage of these core features as these may have been the ones that made the
API popular in the first place.

This analysis underlines a possibly unexpected low usage of API features in GitHub
clients. Further studies, using our dataset, can be designed and carried out to determine
which characteristics make certain feature more popular and guide developers to give the
same characteristics to less popular features. Moreover, this popularity study can be used,
for example, as a basis for developers to decide whether to separate more popular features
of their APIs from the rest and provide them as a different, more supported package.

4.5 Study 3: Are popular parts of an API more likely to have
bugs?

Large APIs such as Spring and Hibernate provide a lot of features that developers can use.
However, the features that they provide are not always bug free and can generally have an
adverse impact on a clients’ code [57]. The presence of bugs in a version of an API can
have a negative impact on the popularity of that version of the API or the popularity of the
API itself [66].

As with most software projects, in an attempt to keep the number of bugs that ship
with an API release to a minimum, API developers put a large emphasis on testing. To this
end a lot of testing tools and metrics [40] have been developed to ensure and measure test
quality [43]. The advent of tools such as JUnit [62] and Mockito [32] have made it easier
for developers to test their code [8, 49]. These tools have now grown to be very popular [70]
and are widely adopted for the purpose of testing Java code.

Despite the development of tools dedicated to testing of Java code, there are still bugs
that can be found in the code of APIs. These bugs may be introduced in new features [54]
that are published by the API or these bugs may manifest due to changes [51, 89] made
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in existing functionality. To limit the introduction of bugs there have been a number tech-
niques [16, 72, 81] that have been developed to reduce the number of bugs that are intro-
duced by developers.

Most of the work done till date in the field of bug detection related to APIs has been
on the client side where the emphasis is on finding erroneous API usage patterns in client
code. One of the earlier techniques developed is that of Wasylkowski et al. [88], where
they inferred incorrect usage patterns of an API based on popular usage patterns that could
be found in the open source world. Another technique was that of Thummalapenta and
Xie [85] where they infer exception handling rules from exception handling code that can
be found on code search engines. These rules that are inferred are then applied to a client’s
code to see if there are any errors in the exception handling mechanism. Monperrus et
al. [67] postulate that bugs are introduced in code when there are some calls to an API that
are missed, they check client code against popular usages of the API in question to see if the
client code is indeed buggy. Finally, we see the technique developed by Gruska et al. [39],
where they mine 6,000 real world projects in the Linux ecosystem and compare other client
code to the usages that have been mined to detect erroneous patterns.

We observe that the field of detection/prediction of bugs in APIs based on the usage of
the API itself is largely unexplored. With the aid of the large API usage dataset that we have
at our disposal we would like to make a connection between the real world usage of an API
artifact and the presence of a bug in that artifact. Intuitively there should be a connection
between the parts of the system with the most bugs that are reported and the popularity of
these parts in the open source software world. We test our hypothesis by first looking at how
well tested the APIs that we at our disposal are. We then try to see if there indeed exists
such a correlation between popular parts of the API and buggy parts of the API. Based on
our findings we hope to make recommendations on the improvement of testing practices of
API.

Structure of this section. In subsection 4.5.1 we describe the research goals of our
work. Following which in subsection 4.5.2 we describe some of the results that have been
gathered during this work. Future work that would serve and extension to this work or lead
to the completion of this work is described in subsection 4.5.3.

4.5.1 Research Goals

We study the characteristics of testing related to APIs to understand whether API developers
test their APIs in the best manner possible. There is a large dataset of API usage patterns
that is available to us. Our hope is to gain insights into API testing and make recommenda-
tions to API developers based on our observations. Intuitively there should be a connection
between the parts of the system with the most bugs that are reported and the popularity of
these parts in the open source software world. Based on this intuition we try to answer some
research questions that are enumerated below:

RQ1: Are tests made for APIs exhaustive? That is do they cover the API artifacts well?

RQ2: Is there a connection between API coverage and popularity of an API artifact?
Are popular parts better covered?
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RQ3: Is there a connection between bugs in an API and popular parts of the API? Are
more bugs reported in popular parts?

RQ4: Are core features of an API the most popular parts?

4.5.2 Results

RQ1: Are tests made for APIs exhaustive? That is do they cover the API artifacts
well?

Most mainstream APIs such as Hibernate or Guava have tests that ship along with the source
code. Tests are vital for an API as the behavior of the API artifacts that are exposed to the
API user have to be well tested before their use so as to prevent too many failures. If an
API has far too many bugs, then there is a strong likelihood that such an API will not be
adopted by many developers. These tests are generally written by developers during the
development of a new feature. The tests have to follow a certain convention and many open
source communities require that every new feature introduced is well tested. We examine
the tests for each of the APIs to see as to whether the developer guidelines have been fol-
lowing proper testing practices as described by their communities and as to whether the API
artifacts are truly well tested.

Test coverage is an effective way to see as to how many statements or methods are cov-
ered in testing [33] and whether or not API features are being tested. Coverage is generally
expressed in percentage terms. A percentage of 80% implies that 80% of the statements
in a codebase are hit during the execution of a test suite. Coverage tools can also give an
indication as to whether or not a method is executed during the execution of a test suite.

Java tests are primarily written using the JUnit library. There are a couple of coverage
tools such as JCov [5] and Cobertura [2] for Java that ship with the JDK or with Eclipse.
These coverage tools can be run as a maven plugin, in standalone mode or as eclipse plugins.
They run the test suite and produce a test coverage report in HTML or CSV format.

Using Cobertura we see that for Guava, Spring and Hibernate the coverage of code is
in excess of 85%, thus making the tests quite exhaustive and covering large portions of the
API. In the case of Guava, it is actually almost 97%, however this might be the result of
automated generation of tests. We see that all the publicly exposed artifacts of the API are
tested at least once and they all have a statement coverage of 100%.

However, despite such high coverage numbers we see that there are still bugs that re-
ported in these APIs. This leads us to believe that a simple coverage metric as measured by
Cobertura may not be sufficient. This metric does not tell us as to how many times a method
is invoked from a test. Simply looking at whether a method is tested or not does not tell us
as to whether a method is well tested or whether a method is given special focus by testers.
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RQ2: Is there a connection between API coverage and popularity of an API artifact?
Are popular parts better covered?

According to Begel and Zimmermann [13] one of the top 10 questions asked by developers
is “How well does test coverage correspond to actual code usage by our customers?”. Since
we have the usage data for five APIs, we try to find a correlation between the coverage of
an API artifact and the actual popularity of that artifact.

Looking at just code coverage as before does not suit our purpose here. We need to
see as to how many times a method is tested to determine its testing popularity and then
compare this to its popularity with clients. For this purpose, we create two new strategies
to measure the number of times an API method is tested, results from both are enumerated
below:

Dynamic Coverage The first way to evaluate the comprehensive nature of a methods’
testing is to measure how many times a method is executed during the execution of a test
suite. In order to do this, we had to inject code into every method if the API, the objective of
this code would be ping a counter Java Archive(JAR) file on the execution of this method.
This JAR file maintains a count of the number of times a method has pinged it, thereby
maintaining a count of the number of times a method is invoked during testing. This is
a very reliable way to ensure that each method when invoked is counted. We call this
mechanism to measure coverage as dynamic coverage at it is necessary that the test suite be
executed in order to count the number of executions of a method. We execute this process
on the Guava, Spring and Hibernate APIs.

In order to see as to whether a correlation exists between the number of times a method
was invoked in testing and the number of times the method is invoked in the real world
we carried out a Spearman correlation test [92]. This test revealed that for all the APIs,
the correlation was both weak and insignificant. Thus we can conclude that there is no
connection between the number of times a method is invoked during the execution of a test
suite and the popularity of that method.

The lack of a correlation can be explained by two reasons:

• Counting each and every method that is executed during test suite execution results
in private methods to be counted to a large degree. These private methods can never
be called as API method calls.

• By counting every single execution of the method, there is an accurate count that
is made. However, the popularity of method invocations in real world projects is
counted by the number of times it is present in the source code and not the number
of times the method is executed. Thus, trying to find a correlation here between these
two methods would be impossible as they are essentially two different measures.

Static coverage Since the dynamic coverage method had a number of significant draw-
backs, we decided to measure the number of times a method is invoked in a test suite by
using a static method. A static method of counting does not involve running the tests. To get
a static count, we would have to accurately count the number of times a method is invoked
in each test case of a test suite. Here we define accuracy as counting of a method invocation
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only if we are sure that the type of the method invocation can be resolved. For the purpose
of acquiring this count we apply the same type resolution techniques as fine-GRAPE a de-
scription of which can be found in section 3. The static method results in a more appropriate
count of the number of times a method is invoked from the tests. Just as before we perform
out static coverage analysis on the Guava, Spring and Hibernate APIs.

