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Preface 
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Summary 

Introduction 

Wave transmission is often an important criterion in the design of a low-crested breakwater 
structure and influences early decisions on the type of the structure and the applied construction 
material. In design stages classical formulae are used to predict the wave transmission coefficient Kt 
[-]. The finished European Union funded project DELOS was focused on wave transmission and an 
extensive database on low-crested rubble mound structures was generated. During DELOS, a new 
empirical wave transmission formula was found (Van der Meer et al., 2004), but still showed a 
considerable scatter, probably due to a limited number of parameters included.  
 
Another recently finished EU-project, named CLASH was concentrating on wave overtopping (high-
crested structures). An extensive homogeneous database was composed (Verhaeghe et al., 2003). 
Homogeneous means that every available dataset was screened carefully before the data was 
included to the database. A new aspect of this database was that the geometry of every type of 
structure could be described by a limited number of parameters (toe, berm, crest, slopes, etc.). The 
second part of CLASH involved the development of a prediction tool, using neural networks in 
combination with resampling techniques. This kind of neural networks is difficult to make, but easy 
to use for people in this field of interest. The use of the database on its own and the neural network 
for wave overtopping have been shown already (Van der Meer et al., 2005)  
 
This paper concentrates on wave transmission and is based on both European Union projects DELOS 
and CLASH. The main objectives of this study are: 
 

• Screening the existing wave transmission database of DELOS in order to make it 
homogeneous and collecting new datasets to add to the DELOS database. 

• Developing a prediction model based on neural networks according to the existing CLASH 
method. 

• Using the homogeneous database and prediction model to analyze the influence of various 
parameters for wave transmission and comparing this with the existing DELOS empirical 
formulae. 

• Making the prediction method available to users in the field of coastal engineering. 
 
For wave transmission a simple neural network has already been tested for some DELOS datasets 
and promising results were obtained (Panizzo et al., 2003). The present study aims to improve the 
prediction of the wave transmission coefficient with the successful methods of CLASH. Till present, 
the last two mentioned objectives have not often been applied by developers of a neural network 
and this is certainly new in this field.   

Homogeneous database 

The DELOS database includes 2,337 wave transmission tests and is made homogeneous according to 
the CLASH-work database during this study. Another 1,597 tests have been added to the database to 
a total of 3,934 tests. The database consists of a variety of tested breakwater structures: mound 
structures (permeable and impermeable) as well as smooth structures (impermeable). All these 
structures have their own characteristics and behave differently for wave transmission. An important 
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issue is to use parameters that represent the characteristics of those structures. This is found 
possible with a selection of parameters of the CLASH-database (Steendam et al., 2004 and 
Verhaeghe et al., 2003). 
 
For each test, imposed hydraulic and structural parameters have been determined. The database 
consists of 19 structural parameters and 10 hydraulic parameters, describing the available tests. 
Missing hydraulic parameters are calculated with the numerical wave model SWAN (Booij et al., 
1999) and the empirical model of Battjes and Groenendijk (2000). Depending on the reliability of the 
measurements a ‘reliability-factor’ is assigned, ranging from 1 (very reliable) to 4 (unreliable). Test 
reports have been examined in order to judge the reliability. Also a ‘complexity-factor’ is assigned, 
depending on the difficulty of describing / characterizing the considered test section with the 
structural parameters, ranging from 1 (simple section) to 4 (very complex section).  

Prediction model architecture 

The empirical formulae of DELOS (Briganti et al., 2003 and Van der Meer et al., 2004) contain a 
limited number of parameters. In the present study more parameters have been introduced found 
important for wave transmission. The parameters are selected, based on physical reasoning and 
from findings of earlier studies. The parameters that are selected for the final prediction model are 
presented for a typical section in the figure below.  

h

Rc

Wc

αuf

Hm0 toe

Tm-1,0 toe

β Hm0 trans = Kt* Hm0 toe

 

γf

P

 
Overview of parameters used within the prediction model for a breakwater section 
 
Different from CLASH is the selection of the total crest width Wc [m] and the notional permeability 
factor P [-]. Different from the empirical formulae from DELOS are the water depth at the toe of 
structure h [m], the roughness factor γf [-] and the notional permeability factor P [-]. With including 
the roughness factor and the notional permeability factor it is found possible to handle both mound 
and smooth structures within one single prediction model, although these structures behave 
completely different on wave transmission. The advantage of handling both types of structures 
within one model is that the model is capable of finding common important parameters and 
parameters that distinguish these different structures, making it possible to handle structures in 
between as well. Very few datasets with composed structures with a parapet and structures applied 
with berm were present in the database, which made some parameters from CLASH pre-empt. Note 
that all used parameters are present at the crest of the low-crested structure, around sea water 
level. 
 
The CLASH prediction method (Van Gent et al., 2004 and Verhaeghe, 2005) is applied in this study 
as well. This is a Multilayer Perceptron Neural Network, with the Bayesian Regularization as training 
algorithm.  
 
The final prediction model of this study is also carried out by means of an ensemble of neural 
networks. This ensemble is obtained from a certain number of neural networks, which are trained 
based on a bootstrap resampling technique (Van den Boogaard et al., 2000). The training and 
testing process are repeated many times to solve the problem of representativeness of the training 
and testing set. Secondly the ensemble of NN’s results in a set of predictions from which an 
uncertainty assessment is made. Confidence intervals have given insight in the reliability of the 
prediction. 
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Prediction model validity and boundaries 

The present prediction model shows significantly improved predictions of the wave transmission 
coefficient compared to the existing empirical formulae. The prediction model has proven to be 
capable of handling both smooth and mound structures, although their behavior to wave 
transmission is found completely different.  
 
The following boundaries of input parameters are found to give reliable and valid predictions. 
 
Input Parameter  Prediction model input boundary 

Incident significant wave height, Hm0 toe [-] Hm0 toe > 0.03m 
Hm0 toe / h < 0.50 

Mean wave steepness, s0 m-1,0 toe [-] 0.009 < s0 m-1,0 < 0.060 

Mean angle of wave incidence, β [o] 0o < β < 70o 

Relative water depth, h / Hm0 toe [-] 1.20 < h / Hm0 toe < 9.80    

Relative crest freeboard, Rc / Hm0 toe [-] -2.00 < Rc / Hm0 toe < 0.70 

Relative crest width, Wc / Hm0 toe [-] 0.60 < Wc / Hm0 toe < 6.00    

Upward front slope, cot αu f [-] 1.0 < cot αuf < 3.8 

Roughness factor, γf [-] 1.0 

Notional Permeability factor, P [-] 0.10 

 
Prediction model input boundary for smooth structures 
 
Parameter considered  Prediction model input boundary 

Incident significant wave height, Hm0 toe [-] Hm0 toe > 0.03m 
Hm0 toe / h < 0.50 

Mean wave steepness, s0 m-1,0 toe [-] 0.006 < s0 m-1,0 < 0.080 

Mean angle of wave incidence, β [o] 0o < β < 45o, but enter as input value: β = 0o 

Relative water depth, h / Hm0 toe [-] 1.55 < h / Hm0 toe < 11.00 

Relative crest freeboard, Rc / Hm0 toe [-] -3.50 < Rc / Hm0 toe < 1.80 

Relative crest width, Wc / Hm0 toe [-] 0.01 < Wc / Hm0 toe < 47.00 

Upward front slope, cot αu f [-] 1.0 < cot αuf < 5.0 

Roughness factor, γf [-] 0.38 < γf < 0.90 

Notional Permeability factor, P [-] 0.10 < P < 0.60 

 
Prediction model input boundary for mound structures 
 
All parameters that are used in the DELOS formulae and in the present prediction model as well are 
showing physically tendencies between the given boundaries. The relevant parameters that were 
introduced in this study new for wave transmission have shown to be important for the prediction of 
wave transmission. The water depth at the toe of structure h [m] is found important for smooth 
structures, contrary for mound structures where other parameters are apparently dominating wave 
transmission resulting in a smaller influence. For an increasing water depth the wave transmission 
decreases for smooth structures. No explanation is given in this study, but it is expected, the water 
depth having its influence on wave transmission, affects the shape of the incident waves. The 
roughness factor γf in combination with the notional permeability factor P [-], are found important to 
distinguish mound from smooth structures and also handling types of structures in between for 
different permeability’s and various types of armour units.     

Application of the model for future users 

The model is very suitable for predicting the wave transmission coefficient for conventional smooth- 
and mound breakwater structures by future users, although one should have some knowledge about 
the physics involved in the field of coastal engineering to interpret the results right. At this moment 
the model is using the software packages MS Excel and Matlab 7, but some possibilities are proposed 
to make the prediction model available for future users. Some possibilities are: Linking the Matlab 
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interface to a PHP-web page, compiling the Matlab interface to a stand-alone downloadable program 
or to use Excel as interface, instead of Matlab.  
 
The strength of the prediction model is that it not only predicts a Kt, but also gives insight in the 
reliability of the prediction itself. One has the possibility to perform a sensitivity analysis to all input 
parameters in order to obtain an optimal design and a reliable predicted Kt. For design purposes the 
model is therefore very suitable, because in a short period of time one can have a reliable indication 
of a breakwater structure with a transmission coefficient that fulfils the design criterion on this 
point. 
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1 Introduction 

1.1 Study background 

Wave transmission is often an important criterion in the design of a breakwater structure and 
influences early decisions on the type of structure and the applied construction material. In design 
stages classical formulae are used to predict the wave transmission coefficient. The finished 
European Union funded project DELOS was focusing on wave transmission and an extensive 
database on low-crested mound structures was generated. During DELOS, a new empirical wave 
transmission formula was found, but still showed a considerable scatter, probably due to a limited 
number of parameters included.  
 
Another recently finished EU-project, named CLASH was concentrating on wave overtopping. An 
extensive homogeneous database was composed. Homogeneous means that every available dataset 
was screened carefully before the data was included to the database. A new aspect of this database 
was that the geometry of every type of structure could be described by a limited number of 
parameters (toe, berm, crest, slopes, etc.). The second part of CLASH involved the development of a 
prediction tool, using neural networks in combination with resampling techniques. These kind of 
neural networks are difficult to make, but easy to use for people in this field of interest. The use of 
the database on its own and the neural network prediction model for wave overtopping have been 
shown already (Van der Meer et al., 2005). 
 
The study described in this report concentrates on wave transmission and is based on both 
European Union projects DELOS and CLASH. For wave transmission a simple neural network has 
already been tested for some DELOS datasets and promising results were obtained (Panizzo et al., 
2003). The present study aims to improve the prediction of the wave transmission coefficient with 
the successful methods of CLASH.  
 
The main objectives of this study are: 
 

• Screening the existing wave transmission database of DELOS in order to make it 
homogeneous and collecting new datasets to add to the DELOS database. 

• Developing an accurate prediction model, based on neural networks according to the 
existing CLASH prediction method. 

• Using the homogeneous database and prediction model to analyze the influence of various 
parameters in wave transmission and comparing this with existing empirical formulae. 

• Making the prediction model available to users in the field of coastal engineering. 
 
Till present, the last two mentioned objectives have not often been applied by developers of a 
neural network and this is certainly new in this field. 
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1.2 Problem definition 

1.2.1 Main question 
The main question of this study can be formulated as follows: 
 
Is it possible to obtain accurate and improved results in predicting the wave transmission behind 
various types of low-crested structures with use of a predicting model, based on neural networks 
and a homogeneous database as starting point? 

1.2.2 Sub questions 
In addition to the main question the following sub questions arise: 
 

• Which suitable parameters, influencing wave transmission, should a homogeneous database 
contain in order to describe the hydraulic and structural properties of available test data 
well? 

• How reliable are these parameters and do they describe the structure well for each 
individual test?  

• Which parameters of the homogeneous database show influence in the prediction model of 
the wave transmission coefficient and what parameters could be neglected because of minor 
influence? 

• What is the accuracy and improvement compared to the results of the neural network made 
by Panizzo et al. (2003) and the DELOS formulae (Van der Meer et al., 2004)? 

• Depending on the out comings of the questions mentioned above: Could this prediction 
model be made available for users in the field of coastal engineering? 

1.3 Goal description 

1.3.1 Aim of the study 
The aim of this study is to find possibilities to make a widely applicable prediction model for wave 
transmission behind various types of low-crested structures. Accuracy and simplicity are important 
factors that make this prediction model useful or not. Until now, wave transmission could only be 
predicted with classical formulae and with help of a simple neural network for only mound type of 
breakwater structures. This study is mainly focused to improve the use of neural networks as 
prediction model for wave transmission by:  
 

• Making the prediction of the wave transmission coefficient more accurate with use of a 
homogeneous database and neural networks in combination with resampling techniques 
(CLASH method). 

• Making it possible to handle a variety of types of low-crested breakwaters, in such a way the 
prediction model can be used in a wide range (for instance permeable and impermeable 
structures or rough and smooth structures). 

• Making the prediction model available for future users, like classical formulae are used at 
this moment. 

1.3.2 Mission statement 
The mission of this study can be summarized in one sentence: 

 
"Obtain and apply an accurate and available prediction model for 
the wave transmission coefficient, for various types of low-crested 
breakwater structures, with help of neural networks in combination 
with resampling techniques and a homogeneous database." 
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1.4 Methodology 

In general the same methodology of CLASH is followed during this study, adjusted to the subject of 
wave transmission. A homogeneous database is used as starting point to train a neural network in 
combination with resampling techniques. The obtained prediction model can be used to predict the 
wave transmission in a better way than existing classical formulae and gives insight in the accuracy 
and parameter influences.  
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2 Review on wave transmission 

This chapter gives a brief review on wave transmission. A small literature study is performed on this 
subject in advance of the main study itself. In the second paragraph, different types of low-crested 
breakwater structures will be defined. Secondly, the governing parameters affecting wave 
transmission will be discussed, followed by a description of the most relevant studies on this 
subject. 

2.1 The wave transmission phenomenon 

Breakwaters are applied worldwide to create sheltered areas for commercial, recreational, 
environmental or protective reasons. When incident waves are blocked by a high-crested breakwater 
structure, most of the wave energy will be dissipated and there will appear some reflection. Energy 
dissipation can be clearly visual in the form of spectacular wave attacks causing severe wave 
overtopping, expressed in a discharge or in a percentage of the total incident waves.  
 
As the name already implies, low-crested structures 
have relative small crest freeboards compared to the 
incident waves, and are frequently or always 
overtopped. In this case, one speaks of wave 
transmission instead of wave overtopping, expressed as 
ratio of the transmitted wave height over the incident 
wave height. A transmitted wave can often be clearly 
noticed at the leeside of a low-crested structure. 
 
One can think of many cases where low-crested are 
more favorable than high-crested structures. 
Breakwaters are very costly and a smaller crest height 
simply gives a considerable cost reduction. In areas 
where shore erosion is causing problems, submerged 
structures are often preferred, because of the limited 
visual impact, while being effective in reducing the height of incident waves before they reach the 
shore. There are even plans proposed to build an offshore submerged breakwater along the Dutch 
coast to offer sufficient protection against the onslaught of the waves during notorious westerly 
storms. This plan is based on experiences in protection isles in Dubai. It is clear, that the main 
design criterion for low-crested structures is the allowable wave transmission coefficient and 
therefore very interesting to predict in early design stages. 

2.2 Types of low-crested structures 

There exist many types of breakwater structures, which can be divided according to their structural 
characteristics. This study is only including low-crested breakwater structures. Low-crested 
breakwaters are structures, which are regularly or always overtopped by the incident waves 
(according to the DELOS project definition). Most artificial structures of this type along European 
shores are constructed with rubble mound jetties. DELOS was therefore restricted to this type of 
structures and to natural boulder reef as term of comparison. During this study more type of 

Figure 2-1 Overtopping or transmission?
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structures than within DELOS have been taken into account. All present structures will be defined in 
the following paragraphs. 

