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1
INTRODUCTION

1.1. MOTIVATION
After the first discovery of radio emissions from our galaxy by Karl Jansky in 1933, the
field of radio astronomy has provided scientists and the general public with discoveries
that have shaped our understanding of the universe. The discovery of quasars and su-
permassive Black Holes at the center of the galaxies, Cosmic Microwave Background ra-
diation which provided support for the Big Bang model and the Pulsating Radio Sources
(Pulsars) are a few contributions from radio astronomy in the last 80 years.

Studying signals from the early universe such as the Epoch of Reionization (EoR) (a
period a few hundred million years after the Big Bang when the gasses in the universe
started the transition from being completely neutral to completely ionized) demands
radio–telescopes with very high sensitivity and resolution. The sensitivity of a radio–
telescope increases with its collecting area and its resolution is proportional to its geo-
metrical dimensions and inversely proportional to the wavelength at which the obser-
vation are taking place. For studying weak signals at low frequencies (∼ 100 MHz) with
high resolution (∼ arcsec), the dimension of the telescope will grow beyond 600 km. Fig.
1.1a shows the Arecibo telescope with a diameter of 305m, it is then clear that creating a
single dish telescope with dimensions of hundreds of kilometers is practically impossi-
ble.

The idea to combine the output of different radio receivers to emulate a larger radio–
telescope is mostly contributed to Martin Ryle, who received a Nobel Prize together with
Tony Hewish for his work on one the first radio–interferometers called the One–Mile
telescope which was constructed at Cambridge, UK and consisted of two receivers. Soon
after, in 1970 the 3km Westerbork Synthesis Radio Telescope (WSRT) was constructed in
the north of the Netherlands with 14 antennas (Fig. 1.1b) followed by the 36 km Very
Large Array (VLA) in USA (1980, Fig. 1.1c) and the 25 km Giant Meter–wave Radio Tele-
scope (GMRT) in India (1988, Fig. 1.1d).

Modern radio–telescopes such as the LOw Frequency ARray (LOFAR) [1] consist of
many small receiving elements (∼ 3500 in low–band and ∼ 28000 in high–band modes

1
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(a) Arecibo (b) WSRT

(c) VLA (d) GMRT

Figure 1.1: Various radio–telescopes with historical importance

[2, pp. 8]) with baselines of over 1000 km. Future telescopes such as Square Kilometer
Array (SKA) will have order(s) of magnitude more elements and collecting area. However,
increasing sensitivity and resolution by itself will not lead to the detection of the desired
weak signals. There exists a huge number of foreground radiators including, not only as-
tronomical objects but also strong transmissions from man–made radio systems which
must be removed in order to make it possible for the weaker sources to be detected. This
is clearly a detection and estimation problem, and such problems are studied extensively
in signal processing applications.

1.1.1. SIGNAL PROCESSING APPROACH TO RADIO ASTRONOMY
Considering the the rapid increase in the number of receivers, the dimensions and the
field of view (FoV) of the modern telescopes, it is clear that the current algorithms used
by astronomers need to be improved. With LOFAR fully operational and the construc-
tion of SKA gaining momentum, the demand for automated and scalable algorithms is
increasing. At the same time it is important for these algorithms to be based on a sound
theoretical foundation in order to make the analysis of the corresponding (large) prob-
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Corr. & 
RFI-Mitigation Imaging

Calibration

Image

Figure 1.2: Schematic representation of main components of imaging pipeline.

lems possible in a systematic manner.
Reformulation of the interferometric measurement equation (e.g. the model pre-

sented in [3]) using signal and array processing models, will allow access to the rich set of
signal processing tools developed for these fields. A given problem in signal processing is
approached by finding the appropriate data models, theoretical bounds needed for per-
formance analysis and algorithms. Signal processing also provides theoretical tools to
perform each of these steps in a systematic way, e.g. algorithms can be designed based
on proven generic principles such as maximum likelihood (ML) and/or least squares
(LS).

The benefit of using the signal processing methods can be seen in several works that
have introduced this approach to the radio astronomy such as [4–8]. However, many of
the suggested signal processing based approaches to radio astronomy are either unscal-
able or their performance is not yet tested on large data sets. Another problem is the fact
that the results from some of the proposed methods, even though theoretically better
motivated, do not provide the desired improvements with respect to classical methods
used by astronomers. An example is the least square imaging [9] compared to the classi-
cal approaches such as CLEAN (discussed in more detail in Sec. 1.1.4 and Chapter 7). In
this thesis we will expand on these models and study how signal processing and linear al-
gebraic approaches can be used to improve the existing algorithms and/or provide new
tools capable of addressing some of the issues that new generation of radio telescopes
will face.

As illustrated in Fig. 1.2 we can divide the data processing pipeline, from the receivers
to the final image, into three closely related main components: radio frequency interfer-
ence (RFI) mitigation, calibration and imaging. We will discuss some of the problems
related to these components in short in the following sections.

1.1.2. RFI MITIGATION

The increasing number of wireless services and applications are rapidly reducing the
number of RFI free bands for radio astronomy. Many of these services are moving to-
wards wideband digital systems such as Digital Audio Broadcasting (DAB) currently pop-
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ulating the band between 174-240 MHz which also is of interest for radio telescopes such
as LOFAR.

The current radio frequency interference (RFI) mitigation techniques which are com-
monly used by the astronomical community (an overview can be found in [10–12]) use
the time-frequency plane to flag and remove the portion of the data that is suspected to
be contaminated. Another approach is the use of specialized imaging techniques which
are to some degree robust against RFI presence [5]. In situations where there exists a con-
tinuously present wide–band RFI, the use of array processing techniques such as spatial
filtering could provide access to frequency bands otherwise avoided by astronomers.

An example of such a spatial filtering technique is proposed by [13] and an improved
version which uses an auxiliary set of antennas as a reference array to increase the relia-
bility and numerical stability of the algorithm is proposed by [14]. These spatial filtering
techniques require the spatial signature of the RFI, which can be found using subspace
estimation techniques, in order to suppress them. The eigenvalue decomposition (EVD)
is a popular subspace estimation method in signal processing, however it requires the
noise on the data to be white or known beforehand (e.g. from calibration) such that the
data can be preprocessed by a whitening step. This requirement could be very limiting
in practice, especially because the presence of RFI reduces the calibration accuracy. It
is then preferred to be able to estimate the required subspace using more generic ap-
proaches which will enable us to combine RFI filtering with noise power calibration.

1.1.3. GAIN CALIBRATION

Gain calibration is another important step towards producing high quality images from
the measured data [4, 6, 7]. During this step the currently available model for the sky
is used to estimate and correct for instrumental effects which will otherwise complicate
the imaging algorithms. The data model for gain calibration is non–linear and the num-
ber of unknowns grows with both the number of elements in the array and calibration
sources. It is then clear that calibration for modern radio–telescopes which consist of a
large number of receivers and are sensitive to a much larger number of sources due to
their large collecting area and resolution, will grow very rapidly in complexity.

To cope with this increased complexity, current approaches split the unknowns into
groups for which a closed–form or simplified solution can be found [4, 15]. Then by
applying alternating optimization algorithms such as weighted alternating least squares
(WALS), a solution is found. The penalty for approaching this problem by alternating
methods is the inherent monotonic convergence of these techniques which could be
too slow in some applications. Another way to reduce the growing complexity of the
calibration problem is by exploiting structure of the matrices used during the estimation
process. Using a signal processing model it can be shown that these matrices possess a
strong structure which, combined with the appropriate solvers, can be used to reduce
the computational cost and achieve accurate results with faster convergence rate.

1.1.4. IMAGE RECONSTRUCTION

Both classical Fourier based imaging [3] and the parametric model based least square
imaging [9] can be divided into two steps. The first step is the construction of the so
called “dirty image” followed a by a reconstruction step where an estimate of the true
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image called the “clean image” is found. For a small FoV and uniform spatial sampling
of measurement data, the relation between the dirty image and the true image is a 2D
convolution and the recovery of the clean image is a deconvolution process. Even though
this exact convolution relation fails to exist for an image with a large FoV and nonuni-
form spatial samples, the term deconvolution is still used to denote the recovery step.
It is well known that the deconvolution step becomes an ill-conditioned problem, if the
number of image pixels is large [9]. This has led to development of several deconvolu-
tion techniques which use different assumptions on the structure of the image to cope
with this problem.

One of the well known and widely used deconvolution techniques is the CLEAN
method proposed by Högbom [16], which was subsequently refined and extended in
several ways, leading to approaches described in [17–19]. CLEAN and its derivatives can
be categorized under sequential source removing techniques, where at each iteration
one or a few (point) sources are detected and removed from the dirty image. This pro-
cess is repeated until the residual (dirty) image can be considered as noise.

Other techniques based on non-negativity of the image [20], sparsity or`1 constraints
on the image [8, 21] and/or a combination of wavelets and sparsity [22, 23] have been
proposed to improve the quality of the reconstructed image. Several parameter estima-
tion methods based on array processing techniques have also been proposed, such as
the Least Squares (LS) and Least Squares Minimum Variance Imaging (LS-MVI) [9, 24]
and maximum likelihood based techniques [25].

The computational complexity of these methods is much higher than classical ap-
proaches such as CLEAN and this has formed a barrier for their adoption by astronomers.
On the other hand the lack of a comprehensive theoretical motivation for classical ap-
proaches makes their analysis difficult. Such analysis is needed and could provide in-
sights which can be used to fill the gap between the parametric imaging techniques and
classical ones in order to benefit from both approaches.

1.2. PROBLEM DEFINITION
Consolidating the above discussion, in this thesis the following problem and its related
subproblems are addressed: “How can a signal processing formalism (data model and
algorithms) be used to (re)formulate the radio astronomical image formation problems,
from the data acquisition at individual receivers to the final image? Which SP tools are
appropriate and/or needed?". We approach this problem in a hierarchical manner. The
possibility of producing an accurate sky–map/model or imaging can be studied under
the assumption that no RFI is present and that the receivers are ideal and identical el-
ements. Correcting for the deviation between the actual receivers and this ideal array,
which is called calibration, can be addressed separately by again assuming no RFI pres-
ence and some prior knowledge about the sky–model. The next problem that needs to
be addressed is the detection and mitigation of RFI.

In the majority of radio astronomical observations, the frequency bands which are
contaminated by RFI are thrown away to avoid possible artifacts in the final image. This
loss of data results in loss of sensitivity and should be avoided if possible. We will in-
vestigate how subspace–based techniques needed in spatial filtering algorithms can be
improved to produce RFI free covariance matrices from contaminated measurements
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and what tools are needed. The following subproblems form the basis for this study:

• How can we estimate the subspace needed for spatial filtering techniques (and
other applications in general) when the noise affecting the array is not white and
is unknown (i.e. array is not calibrated)?

• What are the theoretical limitations of these spatial filtering techniques?

• Can the use of a reference array improve the performance of spatial filtering tech-
niques? If so, what are the needed algorithmic modifications?

The work presented in this thesis on calibration focuses on (direction independent)
gain calibration and with more emphasis on the computational complexity. For such
calibration we usually assume to know the direction of a set of sources based on previous
observations or catalogs. The subproblem that is addressed in this case is:

• How can we exploit the inherent structure in the signal processing model for gain
calibration to devise a computationally efficient estimation algorithm?

Even though we are assuming an array of ideal and identical elements during the
imaging process, the output of the array is affected by the number of elements in the
array, the frequency at which the measurements are performed and the array’s topology.
Also for the majority of the observations the duration is long enough for the measure-
ments to be affected by the Earth’s rotation. Taking these effects into consideration the
following subproblems/tasks need to be addressed when the imaging problem is stud-
ied:

• Starting from the measurement equation, formulate a solid signal processing ap-
proach to image formation which is scalable and sufficiently constrained for an
underdetermined problem.

• How is this method related to classical CLEAN–based approaches?

• Provide a method to implement the new algorithm on a system with limited re-
sources.

1.3. APPROACH
This section provides a brief overview of the approaches used throughout this thesis to
tackle the problems discussed in the previous section.

1.3.1. SUBSPACE ESTIMATION
In order to address the limitation of EVD for subspace estimation for uncalibrated arrays
we propose the use of a technique called factor analysis (FA).

FA is a multivariate technique which decomposes a covariance matrix into a low–
rank positive semidefinite and a diagonal matrix. The low–rank part contains the sig-
nal subspace and the diagonal part is the noise contribution. In many practical scenar-
ios, the diagonal matrix which corresponds to the noise power of each receiver does not
change as rapidly between several measurements as the spatial signature of the RFI (the



1.4. OUTLINE

1

7

low–rank part of the decomposition). In these cases a more accurate estimate can be
found by jointly decomposing several covariance measurements which share the same
diagonal structure. In this thesis possible extensions of FA which allow for estimation of
several subspaces jointly are also proposed.

1.3.2. KRONECKER STRUCTURES AND KRYLOV SOLVERS

As will be shown in Chapter 3, the signal processing models used in this thesis are co-
variance models and hence the problems we encounter can be categorized as covari-
ance matching problems. In many covariance matching problems we need to find the
Jacobian of the covariance matrix with respect to a set of unknown parameters which
involves reshaping the covariance matrices into vectors. This leads to strong Kronecker
or Khatri–Rao structures in the Jacobian matrices (see Chapter 2 for more details).

Finding the unknown parameters then involves finding the (pseudo) inverse of these
Jacobian matrices which if performed directly without taking the Kronecker structure
into account is prohibitively expensive for large problems (the dimension of the Jacobian
increases with both the number of receivers and the number of unknown parameters).
However, using the Kronecker and Khatri–Rao structure we can show that performing
a matrix vector multiplication involving these Jacobians can be achieved efficiently in
both storage and complexity.

The class of Krylov subspace solvers is capable of solving a set of linear equations iter-
atively by performing a single matrix vector operation (two if the matrix is not symmet-
ric) per iteration. Combining the Kronecker structure to achieve these multiplications
efficiently with Krylov subspace methods improves the scalability of various estimation
techniques considerably.

In this thesis this approach is worked out for all three major problems we discuss:
subspace estimation (Sec. 4.6.2), gain calibration (Sec. 6.3.2) and imaging (Sec. 7.5.1).

1.3.3. CONSTRAINED LEAST SQUARES

Starting from a parametric array processing model it can be shown that in addition to
non-negativity as a lower bound on the image we can use beamforming techniques to
find an upper bound for the intensity of each pixel in an image. The LS or weighted LS
problems with this set of inequality constraints can be solved using a class of optimiza-
tion techniques called the active set method. In this thesis we demonstrate that this
approach leads to a sequential source removing technique similar to CLEAN. Addition-
ally, a recent analysis of LS problems with non-negativity constraints relates this class of
problems to sparse reconstruction techniques based on the `1 constraint [26, 27]. Hence
the approach presented in this work links several deconvolution techniques together
and provides a theoretical foundation for further analysis.

1.4. OUTLINE
In outline, the topics discussed in each chapter are as follows.
Chapter 2: A brief overview of the known results for Kronecker products, covariance
matching techniques and Krylov–subspace based solvers is provided. These techniques
and results are used extensively throughout this thesis.



1

8 1. INTRODUCTION

Chapter 3: The covariance model for subspace estimation, calibration and imaging is
provided in this chapter. The results are used for the development of the corresponding
algorithms in the chapters that follow.
Chapter 4: The relation between subspace estimation and Factor Analysis (FA) is estab-
lished in this chapter. Also the extension of some known results from real–valued FA to
complex–valued data is discussed. New data models denoted as Extended Factor Analy-
sis (EFA) and Joint EFA (JEFA) are introduced and corresponding estimation algorithms
are presented. The Cramér–Rao bound for FA, EFA and JEFA is derived and the perfor-
mance of the proposed algorithms is evaluated against it using simulations. Finally some
new results considering the identifiability of the model are presented.
Chapter 5: An overview of spatial filtering techniques for RFI mitigation based on sub-
space projection is given. The use of a reference antenna to overcome some of the issues
with existing spatial filtering technique is also discussed. Using FA for subspace estima-
tion and (J)EFA as alternative to projection methods is proposed. Using simulations it is
shown that the newly proposed methods can produce RFI–free covariance matrices from
an uncalibrated array. The performance of FA combined with projection based filtering
and EFA is demonstrated using data from Westerbork and LOFAR radio-telescopes.
Chapter 6: A new Krylov–subpace based algorithm is developed for gain calibration. The
algorithm is tested using data from the LOFAR telescope. Extension of the algorithm to
include direction of arrival corrections is also discussed.
Chapter 7: In this chapter it is shown that in addition to non-negativity, the magnitude
of each pixel in an image is also bounded from above. Indeed, the classical “dirty im-
age” is an upper bound, but a much tighter upper bound can be formed from the data
using array processing techniques. This formulates image formation as a least squares
optimization problem with inequality constraints. Solving this constrained least squares
problem using active set techniques is proposed, and the steps needed to implement it
are described. It is shown that the least squares part of the problem can be efficiently
implemented with Krylov-subspace-based techniques. A method for correcting for the
possible mismatch between source positions and the pixel grid is also presented. This
correction improves both the detection of sources and their estimated intensities. The
performance of these algorithms is evaluated using simulations.
Chapter 8: This section provides a summary of the main results and provides a roadmap
for future works.

1.5. CONTRIBUTIONS TO LITERATURE
Some of the results presented in this thesis have been accepted for publication in a jour-
nal and/or presented to the community during conferences and workshops,as follows.
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• A. Mouri Sardarabadi, A. Leshem, and A.-J. van der Veen, “Radio Astronomical Im-
age Formation using Constrained Least Squares and Krylov Subspaces,” Astron-
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2
PRELIMINARIES

In this chapter we will review some of the well known and widely used estimation and
linear algebraic methods that are extensively used in the following chapters. We will start
in Sec. 2.1 by introducing the notation used in this thesis followed by the definition of
the Kronecker product and some of its properties in Sec. 2.2. We then discuss maximum-
likelihood (ML) and various covariance matching techniques in Sec. 2.3, where we will
follow the material covered in [37] closely and then proceed with a short overview of
Krylov subspace based techniques for solving linear systems in Sec. 2.4.

11
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2.1. NOTATIONS

x, X italic lower or upper case characters represent
scalars

x bold lower case characters represent column
vectors

X bold upper case characters represent matrices
xi j = [X]i j corresponds to the entry of X at the i th row and

j th column
xi = [X]i is the i th column of X
ai is the i th element of the vector a
IP identity matrix of size P ×P (I is an identity ma-

trix of appropriate size)
ei a unit vector that has entry i equal to 1
(·)T transpose operator
(.)H Hermitian transpose
(.)† pseudo–inverse
(.)∗ complex conjugate
vect(.) reshapes the argument matrix to a vector by

stacking its columns
unvect(.) inverse of vect(.) for a matrix with known dimen-

sions
vectdiag(.) a vector obtained by stacking the diagonal ele-

ments of the argument matrix
diag(x) a diagonal matrix with elements of x on the main

diagonal
diag(X) is the same as diag(vectdiag(X))
bdiag(Xi ) a block-diagonal matrix from the set of argu-

ment matrices
⊗ Kronecker product
¯ Hadamard product
◦ Khatri–Rao product
tr(.) trace of the argument matrix
KP,Q a permutation matrix such that KP,Q vect(X) =

vect(XT ) where X is a P ×Q matrix
‖ ·‖F Frobenius norm of a matrix
‖ ·‖ or ‖ ·‖2 Two norm of a vector
|x| absolute value of x
|X| determinant of X
E {·} expectation operator

Additionally, N (µ,Σ) represents the multivariate complex normal distribution with
expected value µ and covariance matrix Σ. A calligraphic capital letter such as X repre-
sents a set of indices, and aX is a column vector constructed by stacking the elements of
a that belong to X . The corresponding indices are stored with the vector as well (similar
to the storage of matlab “sparse” vectors).
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2.2. PROPERTIES OF THE KRONECKER PRODUCT
Let ⊗ denote the Kronecker product, i.e.,

A⊗B :=

 a11B a12B · · ·
a21B a22B · · ·

...
...

. . .


Further, ◦ denotes the Khatri-Rao product (column-wise Kronecker product), i.e.,

A◦B := [a1 ⊗b1,a2 ⊗b2, · · · ]

and ¯ denotes the Schur-Hadamard (element-wise) product.
The following properties hold for matrices and vectors with compatible dimensions:

(BT ⊗A)vect(X) = vect(AXB) (2.1)

(B⊗A)H = (BH ⊗AH ) (2.2)

(B⊗A)−1 = (B−1 ⊗A−1) (2.3)

(BT ◦A)x = vect(Adiag(x)B) (2.4)

(BC⊗AD) = (B⊗A)(C⊗D) (2.5)

(BC◦AD) = (B⊗A)(C◦D) (2.6)

(BH C¯AH D) = (B◦A)H (C◦D) (2.7)

vectdiag(AH XA) = (A∗ ◦A)H vect(X) (2.8)

Additionally for any P ×Q matrix A there exists a PQ ×PQ permutation matrix KP,Q

such that
vect(AT ) = KP,Q vect(A). (2.9)

We also have KT K = I, KP,Q = (KQ,P )T and hence KP,Q KQ,P = I. Using these relations, for
any P ×Q matrix A and M ×N matrix B we have

(A⊗B)KQ,N = KP,M (B⊗A) (2.10)

(A◦B) = KP,M (B◦A), (2.11)

where Q = N for (2.11).
With appropriate use of the identity matrix I we can use these properties even if we

are working with a single matrix or a product of two matrices. For example for a diagonal
matrix D = diag(d), we have vect(D) = vect(I diag(d) I) = (I◦ I)d.

2.3. COVARIANCE MATCHING TECHNIQUES
Estimating physical parameters from noisy data is one of the main activities in signal
processing. In this section we will establish the relation between parameter estimation
and covariance matching techniques and discuss how various optimization techniques
could be used when this problem becomes nonlinear.
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2.3.1. STATISTICAL SUFFICIENCY

Let us define y as a P × 1 vector that represents the output of P receivers and Y as a
P × N set of independent measurements (or a dataset) from y where N is the number
of measurements. Let θ be a n ×1 vector of unknown parameters that influence y. We
are interested in finding and estimate for θ based on the measurements in Y. Of course
we can try to find an estimate for θ by analyzing Y directly, however it is also possible to
estimate the unknown parameters from a function of the measured data, t (Y), if t (.) is
a sufficient statistic [38, pp. 102-105]. Saying t (.) is a sufficient statistic means that we
can deduce the same information about θ from t (Y) with the same accuracy as using the
entire dataset. One of the main reasons to use such a statistic is to reduce the size of the
measurements without losing any information which will be relevant when estimating
the unknown parameters. In this case t (.) can be seen as a loss-less compression.

From this point forward we assume that the samples in Y have a complex Gaussian
distribution. It can be shown that for a zero-mean Gaussian distributed dataset, the
sample covariance matrix

R̂ = 1

N
YYH ,

is a sufficient statistic [38, pp. 102-105]. Using this statistics we can reduce the storage
from 2P N real parameters to P 2 real parameters needed to store the covariance matrix
(of course this is a reduction only when N > P ).

We still need to define a relation between θ and R̂. We do this by putting a model on
the "true" covariance matrix, which is defined as

R(θ) = E {R̂} = E {yyH }

The relation between R and θ is assumed to be known based on the underlying model for
y. For example if we assume that all the elements in y are independent, R will become a
diagonal matrix and we can model it as R = diag(θ) where θ is a P ×1 vector representing
the variances for each element in y. In this section we will not assume any specific model
for R(θ), however we will assume that such a model exists. In the Chapter 3 we will
discuss the data model in more details.

Now that we have established the feasibility of R̂ as a replacement for the original
set of measurements Y, we will discuss various estimation techniques and algorithms to
find an estimate for the unknown parameters θ from R̂.

2.3.2. MAXIMUM LIKELIHOOD

Considering that we have assumed Gaussianity of the data and thus know the likelihood
function, we can try to find the ML estimate by means of solving an optimization prob-
lem. The aim is to find θ that maximizes the complex log-likelihood function

l (x;θ) = N
[− log(πP )+ log |R(θ)−1|− tr(R(θ)−1R̂)

]
. (2.12)

One way to achieve this by finding the Fisher score (i.e. the gradient of the log-likelihood
function) and setting it equal to zero. The Fisher score for a proper Gaussian distributed
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signal is given by [39, p.165]

g (θ j ) = ∂

∂θ∗j
l (x ;θ)

=−N tr

[
R−1

(
∂R

∂θ j

)H
]

+N tr

[
R−1

(
∂R

∂θ j

)H

R−1R̂

]
, (2.13)

where the partial derivatives are Wirtinger derivatives (i.e. the variable θ and its conju-
gate are treated as independent variables when derivatives are derived).

By rearranging the results in a vector form we find the following relation for the Fisher
score:

g(θ) = ∂l (x;θ)

∂θ
(2.14)

= N J(θ)H (
R(θ)−T ⊗R(θ)−1)vect(R̂−R(θ)) (2.15)

where

J(θ) = ∂vect(R)

∂θT
(2.16)

To illustrate we revisit our example in the previous section where R = diag(θ). In this
case J = IP ◦ IP and we have

0 = (IP ◦ IP )T (diag(θ)−1 ⊗diag(θ)−1)[vect(R̂)− (IP ◦ IP )θ]

= diag(θ)−2vectdiag(R̂)−diag(θ)−2θ

and the ML estimate becomes θ̂ = vectdiag(R̂).
Except for a few simple parameterizations, setting (2.14) equal to zero will lead to a

nonlinear equation which has no closed-form solution. In order to find the ML solu-
tion in these cases we need to utilize iterative optimization techniques. There are many
approaches to ML estimation. However in this section we would like to keep a level of
generality and hence limit the discussion of ML estimation to the method of scoring.

2.3.3. METHOD OF SCORING
The method of scoring is a special case of the Newton algorithm where the Hessian of the
log-likelihood is replaced by its expected value, assuming the current solution for θ is the
optimal solution. This is exactly how the Fisher Information Matrix (FIM) is defined and
hence this procedure is equivalent to replace the Hessian by the FIM [37]. For a complex
Gaussian distributed random variable the FIM is given by [40]

F(θ) = J(θ)H (
R(θ)−T ⊗R(θ)−1)J(θ). (2.17)

Starting with an initial guess θ̂(0) for θ, the iterations for scoring method are

θ̂(k+1) = θ̂(k) +µ(k)∆(k)



2

16 2. PRELIMINARIES

where µ(k) is the step-size and ∆ is the direction of descent and the solution to the the
following system of linear equations

F(θ)∆= g(θ), (2.18)

where g(θ) is the Fisher score given by (2.14). The iterations are terminated when ‖g(θ̂)‖ ≤
ε where ε> 0 is a small number based on the desired accuracy or if the maximum num-
ber of iterations is reached.

Replacing the Hessian with its expected value provides some stability with respect to
the Newton method, however the convergence is still sensitive to the initial guess. If the
problem is well posed and there are no identification problems then∆= F(θ)−1g(θ) and
F−1 is the Cramér-Rao bound on the variance of the estimates and also the asymptotic
covariance for the solution θ̂. In this case the algorithm provides us with the perfor-
mance statistics for "free" as a by–product. However, inverting both R(θ) and the FIM
at each iteration could be expensive depending on the size of the problem. If N is large
enough we could approximate R−1 with R̂−1 in the above iterations. In the next section
we will show that by doing so we are solving a special case of the Weighted Least Squares
(WLS) problem by a Gauss-Newton iterative procedure.

2.3.4. WEIGHTED LEAST SQUARES
The WLS procedure can be regarded as a true covariance matching technique, because
it does not need an underlying statistic like the Gaussianity of the signals. The idea is
to match a model covariance matrix to the given sample covariance matrix by minimiz-
ing the distance between them with respect to some weighted inner product norm. In
general, when we use WLS, we want to minimize a cost function of the form

f (θ) = r′(θ)H Wr′(θ) (2.19)

where r′(θ) = vect(R̂−R(θ)) is the mismatch between the model and the data, and W is a
positive weighting matrix.

Taking the derivatives with respect to the unknown parameters we see that solving
this problem is the same as solving

JH Wvect(R̂−R(θ)) = 0. (2.20)

where J is the Jacobian given in (2.16). When the problem is linear then J is not a function
of θ, we can write vect(R) = Jθ and θ̂ can be found directly by solving

JH WJθ̂ = JH Wvect(R̂).

If JH WJ is non-singular there exists a unique θ̂ = (JH WJ)−1JH Wvect(R̂). However if the
problem is non-linear we need an iterative approach to find the solution. In this section
we will discuss the Gauss–Newton algorithm [41, pp.134-136].

The iterations for the WLS using Gauss–Newton are

θ̂(k+1) = θ̂(k) +µ(k)∆(k)
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where∆ is the solution to the the following system of linear equations

J(θ)H WJ(θ)∆= J(θ)H Wvect(R̂−R(θ)), (2.21)

and it is called the direction of descent.
We observe that (2.20) and (2.14) are very similar despite having different cost func-

tions. Setting W = (R̂−T ⊗ R̂−1) as the weight for solving the WLS problem is asymptoti-
cally optimal (i.e. converges to ML solution) [37] and is computationally more attractive.
Another interesting special case occurs when W = I which reduces the problem to non-
linear LS.

2.3.5. REDUCED–GRADIENT METHOD
Up to this point we have tried to solve the WLS and ML problems without paying any
attention to the identifiability of the problems. Identifiability is strongly model depen-
dent and hence will be addressed when a specific problem is studied. However there are
some general remarks and algorithmic procedures that can be discussed without losing
generality. For example a necessary condition for identifiability is having more known
parameters (e.g. the number of entries in the sample covariance matrix R̂ which is equal
to P 2) than unknown parameters which is equal to number of elements in θ, n. We de-
fine the degrees of freedom for covariance matching techniques as

s = P 2 −n

and our first identifiability criteria is that s ≥ 0. If this is not the case the problem could
be remedied by putting L equality constraints on the parameters θ. Let each constraint
be formulated as hi (θ) = 0 for i = 1, . . . ,L, or in the vector form

h(θ) = 0.

In this case we can redefine the number of degrees of freedom as

s = P 2 −n +L,

and L should be large enough to guarantee s ≥ 0. Note that this is a necessary and not a
sufficient condition. Having a positive number of degrees of freedom does not guarantee
identifiability. However in the problems where we define h(θ), we assume that this set of
constraints can guarantee identification.

If constraints are linear then
h(θ) = Hθ = 0. (2.22)

It is then clear that any θ that satisfies these constraints is in the null space of H. This
means that starting from a feasible initial point θ(0) that satisfies these constants, the
search direction toward the solution should be orthogonal to H. Let U be a n × (n −L)
matrix forming an orthogonal basis for the null space of H such that HU = 0, then in
general we can write for the WLS and the scoring updates

∆= U(UH JH WJU)−1UH JH Wvect(R̂−R(k)), (2.23)
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where W = R(θ)−T ⊗R(θ)−1 for scoring method.

However, in general h is not linear. In these cases we can use a Taylor–series expan-
sion of the constraint function at each iteration such that

h(θ(k) +∆) ≈ h(θ(k))+H(θ(k))∆ (2.24)

with this approximation we again see that if θ(k) satisfies the constraints, we can keep the
solution feasible by choosing ∆ to be orthogonal to H. If we update U in (2.23) at each
iteration to be an orthogonal basis for the null space of H(θ(k)), we can use (2.23) again
to find the direction of descent as long as the constraint function does not become too
non–linear. This approximation is known as the Reduced–Gradient method [41, pp.220-
223]. If the non–linearity of the constraint function is too large this algorithm fails to
converge. The convergence of this method as with all Newton based methods, depends
strongly on the initial guess.