To see if whether there is a connection between the static count of invocation from tests
and the popularity of a method we conducted a Spearman correlation test. This test shows
us that the correlation between the popularity of a method and the static coverage metric of
a method for all three APIs have a strong and significant correlation. This goes to show that
the number of times a method is invoked in the real world is directly related to the number
of times this method is invoked during testing.

We find that there is indeed a connection between the popularity of an API artifact and
the number of times it is tested by API developers. By showing that such a connection does
indeed exist, we can conclude that API testers appear have an indication as to what parts of
the API will be the most popular and accordingly test those methods the most.

RQ3: Is there a connection between bugs in an API and popular parts of the API?
Are more bugs reported in popular parts?

Based on the correlation that is seen between the popular parts and the better tested parts
of the API we try to see if more bugs are present/reported in the popular parts. From the
earlier research question we conclude that the more popular parts are better tested when it
comes to the test coverage metric. However, test coverage says nothing about the quality of
the tests, thus despite the method and statement coverage that is seen there is still a chance
that bug reports originate from these parts. Also, since certain parts of an API are more
used it is logical that most bug reports filed would be related only to those parts as real
world developers might be using these parts in many different ways that may result in the
discovery of a bug.

To identify if there are bugs in a certain API we can mine the issue trackers [46] used
to maintain the workflow of the development team of the API. Issue trackers are used by
large open source projects to facilitate the effective reporting of issues that are encountered
during the usage of the project [14]. These issues can be bug reports, refactoring requests,
feature requests or requests for improvements. Here we focus on the bug reports that have
been made.

There are a number of issue trackers that open source projects can use, these are among
others: JIRA [6], GitHub issue tracker [4] and BugZilla [1]. Projects such as Spring and
Hibernate use JIRA as their issue tracker and others such as Guice, Guava and Easymock
use the GitHub issue tracker. For the purpose of identifying the location of a bug we would
have to make a connection between a bug report and the methods in the source code that
change as a result of a bug fix commit.

There are a couple of well-known ways [80, 24] to connect bugs to commits that fix the
bug in the code. We find that when trying to make a connection between a bug and a source
code artifact, the simplest way would be to leverage the GitHub issue tracker. The GitHub
issue tracker contains information as to which commit fixes a bug and the GitHub API can
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be leveraged to get a diff of the source code to see what part of the code actually changed
and thus isolate the bug that was present in the code. However, projects such as Guava and
Guice do not utilize the issue tracker in the manner that it was meant to be used. These
projects are Google based projects and Google houses its own internal bug tracking system,
and the bug fixes are only mirrored out to GitHub.

Since the GitHub based projects are non-starters, we focus on Spring and Hibernate
both of which use JIRA as their issue tracker. The problem with JIRA though, is that there
is no real connection with the source code. The issue on JIRA does not mention as to which
commit fixed a certain bug. However, the developers for Spring and Hibernate use a commit
convention wherein they mention the issue ID that is being fixed in a certain commit. By
going through the entire git history of a project we can isolate all commit messages that
mention an issue ID.

Once all the issue IDs that have been mentioned in a commit are collected, we check if
the issue pertains to a bug or not. This can be done by querying the JIRA Rest API. This
helps isolate the commits that fix bugs, and the commits before these commits that are said
to bug inducing.

Now that all commits that fix bugs have been identified, we proceed to identify all the
files that changed per commit. With the file list in hand, we retrieve a previous version of
the same file and then do a deep AST diff between the two versions of the file. This AST
diff checks if a method has changed between two different versions of the file. If the method
has changed, then we mark that method as the one for which a bug report was made. Since
these methods pertain to APIs and we would like to make connection with popularity of
these methods, we do not include private methods in our analysis.

We try to find a correlation between the buggy methods and the popularity of the same.
However, in the first instance we see that for both Hibernate and Spring the methods that
are buggy are mostly those that have never been used by any of the open source clients that
are in our API usage dataset. For the methods that we do see in our dataset, it is observed
that they figure on the low end of spectrum of popularity and can be classified as unpopular
methods. This leads us to conclude that the bugs are found in the unpopular parts of the API
and not in the popular parts.

RQ4: Are core features of an API the most popular parts?

In the previous research question we see that the unpopular parts were the ones with more
bug reports and bugs in general. We try to investigate as to why the popular parts are
then the more stable parts of the API. We theorize that the most popular features used by
developers of an API are those that have been present in the API since the introduction of
that particular API. This could result in the fact that these features formed a core set of
features of the API are well tested thus resulting in fewer bug reports. We try answering
this question by looking at the usage of each API artifact and see as to in which version this
feature was first introduced.

As in chapter 4, we try to analyze as to whether the features that are used the most
by clients are also core features of the API. We see that in the case of both Spring and
Hibernate (the other APIs are not considered here as there is no bug information available
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for them) the features that are popular are introduced in early versions, in the case of Spring
96% of the features were introduced in version 3.0.0 and in the case of hibernate 80% of
the features were introduced in version 3.3.1. In the case of Spring we cannot claim that
major version 1 or 2 introduces these features because these versions both predate GitHub
and Maven central and hence do no figure in our usage dataset. In the case of Hibernate,
there was a major revision that took place between major version 2 and major version 3.
This leads to us marking the introduction of the popular features in version 3.3.1.

On the whole we see that popular features can be classified as core features of an API.
This may be one of the causes as to why we see no bugs in these parts of the API, as they
are by far the most tested parts of the API and are the features that made the API popular in
the first place.

4.5.3 Future work

We have seen in the results that have been collected that there is no correlation between the
popular parts of the API and the bugs that are present in the API. We have sought to explain
this by saying that the root-cause behind this might be the fact that the features that are
popular are also the core features of the API. We would like to further explain the observed
phenomenon by carrying out some more analysis as is mentioned below.

One theory that explains the results of RQ3 could be that these bugs are reported by de-
velopers who are internal to the APIs themselves. The implication of this is that developers
of the API itself report bugs that they encounter during development and report these to the
bug tracker. However, we have as of yet to develop a plan to identify the internal developers
for the APIs under consideration, as there is no publicly available list of the same.

Another theory that has been put forward is that the data that has been gathered in
our API usage dataset from GitHub may not accurately reflect the actual usage of API
artifacts. There is a possibility that the features that we mark as unpopular may actually have
been developed for some specific use case that was requested by a company or corporate
developer. We do not have access to this data as it has not been made open source. But we
can make use of another datasource that is present on Maven central. All large projects/APIs
that refer to the Sping and Hibernate APIs are listed on the Maven central site (there are
approximately 3,000 projects for each API). This is would form a dataset that is different to
the one we currently have. Any analysis performed on this dataset might show a different
result.

4.6 Limitations

Mining API usages on such a large scale and to this degree of accuracy is not a trivial task.
We report consequent limitations to our dataset.

Master branch. To analyze as many projects as possible on GitHub, we needed to
checkout the correct/latest version of the project on GitHub. GitHub uses git as a versioning
system which employs branches, thus making the task of automatically checking out the
right version of the client challenging. We consider that the latest version of a given project
would be labeled as the ‘master’ branch. Although this is a common convention [20], by

34



4.7. Conclusion

restricting ourself to only the master branch there is a non-negligible chance that some
projects are dropped.

Inner and Internal classes. The method we use to collect all data about the features
provided by the APIs, identifies all classes and methods in the API that are publicly ac-
cessible and can be used by a client of the API. These can include inner public classes
and their respective methods. Or it can also consist of internal classes that are used by
the features of the API itself but not meant for public consumption. The addition of these
classes and methods to our dataset can inflate our count of classes and methods per API. If
a more representative count is desired, it would be necessary to create a crawler for the API
documentation of each API that is hosted online.

Maven (central) We target only projects based on a specific build automation tool on
GitHub, i.e., Maven. This results in data from just a subset of Java projects on GitHub
and not all the projects. This may in particular affect the representativeness of the sample of
projects. We try to mitigate this effect by considering one of the most popular building tools
in Java: Maven. Moreover, the API release dates that we consider in our dataset correspond
to the dates in which the API were published on Maven central, rather than the dates in
which the API were official released on their websites. This could have an impact on the
computed lag time.

GitHub. Even though GitHub is a very popular repository for open source software
projects, this sole focus on GitHub leads to the oversight of projects that are on other open
source platforms such as Sourceforge and Bitbucket. Moreover, no studies have yet ensured
the representativeness of GitHub projects with respect to industrial ones; on the contrary,
as also recently documented by Kalliamvakou et al. [50], projects on GitHub are all open
source and many of the projects may be developed by hobbyists. This may result in devel-
opers not conforming to standard professional software maintenance practices and, in turn,
to abnormal API update behavior.