2.2.1 Mound type breakwaters 
Mound types of breakwaters are actually no more than large heaps of loose elements, such as 
gravel, quarry stone or for instance concrete units. The stability of the exposed slope of the mound 
(the armour layer) depends on the ratio between load (waves) and strength (weight of elements). A 
‘statically stable breakwater’ is a structure where the weight of the elements in the armour layer is 
sufficient to withstand wave forces. These are usually the widely applied conventional rubble mound 
structures. Reef breakwaters are made of homogenous materials and are dynamically stable. The 
structure is allowed to deform under severe wave attack. Submerged structures are breakwaters 
completely present under sea water level. Some cross sections of mound breakwater structures are 
given in Figure 2-2. 
 
Special types of mound breakwaters are artificial reefs, consisting of special armour units. These 
units are placed on top of rubble mounds and are usually submerged. These structures behave more 
or less the same as other mound type breakwaters (found to be very permeable) and will be treated 
like mound type breakwaters.   

 
Figure 2-2 Mound type of breakwaters 

2.2.2 Smooth type breakwaters 
Smooth type breakwater structures are treated separately, although these structures can partly be 
composed of loose material. Smooth structures always have a smooth and impermeable cover layer. 
Only wave overtopping causes wave transmission, because transmission through the structure is 
simply impossible. Logically, these structures are always statically stable under wave attack and can 
be submerged as well. The structure can be covered with an impermeable material like concrete or 
with an asphalt layer, but also very densely packed revetments can cause a smooth and 
impermeable surface. Smooth type breakwaters behave very differently on wave transmission and 
one of the big challenges of this study is to handle these types of structures within one neural 
network with other type of structures. 
 

 
 
Figure 2-3 Smooth type of breakwater 

Emerged mound breakwater 

Reef mound breakwater 

Submerged mound breakwater 

Submerged artificial reef breakwater  

Smooth breakwater (impermeable)
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2.2.3 Composite breakwaters 
Composite types of breakwaters combine a monolithic element with a berm composed of loose 
elements. In fact, there is an abundance of alternatives that combine a rigid element and a flexible 
structure. The difference with a caisson type breakwater is that there is clearly a separated 
structure present, placed on top of a rubble mound. 

2.3 Parameters influencing wave transmission 

To obtain a valid and useful prediction model it is important to have pre-knowledge of the 
parameters influencing wave transmission. A division is made in hydraulic and structural parameters, 
influencing wave transmission. 

2.3.1 Hydraulic conditions 
Incident wave height 
The most important hydraulic parameter involved in wave transmission, is the incident wave height. 
In case of irregular waves, this parameter is commonly expressed like the significant wave height. 
The incident wave height is directly present in the definition of the wave transmission coefficient Kt: 
  

0

0

m transmitted
t

m incident

H
K

H
=  [-]          Eq. 2.1 

        
Other parameters are always related to the incident wave height. A crest freeboard for instance can 
only be called high if the incident wave height is relatively small. A stone diameter can only be 
called small if the incident wave height is relatively large. If the term relative is used in this report, 
it is in general meant relative to the incident wave height.  
 
Incident wave period 
For the incident wave period can be stated, that a longer wave period means lower wave steepness 
for a constant wave height. For mound structures without overtopping, waves with a longer period 
can propagate easier through the structure and therefore give a larger Kt. For mound and smooth 
structures as well that are overtopped, lower wave steepness will increase the wave run-up and 
from this it results in more wave transmission.  
 
For submerged breakwaters, Van der Meer (1990) found that longer waves could pass unhindered, 
while the breakwater influenced the shorter waves. The best way to describe the incident wave 
period is from a spectral analysis. It is found that the spectral mean wave period Tm-1,0 toe is most 
suitable to be used for coastal structures, because of usually shallow water conditions (TAW, 2002). 
 
Angle of incidence 
According to Van der Meer et al. (2004), the influence of the angle of incidence to the normal of the 
structure is related to the permeability of the structure. The influence is non to marginal for a 
rubble mound structure, whereas the influence for the smooth structures is quite relevant. For 
smooth structures the wave transmission coefficient decreases significantly with an increasing angle 
of incidence. More wave energy is transposed in the lateral direction of the breakwater structure and 
less wave energy is present to the lee side of the structure if the angle of incidence increases to the 
normal of the structure.   

2.3.2 Geometry of structures 
Crest freeboard 
The structure crest freeboard, often symbolized as Rc in most reports, is the distance between sea 
water level and the crest of the breakwater structure. In every study the crest freeboard is found to 
be one of the most important structural parameters for wave transmission. 
 
For emerged impermeable structures, wave run-up only determines the degree of overtopping and 
therefore wave transmission. Transmission through the structure itself is for impermeable structures 
zero. Wave transmission will not occur providing there is no overtopping. A decreasing relative crest 
freeboard leads to more overtopping. Therefore, the transmission coefficient Kt will increase. For 
mound structures, although the wave energy transfer through the structure body affects 
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transmission, the crest freeboard still plays an important role in wave overtopping. In general, a 
higher relative freeboard gives a lower transmission coefficient. 
 
When a structure (mound or smooth) is submerged and the crest is situated well below the water 
level, the influence of the crest freeboard will disappear. Nevertheless, the crest freeboard Rc is 
found to be one of the most important parameters for both rubble mound (rough) and smooth 
structures and is always taken into account in transmission studies.  
 
Crest width 
Previous studies, including the DELOS project, indicated that the influence of the crest width is 
obvious: A wider crest will reduce wave transmission (Briganti et al., 2003). At low-crested 
structures, a larger relative crest width will lead to a longer way for the waves to overtop the 
structure and therefore more wave energy dissipation is present. Van der Meer and Daemen (1994) 
summarized the influence of the relative crest width for submerged structures. An increasing relative 
crest width will force the waves to break and therefore more energy is dissipated on the crest, 
resulting in a lower transmission coefficient. A small relative crest width has no influence on wave 
transmission at all.  
 
For the case of emerged smooth structures, the crest width has small influence, because all 
overtopped water discharges will pass over the structure, independently of the width (to a certain 
level of course). 
 
Structure slopes 
For emerged structures, the seaside slope influences wave run-up and therefore wave overtopping, 
hence wave transmission. On the gentler slope more energy will be dissipated and less transmission 
occurs. The seaside slope is included in the surf similarity parameter, also known as the Iribarren 
number (ξ), describing the type of wave breaking on the slope itself, and has its influence on wave 
transmission. For submerged breakwaters the seaside slope seems to be of minor importance, 
because wave run-up is not present. 
 
The influence on the leeside (back) slope is not been studied in the past. It is expected to be of 
minor importance, as the lee side is not influencing the type of breaking. On the other hand, a 
gentler back slope causes more wave energy dissipation as the waves have to travel a longer 
distance. 
 
Berm presence 
Some breakwaters are applied with a berm, although not often applied for low-crested structures as 
the crest itself is already present around sea water level. A berm is a horizontal area at the seaward 
slope of a breakwater structure to affect incident waves by forcing them to break. At sea water level 
a berm is most effective in dissipating wave energy. To identify a berm it has to fulfill this property 
of affecting incident waves, hence it has to be positioned in the centre area of the structure because 
there wave action is concentrated.   
 
Toe presence 
A toe looks at first sight the same as a berm, but is usually situated well under the water level. A 
toe is placed for stabilizing the armour layer and is not intended for dissipating wave energy. 
Usually a toe is made of a lighter material than the armour layer. However, a toe can be felt by 
incident waves, especially when the water level is relative low and is present within the area of 
influence. 

2.3.3 Material properties 
Surface roughness / permeability 
The roughness and the permeability of the surface of a breakwater structure are also affecting the 
wave energy dissipation. In general can be stated, that the rougher and more permeable a surface, 
more wave energy will be dissipated. The roughness and permeability are important for emerged 
breakwaters, because they are strongly influencing wave overtopping and wave run-up and 
therefore wave transmission. The roughness and permeability of the surface become less important 
for submerged structures, because in those cases wave run-up is not present and the crest is below 
sea water level.  
 
Smooth and mound structure behave completely different for wave transmission. At smooth surfaces 
almost no wave energy is dissipated due to friction and permeability effects. Contrary to mound 
structures where in case of very rough structures, the surface can dominate the wave transmission 
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phenomenon. Because of the influence of the roughness, in case of smooth structures other 
parameters can show more influence on wave transmission than the case for mound structures, like 
explained in the case for the angle of incidence, crest freeboard, crest width and the slopes. 
 
Core permeability 
Breakwater structures with a permeable surface (armour layer) and a permeable core (rubble), allow 
waves to travel through the structure itself and contribute to wave transmission as well. The core 
permeability is of importance for breakwater structures with a relative high crest freeboard. Wave 
overtopping for relative low crest freeboards mainly causes wave transmission. 
 
An impermeable core will block incident waves traveling through an emerged breakwater structure, 
resulting in a lower transmission. Highly permeable structures (homogeneous) allow waves to travel 
through the structure, but overtopping waves will experience this same effect and a lot of wave 
energy is dissipated. 

2.4 Relevant studies on wave transmission 

Many studies have been performed in the past to get better insight in wave transmission. The recent 
DELOS project was focusing on wave transmission and improvements have been made. The most 
relevant studies on wave transmission, close related to this study, are treated in this paragraph. 

2.4.1 Van der Meer and Daemen (1994) 
Van der Meer (1990) proposed a formula for wave transmission in his report "Data on wave 
transmission due to overtopping". The analysis on data sets of wave transmission led to a practical 
formula in Daemen (1994). Where Van der Meer (1990) used the incident wave height Hi to make Rc 
dimensionless, Daemen introduced the nominal diameter Dn50 to make Rc and Hi as well 
dimensionless. The influence of both Rc and Hi could be studied individually. 

2.4.2 D’Angremond et al. (1996) 
d’Angremond et al., 1996 (often also referred to De Jong) proposed another transmission formula 
for mound structures. The formula was derived, based on available data on rubble mound 
breakwaters and breakwaters with an armour layer of Tetrapods. An extensive investigation on the 
influences of crest width and surf similarity parameter was carried out in this research. 
 
For mound structures: 
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For smooth structures: 
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2.4.3 Briganti et al. (2003) 
Briganti et al. (2003) analyzed the extensive DELOS database and used the 2D random wave 
datasets to improve the prediction of the transmission coefficient starting with the formulae of Van 
der Meer and Daemen (1994) and d'Angremond et al. (1996). The same set of parameters was used 
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as the governing ones for wave transmission in the aforementioned papers. The outcome of this 
analysis is the calibration of two design formulae based on the d'Angremond et al. (1996) 
relationship. The analysis highlighted the need of a supplementary formula allowing a reliable 
estimate of the transmission coefficient at wide crested breakwater (B/Hi>10). Because the formula 
will be used in this study as comparison for the new prediction model the formula is given: 
 
For mound structures with Wc / Hi > 10: 
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For mound structures with Wc / Hi < 10 the formula of d’Angremond (1996) is still valid: 
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For the range 8 > Wc / Hi > 12 an interpolation should be made between the two different formulae. 
 
Having a lower boundary of: 075.0=tlK   

Having a upper boundary of: 8.0=tuK  

 
For smooth structures the d’Angremond (1996) formula remains the same. 
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Having a lower boundary of: 075.0=tlK   

Having a upper boundary of: 8.0=tuK  

 
Furthermore, a preliminary analysis of the spectral shape changes have been performed on the new 
tests carried within the DELOS project. This analysis is based on the correlation of the energy shift 
induced by the low crested structure and the same parameters are used in estimation the wave 
transmission coefficient. A parameter useful to quantify the shift has been defined and also the 
spectral decay of the transmitted spectra has been studied. 

2.4.4 Van der Meer et al. (2004) 
Incident and transmitted wave angles are not always similar: for rubble mound structures, the 
transmitted wave angle is about 80% of the incident one, whereas for smooth structures the 
transmitted wave angle is equal to the incident one for incident wave angles less than 45% and is 
equal to 45% for incident wave angles larger than 45%. The influence of the wave angle on the 
transmission coefficient is small for rubble mound structures, whereas smooth structures show a 
clear influence on the wave angle, which can be described by a cosine function.   

( ) 3
2

cos β  is added to a re-analyzed formula of d’Angremond (1996), valid for smooth structures 

only: 
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Having a lower boundary of: 075.0=tlK   

Having a upper boundary of: 0.80tuK =   

 
The formula is valid to use for the following conditions:  
 

31 << opξ , º70º0 ≤≤ β  and 1 < Wc / Hi < 4 
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3 Homogeneous database on wave 
transmission 

3.1 Backgrounds of database 

3.1.1 Database objectives 
The homogeneous database will be used to train the neural network and it has therefore significant 
influence on the prediction of the wave transmission coefficient. It is important and necessary to 
make a database homogeneous in order to obtain useful and accurate results from the prediction 
model. It can be stated too, that the more test results this database will contain, the more input 
values there will be available for a neural network to train with, and from this the results will also 
be more accurate and overfitting of the neural network can be avoided (see Chapter 4). For these 
reasons a considerable part of the study is spent to compose a reliable homogeneous database. 
 
The database consists of a variety of low-crested structure tests, discussed in Paragraph 2.2. The 
structures are tested at different test facilities, under different circumstances and with use of 
different measure techniques. Making a homogeneous database means in principal that the collected 
datasets are first screened carefully for reliability and secondly added to one database in such a 
way, that all datasets are described with a fixed number of parameters. The used parameters can be 
divided in: general, hydraulic and structural parameters. To have insight in these parameters, 
reports about the individual tests are collected and examined in detail.  
 
It is important to consider carefully which parameters the homogeneous database should contain. 
One can state that the more information is included in the database, the more valuable the database 
will be for further research purposes. At the same time one has to try to limit the number of 
parameters in a certain sense. Preference for simplicity over needless complexity can be mentioned 
here, having in mind that a neural network can perform better if the number of input parameters is 
restricted. A homogeneous database has already been made in this way for wave overtopping within 
the EU-project CLASH, with a number of 31 fixed parameters (see Verhaeghe et al., 2003). The main 
part of these parameters seems to be import and suitable for wave transmission as well, but there 
are parameters involved that are found to be pre-empted. In order to have consistency, in a first 
attempt it is tried to use as many as the same parameters of the CLASH database. In this way, the 
database becomes also a valuable source of information, although some parameters might not be of 
use for the prediction model. 

3.1.2 DELOS database 
A first effort made within the EU-funded project DELOS, has been both to perform new tests on low-
crested structures and to gather many existing datasets on wave transmission to build an extensive 
database. A second effort was to perform a review and an upgrading of the existing formulae by 
means of this extensive database. More details are given in Briganti et al. (2003) and Van der Meer 
et al. (2004), see Paragraph 2.4. 
 
A wide database concerning experiments on wave transmission at low-crested structures in wave 
flumes has finally been collected. Earlier work by Van der Meer and Daemen (1994) and 
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d’Angremond et al. (1996) has been used as starting point. They began to collect and reanalyze data 
from different sources, giving a description of the various phenomena, which led to two different 
formulae. The gathered database, made up of 2,337 tests, includes the data previously described 
and analyzed by Van der Meer and Daemen (1994) and by d’Angremond et al. (1996), that is 
referred to as the “old database” in DELOS studies. This database includes rubble mound rock 
structures as well as Tetrapod and Accropode armour layers.  
 