One of the common factors in all the iterative approaches we have discussed so far
is the need to solve a linear system of equations. In the context of radio-astronomy the
size of the problem we need to solve can become very large and both storage and com-
putational complexity play an important role in choosing the right method for solving
these large linear systems. Another factor which will become more apparent when we
discuss specific problems such as subspace estimation, RFI migiration, calibration and
imaging is the inherent Kronecker or Khatri–Rao structure of the Jacobians which is a
consequence of the vect(.) operator. These properties require us to choose a method
which is efficient in storage and can take advantage of the structure in the Jacobians.
Krylov subspace based solvers such as Conjugate Gradient, LSQR and MinresQLP form
a family of iterative algorithms which are suited to this end and we will discuss them in
more detail in the following section.

2.4. KRYLOV SUBSPACE BASED SOLVERS

In this section we will focus on solving a (large) system of linear equations of the form
Mx = b using Krylov subspace based methods. We will show that we can find a solution
by repeated application of matrix vector products of the form Mv and/or MH u and a few
scalar updates. We will start with a general motivation for the method and then focus on
the base idea behind the LSQR algrithm in Sec. 2.4.2.

2.4.1. MINIMUM POLYNOMIAL AND KRYLOV SUBSPACES

To illustrate the idea behind Krylov subspace based methods we will assume that M is a
square and non-singular matrix. In this case there exists a unique solution for x which is
given by x = M−1b. Using the minimum polynomial of a matrix we can write

M−1 = 1

γ0

m−1∑
j=0

γ j+1M j ,
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where for a diagonalizable matrix M, m is the number of distinct eigenvalues [42]. Using
this polynomial expansion we have for our solution

x = 1

γ0

m−1∑
j=0

γ j+1M j b

= [
b Mb . . . Mm−1b

]
γ

where

γ= 1

γ0
[γ1, . . . ,γm]T ,

and Km(M,b) = [b,Mb, . . . ,Mm−1b] is called the Krylov subspace of M and b. Krylov sub-
space based methods compute Kn(M,b) iteratively, for n = 1,2, .. and find an approxi-
mate for x by means of a projection on this subspace. Updating the subspace involves
only a matrix-vector multiplication of the form Mv.

In cases where M is singular or if it is not a square matrix, another class of Krylov
based algorithms such as LSQR can be used which is related to bidiagonalization of the
matrix M. The next section describes the idea behind LSQR and how this helps towards
a more scalable implementation of a linear solver.

2.4.2. LANCZOS ALGORITHM AND LSQR
If we are solving a problem of the form ‖b−Mx‖2

2, we can find a solution by first comput-
ing the singular value decomposition (SVD) of M as

M = USVH , (2.25)

where U and V are unitary matrices and S is a diagonal matrix with positive singular
values. Then the solution x to min‖b−Mx‖2 is found by solving for y in

Sy = UH b (2.26)

followed by setting

x = Vy. (2.27)

Solving the LS problem with this method is expensive in both number of operations and
memory usage, especially if the matrices U and V are not needed after finding the solu-
tion. As we will see shortly, looking at another matrix decomposition helps us to reduce
these costs. For the rest of this section we use the notation given by [43].

The first step in this approach for solving the LS problem is to reduce M to a lower
bidiagonal form as

M = UBVH , (2.28)

where B is a bidiagonal matrix of the form

B =


α1

β2 α2

. . .
. . .
βr αr

0

 , (2.29)
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where r = rank(M) = rank(B) and U,V are unitary matrices (different than in (2.25)). This
representation is not unique and without loss of generality we could choose U to satisfy

UH b =β1e1 (2.30)

where β1 = ‖b‖2 and e1 is a unit norm vector with its first element equal to one.
Using B, forward substitution gives the LS solution efficiently by solving for y in

By = UH b =β1e1 (2.31)

followed by
x = Vy.

Using forward substitution we have

y1 = β1

α1
(2.32)

x1 = v1 y1, (2.33)

followed by the recursion,

yn+1 =−βn+1

αn+1
yn (2.34)

xn+1 = xn +vn+1 yn+1 (2.35)

for n = 1, . . . , M where M < r is the iteration at which ‖MH (Mxn −b)‖2 vanishes within
the desired precision. We can combine the bidiagonalization and solving for x and avoid
extra storage needed for saving B, U and V. One such algorithm is based on a Krylov
subspace method called the Lanczos algorithm [44]. We first initialize with

β1 = ‖b‖2 (2.36)

u1 = b

β1
(2.37)

α1 = ‖MH u1‖2 (2.38)

v1 = MH u1

α1
. (2.39)

The iterations are then given by

βn+1 = ‖Mvn −αn un‖2

un+1 = 1
βn+1

(Mvn −αn un)

αn+1 = ‖MH un+1 −βn+1vn‖2

vn+1 = 1
αn+1

(MH un+1 −βn+1vn)

(2.40)

for n = 1,2, . . . , M , where uH
n un = vH

n vn = 1. This provides us with all the parameters
needed to solve the problem.
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However, because of finite precision errors, the columns of U and V found in this way
lose their orthogonality as we proceed. In order to prevent this error propagation into the
final solution x, different algorithms like Conjugate Gradient (CG), MINRES, LSQR, etc.
have been proposed. The exact updates for xn and stopping criteria to find M depend
on the choice of algorithm and are therefore not included in the above iterations.

We will use LSQR mainly in Chapter 7 to solve large image reconstruction problems.
In other parts of this thesis we will mainly use MinresQLP which is related to tridiago-
nalization of the matrix M and is discussed next.

2.4.3. TRIDIAGONALIZATION AND KRYLOV SUBSPACES
If M is symmetric we can reduce the number of matrix vector multiplications from two to
one by reducing the matrix into tridiagonal form instead of bidiagonal form which was
discussed in the previous section. We will follow the discussion provided in [45] closely
in this section.

For simplified illustration we assume that M−1 exists. Now let K be a matrix form of
Km(M,b) then we will have

MK = KH

where H is an upper Hessenberg matrix of the form

H =



0
1 0

1
. . .
. . . 0

1

h

 ,

and h = K−1Mm b. Now let the QR decomposition of K be K = UZ where U is a unitary
matrix and Z is an upper triangular matrix. Multiplying from the left with UH and from
the right with Z−1 we have

UH MU = ZHZ−1.

The left-hand-side of the equation is a symmetric matrix. Given the fact that multiplying
an upper Hessenberg matrix with an upper triangular matrix must be upper Hessenberg
the right-hand-side is an upper Hessenberg matrix and symmetric and hence T = ZHZ−1

is a tridiagonal matrix. If the system of equations is consistent the tridiagonal matrix T
of M with rank(M) = r has the form

T =


α1 β2

β2 α2 β3

. . .
. . . βr

βr αr

0

 . (2.41)

We can modify the Lanczos algorithm from the previous section to find U and T in
an iterative way. Again without loss of generality we can assume UH b =β1e1 where β1 =
‖b‖2. Using this relation we can initialize the algorithm with
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u0 = 0 (2.42)

β1 = ‖b‖2 (2.43)

u1 = b

β1
. (2.44)

The iterations for symmetric Lanczos become

z = Mun

αn = uH
n z

βn+1 = ‖z−αn un −βn un−1‖2

un+1 = 1
βn+1

(z−αn un −βn un−1)

(2.45)

for n = 1,2, . . . , M , where M ≤ r .
The solution can then be updated with a single matrix vector product of the form

Mu. This procedure forms the basis for the symmetric class of Krylov subspace methods
such as MinresQLP.

An overview of Krylov subspace based methods is given by [46, pp.91]. This study
shows that LSQR is a good candidate to solve LS problems when we are dealing with an
ill-conditioned and non-square matrix and MinresQLP is capable of solving systems that
involve symmetric and singular matrices.

When we are solving the direction of descent for a non-linear optimization problem,
the matrix M is a function of the unknown parameters and the matrix vector product
Mu can be performed using the current estimates of these parameters. This makes con-
structing and storing M unnecessary and reduces the storage requirements for solving
these types problems enormously. In Sec. 4.6.2, 6.3.2 and 7.5.1 we will discuss con-
structing such a procedure in more detail and we will also show how to take advantage
of the Kronecker structure of the Jacobians.

This concludes our discussion on covariance matching and Krylov subspace meth-
ods. Both topics are well established and have a rich literature which is beyond the scope
of this thesis. The references given in this chapter, especially [37, 45] and [46], provide
excellent material for an interested reader.
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DATA MODEL

In Sec. 2.3 we have seen that for a zero–mean Gaussian distributed data, the sample
covariance matrix is a sufficient statistics and that a covariance data model is essen-
tial for its analysis. The measured output of the receivers in radio astronomy can also
be modeled as zero–mean Gaussian signals and hence the same principles apply. The
data model, or measurement equation, defines which (physical) quantities are of inter-
est and describes the relation between them and the collected data. There are various
approaches to describing the data model for a set of radio-astronomical measurement.
One way is a detailed description of the measurements based on the physical proper-
ties of the electromagnetic (EM) fields similar to models presented in [47] and [2, pp.
48-53]. The resulting data model, while general and applicable to any measurement set
and instrument, is too complicated from a practical perspective. In this chapter we will
motivate the use of signal and array processing models which will enable us to apply the
rich set of tools developed for these fields to radio-astronomy.

The method used in this chapter follows the matrix formulation of the data model
done in [48] and [2, pp. 57-58]. The resulting data model forms the basis for the algo-
rithms and methods which are discussed in the rest of this thesis.

3.1. ARRAY RESPONSE VECTOR
We consider an instrument where P receivers (stations or antennas) are observing the
sky. Fig. 3.1 shows a simple 1-D version of such an array of receivers which we will use to
illustrate and motivate some of the assumptions needed for developing our data model.
For simplicity we will start with isotropic and identical antennas as receivers.

3.1.1. NARROW–BAND ASSUMPTION
In this section we will discuss the narrow–band assumption with a simplified derivation,
using the delay–phase relation of the Fourier transform. A more rigorous derivation can
be found in [47].

Considering that EM signals satisfy the wave equation we can assume that the re-
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Figure 3.1: Simple 1-D array of receivers observing a source s(t ) at an angle φ.

ceived signals at different receivers are a delayed version of each other. Let the delay for
the pth receiver be defined as τp . Let us assume that τ1 = 0 and that the receivers are
isotropic antennas. In this case yp (t ) = s(t −τp ) where s(t ) is the source signal at the first
receiver. We can write this in a simpler way by using the Fourier transform of yp (t ) which
we will denote by Yp (ω) where ω is the angular frequency. Using this transform we have
Yp (ω) = e−jωτp S(ω) where S(ω) is the Fourier transform of s(t ) and j =p−1. Now we will
investigate the effect of replacing e−jωτp with a constant phase e−jω0τp . We would like the
relative error introduced by using this substitution to be very small, i.e.

ε(ω)2 = |e−jωτp S(ω)−e−jω0τp S(ω)|2
|e−jωτp S(ω)|2

= |e−jωτp −e−jω0τp |2
= 2−2cos[(ω−ω0)τp ] ¿ 1.

Using cos(−x) = cos(x), a Taylor expansion of cos(x) ≈ 1− x2

2 and ω= 2π f where f is the
frequency in Hz, we have |(ω−ω0)τp |¿ 1. In general we can write

2π∆ f τ¿ 1

where τ = maxp |τp | and ∆ f is the equivalent base–band bandwidth of the signal. The
above relation will hold if S(ω−ω0) is negligible for |ω−ω0| > 2π∆ f . From this result
we can conclude that if the array’s bandwidth–delay product is small enough, we can
approximate a delay with a phase shift. By choosing τ equal to the maximum delay on
the array we can define the bandwidth for which the narrow–band assumption holds. If
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the signal is not narrow–band we will divide it into narrow sub-bands by using an FFT or
filter-banks.

Now let us stack the output of the antennas from a single sub-band atω0 into a vector
y. Using the phase–delay relation, we obtain

y[n] =


1

e−jω0τ2

...
e−jω0τP

 s[n], (3.1)

where y[n] = y(Ts n) and s[n] are the samples from y(t ) and s(t ) with a sampling interval
of Ts .

In the next section we will establish the relation between τ and the direction-of-
arrival (DOA) of a source and extend the model to multiple sources.

3.1.2. GEOMETRICAL DELAYS AND THE EARTH’S ROTATION
Following the discussion in the previous section, we assume that the received signals at
the antennas are sampled and subsequently split into narrow sub-bands. For simplicity,
we will consider only a single sub-band in the rest of this section.

We revisit (3.1) and investigate the relation between the delays τi , the direction-of-
arrival, and the array’s geometry. As illustrated in Fig. 3.1 the geometrical delay be-
tween the i th and j th element is defined by the distance between them, bi j also known
as a baseline, and the cosine of the angle of arrival φ or l = cos(φ). Because we have
chosen τ1 = 0 as the reference and the array is placed along the x-axis the delay on
the pth element is τp = −xp cos(φ)/c = where c is the speed of light. Using c = λ0 f0

where λ is the wavelength and ω0 = 2π f0 we have yp [n] = e j2π/λ0xp l s[n]. Let the vec-
tor ξp = [xp , yp , zp ]T denote the position of the pth receiving element in Earth-bound
coordinates. Extending the result from 1-D to 3-D we have

y[n] =


e

j 2π
λ0
ξT

1 k

...

e
j 2π
λ0
ξT

P k

 s[n]. (3.2)

where

k =
 l

m
n

=
cos(φ)cos(θ)

cos(φ)sin(θ)
sin(φ)


is the (apparent) direction vector with coordinates (l ,m,n). Because k has unit norm
we only need two coordinates (l ,m), while the third coordinate can be calculated using
n =

p
1− l 2 −m2. (The notation in (3.2) is ambiguous as we use the symbol n both for the

sample index and for the 3rd spatial coordinate. However, in this thesis we will not use
the 3rd spatial coordinate anymore. The letter n, unless state otherwise, is the sample
index.)

Although the sources are considered stationary, because of the Earth’s rotation the
apparent position of the celestial sources will change with time. For this reason the data
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is split into short blocks or “snapshots” of N samples, where the exact value of N depends
on the resolution of the instrument.

We stack the output of the P antennas at a single sub-band into a vector yk [n], where
n = 1, · · · , N denotes the sample index, and k = 1, · · · ,K denotes the snapshot index.

The vector in (3.2) which relates s[n] to y[n] is called the array response vector. To
describe this vector while taking the Earth’s rotation into account, we first need to define
a fixed coordinate system with respect to celestial sphere. Assume that this fixed coor-
dinate system is based on the right ascension (α) and declination (δ) of a source, and
defined as

β=
cos(δ)cos(α)

cos(δ)sin(α)
sin(δ)

 .

The related Earth-bound direction vector k with coordinates (l ,m) (taking Earth rotation
into account) is given by

k = Qk (L,B)β,

where Qk (L,B) is a 3×3 rotation matrix that accounts for the Earth rotation and depends
on the time k and the observer’s longitude L and latitude B .

From this point forward, we will drop the subscript [.]0 for frequency related quan-
tities such as λ0. These quantities are assumed to be calculated at the center of cor-
responding narrow sub–bands. For the qth source with coordinates (lq ,mq ) at the kth
snapshot, the direction vector is kq . Stacking the coefficients for p = 1, · · · ,P into a vector
ak,q = ak (kq ), we obtain the array response vector, which thus has the model

ak,q = ak (kq ) = 1p
P

e
j2π
λ
ΞT kq = 1p

P
e

j2π
λ
ΞT Qk (L,B)βq (3.3)

where Ξ is a 3×P matrix containing the positions ξp of the P receiving elements. We

introduced a scaling by 1/
p

P as a normalization constant such that ‖ak (kq )‖ = 1. The
entries of the array response vector are connected to the Fourier Transform coefficients
familiar in radio astronomy models.

3.2. COVARIANCE MODEL
Assuming an array that is otherwise calibrated, the received antenna signals (generaliz-
ing (3.1)) yk [n] can be modeled as

yk [n] = Ak s[n]+nk [n], n = 1, · · · , N ; k = 1, · · · ,K (3.4)

where Ak is a P ×Q matrix whose columns are the array response vectors [Ak ]q = ak,q ,
s[n] is a Q × 1 vector representing the signals from the sky, and nk [n] is a P × 1 vector
modeling the noise.

From the data, the system estimates covariance matrices of the input vector at each
snapshot k = 1, · · · ,K , as

R̂k = 1

N

N∑
n=1

yk [n]yk [n]H , k = 1, · · · ,K . (3.5)
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Since the received signals and noise are Gaussian, these covariance matrix estimates
form sufficient statistics for the problems we will address in this thesis [25]. The co-
variance matrices are given by

Rk = E {yk yH
k } (3.6)

for which the model is

Rk = AkΣAH
k +Rn,k , (3.7)

where Σ = E {ssH } and Rn,k = E {nk nH
k } are the source and noise covariance matrices,

respectively. We have assumed that sky sources are stationary, and if we also assume
that they are independent, we can model Σ= diag(σ) where

σ= [
σ1 , . . . , σQ

]T
(3.8)

represents the intensity of the sources. To connect the covariance data model (3.7) to
language more familiar to radio astronomers, let us take a closer look at the elements of
the matrix Rk . Temporarily ignoring the noise covariance matrix Rn,k we note that

[Rk ]i j = 1

P

Q∑
q=1

σq akqi a∗
kqi

= 1

P

Q∑
q=1

σq e j 2π
λ

(ξi−ξ j )T kq

= 1

P

Q∑
q=1

σq e
j 2π
λ

[
(xi−x j )lq+(yi−y j )mq+(zi−z j )

√
1−l 2

q−m2
q

]
(3.9)

If we denote 1
λ [xi − x j , yi − y j , zi − z j ]T Qk (L,B) = [ui j , vi j , wi j ]T , then we can write

[Rk ]i j ≡ V (ui j , vi j , wi j ), where V (u, v, w) is the visibility function, and (u, v, w) are the
spatial frequencies [10]. In other words, the entries of the covariance matrix Rk are sam-
ples of the visibility function at a given frequency and time arranged in a matrix, and
(3.7) represents the measurement equation in matrix form.

We can write this equation in several other ways. By vectorizing both sides of (3.7)
and using the properties of Kronecker products (2.4), we obtain

rk = (A∗
k ◦Ak )σ+ rn,k (3.10)

where rk = vect(Rk ) and rn,k = vect(Rn,k ). After stacking the vectorized covariances for
all of the snapshots we obtain

r =Ψσ+ rn (3.11)

where

r =

r1
...

rK

 , Ψ=

 A∗
1 ◦A1

...
A∗

K ◦AK

 , rn =

rn,1
...

rn,K

 . (3.12)
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Similarly we vectorize and stack the sample covariance matrices as

r̂k = vect(R̂k ) , r̂ =

 r̂1
...

r̂K

 . (3.13)

This collects all the available covariance data into a single vector. This is the model which
we will use in Chapter 7 to estimate the intensity distribution of the sources from the
measured covariance matrices.

3.3. GAIN MODEL
So far we have assumed an array of identical and isotropic antennas. However, the ar-
ray which is used during the actual measurements will deviate from this assumption in
various ways. The process of compensating for these deviations is called calibration.
Depending on which effects we can compensate for, we might need to extend the data
model to incorporate new correction (or calibration) parameters. It is important to real-
ize that even if the antennas are of high quality material and design, the wiring and other
environmental and instrumental effects make it necessary to perform a calibration step.
Using a narrow–band assumption we can model the instrumental effects for each re-
ceiver as a complex factor gp for p = 1, . . . ,P which we will call the antenna gain. If the
gain is direction dependent, i.e. gp (k), we have a gain factor per antenna per direction.
In this case we need to change the model for array response matrix A to Gk ¯A where

[Gk]pq = gp (kq ).

The covariance model (for a single snapshot) that includes this change is

R = (Gk ¯A)Σ(A¯Gk)H +Rn.

Using the identity (DA)¯B = D(A¯B) where D is a diagonal matrix, we can decom-
pose the gain matrix as Gk = GG0 where G is the diagonal direction independent gain of
the antennas and G0 is the direction dependent part. This leads to the following model

R = G(G0 ¯A)Σ(A¯G0)H GH +Rn.

This model is used by Van der Tol and Van der Veen [7] for direction dependent calibra-
tion and its derivation (based on physical models for EM fields) can also be found in [2,
pp. 52]. Taking all the elements in G0 as unknown parameters causes an unidentifiability
problem. The number of unknowns in G0 can be reduced by using spatiotemporal conti-
nuity of its elements as suggested by [7]. In addition to instrumental causes, ionospheric
effects also contribute to the direction dependent gains [49]. Treatment of direction de-
pendent gains is an active field of research and goes beyond the scope this work.

For the rest of this discussion, we will assume that except for some direction inde-
pendent effects, the antennas have the same directional behavior. This will allow us to
model G0 also as a diagonal matrix (i.e. a shared gain per direction for all antennas)
which will reduce the data model to

R = GAG0ΣGH
0 AH GH +Rn.
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Any phase change caused by G0 will be compensated by GH
0 due to the diagonal struc-

ture of both G0 and Σ, and we can absorb |G0|2 into the matrix Σ. This will give us the
simplified and commonly used data model for the array

R = GAΣAH GH +Rn

which we will use in Chapter 6 for calibration. After the calibration step the model de-
fined in the previous section can be used for imaging purposes.

3.4. NON-PARAMETRIC SUBSPACE MODEL
In addition to the parametric modeling of the covariance matrices presented in the pre-
vious sections, in some applications it is beneficial to use a general linear algebraic ap-
proach to analyze the data. Matrix decomposition techniques such as QR, Singular Value
Decomposition (SVD) and Eigenvalue Decomposition (EVD) form a powerful set of tools
that can be used for data analysis. In this section we show how information can be ob-
tained from a covariance data by using the EVD. The subspace based model presented
here plays an important role in many detection and estimation methods used in signal
processing [50–52]. We extend this model in Chapter 4 and use it in Chapter 5 to develop
spatial filtering techniques.

Given the fact that the power of even the strongest celestial sources is ∼ 15 dB below
the noise level, for short integration intervals we can assume that the covariance matrix
is dominated by the noise and man–made radio-frequency (RF) signals (if present). Even
for RF free frequency bands, the data is dominated by a few strong sources and the con-
tribution of the remaining sources is negligible. In this regime we can assume that the
number of sources Q is smaller than the number of receivers (i.e. Q < P ) and that the
array response matrix A is low–rank (and tall) .

Let us assume that Rn =σ2
n IP where σ2

n is the noise power. In this case we can write

R = AΣAH +σ2
n IP .

Considering that R0 = AΣAH is a Hermitian matrix, we can diagonalize it using a unitary
matrix U and find its eigenvalue decomposition

R0 = UΛUH = [
U0 U1

][
Λ0 0
0 0

][
UH

0
UH

1

]
whereΛ0 is a Q ×Q diagonal matrix of positive (and non–zero) eigenvalues of R0, U0 is a
P ×Q matrix with the eigenvectors correspoding to Λ0 and U1 forms a unitary basis for
the null space of A. By using UUH = IP we have σ2

n Ip =σ2
n UUH and

R = AΣAH +σ2
n UUH = [

U0 U1
][
Λ0 +σ2

n IQ 0
0 σ2

n I

][
UH

0
UH

1

]
is the eigenvalue decomposition of R. This relation enables us to find two subspaces
spanned by U0 and U1 from eigenvalue decomposition of R. Because the contribution
of the subspace spanned by U1 to the covariance matrix is entirely defined by the noise
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power, this subspace is denoted as the noise subspace. In contrast the subspace defined
by U0 is called the signal subspace.

The assumption that the noise covariance matrix is a scaled identity matrix is very
limiting for practical scenarios. In Chapter 4 we will start by modeling the noise covari-
ance matrix as an unknown diagonal matrix which will lead to the technique known as
Factor Analysis and then extend it to more general models.



4
COMPLEX FACTOR ANALYSIS

4.1. INTRODUCTION
In this chapter we focus on a generic covariance decomposition technique called factor
analysis (FA). This technique will be used as a common tool to address several radio
astronomical problems in subsequent chapters. FA is a multivariate technique with the
assumption that a covariance matrix R can be modeled as

R = AAH +D

where A is a low ranked matrix and D is a positive diagonal matrix. Real–valued FA
was first introduced by Spearman [53] in 1904 to find a quantitative measure for intelli-
gence, given a series of test results. However, it was the work done by Lawley, Anderson,
Jöreskog and others between 1940 and 1970 [54–56] which developed FA as an estab-
lished multivariate technique. Currently, FA is an important and popular part of the
latent variable analysis with many applications in various fields of science [57].

Despite the popularity of FA in many fields, its application within the signal process-
ing community has been limited. This is mainly due to the popularity of the Eigenvalue
Decomposition (EVD) which is at the heart of many subspace based signal processing
techniques. However, the application of EVD is limited to systems perturbed by white
noise. In other words we must be able to model the noise covariance matrix asσ2I where
σ2 is the variance of the noise. If the noise covariance matrix is known, calibration and
whitening techniques can be used as pre-processing procedures to make EVD applicable
for systems where this assumption does not hold. However a more preferable approach
is to develop techniques that can replace EVD for more practical and generic data mod-
els.

Using FA (or classical FA) for array processing has been suggested by [58] to address
the case where the noise is unknown, independent and different for each element in the
array i.e. the noise covariance matrix is a diagonal matrix with unknown elements. For
cases where the noise covariance matrix is no longer diagonal but has a known structure,
in this thesis we propose Extended FA (EFA).
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The mentioned techniques work on a single covariance matrix. However in many ap-
plications the desired subspace changes rapidly which means that a series of short-term
covariance matrices are available requiring an extension towards “joint FA”. In this chap-
ter an overview of the classical FA is given and the changes needed when extending this
model to complex numbers are discussed. Further it is shown that applying subspace
estimation techniques for each short-term covariance leads to sub-optimal estimates,
since the stationarity of the diagonal (or extended structure) is not used. To address this
issue an estimation technique is developed that estimates the desired subspaces jointly
and is flexible enough to include generic noise models.

Estimating the unknown parameters leads to a non-linear optimization problem.
Various optimization techniques for FA, EFA and Joint EFA (JEFA) will be addressed here.
In particular a Gauss-Newton-Krylov based technique that solves the non-linear opti-
mization efficiently in both memory usage and complexity will be presented. The ap-
plication of EFA and JEFA for RFI mitigation and array calibration are discussed in the
chapters that follow.

The setup of this chapter is as follows: In Sec. 4.2.1 we discuss the data and covari-
ance models for FA and its extensions, in Sec. 4.4 we derive the Cramér-Rao bound for
the estimated parameters, Sec. 4.5 gives a short overview of the algorithm used for clas-
sical FA, Sec. 4.6 describes the algorithm we use to estimate the parameters for JEFA,
various detection methods are discussed in Sec. 4.7 and in Sec. 4.8 we use simulations
to evaluate the performance of the proposed methods.

4.2. CLASSICAL FACTOR ANALYSIS MODEL

4.2.1. DATA MODEL
Here we consider a system which has P receiving elements that are exposed to Q sources
with complex Gaussian distribution. Each element could have different gain and noise
level. We assume that the noise is a proper complex Gaussian process and uncorrelated
between different receiving elements. Stacking the received signals from each antenna,
we could model the system as

y(t ) = A0x(t )+n(t ), (4.1)

where y is a P×1 vector of received signals, A0 is a P×Q array response containing all the
gains and spatial signatures of the sources, x is a Q×1 vector representing source signals
and n is a P ×1 vector modeling noise contributions in the system.

With the assumption that the sources and noise contributions are uncorrelated, we
can write the covariance matrix for y as

R = E {yyH }

= A0RxAH
0 +Rn

= R0 +Rn. (4.2)

The noise–free covariance matrix, R0, is a Hermitian positive semi-definite matrix of
rank Q and as such it could be written in Gramian form as R0 = AAH where A is a P ×Q
matrix and rank(A) = Q. The noise covariance matrix Rn = E {nnH } and we assume that
R−1

n exists. In the case where Rn = σ2I, the column span of A can be estimated using
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an eigenvalue decomposition of R. In other words let the (economical) singular value
decomposition (SVD) of A be

A = U0ΣVH

where U0 is a semi-unitary matrix of size P ×Q forming an orthonormal basis for the
column space of A, V is a Q ×Q unitary matrix forming an orthonormal basis for the
row space of A and Σ is a Q ×Q diagonal matrix containing the singular values of A in
descending order. Similarly let the eigenvalue decomposition of R be

R = UΛUH , (4.3)

where λ1 ≥ ·· · ≥λP . Then for the case where Rn =σ2IP =σ2UUH we have

U = [
U0 U1

]
.

This makes it possible to find the column span of A from R, using the eigenvalue decom-
position of R. A property which has been used in many subspace based array processing
techniques such as ESPRIT [59] and MUSIC [60]. However this technique fails when the
noise is not white and Rn takes another model.

For classical FA we assume that the noise between the elements is independent, but
not necessarily identical and as such Rn = D, is a diagonal matrix. Rewriting the model
as

R = AAH +D, (4.4)

we arrive at the classical FA model [56, 61] with the exception that (4.4) contains complex
numbers.

As discussed in Sec. 2.3 we rarely have direct access to the covariance matrix R and
we need to construct an estimate of this matrix from measured samples. Here we assume
to have access to N samples from y and construct the sample covariance matrix as

R̂ = 1

N

N−1∑
n=0

y[n]y[n]H .

Given R̂ we are interested in finding estimates Â and D̂ for the FA model.
Various problems arise when we try to find the model parameters A and D. For ex-

ample consider the following scenario with

A1 =


1 0
1 1
...

...
1 1


then for any R = A1AH

1 +D1 we also have R = A2AH
2 +D2 where

A2 =
p

2


1/2

1
...
1

 , D2 = D1 + 1
2 e1eT

1
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and ei is the i th column of the identity matrix. This example illustrates that there is an
identifiability problem that needs to be addressed. FA provides a complete set of tools
and techniques that address these problems. In the rest of this chapter we will discuss
if and how these problems change when we extend the model first to complex numbers
and then to Extended FA. In the following sections, with the exception of Sec. 4.10 where
we discuss the identification problem in more detail, we assume that the matrix D can
be identified uniquely.

4.2.2. FACTOR ROTATION

Given a FA model R = A1AH
1 +D there is also another equivalent model with R = A2AH

2 +D
where A2 = A1Q and Q is a unitary matrix. It is then clear that the problem of finding A is
not unique and requires proper identifiability conditions (or constraints). Note that this
type of identifiability problem has no effect on the matrix D.

One way to produce unique model solutions is by setting certain elements in A equal
to zero or forcing them to be purely imaginary or purely real. We will refer to this type
of constraints as "structural constraints". An example of such a constraint is forcing A to
be lower triangular with the elements along the diagonal to be purely real and positive
numbers. From linear algebra we know this as LQ factorization of A = LQ (or QR factor-
ization of AH ). Indeed the lower triangular matrix L for a nonsingular matrix is unique
and the LQ factorization of any A that satisfies the FA model differs only in the rotation
matrix Q.

The second type of constraint does not involve the structure of A but forces the columns
of this matrix to be orthogonal with respect to a certain weighting matrix W. This can be
written as

AH WA =Γ (4.5)

where Γ is a real diagonal matrix with γ1 > ... > γQ . Note that Γ is unknown and the con-
straint follows from its diagonal structure or in terms of the columns of A, aH

i Wa j = 0 for

i 6= j and aH
i Wai is real. For real FA this is a sufficient constraint, however for complex FA

additional phase constraints are required to find a unique A. To illustrate let us consider
A′ = AΦwhereΦ is a complex diagonal matrix which has elements of the form e jφ, or

Φ=

e jφ1

. . .

e jφQ


then both A and A′ satisfy the same constraints (4.5). Hence, when we are dealing with
complex numbers there are Q additional phases that need to be chosen. This is also
true for EVD and SVD when applied to complex numbers. This phase ambiguity can be
addressed by forcing the diagonal part of AT A to be real. This is obviously the case when
real FA model is considered.

Two popular choices for W are W = I or W = D−1 [55]. If we choose W = I then U0 =
AΓ−1/2 has orthogonal columns and we have

R0 = U0ΓUH
0 . (4.6)
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In other words, by solving A with this constraint we find the EVD for R0 with Γ as eigen-
values.