Hibernate. In the case of Hibernate, we could not retrieve data for version 2 or 1. This
is due to the fact that neither of these versions were ever released on the maven central
repository. This may have an impact on both of the case studies as the usage results can get
skewed towards version 3 of the API.

4.7 Conclusion

We presented three studies that serve as an example for future users. The first study analyzes
how much clients migrate to new versions of APIs. Besides confirming that clients tend not
to update their APIs, this study highlights an interesting distinction between clients of APIs
that frequently release new version and those that do not. For the former, the lag time is
significantly lower. We deem this finding to deserve further research as it could potentially
help API developers decide which release policy to adopt, depending on their objectives.

In the second study, we analyze which proportion of the features of the considered API
is used by the clients. Results show that a considerably small portion of an API is actually
used by clients in practice. We suspect that this may be a result of clients only using features
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that an API was originally known for as opposed to migrating to new features that have been
provided by the API.

In the third study we have seen as to how well tested APIs are. All the APIs that we have
considered have a high percentage of test coverage. When we measure both the dynamic
and static coverage metrics defined by us, we see that the API is still quite well covered and
in the case of the static metric there is a correlation between the well tested-ness of methods
and the popularity of that method. Our original hypothesis for this work was that the more
popular parts would be more bug infested. However, during the course of our investigation
we see that this hypothesis is invalidated by some of our findings. We try to explain the
reason behind this inverse phenomenon that is observed. To get a more accurate picture we
will need to perform additional analysis.

We hope to have given an indication of the kind of studies that can be performed using
our dataset and have exposed the versatility of this dataset.
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Chapter 5

API Deprecation

5.1 Foreword

This chapter consists of content that has been included in the paper titled “How Do De-
velopers React to API Deprecation? Case Study of Five Java APIs and their Clients on
Github”. On this work I was the first author and I was responsible for aggregating all the
results for the entire paper. This paper is the result of a collaboration between Dr. Alberto
Bacchelli, Dr. Romain Robbes and myself.

5.2 Introduction

An Application Programming Interface (API) is a definition of functionalities provided by
a library or framework that is made available to an application developer. APIs promote
the reuse of existing software systems [47]. In his landmark essay “No Silver Bullet” [17],
Brooks argued that reuse of existing software was one of the most promising attacks on the
essence of the complexity of programming:

The most radical possible solution for constructing software is not to construct
it at all.

Revisiting the essay three decades later [34], Brooks found that indeed, reuse continues
to be the most promising attack on essential complexity. APIs enable this: to cite a single
example, we found at least 15,000 users of the Spring API.

However, reuse comes with the cost of dependency on other components. This is not
an issue when said components are stable. But evidence shows that APIs are not always
stable: The Java standard API for instance has an extensive deprecated API 1. Studies of
other APIs, such as Dig and Johnson’s [28] find that API breaking changes are common.

In light of this, it is important to understand how developers use APIs. If there are
several studies on the evolution of APIs, there are still few studies on how clients actually
use them, and how they react—or not—to API changes.

1see http://docs.oracle.com/javase/8/docs/api/deprecated-list.html
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Part of this is due to the challenge of gathering enough data on the clients of APIs.
In recent years, the situation has improved as there are many online platforms that offer
distributed revision and source code management systems, such as Sourceforge and GitHub.
The open source projects on these platforms can be mined for API usage related data. If
gathering the data is possible, this still leaves the challenge of processing large amounts of
data. Most of these platforms house open source projects as they require their customers to
make their projects open source.

To our knowledge, the largest study of the impact of deprecation on API clients is the
2012 study [76] which investigated the popularity of deprecated methods in the Squeak [56]
and Pharo [15] software ecosystems. This study mined more than 2,600 Smalltalk [37]
projects hosted on the SqueakSource platform. Based on the information gathered we
looked at whether the popularity of deprecated methods either increased, decreased or re-
mained as is after their deprecation.

We conduct a non-exact replication [48] of the previous study by Robbes et al. [76].
We study the reactions of the clients of 5 different APIs on client systems implemented
in the statically-typed Java language, as opposed to the dynamically-typed Smalltalk. In
addition, our dataset contains accurate API version information (extracted from Maven),
and is much larger, as we investigate tens of thousands of Java projects hosted on GitHub.
This study compares, contrasts and complements our previous findings on the reactions to
API deprecations.

Structure of this chapter. Section 5.3 presents the related work on studies of APIs.
Section 5.4 details the similarities and differences between this study and the previous dep-
recation study. Section 5.5 presents the the results of this study. We close the papers with
an extended discussion of the results (Section 5.6), before concluding (Section 4.7).

5.3 Related Work

5.3.1 Studies of API Evolution

Several studies of API evolution have been performed, at smaller or larger scales.
Dig and Johnson studied and classified the API breaking changes in 4 APIs [27]; they

did not investigate their impact on clients. They found that 80% of the changes were due to
refactorings.

Cossette and Walker [23] studied five Java APIs in order to evaluate how API evolution
recommenders would perform on these cases. They found that all recommenders handle a
subset of the cases, but that none of them could handle all the cases they referenced.

The Android APIs have been extensively studied. McDonnell et al. [63] investigate
stability and adoption of the Android API on 10 systems; the API changes are derived from
Android documentation. They found that the API is evolving quickly, and that clients have
troubles catching up with the evolution. Linares-Vsquez et al. also study the changes in
Android, but from the perspective of questions and answers on Stack Overflow [58], not
API clients directly.

Bavota et al. [12] study how changes in the APIs of mobile apps (responsible for de-
fects if not reacted upon) correlate with user ratings: succesful applications depended on
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less change-prone APIs. This is one of the few large-scale studies, with more than 5,000
applications.

Wang et al. [87] study the specific case of the evolution of 11 REST APIs. Instead of
analyzing API clients, they also collect questions and answers from Stack Overflow that
concern the changing API elements. Espinha et al. [31] study 43 mobile applications
depending on web APIs, and how they respond to web API evolution.

Raemaekers et al. measured the stability of software libraries [74] and analyzed the
usage of the libraries by 140 industrial systems that used Maven in order to calibrate the
model.

Finally, the work by Robbes et al. [76] and Hora et al. [45] are large-scale studies of
API clients in the Pharo ecosystem. Our first study focused on API deprecations, while the
second one focused on API changes that were not marked as deprecations beforehand.

5.3.2 Supporting API evolution

Many approaches have been developed to support API evolution and reduce the efforts
of client developers. Chow and Notkin [22] present an approach where the API developers
annotate changed methods with replacement rules that will be used to update client systems.
Henkel and Diwan [42] propose CatchUp!, a tool that uses an IDE to capture and replay
refactorings related to the API evolution. Dig et al. [29] propose a refactoring-aware version
control system for the same purposes.

Dagenais and Robillard observe the framework’s evolution to make API change recom-
mendations [26], while Schfer et al. observe the client’s evolution [79]. Wu et al. present a
hybrid approach [90] that includes textual similarity.

Nguyen et al. [69] propose a tool (LibSync) that uses graph-based techniques to help
developers migrate from one framework version to another.

Finally, Holmes and Walker notify developer of external changes in order to focus their
attention on these events [44].

Some studies compute rules by comparing two versions of one system. Kim et al. [53]
automatically infer rules from structural changes. The rules are computed from changes
at or above the level of method signatures, i.e., the body of the method is not analyzed.
Kim et al. [52] propose a tool (LSDiff) to support computing differences between two sys-
tem versions. In such study, the authors take into account the body of the method to infer
rules, improving their previous work [53] where only method signatures were analyzed.
Each version is represented with predicates that capture structural differences. Based on the
predicates, the tool infers systematic structural differences. In this process, the tool takes as
input the client system, a set of systems already migrated to the new framework as well as
the old and new version of the framework in focus. Using the learned adaptation patterns,
the tool recommends locations and update operations for adapting due to API evolution.

Dig and Johnson [27] help developers to better understand the requirements for migra-
tion tools. For example, they have found that 80% of the changes that break client systems
are refactorings.

Some studies address the problem of discovering the mapping of APIs between differ-
ent platforms that separately evolved. For example, Zhong et al. [93] target the mapping
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between Java and C# APIs while Gokhale et al. [36] present the mapping between JavaME
and Android APIs.

5.4 Research Goals

API developers do not have a thorough understanding of the impact that the deprecation
of a method could have on the clients. For instance, they are unsure about whether they
are deprecating a popular method or an unpopular one. It is also unknown as to whether
clients who use APIs adapt to a change at all, or if they end up not upgrading their API
version. Having detailed knowledge of the actual usage of the API and the potential impact
of an API change could significantly influence the API’s policy with respect to deprecation,
helping developers making more informed decisions.