Within the DELOS project, series of 2D random wave tests have been carried out in 2001 at the 
University of Cantabria, Spain, (referred as UCA here after) and at the Polytechnic University of 
Catalonia, Spain, (referred to as UPC), described in Gironella et al. (2002). Both narrow and large 
crests have been tested, in particular in the UCA tests the parameter B/Hi ranging from 2.6 to 30, 
allowing a detailed analysis on the influence of this parameter.  
 
Large-scale tests in the Large Wave Channel (GWK), of the Coastal Research Centre (FZK), in 
Hannover (Germany), have been performed and analyzed by the University of Naples, Italy, 
Calabrese et al. (2002). The main objective of these tests was to look at low-crested and submerged 
breakwaters in presence of broken waves on a beach. 
 
Furthermore, tests from Seabrook and Hall (1998) have been included in the database. Structures 
tested in this study are classical rubble mound submerged breakwaters. Both the relative freeboard 
and the relative crest width have been varied within a wide range. In particular B/Hi reaches values 
of 74. Also tests results from Hirose et al. (2000) concerning new type of concrete armour units, 
called Aquareef, designed for submerged structures, have been added to the DELOS database. 
Similar to the Seabrook and Hall (1998) tests, the relative crest width has been varied from very 
small values up to B/Hi = 102. Both datasets contain submerged structures only. Finally, 
experimental data coming from Melito and Melby (2000) investigation on hydraulic response of 
structures armoured with Coreloc, have been considered. These tests have been performed both on 
submerged and emerged structures with the relative freeboard varying in a wide range. 

3.1.3 CLASH database 
The CLASH database (Verhaeghe et al., 2003) forms the starting point for the homogeneous 
database on wave transmission. For this reason a small review on the CLASH database is given in 
this paragraph. 
 
Before the EU-funded project CLASH started, no universal prediction method for wave overtopping 
at coastal structures existed. The CLASH-project intended to fill the deficit of a generally applicable 
overtopping formula by creating a generic prediction method with the aid of artificial neural 
networks. As the application of the neural network technique requires a huge amount of existing 
overtopping information to train the network, one of the main tasks within the CLASH - project was 
to set up a large homogeneous database, consisting of overtopping test results. Existing datasets on 
overtopping were gathered from universities and research institutes all over the world. These data 
were partly originating from partners within CLASH, but also data from elsewhere in Europe and 
worldwide (e.g. USA, Japan) contributed to the database. 
 
Establishing a reliable database required detailed information on the overtopping tests. It has to be 
stressed that the reliability of the database was all the more important, as the database was to be 
used for the development of a neural network as well. Therefore, in a second phase, each particular 
dataset was screened carefully on consistency. This was done by analyzing the original test reports. 
Not only information about the wave characteristics, the overtopping structure and corresponding 
overtopping was gathered, but also information concerning the test facility, the processing of the 
measurements and the precision of the work is searched for. To account for the effect of reliability 
in the database, a ‘reliability-factor’ was defined for each test. Values from 1 to 4 can be assigned 
to this factor, standing for ‘very reliable’ up to ‘not reliable’. In the third phase, all gathered 
information was included in the database by means of a fixed number of parameters. The 
parameters were chosen in such a way that an as complete overview as possible of the overtopping 
tests was represented. At the same time it was tried to limit the number of parameters, as a neural 
network only can consist of a restricted number of input parameters depending on the number of 
tests that were available. Distinction was made between hydraulic information (incident wave 
characteristics, measured overtopping volume), structural information (test section characteristics) 
and additional general information (reliability of the test, complexity of the structure). Finally, each 
test was incorporated in the database by means of 31 parameters of which 11 hydraulic parameters, 
17 structural parameters and 3 general parameters.  
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In the first stage of the CLASH project, little was known about the combined effect of roughness and 
permeability of structure slopes composed of concrete armour blocks. White spot tests performed in 
this context, resulted in more precise roughness / permeability factors γf for a lot of armour types, 
replacing the estimated values of γf included in the first preliminary database. This  γf is used in this 
study as well and the same values will be used as within the CLASH project. 

3.2 Origin of transmission datasets 

The total amount of data collected during DELOS is extended during this study to a total number of 
3,382 tests. All available datasets are summarized (in the same order as present in the 
homogeneous database) to give insight in the diversity of the tested breakwater structures. 
      
Dataset  Type of structure  Armour unit Characteristics Number  

      
Aquareef (2002) Artif icial reef Aquareef element Highly permeable / submerged  1,063  
UPC (2002) Mound structure Rubble stone Permeable / emerged and submerged 20  
Wang (2002) Mound structure Rubble stone Permeable / emerged and submerged 84  
Wang (2002) Smooth structure Smooth Impermeable / emerged and submerged 84  
Zannutigh (2000) Mound structure Rubble stone Permeable / emerged and submerged 56  
UCA (2001) Mound structure Rubble stone Permeable / emerged and submerged 53  
Seebrook & Hall (1998) Mound structure Rubble stone Permeable / submerged 633  
Melito & Melby (2002) Mound structure CoreLocs Permeable / emerged and submerged 122  
Seelig (1980) Smooth structure Smooth Impermeable / emerged 13  
Seelig (1980) Mound structure Rubble stone Permeable / emerged 51  
Seelig (1980) Mound structure Placed rock Impermeable / emerged 18  
Van der Meer (1988) Reef structure Rubble stone Permeable / emerged and submerged 31  
Daemrich & Kahle (1985) Smooth structure Smooth Impermeable / submerged 147  
Daemrich & Kahle (1985) Mound structure Tetrapods Permeable / submerged 196  
Daemen (1991) Reef structure Rubble stone Permeable / emerged and submerged 53  
Van der Meer (2000) Smooth structure Smooth Impermeable / emerged and submerged 18  
Van der Meer (2000) Mound structure Rubble stone Permeable / emerged and submerged 5  
Powell & Al lsop (1985) Mound structure Rubble stone Permeable / submerged 42  
Calabrese (2002) Mound structure Rubble stone Permeable / emerged and submerged 45  
Ahrens (1987) Reef structure Rubble stone Permeable / emerged and submerged 201  
DH-M2090 (1985) Mound structure Rubble stone Permeable / emerged 32  
DH-H2061 (1994) Mound structure Rubble stone Permeable / emerged and submerged 32  
DH-H4087 (2002) Mound structure Rubble stone Permeable / submerged 20  
DH-H1872-2D (1994) Mound structure  Tetrapods Permeable / emerged  9  
DH-H2014 (1994) Smooth structure Smooth Impermeable / emerged and submerged 11  
DH-H1974 (1994) Mound structure Accropods Permeable / emerged 10  
TU Delft (1997) Mound structure Gabions Permeable / emerged 137  
DH-1872-3D (1994) Mound structure Tetrapods Permeable / emerged 30  
Allsop (1983) Mound structure Rubble stone Permeable / emerged 21  
Padova (2004) Mound structure Rubble stone Permeable / emerged and submerged 11  
Daemrich, Mai, Ohle (2001) Mound structure Rubble stone Permeable / submerged 100  
DH-4171 (2003) Smooth Placed rock Impermeable / emerged 9  
DH-H524 (1990) Reef structure Rubble stone Permeable / emerged and submerged 14  
   Total number of tests 3,370  

Table 3-1 Available transmission tests 
 
Of these tests, 67.1% of the total amount concerns submerged breakwaters, and 9.3% concerns 
impermeable breakwater structures. As mentioned before, most datasets are gathered during the 
DELOS project. The datasets are collected worldwide and show diversity in the type of structure and 
the number of tests performed.  
   
Structure type  Number [n] Percentage [%] 

  
All tests 3,370 100.0 
Mound structures tests 3,117 92.5 
            Rubble stone (rock) 1,687 50.0 
            Concrete elements 367 10.8 
            Artificial reef elements 1,063 31.5 
Smooth structures tests 282 7.5 
Composite structures tests 9 0.3 
 
Table 3-2 Distribution of type of breakwaters 

3.3 Parameters present in database 

3.3.1 Description of parameters 
As stated before, the database has two goals to fulfill. The database on its own forms a valuable 
source of information and more parameters included will make the database more valuable. On the 
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other hand, too much information can make the database difficult to analyze and needlessly 
complex. The database forms the starting point to train a neural network with and for that reason a 
limitation of the number of parameters is important as well, having in mind that a neural network 
performs better with the number of input parameters limited to a minimum (see Chapter 4). In a 
first attempt, the same parameters as used in the CLASH database are determined for the 
transmission database as well. CLASH was successful in describing the hydraulic and structural 
parameters and the parameters used seem to be at first sight important for wave transmission as 
well. A total number of 33 parameters used in the database are given below. Note that these 
parameters are described in the database and only a selection of these parameters is used for the 
prediction model. 
 

h
ht

Bt

B

hb

Ac

Rc

Gc

Wc

αdf

αuf

αub

Hm0 toe

Tm-1,0 toe

β

Hm0 trans

γ

Dn50 core

Dn50 armour

m

P

 
Figure 3-1 Overview of governing parameters present in homogeneous database 
 
 
General parameters (3) 

 Name Definition 

1 Name This parameter assigns a unique name to each test 

2 RF [-] The ‘Reliability Factor’, (RF) gives an indication of the 
reliability of the test. It can adopt values 1,2,3 or 4 

3 CF [-] The ‘Complexity Factor’, (CF) gives an indication of the 
complexity of the section. It can adopt values 1,2,3 or 4 

Table 3-3 Definition of general parameters 
 
Hydraulic parameters (10) 

 Name Definition 

4 Hm0 deep [m] Significant wave height from spectral analysis 
determined at deep water 

5 Tp deep [s] Peak period from spectral analysis determined at deep 
water 

6 Tm deep [s] Mean period from spectral analysis or from time domain 
analysis determined at deep water 

7 Tm-1,0 deep [s] Mean period from spectral analysis in deep water 

8 β [o] Angle of wave attack relative to the normal on the 
structure 

9 Hm0 toe [m] Significant wave height from spectral analysis at the toe 
of the structure 
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10 Tp toe [s] Peak period from spectral analysis determined at the toe 
of the structure 

11 Tm toe [s] Mean period from spectral analysis or from time domain 
analysis at the toe of the structure 

12 Tm-1,0 toe [s] Mean period from spectral analysis at the toe of the 
structure 

13* Hmo trans [m] 
Significant wave height from spectral analysis behind the 
structure determined at one wave length distance from 
the structure  

Table 3-4 Definition of hydraulic parameters 
 
Structural parameters (19) 

 Name Definition 

14 hdeep [m] Water depth at deep water 

15 m [-] Slope of foreshore 

16 h [m] Water depth just seaward of the toe of the structure 

17 ht [m] Water depth on the toe of the structure 

18 Bt [m] Width of the toe of the structure 

19 Bh [m] Width of the horizontally schematized berm 

20 γf [-] Roughness / permeability factor for the structure 

21* pf [-] 
Permeability factor of the core of the structure: 50

50

n core

n armour

D
D

  

22* P [-] Notional permeability factor (Van der Meer, 1988a) 

23 cot αd f [-] 
Cotangent of the structure slope downward of the berm at the 
seaward side of the structure 

24 cot αu f [-] 
Cotangent of the structure slope upward of the berm at the 
seaward side of the structure 

25 cot αexcl f [-] 
Mean cotangent of the structure slope, without contribution of 
the berm at seaward side of the structure 

26 cot α incl f [-]  
Mean cotangent of the structure slope, with contribution of 
the berm at seaward side of the structure 

27* cot αu b [-] 
Cotangent of the structure slope upward at the leeside of the 
structure 

28 Rc [m] Crest freeboard of the structure 

29 B [m] Width of the berm 

30 hb [m] Water depth on the berm 
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31 Ac [m] Armour crest freeboard of the structure 

32 Gc [m] Width of the armour crest of the structure 

33* Wc [m] Total width of the crest of the structure 

 
Table 3-5 Definition of structural parameters 
 
The parameters marked in the tables above (marked with *), are introduced new in this study and 
are not present in the CLASH database (Verhaeghe et a., 2003). The marked parameters are 
supposed to be important in the case of wave transmission. Four parameters from the CLASH 
database have not been selected: q [m3/s], the overtopping discharge per meter width and Pow [-], 
percentage of the waves resulting in overtopping, because these parameters concern wave 
overtopping. Bh [m], the width of the horizontally schematized berm and tan αB [-], the tangent of 
the slope of the berm are not of use for this database, because no structures have appeared with 
sloping berms. Therefore, B = Bh is applied in this study.  

3.3.2 Parameter calculations 
For a major part of the homogeneous database all data was known on forehand, but missing 
parameters were calculated to complete the database. 
 
Calculations Dataset Number of tests 
   
Wave characteristics at the toe of 
structure from deep-water wave 
characteristics using the SWAN 
model 

Aquareef (2000) 1,063 

   
Hm0 toe from Hs toe using the model 
of Battjes and Groenendijk (2000)  

Powell and Allsop (1985) 
H2061 (1994) 
H4087  
H1872-2D (1994) 
H1974  
H1872-3D (1994) 
Allsop (1983) 
Padova (2004) 

42 
70 
20 
9 

10 
30 
21 
11 

   
 Total number of calculated tests 1,276  

(37.9%)  
 
Table 3-6 Calculations for missing parameters in database 

3.3.3 Parameter estimations 
If some hydraulic characteristics where missing, they are estimated with the given wave relations 
 
Estimations Dataset Number of tests 
   
Tm-1,0 toe is calculation with deep-
water wave period relations from 
other spectral wave periods 

All tests except Aquareef 
(2000) 
 

2,307 

   
The roughness factor is estimated  
(not given by Verhaeghe et al., 
2003) 

Aquareef (2000) 
 

1,063 

   
 Total number of estimated 

tests 
3,370 

 
Table 3-7 Estimations for missing parameters in database 
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3.4 Deep and shallow water wave relations 

Different relations exist for waves in relative deep or relative shallow water conditions. These 
relations become important in case missing hydraulic parameters have to be estimated. The 
relations used do not deviate from the CLASH project; still a summary of relations is given in this 
paragraph. 

3.4.1 Regular and irregular waves 
Wind is a turbulent flow with irregular velocity variations. So, when wind blows over a water 
surface, the resulting waves will be irregular too. An irregular wave field is best described with a so-
called variance- or energy density spectrum. A variance-density spectrum can be used for the 
statistical description of any fluctuating signal. The unit of frequency is Hz and for variance m2, 
hence the unit for variance density is m2/Hz. The physical meaning of a spectrum is clear when one 
realizes that the variance is identical to the energy in waves (= 1/2ρga2) reduced by a factor ρg. The 
physical meaning is thus the distribution of energy over the various wave frequencies, hence the 
name energy-density spectrum. Most of the available tests are performed with irregular waves from 
which the spectrum is known (mainly Jonswap or Pierson-Moskowitz). 

3.4.2 Deep water relations 
In relative deep water, the approximately linear behavior of waves allows for a theoretically 
statistical description of the wave characteristics, based on a Gaussian distribution of instantaneous 
values of the surface elevation. This results in a Rayleigh distribution of wave heights that is fully 
determined by the local wave energy. 
 