The choice of W = D−1 is advantageous when we need to compute R−1. Using Wood-
bury’s identity we have

R−1 = D−1 −D−1A(IQ +AH D−1A)−1AH D−1. (4.7)

Using an eigenvalue decomposition of (AH D−1A+ IQ ) = Q(Γ+ IQ )QH we can find a Q
such that A′ = AQ satisfies the constraints, and reduce the computational complexity of
full inversion from O(P 3) to a diagonal inversion and O(Q3) for the eigenvalue decom-
position. In other words if we need to compute R−1 we can get Q required for this type
of constraints for free.

4.2.3. SCALE INVARIANCE

If we assume that R1 = A1AH
1 +D1 and hence satisfies the FA model, then any R2 = GR1GH

where G is a diagonal (complex) matrix also satisfies FA model with A2 = GA1 and real
diagonal matrix D2 = GD1GH . This means that unknown antenna gains do not affect the
model and that FA can be used on an uncalibrated array.

It is worth noting that AH
1 D−1

1 A1 = AH
2 D−1

2 A2 = Γ is scale invariant and tr(Γ) could be
defined as a metric for average SNR.

4.3. EXTENSIONS OF THE CLASSICAL MODEL

4.3.1. JOINT FACTOR ANALYSIS MODEL
Now we extend the model by assuming access to a series of sample covariance matrices
R̂m where m = 1, ..., M , from M independent "snapshots", each containing N samples.
We assume the following model for E {R̂m} = Rm :

Rm = Am AH
m +Ψ, m = 1, . . . , M (4.8)

where Am is a low rank matrix of size P ×Qm with Qm < P for all m = 1, . . . , M andΨ is a
positive-definite matrix common among all the M models. Depending on the applica-
tion we are interested in Am andΨ or only one of them. In many applications we are just
interested in the column span of Am .

In common applications,Ψ represents the noise covariance matrix of the system, Rn.
For a system which is calibrated or has identical components, it is common to assume
that Ψ = σ2IP . However, other models where Ψ is not the noise covariance matrix will
also be discussed in the following sections.

In the following sections we will allow more general models for Ψ and discuss tech-
niques for finding Am and Ψ from noisy estimates R̂m . We will also estimate Am and Ψ
jointly. WhenΨ= D (i.e. a diagonal matrix) we call this model Joint Factor Analysis (JFA).

4.3.2. EXTENDED AND JOINT EXTENDED FA MODEL
Factor Analysis can be extended to a more general model where a certain structure is
assumed to be known forΨ. Here we considerΨ of the form

Ψ= M¯Ψ
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where M is a symmetric matrix containing only ones and zeros. We call M a mask ma-
trix. We can model various types of covariance matrices using this approach (for exam-
ple: block-diagonal matrices, band matrices, sparse matrices, etc.). We assume M to be
known based on the application. The Extended FA model then becomes

R = AAH +M¯Ψ. (4.9)

Similar to JFA we propose Joint Extended FA (JEFA), where we have

Rm = Am AH
m +M¯Ψ. (4.10)

and we are interested in estimating Ψ̂ and Âm jointly.
Note that for M = I where I is an identity matrix of appropriate size, this model re-

duces to JFA (and for M = 1 to classical FA).

4.4. CRAMÉR-RAO BOUND
Before considering algorithms for estimating the model parameters Am and Ψ, we first
derive the theoretical performance bound on the variance of their estimators which will
allow us to evaluate the performance of the algorithms presented in the following sec-
tions.

Suppose that θ̂ is the maximum likelihood estimator of θ0 , where θ0 is the true pa-
rameter vector. Then the asymptotic distribution of (θ̂−θ0) is N (0,C) where C is the
inverse of the Fisher information matrix F. C is the Cramér-Rao lower bound (CRB) for
an unbiased estimator [62]. For normally distributed data with covariance matrix R, the
Fisher information matrix is [40]

F = N JH (R−T ⊗R−1)J

where J = ∂vect(R)/∂θT the Jacobian matrix.
If the model parameters are not unique, F is singular, then for identifiability we need

to pose additional constraints on θ, say h(θ0) = 0, where h(θ) is a vector of functions. Let
the Jacobian of h(θ) be given by

H(θ) := ∂h(θ)

∂θT
.

The constrained CRB, C, is then given by [63]

C = U(UH F(θ0)U)−1UH (4.11)

where U is a semi-unitary matrix, and the columns of U form an orthonormal basis for
the null-space of H such that H(θ0)U(θ0) = 0. The constraints should be chosen such
that UH F(θ0)U is invertible.

4.4.1. CRB FOR FA AND EFA
We will now apply these results to our situation. First we consider only a single snapshot
Rm with model Rm = Am Am +Ψ, as given by (4.8). Using only single snapshot is equiva-
lent to finding the CRB for classical FA and EFA. The structural constraint Ψ = M¯Ψ in
(4.9) is satisfied if we will parametrize vect(Ψ) as

vect(Ψ) = SUψ+SLψ
∗+ (IP ◦ IP )d ,
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where SL and SU are suitable selection matrices based on the structure of M, the en-
tries of the strictly upper-triangular part ofΨ are stacked into the vector ψ, its diagonal
entries d = vectdiag(Ψ). The unknown complex parameters are stacked into a vector θm ,

θm =


vect(Am)
vect(A∗

m)
ψ

ψ∗
d

 (4.12)

which has number of entries
n = 2PQm + tr(M2), (4.13)

where Qm is the number of sources at mth snapshot.
To derive the Fisher information matrix, we partition the corresponding Jacobians

Jm = ∂vect(R)/∂θT
m , to conform with the partitioning of θm such that

Jm = [JAm ,JA∗
m

,Jψ,Jψ∗ ,Jd].

Using Wirtinger derivatives we find

JAm = (A∗
m ⊗ IP )

JA∗
m
= (IP ⊗Am)KP,Qm

Jψ = SU (4.14)

Jψ∗ = SL

Jd = (IP ◦ IP )

where KP,Q is a permutation matrix such that vect(XT ) = KP,Q vect(X) for X a P ×Q matrix.
We also used the relation

vect(Rm) = (A∗
m ⊗ IP )vect(Am)+vect(Ψ)

= (IP ⊗Am)KP,Qm vect(A∗
m)+vect(Ψ).

The unconstrained Fisher information Fm is singular, because as mentioned in Sec. 4.2.2
the FA model is invariant with respect to a multiplication of the matrix Am with a unitary
matrix Q at the right, which has Q2

m unknown elements (there are 2Q2
m real unknowns,

however QH Q = IQ puts Q2 constraints on the unknowns reducing the total to Q2
m). As a

result for identifiability, we need to pose Q2
m constraints on the matrix Am . Without loss

of generality we choose AH
m Am to be diagonal (which poses Qm(Qm −1) real-valued con-

straints), and diag(AT
m Am) to be real (which poses another Qm constraints). A complete

discussion of constraints on Am is given in Sec. 4.2.2.
To write this as a function h(θm) = 0, let E1 = (IQm ◦IQm )T and let E2 be a complemen-

tary set of rows such that [ET
1 ,ET

2 ]T is a permutation matrix. Then E1vect(AT
m Am) selects

the diagonal elements of AT
m Am , and E2vect(AH

m Am) selects the off-diagonal entries of
AH

m Am . The constraint function h = [hT
1 ,hT

2 ]T is then

h(θm) =
[

h1(θm)
h2(θm)

]
=

[
E1vect(AT

m Am −AH
m A∗

m)
E2vect(AH

m Am)

]
= 0
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and its Jacobian H(θm) is
H(θm) = [

HAm 0 0 0
]

where

HAm =
[ ∂h1
∂vectT (Am )

∂h1
∂vectT (A∗

m )
∂h2

∂vectT (Am )
∂h2

∂vectT (A∗
m )

]
, (4.15)

and the trailing zeros correspond to derivatives of h(θm) with respect to ψ, ψ∗ and d.
The needed derivatives are given by

∂h1

∂vectT (Am)
= E1

[
(IQ ⊗AT

m)+ (AT
m ⊗ IQ )KP,Q]

∂h1

∂vectT (A∗
m)

=−E1
[
(IQ ⊗AH

m)+ (AH
m ⊗ IQ )KP,Q]

∂h2

∂vectT (Am)
= E2(IQ ⊗AH

m)

∂h2

∂vectT (A∗
m)

= E2(AT
m ⊗ IP )KP,Q

Using QR or SVD on H(θm), we can find a basis Um for the null-space of H(θm), and
calculate the Constrained CRB Cm for a single measurement.

As shown above, the constraint function h(θm) depends only on Am , and its deriva-
tives with respect to θΨ are zero. This allows us to partition Um as

Um =
[

UAm 0
0 I

]
.

Using this partitioning and (4.11) we have

Cm =
[

CAm Am CAmΨ

CH
AmΨ

Cm,ΨΨ

]

= 1

M
Um

[
UH

Am
FAm Am UAm UH

Am
FAmΨ

FH
AmΨ

UAm Fm,ΨΨ

]−1

UH
m (4.16)

and hence

Cm,ΨΨ = 1

N

[
Fm,ΨΨ−FH

AmΨ
UAm (UH

Am
FAm Am UAm )−1UH

Am
FAmΨ

]−1
. (4.17)

Suppose we solve a joint (E)FA problem in a non–joint fashion. The performance of
applying (E)FA on each snapshot separately to find Ψ̂ (or D̂) and averaging these results,
follows by assuming that the estimates θ̂ are independent, then for Ψ̂= 1/M

∑
m Ψ̂m the

performance bound becomes

CΨ = 1/M 2
∑
m

Cm,ΨΨ. (4.18)

This bound is higher than the bound we will derive for the entire dataset shortly.
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4.4.2. CRB FOR JEFA
Using the results of the previous section, we have the Fisher Information for each snap-
shot and we can use them to find the CRB of the entire dataset. Because the time samples
are independent, the joint loglikelihood of the entire dataset becomes

l (θ) =∑
m

lm(θm). (4.19)

For a simpler representation we define

θAm =
[

vect(Am)
vect(A∗

m)

]
. (4.20)

and

θΨ =
 ψ

ψ∗
d

 . (4.21)

The total number of elements for θ becomes

n = 2P
M∑

m=1
Qm + tr(M2). (4.22)

Now we need to find the gradients of the new loglikelihood. First we take derivatives
with respect to θAm . If we assume that all Am are independent i.e. ∂lm(θAm )/∂θA j = 0 for
m 6= j and we find

∂l (θ)

∂θAm

= ∂lm(θm)

∂θAm

(4.23)

which is the same as for estimating the ML separately. However, forΨwe have

∂l (θ)

∂θΨ
=∑

m

∂lm(θm)

∂θΨ
. (4.24)

The Fisher information can also be written as

Fm = E

{
∂

∂θT
m

(
∂lm(θm)

∂θm

)}
,

and

Ftot al = E

{
∂

∂θT

(
∂l (θ)

∂θ

)}
.

Combining this relation with (4.23) and (4.24), we can write the Fisher information for
the entire dataset as

Ftot al ,Am Am = Fm,Am Am (4.25)

Ftot al ,Am A j = 0 m 6= j (4.26)

Ftot al ,AmΨ = Fm,AmΨ (4.27)

Ftot al ,ΨΨ =∑
m

Fm,ΨΨ (4.28)



4

40 4. COMPLEX FACTOR ANALYSIS

or in matrix form

Ftot al = N


F1,A1A1 0 . . . F1,A1Ψ

0 F2,A2A2 . . . F2,A2Ψ

...
. . .

. . .
...

FH
1,A1Ψ

FH
2,A2Ψ

. . .
∑M

m Fm,ΨΨ

 . (4.29)

where the Fm can be calculated using (4.14) as

Fm,Am Am =
[

JH
Am

JH
A∗

m

](
R−T

m ⊗R−1
m

)[
JAm JA∗

m

]
(4.30)

Fm,AmΨ =
[

JH
Am

JH
A∗

j

](
R−T

m ⊗R−1
m

)
JΨ (4.31)

Ftot al ,ΨΨ = JH
Ψ

[
M∑
m

(
R−T

m ⊗R−1
m

)]
JΨ (4.32)

where

JΨ = [
SU SL (IP ◦ IP )

]
.

Because the constraint matrix is only a function of θAm , the constraint matrix for the
entire dataset becomes

Htot al =


HA1 0 . . . 0

0 HA2 . . .
...

...
. . .

. . . 0
0 . . . 0 HAm

0 0 0

 ,

where HAm is given by (4.15). Because Htot al is very sparse and the block diagonal struc-
ture decouples the constraints, we can use efficient QR decomposition algorithms to find
a unitary basis, Utot al for its null space efficiently.

The Constrained CRB can now be found, similar as before, using Ftot al and Utot al .
Using the matrix inversion lemma on the final result we obtain the expression for CΨΨ
as

CΨΨ = 1

N

[∑
m

Fm,ΨΨ−∑
m

FH
AmΨ

UAm (UH
Am

FAm Am UAm )−1UH
Am

FAmΨ

]−1

. (4.33)

This expression replaces the bound (5.16) and incorporates the benefits of jointly pro-
cessing M FA models with a sharedΨ.

4.5. ESTIMATION ALGORITHMS FOR CLASSICAL FA
The classical FA problem was introduced in 1904 [53] and several algorithms were pro-
posed [64–66], all for real data matrices (although readily extended to the complex case).
In this section we will review some of these approaches.
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4.5.1. AD-HOC METHOD
The estimation problem could be approached as a two stage minimization problem [67].
In this approach we try to minimize the LS cost function defined as

min
A,D

‖R̂−AAH −D‖2
F (4.34)

where ‖.‖F is the Frobenius norm, in two stages, i.e. the Alternating LS approach. First
for a given A, (4.34) is minimized with respect to D and in the next stage, D is held con-
stant and a new A is found.

The iteration steps are
D̂(k+1) = diag(R̂− Â(k)ÂH

(k)) (4.35)

Â(k+1) = D̂
1
2
(k+1)U(k)L

1
2
(k) (4.36)

where L(k) and U(k) are the Q largest eigenvalues and the corresponding eigenvectors of
the matrix D̂−1/2

(k+1)R̂D̂−1/2
(k+1) − IP .

This method will monotonically approach a local minimum. Its rate of convergence
is slow but it is robust against initialization and because of this, various hybrid approaches
have been suggested in the literature. E.g., [68] suggests that at each iteration only the
eigenvalues (and the corresponding eigenvectors) which are bigger than 1 be used to es-
timate A. In this way instead of choosing the largest Q eigenvalues and eigenvectors, a
set with Q ′ ≤Q is chosen. This approach should accelerate the convergence [68].

4.5.2. MAXIMUM LIKELIHOOD ESTIMATOR
Using an ML approach, the aim is to find A and D that maximize the complex log-likelihood
function

l (R̂;A,D) = N
[− log(πP )+ log |R−1|− tr(R−1R̂)

]
, (4.37)

where R = AAH +D and R̂ is sample covariance matrix formed from N independent sam-
ples. To achieve this we find the gradient of this likelihood function (also known as the
Fisher score) and set it equal to zero. The Fisher score for a proper Gaussian distributed
signal is given by [39, p.165]

Using the results from Sec. 2.3.2 and 4.4 , the vector form of the Fisher score can be
written as

g(θ) = N JH (
R−T ⊗R−1)vect(R̂−R) (4.38)

where

J =
[
∂vect(R)

∂vectT (A)
,
∂vect(R)

∂vectT (A∗)
,

∂vect(R)

∂vectdiagT (D)

]
= [JA,JA∗ ,JD] . (4.39)

Using these results and (4.38), the Fisher score in matrix form could be found to be

unvect(gA) = N unvect
[
(A∗⊗ IP )H (R−T ⊗R−1)vect(R̂−R)

]
= N unvect

[
(AT R−T ⊗R−1)vect(R̂−R)

]
= N R−1(R̂−R)R−1A, (4.40)
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and in the same way
unvect(gD) = N diag

(
R−1(R̂−R)R−1) . (4.41)

The ML technique requires us to set (4.40) and (4.41) equal to zero, unfortunately this
will not produce a closed–form solution. As a result different iterative techniques such
as the scoring method and EM based approaches have been suggested in the literature
that we will discuss here.

THE SCORING METHOD

The scoring algorithm is a variant of the Newton–Raphson algorithm where the gradi-
ent and the Hessian are replaced by the Fisher score and Fisher information matrix re-
spectively. The resulting iterative method is called the method of scoring or the scoring
method [38, p.180]. The scoring iterations are:

θ(k+1) = θ(k) +µ(k)∆, (4.42)

where
∆= F†

(k)g(k)

is the direction of descent and

g =
 gA

gA∗

gD

 .

is the Fisher score.
By close inspection of the ML method described in [65], we observe that the method

described there is an approximation of the scoring method where F†
(k) is approximated

by diag(F(k))
−1. Here we suggest using a block-diagonal approximation of the Fisher in-

formation instead of a diagonal one which will allow us to solve the direction of descent
for A and D separately. Using FAA and FΨΨ from the results in Sec. 4.4 we have

∆A = F−1
AA(AT ⊗ I)(R−T ⊗R−1)vect(R̂−R)

= [(AT ⊗ I)(R−T ⊗R−1)(A∗⊗ I)]−1(AT ⊗ I)(R−T ⊗R−1)vect(R̂−R)

= [(AT R−T A∗)⊗R−1]−1(AT ⊗ I)(R−T ⊗R−1)vect(R̂−R)

= [(AT R−T A∗)−1 ⊗R](AT R−T ⊗R−1)vect(R̂−R)

= [(AT R−T A∗)−1AT R−T ⊗ I]vect(R̂−R)

= vect[(R̂−R)R−1A(AH R−1A)−1 (4.43)

and thus
A(k+1) = A(k) +µ(k)(R̂−R(k))R−1

(k)A(k)(AH
(k)R−1

(k)A(k))
−1.

When we use the constraint that AH D−1A = Γ we also have AH R−1A = Γ(IQ +Γ)−1 is di-
agonal (this follows from (4.7)) and (AH R−1A)−1 = Γ−1(IQ +Γ) and hence we can reduce
the computations for the direction of descent for A by using the following relation

R−1A(AH R−1A)−1 = D−1A(IQ − (IQ +Γ)−1Γ)Γ−1(IQ +Γ)

= D−1A[Γ−1(IQ +Γ)− IQ ]

= D−1AΓ−1. (4.44)
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Following the same procedure for D we find

d(k+1) = d(k) +µ(k)(R−T
(k) ¯R−1

(k))
−1vectdiag[R−1

(k)(R̂−R(k))R−1
(k)]

where we have used FΨΨ = FDD = R−T ¯R.
As the original approximation by [65] is equivalent to the technique better known as

the Jacobi iterative approach to a linear system, the new proposed approach is a Block-
Jacobi method. Further, if instead of R(k) in the iteration for d we use A(k+1)AH

(k+1) +D(k)

this method will become equivalent to a Block-Gauss–Seidel iteration [45].
As with any Newton based method, this approach requires a good initial point in

order to converge to a desirable solution. The Ad-hoc method (see 4.5.1) can be used to
provide an approximate solution as the initial guess for this algorithm.

EM BASED ALGORITHM

The expectation maximization technique is a general tool for finding an extremum of
the likelihood function [38]. Its application to FA was first proposed by [69]. An overview
of the original method and several of its derivatives can be found in [68]. Because of the
simplicity of the final iterations it is straightforward to extend these algorithms to the
complex domain. We will limit ourselves to a somewhat more recent algorithm which
uses the Kullback–Leibler divergence (KLD) in order to find the ML solution. In the case
of Gaussian distributed families the KLD will reduce to a likelihood ratio function which
has been used for ML estimation by [56].

For a given set of samples maximizing the likelihood function is the same as mini-
mizing the likelihood ratio function

F (A,D) = tr(R−1R̂)− log |R−1R̂|−P (4.45)

which is the same as the KLD when the divergence is calculated between a Gaussian
distribution described by R̂ and another Gaussian distribution parametrized by A and D.
Even though both functions are the same, an information geometric perspective on the
KLD provides some easy to implement algorithms which avoids taking derivatives and
converges to a local minimum [70]. The following iterations summarize the KLD FA [70]:
Let

Φ(A,D) = IQ −AH R−1A+AH R−1R̂R−1A,

then
Â(k+1) = R̂R−1

(k)Â(k)Φ(Â(k),D̂(k))
−1 (4.46)

D̂(k+1) = diag(R̂− Â(k+1)ÂH
(k)R−1

(k)R̂). (4.47)

We will evaluate the performance of this technique using simulations (see Sec. 4.8).

4.5.3. MINIMUM TRACE FA
Minimum Trace FA tries to find the unknown parameters by formulating the problem as
a minimization of a trace function. The matrix for which the trace is minimized differen-
tiates different approaches. We will distinguish between two classes of minimum trace
FA (MTFA), one that is equivalent to Weighted Least Squares (WLS) and one related to
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minimum rank FA (MRFA). The WLS for classical FA is a special case of the non-linear
WLS algorithm that will be discussed in Sec. 4.6.1 and is not addressed here.

Revisiting the FA problem, ideally we would like to find R0 = AAH and D directly by
solving

minD rank(R−D)
s.t. R−D ≥ 0

D > 0.

However there are two major issues to this direct approach. The first issue follows from
the fact that minimizing the rank is an NP-hard problem [71] and second problem fol-
lows from the fact that we only have access to R̂ which puts a relatively high lower bound
on rank(R̂−D) [64] (i.e. the reduction in the rank of R̂ is very limited when we just modify
its diagonal elements). MRFA has been suggested very early in the development of factor
analysis by Ledermann [64]. Ledermann suggested using tr(R−D) as the objective func-
tion to avoid the NP-hardness of the rank function. This problem has been later revisited
by Shapiro [72, 73] and most recently by [74] where the following optimization problem
is proposed:

minR0 tr(R0)
s.t. R0 ≥ 0

R0 +D = R
D > 0.

Using the convexity of the trace function it can be shown that the solution to the
problem as stated above provides the correct FA model with high probability if Q < P/2
and if there is access to R [74]. No results are known when R̂ is used, however this
approach seems to be applicable in practice when we replace the equality constraint
R0 +D = R with ‖R̂−R0 −D‖F ≤ ε. The recovered rank for R0 depends heavily on the
choice of ε. The rank recovered by MTFA can be used as an initial guess for the sequen-
tial detection described in Sec. 4.7.

From empirical research done on applying each of these methods extensively, use
of the ad-hoc or KLD method to form an initial guess followed by the scoring method
appears to be the most robust way to find the model parameters. For more results see
Sec. 4.8.

4.6. ESTIMATION ALGORITHMS FOR JEFA
So far we have only discussed existing estimation techniques for the classical FA and
minor changes that are needed when we extend the model to complex–valued data. In
this section we will focus on developing estimation techniques for JEFA.

Estimating the parameters for JEFA leads to a non-linear optimization problem that
we will solve using a variation of a Jacobian-free Newton-Krylov (JFNK) technique [75]
and a matrix-free Gauss-Newton-Krylov (MFGNK) [76]. The main idea behind the Newton-
Krylov technique is to solve the linear system needed to find the direction of descent
using Krylov subspace based solvers. As discussed in Sec. 2.4, Krylov-subspace based al-
gorithms find the solution to a linear system such as Bx = y by repeated calculation of the
matrix vector products of the form Bv. In many applications, and as we will demonstrate
in our case, B is related to the Jacobians and the multiplications can be performed using
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these Jacobians. The JFNK and MFGNK techniques avoid storing the Jacobian by using
a Taylor expansion to approximate the needed matrix vector products [75, 76]. The Kro-
necker structure of the Jacobians derived in the previous sections allows us to develop a
method that also avoids storing the Jacobians but does exact computation of the matrix
vector product.

We will discuss Non-linear Weighted Least Squares (NLWLS) and the Maximum Like-
lihood (ML) for finding Ψ̂ and Âm .

4.6.1. NON-LINEAR WEIGHTED LEAST SQUARES
We start by vectoring and stacking all the covariance matrices to form a measurement
vector

r̂ = [
vectT (R̂1) . . . vectT (R̂m)

]T
, (4.48)

and similarly

r(θ) = [
vectT (R1(θ)) . . . vectT (Rm(θ))

]T
, (4.49)

where

θ = [
θT

A1
. . . θT

Am
θT
Ψ

]T
. (4.50)

We can estimate the unknown parameters in θ using NLWLS defined as

θ̂ = argmin
θ

‖W1/2[r̂− r(θ)]‖2
2 (4.51)

where W is a weighting matrix. The optimum weighting matrix is the covariance matrix
of the entire vectorized dataset, W = bdiag(R−T

m ⊗R−1
m ), however because we have only

access to R̂m and we use

W =

R̂−T
1 ⊗ R̂−1

1
. . .

R̂−T
M ⊗ R̂−1

M

 (4.52)

which will give an asymptotically optimal solution for a Gaussian distributed data matrix
[37]. We would like to note here that the WLS cost function (4.51) with weight (4.52) and
M = 1 can be formulated as a minimum trace problem

‖W1/2[r̂− r(θ)]‖2
2 = ‖R1/2(R̂−R(θ))R1/2‖2

F

= tr{[R̂−1(R̂−R(θ))]2}

= tr[(I− R̂−1R(θ))2]

and the real version of this cost function for classical FA has been proposed by [66].
A very common iterative technique for solving nonlinear optimization problems is

the Gauss-Newton algorithm, where the Hessian is replaced by the Gramian of the Jaco-
bians [41]. The updates are similar to Newton updates and are given by

θ̂(k+1) = θ̂(k) +µ(k)∆ (4.53)
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where ∆ is the direction of descent. For M = 1 and Ψ = D, θ̂ is the same as θ̂ used for
classical FA. To find∆we need to solve

B(θ)∆= g(θ) (4.54)

where
B(θ) = JH (θ)WJ(θ) (4.55)

is the Gramian and g(θ) is the gradient of the NLWLS given by

g(θ) = JH (θ)W[r̂− r(θ)]. (4.56)

We will continue the iterations given by (4.53) until ‖g(θ̂(k))‖2 < ε where ε > 0 depends
on the desired accuracy. This concludes the Gauss-Newton algorithm. The key step is
solving the linear system in (4.54). We will discuss a Krylov based method for solving this
system to find∆.

4.6.2. KRYLOV-BASED METHODS
There are many approaches to solving a large system of linear equations. The choice
of the solver depends heavily on the structure the matrix involved. For example if the
matrix has a Toeplitz or circulant structure, fast methods based on FFT can be applied.
In our case the Gramian matrix B(θ) has and J(θ) poses Kronecker structure. For these
matrices we propose using a Krylov subspace based solver and demonstrate how it can
reduce storage and/or complexity.

There are various Krylov subspace based solvers, an overview of these solvers can
be found for example in [77]. We know from our study of the Fisher information that
the solution to the problem is not unique, this means that the Jacobians and hence B
are singular. One possible Krylov solver that is capable of finding a solution for singular
matrices is the MinresQLP algorithm [78] and for this reason we have chosen this solver
for our iterative approach.

MinresQLP is a standard iterative solver that we do not discuss in detail here. The
solver requires the availability of a subroutine that can perform a matrix vector multi-
plication of the form u = Bv. Other operations in MinresQLP have negligible complexity
compared to this matrix–vector multiplication. We will show how we can perform this
multiplication without needing to store the Jacobians using the Kronecker structure.

We will drop the dependency on θ from the notation and write only J and r because
θ does not change while we are solving for ∆. In order to calculate u = Bv for B given
in (4.55), we define an intermediate result z = Jv. Given the fact that v, u have the same
dimensions as θ and z has the same dimensions as r we are going to partition them in
the same manner using (4.50) , (4.21) and (4.20) as

v =



vect(VA1 )
vect(VA∗

1
)

...
ST

U vect(VΨ)
ST

L vect(VΨ)
(IP ◦ IP )T vect(VΨ)


, u =



vect(UA1 )
vect(UA∗

1
)

...
ST

U vect(UΨ)
ST

L vect(UΨ)
(IP ◦ IP )T vect(UΨ)


(4.57)



4.6. ESTIMATION ALGORITHMS FOR JEFA

4

47

and

z =

 vect(Z1)
...

vect(Zm)

 (4.58)

where SL and SU are selection matrices based on the mask matrix M. To find u we will
compute UAm , UA∗

m
and UΨ. We note that if VA∗

m
= V∗

Am
then UA∗

m
= U∗

Am
which means

that only UAm needs to be calculated.
The Jacobian for the entire dataset is given by

J = ∂vect(R)

∂θT
=


JA1 JA∗

1
. . . 0 JΨ

0 . . . 0 JΨ

0
. . .

. . . 0 JΨ
0 . . . JAm JA∗

m
JΨ

 (4.59)

and hence using z = Jv, (4.58) and (4.14):

vect(Zm) = (A∗
m ⊗ IP )vect(VAm )+ (IP ⊗Am)KP,Q vect(VA∗

m
)+vect(VΨ)

= vect
(
VAm AH

m +Am VH
Am

+M¯VΨ
)

where we have used VA∗
m
= V∗

Am
. It follows directly from unvectorizing both sides that

Zm = VAm AH
m +Am VH

Am
+M¯VΨ. (4.60)

This means that we can calculate Jv by only reshaping the vector v to appropriate ma-
trices VAm and VΨ and applying (4.60). The variables Am are the current estimates of
unknown parameters and hence require no additional storage.

The next matrix vector multiplications that we need is zW = Wz. Using the properties
of Kronecker products it is straightforward to show that zW can be calculated using

ZWm = R̂−1
m Zm R̂−1

m (4.61)

and

zW =

vect(ZW1 )
...

vect(ZWm )

 . (4.62)

The final product we need to calculate is u = JH zW. From the structure of (4.59), we see
that

vect(UAm ) = JH
Am

vect(ZWm )

vect(UA∗
m

) = JH
A∗

m
vect(ZWm ).

Unvectorizing both sides and applying (4.14) we find

UAm = ZWm Am (4.63)

UA∗
m
= ZT

Wm
A∗

m .
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The remaining term UΨ is given by:

UΨ =
M∑

m=1
M¯ZWm . (4.64)

To summarize, in order to calculate Bv we reshape v into VAm and VΨ and use (4.60),
(4.61), (4.63) and (4.64) to find the result. The gradient g can be calculated in a similar
manner by using Zm = R̂m −Rm . The procedure that performs these steps is provided to
MinresQLP which then solves for∆.

By assuming VA∗
m
= V∗

Am
we showed in (4.60) that Zm is Hermitian, and because R̂−1

m

is Hermitian so is ZWm . From the properties of Hermitian matrices we have ZT
Wm

= Z∗
Wm

and thus UA∗
m
= U∗

Am
. We still need to show that the assumption about VA∗

m
is valid. It

can be shown that MinresQLP provides v that has the property VA∗
m
= V∗

Am
when solving

B∆ = g if g has this property. Calculating g is achieved by setting Zm = R̂m −Rm and
following the procedure above. Because both R̂m and Rm are Hermitian, it follows that
the needed property holds for g and hence for v.

It is also worth noting that when W = I we have ZWm Am = Zm Am . This allows us
to compute UAm using Am(VH

Am
Am) and VAm (AH

m Am) which has a complexity of O(PQ2)

instead of the original O(P 2Q). Also the term AH
m Am can be calculated outside the Min-

resQLP iterations, saving more computations.

4.6.3. MAXIMUM LIKELIHOOD FOR JEFA
An alternative to the NLWLS solved in Sec. 4.6.1 is to maximize the likelihood function
(4.19). A Hessian-free (similar to Jacobian and matrix free) variation in combination with
Krylov solvers has been suggested in [79]. However by using the results of the previous
section we will develop a method based on the scoring method, where the Hessian is
replaced by the Fisher information matrix [38]. We already have derived the Fisher in-
formation for the entire dataset. We will denote this method Scoring-Krylov (SK).