5.4.1 Differences with the study by Robbes et al.

This paper is a non-exact replication of our previous study of the Squeak and Pharo ecosys-
tems [76]. We analyzed projects hosted on the Squeaksource platform, that used the Monti-
cello versioning system. The dataset contained 7 years of evolution of more than 2,600 sys-
tems, which collectively had over 3,000 contributors. We identified 577 deprecated methods
and 186 deprecated classes in this dataset. If its results were very informative, our previous
study had several shortcomings that this follow-up study addresses:

Specific dataset. The study was based on a rather specific dataset, the Squeak and Pharo
ecosystems found on Squeaksource. In this followup we investigate the same phenomenon
on a mainstream toolset (Java projects on GitHub).

Dynamically typed language. Since there is a lack of explicit type information in
Smalltalk, there is no way of actually knowing if a specific class is referenced and whether
the method invocation found is actually from that referenced class. This does not present
an issue when it comes to method invocations on methods that have unique names in the
ecosystem. However, in the case of methods that have common names such as toString
or name or item, this can lead to some imprecise results. In the previous study, we resorted
to manual analysis of the reactions to an API change, but had to discard cases which were
too noisy. In this study, Java’s static type system addresses this issue without the need for a
tedious, and conservative manual analysis.

“Small” dataset. The set of systems we investigated in the previous study is relatively
small, compared to other ecosystems. This study investigates the impact of deprecation in
a dataset of approximately 25,000 projects (nearly an order of magnitude more than the
previous work). Additionally, these 25,000 projects are all clients of at least one of the
APIs, which use Maven to manage their dependencies. This allows us to address the two
following limitations of the previous study.

Granularity. Due to the limited amount of data in the previous study, we conducted
it at the granularity of the API element. This is a shortcoming as different APIs may have
different policies regarding deprecation. In this work, we specifically target 5 different APIs,
and our main unit of study is the API. This allows us to compare and contrast individual
APIs.
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Implicit versions. Explicit library dependencies are rarely mentioned in Smalltalk, and
there are several ways to specify them, often programmatically and not declaratively. In
addition, Smalltalk does not use import statements as Java does. This makes it hard to
detect dependencies between projects (heuristics are needed [60]) and to analyze the impact
of deprecated methods on client. In contrast, Maven projects specify their dependencies
explicitely and declaratively. This allows us to determine which version of the API a project
depends on, and hence answer additional questions, such as whether projects freeze their
dependencies instead of upgrading.

5.4.2 Research Questions

As this is a partial replication work we try to keep as much as possible the same research
questions as the original work. Given our additional information, we also add three research
question (marked with “new”), and alter the order and—in some cases—the methodology
we use to answer the research questions. This leads to some differences in the formulation
and execution of the research questions. The research questions this work investigates are:

• API Versions. RQ0a. (new) What API versions do clients use? RQ0b. (new) Do
clients upgrade their dependencies?

• Adaptations. RQ1. Do all the projects adapt to API changes?

• Magnitude. RQ2a. How large are the reactions to API changes? RQ2b. (new) How
large are the potential reactions to API changes?

• Duration. RQ3a. How long does it take for projects to notice an API change? RQ3b.
How long does it take for projects to adapt to an API change?

• Frequency. RQ4. How often do deprecated API methods cause ripple effects in the
ecosystem?

• Consistency. RQ5. Do the projects adapt to an API change in similar ways?

• Documentation RQ6. How helpful was the deprecation message, if any?

5.5 Results

In this section we answer the research questions that were detailed in section 5.4.

5.5.1 API Versions

RQ0a. What API versions do clients use?
Guava. There are 3,013 Guava clients on GitHub. We find 18 different major versions

of the API, and 39 unique API versions, showing consequent fragmentation. The most
popular version used in the latest revision of all the projects is version 14, with 868 usages,
or 28% of the clients. This is even though there are 4 more recent releases, accounting for
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520 usages (17% of the clients). Further a large proportion of the projects have chosen to
stay at older revisions of the API (versions 1 to 13: 1606 clients or 53%). There are 19
unspecified versions (which Maven resolves to the latest version).

Spring. Spring has a total of 15,003 clients. We find 4 major versions, with version
3 having the bulk of the clients (13,480 or 90%). The more recent version 4 has only 972
clients, or 6.5%, while the older versions 1 and 2 have 356 clients or 2.5%. There are
189 unspecified or “latest” versions (1.3%). Drilling down on version 3 we find that both
versions 3.1 and 3.2 have more than 5,300 clients each, while version 3.0 has 2,778. We
find 75 individual versions.

Hibernate. There are 6,038 Hibernate clients, with 92 individual versions. We only find
major versions 3 (2490 clients, 41.2%) and 4 (3,498 clients, 58%), with 50 unspecified or
“latest” versions (0.8%). In major version 3, version 3.9 has the majority of usages (1560,
more than 60% of version 3 users); in version 4, minor versions 4.1 (1696, 48.5% of version
4 users) and 4.2 (1158, 33%) have a large proportion of usages, despite version 4.3 being
the most recent.

Easymock. We find a total 649 clients of Easymock. There are 3 major versions and
16 individual versions. In this case the latest version, version 3, is the most popular (443
clients, 68.2%), with earlier versions accounting for 31.2% of all usages, and 3 unspecified
versions (0.5%). In version 3, minor versions 3.0 and 3.1 are the most popular (90% of
usages), despite version 3.2 being more recent (10%).

Guice. There are 654 projects that refer to the Google Guice API; they are spread
across 4 major versions, and 11 total versions. The most popular version is version 3 with
548 clients (83.8%). Earlier versions have 86 clients (15.7%), while the later version 4 has
only 15 clients (2.3%), with 5 unspecified versions (0.1%). Version 2 was released in May
2009, while version 3 was released in 2011. This shows that most projects do not transition
to a newer version of the API and are content sticking to an older one.

Takeaway. There is a large number of different versions of the APIs that are used, and
a large amount of fragmentation between the versions. Further, the vast majority of projects
use older versions of the APIs.

RQ0b. Do clients upgrade their dependencies? Seeing that so many projects depend on older
versions of the APIs, we look at whether these projects ever updated their dependencies
or if they “froze” their dependencies—that is, if they never updated their API version. If
projects update we measure how long they took to do so (time between the release of the
new version of the API in Maven central, and when the project’s POM file is updated). We
count the few projects with blank versions as upgrading since Maven automatically gives
the latest version in that case.

Guava. Out of the 3,013 Guava clients, 2,403 projects freeze their version (79.8%).
The remaining 610 projects (20.2%) update at least once their API versions. The median
client that upgrades does so within 72 days of the release of a new API (a little over two
months).

Spring. The situation is the opposite in the case of Spring: only 3,891 projects froze
their API version and never update it (25.9%). The remaining 11,112 projects do update
their versions (74.1%). It takes 69 days for the median client to upgrade to a newer version
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after its release.
Hibernate. 3,584 out of 6,038 clients freeze their version (59.3%), while 2454 projects

change it (40.6%). The median client takes 62.5 days to upgrade the version.
Easymock. Only 63 projects change their version (9.7%), while the remaining 586

projects (90.3%) froze it. In addition, the clients of Easymock that do upgrade, take a very
long time to do so—the median is 272 days or 9 months.

Guice The situation for Guice is even more drastic: 605 of 654 projects freeze their
version (92.5%), while only 49 change it (7.5%). Further, the clients of Guice are very slow
to move to a new version. The median number of days to upgrade is 909, or 2 and a half
years.

Takeaway. From this we can see that version usage and adaptation behavior heavily
vary among APIs. If the clients of APIs such as Spring do change their versions for the
most part, 80% or more of the clients of 3 other APIs (Guava, Easymock and Guice) do not
appear to do so, while 60% of Hibernate clients stay with the same API versions. Update
time varies considerably—we will come back to this in RQ3a.

5.5.2 Adaptations to API changes

RQ1. Do all the projects adapt to API changes?

As we have seen, many projects do not adopt new versions of APIs. In this research
question, we focus on the projects that use deprecated method invocations, and on whether
and how they react to these deprecations. We first count all the projects that use calls
marked as deprecated in the API version they use (Affected Projects in Figure 5.1). We also
count the number of projects that use deprecated calls in the latest API version separately
(Potentially Affected Projects, a superset of Affected Projects). Projects which are definitely
not affected by deprecation are shown on top.

We then focus our analysis on the subset of affected projects that update their API
version during their lifetime. This is because projects that do not update their API version do
not have a strong incentive to fix a deprecation warning, since the method is still functional
in their version. Table 5.1 shows how we categorize projects according to their reactions.

Further, we also classify the type of reaction (Table 5.5.2). As projects may react to
each deprecation in a particular way, we perform this classification per API element, and
then compute for each project the proportion of each category of reactions. We report the
median and the interquartile range (IQR) of these proportions on all the projects and include
a boxplot as well.