For deep-water conditions (depth / wave length > 0.5), with a narrow spectrum (the appearance of 
the sea surface elevation is quite regular), the height of the wave is practically twice the height of 
the crest: 2 crestH η≈  

 
Figure 3-2 The wave height H for wave conditions with a narrow spectrum 
 
The probability density function of H can be determined from the probability density function of 

crestη with a simple transformation:  

 

( ) ( )
crest

crestdp H p
dHη
ηη=        Eq. 3.1 

 
The probability density function of crestη is a Rayleigh-type function, which has only one parameter, 

the zero-th moment order moment (m0) of the variance density spectrum: 
 

2
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       Eq. 3.2 

 
So transforming this function gives the Raleigh distributed wave height: 

2 crestH η≈

crestη

time

( )tη
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2

0 0

( ) exp
4 8
H Hp H
m m

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
       Eq. 3.3 

 
The significant wave height is defined as the mean value of the 1/3-highest wave heights. This 
fraction of the waves can be identified in the Rayleigh distribution, so that the significant wave 
height can be determined from this distribution. Substituting leads to following expression: 
 

4
om oH m≈          Eq. 3.4 

 
Figure 3-3 The significant wave height in the Rayleigh probability density function 
 
When the significant wave height is estimated with use of total wave energy, m0, the notation Hm0 is 
proposed to use instead of H1/3. In actual sea conditions, the spectrum has a finite width and 
consecutive wave heights are correlated, so the significant wave height estimated from a zero-
crossing analysis differs from the significant wave height as estimated from the spectrum. Goda 
found the empirical relation 1/3 0.95 moH H= . For simplicity, the following will be used from now on 

for deep-water conditions: 
 

1/3 moH H=          Eq. 3.5 

 
Contrary to the wave height, the wave period of deep-water waves does not exhibit a universal law 
such as the Rayleigh distribution. Nevertheless, it has been empirically found that characteristic 
period parameters are interrelated at deep water. 
 
Spectral periods can be related with significant wave period parameters. The following relationship 
is mentioned: 1/31.05pT T≈  (Goda, 1985), in which Tp is the peak period and T1/3 the significant 

wave period. Rice (1944) found that the mean period of zero-upcrossing waves Tm can be expressed 
as: 
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=          Eq. 3.6 

 
Tm is not always the most reliable estimated characteristic wave period, because the value of m2 is 
sensitive to small errors or variations in the measurement technique or in the analysis technique. 
Another mean period is therefore sometimes used, which is less dependent on high-frequency noise.  
This period gives more influence to the lower frequencies in the spectrum, independent of the shape 
of the spectrum. In this way it is simple to determine for double peaked and ‘flat’ spectra the wave 
run-up, -overtopping and -transmission.  
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It can be defined as: 
 

1
1,0

0
m

mT
m

−
− =          Eq. 3.7 

 
For single peaked spectra, a fixed relationship between Tp and Tm-1,0 is accepted (TAW, 2002): 
 

1,01.1p mT T −≈          Eq. 3.8 

3.4.3 Shallow water relations 
Wave height distributions in relatively shallow water deviate from those in deep water due to the 
effects of the restricted depth-to-height ratio so that the Rayleigh distribution is no longer valid. 
Battjes and Groenendijk (2000) proposed a model that predicts the local wave height distribution on 
shallow foreshores for a given local water depth, bottom slope and total wave energy. 
 
In shallow water, shoaling, triad interactions and depth-induced breaking become relevant. Shoaling 
enhances the triad interactions, which cause profile distortion with an excess of crest height and 
shallow troughs, in contrast to the Gaussian waves in deep water. The change in the shape of the 
wave height distribution has led to a new model. A Composite Weibull-distribution is proposed to 
describe the wave height distributions on shallow foreshores. Below a transitional value of the wave 
height (Htr), the Rayleigh distribution remains valid. Above this value the exponent in the 
distribution has a different value.  
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   Eq. 3.9 

 
Htr at a certain water depth is found from the spectral parameter m0, the foreshore slope angle α  
and the water depth d: 
 

(0.35 5.8 tan )trH dα= +        Eq. 3.10 

 
The parameterization of Hrms by m0 and d: 
 

0
02.69 3.24rms

mH m
d

⎛ ⎞
= +⎜ ⎟⎜ ⎟
⎝ ⎠

      Eq. 3.11 

With a normalized transitional wave height, /tr tr rmsH H H= , a given table can be used in order to 

find desired statistical properties. It is possible in this way to find 1/3H  which can be used to 

determine the wanted H1/3 by:  
 

1/3 1/3 rmsH H H=         Eq. 3.12 
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The deep-water relations for the periods also deviate. In some cases the spectrum was measured at 
the toe of structure in shallow water and in that case the spectral periods can be calculated. The 
proposed deep-water relationships could also be used as a best guess in these shallow water 
conditions but this will affect the reliability of the values. 

3.5 Determination of hydraulic parameters 

The hydraulic parameters describe the wave characteristics that were present during the tests. In 
most cases wave characteristics were determined at the toe of the structure with use of a spectral 
analysis during the tests. However, in some cases the wave conditions were not measured at the toe 
of the structure but in deeper water: the foreshore. In order to obtain homogeneity, these wave 
conditions can be used to calculate the wave characteristics at the toe of the structure: inshore. In 
those cases, numerical simulations with the SWAN model have been made: starting from deeper 
water wave characteristics and the present foreshore, the wave characteristics at the toe of the 
structure are calculated. 
 

 
Figure 3-4 Definition of foreshore, inshore and backshore 

3.5.1 Foreshore wave characteristics 
Wave conditions that are measured at the foreshore (deep water) are included in the database. For 
some tests this information is used to calculate the missing wave characteristics at the toe of the 
structure. When no measurements are available in the foreshore, the values in the database are left 
blank. 
 
Significant wave height from spectral analysis in deep water Hm0 deep [m] 
The mean value of the 1/3-highest wave heights is, by definition, defined as the significant wave 
height. In relatively deep water the following relation exist:  
 

0 04m deep deepH m=         Eq. 3.13 

 
For relative deep-water conditions the following relation is used: 
 

0 1
3

m deep deep
H H=         Eq. 3.14 

 
Periods from spectral analysis determined in deep water Tp deep, Tm0,2 deep, Tm-1,0 deep [s] 
The deep-water relations from Section 3.4.2 are used to determine all wave periods, although 
relative deep-water conditions are not always present. The treated deep-water period relations are 
the best approximation to determine missing wave periods. The following relations are used: 
 

1 0,2
3

1.20 mT T≈          Eq. 3.15 

 

1
3

1.05pT T≈          Eq. 3.16 

 

1,01.1p mT T −≈          Eq.3.17  

Foreshore Inshore Backshore

m
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3.5.2 Inshore wave characteristics 
Important wave characteristics are present at the toe of the structure. In most tests the wave 
characteristics are measured at this specific point, where usually also shallow water conditions are 
present. The inshore wave characteristics will be used in the prediction model. 
 
Significant wave height from spectral analysis at the toe of the structure Hm0 toe [m] 
In case of tests with rather shallow water depths at the toe of the structure, the proposed point 
model by Battjes and Groenendijk (2000) can be used to determine the wanted wave height Hmo toe 
in case only the wave height H1/3 as derived from time domain analysis, is given. The input 
parameters for the point are in these cases the given value H1/3, the slope of the foreshore m and 
the water depth h at the toe of the structure, leading to the corresponding m0 at the toe of the 
structure. The Battjes and Groenendijk method (2000) leads then to the wanted parameter Hmo toe. 
This method allows to determine a good approximation of the significant wave height at the toe of 
the structure in shallow water depths. 
 
When no measurements are carried out at the toe of the structure the wave characteristics will be 
calculated with the SWAN model with use of the wave conditions at the foreshore, depth and slope 
of the bottom. 
 
Periods from spectral analysis determined at toe of the structure Tp toe, Tm toe, Tm-1,0 toe [s] 
The deep-water relations (Equation 3.15, 3.16, 3.17) for wave periods in deep-water will also be 
used as best approximation of the wave periods at the toe of the structure. 

3.5.3 Backshore wave characteristics 
Because this study is only focusing on the transmitted wave height no wave periods will be included 
in the database.  
 
Significant wave height from spectral analysis behind the structure Hm0 trans 
The same relations are used to determine the significant wave height behind the structure. If more 
wave heights were measured behind a structure, the wave gauge as close to one wavelength 
distance from the structure is assigned as Hm0 trans. 
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3.6 Determination of structural parameters 

In this paragraph the selected parameters that will be used as structural parameters of the 
homogeneous database are described. The definitions are directly used from Verhaeghe et al. (2003)  

3.6.1 General schematization of structures 
An important area, named in CLASH: 'the area of influence' or ‘centre area', is between the lines up 
and down 1.5Hmo toe referred to sea water level. It is found that within this area the structure has 
most influence on the wave transmission, because it is in this area where the wave action is 
concentrated (Van der Meer et. al., 1998). Structural parameters are related to the area of 
influence, which means that one structure can have different values for the fixed structural 
parameters depending on the water level and incident wave height. According to the wave height, 
this area will be larger or smaller. According to the water level the total area will be positioned more 
downwards or upwards. 

1.5 Hm0 toe

1.5 Hm0 toe

'Upper area'

'Centre area'

'Lower area'

 
 
Figure 3-5 Definition of structure areas 
 
The part of the structure within the area of influence will be called the centre area of the structure. 
The area below will be called the lower area; the area above will be called the upper area. The 
structural parameters are related to the boundaries of these areas.  
 
Berm definition  
To identify a berm it has to fulfill the property of affecting incoming waves, hence it has to be 
positioned in the centre area of the structure because here the wave action is concentrated. In 
other words: A berm can be identified as a berm in the homogeneous database when incoming 
waves actually ‘feel’ this horizontal part of the structure. When a berm is positioned in the upper or 
lower area it is not considered as a berm anymore. In these cases a berm can be identified as one 
of the two other possible horizontal areas: a crest or a toe.  
 
Crest definition  
The crest forms the top of the structure and is usually horizontal. It is possible that on top of the 
crest a parapet is placed to reduce overtopping, so there is a clear separation between the armour 
crest and the structure crest. A crest is not always present in the upper area, because there are 
submerged structures present as well.  
 
Toe definition 
The armour layer is not necessary extended over the full water depth down to the seabed. The 
armour layer should than be supported by a toe. A toe is positioned at the seabed at the front side 
of the structure and consists of a horizontal area, like a berm, for stability reasons. A toe has minor 
influence on the incoming waves, contrary to a berm, because it is positioned well below sea water 
level. A toe can be identified as a toe when the horizontal area is positioned in the lower area of the 
structure.  
 
It is possible a breakwater consists of a berm, but that it is identified as a toe in the homogeneous 
database because it is positioned in the lower area. Otherwise a toe can be identified as a berm 
when it is positioned in the centre area.  
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Note: The above-described positions relative to the area of influence of the toe, berm and crest are 
not binding. Tests with very small wave heights at the structure’s toe, leads to a very restricted 
centre area, where the berm is situated in the lower part of the structure. It is quite obvious in this 
case that is concerns a berm and not a toe, and consequently; it will be identified as a berm. Below, 
the same structure is considered with different identifications of the horizontal area of the structure, 
depending on the position, size of the central area and structural properties. 

Berm

Crest Crest

Toe

Crest

Toe

 
Figure 3-6 Identifying toe, berm and crest based on their position and structural characteristics 

3.6.2 Structural parameters 
The definitions of the structural parameters are directly used from Verhaeghe et al. (2003)   
 
Water depth at deep-water hdeep [m] 
hdeep is the water depth at deep-water in meters. At this water depth the deep-water wave 
characteristics Hmo deep, Tp deep, Tm deep, and Tm-1,0 deep are present. It is not always the case that 
relative deep water is present. It depends on the position of the wave gauges during the tests.  
 
Slope of foreshore m [-] 
The slope of the foreshore is described by the parameter m, by means of 1 (vertical): m 
(horizontal). If no uniform sloping foreshore exists, m has to be approximated. A relevant 
approximation consists of the mean value of m over a horizontal distance of about 2 wavelengths L0p 
(deep-water wave length based on Tp).   
 
Water depth just seaward of the toe of structure h [m] 
The value of h refers to the water depth just in front of the entire structure. It is often called the 
water depth “at the toe of the structure” in reports. In case of a horizontal flume bottom, the value 
of h is equal to the value of hdeep. 
 
Water depth on toe of the structure ht [m] 
In case a toe is present, the toe water depth is defined as the depth on the toe, measured from the 
middle of the toe. When no toe is present ht = h, because a toe is always placed on top of the 
seabed with the water depth h. 
 
Width of the toe of the structure Bt [m] 
The value of Bt is measured on top of the toe. In case no toe is present, Bt will be equal to zero. 
 
Example 1 
 
Figure 3-7 shows the toe of the structure of 
the dataset of Zannutigh (2000). Only a few 
tests in this dataset have the toe positioned 
in the centre area. It is clear in this case that 
the horizontal part of the structure should be 
treated like a toe and therefore the width is 
included in the database with parameter Bt. 
 
 
 
 
 Figure 3-7 Toe presence Zannutigh (2000) dataset 
 
 
 
 

cotau = cotad = 
cotaincl = cotaexcl

Bt

TOE
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Example 2  
 
For dataset M2090 (1985), the lower part 
of the structure consists of a composite toe 
as can be seen in Figure 3-8. According to 
the CLASH method, the two parts of the toe 
are incorporated into an average toe. It is 
assumed that the slope of a structure toe is 
around 1:2. By starting at the beginning of 
the toe, assuming a slope of 1:2, and 
taking an average toe width, the value of Bt 
is determined.  
 
 Figure 3-8 Toe presence M2090 (1985) dataset 
 
Example 3 
 
The same case is present for 
the dataset of H1872 (1993). 
The toe of this structure is 
composed of three parts and 
the same methodology is 
applied to determine an 
average width of the toe. The 
toe width of datasets H1974 
and Allsop (1983) are 
determined in the same 
manner like this example.    
 
 Figure 3-9 Toe presence H1872 (1993) dataset 
 
Water depth on the berm hb [m] 
The water depth on the berm is defined as hb, measured in the middle of the berm. If the berm is 
situated above sea water level, the value of hb will be negative. If no berm is present hb = 0, 
because a berm is mostly situated round sea water level.  
 
Width of the berm B [m] 
The value of B is measured on top of the berm. In case no berm is present, B equals to zero. 
Because all berms present in the database are completely horizontal, no use made of the CLASH 
parameters Bh. 
 
Crest freeboard of the structure Rc [m] 
Rc is the crest freeboard of the structure. It is the distance, measured vertically, from sea water 
level to the highest point of the structure.  
 
Armour crest freeboard of the structure Ac [m] 
Ac is the armour crest freeboard of the structure. It is the distance, measured vertically from sea 
water level to the upper limit of the armour layer. When the armour layer is the highest point of the 
structure Rc = Ac. 
 
Width of the armour crest of the structure Gc [m] 
Gc represents the armour crest width. In this way Gc only includes the permeable horizontal part of 
the crest, as it is assumed that overtopping water passes unhindered an impermeable surface if it 
reaches it. 
 
Total width of the crest of the structure Wc [m] 
The structure crest width Wc includes the total width of the structure. If no vertical structure 
(parapet or capping wall) is present at the crest: Wc = Gc. 
 
Cotangent downward front slope cot αd f [-] 
Cot αd f is the cotangent of the mean slope in the centre area of the structure below the berm. It is 
determined by taking the point of the structure at a level of 1.5Hmo toe below sea water level and 

TOE

CREST

CREST

TOE
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connecting it with the seaside endpoint of the berm. If the toe of the structure is situated in centre 
area then the starting point of the toe has to be used instead of the point at level 1.5Hmo toe below 
sea water level to determine αd f.  

 
Figure 3-10 Defining αd f 
 
Cotangent upward front slope cot αu f [-] 
Cot αu f is the cotangent of the mean slope in the centre area of the structure above the berm. It is 
determined by taking the point of the structure at a level of 1.5Hmo toe above sea water level and 
connecting it with the leeside endpoint of the berm. If the crest of the structure is situated in the 
centre area of the structure then the starting point of the crest has to be used instead of the point 
at level 1.5Hmo toe above sea water level to determine αu f. 