The scoring method as presented by [38] can be summarized as

θ̂(k+1) = θ̂(k) +µ(k)∆

where∆ is the solution to
Ftot al (θ)∆= g(θ)

where g is the Fisher score. Using the same technique as we have done to find the deriva-
tives for NLWLS we find the derivative of the likelihood as

g(θ) = JH (θ)W(θ)(r̂− r(θ))

where W(θ) = bdiag(R−T
m (θ)⊗R−1

m (θ)).
Given the definition of the gradient and the Fisher information, we observe that the

same techniques used for NLWLS can be applied to ML. We only need to replace the
weighting matrix to be the current best estimate of R(θ). However, this approach re-
quires the inversion of the covariance matrices at each iteration. If based on the struc-
ture of the masking matrix M, inversion ofΨ is computationally more accommodating,
then the Woodbury matrix identity can be used to find the inverse with less complexity.
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When using MinresQLP for the SK technique the only step that needs modification is
(4.61), where we replace R̂m with Rm(Âm,(k),Ψ̂(k)) (note that k remains the same during
the MinresQLP iterations).

This will allow us to find the ML solution using the advantages of the Krylov based
solvers without the need to store the Fisher information matrix or the Jacobians.

4.7. GOODNESS OF FIT AND DETECTION
One of the parameters that needs to be found for the FA model is the number of under-
lying common factors,Q (i.e. rank(A)). In the concept of array processing it is the same
as detecting the number of sources that the array is exposed to.

Finding the true value of Q is part of multiple hypothesis testing and model order
selection problem and there exists an extensive literature on this subject (an overview
can be found in [80, pp. 222-223][81]). In this section we will limit the discussion to a
general likelihood ratio test (GLRT) which is used to decide whether the FA model fits a
given sample covariance matrix. If the model fits, it can be seen as detecting Q sources.

Two hypotheses are tested against each other. H0 assumes that there is an FA model
underlying the data, while H1 assumes no structure. Consider the following test

ζ= L∗
1

L∗
0

≷ γ

where L∗
1 is the maximum value of the likelihood when H1 is true, and L∗

0 is the maximum
value of the likelihood for a FA model. Taking the natural logarithm from both sides we
see that it reduces to (4.45) and we can write

λ= 2log(ζ)

= 2N
[
tr(R−1R̂)− log |R−1R̂|−P

]
. (4.65)

From [67, p.267][61, p.281] we know that this statistic has an asymptotic χ2
s distribution

under H0 where s is the degree of freedom defined by (4.66) later in Sec. 4.10 (appendix
to this chapter). We can use this statistic to find a false alarm ratio detector. In the spe-
cial case where Q = 0 this test indicates whether there are any sources active during the
measurement.

If the GLRT passes for a given estimate Q̂0 it will also pass for any Q̂ > Q̂0 and if it
fails, it also fails for any Q̂ < Q̂0. Therefore, instead of a linear search for Q̂ we propose
to use a binary search. In this case the number of needed FA estimates is on average
log2(Qmax )+1 where Qmax is the maximum number of possible sources for FA given by
(4.67) and follows the relation Qmax < P −p

P .

4.8. SIMULATIONS
We will evaluate the performance of the proposed models and algorithms using a series
of simulations. We will start by evaluating the convergence speed of different algorithms
in Sec. 4.8.1, we will then evaluate the quality of the estimated subspace using classical
and Joint FA in Sec. 4.8.2, in Sec. 4.8.3 we use simulation to show how JEFA can be used
to improve DOA estimation and finally is Sec. 4.8.4 we show that the proposed algorithm
for JEFA converges to the CRB as number of samples becomes larger.
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(a) Convergence speed no finite sample noise for
Q = 5
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(b) Convergence speed no finite sample noise for
Q = 12
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(c) Convergence speed N = 1000, Q = 5
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(d) Convergence speed N = 1000,Q = 12
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(e) Convergence speed N = 100, Q = 5
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(f) Convergence speed N = 100, Q = 12

Figure 4.1: Convergence for P = 20. Vertical axis is the magnitude of the gradient and the horizontal axis is the
number of iterations.
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Table 4.1: Complexity of each iteration for different algorithms

Approach flops (order)
Ad-Hoc P 3 +P 2Q
KLD P 2Q +PQ2 +Q3

Krylov NLLS P 2Q + IK (PQ2)
Krylov NLWLS P 2Q + IK (P 2Q +PQ2)
Joint Krylov NLWLS P 2 ∑M

m Qm + IK (P 2 ∑M
m Qm +P

∑M
m Q2

m)
Krylov Scoring P 2 ∑M

m Qm +∑M
m Q3

m + IK (P 2 ∑M
m Qm +P

∑M
m Q2

m)

4.8.1. CONVERGENCE SPEED

In this section we will evaluate the speed of convergence for different algorithms using
simulations. Table 4.1 shows the complexity for a single iteration of the algorithms listed.
IK is the number of iterations needed for the Krylov solver to converge. This number can
be chosen to be very small depending on how much improvement is desired with respect
to the descend direction provided by the gradient. In the simulations presented here we
allow the solver to fully converge based on the default convergence criteria of MinresQLP.

Using different simulations we illustrate that not only the complexity but also the
convergence speed of the different algorithms depends heavily on Q and the level of
finite sample noise. An array with P = 20 elements is simulated. The matrix A is cho-
sen randomly with a standard complex Gaussian distribution (i.e. each element is dis-
tributed as N (0,1)) and D is chosen randomly with a uniform distribution between 1
and 5. The same initial point is chosen for all the algorithms.

Fig. 4.1 shows the convergence rate of different ML algorithms based on the magni-
tude of the gradient. For the simulated array the maximum number of sources is given
by Qmax = 15. Hence the simulation results illustrated in the first column of Fig. 4.1 with
Q = 5 are representative for low rank cases and the second column with Q = 12 for high
rank cases of the classical FA model.

Remarks:

• The Krylov Scoring outperforms all the other presented algorithms based on the
number of iterations needed for convergence.

• For high Q a low number of samples (Fig. 4.1e) can be catastrophic for most of the
algorithms.

• The Block Scoring algorithm also performs well with respect to the ad-hoc and
KLD, however the number of iterations is still very large for large Q and low num-
ber of samples.

• Scoring, Block Scoring and NLWLS based algorithms are sensitive to the initial
guess, however in practice the result from a few steps of the KLD algorithm (e.g.
10) has been observed to be a reliable initial guess.
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(a) Attenuation as the function of SNR for different
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(b) Angle difference between the estimated sub-
space and true subspace.

Figure 4.2: Subspace estimation performance of EVD, FA and JFA for various SNR and white noise.

4.8.2. SUBSPACE ESTIMATION PERFORMANCE

In this section we study the performance of FA and JFA where we take Ψ = σ2IP , so we
can compare the performance to EVD.

For this simulations we have chosen Qm = 2, P = 5, M = 5 and σ = 1 is the noise
power. We study the subspace estimation performance for various signal to noise ratios
(SNR) ranging from −5 dB to 20 dB. Each sample covariance matrix is generated using
N = 100 samples and Am is generated as a random complex matrix.

Two metrics are used to measure performance of the estimated subspace. We use the
estimated subspaces to find a projection matrix into the null-space of Âm which we will
denote by P̂m and we measure

Subspace error = ‖P̂m AAH P̂m‖F

‖AAH‖F
.

In Fig. 4.2a the result of this simulations is presented. As FA and JFA have to estimate
more parameters, we expect a drop in performance compared to EVD. This simulation
shows that this occurs for FA at low SNR. JFA exploits the stationarity of the noise com-
ponent and hence has a quite small performance penalty with respect to EVD.

The other metric we use is the angle between two subspaces calculated using MAT-
LAB command subspace. This result is shown in Fig. 4.2b. The subspace angle difference
between the true and estimated subspaces decreases as SNR increases. JFA follows the
performance of EVD with a very small gap.

Because JFA has a more general model, it is applicable in many practical situations
and we have shown that applying this technique in classical scenarios where Ψ = σ2IP

does not result in a significant performance loss. I.e. the accuracy of the subspace esti-
mated using JFA is very close to that of EVD even though for a model withΨ=σ2IP the
number of unknowns in JFA model is larger.
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Figure 4.3: Result of matched filter beamforming as a function of time index k with and without interference.

4.8.3. DOA ESTIMATION USING JEFA
In this scenario we use the estimated subspace from EVD, EJFA and EFA as the input to
a DOA estimator based on ESPRIT [59]. We simulate M = 10 with Qm = 2 targets moving
along the tracks T1 and T2 as illustrated in Fig. 4.4 between the snapshots. We have
a uniform linear array with P = 7 receivers that observe the targets, however P0 = 5 of
these receivers are contaminated with unknown interfering signals. We will model the
interfering signal as a stationary unknown colored noise which leads to a mask matrix
defined by

M =
[

1P0 1T
P0

0
0 I2

]
where 1P0 is a P0 ×1 vector with all entries equal to unity. The sample covariance matrix
for each snapshot is obtained using N = 100 samples.

Fig. 4.3a shows the result of matched filter beamforming on the simulated data when
there is no infereferer present and Fig. 4.3b shows the effect of the interfering signals.
Because of the limited resolution of the device, the beamformer cannot differentiate the
two signals in the last snapshot.

We present the Monte-Carlo (MC) results of ESPRIT for each snapshot based on the
subspace estimated by various algorithms in Fig. 4.4.

• Because Ψ 6= σ2I, EVD is not able to recover the correct subspace and hence as
illustrated in Fig. 4.4a the estimated subspace is biased, (note that the bias is dif-
ferent between each snapshot and is a function of both Am and Ψ and the wild
behavior shown in this figure does not disappear by increasing the number of MC
runs).

• Fig. 4.4b shows the result obtained by applying the EFA separately on each snap-
shot followed by ESPRIT. Because the resolution decreases for higher angles (as
can be seen in Fig. 4.3a) and because not the entire dataset is used the variance
of the DOA estimates is higher for the first few snapshots, also as the targets get
closer it is more difficult to differentiate their subspace. Both problems affect the
performance of EFA.
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Figure 4.4: Comparison of subspace based DOA estimation for EVD, EFA and JEFA.
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Figure 4.5: Performance of the diagonal estimates compared to the CRB

• The performance of JEFA is illustrated in Fig. 4.4c. Because both the correct data
model has been used and estimation is done over the entire dataset, JEFA is able
to recover the subspaces and hence the DOA estimates more accurately.

4.8.4. CRAMÉR-RAO BOUND SIMULATION

In this part we investigate the performance of the proposed algorithm using the Cramér-
Rao bound. We use a setup with P = 5, Qm = 2, Ψ = D with diagonal elements ranging
from 0.5 to 1.5. Two different approaches are compared. The first approach is to apply
FA separately and then use D̂ = 1/K

∑
m D̂m . The other approach is to estimate using JFA.

We use

E {‖D̂−D‖2
F } = E {vect(D̂−D)H vect(D̂−D)}

= tr[E {vect(D̂−D)vect(D̂−D)H }] ≥ tr(CΨ)

where CΨ is the sub-matrix of CRB corresponding to Ψ, to measure performance. We
estimate E {‖D̂−D‖2

F } using Monte Carlo simulations. Fig. 4.5 shows the result of this
simulation. This figure clearly illustrates that the proposed joint estimation reaches the
CRB asymptotically and that applying the estimation separately followed by an averaging
results in a sub-optimal estimation with higher variance.
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4.9. CONCLUSION
We have provided a method for jointly estimating the non-stationary low-rank and sta-
tionary structured part of a series of covariance matrices by developing efficient algo-
rithms based on Newton-Krylov optimization techniques. An algorithm to find the ML
estimates has also been presented.

The Cramér-Rao bound for the entire dataset has been provided and the perfor-
mance of the algorithm have been illustrated using simulations.

The general structure of the data model should make application of this technique
possible in a wide range of signal processing applications. In Chapter 5 we will use the
results in this section extensively to spatial filtering of RFI and in particular, spatial fil-
tering with a reference antenna array. We will also use the Cramér–Rao bound derived in
this chapter to find the performance bound for these techniques.

4.10. APPENDIX: IDENTIFIABILITY
One of the challenges with the FA models is the problem of identifiability. There are two
identification problems that need to be addressed. As in [82] we call two solutions, θ1

and θ2, observationally equivalent if for a set of observations with probability density
p(x;θ), we would have p(x;θ1) = p(x;θ2). The problem is called (globally) identifiable if
for a solution θ, there are no observationally equivalent solutions on the entire solution
spaceΘ. The identification problem for the FA model can now be formulated as

• Given a Hermitian matrix R with the decomposition R = R0 +D and Q, are R0 and
D, as defined in previous sections, identifiable?

The early results on this identification problem are published in [55]. Later work on
this subject has been summarized by [83], and [84] gives a recent overview of impor-
tant theorems on this subject. However only for cases where Q is one or two (very small
ranks) do these theorems provide both sufficient and necessary conditions of identifia-
bility. Here we use the results provided by [82] to formulate a necessary and sufficient
condition to answer this identification question.

Of course a necessary condition for identifiability is that the number of knowns ex-
ceeds the number of unknowns. This puts limits on the rank of A. To find this limit we
will study the degree of freedom we have for the estimation parameter based on a given
sample covariance matrix.

From the sample covariance matrix we have P (P − 1)/2 complex and P real known
parameters which are in total P 2 real knowns and from the FA model and the constraints
we have PQ complex parameters in A, P real parameters in D and Q2 constraints. As
such the total degree of freedom becomes

s = P 2 −2PQ −P +Q2

= (P −Q)2 −P. (4.66)

In order for the FA model to be identifiable, s > 0 is a necessary condition. Now solving
for Q we find that the maximum number of sources that could theoretically be detected
by FA is

Q < P −
p

P (4.67)
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And following the same procedure for EFA we find

Q < P −
√

tr(M2). (4.68)

In order to find such a bound on Q for JEFA we need to assume that Qm is constant. In
this case we find the following bound

Q < P −
√

tr(M2)

M
. (4.69)

To be able to use known literature on identifiability it is useful to choose a parametriza-
tion of the unknowns in term of real values. let θR denote such a parametrization. One
way to define θR for classical FA is

θ = TθR, (4.70)

where

T = 1p
2

IPQ j IPQ 0
IPQ − j IPQ 0

0 0
p

2IP

 . (4.71)

It is straightforward to show that T is a unitary transformation and hence does not change
the number of real unknowns. We will also assume the use of structural constraints on
A which leads to linear constraints (e.g. LQ constraint). Let the minimum constraints
on θR be written in the form of a function h(θR) = 0 and solution space be Θh. Let the
Jacobian of this function be

HR = ∂h

∂θT
R

(4.72)

and let FR = TH FT be the (real) Fisher Information matrix. Now we reformulate Theorem
2 of [82] as :

Suppose θ0 ∈Θh is a regular point of HR(θR), V(θR) =
(

FR

HR

)
and rank(A) =Q. Then θ0

is locally identifiable if and only if rank[V(θ0)] = 2PQ +P .
If rank(V) < 2PQ +P it means that there is another parametrization R = R0 + D =

R1 +D1 such that rank(R1) ≤ rank(R0) and D 6= D1. This means that the matrix D can not
be uniquely estimated. If the application is rank reduction for encoding or storage this
is not catastrophic. However if the model parameters are used for explaining physical
phenomena this problem should be complemented with constraints on the matrix D
itself. For example in array processing if the array signature combined with the noise
covariance matrix are unidentifiable then D will also contain part of the signal power
and one of the signal subspaces will be lost.

In this chapter, we assume that the signal and noise have a proper complex Gaus-
sian distribution. This can be used to simplify the identification criteria. Using Bang’s
formula we can write the FIM as

FR = JH
R

(
R−T ⊗R−1)JR, (4.73)
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where JR = JT. Considering that
(
R−T ⊗R−1

)
is a positive definite matrix, H = HRTH and

HH H has the same row space as H we have

rank(V) = rank

[(
F

HH H

)]
= rank

[(
JH HH )(R−T ⊗R−1 0

0 Im2

)(
J

H

)]
= rank

[(
J

H

)]
. (4.74)

This means that by studying the rank of the Jacobian we can establish the identifiability
of the problem. However we are interested in finding identifiability conditions that do
not depend on R and D or the power of the sources. This means that we would like to
have conditions that solely depend on the subspace of A which is U0. To this end we will
take a close look at the Jacobians.

Our first observation is that the Jacobian depends only on the structure of D being
diagonal and does not depend on the actual value of its elements. This already shows
that studying the Jacobian instead of the total Fisher information matrix is a better way to
establish identifiability. For the next part we use the the fact that for any matrix rank(J) =
rank(JH ) and we use the (economical) singular value decomposition of A = U0Γ

1/2QH to
obtain

JH =
 AT ⊗ IP(

AH ⊗ IP
)

KP,P

(IP ◦ IP )H


=

 Q∗Γ1/2UT
0 ⊗ IP(

QΓ1/2UH
0 ⊗ IP

)
KP,P

(IP ◦ IP )H


=ΦH

(Γ1/2 ⊗ IP ) 0 0
0 (Γ1/2 ⊗ IP ) 0
0 0 IP .

Ũ (4.75)

where

Ũ =
 UT

0 ⊗ IP(
UH

0 ⊗ IP
)

KP,P

IP ◦ IP

 (4.76)

It is straightforward to show that the first matrix is a unitary full rank matrix, the second
matrix containing Γ is also a diagonal matrix and is full rank which means that rank of
the Jacobians depends solely on U0 and diagonal structure of D which is what we needed
to show. So the identifiability can be established by examining Ũ. The constraints and
hence the matrix H fix the Q2 degrees of freedom we have for the matrix Q which means
that in order for the problem to be (locally) identifiable we need

rank(Ũ) = 2PQ +P −Q2. (4.77)
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This result is easily extended to EFA by replacing (IP ◦ IP )H in (4.76) by JH
Ψ . The identifia-

bility criterium for EFA becomes

rank(Ũ) = 2PQ + tr(M2)−Q2. (4.78)

To conclude, we have used the identifiability problem to find the maximum number
of sources that can be modeled using (E)FA. We have also shown that the local identi-
fiability of the FA is completely defined by the signal subspace and the structure of the
Jacobians with respect to the noise covariance matrix. This structure is completely de-
fined by the masking matrix M in (4.9).





5
RFI MIGITATION USING A

REFERENCE ANTENNA ARRAY

5.1. INTRODUCTION
Radio astronomical observations are increasingly contaminated by man-made RF in-
terference. In bands below 2 GHz, we find TV and radio signals, mobile communica-
tion (GSM), radar, satellite communication (Iridium) and localization beacons (GPS,
Glonass), etc. Although some bands are specifically reserved for astronomy, the stop-
band filters of some communication systems are not always adequate. Moreover, scien-
tifically relevant observations are not limited to these bands. Hence, there is a growing
need for interference cancellation techniques.

Current systems for interference cancellation mostly operate at the post-correlation
level, by rejecting suspect correlation products in the time-frequency plane, or by spe-
cialized imaging algorithms. Spatial filtering at shorter time scales (pre-correlation) is
not commonly applied, but would offer interesting possibilities in the first-stage sup-
pression of continuously present wide-band interference in bands that are currently
avoided by astronomers. An example is the band between 174-240 MHz, which is cur-
rently being populated by Digital Audio Broadcast (DAB) transmissions but is also of
interest for the LOFAR radio telescope.

Depending on the interference and the type of instrument, several kinds of RFI mit-
igation techniques are applicable. Overviews can be found in [10–12, 85, 86]. E.g., in-
termittent interference such as radar pulses can be detected using short-term Fourier
transforms and the contaminated time-frequency cells omitted during long-term inte-
gration to order 10 s [10]. Similarly, during postprocessing we can suppress intermit-
tent signals using time-frequency blanking, where detection can be based on anomalous
power or higher order spectral kurtosis [87–89]. However, many communication signals

1. Results presented in this chapter are partially published in [28].
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Figure 5.1: Telescope array augmented with a reference phased array. A “telescope” could also be a beam-
formed “station” output, where a station consists of an array of antenna elements.

are continuous in time. For a single-dish single-feed telescope, there are not many other
options than to consider an extension by a reference antenna which picks up only the
interference. In this case LMS-type adaptive cancellation techniques have already been
proposed by [92–94].

With an array of P telescope dishes (an interferometer), spatial filtering techniques
are applicable as well. The desired instrument outputs in this case are P ×P correla-
tion matrices, integrated to order 10 s (more generally: the time over which astronomi-
cal array signals can be considered stationary, also taking the rotation of the Earth into
account). Based on short-term correlation matrices (integration to e.g., 10 ms) and nar-
row subband processing, the array signature vector of an interferer can be estimated
and subsequently projected out. The resulting long-term averages of these matrices are
mostly interference-free, but they are biased because of the missing dimensions. Such a
projection operation also affects the sensitivity and beam-shape of the array [95]. If the
projection vector was sufficiently varying, the bias can be corrected for [13, 96]. For sta-
tionary interferers (e.g., TV stations or geostationary satellites), this might not work very
well, and the correction has to be done during image formation [5]. A special case of a
“stationary” interferer is interference entering on only a single telescope dish. The pro-
jections will simply remove that channel, and the information can never be recovered.
A third limitation is that for relatively weak interference the estimate of the signature
vector will not be very accurate so that it will not be perfectly canceled.

To improve on these aspects, we consider in this chapter to extend the telescope ar-
ray with one or more reference antennas. These might be simple omnidirectional an-

Exceptions are techniques based on higher-order statistics [90] or estimation of outliers in variance [91].



5.1. INTRODUCTION

5

63

tennas, located close to an interfering source (e.g., a poorly shielded computer in the
observatory), or a satellite dish pointing into the direction of a geostationary satellite.
Most flexibility is obtained by using a phased array which can adaptively be pointed to-
wards the strongest interferers. In the experiment in Sec. 5.7, we have used a focal plane
array that was mounted on one of the telescope dishes, pointing to zenith.

In the context of phased array telescopes consisting of stations that each form beams
on the sky, such as LOFAR or SKA, the equivalent of a “telescope” is a station. The refer-
ence array may then be a separate array, or remaining degrees of freedom of the stations
(e.g., independent beams). It may also consist of the individual station antenna outputs,
if we have access to them, or a subset of these.

The generic set-up considered here is shown in Fig. 5.1. The telescope signals (or
station beams) are split into narrow sub-bands and correlated to each other over short
time intervals. The reference signals are correlated along with the telescope signals as
if they were additional telescopes, and spatial filtering algorithms that project out con-
taminated dimensions can be applied to the resulting short-term integrated covariance
matrices. These matrices could also be used to adaptively beam-steer the reference ar-
ray towards an interferer. The output of the spatial filter is long-term integrated, and
formally we have to apply a correction matrix to correct for the projected dimensions.

In the literature, several papers have appeared which propose to apply some form
of spatial filtering on extended arrays. Briggs et al. [97] consider a single dual-polarized
telescope (two channels), augmented with two reference antennas. With their technique
a single interferer can be cancelled; it is not immediately obvious how it can be extended
to more general cases (more antennas, more interferers). Kocz et al. [98] propose a pro-
jection based spatial filter specifically for multibeam receivers and show its application
for detecting pulsars. Jeffs et al. [99, 100] propose spatial filtering algorithms along the
lines of [13, 96]; we will summarize their approach in Sec. 5.3.1 and subsequently make
extensions which may improve the performance. Hellbourg et al. [101] use the cyclo-
stationarity of RFI signals to improve the projection estimation while using the same
projection correction technique used in [13, 96]. The improvements discussed in this
Chapter are hence equally applicable to their technique.

The work presented here is the continuation of the previous work done by Albert-
Jan Boonstra and Alle-Jan van der Veen [14]. For sake of completeness we repeat their
approach in Sec. 5.3.1 and 5.3.2 and then extend it with the use of factor analysis (FA),
which has been introduced in Chapter 4. For the complete version of the combined work
we refer the reader to [28].

The structure of this chapter is as follows. In Sec. 5.2, we define the data model and
state the problem. In Sec. 5.3.1, we present an existing spatial filtering algorithms that
does not make use of reference antennas. In Sec. 5.3.2, we extend on this approach, and
also present a more generic (Maximum Likelihood) approach based on FA end EFA. Sec.
5.5 discusses the theoretical performance of these algorithms. Sec. 5.6 shows simulation
results, and Sec. 5.7 shows results on experimental data.
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5.2. PROBLEM STATEMENT

5.2.1. DATA MODEL
Assume we have a telescope array (primary array) with P0 elements, and a reference
array with P1 elements. The total number of elements is P = P0 +P1.

We consider complex signals yp (t ) received at the antennas p = 1, · · · ,P in a suffi-
ciently narrow subband. For the interference free case the primary array output vector
y0(t ) is modeled in complex baseband form as

y0(t ) = v0(t )+n0(t )

where y0(t ) = [y1(t ), . . . , yP0 (t )]T is the P0 ×1 vector of telescope signals at time t , v0(t ) is
the received sky signal, assumed on the time scale of 10 s to be a zero-mean stationary
complex Gaussian vector with covariance matrix Rv,0 (the astronomical ‘visibilities’), and
n0(t ) is the P0 × 1 noise vector. In the general case for an uncalibrated antenna array
where the noise on each element is independent and Gaussian, the noise covariance
matrix is a diagonal matrix Σ0 = diag(σ0), where σ0 is a P0 ×1 vector of noise powers on
each element, and if the array has identical elements or is whitened after calibration this
simplifies to σ2

0I. The astronomer is interested in Rv,0.
If an interferer is present the primary array output vector is modeled as

y0(t ) = v0(t )+a0(t )s(t )+n0(t )

where s(t ) is the interferer signal with spatial signature vector a0(t ) which is assumed
stationary only over short time intervals. Without loss of generality, we can absorb the
unknown amplitude of s(t ) into a0(t ) and thus set the power of s(t ) to 1.

Consider now that we also have a reference antenna array. The outputs of the p1

reference antennas are stacked into a vector y1(t ), modeled as

y1(t ) = a1(t )s(t )+n1(t ) .

It is assumed here that the contribution of the astronomical sources to the reference
signals is negligible. The noise on the reference antenna array is assumed to be inde-
pendent and Gaussian with a diagonal covariance matrix. For an uncalibrated array
Σ1 = diag(σ1), and for a calibrated array with identical elements it is Σ1 =σ2

1I.
Stacking all antenna signals in a single vector

y =
[

y0

y1

]
and similarly for

v =
[

v0

0

]
, a =

[
a0

a1

]
, n =

[
n0

n1

]
,

we obtain
y(t ) = v(t )+a(t )s(t )+n(t ) . (5.1)

We make the following additional assumptions on this model:

In subsequent notation, the subscript ‘0’ will generally refer to the primary array and ‘1’ to the reference array.
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(A1) The noise covariance matrices are unknown diagonal matrices.

(A2) Rv,0 ¿Σ0. This is reasonable as even the strongest sky sources are about 15 dB un-
der the noise floor most phased array systems. (This assumption can be violated
by a few strong sources which are observed by a dish).

(A3) The processing bandwidth is sufficiently narrow, so that possible multipath prop-
agation of the interferer will add up to a single signature vector a(t ) and the in-
terferer is seen as a single source. For this it is at least required that the maxi-
mal propagation delay along the telescope array is small compared to the inverse
bandwidth.

(A4) The interferer signature a(t ) is stationary over short processing times (say less than
10 ms). It may or may not vary over longer periods. Note that even interferers fixed
on Earth will appear to move as the Earth rotates and the telescopes track a source
in different direction. This effect depends on the look direction and the maximal
baseline length of the telescopes. (The earlier mentioned window of order 10 s
over which Rv,0 is stationary is derived from this as well.) The rotation of the tele-
scopes and the associated delay compensation (‘fringe stopping’) introduced to
keep the astronomical signals coherent, give rise to phase changes of the entries
of a0(t ) which for long baselines are significant already over short time intervals.
The amplitudes will change because the interferer is usually received via the side
lobes of the telescope antenna response, which are highly non-constant and cause
temporal variations for tracking dishes or beamformed stations.

The model (5.1) with a calibrated array was considered in [13]. The model is easily ex-
tended to multiple interfering sources, in which case we obtain

y0(t ) = v0(t ) + A0(t )s(t )+n0(t )
y1(t ) = A1(t )s(t )+n1(t )

or equivalently
y(t ) = v(t )+A(t )s(t )+n(t )

where A : P ×Q has Q columns corresponding to Q interferers, and s(t ) is a vector with Q
entries.

5.2.2. COVARIANCE MODEL
Let be given observations y[n] := y(nTs ), where Ts is the sampling period. We assume
that A(t ) is stationary at least over intervals of N Ts , and construct short-term covariance
estimates R̂m ,

R̂m = 1

N

mN−1∑
n=(m−1)N

y[n]y[n]H , m = 1, . . . , M

where N is the number of samples per short-term average and M is the total number
of “snapshots”. All interference filtering algorithms in this paper are based on applying
operations to each R̂m to remove the interference, followed by further averaging over the
M resulting matrices to obtain a long-term average.
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Considering the Am := A(mN Ts ) as deterministic, the expected value of each R̂m is
denoted by Rm , which can be written in block-partitioned form as

Rm =
[

R00,m R01,m

R10,m R11,m

]
According to the assumptions, Rm has model

Rm = Am AH
m +Ψ

=
[

Rv,0 +A0,m AH
0,m +Σ0 A0,m AH

1,m
A1,m AH

0,m A1,m AH
1,m +Σ1

]
(5.2)

whereΨ := Rv+Σ is the interference-free covariance matrix, Rv := bdiag[Rv,0,0] contains
the astronomical visibilities, andΣ := bdiag[Σ0,Σ1] is the diagonal noise covariance ma-
trix. The objective is to estimate the interference-free covariance submatrix (long-term
estimate)Ψ00 := Rv,0 +Σ0.

5.3. EXISTING SPATIAL FILTERING ALGORITHMS
5.3.1. SPATIAL FILTERING USING PROJECTIONS WITHOUT REFERENCE AN-

TENNAS
In [13], a spatial filtering algorithm based on projections was introduced, and subse-
quently analyzed in [96]. Although that algorithm did not assume the presence of refer-
ence antennas, it can also be used in our current situation. We will first discuss the case
where the spatial signature of the interferers are deterministic or known, then we will
generalize it to the case where it is estimated from the data.

DETERMINISTIC OR KNOWN SPATIAL SIGNATURE

Suppose that an orthogonal basis of the subspace spanned by interferer spatial signa-
tures span(Am) is known. Let the basis vectors be the columns of a matrix Um . We can
then form a spatial projection matrix Pm ,

Pm := I−Um UH
m (5.3)

which is such that Pm Am = 0. When this spatial filter is applied to the data covariance
matrix,

Q̂m := Pm R̂m Pm

then all the energy due to the interferers will be nulled:

E {Q̂m} = PmΨPm .

If we subsequently average the modified covariance matrices Q̂m , we obtain a long-term
estimate

Q̂ := 1

M

M∑
m=1

Q̂m = 1

M

M∑
m=1

Pm R̂m Pm . (5.4)
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Q̂ is an estimate of Ψ, but it is biased due to the projection. To correct for this we first
write the two-sided multiplication as a single-sided multiplication employing the matrix
identity vect(ABC) = (CT ⊗A)vect(B). This gives

vect(Q̂) = 1

M

M∑
m=1

Cmvect(R̂m) (5.5)

where
Cm := PT

m ⊗Pm .

If the interference was completely removed then

E {vect(Q̂)} = 1

M

M∑
m=1

Cmvect(Ψ) = Cvect(Ψ) (5.6)

where

C := 1

M

M∑
m=1

Cm .

In view of this, we can apply a correction C−1 to Q̂ to obtain the corrected estimate Ψ̂

Ψ̂ := unvect(C−1vect(Q̂)) . (5.7)

If the interference was completely projected out then Ψ̂ is an unbiased estimate of the
covariance matrix without interference. This algorithm was introduced in [13] and its
performance was discussed in [96].