Guava. We find that there is a total of 774 (25.7%) projects which have deprecated
method invocations or annotations. Out of these, 245 projects change their API version.
A large percentage (161, or 65%) of these projects do react to the deprecations; the rest
of the projects never fix any of the deprecated calls, even though they upgraded the API
(84 or 34%). In the end, a minority of projects (56, 22%) fix all the deprecation warnings,
including the ones they added along the way. If all projects were to upgrade to the latest
version of guava, 917 projects would have deprecated calls (30.3%).
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Figure 5.1: Deprecation status of clients of each API

The most common strategy as can be seen in figure 5.2, was to delete the deprecated
API elements: 159 out of 161 projects did so at least once. Projects used this strategy
often (median 55%; IQR 25—100%). The next most common strategy was to leave API
elements, (median 20%, IQR 0—50%). Replacements and Rollbacks were less common:
16 (out of 161) projects fixed some deprecations by rolling back to a previous version of
the API (median and IQR 0%), while 42 projects replaced some deprecated API elements
with non-deprecated ones. A few outliers replaced the majority or up to the entirety of the
deprecations in this way; however, the vast majority of projects did not do so (median: 0%,
IQR 0—9%).

Spring. Surprisingly, out of 15,003 clients, only 36 projects contain any deprecated
call of some sort (0.24%). Of those, 31 changed their versions, with 10 (32%) reacting
to some deprecations by removing them, while the remaining 21 did no such thing (68%).
A minority of projects did finally fix all the deprecation warnings they encountered (7,
22.6%). If all projects were to upgrade to the latest version, only 41 would have deprecated
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Category Description

Affected
Projects using a deprecated
entity.

Version change
Projects that change API
version during their lifetime

Reacting
Projects that remove at least one
usage of the deprecated entity

Fixes
Project that removed all
deprecated entities in their latest
version

Not Reacting
projects not removing any
dependency to the deprecated
entity

Counter-reacting
Projects adding more usages of
the deprecated entities

Table 5.1: Categorization of affected projects

Category Description

Deletion

Deletion of the deprecated
entity from the class of a
project; either removed
completely or replaced with an
ad-hoc solution

Replacement
Deprecated entity is replaced
with a non deprecated entity
from the API

Rollback Version

Project with deprecated entity
rolls back to a previous version
where the entity is not yet
deprecated

No reaction
The project does not do
anything

Table 5.2: Categorization of reactions to API deprecation

calls (0.27%).
In Spring, reactions are split between deleting the entities (median 100%, IQR 81—

100%), and leaving them (median: 0%, IQR: 0—19%). There were no replacements or
rollbacks. This is reflected in the boxplot in figure 5.3.

Hibernate. 366 of 6,048 projects (6%) use deprecated functionality, out of which 129
changed their version. A minority of these reacted (40 projects, 31%), and a smaller but im-
portant minority (25 projects, 19.4%) solved all deprecation issues. There were 89 projects
that did not react (69%). If all projects were to update to the latest version of Hibernate, 520
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Figure 5.2: Boxplot for each reaction type for Guava

of them would have deprecated calls or annotations to resolve (8.6%).
In Hibernate, all four reactions are present as is seen in figure 5.4, although deletions

(median 67%, IQR: 33—100%) and leaving the API elements predominate (median: 0%,
IQR (0—45%). Replacements are occasional, concerning 11 projects (median: 0%, IQR:
0—14.5%), and one project used a rollback.

Easymock. Out of the 649 clients of Easymock, 131 use deprecated functionality
(20.2%). Of those, 24 changed versions, and a majority of those (17, 71%) reacted to the
deprecations, while 4 projects (16.6%) fixed all their deprecation issues. The remaining 7
projects did not react (29 %). Were all projects to upgrade to the latest version of Easymock,
178 projects would use deprecated functionality (27.4%).

In Easymock, the most common adaptation was to delete the API elements as is reflected
in figure 5.5, this occurs in all of the reacting projects (median 50%, IQR: 20—75%). Re-
placements (median: 0, IQR: 0—51%), and leaving the elements (median: 15.5%, IQR
0.8—34%) are occasional. There were no rollbacks.
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Figure 5.3: Boxplot for each reaction type for Spring

Guice. We analyzed all the Guice projects and looked for usage of a deprecated annota-
tion or method, however we find that none of the projects have used either. This is because
of the fact that Guice does not have many methods or annotations that have been depre-
cated. In fact, Guice follows a very aggressive deprecation policy: methods are removed
from the API without being deprecated previously. We observed this behavior in the Pharo
ecosystem as well, and studied it separately [45]. In our next research questions, we thus
do not analyze Guice, as the deprecations are not explicitly marked.

Counter-reactions. We see that a vast majority of projects (95 to 100%) insert calls
to deprecated API elements. This concerns even the ones that end up migrating all their
deprecated API elements later on.

Takeaway. A minority of projects are exposed to deprecation: this varies from 20% or
more for Easymock and Guava, to less than 10% for Hibernate, and barely any for Spring.
On the other hand, a minority of these projects consistently adapts to API deprecations.
Most of the projects either adapt partially, do not attempt to adapt at all, or even increase
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Figure 5.4: Boxplot for each reaction type for Hibernate

their usage of deprecated functionality, regardless of their deprecated status.

5.5.3 Magnitude of the reactions to API changes

Previous work by Robbes et al. [76] measured the reactions of individual API changes in
terms of commits and developers affected. Having exact API dependency information, in
this study we measure API evolution on a per-API basis, rather than per-API element. It
is hence more interesting to measure the magnitude of the changes necessary between two
API versions in terms of the number of methods calls that need to be updated between two
versions. Another measure of the difficulty of the task is the number of different deprecated
methods one has to react to: it is easier to adapt to 10 usages of the same deprecated method
than it is to react to 10 usages of 10 different deprecated methods.

RQ2a. How large are the reactions to API changes? We start by measuring the magnitude of
the actual reactions of projects that do react to API changes. We focus on the upper half of
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Figure 5.5: Boxplot for each reaction type for Easymock

the distribution (median, upper quartile, 95th percentile, and maximum), in order to assess
the critical cases; we expect the effort needed in the bottom half to be low.

Guava. The extent of the adaptations were rather low for the majority of projects: the
median number of adaptations was 3, and the upper quartile was 8. Outliers had consider-
ably more work: the 95th percentile was 127, and the maximum 283. In terms of unique
methods, we see a median of 1 and a 3rd quartile of 2, pointing again at small adaptations;
however, the 95th percentile was 5 unique methods, and the maximum was 10.

Spring. In the few projects that adapt to deprecations in Spring, the effort was larger,
with a median of 31 an upper quartile of 54, a 95th percentile of 104 and a maximum of
131. The projects also had to adapt to a variety of deprecated methods (median: 17, upper
quartile: 21, 95th percentile and maximum: 27).

Hibernate. Adaptations were also important (median 5, 3rd quartile 20, 95th percentile
41, maximum 59). Unique methods were lower for most projects (median 1), but higher in
the upper range (3rd quartile: 16, 95th percentile 27, maximum 40).
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Easymock. Finally, Easymock users had also important adaptations (median: 11, 3rd
quartile: 21, 95th percentile: 109, maximum: 109), however adaptations were rather sys-
tematic (median: 1, 3rd quartile: 2. 95th percentile and maximum: 3).

Takeaway. The magnitude of the adaptation varies: if most projects have little effort,
outliers invest more heavily; this may explain the reluctance of some projects to update.

RQ2b. How large are the potential reactions to API changes? Since a large portion of project do
not react, we wondered how much work was accumulating should they wish to update their
dependencies. We thus counted the number of updates that a project would need to perform
in order to migrate their code base to be compliant with the latest version of the API (i.e.,
removing all deprecation warnings).

Guava. We find that the number of methods to updates varies considerably. Out of
the 917 projects that would need changes to be updated to the latest version of Guava, the
median number of changes is only 12. However, the upper quartile is 42, the 95th percentile
is 319, and the maximum is 8,568 deprecated methods to update. The figures for unique
methods are lower, with a median at 1, an upper quartile of 2, a 95th percentile at 7, and a
maximum of 44.

Spring. The same numbers for Spring (41 projects) are much lower: the median number
of updates is only 3, with the upper quartile at 4, the 95th percentile at 51, and the maximum
is 205. In addition, unique methods are very low with both the median and upper quartile at
1, and the 95th percentile at two methods, even if the maximum is 55.

Hibernate. For the 521 projects affected by Hibernate’s deprecations, we find that the
median would be 15 updates, the upper quartile 35, the 95th percentile 216, and the maxi-
mum a whopping 17,471. Most projects use a single deprecated method (75th percentile is
1, 95th is 2; however the maximum is 140 distinct methods).