 
Figure 3-11 Defining αu f 
 
Mean front slope (berm included) cot αincl f [-] 
Cot αincl f is the cotangent average slope where the berm is included in this average value. It is 
determined by taking the point on the upper slope at a level of 1.5Hmo toe above sea water level and 
connecting it with the point on the lower slope at a level of 1.5Hmo toe below sea water level. Also 
here applies that if the toe or crest is situated in the centre area, the lowest and/or the highest 
point, which determines cot α inc l is determined by the nearest point.  
 
Mean front slope (berm excluded) cot αexcl f [-] 
Cot αexcl f is the cotangent average slope where the present berm is not taken into account. If the 
structure has no berm, cot α inc l = cotαexcl. 
 
Example 3 
 
The structure of the Aquareef (2002) dataset is in this example to show the determination of cot 
α inc l f and cot αexcl f. In this dataset the use of the area of influence can be seen clearly. In Figure 
3-12 the lower area is present below the berm and this forms the starting point of the dashed line. 
In Figure 3-13, the same structure is treated with a lower incoming wave height, resulting in a lower 
area positioned above the berm. The starting point of the dashed line is now from the beginning of 
the berm. So depending on the position of the area of influence the values of cot α inc l f and cot αexcl 

are varying. 

1.5Hmo toe 

u fα
1.5Hmo toe 

u fα

d fα
1.5Hmo toe 

1.5Hmo toe 
d fα
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Figure 3-12 Defining front slopes of Aquareef (2002) dataset with berm in centre area 
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Figure 3-13 Defining front slopes of Aquareef (2002) dataset with berm in lower area 
 
Cotangent upward back slope cot αu b [-] 
This parameter can be determined in the same way as cot αu f but in this case at the back of the 
structure.  
 
Roughness / permeability factor for structure γf [-] 
An indication of the roughness and the permeability of structure is given by the parameter γf.  

Type of armour layer Roughness / Permeability factor γf 

 
Smooth impermeable surface 
Placed rock 
Rocks (1 layer, impermeable core) 
Rocks (1 layer, permeable core) 
Rocks (2 layers, impermeable core) 
Rocks (2 layers, permeable core) 
Cubes (1 layer, random positioning) 
Cubes (2 layers, random positioning) 
Antifers 
HARO’s 
Accropods 
X-blocks 
Core-locs 
Tetrapods  

 
1.00 
0.90 
0.60 
0.45 
0.55 
0.40 
0.50 
0.47 
0.47 
0.47 
0.46 
0.45 
0.44 
0.38  

 
Table 3-8 Defining roughness factor 
 
The roughness has influence for emerged structures because the roughness affects the run-up (so 
overtopping as well), but the effect on submerged breakwaters is questionable. 
 
Notional permeability factor P [-] 
Van der Meer (1988a) used the notional permeability P in his stability formula to describe the 
permeability for waves underneath the armour layer. P is roughly defined as: 
 
P = 0.1  Impermeable breakwater (core) 
P = 0.4  Breakwater with core, filter and armour layer 
P = 0.5  Breakwater with only core and armour layer 



 

   3-29 

P = 0.6  Homogeneous structure, which consists only of armour rocks 
 
The notional permeability can be used for wave transmission as well in combination with the 
roughness factor.  
 
Ratio of nominal core diameter over nominal armour diameter pf [-] 
To express the permeability of the core relatively to the armour layer, the ratio of the nominal core 
diameter over the nominal armour diameter (referred to pf from now on) can be used as indication. 
In general, the size of armour units is related to the incident wave height for stability reasons and 
for mound structures the armour layer is quite permeable. If pf is close to zero it means the core 
material diameter is very small compared to the armour units, hence the core is found to be 
impermeable: this is the lower boundary of pf. A homogeneous structure is found to be the most 
permeable structure and p obtains a value of 1: this is the upper boundary. Pf only described the 
permeability of the core and it is range is 0 < pf < 1. A smooth structure has no armour units so pf 
can no be calculated. Having in mind that 0 means an impermeable core, the value of 1 is 
appropriate to use. pf can always be estimated if diameters are missing by comparing a structure 
with structures from which the pf is known. 

3.7 Determination of general parameters 

The general parameters of the homogeneous database are the ‘complexity-’ and ‘reliability factor’. 
To each test both factors are awarded to give information about the complexity of the determination 
of the structural parameters and the reliability of the hydraulic parameters. These two factors will 
be used to calculate a final weight factor. The weight factor will finally be used to compose the 
input database for the neural network. Depending on the value of the weight factor (ranging from 1 
to 9), a single test will occur with the same frequency in the input database. Hence, the most 
reliable data is given more influence in the prediction of the transmission coefficient.         
 
Complexity factor 
The complexity factor is related to the structural parameters ranging from 1 (a simple section) to 4 
(a very complicated section) according to Verhaeghe et al. (2003).  The factor is estimated during 
the process of homogenizing the database. It is based on the experience obtained during the 
determination of the structural parameters of a certain tested section.  
 
An example of a simple section is a conventional homogeneous type breakwater structure with a 
trapezoidal shape. A more complex section for instance is a reef type breakwater which is not 
dynamically stable. In the latter case it is hard to define the crest width of the structure, because 
the transition between slopes and crest are not clear due to the deformation of the initial structure. 
The definitions of the complexity factors are given in the table below: 
 
Complexity factor CF (-) Definition (Verhaeghe et al., 2003) 

1 
 
Simple section: The structural parameters describe the section 
exactly or as good as exactly. 

2 Quite a simple section: The parameters describe the section very 
well, although not exactly. 

3 Quite complicated section: The parameters describe the section 
appropriate, but some difficulties and uncertainties appear. 

4 
Very complicated section: The section is too complicated to describe 
with the chosen parameters, the representation of the section by 
them is unreliable. 

 
Reliability factor 
The reliability factor is related to the hydraulic parameters. The factor depends on the used 
measurement instruments, testing circumstances and the determination of the hydraulic parameters.  
 
Reliability factor RF (-) Definition (Verhaeghe et al., 2003)  

1 
 
Very reliable test: All needed information is available; measurements 
and analysis were performed in a reliable way. 

2 
Reliable test: Some estimations / calculations have be made and / or 
some uncertainties about measurements / analysis exist, but the 
overall test can be classified as ‘reliable’. 
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3 
Less reliable test: Some estimations / calculations had to be made 
and / or some uncertainties about measurements / analysis, leading 
to a classification of the test as ‘less reliable’. 

4 
Unreliable test: No acceptable estimations could be made; 
calculations and / or measurements / analysis include faults, leading 
to an unreliable test.  

 
The determination of the reliability factor is depending on more factors than the complexity factor. 
The same criteria of Verhaeghe et al. (2003) have been used to qualify the factors of RF and the 
corresponding values assigned to it.  
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3.8 Pre-selection of parameters for NN configuration  

A pre-selection of parameters is made to perform a further analysis on, before using them in the 
prediction model. Because the total number of tests is 3,370, the total number of input parameters 
for the neural network has to be limited to obtain a good performance. Additionally, a neural 
network is only a mathematical tool and it is therefore important to have parameters present from 
which the influence on wave transmission is expected to be of interest. It has to be avoided to train 
a neural network with useless parameters, because the total number of input parameters has to be 
minimized and furthermore the neural network can find relations, which are not right.   
 
As stated before, most parameters in the database are used in CLASH as well. There is a major 
difference with structures from the wave overtopping database and the wave transmission database. 
In case of wave overtopping, structures are designed to be as effective as possible to minimize wave 
overtopping, resulting in high relative crest heights, steep slopes (cause more reflection), presence 
of parapets, high positioned berms, etc. In case of wave transmission the structures are low-crested 
(otherwise there is no transmission at all) and these characteristics are clearly present, the 
structures have simpler sections. Because of this big difference, some parameters in the 
transmission database, which are used in CLASH as well, could be determined but were not really 
used to specify the characteristics of a certain test section. 

3.8.1 Selected parameters 
The following parameters are selected for further analysis. Although more parameters have been 
determined in the homogeneous database, these parameters are expected to be of influence on 
wave transmission. The influences of these parameters are known from earlier findings and are 
expected to give the neural network information to find relations with.   
   

 Hydraulic parameters Symbol 

1 Incident significant wave height at toe of the structure Hm0 toe [m] 

2 Incident mean wave period at toe of the structure Tm-1,0 toe [s] 

3 Mean angle of incidence β [o] 

4 Transmission coefficient Kt [-] 

   

 Structural parameters  

4 Water depth in front of the structure h [m] 

5 Crest freeboard Rc [m] 

6 Total crest width Wc [m] 

7 Berm width B [m] 

8 Berm depth hB [m] 

9 Cotangent downward front slope  cot αd f [-] 

10 Cotangent upward front slope cot αu f [-] 

11 Cotangent upward back slope cot αu b [-] 

12 Mean front slope (berm included)  cot α inc l f [-] 

13 Mean front slope (berm excluded) cot αexcl f [-] 

14 Roughness factor γf [-] 

15 Notional permeability P [-] 

16 Ratio nominal core diameter over armour diameter pf [-] 

  
Table 3-9 Selected parameters for further analysis 
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Figure 3-14 Selected parameters given for a general breakwater section 

3.8.2 Discarded parameters 
Some parameters can be discarded on forehand for the prediction model. A brief motivation is given 
in this section these specific individual parameters. 
 
Deep-water hydraulic parameters Hm0 deep [m], Tp deep [s], Tm0,2 deep [s], Tm-1,0 deep [s] 
Verhaeghe et al. (2003) found that including deep-water hydraulic parameters in the prediction 
model did not improve the prediction of wave overtopping. It is assumed the same conclusion is true 
for this study. Deep-water hydraulic parameters will be neglected. Of course the deep-water 
hydraulic parameters are used to calculate missing parameters at the toe of the breakwater 
structure.  Hydraulic parameters at the toe of the structure are selected for further analysis before 
included in the prediction model.  
 
Armour crest freeboard Ac [m] 
Because only 9 tests are present of a composed structure (see Paragraph 3.2), the armour crest 
freeboard is excluded from further use. The specific tests concern a structure with a small parapet 
on top of the crest. The number of tests present in the database, concerning composed structures, 
is too small to give the neural network new information to find relations with. Besides, the value of 
the relative crest freeboard Rc will be present to take into account the total height of the structure.  
 
Armour crest width Gc [m] 
Like the armour crest freeboard, also for the armour crest width the same is true. Only 9 tests are 
present of a composed structure. Moreover, the considered tests have found to be smooth, so an 
armour crest width parameter would certainly give no extra information to the neural network. 
 
Slope of foreshore m [-] 
Because waves are measured at the toe of the structure, it is assumed that the influence of the 
foreshore slope is already included in the values of the hydraulic parameters at the toe of the 
structure. The slope of the foreshore is excluded from further use.  
 
Water depth on toe of the structure ht [m] and Width of the toe of the structure Bt [m] 
The influence of the toe of the structure is assumed to be very low. There are some structures 
present with a toe, but in order to reduce the number of input parameters the toe parameters are 
neglected. Additionally, it is found that all toes in the database are positioned well below sea water 
level and outside the area of influence. In case of the Aquareef dataset the horizontal section is 
treated like a berm, although it can be argued to treat this section as a toe. To include the effect of 
this horizontal section it is treated like a berm. In this way (in case of doubt) a toe presence, 
expected to be of influence on wave transmission is taken into account as a berm. 

3.8.3 Discarded datasets 
After the determination of the reliability- and complexity factor (RF and CF) some test data is 
excluded from further use for the prediction model. The excluded tests are found to be unreliable 
and / or have a very complex section.  
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Part of Ahrens (1987) dataset 
A part of Ahrens (1987) dataset is given a CF = 4, as these sections heavily deformed during the 
tests. A selection is made for tests at which the crest height, during the test, lowered less than ten 
percent of the initial height. These tests are used within the prediction model.  
 
Roeleveld (1997) dataset 
The Roeleveld (1997) dataset is not taken into account, because this specific dataset was tested 
with regular waves. This dataset is given a RF = 4, which means it is not taken into account within 
the prediction model.   
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3.9 Analysis of data  

The distribution of data points is important for a neural network, because it will determine the range 
of the predictions accuracy. In regions with many data points the neural network is able to find 
more relations and this will result in a better accuracy in these regions. An analysis on the 
distribution of data in the homogeneous database is made in order to find the following information: 
 

• Determining regions where data points are concentrated. In these regions the neural 
network is supposed to be most accurate and this could be validated in a later stadium. 

• Detecting white spots. White spots are regions where no data points are present. In those 
regions the neural network will interpolate results and the prediction model performance 
must be analyzed carefully in these regions in a later stadium if expected tendencies are 
right. 

• Detecting parameters which are such likely distributed, that the neural network would find 
no extra relations to learn with. These parameters can be discarded before the prediction 
model will be trained.  

 
Because the distribution of wave steepness, relative crest freeboard and relative crest width are 
expected to be of most influence for the wave transmission phenomenon, separate paragraphs are 
included for the distribution of those parameters. Less important parameters are treated within one 
paragraph.  

3.9.1 Distribution of wave steepness 
 

Figure 3-15 Wave height at toe vs. wave steepness 
 
No prototype measurements are present in the database. The database consists of small- and large 
scale tests as shown in Figure 3-15. The figure shows the wave steepness as a function of the wave 
height for all available tests. A wave steepness over 0.07 is physically not possible, as the waves 
should break beyond this point. A wave steepness lower than 0.005 is difficult to generate in a wave 
flume or wave basin. Very small waves, lower than 0.03m are difficult to generate as well. These 
data will be considered as less reliable and therefore a reliability factor of at least 3 (‘less reliable 
test’) is assigned to those individual tests.  
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Note: The data points in Figure 3-15 are distributed along straight lines. These straight lines consist 
of tests from the data set, in which the water level was varied, resulting in different incident wave 
heights and wave steepness.   

3.9.2 Distribution of relative crest freeboard 
Figure 3-16 shows for small positive and negative values of the relative crest freeboard a dense 
distribution of data points. It is to be expected that a neural network will be more accurate in these 
regions, contrary to large positive or negative values of the relative crest freeboard. Regions where 
nearly no data points are present, will eventually determine the boundaries of the prediction 
capacity of the model. 
 

Figure 3-16 Relative crest height versus wave transmission coefficient 
 
From Figure 3-16 can be concluded that the concentration of data points is between relative crest 
freeboards of –4.0 till 4.0. Beyond those boundaries, the distribution of data points is sparse and 
the accuracy of the prediction model is expected to be considerably lower. Distribution plots of the 
relative crest freeboard of individual datasets are shown in Paragraph 3.9.3. There are no data 
points present with a Kt=0 or a Kt=1. Hence, the neural network will be less accurate in areas close 
to these values of Kt. 

3.9.3 Distribution of relative crest width 
Figure 3-17 shows the distribution of the relative crest width. 80% of all tests have a Wc / Hmo toe < 
10. The concentration of data points is ranged between relative crest widths of 0 till 35.   
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Figure 3-17 Relative crest width versus relative crest height 
 
Note: Large crest widths do not automatically result in a low Kt, because a structure can be 
submerged (negative crest freeboard) and there can still be a considerable wave transmission. A so-
called white spot is present for large crest freeboards in combination with large crest widths (see 
Figure 3-17. This white spot is not affecting the prediction model, because in this region the wave 
transmission is very limited and not of interest to predict. 

3.9.4 Distribution of individual parameters 
Roughness factor 
As mentioned before, the range of values that 
a structure can adapt to γf, is between 0.35 
(an Icelandic berm breakwater) and 1.00 (a 
smooth structure).  
 