The main computational complexity is in constructing C and inverting it, as this is
generally a very large matrix (P 2 ×P 2). Inversion of this would require O(P 6) operations,
but because the inverse is applied to only a single vector this can be reduced to O(P 4)
using numerical techniques. Note in this respect that, for large M and sufficiently vary-
ing Am , C is usually quite close to an identity matrix, and the hope would be that the
correction can be omitted or highly simplified under such conditions.

The reconstructed covariance matrix Ψ̂ is size P ×P . In the present case, we are only
interested in the submatrix corresponding to the primary antennas. Hence, the estimate
produced by the algorithm is the P0 ×P0 submatrix in the top-left corner, Ψ̂00.

UNKNOWN SPATIAL SIGNATURE, KNOWN NOISE COVARIANCE

The spatial signatures of the interferers are generally unknown, but if the noise covari-
anceΣ is known the interfering subspace can be estimated from an eigen-analysis of the
sample covariance matrices R̂m . If Σ is not a multiple of I, then we first have to whiten
the noise to make the noise powers on all antennas the same. This is done by work-
ing with Σ−1/2R̂mΣ

−1/2. Without interference and assuming Rv is negligible compared
to Σ, all eigenvalues of this matrix are expected to be close to 1. With Q interferers, Q
eigenvalue become larger, and the eigenvectors corresponding to these eigenvalues are
an estimate of span(Σ−1/2Am).

Remarks:

In comparison, image formation techniques work with correlation matrices of size P×P and have a complexity
of O(P 2).
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1. The algorithm relies on the invertibility of C, which is constructed from projection
matrices. Each projection matrix is rank deficient. Hence, C is invertible only if the
spatial signature vectors which are projected out are sufficiently varying. In [96] it
was noted that for Q = 1, usually already 3 different projections are sufficient to
guarantee that C is full rank.

2. The algorithm is inefficient in the sense that it first reconstructs the complete co-
variance matrix, then selects the submatrix of interest. Since more parameters
(the complete covariance) are estimated, the performance (estimation accuracy)
is reduced.

3. If the noise covarianceΣ is not known, then the eigenvalue decomposition can be
replaced by a more general Factor Analysis decomposition, see Sec. 5.4.1.

4. Regarding the subspace estimation, the maximum number of interferers is con-
strained by Q < P . Each Cm has size P 2×P 2 and rank (P−Q)2; invertibility requires
at least M(P −Q)2 ≥ P 2 (in case the projected subspaces are completely arbitrary).

In summary, this spatial filtering algorithm does not really take advantage of the ref-
erence antennas. In the processing, it treats them like ordinary antennas. The only ben-
efit obtained from them is that, with an improved INR, the estimate of the interference
subspace will be better, so that the interference can be filtered out better. The perfor-
mance is then limited by the conditioning of C (thus the variability of the spatial signa-
ture vectors).

5.3.2. SPATIAL FILTERING USING REFERENCE ANTENNAS

IMPROVED SPATIAL FILTER WITH PROJECTIONS

Taking the above remarks into account, we derive an improved algorithm. Compute the
projections and long-term average of the projected estimates Q̂ as before in (5.4). Then
(5.6) applies:

E {vect(Q̂)} = Cvect(Ψ) .

Based on this, we previously set vect(Ψ̂) = C−1vect(Q̂), which is the solution in LS sense of
the covariance model error minimization problem, ‖vect(Q̂)−Cvect(Ψ̂)‖2. Now, instead
of this, partition Ψ as in (5.2) into 4 submatrices. Since we are only interested in recov-
eringΨ00, the other submatrices in Ψ̂ are replaced by their expected values, respectively
Ψ01 = 0, Ψ10 = 0, Ψ11 = Σ1. This corresponds to solving the reduced-size covariance
model error minimization problem,

Ψ̂00 = argmin
Ψ00

∥∥∥∥vect(Q̂)−Cvect

([
Ψ00 0

0 Σ1

])∥∥∥∥2

.

The solution of this problem reduces to a standard LS problem after separating the knowns
from the unknowns. Thus, rearrange the entries of vect(Ψ) intovect(Ψ00)

σ1

0
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where σ1 = vectdiag(Σ1), and repartition C accordingly, to obtain the equivalent prob-
lem

ψ̂00 = argmin
ψ00

∥∥∥∥∥∥vect(Q̂)− [C1 C2 C3]

ψ00
σ1

0

∥∥∥∥∥∥
2

= argmin
ψ00

‖(vect(Q̂)−C2σ1)−C1ψ00‖2

= C†
1(vect(Q̂)−C2σ1), (5.8)

where ψ̂00 = vect(Ψ̂00) and ψ00 = vect(Ψ00). The advantage compared to the preceding
algorithm is that C1 is a tall matrix, and better conditioned than C. This improves the
performance of the algorithm in cases where C is ill-conditioned.

Remarks:

1. The subspace estimation has not changed, and the maximum number of interfer-
ers is still constrained by Q < P . Now C1 has size P 2 ×P 2

0 and invertibility requires
at least M(P −Q)2 ≥ P 2

0 , in case the projected subspaces are completely arbitrary.

2. Even if the interferers are located stationary (Am constant), C1 is expected to have
full column rank and hence the improved algorithm can estimate the astronomical
covariance (provided Q ≤ P1).

3. The same advantage holds in case an interferer only contaminates one of the pri-
mary antennas (ai ,0 has only one nonzero entry). Without reference antenna, the
projection is always the same and cannot be corrected: the correlations corre-
sponding to that antenna are lost. With a reference antenna, they can be recov-
ered.

4. If the array is calibrated then we can assumeΣ1 to be known from calibration. For
an uncalibrated array we suggest using FA to estimateΣ1, as described next in Sec.
5.4.1.

5.4. IMPROVED FILTERING

5.4.1. FACTOR ANALYSIS
If we ignore the astronomical correlations Rv , then the short-term covariance matrices
are modeled as in (5.2),

Rm = Am AH
m +Σ , (5.9)

where Σ= bdiag[Σ0,Σ1] is a diagonal matrix. This is clearly the same model as the clas-
sical FA in Chapter 4. Using FA we can find Pm = I−Am(AH

m Am)−1AH
m and σ1 = diag(Σ1)

in (5.8), which are needed components for the algorithms described in the previous sec-
tions.

Several estimation algorithms and their complexities are listed in table 4.1. In gen-
eral, the complexity is of O(P 2Q) per short-term correlation matrix. Detection of the
number of interferers Q was discussed in Sec 4.7.
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5.4.2. DIRECT ML ESTIMATION USING EXTENDED FACTOR ANALYSIS
As we will show here, the data model (5.2) satisfies the (J)EFA model which we introduced
in Sec. 4.3.2. This will allow us to directly find a Maximum Likelihood (ML) estimate for
Ψ00.

The covariance model (5.2) is

Rm = Am AH
m +Ψ= Am AH

m +
[
Ψ00 0

0 Σ1

]
. (5.10)

where we are interested in estimating the unknown square matrix Ψ00 and, for an un-
calibrated array, Σ1 is unknown. Thus, the appropriate masking matrix M such that
Ψ= M¯Ψ is

M =
[

11T 0
0 I

]
.

If we replaceΨ byΨm (i.e., for each snapshot Rm we estimate an independentΨm), then
we can apply EFA on each snapshot. Of course, as discussed in the previous chapter,
we can also estimate Am and a stationary Ψ jointly using JEFA. We will first discuss the
application of EFA on each snapshot.

Each R̂m will give us an estimate Ψ̂m , and Ψ̂00,m is simply the upper left sub-block of
this matrix. The long-term estimate is given by

Ψ̂00 = 1

M

M∑
m=1

Ψ̂00,m . (5.11)

A necessary condition for identification is that the degrees of freedom s > 0. We use
(4.68) and tr(M2) = P 2

0 +P1 and we find

s = P 2 +Q2 −2PQ − (P 2
0 +P1).

Solving for the number of reference antennas P1 we find

P1 >Q −P0 + 1

2
+

√
P 2

0 +Q −P0 + 1

4
. (5.12)

Thus, if P0 is small, we need P1 >Q +√
Q, and if P0 is large, this reduces to P1 >Q.

Similarly for JEFA we have

P1 >Q −P0 + 1

2M
+

√
P 2

0 +Q −P0 + 1

4M 2 . (5.13)

This shows that the number of snapshots has little effect on the number of reference
antenna needed.

Remarks:

1. For each snapshot 2PQ +P 2
0 +P1 unknowns are estimated. The computational

complexity of the Krylov Scoring is O(P 2Q +Q3 + IK (P 2Q +PQ2)) where IK is the
number of Krylov iterations. Note that no expensive post processing as in Eq. (5.7)
or (5.8) is needed.
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2. Although each snapshot is processed with a Maximum Likelihood estimator, the
overall algorithm is not maximum likelihood asΨ00 is estimated using an average
of the Ψ̂00,m in (5.11). This is improved by using JEFA.

3. If not all primary antennas receive the RFI, then P0 should be replaced by P̃0 in
(5.12), where P̃0 is the number of primary antennas that receive RFI.

4. This approach assumes that the number of interferers is known. If this is not the
case we can follow a similar approach as was suggested in Sec. 5.4.1.

5.5. PERFORMANCE ANALYSIS

5.5.1. PROJECTION BASED SPATIAL FILTERING

The performance of the projection based spatial filtering as described in Sec. 5.3.1 is dis-
cussed in [96]. We only restate the final result without derivation here. The performance
of the estimated RFI covariance matrix Ψ̂ is given by

Cov{Ψ̂} = C−1Cov{Q̂}C−1 ≈ σ4

M N
C−1, (5.14)

where we have assumed Σ = σ2I and Cov{X} is the covariance matrix of vect(X). The
final estimate Ψ̂00 is a submatrix of Ψ̂. Its performance is a submatrix of Cov{Ψ̂}. Com-

pared to the RFI case (where Cov{Ψ̂} ≈ σ4

M N I), this indicates that C−1 determines the rela-
tive performance of the spatial filtering algorithm of Sec. 5.3.1. The conditioning of C−1

depends on the variability of Am , the spatial signatures of the interferer. For large M
and sufficiently varying Am , C → I and the performance is expected to be similar to the
interference-free case.

Based on the derivation presented in [96], the performance of the extended algo-
rithm with reference antenna can also be found to be [28]

Cov{Ψ̂00} = C†
1Cov{Q̂}C†H

1 ≈ σ4

M N
C†

1CC†H
1 (5.15)

It is known that for any tall matrix J for which CJ is full column rank

(CJ)†C(CJ)†H ≤ JH C−1J

([102, lemma 3.1]). Choosing J a selection matrix such that C1 = CJ, it can be deduced
that the algorithm of Sec. 5.3.2 is always more efficient than the algorithm of Sec. 5.3.1.

5.5.2. THE CRB OF Ψ00 AND ASYMPTOTIC STATISTICS OF ( J)EFA
As a maximum likelihood technique, the EFA algorithm applied to a single short-term
estimate is unbiased and will asymptotically reach the CRB, hence its asymptotic per-
formance is given by the appropriate submatrix of (4.17). In order to avoid confusion
between the CRB and the matrix C in previous sections we will denote the CRB derived
in Sec. 4.4 by Γ instead of C.
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The long-term estimate Ψ̂00 in EFA is obtained by simply averaging the short-term
estimates (assuming the estimates are independent), so that its performance is given by
the covariance matrix (using the results from Sec. 4.4)

Γ00,e f a = 1/M 2
∑
m
Γ00,m , (5.16)

similar to (5.16). Using simulations we will show that this asymptotic performance of
EFA is achieved for a moderate number of samples and/or INR.

In reality, the short-term estimates are not independent as the data model shows
that they haveΨ in common, and we should use the JEFA algorithm to estimate the RFI
free covariance matrix over the entire data set of M covariance matrices. This approach
improves the performance considerably. The CRB on the long-term estimate for Ψ is
also derived in Sec. 4.4 and the corresponding bound for Ψ̂00 is given by the submatrix
of the result given by (4.33) and is denoted by Γ00.

5.5.3. PERFORMANCE FOR LONG TERM INTEGRATION (IMAGING)
So far we have discussed the statistics for a single long-term estimate Ψ̂00. In many as-
tronomical applications we need to combine a large number of these estimates in order
to boost the desired signals to detectable levels. One example of such application is pro-
ducing a two–dimensional image of the sky.

Fourier based imaging (called the ‘dirty’ image in astronomy, i.e., prior to further
deconvolution) can be viewed as computing a weighted average of the entries of the
long-term covariance estimates [5]. If K estimates are averaged, then the variance of the
estimates is scaled by 1/K . Without RFI, the individual estimates have a variance given
by Cov{R̂m} = (RT

m ⊗ R̂m)/N . With RFI removal using projections, the estimates have a
slightly higher variance given by (5.14) or (5.15). The performance penalty corresponds
to the missing data in the projected dimensions, which is natural and acceptable.

The main worry for astronomers would come from any bias that is present in the
long-term covariance estimates. The following remarks can be made.

• As a maximum likelihood technique, the EFA is not biased. However, a bias can be
present in case a weak interferer is present but not detected (i.e., model mismatch
in the EFA). This is a natural limitation in any interference removal technique. The
residual interference must be detected and removed after further averaging.

• The projection techniques have a bias, but this bias is present on the diagonal
entries of the long-term covariance estimates [96]. Many imaging techniques rou-
tinely omit these diagonal entries (the auto-correlations of the antennas) because
they are dominated by the system noise. Alternatively, it is possible to correct for
the bias to a certain extent [96]. A second source of bias corresponds to RFI that
is present but not detected (which as mentioned above is a common problem for
RFI mitigation techniques).

In any case, the averaging inherent in the imaging process has a tendency to wash out
any residual interference.

In the next section we use the CRB to show that the fundamental bound on the to-
tal variance of the estimated covariance is very close to the RFI free case, and we also



5.6. SIMULATIONS

5

73

show that the proposed algorithms are close to this bound provided that the RFI is strong
enough to be detected.

5.6. SIMULATIONS

We first test the performance of the algorithms in a simulation set-up. We use P = 7
antennas, with P0 = 5 primary antennas (telescopes) and P1 = 2 reference antennas. For
simplicity, the array is a uniform linear array with half-wavelength spacing and the same
noise power on all antennas.

The astronomical source is simulated by a source with a constant direction-of-arrival
of 10◦ with respect to array broadside. The source has SNR0 = −20 dB with respect to
each primary array element, and SNR1 =−40 dB for the reference antenna.

The interferer is simulated by a source with a randomly generated and varying com-
plex am , and varying INRs. This corresponds to a Rayleigh fading interferer. A GLRT is
performed with a false alarm probability of 0.1 to detect the interfering signal.

The following algorithms are compared:

– the traditional subtraction method [28], is denoted by ‘Trad Filter’,

– the spatial filtering algorithm using projections and eigenvalue computations, Sec.
5.3.1, denoted ‘eig-ref’,

– the improved spatial filtering algorithm with reduced-size covariance reconstruc-
tion, Sec. 5.3.2, denoted ‘eig-ref-red’ and for Factor Analysis version ‘fa-ref’,

– the version that uses Extended Factor Analysis is denoted as ‘EFA’, Sec. 5.4.2, and the
joint version is denoted as ‘JEFA’,

– for comparison, the spatial filtering technique without reference antenna, denoted
‘eig-no-ref’, the covariance estimate without RFI (‘RFI free’), and the estimate ob-
tained without any filtering (‘no-filter’).

Fig. 5.2(a) shows the relative mean-squared-error (MSE) of the primary filtered co-
variance estimate compared to the theoretical value Rv,0 +σ2

0I, for varying interferer
powers INR0 on the primary array. Here, we took N = 5000 short-term samples and
M = 2 long-term averages, which is unrealistically small but serves to illustrate the ef-
fect of limited variability of am (only two different vectors). The interferer array gain was
INR1 − INR0 of 5 dB. Similarly, Fig. 5.2(b) shows the MSE for varying INR difference and
an INR0 of 10 dB. The amplitudes and phases are varying after each short-term averaging
period (i.e., the interferer is Rayleigh fading).

In Fig. 5.3, we consider a case where the RFI enters the primary array on only a sin-
gle element. In Fig. 5.3(a), the INR0 is varied, while the INR difference is 0 dB and we
consider a shorter short-term integration time N = 200 and a longer long-term averag-
ing time M = 5 than before. Similarly, Fig. 5.3(b) shows the MSE for varying short-term
integration samples N , for an INR0 of 10 dB.

As reference line, we show the CRB Γ00 derived in (4.33). Because this is a matrix, we
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Figure 5.2: Simulation with limited variability of the interferer array response vector (N = 2). Relative MSE (a)
as function of interferer power (in dB) at the primary array elements, (b) as function of the interferer power
difference (in dB) between the reference elements and the primary elements.
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Figure 5.3: (a) Simulation with the interferer entering on only a single primary antenna. Relative MSE (a) as
function of interferer power (in dB) at the primary elements, (b) as a function of short-term integration samples
N .
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use the following relation between the MSE and the trace of the CRB:

E ‖Ψ′
00‖2

F = E vect(Ψ′
00)H vect(Ψ′

00)

= E tr(vect(Ψ′
00)vect(Ψ′

00)H )

≥ tr(Γ00) (5.17)

hence tr(Γ00) is a bound on the MSE performance of the proposed algorithms. The MSE
is estimated using Monte-Carlo runs.

Observations are:

– The new algorithms that use projections with a reference antenna array (eig-ref-red
and fa-ref) operate close to the CRB and have a great advantage over the spatial fil-
tering algorithm without reference antenna (eig-no-ref) in case the am-vector is not
sufficiently varying [see Fig. 5.2(a)]. The MSE performance is flat for varying INR and
INR difference, which is very desirable. Moreover, it is very close to the RFI-free case.
Using FA to find the projections does not noticeably degrade the performance of the
filter even though more parameters are estimated.

– The CRB is generally close to the RFI-free case. For low INR, the performance can be
better than the CRB because the RFI is not detected and the CRB does not take this
model mismatch into account.

– The EFA method also performs well for reasonable INR difference. It operates close
to its theoretical performance bound unless the RFI is not detected. However, this
bound is seen to be appreciably higher than the CRB in some simulations. This is
because the EFA estimates the parameters of each short-term covariance matrix sep-
arately, whereas they have parameters in common (i.e.,Ψ). As suggested using JEFA
improves the performance significantly.

– The new algorithms are often better than the subtraction technique (Trad Filter). The
subtraction is only accurate if the INR difference is large compared to the INR at
the primary array. If the INR difference is small, or if the INR at the primary array
is relatively large, then the subtraction technique fails. This is probably caused by
the bias in the inverted term (power of the interferer, with added noise power). It
makes the algorithm not reliable to use. As is illustrated in Fig. 5.3(b) the traditional
subtraction does not improve with a higher number of short-term samples which
indicates that this is not an efficient estimator.

– If the interferer enters only on one telescope and on the reference antenna, as in Fig.
5.3, then the algorithm without a reference antenna is performing poorly: it cannot
reconstruct the contaminated dimension. The algorithms with reference antennas
perform fine.

In summary, based on these simulations, we recommend to consider JEFA and ‘fa-ref’.
In these set of simulation we have used a noise realization which is white and hence
the performance of ‘eig-ref-red’ (Sec. 5.3.2) is similar with ‘fa-ref’. We recommend this
approach for systems with a known or white noise.
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Figure 5.4: Reference focal-plane array mounted on a dish.

5.7. EXAMPLES ON EXPERIMENTAL DATA

5.7.1. EXPERIMENT I
To test the algorithm on actual data, we have made a short observation of the strong
astronomical source 3C48 contaminated by Afristar satellite signals. The set-up follows
Fig. 5.1. The primary array consists of P0 = 3 of the 14 telescope dishes of the Westerbork
Synthesis Radio Telescope (WSRT), located in The Netherlands. As reference signals we
use P1 = 27 of 52 elements of a focal–plane array that is mounted on another dish of
the WSRT which is set off-target (see Fig. 5.4) such that it has no dish gain towards the
astronomical source nor to the interferer.

We recorded 13.4 seconds of data with 80 MS/s, and processed these offline. Using
short-term windowed Fourier transforms, the data was first split into 8192 frequency
bins (from which we used 1537), and subsequently correlated and averaged over N =
4048 samples to obtain M = 64 short-term covariance matrices.

Fig. 5.5(a) shows a few autocorrelations and crosscorrelations on the primary anten-
nas and Fig. 5.5(b) shows the autocorrelation of 6 reference antennas. The interference is
clearly seen in the spectrum. The interference consists of a lower and higher frequency
part. The low frequency part is stronger on the reference antenna and the higher part
stronger on the primary antenna. However, because of a relatively high number of ref-
erence antennas the total INR, as we will see, is high enough for the algorithms to be
effective.

Because no calibration step has been performed we use a generalized likelihood ra-
tio test (GLRT) [103] to detect if each frequency bin is contaminated with RFI and then
we use FA to estimate the noise powers and the signal spatial signature. The result of
whitening the spectrum with the estimated result of FA is shown in Fig. 5.6(a).

The resulting auto- and crosscorrelation spectra after filtering are shown in Fig. 5.7.
The autocorrelation spectra are almost flat, and close to 1 (the whitened noise power).
The cross-correlation spectra show that the spatial filtering with reference antenna has
removed the RFI within the sensitivity of the telescope. Also it shows the power of using
FA and EFA at this stage in the processing chain, as they do not require the array to be
calibrated.
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Figure 5.5: Observed spectrum from (a) the primary telescopes, (b) 6 of the reference antennas
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Figure 5.6: (a) Spectra of primary antenna after whitening, (b) Average normalized correlation coefficients
without filtering
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after using EFA.
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Figure 5.8: Spectrum received at a LOFAR HBA station

5.7.2. EXPERIMENT II
In a second experiment, we use raw data from the LOFAR station RS409 in HBA mode
5 (100-200 MHz), acquired via the transient buffer board. Data from the 46 (out of 48)
x-polarization receiving elements are sampled with a frequency of 200 MHz and corre-
lated. Samples are then divided into 1024 subbands with the help of tapering and an
FFT. From these samples we form M = 4 covariance matrices with an integration time of
19 ms (N = 1862) for each subband. No calibration was done on the resulting covariance
matrices.

The LOFAR HBA has a hierarchy of antennas, where a single receiving element output
is the result of analog beamforming on 16 antennas (4×4) in a tile. During the measure-
ments the analog beamformers were tracking the strong astronomical source Cyg A.

The received spectrum is shown in Fig. 5.8. Above 174 MHz, the spectrum is heavily
contaminated by wideband DAB transmissions.

We have used 6 of the 46 receiving elements as reference array for our filtering tech-
niques and the rest as primary array. Because we do not have dedicated reference an-
tennas and that the data is already beamformed the assumption that the source is too
weak at each short integration time (19 ms) is not completely valid. Also the assump-
tion that the sky sources are much weaker on the reference antennas is not valid in this
case because the reference array elements are also following Cyg A. Finally, we have the
same exposure to the RFI on the secondary array as we have on the primary so there is
no additional RFI gain for the secondary array.

This experiment was conducted on March 12th 2013
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To illustrate the performance of the filtering technique we produce snapshot im-
ages of the sky (i.e., images based on a single covariance matrix). For an uncontam-
inated image, we have chosen subband 250 at 175.59 MHz, see Fig. 5.9(a), while for
RFI-contaminated data we take subband 247 at 175.88 MHz, see Fig. 5.9(b). These two
subbands have been chosen because they are close to each other (in frequency) and we
expect that the astronomical images for these bands would be similar. Subband 247 is
heavily contaminated and has a 10 dB flux increase on the auto-correlations and a 20 dB
increase on the cross-correlations.

The repeated source visible in Fig. 5.9(a) is Cyg A; the repetition is due to the spatial
aliasing which occurs at these frequencies (the tiles are separated by more than half a
wavelength). The contaminated image in Fig. 5.9(b) shows no trace of Cyg A; note the
different amplitude scale which has been increased by a factor 100.

Fig. 5.10 (a) shows the image after filtering the RFI using the algorithm with FA and
projections (‘fa-ref’) as presented in Sec. 5.3.2, and Fig. 5.10 (b) shows the image after
using EFA (Sec. 5.4.2). Both images are nearly identical, and very similar to the clean
image in Fig. 5.9(a)).

Remarks:

– This data shows an example where the contaminated portion of the spectrum is
broad, limiting the applicability of time-frequency blanking (post-processing).

– Both filtering techniques appear robust against the modeling errors implicit in this
experiment setup.

– The resulting covariance estimates produces snapshot images comparable to an RFI-
free channel.

Unfortunately the available data collection system at LOFAR did not allow us to create
images with longer integration times.

5.8. CONCLUSIONS
Spatial filtering algorithms for removing RFI on covariance matrix estimates using refer-
ence antennas have been proposed, applicable to both calibrated and uncalibrated ar-
rays. For the uncalibrated case, Factor Analysis is used to estimate the interference sub-
space. An algorithm to estimate RFI-free covariance matrices directly using Extended
Factor Analysis (EFA) has also been presented. The statistical performance of the pro-
posed algorithms has been evaluated and the CRB for the entire dataset is presented.

These algorithms generalize previously proposed spatial filtering algorithms that did
not use a reference array. Simulations show that using a reference array is beneficial
even if the reference antennas receive less interference power than the primary anten-
nas. Another advantage of a reference array is that the algorithms are applicable even
if the interference enters on only a single primary antenna, which was not the case for
the previously proposed projection algorithm. The algorithms for uncalibrated arrays
based on FA and EFA have also been tested on experimental data from astronomical in-
struments to illustrate their applicability and performance in real-world scenarios; the
results are very encouraging.

A disadvantage of the projection techniques is that they require a computationally
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Figure 5.9: (a) Clean subband 250, (b) Contaminated subband 247
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unattractive matrix inversion which is needed to correct the covariance estimates for
the missing (projected) dimensions. The EFA technique is a direct technique which av-
erages maximum likelihood estimates of cleaned short-term covariance matrices; it is
computationally more attractive. Unfortunately, the simulations indicate that the EFA
method has a lower performance for low INR and/or low number of samples. The key
of the problem is that EFA processes short-term covariance matrices independently and
does not exploit that they have a common termΨ. The solution is in joint processing of
these matrices using JEFA, as has been demonstrated in the simulations.



6
DIRECTION INDEPENDENT GAIN

CALIBRATION

6.1. INTRODUCTION
As explained in Sec. 3.3, to model the signals coming from different directions using
phase–delay relations we need to make sure that any other phase change that is not re-
lated to source’s position is calibrated for. This is very important for retrieving the correct
shape of an object when producing accurate skymaps. The model, as will be presented
in the next section, is non–linear and the number of unknowns grows with the number
of elements in the array and calibration sources. This means that for very large arrays
we are dealing with a complex optimization problem. The authors in [15] and [4] over-
come this problem by splitting the unknowns into groups for which a closed formed
solution could be found. Then by applying alternating optimization algorithms such as
alternating least squares (ALS) or alternating weighted least squares (WALS), a mono-
tonic convergence to the solution could be achieved. Also in a more general case where
the polarization is also taken into account, like the case studied by [104], in order to re-
duce the computation costs the unknowns are split into smaller sub–sets and each set is
updated in an alternating fashion.

In this chapter we will show that the matrices used during the estimation process
posses a strong Khatri–Rao structure which, combined with Krylov subspace based meth-
ods, like minresQLP [78], can be exploited to reduce the computational costs and achieve
accurate results with low complexity and fast convergence rate, without using an alter-
nating approach. Another advantage of the proposed method is a tremendous reduction
in the memory usage which could be desired in some applications.

This chapter is organized in the following sections. In Sec. 6.2 we will introduce the
data model then in Sec. 6.3 we will present the algorithm and show how the structure

1. Results presented in this chapter are partially published in [34].
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of the Jacobian can be used to achieve the final result with low complexity, in Sec 6.4 we
show some numerical results obtained from experimental data produced by the LOFAR
radio telescope.

6.2. DATA MODEL AND PROBLEM DEFINITION
An array of P elements with known locations, ξp = [xp , yp , zp ]T , p = 1, . . . ,P , is exposed
to Q calibration sources with known spatial coordinates kq , q = 1, . . . ,Q. The elements of
the steering matrix, A consist of the geometric phase delays,

ap,q = 1p
P

e j 2π
λ
ξT

p kq , (6.1)

where λ is the wavelength and we have assumed that the narrowband assumption holds
such that the delays translate into phase changes. Now we will stack the received signal
from each antenna into a vector called y(t ) and obtain the following data model

y(t ) = GAs(t )+n(t ), (6.2)

where G = diag(g) is a diagonal matrix modeling the gain of each element, s is a Q×1 vec-
tor representing the signal from calibration sources and n is a P ×1 vector representing
the noise in the system. This is a commonly used model for array calibration [4].

We assume that the noise and the sources are independent Gaussian processes which
allows us to write the model for the covariance matrix of the array vector as

R = E {yyH } = GARs AH GH +Rn , (6.3)

where Rs = diag(σ) is the covariance matrix of the sources, σ is a Q × 1 vector which
represent the power of each calibration source and Rn is the covariance matrix of the
system and the sky noise.

Using the above model, we will now define the calibration problem. We want to es-
timate g, σ and the unknown parameters in Rn , when we have available to us a sample
covariance matrix measured from N samples that is defined as

R̂ = 1

N

∑
n

y[n]y[n]H , (6.4)

where y[n] := y(nTs ) and Ts is the sampling period. This formulation of the problem
leads to covariance matching techniques like the one described in [37] and discussed in
Sec 2.3.

6.3. ALGORITHM

6.3.1. COVARIANCE MATCHING
It is desirable to find statistically efficient estimates for the calibration problem. The
Maximum Likelihood methods (ML) are in this case very popular. For these methods
the cost function is the log-likelihood. For N samples this function is given by

l (θ) = N
[− log |πP |+ log |R−1(θ)|− tr(R−1(θ)R̂)

]
. (6.5)
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where θ is a vector containing all the unknowns which we will define shortly.
However when a large number of samples is available and a suitable weighting is

applied optimal results can also be found using WLS [37]. In the case of WLS we have

fW LS (θ) = ‖W1/2(R̂−R(θ))W1/2‖2
F . (6.6)

The WLS reduces to LS if W = IP . To have a solution that approaches ML asymptotically
we choose, W = R̂−1 [37]. One method for finding a θ that minimizes/maximizes these
functions is the descend algorithm where the solution is updated as

θ(k+1) = θ(k) +µ(k)∆(k), (6.7)

where ∆ is the direction of descent and µ is the step size. At each iteration we need to
find the direction of descent using the Jacobian of our cost function. As was discussed in
Sec. 2.3.4 finding∆ can be achieved by solving the following system at each iteration

JH (
W∗⊗W

)
J∆= JH (

W∗⊗W
)

vect
[
R̂−R(θ)

]
, (6.8)

where J = ∂vect(R)
∂θT is the Jacobian. For WLS this approach is equivalent to Gauss–Newton

and in the case of ML where the optimal weighting matrix is W(k) = R−1(θ(k)), this ap-
proach is equivalent to the scoring method where

F = JH (
R−T ⊗R−1)J, (6.9)

is the Fisher information matrix [105].
In our application we can define θ as

θ = [
gT gH σT σT

n

]T
, (6.10)

where σn = SH vect(Rn) and S is a selection matrix. If Rn is assumed to be a diagonal
matrix, then S = (IP ◦ IP ) and σn = vectdiag(Rn).