Easymock. For the 178 projects affected by Easymock’s deprecations, we find high
values: the median is at 55, the upper quartile at 254 method calls to update, and the 95th
percentile at 1,120. The maximum is 4,464. However, the number of unique methods is low
(3rd quartile at 1, 95th percentile at 5, and maximum at 7).

Takeaway. If the majority of projects would not need to invest a large effort to upgrade
to the latest version, a significant minority of projects, would need to update a large quan-
tities of methods. This can explain their reluctance to do so. However, this situation, if left
unchecked—as is the case now—can and does grow out of control. If there is a silver lining,
it is that the number of unique methods to update is generally low, hence the adaptations
can be systematic. Outliers would run in troubles, with a large number of unique methods
to adapt to.

5.5.4 Duration of the reactions

RQ3a. How long does it take for projects to notice an API change?
In this section, we focus on the amount of time developers take to react to an API

deprecation once they notice it. We assume developers notice the deprecation upon updating
their API version. We quickly saw in RQ0 that projects take a long time before upgrading
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Figure 5.6: Time taken by projects to update their API version

their API dependencies after the API was released. We revisit this here in more details
(Figure 5.6).

In the case of Guava, Hibernate, and Spring, we can see that the projects that do upgrade
do so quickly: the lower quartile is at one month for these 3 APIs, while the median is at
two months. There are still slower clients, especially in the case of Hibernate where the
third quartile is at one year. On the other hand, Easymock users upgrade much more slowly,
with a first quartile of 2 months, a median of 9 months and a third quartile of nearly two
years. In all the cases, we see that outliers can take a very long time to upgrade, in the range
of multiple years.

RQ3b. How long does it take for projects to adapt to an API change?
Reaction time is overall much quicker (see Figure 5.7). We notice that in all projects,

the median reaction time is low: it is even 0 days for Guava, Hibernate, and Spring, while
for Easymock it is 25 days. A reaction time of 0 days means that a deprecated method
call start is fixed on the same day that the API version was updated. We see that barring
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Figure 5.7: Time taken by projects to react to an API deprecation once it is noticed.

outliers, reaction times in Hibernate and Spring are uniformly fast (the third quartiles being
at 0 and 2.5 days). Reaction times are however longer for Guava and Easymock, with an
upper quartile of 47 for Guava, and 200 days for Easymock.

Outliers have a very long reaction time, up to 500 days for Guava and Easymock, and
around 300 days for Hibernate and Spring (despite their much faster reaction times for most
projects).

Takeaway. When projects react to API deprecation, they tend to do it quickly, barring
outliers. They do however take much longer to notice the deprecation in the first place, as
they infrequently update their dependencies.

5.5.5 Frequency of reactions

RQ4. How often do deprecated API methods cause ripple effects in the ecosystem?
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We assess how often deprecating a method ends up having an impact on clients in
GitHub.

Guava has 1479 methods that have been deprecated. Out of these only 104 (7%) relate
to methods that have been used by clients of Guava on GitHub, and for which clients reacted
to the deprecation.

Spring deprecated 1320 methods over all its versions. Out of these deprecated entities
we find that 149 (11.3%) affect projects on GitHub.

Hibernate deprecated 7591 methods over its lifetime. Out of these deprecated entities
we find that 487 affect any clients of Hibernate (6.4%).

Easymock. There are 124 deprecated methods over all the versions of Easymock. Out
of these, we find that 16 have an impact (12.9%)

Takeaway. APIs are not shy in deprecating methods, with more than 1,000 deprecations
for Guava, Spring, or Hibernate. Fortunately, the proportion of deprecated methods that
cause reactions is rather low, hovering slightly above or below 10% in all 4 of the APIs.

5.5.6 Consistency of reactions

RQ5. Do the projects adapt to an API change in similar ways?

The approach by Schfer et al. [79] recommends API changes by analyzing the evolution
of other API clients to discover evolution rules. The approach was evaluated on Eclipse,
JHotDraw, and Struts. We assess whether such an approach would work on the clients of
our APIs.

There is no definite way of identifying if a new call made to the API is a replacement for
the original deprecated call, so we use a heuristic: We analyze the co-change relationships in
each class file across all the projects. If we find a commit where a client removes a usage of
a deprecated method add(String) and also adds a reference to add(String, Integer),
this new method invocation is a possible replacement for the original deprecated entity. We
compute the frequencies of these co-change relationships to find whether API clients react
uniformly to a deprecation.

In the case of Guava we find 23 API replacements. In 17% of the cases there is a
systematic transition i.e., there is only one way in which a deprecated method is replaced
by clients that make a transition. The median of the frequency distribution for the highest
ranked candidate is 33.3% (IQR: 20%—76.4%).

When reacting, Spring clients mostly delete deprecated entities instead of replacing
them. Thus we have no information on whether all the projects react similarly.

For Hibernate, we find only 4 distinct methods where replacements were made. None
of them has a frequency of 100%, the maximum frequency is 75%, the others being 22.6,
17, and 16.7%.

Easymock has no systematic transitions either: there are only 3 distinct methods for
which the frequency of the co-change relationships is calculated: the highest is 34%, while
the other two are 16.6%.
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Takeaway. Since API replacements are rather uncommon in our dataset, with the ex-
ception of Guava. Thus we find that an approach such as the one of Schfer et al. could
conceptually work, but in limited cases.

5.5.7 Documentation

Finally, we look at whether API developers have provided documentation that would aid a
client in transitioning away from a deprecated entity.

When an API entity is deprecated the API provider should recommend a replacement.
The Javadoc tool handles this with the @deprecated tag and a developer can optionally
provide a link to a replacement.

RQ6. How helpful was the deprecation message, if any?

For this research question, we investigated the deprecation messages. We first determine
whether the deprecation message provides a potential replacement for the deprecated API
(e.g., “Use Resources.asByteSource(URL) instead.”), or whether the method is no longer
needed (e.g. “instances of FluentIterable don’t need to be converted to FluentIterable ”).
We also report on additional insights gathered from the exception messages and the APIs.

In the case of Guava, we investigated all 104 deprecated methods that had an impact on
clients. For Easymock, we look at all 16 deprecated methods that had impact on clients.
For Spring and Hibernate, we inspect the deprecation messages of a sample of methods
(100 each) that an impact on the clients. A first pattern that we see is that methods with
similar signatures are often deprecated with the same message, leading to repetitions in the
deprecation messages.

We find that the overwhelming majority of deprecation messages recommend a replace-
ment. In Guava, 100 out of 105 messages either recommend a replacement (61 messages),
or state the method is no longer needed and hence can be safely deleted (39 messages); only
5 deprecated methods do not have a message. In the case of Spring, all the messages provide
a replacement (88 messages) or state that the method is no longer needed (12 messages).
For Hibernate, all the messages provide a replacement. Finally, for Easymock, 15 of 16
messages provide a replacement; only one does not.

Takeaway. API maintainers of popular APIs make an effort to provide their clients
with alternatives when they deprecate an API, even if clients do not always take advantage
of this.

We also observed interesting characteristics of each APIs:
Guava is the API with the most diverse deprecation messages. Most messages that

state a method is no longer needed are rather cryptic (“no need to use this”). On the other
hand, several messages have more precise rationales, such as stating that functionality is
being redistributed to other classes. Others provides several alternative recommendations
and detailed instructions (e.g., “use MapMaker.softValues() to create a memory-sensitive
map, or MapMaker.weakKeys() to create a map that doesn’t hold strong references to the
keys”), and one method provides as many as four alternatives, although this is because the
deprecated method does not have exact equivalents. Guava also specifies in the deprecation
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message when entities will be removed (e.g., “This method is scheduled for removal in
Guava 16.0”, or even “This method is scheduled for deletion in June 2013.”).

Spring is consistent in specifying in which version of the API the methods was depre-
cated. On the other hand, most of the messages do not specify any rationale for the decision,
except JDK version testing methods that are no longer needed since Spring does not run in
early JDK versions anymore.

In Hibernate, most deprecation messages do not have a rationale. The only exceptions
are messages explaining the advantages of the recommended alternative database connec-
tion access compared to the deprecated one.

In Easymock, 15 of the 16 deprecated methods are instance creation methods, whose
deprecation message directs the reader to using a Builder pattern instead of these methods.
The last deprecation message is the only one with a rationale, and is also the most problem-
atic: the method is incompatible with Java version 7 since it’s more conservative compiler
does not accept it; no replacement is given.

5.6 Discussion

5.6.1 Comparison to the Smalltalk studies

Reactions. We find in both studies that many projects do not react to the API deprecations,
for a variety of reason. In this study we find that many projects do not update their API
version, which we occasionally saw in the SmallTalk study [76]. We find more counter-
reactions in this study; this is because a Java deprecation gives a compile-time warning that
can be ignored, while in SmallTalk some deprecations may give a run-time error.