In the database most values are distributed 
between 0.40 and 0.50. There is clearly a gap 
present between these values and a value of 
1.00. (Rubble) mound structures are specified 
rough and porous, which always results in an 
γf round 0.5. Smooth structures are always 
given a value of 1.00. Hence, the gap simply 
forms the difference between smooth and 
rubble mound structures.  
 
In order to make a distinction between 
different types of armour units (this is 
investigated in Clash) a lot of values between 
0.40 and 0.50 are found, describing very well 
the difference in behavior. Because most 
structures concern rubble mound, the value of 
0.45 is frequently present. 

 
Figure 3-18 Distribution of γf [-]
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Ratio nominal core- over armour diameter 
The ratio of nominal core- over armour diameter (pf) can vary between 0 (impermeable) to 1 
(homogeneous). Like the roughness factor, there is a concentration of a ratio of core- over armour 
diameter between 0.35 and 0.60; due to the fact mound structures have often a medium 
permeability. Around 10% of the tests are given a value of 0.00, corresponding to the number of 
tests with a roughness factor of 1. Most structures, which are impermeable, are smooth as well, but 
there are exceptions present.   
 
Notional permeability factor  
The notional permeability factor (P) is another possibility to include permeability and is known from 
the widely applied stability formula of Van der Meer (1988a). The notional permeability factor P 
gives the permeability for waves underneath the armour layer. P can adopt values of: 0.10, 0.40, 
0.50 and 0.60 (see Paragraph 3.6.2). Like the ratio of nominal core- over armour diameter, for P as 
well around 10% of the tests imply impermeable structures (P=0.10). Homogeneous structures are 
given a value of 0.60.  
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Figure 3-19 Distribution of pf [-] 
 

Figure 3-20 Distribution of P [-] 

Based on the distribution of the figures of the ratio of core- over armour diameter and the notional 
permeability no conclusions can be drawn for the prediction model. Because P only can adopt four 
different values it looks less useful, but also the distribution of the ratio core- over armour diameter 
is showing four levels. Both parameters clearly distinguish permeable from impermeable structures 
and this is the main goal of using a permeability parameter. There could be a difference for 
structures with a medium permeability, but using the permeability parameters in combination with 
the roughness factor, a specific structure can be characterized well. Because it is difficult to choose 
a parameter for permeability in this stadium it is preferred to select a parameters after analyzing 
performances with a neural network.   
 
Angle of incidence 
A governing part of the database concerns 
tests with an angle of incidence to the normal 
of the structure. Only a minor part (see 
Figure 3-22) is tested under a certain angle 
of incidence. Especially for smooth structures 
the angle of incidence is expected to be of 
importance and will therefore be included in 
the prediction model, despite the distribution 
of the parameter. However, questions can be 
put to the limited number of available tests. 
It is not clear if this will cause problems for 
the prediction model, but because the angle 
of incidence is expected to be important it is 
selected in a first attempt. 
 
 Figure 3-21 Distribution of β [-] 
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Structure slopes  
From Figure 3.24 can be concluded that most structures have a uniform front slope (also structures 
applied with berm), ranging from a cotangent α of 0 (vertical) to 5 (very gentle). Most front slopes 
are distributed between cotangents of 1.5 and 2.0, as can be seen from figure 3-24. The back slope 
(no figure included) has more or the less the same distribution as the cotangents upward front slope 
and its influence in the prediction model is therefore questionable. It is expected the neural network 
will not be given extra information, if for most tests the front- and back slope have the same values. 
Only for tests with deviating slopes, improvements can be expected.      

 
Figure 3-22 Distribution of cot αd f vs, cot αu f Figure 3-23 Distribution of cot αu f  [-] 
 
Water depth in front of structure 
The relative water depth in front of the structure is uniform distributed between 0 and 5. Also there 
are a lot of tests present from 5 till 10 and only few tests with very large relative water depths up to 
34.5 are present. It is expected the water depth will have influence on wave transmission, but based 
on Figure 3-25 no conclusions can be drawn yet.  
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Figure 3-24 Distribution of h / Hm0 toe [-] 
 
Berm parameters 
There are two possibilities to include berms in the prediction model. The first option is by using the 
berm width in combination with the berm depth. The second option is by using the two mean front 
slopes: the mean front slope including berm (cot α incl f) and the mean front slope excluding berm 
(cot αexcl f). It is difficult to bind conclusions on the distribution of the two options. It is preferred to 
investigate the performance of both options in a neural network in a later stadium to make a final 
decision. 
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Figure 3-27 shows that relative berm depths close to sea water level result in very low wave 
transmission coefficients. This agrees with the statement, that berms are most effective round sea 
water level. Relative deep berm depths give higher transmission coefficients, because the berm is 
not felt by the waves.  

 
Figure 3-25 Distribution of cot α [-] Figure 3-26 Distribution of hb / Hm0 toe vs. Kt 
 

3.10 Dataset testing to the DELOS formulae 

All datasets are analyzed in detail to obtain the following information:  
 

• Detecting wrong data points (wrong measurements). Wrong data points have a high 
probability to be detected if distribution plots are made. Wrong data points can be 
exposed from the prediction model. 

• Detecting input mistakes. The composure of the database is done by hand and input 
mistakes cannot be excluded. Analyzing the data on forehand can result in finding input 
mistakes before the prediction model will be trained. 

 
For individual datasets, distribution figures are made for the relative crest freeboard vs. Kt, because 
it known from previous studies that the relative crest freeboard is dominating the behavior of wave 
transmission. Outliers from the data clouds can indicate a measurement mistake or special 
conditions within one test serie. In any case the data point can show a deviation in the prediction 
model as well, and should therefore be noticed on forehand. Additionally, all individual datasets 
have been compared with the DELOS formulae. If the DELOS formulae show a good prediction but 
some points rather deviate from this, there is an indication as well of possible wrong data points.  
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The following data points are found to be outliers. The specific points are examined in detail and a 
second check with the DELOS formula will give a final answer.   
 

Dataset Data point Possible cause 
   
Melito & Melby (2.126 ; 0.261) Low wave steepness compared to other test. Longer 

waves result in a higher Kt. No input mistake or 
wrong measurement. 

Melito & Melby (2.848 ; 0.207) The same case as the previous outlier 
Daemrich (-1.090 ; 0.939) Transmitted wave height seems too high. Probably a 

wrong measurement.  
Daemrich (-4.257 ; 0.644) Low wave steepness. No input mistake or wrong 

measurement. 
Daemrich (-1.745 ; 0.462) Low wave steepness 
Daemrich (-4.867 ; 0.705) Low wave steepness / very small incident wave 

height. Assumed a wrong measurement 
Daemrich, Mai (-1.220 ; 0.588) Low incident wave height, and a low Kt. Test is 

already given a RF = 3.   
 Table 3-10 Overview outliers 
 
The DELOS formulae, Briganti et al. (2003) and Van der Meer et al. (2004), have been applied to the 
same datasets. For the Ahrens dataset the reef formula proposed by Van der Meer et al. (1994) is 
applied. The figures are showed below: 
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It is quite difficult to determine outliers, because the data points are present in a cloud for which it 
is difficult to see the boundaries. For the tests the data points are considered to be outliers, because 
the position of these data points deviate clearly from the data could.    
 

Dataset Data point  
   
Aquareef (0.186 ; 0.600) Overprediction of the transmission coefficient. Kt 

measured is too low. Test is very unreliable. 
Daemrich, Mai (0.588 ; 0.767) Point is obvious deviating from other data. 

Measured Kt is too low. 
 
Table 3-11 Outliers overview in DELOS prediction formulae 
 
Because it is very difficult to tell on forehand if the data points named in Table 3-10 and  
Table 3-11 are really wrongly measured tests, they will be included to train the prediction model. 
Except for the Aquareef test (which seems to be an outlier too in the neural network of Panizzo et 
al. (2003)) named in  
Table 3-11 (test number 747 in database). If the prediction model shows to have difficulties too in 
the prediction of these points they will be exposed from training the neural network. 
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4 Prediction model 

This chapter concerns the prediction model that is made during this study to improve the prediction 
of wave transmission. A brief introduction on prediction models is written in Paragraph 4.1. An 
explanation about what neural networks are and insight in the DELOS and CLASH prediction models 
is given.  
 
A large amount of data is needed to train a useful aNN. With too less data the aNN will not be able 
to predict accurate results for a wide range of values and for a variety of structures. Therefore, the 
database is treated in order to make it usable for the network and solve the following questions: 
 

• Are input parameters made dimensionless or scaled? (Section 4.2.1) 
• How does the aNN take into account the quality of the tests, which is assigned with the 

general parameters? (Section 4.2.2) 
• What will be the total size of the input to train the network? (Section 4.2.3) 

 
On the other hand, the creation of the aNN is done following the prediction methods of CLASH and 
Verhaeghe (2005). According to these methods, the main steps to build up the aNN are: 
 

• Build a single aNN, define its proper architecture like the number of neurons, number of 
hidden layers, neurons per layer, transfer functions and training algorithms (Paragraph 
4.3). 

• Build a consistent aNN by means of committee of networks with the use of resampling 
techniques (Paragraph 4.5). 

 
However, there is one intermediate step in between. It entails choosing the final input parameters, 
which show relevant influence on wave transmission and leave out those parameters, which have no 
(or very little) influence (Paragraph 4.4). This intermediate step can be done provided that the 
architecture of the network is well defined. On the other hand it has to be stated that if any 
parameter is left out; it is important and necessary to define again the proper architecture for the 
aNN with the new set of input parameters. Clearly, there is a loop present in the process in order to 
find the optimum model.  
 
Summarized, after the right architecture of the neural network is found with all relevant parameters, 
a committee of neural networks is made using resampling techniques to obtain the final model. With 
this committee of neural networks analyzing techniques can be performed (Paragraph 4.6) in order 
to check the validity of the model. With these analyses it will be possible to obtain insight in the 
accuracy and reliability of the model. If the model shows any wrong result, adjustments will be 
needed in the model (mainly leaving out or changing some parameters). As a result, a new 
architecture will have to be determined again because of the new set of parameters, appearing 
another feedback. The definitive prediction model will be obtained with this last set of input 
parameters, the new architecture and the new committee of networks (Paragraph 4.7). 
 
All aforementioned steps are explained in detail in the following chapters. It is important to realize 
that reliable and accurate results can only be obtained with a good architecture of the aNN, hence a 
correct and well validated programming is needed. In the following figure the process is 
schematized:  
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Figure 4-1 Process schematization  
 
Note: Matlab® 7.0 release 14 and its Neural Network Toolbox 4.0 have been used to develop the 
prediction model for the wave transmission prediction model of this study. 

4.1 Background on prediction models 

There are several empirical formulas available from which wave transmission can be predicted. 
These formulations have their limitations such as the range of applicability and additionally the 
reliability of the predicted transmission coefficient is still relatively low. 
 
Computational prediction models, called 'artificial neural networks' (hereafter aNN’s), have proven to 
be useful in many fields of technology. Thanks to these tools it is possible to solve complicated 
problems where many relations are involved. These kinds of models have already been applied in 
some researches related to coastal engineering. Some previous studies are: “Study of the stability of 
rubble mound breakwaters” by Mase et al. (1995), “Prediction of wave forces on vertical structures” 
by Van Gent and Van den Boogaard (1998), “Study of wave run-up and overtopping” by Medina 
(1999) and Medina et al. (2002), “Analysis of wave transmission behind low-crested structures using 
neural networks” by Panizzo et al. (2003), “Neural network modeling of wave overtopping at coastal 
structures” by Van Gent et al. (2004), “Wave overtopping at coastal structures” by Verhaeghe 
(2005). Especially the work of the European projects CLASH and DELOS (last two mentioned studies) 
show many familiarities with the prediction model described in this report.  
 
As stated before, one of the main goals of this study is to use an aNN to solve the wave 
transmission phenomenon, trying to improve the results compared to previous prediction formulae. 
This paragraph will explain briefly what aNN’s are, as well as the relations of this study to the 
CLASH and DELOS projects. 

4.1.1 Neural networks in general 
An artificial neural network is a numerical tool that is very useful for solving classification and 
regression problems. The intrinsic idea of the method is to imitate the behavior of an animal brain. 
Input information arrives to so-called neurons after processing this information between all the 
interconnected neurons, and a final result is given as output. 
 
Neural network structure 
An aNN obtains information from Ii input parameters (placed in the so-called input layer) and this 
information is managed by Hn neurons (placed in the so-called hidden layer) to finally deliver Oj 
output parameters (output layer). An aNN is therefore represented by means of a IiHnOj- structure, 
where i is the number of inputs parameters, n the number of hidden neurons and j is the number of 
output parameters. Although there is always one input layer and one output layer present, it is 
possible to have more than one hidden layer. It is clear that in this study the output is restricted to 

Defining the network architecture (4.3)

Choosing relevant parameters (4.4) 

Gathering a committee of networks (4.5)

Checking the prediction model (4.6) 

Final prediction model (4.7) 

Preparing network data (4.2)
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only one parameter: the wave transmission coefficient, Kt. The number of neurons in the hidden 
layer is determined in the Section 4.3.5. Graphically the neural network is schematized in  
Figure 4-2: 

 

 
 
Figure 4-2 Neural network schematization 
 
All input parameters are connected to every neuron in the hidden layer. The strength of the 
relationship between an input parameter and a certain neuron in the hidden layer is represented by 
a set weight (Wni). On the other hand, every neuron (in the hidden layer as well in the output layer) 
also has a bias (Bn,) connected to adjust the calculation work of the neuron itself. 
 
Neurons apply a kind of processing to the information that they receive. Received information is the 
total value of all different input parameter values connected to a neuron, times their weight plus the 
bias of the neuron. The process applied by the neuron to this information is carried out by a transfer 
function: TF, which transforms all the information to just one value. This process is done in the 
hidden layer, but also in the output layer where the output neurons receive the results of the hidden 
neurons and repeat the same process, applying also a transfer function to the summation of all 
values times their weight, plus the bias of the output neuron itself.  
 
Mathematically, for a neuron of the hidden layer this can presented like:  
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For a neuron in the output layer:  
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Both regression and classification problems can typically be solved by feed-forward neural networks 
(‘feed-forward’ refers to the fact that these networks consist of several layers in which the 
information moves in forward direction). This kind of networks can be used as a general function 
approximator, because it can approximate any function with a finite number of discontinuities, 
arbitrarily well, given that sufficient neurons are present in the hidden layer. There exist two types 
of feed-forward neural networks: Multilayer Perceptrons (MLP’s) and Radial Basis Functions (RBF’s). 
For the specific kind of problem in this study (regression), the MLP’s are frequently used neural 
networks (besides, RBF’s may require more neurons). 
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Neural network learning 
A basic aspect of aNN’s is the learning process. Learning is basically the process that determines the 
value of weights and biases. Starting with small random initialization values of weights and biases, 
the network processes the inputs. The resulting output of a network generally deviates from the 
desired output. The goal of the learning process is to adapt the weights and biases in such a way, 
that the difference between the desired and calculated output becomes smaller. If learning is 
repeated iteratively (one learning process is called an epoch) then the overall process is called 
training. During training, the proper values of weights and biases are approached. In the prediction 
model of this study, a supervised training is present, because inputs and their respective outputs 
from the database are provided to the aNN. In particular a kind of batch training is used; this means 
that the weights are only updated after calculating the entire training set. Therefore, the aNN 
adjusts its weights and biases, minimizing the error between the predicted value and the desired 
value.  
 
There are different types of training methods available. The choice of an appropriate training 
method depends on the problem that is faced. The best type of algorithm will change depending if 
classification or regression problems are handled.  