If we partition θ in this way we can also partition the Jacobian as

J = [
Jg ,Jg∗ ,Jσ,Jσn

]
, (6.11)

where

Jg = ∂vect(R)

∂gT
= (

G∗A∗Rs AT ⊗ IP
)

(IP ◦ IP )

= G∗A∗Rs AT ◦ IP , (6.12)

Jg∗ = ∂vect(R)

∂gH
= (

IP ⊗GARs AH )
(IP ◦ IP )

= IP ◦GARs AH , (6.13)

Jσ = ∂vect(R)

∂σT
= (

G∗A∗⊗GA
)

(IP ◦ IP )

= G∗A∗ ◦GA, (6.14)

Jσn = ∂vect(R)

∂σT
n

= S. (6.15)
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In order to solve (6.8) we define the matrix

B = JH (
W∗⊗W

)
J, (6.16)

and the gradient vector

b = JH (
W∗⊗W

)
vect

[
R̂−R(θ)

]
, (6.17)

such that at each iteration we need to solve B∆ = b. In contrast with the rest of this
thesis we have used letter b for the gradient to avoid confusion with the gain vector g.
The dimensions of B depend on the number of unknowns

n = 2P +Q +‖vect(S)‖1 (6.18)

and for a large array it could become a problem to store it in memory. Also because
we cannot assume any sparse, circular or Toeplitz structure in B, except that it is Her-
mitian, solving this problem with a direct method has a cubic complexity which must
be repeated at each iteration. However if we use a solver based on the Krylov subspace
method we can use the Khatri–Rao structure of the Jacobian matrices. This will reduce
the complexity and memory usage which is important for very large arrays like SKA.

6.3.2. KRYLOV SUBSPACE BASED METHODS

As discussed in Sec. 2.4 the Krylov subspace based methods solve B∆ = b by using
matrix–vector products of the form Bv repeatedly. If this operation can be performed
in an efficient way, then application of these methods are preferred to other methods.
Especially because we can define a procedure that performs the matrix–vector product,
the matrix B does not need to be stored in memory. This makes Krylov subspace based
methods very suitable for situations where B is very large. We will now show how this
matrix vector product can be performed in an efficient way. We have chosen minresQLP
because it is capable of handling singular matrices which adds robustness during the
iterations [78].

We will split the operation of Bv into three steps. First we will calculate two interme-
diate results

c = Jv, (6.19)

and cW = (W∗⊗W)c. Using these intermediate results we then calculate the final result

Bv = JH cW. (6.20)

Now we will show how each of these steps use the Khatri–Rao structure and can be
done efficiently. In order to calculate c we partition v, in the same way we have parti-
tioned θ, as

v =
[

vT
g vT

g∗ vT
σ vT

σn

]T
, (6.21)

then we have

c = Jv = Jgvg + Jg∗vg∗ + Jσvσ+ Jσn vσn . (6.22)
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If we unvectorize both sides and substitute the definition of each Jacobian we find

C = unvect(c)

= diag(vg)ARs AH GH +GARs AH diag(vg∗ )

+GAVσAH GH +Vσn

=
(
vggH +gvT

g∗
)
¯R0 +GAVσAH GH +Vσn , (6.23)

where ¯ is the Hadamard or element–wise multiplication, R0 = ARs AH , Vσ = diag(vσ)
and Vσn = unvect(Svσn ). If Rn is a diagonal matrix then Vσn = diag(vσn ).

Because G and all of the V matrices are diagonal, the computational complexity for
calculating C is very low. Also because C has the same dimensions as a covariance matrix
calculating CW = unvect(cW) becomes simply

CW = WCWH . (6.24)

Finally we need to calculate

Bv = JH cW =


[(RT

0 G)¯CW]1
[CT

W ¯ (R0GH )]1
[(CWGA)T ¯ (AH GH )]1

SH uW

 .

(6.25)

The first three operations consist of an element–wise multiplication and summation of
the columns of each row, which are computationally cheap operations. Only R0 and GA
need to be calculated and saved. The third term can also be calculated efficiently if it is
viewed as a beamforming operation done on CW with columns of GA as the beamformer
vectors. The last operation is just a selection operation and if Rn is diagonal it is equal
to vectdiag(CW). If we replace C by R̂−R in (6.24), the same procedure can be used to
calculate b.

In conclusion, to calculate Bv we perform (6.23), (6.24) and (6.25). The procedure
that does these operations is given to the minresQLP along with the gradient b to pro-
duce ∆. Computationally this means that per iteration we have a O(P 2Q) complexity
to update all the unknowns and because of the fast convergence of the Newton based
method a few number of iterations are needed to converge to an accurate solution. This
comparable to other alternating methods that have a O(P 2) complexity such as [106] and
[104], however the convergence rate of Newton based methods is in general faster than
alternating algorithms. For ML, R needs to be inverted at each iteration which increases
the complexity, however if Rn is diagonal the inversion can be reduced from O(P 3) to
O(Q3) using the Woodbury matrix identity [107].

6.3.3. IMPROVING THE DOA ESTIMATES
In many cases the direction of arrival (DOA) of the sources is only known from previous
(usually lower resolution) catalogs or a (residual) dirty image. We can attempt to refine
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the estimates and recover the DOA by adding the spatial coordinate of the sources to the
vector of unknowns. A popular spatial coordinate system in radio–astronomy is

k =
 l

m
n

=
cos(φ)cos(θ)

cos(φ)sin(θ)
sin(φ)

 . (6.26)

We can either solve directly for φ and θ or solve for l , m subject to constraint that

l 2 +m2 +n2 = 1.

We will discuss the latter choice in more detail.

JACOBIANS FOR IMAGE COORDINATES

In this section we will derive the Jacobians needed for the covariance matching tech-
niques presented in the previous sections. Let the l coordinate for each of the Q sources
be stacked in a Q ×1 vector denoted by l and let m be defined similarly for their m co-
ordinates. First we will derive the Jacobian for l and show that it also has a Khatri–Rao
structure. The Jacobian for m is derived in similar way.

Jl =
∂vectR

∂lT

= ∂vectR

∂vectT (A)

∂vectA

∂lT
+ ∂vectR

∂vectT (A∗)

∂vect(A∗)

∂lT
(6.27)

Next, we need to find the derivatives of the steering vectors with respect to the spatial
coordinates. It follows that

∂vectA

∂lT
= j

2π

λ

(
IQ ◦XA− IQ ◦ZAL

)
(6.28)

and
∂vectA∗

∂lT
=−j

2π

λ

(
IQ ◦XA∗− IQ ◦ZA∗L

)
(6.29)

where X = diag([x1, x2, .., xP ]T ) is a diagonal matrix with its entries the x–coordinates of
the receiving elements, Z = diag([z1, z2, .., zP ]T ) is defined similarly for the z–coordinates
of the receivers and

L =


l1√

1−l 2
1−m2

1

. . .
lQ√

1−l 2
Q−m2

Q

 .

We also have

∂vectR

∂vectT (A)
= G∗A∗Rs ⊗G (6.30)

∂vectR

∂vectT (A∗)
= (G∗⊗GARs)KP,Q . (6.31)
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Combining these results we find

Jl =−j
2π

λ

[−(G∗A∗Rs ⊗G)(IQ ◦XA− IQ ◦ZAL)+ (G∗⊗GARs)Kp,q (IQ ◦XA∗− IQ ◦ZA∗L)
]

=−j
2π

λ

[
(G∗XA∗ ◦GARs)− (G∗A∗Rs ◦GXA)− (G∗ZA∗L◦GARs)+ (G∗A∗Rs ◦GZAL)

]
=−j

2π

λ

[
(G∗XA∗ ◦GA)− (G∗A∗ ◦GXA)− (G∗ZA∗L◦GA)+ (G∗A∗ ◦GZAL)

]
Rs

=−j
2π

λ

[
G∗(XA∗−ZA∗L)◦GA−G∗A∗ ◦G(XA−ZAL)

]
Rs (6.32)

where we have used the identity KP,Q (IQ ◦B) = (B◦ IQ ). In the same way we can find

Jm =−j
2π

λ

[
G∗(YA∗−ZA∗M)◦GA−G∗A∗ ◦G(YA−ZAM)

]
Rs (6.33)

where Y = diag([y1, y2, .., yP ]T ) contains the y–coordinates of the array elements and

M =


m1√

1−l 2
1−m2

1

. . .
mq√

1−l 2
Q−m2

Q

.


If an accurate initial guess for lQ and mQ is known, the estimation algorithm in the

previous section can be adapted by adding the terms Jlvl and Jmvm to c as defined in
(6.22) where we can use the properties of the Khatri–Rao product in the same way we
have done to calculate (6.23) and (6.25). This DOA correction improves the accuracy of
the calibration techniques by providing a more accurate array response matrix A.

6.4. EXPERIMENTAL DATA
We have used a measurement set from the LOFAR radio telescope to test our method.
The sample covariance matrix of P = 273 dipoles (from 6 LOFAR inner core stations)
is available to us from a single channel with a central frequency of 58.98 MHz and a
bandwidth of 195 kHz which is sampled at the Nyquist rate. The integration time for this
covariance matrix is 1 second.

The proposed method is used to calibrate this array for three different cases. In each
case we assume to know the position of one, two and three sources such that Q = 1,2 and
3. For each case we look at the norm for the residual E defined as

‖E‖F = ‖R̂−R(θ̂))‖F ,

and the norm of the gradient defined by (6.17). These results are illustrated in Figure 6.1a
and 6.1b. From the norm of the gradient we know that in all three cases the algorithm

This data is the courtesy of ASTRON (http://www.astron.nl) and is provided to the authors as part of a col-
laboration within the NWO TOP project. We also would like to acknowledge the help of Stefan Wijnholds and
Peeyush Prasad for obtaining this data.
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converges after a few iterations. However, for Q = 1 the final residual is much higher than
the other two and it takes the algorithm much longer to converge. In order to explain
this we use the calibration results to make a full sky image (Figure 6.1c). In this image we
observe that two strong point sources , Cygnus A and Cassiopeia A, are visible to the array
and also there is strong background radiation from the Milky–Way (going from top to the
bottom of the image). In order to obtain better calibration results we use the fact that
the extended sources like the Milky–Way mostly affect the shorter baselines [2]. Based
on this knowledge we have chosen the selection matrix S to include the baselines smaller
than 25 times the wavelength into Rn as part of the noise covariance structure. In this
case the total number of unknowns, n, is 23393. The proposed method has a complexity
of O(P 2Q) while a naive and direct approach to the Gauss–Newton algorithm would have
had a complexity of O(n3) which would be extremely expensive.

By adding Cassiopeia A and the Milky–Way to the model we have achieved a much
better result for Q = 2. In order to verify this we also made Figure 6.1d by imaging the
residual, E, which shows how weaker sources (three orders of magnitude lower than the
strong sources) can now be detected from this residual.

Finally, for the case Q = 3 we have added the next brightest source to the model, in
this case we also converge and have a smaller residual. However because the sources are
much weaker the difference is harder to visualize.

6.5. CONCLUSION
We have shown that the covariance data model for calibrating a radio telescope has a
strong Khatri–Rao structure. We have shown that this structure could be used to per-
form fast matrix–vector computations which is the building block of the Krylov subspace
based methods. Finally we have used the proposed method to calibrate real measure-
ment set from the LOFAR radio telescope with low computational complexity.

After we estimate the gains we can correct for them by multiplying both side of R̂ by
G−1. The result is then the calibrated version of R̂ for direction independent gains. In
Chapter 7 we assume that this step has already been performed and that we have access
to calibrated data.
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Figure 6.1: Results from calibrating LOFAR data





7
IMAGE RECONSTRUCTION

7.1. INTRODUCTION
Image formation for radio astronomy can be defined as estimating the spatial intensity
distribution of celestial sources over the sky. The measurement equation (“data model”)
is linear in the source intensities, and the resulting least squares problem has classically
been implemented in two steps: formation of a “dirty image”, followed by a deconvo-
lution step. In this process, an implicit model assumption is made that the number of
sources is discrete, and subsequently the number of sources has been replaced by the
number of image pixels (assuming each pixel may contain a source).

The deconvolution step becomes ill-conditioned if the number of pixels is large [9].
Alternatively, the directions of sources may be estimated along with their intensities, but
this is a complex non-linear problem. Classically, this has been implemented as an it-
erative subtraction technique, wherein source directions are estimated from the dirty
image, and their contribution is subtracted from the data. This mixed approach is the
essence of the CLEAN method proposed by Högbom [16], which was subsequently re-
fined and extended in several ways, leading to the widely used approaches described in
[17–19].

The conditioning of the image deconvolution step can be improved by incorporating
side information such as non-negativity of the image [20], source model structure be-
yond simple point sources (e.g., shapelets and wavelets [108]), sparsity or `1 constraints
on the image [8, 21] or a combination of both wavelets and sparsity [22, 23]. Beyond
these, some fundamental approaches based on parameter estimation techniques have
been proposed, such as the Least Squares Minimum Variance Imaging (LS-MVI) [24],
maximum likelihood based techniques [25] and Bayesian based techniques [109, 110].
Computational complexity is a concern and this has not been addressed in these ap-
proaches.

1. Results presented in this chapter are published in [29].
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New radio telescopes such as the Low Frequency Array (LOFAR), the Allen Telescope
Array (ATA), Murchison Widefield Array (MWA) and the Long Wavelength Array (LWA)
are composed of many stations (each station made up of multiple antennas that are
combined using adaptive beamforming), and the increase in number of antennas and
stations continues in the design of the square kilometer array (SKA). These instruments
have or will have a significantly increased sensitivity and a larger field of view compared
to traditional telescopes, leading to many more sources that need to be taken into ac-
count. They also need to process larger bandwidths to reach this sensitivity. Besides the
increased requirements on the performance of imaging, the improved spatial resolution
leads to an increasing number of pixels in the image, and the development of computa-
tionally efficient techniques is critical.

To benefit from the vast literature related to solving least square problems, but also
to gain from the non-linear processing offered by standard deconvolution techniques,
we propose to reformulate the imaging problem as a parameter estimation problem de-
scribed by a weighted least squares optimization problem with several constraints. The
first is a non-negativity constraint, which would lead to the non-negative least squares
algorithm (NNLS) proposed in [20]. But we show that the pixel values are also bounded
from above. A coarse upper bound is provided by the classical dirty image, and a much
tighter bound is the “minimum variance distortionless response” (MVDR) dirty image
that was proposed in the context of radio astronomy in [25].

We propose to solve the resulting constrained least squares problems using an active
set approach. This results in a computationally efficient imaging algorithm that is closely
related to existing non-linear sequential source estimation techniques such as CLEAN
with the benefit of accelerated convergence due to tighter upper bounds on the intensity
over the complete image. Because the constraints are enforced over the entire image,
this eliminates the inclusion of negative flux sources and other anomalies that appear in
some existing sequential techniques.

To further reduce the computational complexity we show that the data model has
a Khatri-Rao structure. This can be exploited to significantly improve the data manage-
ment and parallelism compared to general implementations of least squares algorithms.

Using the model introduced in Sec. 3.1 we describe the image formation problem in
Sec. 7.2. A constrained least squares problem is formulated, using various intensity con-
straints that take the form of dirty images. The solution of this problem using active set
techniques in Sec. 7.4 generalizes the classical CLEAN algorithm. In Sec. 7.5 we discuss
the efficient implementation of a key step in the active set solution using Krylov sub-
spaces. We end up with some simulated experiments demonstrating the advantages of
the proposed technique and conclusions regarding future implementation.

7.2. THE IMAGING PROBLEM

Using the results from Sec. 3.1 and in particular (3.11), we have the following model for
K snapshots

r =Ψσ+ rn (7.1)
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where

r =

vect(R1)
...

vect(RK )

 , Ψ=

 A∗
1 ◦A1

...
A∗

K ◦AK

 , rn =

rn,1
...

rn,K

 . (7.2)

The imaging problem is to find the intensity,σ, of the sources, along with their direc-
tions represented by the matrices Ak , from given sample covariance matrices R̂k , k =
1, · · · ,K . As the source locations are generally unknown, this is a complicated (non-
linear) direction-of-arrival estimation problem.

The usual approach in radio astronomy is to define a grid for the image, and to
assume that each pixel (grid location) contains a source. In this case the source loca-
tions are known, and estimating the source intensities is a linear problem, but for high-
resolution images the number of sources may be very large. The resulting linear estima-
tion problem is often ill-conditioned unless additional constraints are posed.

7.2.1. GRIDDED IMAGING MODEL
After defining a grid for the image and assuming that a source exists for each pixel loca-
tion, let I (rather than Q) denote the total number of sources (pixels), σ an I ×1 vector
containing the source intensities, and Ak (k = 1, · · · ,K ) the P × I array response matrices
for these sources. Note that the Ak are known, and thatσ can be interpreted as a vector-
ized version of the image to be computed. (To distinguish the gridded source locations
and source powers from the “true” sources, we will later denote parameters and variables
that depend on the Q true sources by a tilde.)

We can also use the independence between the time samples to write the aggregate
data model from Sec. 3.2 as

R =

R1 . . . 0
...

. . . 0
0 . . . RK

=
Q∑

q=1
σq (IK ◦Aq )(IK ◦Aq )H +Rn , (7.3)

where

Rn =

Rn,1 . . . 0
...

. . . 0
0 . . . Rn,K

 , (7.4)

Aq = [
a1,q . . . aK ,q

]
, q = 1, · · · ,Q. (7.5)

For a given observation r̂, image formation amounts to the estimation of σ. For a
sufficiently fine grid,σ approximates the solution of the discrete source model. However,
as we will discuss later, working in the image domain leads to a gridding related noise
floor. This is solved by fine adaptation of the locations of the sources and estimating the
true locations in the visibility domain.

A consequence of using a discrete source model in combination with sequential source
removing techniques such as CLEAN is the modeling of extended structures in the image
by many point sources. As we will discuss in Sec. 7.6, this also holds for the algorithms
proposed in this chapter.
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7.2.2. UNCONSTRAINED LEAST SQUARES IMAGE
If we ignore the term rn, then (3.11) directly leads to Least Squares (LS) and Weighted
Least Squares (WLS) estimates of σ [9]. In particular, solving the imaging problem with
LS leads to the minimization problem

min
σ

1

2K
‖r̂−Ψσ‖2 , (7.6)

where the normalization factor 2K is introduced to simplify the expression for the gra-
dient and does not affect the solution. It is straightforward to show that the solution to
this problem is given by any σ that satisfies

HLSσ= σ̂MF (7.7)

where we define the “matched filter” (MF, also known as the classical “direct Fourier
transform dirty image”) as

σ̂MF = 1

K
ΨH r̂ = 1

K

∑
k

vectdiag(AH
k R̂k Ak ), (7.8)

and the deconvolution matrix HLS as

HLS = 1

K
ΨHΨ= 1

K

∑
k

(AT
k A∗

k )¯ (AH
k Ak ), (7.9)

where we have used the definition ofΨ from (3.12) (with tilde removed) and properties of
the Kronecker and Khatri-Rao products. Similarly we can define the WLS minimization
as

min
σ

1

2K
‖W1/2(r̂−Ψσ)‖2 , (7.10)

where

W = bdiag(R−T
k ⊗R−1

k ) =

R−T
1 ⊗R−1

1
. . .

R−T
K ⊗R−1

K


and the weighting assumes Gaussian distributed observations. The weighting improves
the statistical properties of the estimates, and R̂ is used instead of R because it is avail-
able and gives asymptotically the same optimal results, i.e., convergence to maximum
likelihood estimates [37]. The solution to this optimization is similar to the solution to
the LS problem and is given by any σ that satisfies

HWLSσ= σ̂WLS , (7.11)

where

σ̂WLS = 1

K
ΨH Wr̂ (7.12)

is the “WLS dirty image” and

HWLS = 1

K
ΨH WΨ (7.13)
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is the associated deconvolution operator.
A connection to beamforming is obtained as follows. The i th pixel of the “Matched

Filter” dirty image in equation (7.8) can be written as

σ̂MF,i = 1

K

∑
k

aH
k,i R̂k ak,i

and if we replace ak,i /
p

K by a more general “beamformer” wk,i , this can be generalized
to a more general dirty image

σw,i =
∑
k

wH
k,i R̂k wk,i (7.14)

Here, wk,i is called a beamformer because we can consider that it acts on the antenna
vectors yk [n] as zk,i [n] = wH

k,i yk [n], where zk,i [n] is the output of the beamformer, and

σw,i =∑
k E {|zk,i |2} is interpreted as the total output power of the beamformer, summed

over all snapshots. We will encounter several such beamformers in the rest of this chap-
ter. Most of the beamformers discussed here include the weighted visibility vector Wr.
The relation between this weighting and more traditional weighting techniques, such as
Natural and Robust weighting, is discussed in Sec. 7.8.

7.2.3. PRECONDITIONED WEIGHTED LEAST SQUARES IMAGE
IfΨ has full column rank then HLS and HWLS are non-singular and there exists a unique
solution to LS and WLS. For example the solution to (7.7) becomes

σ= H−1
LS σ̂MF . (7.15)

Unfortunately, if the number of pixels is large then HLS and HWLS become ill-conditioned
or even singular, so that (7.7) and (7.11) have an infinite number of solutions [9]. Gen-
erally, we need to improve the conditioning of the deconvolution matrices and to find
appropriate regularizations.

One way to improve the conditioning of a matrix is by applying a preconditioner. The
most widely used and simplest preconditioner is the Jacobi preconditioner [111] which,
for any matrix M, is given by [diag(M)]−1. Let DWLS = diag(HWLS), then by applying this
preconditioner to HWLS we obtain

[D−1
WLSHWLS]σ= D−1

WLSσ̂WLS . (7.16)

We take a closer look at D−1
WLSσ̂WLS for the case where K = 1. In this case

HWLS = (A∗
1 ◦A1)H (R̂−T

1 ⊗ R̂−1
1 )(A∗

1 ◦A1)

= (AT R̂−T
1 A∗

1 )¯ (AH
1 R̂−1

1 A1)

and

D−1
WLS =


1

(aH
1,1R̂−1

1 a1,1)2

. . .
1

(aH
1,I R̂−1

1 a1,I )2

 .
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This means that

D−1
WLSσ̂WLS = D−1

WLS(R̂−T
1 ⊗ R̂−1

1 )(A∗
1 ◦A1)H r̂1

= (R̂−T
1 A∗

1 D−1/2
WLS ◦ R̂−1

1 A1D−1/2
WLS )H r̂1

which is equivalent to a dirty image that is obtained by applying a beamformer of the
form

wi = 1

aH
1,i R̂−1

1 a1,i
R̂−1

1 a1,i (7.17)

to both sides of R̂1 and stacking the results, σ̂i = wH
i R̂1wi , of each pixel into a vector.

This beamformer is known in array processing as the Minimum Variance Distortion-
less Response (MVDR) beamformer [112], and the corresponding dirty image is called
the MVDR dirty image and was introduced in the radio astronomy context in [25]. This
shows that preconditioned WLS image (motivated from its connection to the maximum
likelihood) is expected to exhibit the features of high-resolution beamforming associated
with the MVDR. Examples of such images are shown in Sec. 7.6.

7.3. BOUNDS ON THE IMAGE
Another approach to improve the conditioning of a problem is to introduce appropriate
constraints on the solution. Typically, image formation algorithms exploit external in-
formation regarding the image in order to regularize the ill-posed problem. For example
maximum entropy techniques [113, 114] impose a smoothness condition on the image
while the CLEAN algorithm [16] exploits a point source model wherein most of the image
is empty, and this has recently been connected to sparse optimization techniques [8].

A lower bound on the image is almost trivial: each pixel in the image represents the
intensity at a certain direction, hence is non-negative. This leads to a lower boundσ≥ 0.
Such a non-negativity constraint has been studied for example in [20], resulting in a non-
negative LS (NNLS) problem

min
σ

1

2K
‖r̂−Ψσ‖2

subject to 0 ≤σ
(7.18)

A second constraint follows if we also know an upper bound γ such that σ ≤ γ, which
will bound the pixel intensities from above. We will propose several choices for γ.

7.3.1. MATCHED FILTER AS UPPER BOUND
By closer inspection of the i th pixel of the MF dirty image σ̂MF, we note that its expected
value is given by

σMF,i = 1

K

∑
k

aH
k,i Rk ak,i .

Using

ai = vect(Ai ) =
[

aT
1,i . . . aT

i ,K

]T
, (7.19)

and the normalization aH
k,i ak,i = 1, we obtain

σMF,i = 1

K
aH

i Rai =σi + 1

K
aH

i Rr ai , (7.20)
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where
Rr =

∑
j 6=i

σ j (IK ◦A j )(IK ◦A j )H +Rn (7.21)

is the contribution of all other sources and the noise. Note that Rr is positive-(semi)definite.
Thus, (7.20) implies σMF,i ≥σi which means that the expected value of the MF dirty im-
age forms an upper bound for the desired image, or

σ≤σMF . (7.22)

As indicated in Sec. 7.2.2, we can extend this concept to a more general beamformer
wi . The output power of this beamformer, in the direction of the i th pixel, becomes

σw,i = wH
i Rwi =σi wH

i (IK ◦Ai )(IK ◦Ai )H wi +wH
i Rr wi . (7.23)

If we require that
wH

i (IK ◦Ai )(IK ◦Ai )H wi = 1 (7.24)

we have
σw,i =σi +wH

i Rr wi . (7.25)

As before, the fact that Rr is positive definite implies that

σi ≤σw,i . (7.26)

We can easily verify that wMF,i satisfies (7.24) and hence σMF,i is a specific upper bound.

7.3.2. TIGHTEST UPPER BOUND AND ASSC
Using the relation between the MF dirty image and beamformers as discussed in Sec.
7.2.2 we will answer the following question: What is the tightest upper bound for σi that
we can construct using linear beamforming?

We can translate the problem of finding the tightest upper bound to the following
optimization question:

σopt,i = min
wi

wH
i Rwi (7.27)

s.t. wH
i (IK ◦Ai )(IK ◦Ai )H wi = 1

where σopt,i would be this tightest upper bound.
To solve this optimization problem we follow standard optimization techniques and

define the Lagrangian and take derivatives with respect to w and the Lagrange multiplier
µ. This leads to the following system

w =µR−1(IK ◦Ai )(IK ◦Ai )H w (7.28)

1 = wH (IK ◦Ai )(IK ◦Ai )H w (7.29)

Because R is full–rank and (7.29) we can model w as

w =µR−1(IK ◦Ai )x. (7.30)
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Filling back into (7.28) we have

µR−1(IK ◦Ai )x
=µ2R−1(IK ◦Ai )(IK ◦Ai )H R−1(IK ◦Ai )x

(7.31)

and
(IK ◦Ai )x
=µ(IK ◦Ai )(IK ◦Ai )H R−1(IK ◦Ai )x

(7.32)

multiplying both sides by (IK ◦Ai )H we get

x =µ(IK ◦Ai )H R−1(IK ◦Ai )x. (7.33)

Doing the same for (7.29) we have

µ2xH (IK ◦Ai )H R−1(IK ◦Ai )(IK ◦Ai )H R−1(IK ◦Ai )x
= 1.

(7.34)

Now we use (7.33) and we find
xH x = 1 (7.35)

which makes finding x an eigenvalue problem. By taking a closer look at the matrix (IK ◦
Ai )H R−1(IK ◦Ai ) we find that this matrix is diagonal

(IK ◦Ai )H R−1(IK ◦Ai )

=


aH

1,i R−1
1 a1,i 0 . . . 0

0 aH
2,i R−1

2 a2,i
...

...
. . . 0

0 . . . 0 aH
K ,i R−1

K aK ,i


(7.36)

and hence x = em is an elementary vector with all entries equal to zero except for mth
entry which equals unity. m is the index corresponding to largest eigenvalue, λmax, and
from (7.33) we have µ= 1/λmax. Filling back for w we find

wi ,opt = 1

am,i R−1
m am,i

R−1(em ⊗am,i ) (7.37)

and the output of the beamformer

σopt = wH
i ,optRwi ,opt

=
aH

m,i R−1
m am,i

(aH
m,i R−1

m am,i )2

= 1

aH
i ,m R−1

m ai ,m

= min
k

(
1

aH
k,i R−1

k ak,i

)
(7.38)
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Hereσopt,i is the tightest upper bound and the beamformer that achieves this bound
is called the adaptive selective sidelobe canceller (ASSC) [115].

One problem with using this result in practice is thatσopt,i depends on a single snap-
shot. Actual dirty images are based on the sample covariance matrix R̂ and hence they
are random variables. If we use a sample covariance matrix R̂ instead of the true covari-
ance matrix R in (7.38), the variance of the result can be unacceptably large. An analysis
of this problem and various solutions for it are discussed in [115].

7.3.3. MULTI–SNAPSHOT MVDR
We would like to find a beamformer that exhibits the same averaging behavior as MF
beamformer while being as tight as possible. To this end we will tolerate an increase of
the bound with respect to the tightest (resulting from ASSC beamformer). We suggest
to find a beamformer that instead of (7.24) satisfies the slightly different normalization
constraint

wH
i ai =

p
K . (7.39)

We will show that the expected value of the resulting dirty image constitutes a larger
upper bound than the ASSC (7.38), but because the output power of this beamformer
depends on more than one snapshot it will have a lower variance than ASSC, so that it is
more robust in practice.

With this constraint, the beamforming problem is

wi = argmin
wi

wH
i Rwi (7.40)

s.t. wH
i ai =

p
K

which is recognized as the classical MVDR beamforming problem [112]. Thus, the solu-
tion is given in closed form as

wMVDR,i =
p

K

aH
i R−1ai

R−1ai (7.41)

To demonstrate that this image is still an upper bound we show that

α := wH
i (IK ◦Ai )(IK ◦Ai )H wi ≥ 1. (7.42)

Indeed, inserting (7.41) into this inequality gives

K
aH

i R−1(IK ◦Ai )(IK ◦Ai )H R−1ai

(aH
i R−1ai )2

= K
∑

k (aH
k,i R−1

k ak,i )2(∑
k aH

k,i R−1
k ak,i

)2

= K hT h
hT 1K 1T

K h
≥ K 1

λmax(1K 1T
K )

= 1,

(7.43)

where h = (IK ◦Ai )H R−1ai is a K × 1 vector with entries hk = aH
k,i R−1

k ak,i and λmax(·) is
the largest eigenvalue of of the argument matrix. Hence, a similar reasoning as in (7.23)
gives

σMVDR,i =ασi +wH
MVDR,i Rr wMVDR,i ≥σi .
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Note that wMF,i also satisfies the constraint in (7.40), i.e. wH
MF,i ai =

p
K , but does not

necessary minimize the output power wH
i Rwi , therefore the MVDR dirty image is smaller

than the MF dirty image: σMVDR ≤ σMF. Thus it is a tighter upper bound. This relation
also holds if R is replaced by the sample covariance R̂.

σMVDR,i = 1
1
K

∑
k aH

k,i R−1
k ak,i

, (7.44)

satisfies σi ≤σMVDR,i ≤σMF,i and produces a very tight bound. This leads to the follow-
ing constraint

σ≤σMVDR . (7.45)

Interestingly, for K = 1 the MVDR dirty image is the same image as we obtained ear-
lier by applying a Jacobi preconditioner to the WLS problem. For this case it is also the
tightest upper bound because it is identical to the results obtain from applying the ASSC
beamformer.

7.3.4. ESTIMATION OF THE UPPER BOUND FROM NOISY DATA
The upper bounds (7.22) and (7.45) assume that we know the true covariance matrix
R. However in practice we only measure R̂ which is subject to statistical fluctuations.
Choosing a confidence level of 6 times the standard deviation of the dirty images ensures
that the upper bound will hold with probability 99.9%. This leads to an increase of the
upper bound by a factor 1+α where α> 0 is chosen such that

σ≤ (1+α) σ̂MF. (7.46)

Similarly, for the MVDR dirty image the constraint based on R̂ is

σ≤ (1+α) σ̂MVDR (7.47)

where

σ̂MVDR,i = C
1
K

∑
k aH

k,i R̂−1
k ak,i

(7.48)

is an unbiased estimate of the MVDR dirty image, and

C = N

N −p
(7.49)

is a bias correction constant. With some algebra the unbiased estimate can be written in
vector form as

σ̂MVDR = D−1ΨH Wr̂, (7.50)

where

D = 1

KC
diag2 (

AH R̂−1A
)

, (7.51)

and

A = [
AT

1 . . . AT
K

]T

= [
a1 . . . aI

]
. (7.52)

The exact choice of α and C are discussed in Sec. 7.9.
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7.3.5. CONSTRAINED LEAST SQUARES IMAGING
Now that we have lower and upper bounds on the image, we can use these as constraints
in the LS imaging problem to provide a regularization. The resulting constrained LS
(CLS) imaging problem is

min
σ

1

2K
‖r̂−Ψσ‖2

s.t. 0 ≤σ≤γ
(7.53)

where γ can be chosen either as γ = σMF for the MF dirty image or γ = σMVDR for
the MVDR dirty image (or their sample covariance based estimates given by (7.46) and
(7.47)).