Magnitude. We found that some API changes can have a large impact in both studies.
In this study we also quantify the potential impact of deprecation if projects would upgrade
their API version, and find that in some cases the impact would be very high.

Time to update. In both studies, we find that projects that update take some time to
notice the deprecation. Both studies also find that the adaptation time is usually short (same-
day), but can occasionally be longer if some obsolete method calls are not discovered right
away.

Frequency. Our study of API deprecation in SmallTalk found that a 14% of deprecated
methods caused reactions in the ecosystem. This is in line with what we observe in this
study (around 10%)

Systematic replacements. The SmallTalk study found that in a large number of cases,
there are systematic replacements to a deprecated API element that most projects end up
using. We find that this is not the case here, as replacements are not that common. This may
be because we analyze a handful of specific APIs; the situation may be different with other
APIs.

Deprecation messages. Contrary to the SmallTalk study (where half of the deprecation
messages were useful), we find that the vast majority of deprecation messages point towards
a replacement. This may be due to the high profile of the APIs we analyze.
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Guice. We find that Guice does not use deprecation and instead immediately removes
obsolete methods. Our second SmallTalk study [45] found that this behavior also occurs in
SmallTalk.

5.6.2 Variance in deprecation marking

We find that every API behaves differently. There are two ways in which a developer can be
notified of a feature’s deprecation. The first is by using a compiler directive and the second
is to mark it in the Javadoc. Javadoc also allows developers to use the @link annotation to
indicate in the documentation as to which entity replaces the deprecated entity. Both these
schemes are generally used in conjunction with each other as one is a compiler directive
whereas the other is to inform a developer. In this section we look at the difference in the
schemes used by the various APIs that fall under this study.

We observe that Guava, Spring, Hibernate and Easymock all use the compiler directive
to mark deprecated entities in their APIs. These APIs are also well documented and thus
use the Javadoc technique as well. However, as we have seen earlier there are differences
in whether they link to a replacement or not. Despite the presence of both techniques we
found some anomalies it comes to Guice and Hibernate.

In the case of Hibernate it appears that they only use the source code annotations starting
version 4.0.0 onwards. Thus for all the previous (3.3.0 - 3.6.10), this directive has not been
used instead the deprecation was marked only in the Javadoc. This makes it hard for us
to detect deprecated entities in earlier versions of Hibernate as our deprecation detection
technique depends on the presence on the compiler directive. We have seen that even in the
present day version 3.6.0 is the most popular version that is used. The combination of these
two fact results in the loss of a lot of data for the purpose of this analysis. This is the main
reason as to why we see a small number of projects that are affected by a deprecated entity
despite the dataset containing a large number of projects.

Guice is a young API with only three released versions and two beta version for the
fourth installment. Due to this there are very few methods and annotations that are dep-
recated in the first three versions. On inspection of the documentation of each version we
found that there was a very small number of deprecated entities, furthermore these depre-
cated entities do not show up in our dataset. We tried to make the connection between the
documented deprecated methods and annotations, but it appears that in the released JARs
of the different version of the APIs the class files containing the deprecated entity did not
exist. As these classes had been removed, we could not mark the deprecated features in
the dataset. Due to this, there was no data to be inferred related to the usage of deprecated
features of Guice.

5.6.3 Difference in deprecation strategies

The decisions to deprecate a feature in APIs can be made based on a variety of reasons.
One could be that the feature is obsolete and there is a better way to reach he same end goal.
Another would be because the feature is rarely used and requires effort to maintain thus it
could be marked as deprecated. Or the feature might have a flaw in it so it is replaced by
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a new feature thus making the old one obsolete. The reasons behind deprecating a feature
and the feature itself that is deprecated can have impact on the clients of the APIs as we see
in this section.

Out of all the APIs we see that the clients of Guava are the ones that are most affected by
deprecation. This is reflected in the number of projects that end up using deprecated entities.
Out of the 3,014 clients of guava 774 of them are affected by deprecated entities. This would
imply that a lot of features that are popularly used by Guava clients are deprecated by its
developers. This is reflected in the fact that almost one tenth of the method invocations that
are captured in our dataset are marked as deprecated at the time of usage.

The clients of Easymock are similarly affected as the clients of Guava. Here we see
that 131 out of the 649 projects are affected by deprecation. In terms of number of classes
and methods that are present in the API, Easymock is the smallest of the APIs that is under
consideration. Thus on deprecation of even one feature a large number of clients could be
affected by the change.

Despite having information on the deprecation of features Hibernate version 4 onwards,
we see that there is a surprisingly large number of projects that are affected by deprecation.
This has to do with the fact that there are 3548 projects out of the 6038 projects that use
Hibernate that migrate or use version 4. Out of these we see that almost one tenth (336)
projects are affected by deprecation. This could be down to the fact among all the APIs
studied, Hibernate has by far the largest number of features that are deprecated. The Hiber-
nate developers have deprecated 7591 features in version 4 alone as opposed to Guava and
Spring who have deprecated 1,479 and 1,320 entitles during their entire lifetime.

We see that Spring has the lowest number of projects that are affected by deprecation.
Also, out of the larger projects such as Guava and Hibernate it has the least number of
deprecated features over 37 different releases. This leads to a really small number of clients
that are affected by deprecation of features. This could indicate that the developers of Spring
are doing a good job when it comes to deprecating features as only a minimal number of
clients are affected.

We postulate that less aggressive deprecation policies are probably best. However, we
would need to investigate this phenomenon further with the aid of data for a lot more APIs
to make the results generalizable.

5.6.4 Additional remarks

The additional information we collect on API versions leads us to the following observa-
tions.

If it ain’t broke, don’t fix it. We were surprised that so many projects did not update
their API versions. Those that do often are not in a hurry, as we see for Easymock or
Guice. Developers also routinely leave deprecated method calls in their code base despite
the warnings, and even often add new calls. This is in spite of all the APIs providing precise
instructions on which replacements to use. As such the effort to upgrade to a new version
piles up. We think that a qualitative study of the reasons of these choices would be very
instructive.
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Impact of deprecation messages. We also wonder if the deprecation messages that
Guava has, which explicitly state when the method will be remove, could act as a double-
edged sword: part of the clients could be incentivized to upgrade quickly, while others may
be discouraged and not update the API or roll back. In the case of Easymock, the particular
method that has no alternative may be a roadblock to upgrade.

5.6.5 Threats to validity

Our most important threat to validity is that we do not detect deprecation that is only spec-
ified by Javadoc tags. We checked each API (especially Spring as it has few deprecations),
and find that this is an issue for Hibernate before version 4, but not for the other APIs. As a
result, we underestimate the impact of API deprecation for a fraction of Hibernate clients.
We considered crawling the online Javadoc of Hibernate to recover these tags, but we found
that Javadoc per revision of a version was missing (e.g. version 3.1.9).

We only analyze 5 APIs, and notice significant variation between them. As such the
results are not representative of all APIs, and a more comprehensive study could be con-
ducted.

The use of projects from GitHub has several threats, as documented by Kalliamvakou et
al. [50]. The projects are all open-source, and some may be personal projects where mainte-
nance may not be a priority. The projects may be inactive; however, we only select projects
that are marked as “active” in GHTorrent. Also, to overcome any bias that may exist in a
GitHub based dataset we could download other major clients (e.g., other APIs) of APIs as
specified on their Maven central pages. Other threats are that GitHub projects may be toy
projects or not projects at all (still from [50]); we think this is unlikely, as we only select
projects that use Maven: these are by definition Java projects, and, by using Maven, show
that they adhere to a minimum of software engineering practices.

Finally, we only look at the master branch of the projects. We assume that projects
follow the git convention that the master branch is the latest working copy of the code [20].
However, we may be missing reactions to API deprecations that have not yet been merged
in the main branch.

In RQ5, we use a heuristic to detect possible API replacements; the heuristic might not
work in all cases.

For RQ6, we investigated deprecation messages of API elements that caused reactions.
It is possible that deprecation messages of API elements that did not cause reaction would
be different (e.g., there may not be a message). We checked this by inspecting the messages
of all the deprecated methods of Easymock, and did not see a difference between categories.

5.7 Conclusion

In this chapter we have presented an empirical study on the effect of deprecation of API
artifacts on API clients. This non-exact replication of a previous study on Smalltalk projects
found a broad agreement in its results, with however a few differences. We described a
mechanism by way of which we identified popular APIs and their usages by clients in a
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large corpus of source code. Using this data, we analyzed the usage of deprecated artifacts
over the history of all the clients of 5 popular APIs. Our main findings are:

1. Few projects ever upgrade their API dependencies; most projects pick an API version
and use it for the entirety of their lifetime.