 
An associated problem appears during training. This is known as the generalization problem. This 
occurs if an aNN fits very well the data points used to train the network, but predicting with new 
data results in a large error. This large error is caused by overfitting and can occur if there are too 
many neurons present in the hidden layer. Underfitting (see Figure 4-4 ) is also possible of course, 
but in that case the aNN is not able to give a good result for both cases. To solve the problem of 
overfitting, a generalization method has to be used. Actually, it is possible to train the aNN and 
solve the problem of generalization at the same time. A Bayesian regularization algorithm can be 
used in this case (this will be explained further on). 

 

Figure 4-3 Example of overfitting Figure 4-4 Example of underfitting 
 
Neural network performance 
The prediction performance of an aNN is measured by two different statistical values: the correlation 
coefficient (R) and the root mean square error (RMSE). 

 
The correlation coefficient is a normalized measure of linear relationship strength between variables. 
The square of the correlation coefficient is used to express the correlation between the predicted 
and the measured values. Values close to R2 = 1, mean a very high correlation (the predicted values 
are very close to the measured values) and values of R2 close to zero represents the opposite. 
Therefore, a good performing aNN will show high values of R2 close to 1. 
 
The correlation coefficient is defined as: 
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Where C is the covariance defined as: 
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Being E = expectation and ( )ii xE=µ  (mean) 

 
The RMSE, it is defined as: 
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       Eq. 4.5 

 
Where N is the size of the test set (the number will be different, depending on the set: training or 
test set). Low values of the RMSE mean that the predicted values are close to the measured values 
and vice versa. In this study one is interested in obtaining low values of RMSE and a R2 as close to a 
value of 1. The value of R2 can always be used to compare the performance of the aNN with other 
prediction methods, for instance the DELOS formulae. The RMSE can be used as comparison, 
provided the sizes of output sets are similar. 

4.1.2 DELOS prediction model 
During the DELOS project two prediction models have been made: empirical formulae after an 
extensive analysis of available data and a neural network prediction to show the capacity of those 
kinds of prediction models. 
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Figure 4-6 Distribution of DELOS error 

The results after applying the homogeneous database (without Ahrens dataset and caisson 
structures) to the DELOS formulae are quite accurate, although the width of the band of predicted 
values is rather wide. Despite this, more than 80% of the tests are predicted with an error lower 
than 0.1 (absolute value).  
 
With some datasets of the DELOS database a simple neural network has been used to investigate 
the possibility of predicting wave transmission (Panizzo et. al., 2004). In total 2,337 tests were 
used, described with 6 dimensionless parameters: 
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Promising results were obtained. The aNN consisted of 6 neurons in the hidden layer and a RMSE of 
0.0381 with R2 = 0.973 was reached without any model testing (no test set was used to validate the 
neural network, (see Figure 4-7)). Comparing with the DELOS formula, the prediction of the aNN 
showed a considerable improvement. However, this aNN was only trained with mound structures (no 
smooth structures were included) and it is not available to use it for new datasets. 
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Figure 4-7 Panizzo et al. (2004) prediction 
 

Figure 4-8 Distribution of error Panizzo et al. (2004) 

 
The result above are obtained without model testing. So the values are referred to the training set 
(100% of the total). In case of a test set consisting of a 10% of the available tests, the results 
obtained are R2 = 0.970 and RMSE = 0.0396 with a dataset of 2,337 tests. 

4.1.3 CLASH prediction model 
Within the European project CLASH a huge database of tests of wave overtopping was collected 
(more than 10,000 tests) and a generic predictive method of overtopping was applied. 
 
Within this project one model was made by Van Gent et al. (2004) from Delft Hydraulics but another 
model outside the CLASH project, was carried out by Verhaeghe (2005) from Ghent University 
(called from now the Verhaeghe model); both models were based on neural networks. The first 
model is a quantifier that determines the mean overtopping discharge whereas the second model 
consists of two subsequent neural networks: a classifier that detects whether overtopping occurs or 
not and a quantifier that only is run in case that the classifier is detecting overtopping.  
 
In any case, both studies revealed that aNN’s were capable to model the relationship between the input 
parameters involved in wave overtopping and the mean overtopping discharge at coastal structures. The 
accuracy between the predicted overtopping discharge and the measured overtopping discharge was significantly 
improved. The predictions were rather accurate compared to the observed overtopping discharges (Pozueta et 
al., 2004). Taking into account these interesting results this current study is based on the methods used in 
these two prediction models. The main important methods of the CLASH and Verhaeghe’s prediction 
models are: 
 

• A Multilayer Perceptrons neural network was used. 
• A weight factor matrix was applied to enhance the importance of reliable tests and well-

described structures (Pozueta et al., 2004). 
• Division of available data to 85% training set and 15% test set in order to detect overfitting 

and the initial aNN performance. 
• Use of a so-called bootstrap resampling technique, which enables to use all the available 

data and solves the problem of representativeness (explained below). 
• Use of an ensemble of aNN’s to improve the prediction and to make an uncertainty 

assessment and a sensitivity analysis.  
 
One of the most important problems to face was the problem of representativeness. A great amount 
of data is needed to train and check an aNN, if one wants to make an accurate and reliable 
prediction model. Applying weight factors and resampling techniques makes it possible to increase 
the total number of tests (weight factors) and also to use the entire database for training and 
testing the neural network (bootstrap method). 
 
Summarized, the EU-funded project CLASH and Verhaeghe showed that an aNN is a good tool to 
prepare a prediction model and is very suitable to be used as an example for the prediction model of 
wave transmission in this study. Hence, the wave transmission aNN that will programmed in this 
study will show many similarities with the aNN’s of CLASH and Verhaeghe, although there are some 
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relevant differences to take into account. The CLASH database is about three times bigger than the 
wave transmission database, making it possible to use more input parameters and handling a larger 
variety of structures. Additionally, the parameters involved in the overtopping prediction model are 
not completely the same as for wave transmission (due to different phenomena). 

4.2 Preparing network data 
The used database consists of 3,382 tests, from different origins and from different types of 
breakwater structures as shown in Table 3-1. The database has been homogenized with the aim of 
consequently describing all tests in the same manner. The homogenized data is applied with a 
scaling process in order to solve the problem of handling tests of different test scales (small scale-, 
large scale- and prototype tests). This step is found to be very important for the neural network, 
because scaled data allows to be compared with each other.  
 
The more data is available, the better aNN model will be obtained because in this way the model will 
“learn” better and more cases can be handled. An artificial way to increase the number of tests of 
the original database is by means of using weight factor. 
 
The network has to be trained with the available data in order to make it able to predict new cases 
thanks to the “experience” acquired in the training. A division in the available data is done in order 
to train the network but also check it with new cases using the same database. 
 
All these matters are explained in the following paragraphs. 

4.2.1 Scaling process 
The entire database is scaled according to Froude’s law, by converting the incident wave height at 
the toe of the structure to a reference value of 1m. This converting is necessary in order to make it 
possible to compare results of different test scales. Tests for instance, with wave heights of a few 
centimeters can be compared with tests of wave heights up to a few meters, which would give very 
different results. Furthermore the neural network is always fixed on an incident wave height of 1m, 
which is favorable for the prediction capacity. 

 
Another possibility to solve the problem of different test scales is to make all input parameters 
dimensionless. However, when using this method the problem of choosing which parameter should 
be used in order to make a certain parameter dimensionless arises.  Besides that, if a certain 
parameter has a value of zero information is lost. In that case it is unknown if the parameter in the 
denominator is big or small. Because of the problems mentioned above it is preferred to use the 
method of scaling by Froude’s law. This procedure was also applied in the CLASH project, but not in 
DELOS where the parameters were made dimensionless. 
 
The initial number of input parameters which have been used to train the aNN is 13 (incl. incident 
wave height as scale factor). For a first attempt these parameters are used to set the initial 
architecture of the neural network. The selection of parameters differs from the final prediction 
model, because an extensive analysis is carried on the performance of different parameters. Two of 
these parameters are hydraulic parameters (spectral wave period and angle of wave attack) and 
others are structural parameters.  
 
A statistical analysis of the selected parameters after applying the Froude’s law is shown in the next 
table: 

Parameter Mean 
Standard 
deviation Maximum Minimum Unit 

Hmo toe 1 0 1 1 m 
Tm-1,0 toe 5.24 2.03 21.70 2.82 s 
h  3.99 3.03 6.01 -0.72 m 
hb 0.40 0.78 30.81 0.35 m 
B  0.49 0.86 4.99 0.00 m 
Rc -0.41 1.29 8.87 -9.84 m 
Wc 7.38 11.36 90.48 0.01 m 
Cot α df 2.04 0.90 5.00 0.00 - 
Cot α uf 1.94 0.92 5.00 0.00 - 
Cot α ub 1.51 1.16 5.00 0.00 - 
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γ f 0.49 0.16 1.00 0.38 - 
P 0.50 0.15 0.60 0.10 - 
β 2.21 9.36 83.00 0.00 - 

 
Table 4-1 Input parameter distribution after Froude scaling 

4.2.2 Weights factors 
According to Pozueta et al. (2004), from the reliability of a specific test and the complexity of a 
structure test section a weight factor is assigned to a test between 0 and 9. In general can be said, 
the more reliable the test is found to be, the higher this weight factor is set. The value of the 
weight factor (hereafter WF) is easy to determine from the combination of the values of the 
reliability- and complexity factor (RF and CF had been treated in Paragraph 3.7): 
 

 
 
 
 
 
 
 

Table 4-2 Determination Weight Factor 
 
The value of WF is used to give more weight to tests, which have been well measured and were the 
specific section was easy to describe within the homogeneous database. The value of WF represents 
the number of times an individual test will be repeated in the aNN training set. For example, a value 
of 0 means that a certain test has a very low reliability or a large complexity (or both of course) and 
the test will not appear in the training set, a value of 9 means for instance that this test will appears 
9 times. Before applying the WF, tests have already been homogenized and scaled. 

 
The network needs a considerable quantity of tests to learn well and to be able to make a general 
and accurate prediction. By applying the WF, the amount of data to train the network increases and 
additionally, reliable and more representative tests have a higher presence in the training set than 
those tests that are less reliable and more difficult to describe. In this way the aNN learns a greater 
amount of data than present in the original database. 
 
The WF is applied only to the training set in the first stage (determining the architecture of the 
network) and in the second stage as well (creating an ensemble of aNN’s). 

4.2.3 Training- and test set composure 
In the phase of determining the neural network architecture, the original dataset is divided to create 
two subsets: the training set and test set. The training set contains data that will be used to train 
the aNN, whereas the test set contains data that will be used to verify and validate the prediction 
model and detecting generalization problems because this set is recognized as new data by the 
network. The first step to create these subsets entails applying a modified WF with only ones and 
zeros (zero if CF or RF is equal to 4 and one for the remaining tests) to the original dataset. In this 
way a reduced original dataset is obtained (hereafter ROD) with only tests with a WF > 0 (to be 
precise 3,118 tests). After this first selection, a second division of the dataset is made: 85% is 
selected for the training set and the remaining 15% is selected for the test set. The selection of 
these tests from the ROD is done randomly to avoid the fact of taking only tests of one type of 
breakwater structure. A test set remains without any changes (exactly 468 tests), but the training 
set is submitted to the WF, increasing the training set with a total number of test 11,700 tests. 
 
It has to be mentioned that the size of the test set is relatively small, and the prediction 
performance of the aNN is highly depending on its data selection (one test set may contain many 
rubble mound tests, whereas another test set may have a lot of smooth structures selected). 

CF Weight Factor 
1 2 3 4 

1 9 6 3 0 
2 6 4 2 0 
3 3 2 1 0 

 
RF 

4 0 0 0 0 
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4.3 Defining the architecture 
Once an adequate training set is obtained (homogenized, scaled and applied with WF), it is possible 
to start with the first of the main steps to create the aNN itself. 
 
In this first step the basic architecture of the network is determined. The order to define the 
different elements of the network is given below: 
 

1) Type of neural network. There are several types of neural networks available, but a choice is 
much depending on the kind of problem that is faced (Section 4.3.1) 

2) Number of hidden layers. An aNN becomes more powerful if an extra hidden layer is added, 
but the computational costs have to be taken into account. The improvement of adding more 
hidden layers is not always a guaranty for a better prediction (Section 4.3.2).  

3) Type of transfer functions (TF). There are several types of TF, but one or another can be 
more appropriate, depending on the layer where it is applied and the kind of result that is 
desired (Section 4.3.3). 

4) Training method and generalization problem. Several kinds of training algorithms are 
available. However, one could perform better than others, depending on the problem again. 
Besides, a method to solve the generalization problem has to be applied if one is interested 
in predicting the wave transmission of new introduced breakwaters (Section 4.3.4). 

5) Number of neurons in the hidden layer. The greater the number of neurons used, the better 
results will be obtained, but the computational cost increases as well as the chance of 
having overfitting problems (a further explanation is given below). A balance has to be 
found (Section 4.3.5). 

 
Once the architecture is defined, the second main step can be taken to build the definitive 
prediction model. In advance, the results of the aforementioned steps have determined the following 
set-up for the aNN (these values will be explained and justified in the next sections): 
 
aNN structure Transfer Functions Training method 
I12 - H17 - O1 Log-sigmoid (hidden layer)  

Saturated linear (output layer) 
Bayesian Regularization 

 
Table 4-3 Final architecture of neural networks in the prediction model 
 
It is important to remark that slightly different values of RMSE for the training and test set will be 
obtained in every new run of the network, unless the initial set of weight and biases was fixed as 
well as the training set and test set. In general these small differences in the performances are not 
very important, unless one was interested in a comparison between different performances (see 
Section 4.3.5 and Paragraph 4.4). 

4.3.1 Type of neural network 
The type of problem that is faced in this study is regression. The most commonly kind of aNN used 
for that kind of problem is the Multilayer Perceptron (MLP). 

4.3.2 Number of hidden layers 
According to Hornik (1989), one single hidden layer is sufficient to have a universal approximator, 
able to approximate any continuous nonlinear function arbitrary well on a compact interval. 
Moreover, this is a frequently used MLP-configuration: input layer, hidden layer and output layer. 
 
Therefore, the number of hidden layers is one. Besides the time-cost with two layers would be too 
high (adding an extra-hidden layer with the same s neurons as the previous hidden layer would 
increase the computational cost in order of s2 operations) and the improvement in results 
insufficient.  

4.3.3 Type of transfer functions 
The total input to a neuron includes its own bias and the summation of all weighted inputs. The 
output of a neuron depends on the neuron’s inputs and on its transfer function. Hence, the choice of 
the TF will decide the value of the output. 
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In case of feed forward neural networks, the log-sigmoid transfer function is commonly applied 
between input and hidden layer, because this is a differentiable function. For the transfer between 
hidden layer and output layer, the most usual transfer function is a linear function, because it can 
adapt any value. It is preferred to obtain only results in the interval of 0 < Kt < 1, because this is 
the range of physical right values of the wave transmission coefficient. To obtain this criterion, the 
linear saturated-linear function is applied. 
 
The log-sigmoid TF (see Figure 4-9) works in the following way: it takes an input, which may have 
any value between plus and minus infinity, and squashes the output into the range 0 to 1. 
 
The saturated linear TF (see Figure 4-10) works in the following way: it takes an input, which may 
have any value between plus and minus infinity, and gives an output value in the range 0 to 1. If 
the input value is below 0, then the TF truncates the value into 0. The same for inputs with values 
above 1, but the TF truncates the value into 1. 

 
 
 

 
 
 
 
 
 
 
 

Figure 4-9 Log-sigmoid TF Figure 4-10 Saturated Linear TF 
  
To sum up, the types of transfer functions in this aNN are log-sigmoid function for the hidden layer 
and a saturated linear function for the output layer. 