The improvements to the unconstrained LS problem that where discussed in Sec.
7.2.2 are still applicable. The extension to WLS leads to the cost function

fWLS(σ) = 1

2
‖W1/2 (r̂−Ψσ)‖2 . (7.54)

The constrained WLS problem is then given by

min
σ

fWLS(σ)

s.t. 0 ≤σ≤γ .
(7.55)

We also recommend to include a preconditioner which, as was shown in Sec.7.2.3, re-
lates the WLS to the MVDR dirty image. However, because of the inequality constraits,
(7.55) does not have a closed form solution and it is solved by an iterative algorithm.
In order to have the relation between WLS and MVDR dirty image during the iterations
we introduce a change of variable of the form σ̌ = Dσ, where σ̌ is the new variable for
the preconditioned problem and the diagonal matrix D is given in (7.51). The resulting
constrained preconditioned WLS (CPWLS) optimization problem is

σ̌= argmin
σ̌

1

2
‖W1/2 (

r̂−ΨD−1σ̌
)‖2

s.t. 0 ≤ σ̌≤ Dγ
(7.56)

and the final image is found by settingσ= D−1σ̌. (Here we used that D is a positive diag-
onal matrix so that the transformation to an upper bound for σ̌ is correct.) Interestingly,
the dirty image that follows from the (unconstrained) Weighted Least Squares part of the
problem is given by the MVDR image σ̂MVDR in (7.50).

7.4. CONSTRAINED OPTIMIZATION
The constrained imaging formulated in the previous section requires the numerical so-
lution of the optimization problems (7.53) or (7.56). The problem is classified as a pos-
itive definite quadratic program with simple bounds, this is a special case of a convex
optimization problem with linear inequality constraints, and we can follow standard ap-
proaches to find a solution [41, 116].

For an unconstrained optimization problem, the gradient of the cost function calcu-
lated at the solution must vanish. If in an iterative process we are not yet at the opti-
mum, the gradient is used to update the current solution. For constrained optimization,
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the constraints are usually added to the cost function using (unknown) Lagrange mul-
tipliers that need to be estimated along with the solution. At the solution, part of the
gradient of the cost function is not zero but related to the nonzero Lagrange multipliers.
For inequality constraints, the sign of the Lagrange multipliers plays an important role.

As we will show, these characteristics of the solution (based on the gradient and the
Lagrange multipliers) can be used to develop an algorithm called the active set method,
which is closely related to the sequential source removing techniques such as CLEAN.

In this Section, we use the active set method to solve the constrained optimization
problem.

7.4.1. CHARACTERIZATION OF THE OPTIMUM

Let σ̄ be the solution to the optimization problem (7.53) or (7.56). An image is called
feasible if it satisfies the bounds σ ≥ 0 and −σ ≥ −γ. At the optimum, some pixels may
satisfy a bound with equality, and these are called the “active” pixels.

We will use the following notation. For any feasible image σ, let

L (σ) = {i |σi = 0} (7.57)

U (σ) = {i |σi = γi } (7.58)

A (σ) =L (σ)∪U (σ) (7.59)

F (σ) =I \A (σ) . (7.60)

I = {1, · · · , I } is the set of all pixel indices, L (σ) is the set where the lower bound is active,
i.e., the pixel value is 0. U (σ) is the set of pixels which attain the upper bound. A (σ) is
the set of all pixels where one of the constraints is active, these are the active pixels.
Finally, the free set F (σ) is the set of pixels i which have values strictly between 0 and
γi . Further, for any vector v = [vi ], let vF correspond to the subvector with indices i ∈F ,
and similarly define vL and vU . We will write v = vF ⊕vL ⊕vU .

Let σ̄ be the optimum, and let ḡ = g(σ̄) be the gradient of the cost function at this
point. Define the free sets and active sets F ,L ,U at σ̄. We can write ḡ = ḡF ⊕ ḡL ⊕ ḡU .
Associated with the active pixels of σ̄ is a vector λ̄ = λ̄L ⊕ λ̄U of Lagrange multipliers.
Optimization theory [41] tells us that the optimum σ̄ is characterized by the following
conditions:

gF (σ̄) = 0 (7.61)

λ̄L = ḡL ≥ 0 (7.62)

λ̄U =−ḡU ≥ 0 . (7.63)

Thus, the part of the gradient corresponding to the free set is zero, but the part of the
gradient corresponding to the active pixels is not necessarily zero. Since we have simple
bounds, this part becomes equal to the Lagrange multipliers λ̄L and −λ̄U (the negative
sign is caused by the condition −σU ≥ −γU ). The condition λ̄ ≥ 0 is crucial: a nega-
tive Lagrange multiplier would indicate that there exists a feasible direction of descent p
for which a small step into that direction, σ̄+µp, has a lower cost and still satisfies the
constraints, thus contradicting optimality of σ̄ [41].
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“Active set” algorithms consider that if the true active set at the solution would be
known, the optimization problem with inequality constraints reduces to an optimization
with equality constraints,

z =argmin
σ

f (σ) (7.64)

s.t. σL = 0 , σU =γU .

Since we can substitute the values of the active pixels into σ, the problem becomes a
standard unconstrained LS problem with a reduced dimension: only σ̄F needs to be
estimated. Specifically, for CLS the unconstrained subproblem is formulated as

f (σ) = 1

2K
‖bLS −ΨFσF ‖2 (7.65)

where
bLS = r̂−ΨUσU . (7.66)

Similarly for CPWLS we have

f (σ̌) = 1

2

∥∥bPWLS −W1/2(ΨD−1)F σ̌F

∥∥2
(7.67)

where
bPWLS = W1/2(r̂− (ΨD−1)U σ̌U ) (7.68)

In both cases, closed form solutions can be found, and we will discuss a suitable Krylov-
based algorithm for this in Sec. 7.5.

Hence the essence of the constrained optimization problem is to find L , U and F .
In the literature algorithms for this are called active set methods, and we propose a suit-
able algorithm in Sec. 7.4.3.

7.4.2. GRADIENTS
We first derive expressions for the gradients required for each of the unconstrained sub-
problems (7.65) and (7.67). Generically, a WLS cost function (as function of a real-valued
parameter vector θ) has the form

f (θ)WLS =β‖G1/2c(θ)‖2 =βc(θ)H Gc(θ) (7.69)

where G is a Hermitian weighting matrix and β is a scalar. The gradient of this function
is

g(θ) = 2β

(
∂c

∂θT

)H

Gc . (7.70)

For LS we have θ =σ, c = r̂−Ψσ, β= 1
2K and G = I. This leads to

gLS(σ) =− 1

K
ΨH (r̂−Ψσ)

= HLSσ− σ̂MF. (7.71)
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For PWLS, θ = σ̌, c = r̂−ΨD−1σ̌, β= 1
2 and G = W. Substituting into (7.70) we obtain

gPWLS(σ̌) =−D−1ΨH W(r̂−ΨD−1σ̌)

= HPWLSσ̌− σ̂MVDR (7.72)

where

HPWLS = D−1ΨH WΨD−1, (7.73)

and we used (7.50).
An interesting observation is that the gradients can be interpreted as residual im-

ages obtained by subtracting the dirty image from a convolved model image. This will
at a later point allow us to relate the active set method to sequential source removing
techniques.

7.4.3. ACTIVE SET METHODS

In this section, we describe the steps needed to find the sets L , U and F , and the so-
lution. We follow the template algorithm proposed in [41]. The algorithm is an iterative
technique where we gradually improve on an image. Let the image at iteration j be de-
noted by σ( j ) where j = 1,2, · · · , and we always ensure this is a feasible solution (satisfies
0 ≤σ( j ) ≤ γ). The corresponding gradient is the vector g = g(σ( j )), and the current esti-
mate of the Lagrange multipliersλ is obtained from g using (7.62), (7.63). The sets L , U

and F are current estimates that are not yet necessarily equal to the true sets.
If this image is not yet the true solution, it means that one of the conditions in (7.61)–

(7.63) is violated. If the gradient corresponding to the free set is not yet zero (gF 6= 0),
then this is remedied by recomputing the image from the essentially unconstrained sub-
problem (7.64). It may also happen that some entries ofλ are negative. This implies that
we do not yet have the correct sets L , U and F . Supposeλi < 0. The connection ofλi to
the gradient indicates that the cost function can be reduced in that dimension without
violating any constraints [41], at the same time making that pixel not active anymore.
Thus we remove the i th pixel from the active set, add it to the free set, and recompute
the image with the new equality constraints using (7.64). As discussed later, a threshold
ε is needed in the test for negativity of λi and therefore this step is called the “detection
problem”.

Table 7.1 summarizes the resulting active set algorithm and describes how the solu-
tion z to the subproblem is used at each iteration. Some efficiency is obtained by not
computing the complete gradient g at every iteration, but only the parts corresponding
to L ,U , when they are needed. For the part corresponding F , we use a flag that indi-
cates whether gF is zero or not.

In line 1, the iterative process is initialized. This can be done in many ways. As long as
the initial image lies within the feasible region (0 ≤σ(0) ≤γ), the algorithm will converge
to a constrained solution. We can simply initialize by σ(0) = 0.

Line 3 is a test for convergence, corresponding to the conditions (7.61)–(7.63). The
loop is followed while a condition is violated.

If gF is not zero, then in line 5 the unconstrained subproblem (7.64) is solved. If
this solution z satisfies the feasibility constraints, then it is kept, the image is updated
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Table 7.1: Constrained LS Imaging Using Active Sets

1: Initialize: set the initial image σ(0) = 0, j = 0, set the free set F = ;, and L ,U ac-
cordingly

2: Set the flag Freegradient-isnotzero := True
3: while Freegradient-isnotzero or λmin < 0 do
4: if Freegradient-isnotzero then
5: Let z be the solution of the unconstrained subproblem (7.64)
6: if z is feasible then
7: Update the image: σ( j+1)

F
= z

8: Set Freegradient-isnotzero := False
9: Compute the “active” part of the gradient and estimate the Lagrange multi-

pliers
10: Let λmin be the smallest Lagrange multiplier and imin the corresponding pixel

index
11: else
12: Compute the direction of descent p = z−σ( j )

F
13: Compute the maximum feasible nonnegative step-size µmax and let i be the

corresponding pixel index that will attain a bound

14: Update the image: σ( j+1)
F

=σ( j )
F

+µmaxp
15: Add a constraint: move i from the free set F to L or U

16: Set Freegradient-isnotzero := True
17: end if
18: Increase the image index: j := j +1
19: else
20: Delete a constraint: move imin from L or U to the free set F

21: Set Freegradient-isnotzero := True
22: end if
23: end while
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accordingly, and the gradient is estimated at the new solution (only λmin = min(λ) is
needed, along with the corresponding pixel index).

If z is not feasible, then in line 12-16 we try to move into the direction of z as far as

possible. The direction of descent is p = z−σ( j )
F

, and the update will beσ( j+1)
F

=σ( j )
F

+µp,

where µ is a non-negative step size. The i th pixel will hit a bound if either σ( j )
i +µpi = 0

or σ( j )
i +µpi = γi , i.e., if

µi = max

(
−σ

( j )
i

pi
,
γi −σ( j )

i

pi

)
(7.74)

(note that µi is non-negative). Then the maximal feasible step size towards a constraint
is given by µmax = min(µi ), for i ∈F . The corresponding pixel index is removed from F

and added to L or U .
If in line 3 the gradient satisfied gF = 0 but a Lagrange multiplier was negative, we

delete the corresponding constraint and add this pixel index to the free set (line 20). After
this, the loop is entered again with the new constraint sets.

Suppose we initialize the algorithm with σ(0) = 0, then all pixel indices will be in the
set L , and the free set is empty. During the first iteration σF remains empty but the
gradient is computed (line 9). Equations (7.71) and (7.72) show that it will be equal to
the negated dirty image. Thus the minimum of the Lagrange multipliers λmin will be
the current strongest source in the dirty image and it will be added to the free set when
the loop is entered again. This shows that the method as described above will lead to
a sequential source removal technique similar to CLEAN. In particular, the PWLS cost
function (7.72) relates to LS-MVI [24], which applies CLEAN-like steps to the MVDR dirty
image.

In line 3, we try to detect if a pixel should be added to the free set (λmin < 0). Note that
λ follows from the gradient, (7.71) or (7.72), which is a random variable. We should avoid
the occurrence of a “false alarm”, because it will lead to overfitting the noise. Therefore,
the test should be replaced by λmin < −ε, where ε > 0 is a suitable detection threshold.
Because the gradients are estimated using dirty images, they share the same statistics
(the variance of the other component in (7.71) and (7.72) is much smaller). To reach a
desired false alarm rate, we propose to choose ε proportional to the standard deviation
of the i th pixel on the corresponding dirty image for the given cost function. (How to
estimate the standard deviation of the dirty images and the threshold is discussed in Sec.
7.9). Choosing ε to be 6 times the standard deviation ensures a false alarm of < 0.1% over
the complete image.

The use of this statistic improves the detection and hence the estimates greatly, how-
ever the correct detection also depends on the quality of the estimates in the previous
iterations. If a strong source is off-grid, the source is usually underestimated, this leads
to a biased estimation of the gradient and the Lagrange multipliers, which in turn leads
to inclusion of pixels that are not real sources. In the next section we describe one pos-
sible solution for this case.

7.4.4. STRONG OFF-GRID SOURCES
In this section, we use a tilde to indicate “true” source parameters (as distinguised from
the gridded source model). E.g., σ̃ indicates the vector with the true source intensities
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and Σ̃ the corresponding diagonal matrix, Ψk,q indicates their array response vectors
and Ψ̃k the corresponding matrix. The versions without tilde will refer to the I gridded
sources.

The mismatch betweenΨ and the unknown Ψ̃ results in an underestimation of source
intensities, which means that the remaining contribution of that source produces bias
and possible artifacts in the image. In order to achieve high dynamic ranges we suggest
finding a grid correction for the pixels in the free set F .

Let ak,i have the same model as Ψk,q with βi pointing towards the center of the i th
pixel. When a source is within a pixel but not exactly in the center we can model this
mismatch as

Ψk,q = 1p
P

e
j 2π
λ
ΞT Qk (βi+δi )

= ak,i ¯e
j 2π
λ
ΞT Qkδi

whereδi = β̃q−βi and i ∈F . Because bothβi and β̃q are 3×1 unit vectors, each has only
two degrees of freedom. This means that we can parameterize the unknowns for the grid
correcting problem using coefficients δ1,i and δi ,2. We will assume that when a source is
added to the free set, its actual position is very close to the center of the pixel on which
it was detected. This means that δ1,i and δi ,2 are within the pixel’s width, denoted by W ,
and height, denoted by H . In this case we can replace (7.64) by a non-linear constrained
optimization,

min
δ,σ

1

2
‖b−Ψ(δ)FσF ‖2

2

s.t.−W /2 < δ1,i <W /2

−H/2 < δi ,2 < H/2 (7.75)

where Ψ(δ)F contains only the columns corresponding to the set F , δ j is a vector ob-
tained by stacking δi , j for j = 1,2 and

b = r̂−ΨUσU . (7.76)

This problem can also be seen as a direction of arrival (DOA) estimation which is an
active research area and out of the scope of this work. A good review of DOA mismatch
correction for MVDR beamformers can be found in [117] and [118] proposed a correction
method which is specifically applicable to the radio astronomical context.

Besides solving (7.75) instead of (7.64) in line 5 of the active set method we will also
need to update the upper bounds and the standard deviations of the dirty images at the
new pixel positions that are used in the other steps (e.g., line 3, 6 and 13), the rest of the
steps remain the same. Because we have a good initial guess to where each source in the
free set is, we propose a Newton based algorithm to do the correction.

7.4.5. BOXED IMAGING
A common practice in image deconvolution techniques like CLEAN is to use a-priori
knowledge and narrow the searching area for the sources to a certain region of the image,
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called CLEAN-boxes. Because the contribution of the sources (if any) outside these boxes
is assumed to be known, we can subtract them from the data such that we can assume
that the intensity outside the boxes is zero.

In order to include these boxes in the optimization process of the active set algorithm
it is sufficient to make sure that the value of the pixels not belonging to these boxes do
not change and remain zero. This is equivalent to replacingΨ withΨB , where B is the
set of indices belonging to the boxes, before we start the optimization process. However
as we will explain in the next section, we will avoid storing the matrix Ψ in memory by
exploiting its Khatri-Rao structure. We address this implementation issue by replacing
(7.60) with

F (σ) = (I \A (σ))∩B (7.77)

which makes sure that the values of the elements outside of the boxes do not change.
This has the same effect as removing the columns not belonging to B fromΨ. Of course
we have to make sure that these values are initialized to zero. By choosingσ(0) = 0 this is
automatically the case. The only problem with this approach is that the values outside
the box remain in the set L which is used for estimating the Lagrange variables, resulting
in expensive calculation that are not needed. This problem is easily solved by calculating
the gradient only for the pixels belonging to B. The a-priori non-zero values of the pixels
(that were not in the boxes and were removed from the data) are added to the solution
when the optimization process is finished.

7.5. IMPLEMENTATION USING KRYLOV SUBSPACE BASED METH-
ODS

From the active set methods described in the previous section, we know that we need
to solve (7.65) or (7.67) at each iteration. In this section we describe how to achieve this
efficiently and without the need of storing the whole convolution matrix in memory.

During the active set updates we need to solve linear equations of the form Mx = b.
However there are cases where we do not have direct access to the elements of the ma-
trix M. This can happen for example when M is too large to fit in memory. There are
also cases where M (or MH ) are implemented as subroutines that produce the result of
the matrix vector multiplication Mv for some input vector v. For example for M =Ψ the
operation ΨH v generates a dirty image. An equivalent (and maybe optimized) imple-
mentation of such imaging subroutine might be already available to the user. In these
scenarios it is necessary or beneficial to be able to solve the linear systems, using only
the available matrix vector multiplication or the equivalent operator. A class of iterative
solvers that can solve a linear system by only having access to the result of the multipli-
cations with the matrix M are the Krylov subspace based Methods.

7.5.1. IMPLEMENTATION
During the active set iteration we need to solve (7.65) and (7.67) where the matrix M in
LSQR is replaced by ΨF and bW 1/2(ΨD−1)F respectively. Because Ψ has a Khatri-Rao
structure and selecting and scaling a subset of columns does not change this, ΨF and
(ΨD−1)F also have a Khatri-Rao structure. Here we will show how to use this structure
to implement (2.40) in parallel and with less memory usage.
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Note that the only time the matrix M enters the algorithm is via the matrix-vector
multiplications Mvn and MH un+1. As an example we will use M =ΨF for solving (7.65).
Let kn =ΨF vn . We partition kn asΨ into

kn = [
kT

1,n . . . kT
K ,n

]T
. (7.78)

Using the definition of Ψ in (3.12) , the operation kn =ΨF vn could also be performed
using

Kk,n = ∑
i∈F

vi ,n ak,i aH
k,i . (7.79)

and subsequently setting

kk,n = vect(Kk,n). (7.80)

This process can be highly parallelized because of the independence between the cor-
relation matrices of each time snapshot. The matrix Kk,n can then be used to find the
updates in (2.40).

The operation MH u in (2.40), is implemented in a similar way. Using the beamform-
ing approach (similar to Sec.7.3), this operation can also be done in parallel for each
pixel and each snapshot.

In both cases the calculations can be formulated as correlations and beamforming
of parallel data paths which means that efficient hardware implementations are feasi-
ble. Also we can consider traditional LS or WLS solutions as a special case when all the
pixels belong to the free set which means that those algorithms can also be implemented
efficiently in hardware in the same way. During the calculations we work with a single
beamformer at the time, and the matrix Ψ need not to be pre-calculated and stored in
memory. This makes it possible to apply image formation algorithms for large images
when there is a memory shortage.

The computational complexity of the algorithm is dominated by the transformation
between the visibility domain and image domain (correlation and beamforming). The
dirty image formation and correlation have a complexity of O(K P 2I ). This means that
the worst case complexity of the active set algorithm is O(T MK P 2I ) where T is the num-
ber of active set iterations and M is the maximum number of Krylov iterations. A direct
implementation of CLEAN for solving the imaging problem presented in Sec. 7.2 in a
similar way would have a complexity of O(T K P 2I ). Hence the proposed algorithm is or-
der M times more complex, essentially because it recalculates the flux for all the pixels
in the free-set while CLEAN only estimates the flux of a newly added pixel. Considering
that (for a well posed problem) solving Mx = b using LSQR is algebraically equivalent to
solving MH Mx = MH b using CG [119], we can use the convergence properties of CG [45]
to obtain an indication of the required number of Krylov iterations M . It is found that
M is of the order O(

p
card(F )) where card(F ) is the cardinality of the free set which is

equal to the number of pixels in the free set.

In practice, many implementations of CLEAN use the FFT instead of a DFT (matched
filter) for calculating the dirty image. Extending the proposed method to use similar
techniques is possible and will be presented in future works.



7

112 7. IMAGE RECONSTRUCTION

β 2

β
1

True Image

 

 

−0.2 −0.1 0 0.1 0.2 0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

−10

−5

0

5

10

15

20

25

30

35

40

Figure 7.1: Contoured true source in dB scale

7.6. SIMULATIONS
The performance of the proposed methods are evaluated using simulations. Because
the active set algorithm adds a single pixel to the free set at each step, it is important to
investigate the effect of this procedure on extended sources and noise. For this purpose,
in our first simulation set-up we will use a high dynamic range simulated image with a
strong point source and two weaker extended sources in the first part of the simulations.
In a second set-up we will make a full sky image using sources from the 3C catalog.

Following the discussion in Sec. 7.4.2 we define the residual image for CLS and
CLEAN as

σr es =ΨH (r̂−Ψσ− rn),

and for CPWLS we use

σr es = D−1ΨH W(r̂−ΨD−1σ̌− rn)

where we assume to know the noise covariance matrix Rn.

7.6.1. EXTENDED SOURCES
An array of 100 dipoles (P = 100) with random distribution is used with the frequency
range of 58-90 MHz from which we will simulate three equally spaced channels. Each
channel has a bandwidth of 195 kHz and is sampled at Nyquist-rate. These specifica-
tions are consistent with the LOFAR telescope in LBA mode [1]. LOFAR uses 1 second
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Figure 7.2: Contoured dirty images in dB scale

(a) MF dirty image

β 2

β
1

MF Dirty Image

 

 

−0.2 −0.1 0 0.1 0.2 0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

5

10

15

20

25

30

35

(b) MVDR dirty image
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snapshots and we will simulate using only two snapshots, i.e., K = 2. We use spectrally
white sources for the simulated frequency channels which allows us to extend the data
model to one containing all frequency data by simply stacking the individual r̂ for each
frequency into a single vector. Likewise we stack the individual Ψ into a single matrix.
Since the source intensity vector σ is common for all frequencies, the augmented data
model has the same structure as before.

The simulated source is a combination of a strong point source with intensity 40
dB and two extended structures with intensities of 0 dB. The extended structures are
composed from seven nearby Gaussian shaped sources, one in the middle and 6 on a
hexagon around it. This configuration is selected to generate an easily reproducible ex-
ample. Figure 7.1 shows the simulated image in dB scale. The background noise level
that is added is at −10 dB which is also 10 dB below the the extended sources. This is
equivalent to a dynamic range of 50 dB and a minimum SNR of 10dB.

Figures 7.2a and 7.2b show the matched filter and MVDR dirty images respectively.
The first column of Figure 7.3 shows the final result of the CLEAN, CLS with the MF dirty
image as upper bound, CLS with the MVDR dirty image as upper bound, and CPWLS
with the MVDR dirty image as upper bound without the residual images. For each image,
the extracted point sources have been convolved with a Gaussian beam to smoothen the
image. We used a Gaussian beam that has the same main beamwidth as the MF dirty
image. The second column of Figure 7.3 shows the corresponding residual images as
defined before, and the last column shows a cross section parallel to the β2 axis going
through the sources at the center of the image.

Remarks are:

• As expected the MVDR dirty image has a much better dynamic range (≈ 50 dB) and
lower side-lobes compared to the MF dirty image (≈ 15 dB dynamic range).

• Due to a better initial dirty image and upper bound, the CPWLS deconvolution
gives a better reconstruction of the image.
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(a) CLEAN image
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(b) CLEAN residual image
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(c) CLEAN cross-section
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(d) Solution of CLS + MF
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(e) Residual image for CLS + MF
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(f) Cross-section for CLS + MF
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(g) Solution of CLS + MVDR
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(h) Residual image for CLS +
MVDR
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(i) Cross-section for CLS image
+ MVDR
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(j) CPWLS image
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(k) CPWLS residual image
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(l) MVDR dirty image and CP-
WLS cross-section

Figure 7.3: Extended Source Simulations. Units for first and third column are in dB. Linear scale is
used for residual images (second column).
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• The cross sections show the accuracy of the estimated intensities. This shows that
not only the shape but also the magnitude of the sources are better estimated using
CPWLS.

• Using the MVDR upper bound for CLS improves the estimate, illustrating the pos-
itive effect of using a proper upper bound.

• The residual image for CPWLS is almost two orders of magnitude lower than the
residual images for CLEAN and CLS.

• While the residual image of the CLS algorithm appears very similar to the CLEAN
reconstruction, CLS can guarantee that these values are inside the chosen confi-
dence interval of 6 standard deviations of each pixel, while CLEAN does not pro-
vide such a guarantee.

7.6.2. FULL SKY WITH 3C SOURCES
In a second simuation set-up, we construct an all-sky image with sources from the 3C
catalog. The array configuration is the same as before with the same number of channels
and snapshots. A background noise level of 0 dB (with respect to 1 Jansky) is added to
the sky.

We first checked which sources from the 3C catalog are visible at the simulated date
and time. From these we have chosen 20 sources that represent the magnitude distribu-
tion on the sky and produce the highest dynamic range available in this catalog. Table
7.2 shows the simulated sources with corresponding parameters. The coordinates are
the (l ,m) coordinates at the first snapshot. Because the sources are not necessarily on
the grid points, we have combined the active set deconvolution with the grid corrections
on the free set as described in Sec. 7.4.4.

Figure 7.4a shows the true and estimated positions for the detected sources. Because
the detection mechanism was able to detect the correct number of sources, we have
included the estimated fluxes also in Table 7.2 for easier comparison. Figure 7.4b shows
the full sky MF dirty image. Figure 7.5a shows the final reconstructed image with the
residual added to it (with grid corrections applied), and Figure 7.5c shows the same result
for CLEAN.

Remarks:

• The active set algorithm with grid corrections automatically stops after adding the
correct number of sources based on the detection mechanism we have incorpo-
rated in the active set method;

• Because of the grid correction no additional sources are added to compensate for
incorrect intensity estimates on the grids;

• All 20 sources are visible in the final reconstructed image and no visible artifacts
are added to the image.

• CLEAN also produces a reasonable image with all the sources visible. However, a
few hundred point sources have been detected during the CLEAN iteration, most
of which are the result of the strong sources that are not on the grid. Some clear
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Table 7.2: Simulated Sources from 3C Catalog

Names l m
Flux
(Jy)

Est. Flux
(Jy)

3C 461 −0.30485 0.19131 11000 10997.61
3C 134 0.59704 −0.02604 66 65.92
3C 219 0.63907 0.6598 44 44.07
3C 83.1 0.28778 −0.13305 28 27.97
3C 75 0.30267 −0.684 23 23.02
3C 47 −0.042882 −0.51909 20 19.97
3C 399.2 −0.97535 0.20927 19 18.97
3C 6.1 −0.070388 0.47098 16 15.99
3C 105 0.57458 −0.60492 15 15.10
3C 158 0.9017 −0.12339 14 14.01
3C 231 0.28956 0.72005 13 13.02
3C 303 −0.1511 0.95402 12.5 12.51
3C 277.1 0.12621 0.93253 12 12.03
3C 320 −0.3597 0.93295 11.5 11.62
3C 280.1 0.15171 0.98709 11 10.95
3C 454.2 −0.29281 0.31322 10.5 10.48
3C 458 −0.61955 −0.56001 10 10.01
3C 223.1 0.67364 0.68376 9.5 9.63
3C 19 −0.23832 −0.30028 9 8.87
3C 437.1 −0.83232 −0.24924 5 4.99

artifacts are introduced (as seen in the residual image) which are also the result of
the incorrect subtraction of off-grid sources.

• Fig. 7.5b shows that the residual image using active set and grid corrections con-
tains a “halo” around the position of the strong source—the residual image is not
flat. In fact, the detection mechanism in the active set algorithm (with a thresh-
old of 6 times the standard deviation) has correctly not considered this halo as a
source. The halo is a statistical artifact due to finite samples and will be reduced in
magnitude by longer observations, with a rate proportional to 1/

p
N K 2.

• The CLEAN algorithm requires more than 100 sources to model the image. This
is mainly because of the the strong off–grid source (Cassiopeia A). This illustrates
that while CLEAN is less complex than the proposed method when the number of
detected sources are equal, in practice CLEAN might need many more sources to
model the same image.

7.7. CONCLUSIONS
Based on a parametric model and constraints on the intensities, we have formulated
image deconvolution as a weighted least squares optimization problem with inequality
constraints. We showed that the classical (matched filter) dirty image is an upper bound,
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Figure 7.4: Point source simulations
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Figure 7.5: Reconstructed images in dB (with respect to 1 Jy) scale and residual images in linear scale
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but a much tighter upper bound is provided by the “MVDR dirty image”. The condition-
ing of the problem can be improved by a preconditioning step, which is also related to
the MVDR dirty image.

Secondly, the constrained least squares problem is solved using an active set based
method. The relation between the resulting method and sequential source removing
techniques such as CLEAN is explained. The theoretical background of the active set
methods can be used to gain better insight into how the sequential techniques work. In
particular, the active set algorithm uses a detection threshold with a known false alarm,
that can be set such that no false sources appear in the image, and we have shown that
by introducing a grid correcting step into the active set iterations we can improve both
the detection of the sources and the estimation of their intensities.

Thirdly, the Khatri-Rao structure of the data model is used in combination with Krylov
based techniques to solve the linear systems involved in the deconvolution process with
less storage and complexity. The complexity of the algorithm is higher than that of
classical sequential source removing techniques (by a factor proportional to the square
root of the detected number of sources), because the detected source intensities are re-
estimated by the Krylov subspace technique after each step of the active set iteration.
However the proposed algorithm has a better detection mechanism compared to classi-
cal CLEAN which leads to a lower number of sources to model the image. As a result the
overall complexity is expected to be comparable. We also expect that the performance
of the algorithm can be readily improved because the updates by the active set itera-
tions are one-dimensional (one source is added or removed), and this can be exploited
to update the Krylov subspaces accordingly, rather than computing them each time from
scratch. This is left as future work.

The simulations show that the proposed CPWLS algorithm provides improved spatial
structure and improved intensity estimates compared to CLEAN based deconvolution of
the classical dirty image. A particularly attractive aspect is the demonstrated capability
of the algorithm to perform automated source detection, which will be of interest for
upcoming large surveys.