2. Of the projects that are affected by API deprecation, a minority reacts. Most keep
using the deprecated calls, and even add new calls to deprecated functionality.

3. A minority of projects replaces deprecated entities with a replacement from the API;
most choose to delete the entity all together. This is in-spite of there being very good
API documentation that should aid the transition.

4. The effort involved to react to deprecations can be large; however, the time to react
is usually short on the deprecation is noticed. We see that projects that do not react
accumulate technical debt in the form of deprecated API calls, should they need to
upgrade their API in the future.

5. We find very different API deprecation policies among APIs; we hypothesize that less
aggressive deprecation policies are more successful.

These findings call for further investigation, in particular on the low percentage of
projects that update their API versions, and that react to API changes. Qualitative stud-
ies on the reasons of this could bring insight on whether and how to address this situation.
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Chapter 6

Conclusions and Future Work

This chapter gives an overview of the project’s contributions. After this overview, we will
present some future avenues. Finally, we conclude this thesis with an overview of the most
important takeaways from this thesis.

6.1 Contributions

In this thesis our main contribution is the approach fine-GRAPE. This approach allows for
the creation of large API usage datasets. We enumerate a number of steps that can be
followed to collect data from large scale open source platforms such as GitHub and Source-
forge. The advantage of targeting such platforms is that there is a large amount of data
that is available. Our approach only deals with Java based projects that use a specific build
system i.e., maven. However, we do not feel that is a drawback as Java is one of the most
popular programming languages and Maven is one of the more popular build tools that is
used. The most important aspect of our approach which sets it apart from previous ap-
proaches is that we collect only type-checked API usages, which helps keeping the number
of false positive API usages to a minimum.

Based on the approach that we have created we create an SQL based database that
contains API usages collected for five (Spring, Hibernate, Guava, Guice and Easymock)
mainstream Java APIs. This database contains data that has been collected from 20,263
projects which comprises of a grand total of 1,482,726 method invocations and 85,098
annotation usages have been collected. This data forms the base upon which we perform
four different analyses.

The first analysis that we perform is to analyze the upgrade behavior of clients using
APIs. Typically, APIs release new versions of their APIs that either contain new functional-
ity, or refactor existing features or remove certain functionality or deprecate some features.
In the case of SOAP and REST APIs, API developers can force the clients of their APIs to
upgrade to a newer version. However, in the case of more traditional APIs we see that this
is not the case. There generally appears to be a large lag when it comes to clients upgrading
the version of the API that they use. Here we are able to distinguish between two types
of APIs. APIs that release frequently seem to encourage their clients to upgrade more fre-
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quently. This is also reflected by the fact for these APIs the more popular versions are more
recent releases of the API. On the other hand, we see that for APIs that have an infrequent
release pattern it appears that clients are far less likely to upgrade to a new version of the
API and thus suffer from a much larger lag time.

Our second analysis deals with the percentage usage of an API. The APIs that we have
selected in our dataset are all large APIs with the exception of Easymock. They all provide
a multitude of features to their clients. It is natural to assume that not a large proportion of
the API is typically used by clients of the API. This assumption is confirmed by our inves-
tigation into number of features used. We see that in the case of three APIs (Spring, Guava
and Easymock) the percentage of the API used is in the 10% to 15% bracket. However, for
the Guice and Hibernate API the usage percentage is below 2%. As we dive deeper into the
numbers we see that the most popular features being used are also the ones that have been
introduced early in the APIs life cycle. This fact may explain why newer features that are
introduced by API developers are not adopted by users.

In the third analysis we look at the relation between bugs in APIs and the popular fea-
tures of the API. We postulate that there should be more bugs/bug reports related to the
more popular parts of an API as opposed to the unpopular parts of the API. However, we
observe the opposite to be true. We see that most parts of the API are quite well tested, and
this includes the popular parts of the API. And we observe that the unpopular parts despite
being well tested are more prone to bugs. This is especially surprising as we see a very
low rate of usage in these parts. We hypothesize that the bug reports related these parts
may be submitted by internal developers or that these features that are unpopular on open
source platforms such as GitHub might be more popular with corporate clients whose data
is unavailable to us.

Finally, we also look at the impact of deprecation of API artifacts on its clients. The
study we perform is a non-exact replication of a previous study done in the world of
Smalltalk. Deprecation of an API artifact usually implies that the artifact in question has
been marked for removal in the future. We see that there are very few clients that are af-
fected by deprecation as only a few ever migrate to a new version of the API. Out of the ones
that are affected, we see that even smaller proportion react to the deprecated entity. There
is a large number that counter react i.e., they introduce new calls to a deprecated entity as
opposed to using the suggested replacement. We see that out of the clients that react, most
of them do so late and they react by deleting the deprecated call as opposed to replacing it
with recommended functionality. This is in-spite of their being very good documentation
provided by the API developers at the time of Deprecation.

6.2 Future work

Here we propose a number of other research fields wherein the dataset we have created can
be helpful in.

First, the evolution of the features of the API can be studied. An analysis of the evolution
can give an indication as to what has made the API popular. This can be used to design
and carry out studies on understanding what precisely makes ascertain API more popular
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than other APIs that offer a similar service. Moreover, API evolution information gives an
indication as to exactly at what point of time the API became popular, thus it can be studied
in coordination with other events occurring to the project.

Second, a large set of API usage examples is a solid base for recommendation systems.
One of the most effective ways to learn about an API is by seeing samples [77] of the code
in actual use. By having a set of accurate API usages at ones’ disposal, this task can be
simplified and useful recommendations can be made to the developer; similarly to what has
been done, for example, with Stack Overflow posts [71].

6.3 Conclusion

We have presented our approach to mine API usage from OSS platforms. Using fine-
GRAPE we created a rich and detailed dataset that allows researchers and developers alike
to get insights into trends related to APIs. A conscious attempt has been made to harvest
all the API usage accurately. A total of 20,263 projects and accumulated a grand total of
1,482,726 method invocations and 85,098 annotation usages related to five APIs have been
mined.

We also presented four analyses that we performed based on the dataset that had been
created. And based on the four studies we can draw the following major conclusions:

• We see that there is a tendency for clients of an API to not upgrade to the latest
version of the API on a regular basis. This can result is a large lag time for these
clients behind the latest version.

• There is a difference between the upgrade behavior of clients for APIs that release
frequently versus the APIs that release infrequently. This is something that will re-
quire further investigation as it could potentially help API developers decide a release
policy.

• Out of all the features that are provided by an API, there is a very small portion that
is actually used by clients. We also see that these features are the ones that were
originally introduced in the API and not those that have been added since.

• There is no connection between the popularity of an API feature and the bugs in that
part of the API. This is a surprising result as it is counter-intuitive.

• Not a lot of API clients appear to care about deprecated API entities in the Java world.
Not many notice the deprecation in the first place, and out of the ones that do there
are even fewer that react to it.

• We find that there are similarities between the reaction to deprecation between the
SmallTalk and the Java ecosystems. This is surprising as SmallTalk is a dynamically
typed language and Java is statically typed.

We have proposed a couple of future studies that can be carried out using our current
dataset. We also provide indications as to what kind of future work can be performed to the
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various analyses that we have performed on our dataset. Overall, it is our hope that that the
approach and the database that we have created will inspire a lot more work in the field of
APIs.
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[25] Barthélémy Dagenais and Laurie Hendren. Enabling static analysis for partial java
programs. In ACM Sigplan Notices, volume 43, pages 313–328. ACM, 2008.

[26] Barthelemy Dagenais and Martin P. Robillard. Recommending adaptive changes for
framework evolution. In International Conference on Software engineering, pages
481–490, 2008.

[27] Danny Dig and Ralph Johnson. How do apis evolve? a story of refactoring. Journal
of software maintenance and evolution: Research and Practice, 18(2):83–107, 2006.

[28] Danny Dig and Ralph E. Johnson. The role of refactorings in api evolution. In ICSM
2005: Proceedings of the 21st International Conference on Software Maintenance,
pages 389–398, 2005.

[29] Danny Dig, Kashif Manzoor, Ralph Johnson, and Tien N Nguyen. Refactoring-aware
configuration management for object-oriented programs. In Software Engineering,
2007. ICSE 2007. 29th International Conference on, pages 427–436. IEEE, 2007.
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to api deprecation?: the case of a smalltalk ecosystem. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software Engineering,
page 56. ACM, 2012.

[77] Martin P Robillard and Robert DeLine. A field study of api learning obstacles. Em-
pirical Software Engineering, 16(6):703–732, 2011.

[78] Anand Sawant and Alberto Bacchelli. API Usage Databases. http://dx.doi.org/
10.6084/m9.figshare.1320591, 2015.
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