7.8. APPENDIX: RELATION BETWEEN WLS, NATURAL AND RO-
BUST WEIGHTING

Natural weighting is a technique to improve the detection of weak sources by promoting
the visibility values that have a better signal-to-noise-ratio [20]. This is done by dividing
each visibility sample by the variance of noise on that sample (while assuming that the
noise on each sample is independent). Considering that the visibility samples are the
elements of the covariance matrix R̂k we can model the sample visibilities as

r̂k = rk +ε (7.81)

where ε is the complex noise on the samples. As discussed in Sec. 7.9, R̂ has a Wishart
distribution and for a large number of samples N we have r̂k ∼N (rk , (RT

k ⊗Rk )/N ). This

means that ε= r̂k − rk has a complex Gaussian distribution N (0, (RT
k ⊗Rk )/N ). Because

astronomical sources are usually much weaker than the system noise, it is common to
use the approximation Rk ≈ Rn,k . With this approximation and using the independence
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of system noise on each receiving element (antenna or station), we can assume that Rn,k

is diagonal and that (RT
k ⊗Rk )/N ≈ (RT

n,k ⊗Rn,k )/N is also a diagonal approximation of
the noise covariance matrix on the visibility samples. With this framework we can write
the natural weighting as

r̂natural = N (R−T
n,k ⊗R−1

n,k )r̂k (7.82)

This shows that natural weighting is a very reasonable approximation of the weighting
used when solving (7.11) for WLS (except for a factor N that drops out from both sides).

Next, we relate WLS to Robust Weighting [20] by assuming slightly different simplifi-
cations. Let us assume that Rn,k =σ2

nI and let us consider a single source with intensity
σ then we have for

R−1
k = (Rn,k +σΨkΨ

H
k )−1

= R−1
n,k −

σR−1
n,kΨkΨ

H
k R−1

n,k

1+σΨH
k R−1

n,kΨk

= 1

σ2
n

I−ΨkΨ
H
k

1+ σ2
n
σ

 . (7.83)

Compared to natural weighting, now not only the noise power but also the available
signal power is taken into account for the weighting. The term 1/(1+σ2

n/σ) is the same as
the parametric Wiener filter in the Fourier domain as given by [20] which relates Robust
Weighting to standard signal processing concepts. However Robust Weighting also takes
the visibility sampling of gridded uv-plane into account when calculating the weights,
which is not explained in the derivation above. Hence the exact relation between Robust
Weighting and WLS is still missing. This relation is interesting and should be addressed
in future works.

7.9. APPENDIX: VARIANCE OF THE DIRTY IMAGE
To find the confidence intervals for the dirty images we need to find estimates for the
variance of both matched filter and MVDR dirty images. In our problem the sample
covariance matrix is obtained by squaring samples from a Gaussian process. This means
that N R̂ ∼ Wp (R, N ) where Wp (R, N ) is the Wishart distribution function of order p with
expected value equal to R and N degrees of freedom. For any deterministic vector ζ,

NζH R̂ζ∼ ζH Rζ χ2(N ). (7.84)

where χ2(N ) is the standard χ2 distribution with N degrees of freedom. In radio astro-
nomical applications N is usually very large and we can approximate this χ2 distribution
with a Gaussian such that ζH R̂ζ ∼ N (ζH Rζ, (ζH Rζ)2/N ). The variance of the matched
filter dirty image is given by

Var(σMF,i ) = 1

N K 2

∑
k

(aH
k,i Rak,i )2
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Using this result we can find the x% confidence interval which results in an increase of
the upper bound such that

σ≤ σ̂MF +α
√

Var(σ̂MF) (7.85)

where α is chosen depending on x. Requiring at most a single false detection on the
entire image translate into α≈ 6.

When we estimate the MVDR dirty image from sample covariance matrices we need
to be more careful, mainly because the result is biased and we need to correct for that
bias. For each pixel of the MVDR dirty image obtained from sample covariance matrices
we have

σ̂MVDR,i = K g (Z ) = K∑
k aH

k,i R̂−1
k ak,i

(7.86)

where g (Z ) = 1/Z and Z =∑
k aH

k,i R̂−1
k ak,i . Using a perturbation model Z = Z0 +∆Z and

a Taylor approximation we find

g (Z ) ≈ 1

Z0
− 1

Z 2
0

∆Z

≈ 1

Z 2
0

(Z0 −∆Z ). (7.87)

Let Z0 = E {Z } then E {∆Z } = 0 and E {g (Z )} ≈ 1/Z0. We would like this estimate to be
unbiased which means that we want

E {g (Z )} ≈ 1∑
k aH

k,i R−1
k ak,i

(7.88)

however we have,

Z0 =
∑
k

ak,i E {R̂−1
k }ak,i

=∑
k

aH
k,i

N R−1
k

N −p
ak,i

= N

N −p

∑
k

aH
k,i R−1

k ak,i (7.89)

where we have used E {R̂−1} = N
N−p R−1 [120]. So in order to remove this bias we need to

scale it by a correction factor

C = N

N −p
(7.90)

and

σ̂MVDR,i =C K g (Z ). (7.91)
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Now we need to find an estimate for the variance of the MVDR dirty image. Using
(7.87) we see that the first order approximation of Var(g (Z )) ≈ Var(Z )/Z 4

0 . We find Var(Z )
using the independence of each snapshot so we can write

Var(Z ) =∑
k

Var(aH
k,i R̂−1

k ak,i ). (7.92)

In order to find Var(aH
k,i R̂−1

k ak,i ) we need to use some properties of the complex inverse
Wishart distribution. A matrix has complex inverse Wishart distribution if it’s inverse has
a complex Wishart distribution [120]. Let us define an invertible matrix B as

B = [
ak,i B1

]
(7.93)

then X = (BR̂−1BH )/N has an inverse Wishart distribution because X−1 = N (B−H R̂B−1)
has a Wishart distribution. In this case X11 = (aH

k,i R̂−1ak,i )/N also has an inverse Wishart
distribution with less degrees of freedom. The covariance of an inverse Wishart matrix
is derived in [120], however because we are dealing only with one element, this results
simplifies to

Var(N X11) = N 2

(N −p)2(N −p −1)
(aH

k,i R−1ak,i )2. (7.94)

The variance of the unbiased MVDR dirty image is thus given by

Var(σ̂MVDR,i ) = Var(C K g (Z ))

≈ K 2

(N −p −1)

∑
k (aH

k,i R−1
k ak,i )2(∑

k ak,i R−1
k ak,i

)4 .

Now that we have the variance we can use the same method that we used for MF dirty
image to find α and

σ≤ σ̂MVDR +α
√

Var(σ̂MVDR) (7.95)
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CONCLUSIONS AND SUGGESTIONS

FOR FURTHER RESEARCH

8.1. SUMMARY OF MAIN RESULTS
In this thesis we set out to address the applicability of the signal processing formalism to
a set of radio astronomical problems. We considered three related main subproblems:
RFI mitigation, calibration and imaging. For each of these problems the generic signal
processing approach, i.e. modeling, performance analysis and algorithm design, has
been demonstrated to be a viable methodology.

Using array processing concepts we have been able to reformulate the radio astro-
nomical measurement equation as a covariance data model. This has enabled us to use
the familiar signal processing tools such as subspace estimation and covariance match-
ing techniques as a basis for both analysis and algorithm design. We have also been
confronted with the necessity of developing new tools, or tailoring the existing tools to
take full advantage of the astronomical data model. Examples of new approaches used
in this work are factor analysis (FA) which is used as a basis for developing new sub-
space estimation techniques and the combination of Kronecker structures and Krylov
subspace based methods to reduce the storage and complexity of non–linear optimiza-
tion problems. These new methods can be added to the the set of tools used in signal
processing. We will now give a more detailed summary of the these approaches.

In Chapter 4 we discussed the classical FA and introduced a new set of tools such
as Extended FA (EFA) and Joint Extended FA (JEFA). A new estimation algorithm based
on Krylov subspace solvers has been proposed for finding the unknown parameters for
these new models. Considering that classical FA and EFA can be formulated as an espe-
cial cases of JEFA, the newly proposed algorithm is also capable of estimating FA model
parameters in an efficient way.

In Chapter 5 we used data from WSRT and LOFAR to demonstrate the potential of
spatial filtering and Extended FA to remove RFI and restore contaminated frequency
bands which are otherwise unusable for observations. By finding the Cramér–Rao Bound

123
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(CRB) for JEFA, it has become possible to study the statistics for these spatial filtering
techniques and to demonstrate that the theoretical bound for the variance of a filtered
band is very close to a RFI free band. Using simulation and real data the performance
of the new algorithm has been demonstrated which achieves the theoretical limit based
on the CRB. It has also been shown using simulations that JEFA can be applied in cases
where the Eigen–Value Decomposition (EVD) is also applicable without any significant
loss in quality of the recovered subspace, which makes this technique a suitable replace-
ment of EVD for a majority of practical scenarios. Based on the results presented in this
thesis, it has been shown that the (local) identifiability of the FA model is completely de-
fined by the signal subspace and structure of non–zero elements of the noise covariance
matrix and does not depend on the actual source and noise power.

In Chapter 6 it has been shown that the Khatri–Rao structure of the Jacobians result-
ing from the vectorization of covariance matching problems can be efficiently combined
with Krylov subspace based solvers to solve the direction independent gain calibration
problem. Using the same approach it has been shown that the Jacobian with respect to
direction of arrival (DOA) also possesses a Khatri–Rao structure, allowing for DOA cor-
rections with the same strategy. In comparison to other techniques such as alternating
least squares, using the proposed technique can reduce the complexity of the algorithm
per iteration from O(P 3) to O(P 2) (where P is the number of receivers), while also reduc-
ing the number of iterations.

In Chapter 7 the relation between the optimally weighted least squares (WLS) prob-
lems and the MVDR beamformer was established through a Jacobi preconditioner which
demonstrates that data dependent high resolution imaging can be achieved while at the
same time improving the statistical performance of the reconstructed image. Using the
positive (semi) definiteness of the covariance matrices it was shown that an upper bound
on the image values can be found using beamforming techniques. Based on the multi–
snapshot data model for the measured covariance data a closed–form solution for the
tightest upper bound for an image was derived and its relation with the ASSC beam-
former was established. Estimating a high resolution upper bound from noisy data has
been shown to be possible by using a multi–snapshot MVDR beamformer.

Revisiting the LS and WLS with the additional non–negativity and and upper bound
constraints resulted in drastic algorithmic changes to the way these problems are solved.
Using these conceptually simple constraints has led to the application of an active set
optimization technique which is much closer to sequential source removing methods
like CLEAN from an algorithmic point of view than to the traditional (W)LS problems.

The use of factor analysis (FA), application of Krylov solvers in covariance matching
problems and constrained LS problems form the core of the approaches in presented
work. Starting from these general concepts an attempt has been made to strike a balance
between the development of generic signal processing tools and detailed worked out
algorithms tailored to radio astronomical problems. Hence in both aspects the results
presented in this work could be refined further. The limitations and needed refinements
of these methods are discussed next.
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8.2. DISCUSSION

8.2.1. SUBSPACE ESTIMATION

In contrast to EVD which is a linear algebraic decomposition, FA is a multivariate model
matching technique. Even though we have demonstrated that in models for radio as-
tronomy (and array processing in general) the expected value of the covariance matrices
have such a model, when the SNR and number of samples are low the high variance
of the sample covariance matrices causes a large deviation from the model which in
turn causes difficulties for estimating the FA parameters, while the estimation process
for EVD does not change. This does not mean that the subspace estimated by EVD in
these situations is accurate, but from an algorithmic point of view this could be seen as
a reliability concern when we replace EVD with FA.

Considering that this is only a problem when the subspace of a (weak) signal is chang-
ing too rapidly such that long term integration is not possible, we can still use JEFA as an
effective way of estimating the noise covariance matrix by buffering several short snap-
shots and use the results for whitening subsequent snapshots. EVD can then be used to
find the subspace for whitened snapshots. In this scenario JEFA can be seen as a noise
calibration step instead of a subspace estimation one. However if the noise covariance
matrix changes too rapidly as well then other methods than (JE)FA should be considered.

Another complication in the application of (JE)FA is the detection problem which
requires several estimation and hypothesis testing steps. The statistics of the sequential
hypothesis testing mechanics that has been proposed in Sec. 4.7 is currently unknown
(and in general difficult to find). As a result it is not possible to guarantee a certain de-
tection performance (such as a false alarm probability).

8.2.2. SPATIAL FILTERING USING A REFERENCE ARRAY

The performance of spatial filtering with a reference array and its robustness against
model mismatches makes it a promising approach for RFI mitigation. As such use of
this technique is highly recommended for the new generation of radio telescopes. Con-
sidering that a relatively high time resolution and access to station level correlations are
needed, using this technique requires new hardware and data–path modifications for
radio telescopes which are already in operation. On the other hand the fact that these
modifications can be done at station level means that such modifications are only re-
quired at those stations which are highly contaminated with RFI.

It is also important to note that the results presented in this work not only illustrate
the performance of the particular technique used here, but also highlights the fact that
signal processing tools can be used to remove RFI to acceptable levels for radio astro-
nomical applications. This should encourage the adaptation of RFI mitigation tech-
niques to replace/complement traditional approaches based on flagging.

8.2.3. GAIN CALIBRATION

Using covariance matching techniques combined with Krylov subspace solvers, we have
demonstrated how a scalable gain calibration algorithm can be constructed. This tech-
nique in its current formulation is suitable for station level calibration and can be con-
sidered as an alternative to currently used algorithms.
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Direction dependent and polarimetric calibration are essential for full instrument
calibration. The method presented here needs further refinements and extensions in
order to be suitable for this purpose.

8.2.4. IMAGING

As we have seen, confining the pixel intensity within a region in the positive orthant has
profound consequences for the way in which we solve LS image reconstruction prob-
lems. Similarly choosing the initial point for starting the algorithm and the way the free
set is constructed have been shown to have significant meaning by relating this algo-
rithm to sequential source removing techniques. However, now that such a relation is
established and the mathematical background for some of the choices in algorithms
such as CLEAN has been found, we could again add conceptually small modifications
which will have a larger impact on the way a solution can be found. For example, we can
replace the initial image from the lower bound (an empty image) by any other feasible
starting point (e.g. the dirty image). Even though the algorithm is unchanged, the in-
terpretation in this case is different than sequential source removing techniques and in
particular the way these algorithms handle the extended structures in the image. As a
consequence, the active set algorithm should not simply be categorized as a sequential
source removing technique. A more comprehensive (physical) analysis is needed in or-
der to fine–tune the generic setup of this algorithm to some of the more specific imaging
applications in particular cases with extended sources.

8.3. FUTURE RESEARCH

8.3.1. FACTOR ANALYSIS

In this thesis we have seen that FA and its derivatives form a set of powerful tools and,
even though FA is popular in many fields, its application in (array) signal processing has
been limited. We have also seen that these techniques can be used in practical signal
processing scenarios with reliable results. However as was illustrated, the performance
of the algorithms relies heavily on the number of samples and/or SNR available. In low
SNR and low number of sample scenarios, finding an accurate initial guess might require
a large number of iterations and the probability of getting stuck on a local minimum be-
comes larger. Other considerations like ensuring that the noise covariance matrix is pos-
itive definite also become more dominant in this regime making the estimation process
more involved and complex. In this regard some problems remain open:

• If the global minimizer for WLS and ML can be found in low SNR/sample cases, is
it close enough to the true solution to be of any practical value?

This problem is partially addressed by studying the CRB bound in Sec. 5.6 specifi-
cally figures 5.2 and 5.3 where it is clear that under a certain signal power the CRB
is higher than the variance of the unprocessed signal. In these scenarios even if we
could find a solution, the variance of the estimates would be of very poor quality.
However there is a region where according to the CRB using spatial filtering would
be beneficial but the (E)FA algorithm cannot converge to the right solution. This
is the region of interest for future analysis.
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• Can the result of the local identifiability for the signal subspace and structure of
the noise covariance matrix be extended to a global condition? Can an example
be generated where the problem is locally identifiable but not unique up to a ro-
tation? Can such a counterexample be found for any P and Q (except for real FA
when P ≤ 5 and Q ≤ 2 for which it is established by Anderson [55] that the local
identifiability leads to global identifiability) and what is the probability of encoun-
tering such a case?

• Can a general result be stated about the (local) identifiability of subspaces spanned
by the columns of the array response matrix?

8.3.2. CALIBRATION
The work presented in this thesis on calibration is limited to improvements regarding the
computational complexity of direction–independent gain calibration. The extension of
this strategy to polarimetric and direction–dependent gain calibration is an important
step needed towards next generations of radio telescopes such as SKA.

The model structures that enable efficient implementation of the Gauss-Newton-
Krylov technique are based on point source models. It is important to extend these
models in such a way that a computationally efficient implementation can be found for
extended structures. This a crucial step as the number of sources that can be categorized
as extended will increase rapidly with the higher resolutions of new telescopes.

8.3.3. IMAGING

EXTENDED STRUCTURES IN IMAGES

The data model in Chapter 7 assumes that each pixel in the image is a point source. This
data model in combination with CLS and the active set algorithm has lead to a sequential
source removing technique similar to CLEAN. This similarity is also true for the way that
these algorithms handle extended structures in the sky which is done by modeling them
as many point sources. This results in producing a less accurate sky model and increas-
ing the overall computational complexity. To counter this issue we need to update the
data model to include these extended structures which leads to the following questions:

• Is it possible to extend the CLS imaging to include more general sky models? If so
can we improve the lower and upper bounds based on these new models?

• How does the accuracy of such an approach compare to existing algorithms such
as sparse [8] or Bayesian [109] techniques?

• How does the complexity change with this approach? Does the gain in the accu-
racy justify such a modification?

UPDATED KRYLOV SUBSPACES

One of the most important features of Krylov subspace based methods is the storage
reduction needed to find a solution to a linear system of equations. For example for a
M ×N image, storing the deconvolution matrix in memory (in double precision) alone
requires 4×M N (M N −1) bytes which for a relatively small image of size 500×500 is over
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200 GB of storage. Using the Krylov based method enables us to perform the desired de-
convolution in a system with less than 4 GB of memory. However during the active set
iteration, we add and remove a single row and column to the deconvolution matrix and
update the estimates. Currently there is no computationally efficient way to combine
these small perturbations with Krylov subspace methods. Other solvers such as the ones
based on QR decomposition are capable of performing this update but require similar
storage requirements as the original deconvolution matrix. Finding methods that can
benefit from both the storage capacity of the Krylov subspace methods and small com-
putational cost for row/column up- and downdates is important for deconvolving very
high resolution images expected for next generation radio–telescopes.

PRECONDITIONING

In this thesis the relation between the preconditioning of the system of linear equations
that results from solving weighted least squares problems and high resolution beam-
forming techniques such as MVDR has been demonstrated. However there are many
preconditioning techniques that remain unexplored. Knowing that this relation exists,
new approaches to creating both dirty and clean images based on various precondition-
ers should be investigated.
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SUMMARY

The search for the answer to one of the most fundamental scientific questions, “How was
the universe formed?”, requires us to study very weak radio signals from the early uni-
verse. In the last eighty years, radio astronomers have been able to use radio frequency
observations for significant discoveries such as quasars, supermassive Black Holes and
the Cosmic Microwave Background radiation. Radio astronomers use a radio telescope
to study the cosmos. A radio telescope usually consists of an array of radio receivers
(antennas) and supporting hardware/software to produce synthesized images of the sky.
While the earlier generation of the radio telescopes such as the Westerbork Synthesis Ra-
dio Telescope (WSRT), the Very Large Array (VLA) and the Giant Meter–wave Radio Tele-
scope (GMRT) consisted of 14-45 receivers separated a few kilometers (3-25 km based-
lines), the next generation of radio telescopes such as LOFAR and SKA have thousands
of receivers which cover distances of over 1000 km. This massive increase in the number
of receivers and the geometric dimensions is a consequence of the required (high) reso-
lution and sensitivity for modern scientific studies and while it is necessary, it does not
guarantee the desired results without the appropriate data and signal processing.

The main challenges in radio astronomy can be divided in three closely related prob-
lems: mitigation of man–made radio frequency interference, calibration and image for-
mation. The main goal of this thesis is to investigate how the signal processing formalism
can be used to systematically model and analyze these three problems and what signal
processing tools are needed for addressing them.

The number of RFI free bands is diminishing rapidly as a consequence of the in-
creased number of wireless services and applications. The shift towards wideband digital
systems has created new problems which are not sufficiently addressed by currently im-
plemented RFI detection and mitigation systems. For this class of continuously present
wide–band RFI, the use of array processing techniques such as spatial filtering could
provide access to frequency bands otherwise unusable by astronomers. Such a spatial
filtering can be achieved by estimating and removing the subspace that the interfering
signal is occupying. Many signal processing algorithms use the eigenvalue decomposi-
tion (EVD) for estimating the signal subspace. However the use of EVD is limited to sys-
tems where the noise is white or known from calibration. This requirement is a limiting
factor for applying these techniques to uncalibrated arrays with unknown noise models.
In these situations a more generic approaches which allows for combined RFI filtering
and noise power calibration is preferred. In this thesis factor analysis (FA) is proposed as
suitable substitution for EVD.

FA is a technique that allows for the decomposition of the signal into a low–rank part
corresponding to the signal and a diagonal part which represents the covariance of the
noise on the receivers. Because the diagonal elements can be different this technique
can be used when the noise is not white and forms a generalization of the EVD. In RFI
mitigation applications the signal part of the data is dominated by RFI and changes more
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rapidly than the noise. Estimating the noise covariance which is shared by several mea-
surements jointly allows for a more accurate estimation. As a result extensions to the
classical FA are proposed to improve the estimates for the diagonal part of the decom-
position in a joint fashion. Even a diagonal noise structure can be limiting in some appli-
cations. For example the contribution of the Milky Way affects the short baselines which
can be modeled by using a non–diagonal covariance matrix. The FA model can be ex-
tended for this type of signals. An extension to FA called Extended FA (EFA) is used to
allow for capturing such structures into the model. Similar to JFA we can also estimate
the parameters in EFA jointly, and the resulting method is denoted by Joint EFA (JEFA).
Using nonlinear optimization techniques combined with Krylov subspace based solvers
an scalable algorithm is developed. The statistical efficiency of this algorithm is shown
by comparing its results to the Cramér–Rao bound and its application in RFI mitigation
has been demonstrated on measurements from the WSRT and LOFAR.

Antenna gain calibration is an essential step in producing accurate images. Using
common array processing data models, gain calibration is formulated as a nonlinear co-
variance matching problem. In this thesis we show that the matrices involved in this es-
timation problem are highly structured and that the system of equations involving these
matrices can be efficiently solved using Krylov subspace based solvers (similar to JEFA).
The resulting calibration algorithm is scalable and requires a low number of iterations
in order to converge which makes it an attractive alternative to currently available tech-
niques.

Both classical and parametric based image formations consist of two steps. First a
“dirty” image is constructed from the measurements and then an improved estimate is
found by performing a deconvolution step. When the number of pixels on the image
becomes large, the deconvolution step becomes an ill–posed problem. In this thesis we
show that image values are bounded from below by a nonnegativity constraint and above
by the dirty image. Using beamforming techniques, we show that tighter upper bounds
can be constructed using the MVDR beamformer. These bounds allow us to regularize
the deconvolution problem by a set of inequality constraints. Following a signal process-
ing model, the image formation is then formulated as a parameter estimation problem
with inequality constraints. This optimization problem can be solved using an active
set algorithm. We show that, with the right initialization, the active set steps are very
similar to sequential source removing techniques such as CLEAN. This connection be-
tween classical approaches and parametric imaging techniques provides the necessary
theoretical basis for further analysis and allows for improving both methods.

Based on the results presented in this thesis we can conclude that signal processing
methodologies can provide new solutions to the radio astronomical problems and also
shed light on the inner working of the classical techniques. Hence, a signal processing
approach is extremely beneficial in tackling the problems that the next generation of
radio telescopes will face.
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De zoektocht naar het antwoord op een van de meest fundamentele wetenschappelijke
vragen, “Hoe is het heelal ontstaan?”, vraagt ons om zeer zwakke radiosignalen van het
vroege heelal te bestuderen. In de afgelopen tachtig jaar, zijn de radio-astronomen in
staat geweest om radiofrequentie waarnemingen te gebruiken voor het doen van be-
langrijke ontdekkingen zoals quasars, superzware zwart gaten en de kosmische achter-
grondstraling. Radio astronomen maken gebruik van een radiotelescoop om de kosmos
te bestuderen. Een radiotelescoop bestaat meestal uit een reeks van radio-ontvangers
(antennes) en ondersteunende hardware / software om gesynthetiseerde beelden van
de hemel te produceren. Terwijl de eerdere generatie van de radiotelescopen zoals de
Westerbork Synthesis Radio Telescoop (WSRT), de Very Large Array (VLA) en de Giant
Meter-wave Radio Telescoop (GMRT) uit 14-45 ontvangers met een onderlinge afstand
van een paar kilometer (3-25 km basislijnen) bestonden, de volgende generatie radio-
telescopen zoals LOFAR en SKA hebben duizenden ontvangers die verspreid zijn over
afstanden tot meer dan 1000 km. Deze sterke toename van dimensie en het aantal ont-
vangers is het gevolg van de vereiste (hoge) resolutie en gevoeligheid die voor moderne
wetenschappelijke studies noodzakelijk zijn. Echter kan deze vergroting van de basislij-
nen en het aantal ontvangers de gewenste resultaten zonder de juiste data en signaal-
verwerking niet garanderen.

De belangrijkste uitdagingen in radioastronomie kunnen worden onderverdeeld in
drie nauw verwante problemen: wegfilteren van de door mens gemaakte radiofrequen-
tieinterferenties (RFI), kalibratie en beeldvorming. Het belangrijkste doel van dit proef-
schrift is om te onderzoeken hoe de signaalverwerking formalisme kan worden gebruikt
om op een systematische wijze deze drie problemen aan te pakken en welke gereed-
schappen uit signaalverwerking nodig zijn voor het modelleren en analyseren van deze
problemen.

Het aantal frequentiekanalen die geen last hebben van RFI neemt als gevolg van de
toename van het aantal draadloze diensten en toepassingen snel af. De migratie naar
breedbandige digitale systemen heeft nieuwe problemen gecreëerd die niet voldoende
door de huidige implementaties van RFI detectie- en mitigatie systemen kunnen worden
opgelost. Voor de klasse van continu aanwezig breedbandige RFI kan het gebruiken van
matrix verwerkingstechnieken zoals spatiele filtering toegang geven tot frequentieban-
den die anderszins voor astronomen onbruikbaar zijn. Een dergelijke spatiele filtering
kan worden bereikt door het schatten en verwijderen van de deelruimte waar het interfe-
rerende signaal zich in bevindt. Veel signaalverwerkingsalgoritmen maken gebruik van
de eigenwaardenontbinding (EWO) voor het schatten van de signaal-deelruimte. Echter
het gebruik van EWO is beperkt tot systemen waarop de ruis wit of bekend is uit de kali-
bratie. Deze eis is een beperkende factor voor de toepassing van deze technieken op niet
gekalibreerde systemen die een onbekende ruismodel hebben. In deze situaties is het
gebruiken van methodes die een combinatie van RFI filtering en ruiskalibratie moge-
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lijk maken meer gewenst. In dit proefschrift wordt Factor Analyse (FA) als een geschikte
vervanging voor de EWO voorgesteld.

FA is een techniek waarmee een covariantiematrix wordt opgesplitst in een lage-rang
deel en een diagonaal deel. Het deel met de lage rang kan de deelruimte van het ge-
wenste signaal modelleren en het diagonale deel kan worden gebruikt voor het modelle-
ren van ruis. Omdat de diagonale elementen verschillend kunnen zijn, kan deze techniek
worden gebruikt in situaties waar ruis niet wit is en dus FA kan als een veralgemenisering
van EWO gezien worden. Bij RFI gerelateerde toepassingen wordt de signaal-deelruimte
gedomineerd door RFI die in meeste gevallen veel sneller verandert dan de ruis. Hier-
door wordt de ruis-covariantiematrix gedeeld tussen meerdere metingen. Het gezamen-
lijk schatten van deze matrix zorgt voor een nauwkeurigere schatting. In dit proefschrift
is een uitbreiding van de klassieke FA voorgesteld die zo’n gezamenlijke schatting moge-
lijk maakt. Ook het modelleren van de ruis-covariantiematrix met een diagonale matrix
kan beperkend zijn voor sommige toepassingen. Bijvoorbeeld de bijdrage van de Melk-
weg beïnvloedt de korte basislijnen en kan door een diagonale covariantiematrix niet
worden gemodelleerd. Het FA model kan worden uitgebreid voor dit soort signalen. Wij
stellen voor om een uitbreiding van FA, genoemd Extended FA (EFA), te gebruikt voor
het modelleren van dergelijke structuren. Net als bij JFA kunnen we ook de parame-
ters in EFA op een gezamenlijke wijze schatten. De methode die hiervoor ontwikkeld
is noemen wij Joint EFA (JEFA). Met behulp van niet-lineaire optimalisatietechnieken
gecombineerd met op Krylov deelruimte gebaseerd algoritmes hebben wij een schaal-
bare techniek ontwikkeld voor het oplossen van de onbekenden in het (JE)FA model. De
statistische efficiëntie van dit algoritme is aangetoond door het vergelijken van de resul-
taten met de Cramér-Rao grens en de toepassing ervan is gedemonstreerd door middel
van het wegfilteren van RFI uit metingen die door de WSRT en LOFAR gemaakt zijn.

Antenneversterking kalibratie is een essentiële stap in het maken van nauwkeurige
beelden. Door het gebruiken van standaard signaalbewerking modellen, hebben wij de
antenneversterking kalibratie geformuleerd als een niet-lineaire covariantie matching
probleem. In dit proefschrift laten we zien dat de matrices die bij dit schattingspro-
bleem voorkomen zeer gestructureerd zijn en dat het stelsel van lineaire vergelijkingen
van deze matrices efficiënt kan worden oplost door het gebruik maken van op Krylov
deelruimte gebaseerde methoden (vergelijkbaar met JEFA). Het resulterende kalibratie-
algoritme is schaalbaar en vereist een klein aantal iteraties om te convergeren en daar-
door vormt dit een aantrekkelijk alternatief voor huidige technieken.

Zowel klassieke technieken als op parametrische model-schatting gebaseerde tech-
nieken voor beeldvorming bestaan uit twee stappen. Eerst wordt een “dirty image” op-
gebouwd uit de metingen en vervolgens wordt een verbeterde schatting gevonden door
het uitvoeren van een deconvolutie stap. Wanneer het aantal pixels in het beeld groot is,
wordt de deconvolutie stap een slecht-gesteld probleem. In dit proefschrift laten we zien
dat de intensiteit van pixels begrensd is tussen nul en de waarde in de dirty image. Door
het gebruik maken van bundelvormingstechnieken tonen we aan dat een zeer strakke
bovengrens kan worden geconstrueerd met de MVDR bundelvormer. Met behulp van
deze grenzen kunnen we het deconvolutieprobleem regulariseren door een set van on-
gelijkheden. Door middel van een signaalverwerkingsmodel wordt de beeldvorming
geformuleerd als een optimalisatieprobleem met ongelijkheden. Dit optimalisatiepro-
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bleem kan worden opgelost met behulp van een active-set algoritme. We tonen aan dat
met de juiste initialisatie, de active-set stappen vergelijkbaar zijn met een sequentiële
bronverwijderingstechniek zoals CLEAN. Deze relatie tussen klassieke benaderingen en
op parametrische schatting gebaseerde beeldvormingstechnieken geeft de benodigde
theoretische basis voor verdere analyse en verbetering van beide methoden.

Op basis van de resultaten in dit proefschrift kunnen we concluderen dat signaalver-
werkingsmethodologie nieuwe oplossingen kan bieden aan radio-astronomische pro-
blemen en ook licht kan werpen op de interne werking van de klassieke technieken.
Daarom is een signaalverwerkingsaanpak zeer gunstig voor het oplossen van de proble-
men waar de volgende generatie van radiotelescopen mee zal worden geconfronteerd.
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