4.3.4 Training method and the generalization problem 
As it has been explained in the Section 4.1.1, training is one of the most important elements of an 
aNN. The quality of the prediction depends directly on the quality of the training. 
 
One of the main demands to a training method is a high speed of convergence. This matter is 
closely related to the kind of problem that is faced and the size of the aNN. In this study, it is facing 
a regression problem with an aNN size around 15-25 neurons present in the hidden layer (it means 
several hundreds weights). According to Hagan (1994 and 1996), the Levenberg-Marquardt 
algorithm appears to be the fastest method for training moderate-sized feed forward neural 
networks (up to several hundred weights) and for function approximation problems. Moreover, this 
advantage is especially noticeable if very accurate training is required. Therefore, the algorithm that 
fits best to this study is the Levenberg-Marquardt algorithm. 
 
The Levenberg-Marquardt algorithm was designed to approach second-order training speed, without 
having to compute the Hessian matrix (like the quasi-Newton methods). When the performance 
function has the form of a sum of squares (as is typical in training feed forward networks), then the 

Hessian matrix can be approximated as JJH T=  and the gradient can be computed as eJg T=  

where J  is the Jacobian matrix that contains first derivatives of the network errors with respect to 
the weights and biases, and e  is a vector of network errors. The Jacobian matrix can be computed 
through a standard back propagation technique (Hagan, 1994) that is much less complex than 
computing the Hessian matrix. The Levenberg-Marquardt algorithm uses this approximation to the 
Hessian matrix in the following Newton-like update:  
 

[ ] eJIJJxx TT
kk

1
1

−
+ +−= µ         Eq. 4.6 

 
When the scalar µ is zero, this is just Newton's method, using the approximate Hessian matrix. 
When µ is large, this becomes gradient descent with a small step size. Newton's method is faster 
and more accurate near an error minimum, so the aim is to shift towards Newton's method as 
quickly as possible. Thus, µ is decreased after each successful step (reduction in performance 
function) and is increased only when a tentative step would increase the performance function. In 
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this way, the performance function will always be reduced at each iteration of the algorithm 
(Marquardt, 1963). 
 
On the other hand, the problem of generalization has to be taken into account. As it has said in the 
Section 4.1.1, the problem of overfitting can appear during training: the error on the training set is 
driven to a very small value, but when new data is presented to the network the error can be large. 
In other words, the network has memorized the training inputs-outputs, but it has not learned to 
generalize to new situations. There are several measures to solve this problem: implementing a 
generalization method, increasing the size of the training set or choosing the proper number of 
neurons (too many could generate complex relationships producing overfitting). In this study all 
possible measures have been applied. 
 
Within the generalization matter, there are two different algorithms available: regularization or early 
stopping. Regularization is based on modifying the performance function, which is normally chosen 
to be the sum of squares of the network errors on the training set; whereas early stopping divides 
the dataset into three subsets (training set, validation set and test set) and it is based on when the 
error of the validation test begins to rise (due to overfitting) then the training stops. According to 
the Neural Network toolbox of Matlab®, regularization generally provides better generalization 
performance than early stopping, when training function approximation networks. This is because 
regularization does not require that a validation data set is separated from the training data set; it 
uses all data for training. 
 
Hence, a regularization algorithm is implemented in the aNN. The algorithm used is the Bayesian 
regularization based on the Bayesian framework (McKay, 1992). Bayesian regularization updates the 
weight and bias values according to the Levenberg-Marquardt optimization: minimizing a 
combination of squared errors and weights, and determining the correct combination in order to 
produce a network that generalizes well (Foresee, 1997). Additionally, a pre-process is applied to 
the dataset to normalize all inputs and outputs to the range [-1, +1]. The algorithm works better in 
this way because values of data points are placed in the same range and therefore easier to 
approximate. 
 
When using Bayesian regularization, it is important to train the network until it reaches 
convergence. There are possibilities to detect convergence: the sum squared error, the sum squared 
weights and the effective number of architecture parameters reaching constant values after the 
network has converged. 
 
Like the size of the test set, since the total number of architecture parameters in the network (±260 
architecture parameters with ±20 neurons in the hidden layer) is much smaller than the total 
number of tests of the training set (around 11,800), the chance of having overfitting is minor. Also 
the number of neurons in the hidden layer is studied to avoid overfitting. 

4.3.5 Number of neurons in the hidden layer 
Networks are sensitive to the number of neurons in the hidden layers. In general, the more neurons 
a hidden layer contains, the more powerful the network will be: more complicated relationships can 
be established between different input parameters and the better results can be obtained. However, 
increasing the number of neurons can cause problems. Too many neurons can contribute to 
overfitting in which all training points are well fit, but the fitting curve takes noisy oscillations 
between these points, causing a bad prediction for new points, which do not belong to the training 
set. But with too few neurons there are problems as well, like underfitting (see Figure 4-4), In this 
case the network is not flexible enough to match reality properly. 
 
One is always interested in a powerful network, so a maximum number of neurons possible is 
preferred. As it has stated in the last chapter, a generalization method like Bayesian regularization, 
is used to solve the problem of overfitting. Moreover in this case, due to the relative large number 
of data, it is very difficult to experience overfitting, because it would not be easy to join all points 
with a single function. However, the possibility of encountering the problem of overfitting cannot be 
neglected. It is important to realize, that a high number of neurons does not always means that the 
prediction will be much better. It could be that some of the neurons become idle, increasing the 
computational cost without a significant improvement of the results. A fair balance has to be found 
between quality of results and computational cost. 
 
A method to determine the proper number of neurons is based on the comparison of the RMSE of an 
equal aNN, but trained with a different number of neurons. The trend line of the development of 
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RMSE can be used to determine a first indication for the proper number of neurons. For this 
approach, the aNN defined in the previous chapters is trained and checked with a number of 
neurons varying within the interval [10, 30]. It is assumed that the proper number of neurons falls 
is present in this range. All cases use the same training and test sets, but initial weights and biases 
are different. 
 
For every case the RMSE of the training set as well as the test set are calculated, and checked with 
the condition of the overfitting principle. According to this principle a higher number of neurons 
means more complicated relationships are possible between different parameters and then the 
fitting is enhancing until all the points are matched with one line (total overfitting). Therefore, 
increasing the number of neurons the network becomes more powerful, hence better performance 
should be always obtained in the training set. For the test set this is true as well, until the moment 
overfitting start to show influence (the network is becoming unable to predict new data). To use this 
statement, the aNN’s are trained up to their RMSE of the training set are lower than the RMSE of the 
training set of the previous aNN, which have one neuron less. At the same time the RMSE of its test 
set is calculated. Having done this, it’s possible to plot the results and analyze the trends of the 
RMSE of training and test sets for the different aNN’s. Furthermore, with this method, the effect of 
the random values of the initial weights and biases on the results is eliminated, so possible 
fluctuations in the training line due to a bad run are not present and like this it is easier to analyze 
the trends. On the other hand, the same training set and test set is used for all aNN’s to make the 
results comparable.  
 
The training of each aNN will last 1000 epochs at most, it means that the training will stop after 
1000 epochs at the most. An epoch is one iteration, where the training function proceeds through 
the specified sequence of inputs, calculating the output, error and network adjustment (weights and 
biases) for each input vector in the sequence as the inputs are presented. Although a fast training 
method is used, the training process is quite time-consuming; the network is still learning along the 
last epochs. One can think of decrease the number of epochs because the rate of learning is very 
small in this last part, but a network needs more epochs to learn if number of neurons is relative 
high (there are more and more architecture parameters involved). 
 
It is possible that more than one training had to be carried out before the RMSE of the previous aNN 
was reached or improved. Each aNN has random initial values for the initial weights and biases and, 
because of this, it is possible that components were closer or further from definitive values, 
additionally taking into account the limit set in the number of epochs, it may happen that the final 
weights and biases were close or far from those definitive values, giving a smaller or bigger RMSE 
according to the case. 
 
On the other hand, taking as references other studies, it is found: 
 
Research Daemen et al., 1994 

(with Delos database) 
Delos formulae (with this 
database) 

Panizzo et al., 2004 (with 
Delos database) 

RMSE 0.112 0.0905 0.0396 (10% model testing) 
 
Table 4-4 Comparison of RMSE of existing prediction models to homogeneous database 

 
Since a better prediction model is desired, the RMSE of Panizzo et al. (2003) is taken as a minimum 
goal because it has the lowest RMSE. Two things are important to remark: the RMSE given for 
Panizzo et al. (2003) is the RMSE of the training set, not of the test set and the dataset used is 
smaller than this database and, moreover, it only consists of rubble mound structures. 
 
Summarizing, aNN’s are trained from 13 to 30 neurons in the hidden layer and both training and test 
set RMSE are calculated, according to the overfitting principle. A summary of the conditions is given 
in the next table: 
 
Range of 
neurons 

Epochs Training algorithm Size of 
training set 

Size of test set 

From 13 to 30 1000 Bayesian regularization 11,762 (85%) 468 (15%) 
 
Table 4-5 Settings for the determination of number of neurons 

 
Furthermore, in order to obtain the proper number of neurons, two criteria are applied: 
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• Quantitative criterion. Find the number of neurons where the trend of the RMSE of the 
test set starts to increase after having been decreasing before (general minima), 
showing the overfitting symptom. 

• Qualitative criterion. Find the number of neurons where the RMSE of the test set is 
quite low with a relatively low value of number of neurons and the general trend is 
almost horizontal (increasing the number of neurons doesn’t obtain great reductions of 
the RMSE but it gives much higher computational costs). 

 
A thorough analysis is done resulting in Figure 4-11: 

 

Figure 4-11 Number of neurons versus the RMSE 
 
The general trend in both cases (training set and test set) is downward up to 21 neurons, after this 
point the RMSE increases suddenly for the test set. On the other hand the test line is always above 
the training line, completely logical because the network is “designed” (trained) with the training set 
whereas the test set is recognized as a new data by the aNN, making its prediction a bit more 
difficult and, consequently, showing an increasing RMSE. 
 
In the first stage (until 21 neurons), the slope of both trends is constant, thus the reduction of the 
error is proportional to the number of neurons for both training and test sets. Some oscillations 
appear in this range, they are not very big and they may be caused by the composition of the test 
set and the training of the aNN, in other words, according to the training the prediction of the test 
set will be slightly better or worst. If this study was repeated and another plot drew, the points in 
this stage will appear shift downwards or upwards but in the same range of values of RMSE [0.035, 
0.045]. 
 
However, the big oscillation in the 22nd neuron can not be understood as a simple fluctuation. This 
gap measures around 0.015 units of RMSE and breaks the general trend of the test set and creates 
a big difference between the training set and the test set (around 0.025 units of RMSE). Besides, 
the trend seems to be horizontal after the gap, but after the 25th neuron big fluctuations appear, 
showing no improvement as the more neurons are used; clearly, the behavior is unstable in this 
region of the plot. The reason is probably overfitting, although the training trend is going 
downwards, the test set worsens its results, revealing the overfitting problem. 
 
Conclusion 
Having the two possible criteria (qualitative and quantitative criteria), the neuron plot (Figure 4-11) 
in mind and the goal of this study (to produce a good predictive model), a reasonable criterion to 
apply would be the qualitative one for this case because, although a relative global minima is found 
for 21 neurons, if one wants to combine good results, low RMSE without overfitting risk and relative 
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low computational cost, the suitable number of neurons seems to be 17; moreover, according to the 
trend line, this value seems to be the relative lowest value of the test set. Another possibility could 
be 21 neurons, but it is located next to the big gap indicating there is a risk of overfitting. Of course 
the computational cost of 17 neurons is relatively high (although low compared with the cost of 21 
neurons), but in this case the computational cost problem is secondary because the training process 
and the bootstrap process will be carried out only one time to produce the definitive aNN and it is 
worth sacrificing to save time in return for obtaining a good prediction method. 

4.4 Choosing relevant parameters 
A method to distinguish relevant input parameters from superfluous ones is to simulate a network 
with all parameters selected and determine the RMSE. After this, the network can be trained with 
skipping a single parameter each round. Knowing that the RMSE of a simulation with all input 
parameters would theoretically result the lowest value of the RMSE given that all parameters are 
containing relevant information. Those simulations with a RMSE equal or with nearly the same value 
as the simulation with all the parameters have found to be superfluous parameters. On the other 
hand, those simulations resulting in a high RMSE mean that specific parameters are important, 
because leaving the parameter out, the RMSE increase considerable. Parameters of minor 
importance could be left out of the final prediction model. The network architecture (proper number 
of layers and neurons) should again be checked for the final number of input parameters. 
 
However, this method may detect that some parameters have no influence, however in reality they 
could have influence. The reason is that for some parameters (for instance β) there is only a 
reduced number of tests available where this parameter shows a truly influence although this 
method is unable to notice it. Therefore it is important to take this into account when analyzing the 
results. 
 
It is relevant to remark since some parameters are closely related, that some simulations have been 
trained with excluding two parameters instead of a single one. This is the case for the berm width 
and berm depth as well for the upward slope and downward slope at the seaside of the structure. 
The relationship between berm width and berm depth is clear; No berm depth can be present if no 
berm width is given. Regarding the slopes, as their values are often equal (uniform front slope), the 
effect of leaving out one front slope is not representative for studying the influence, because the 
network contains in that case still the other slope to train with. It is important to realize that an aNN 
does not understand the physics of the problem because it is only a mathematical tool. It cannot 
find intrinsic relationships between parameters (for instance berm width and berm depth). 
 
All simulations share the same conditions: same training- and test set, same number of epochs 
(1000), same number of neurons in hidden layer (17), etc. The following plots (Figure 4-12 and 
Figure 4-13) have been produced according to these settings. 
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Figure 4-12 Parameter influence for training set 
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Figure 4-13 Parameter influence for test set 

 
The figures show the influence of single parameters by on turn leaving them out of the neural 
network and determining the corresponding RMSE. As reference, the RMSE using all parameters is 
marked with a dotted horizontal line. Specific values of the figures above are summarized in the 
following table: 
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Input parameter RMSE of training set RMSE of test set 
   
Tm-1,0 toe  0.0321 0.0499 

h 0.0303 0.0460 

B&hb 0.0296 0.0388 

Rc 0.0983 0.1246 

Wc 0.0825 0.0960 

fαcot  0.0343 0.0450 

ubαcot  0.0279 0.0446 

fγ  0.0287 0.0394 

P 0.0298 0.0498 

β  0.0298 0.0407 

all 0.0268 0.0423 

 
Table 4-6 Overview of specific values when individual parameters are left out   
 
It is possible to distinguish important input parameters from the unimportant ones analyzing Figure 
4-12, Figure 4-13 and the Table 4-6 (Sections 4.4.1 and 4.4.2). On the other hand, in order to 
improve the relevance of some parameters (P and berm parameters) an analysis of alternatives is 
carried out in Section 4.4.3. After this, a study about a possible uncertain relation between the 
different slopes is carried out in Section 4.4.4. Finally, a conclusion about the selected input 
parameters for the final model is written in Section 4.4.5. 

4.4.1 Important parameters in the prediction 
As physically expected, both crest freeboard and crest width have a large influence on the prediction 
of wave transmission for both training- and test set. Excluding these parameters from the neural 
network results in a significant increase of the RMSE. There are other parameters too which 
certainly show to be of importance although not as clear as crest freeboard, crest width, wave 
period, depth at the toe of the structure, front slopes of the structure and P. Some of these 
parameters have already been used in empirical formulae (wave period and slopes combined in the 
Iribarren number), but other parameters like the depth at the toe of the structure have not been 
used and according to this analysis, they seem to be important for the prediction capacity. 
 
Concluding, the obvious relevant parameters for the prediction model are: 
Tm-1,0 toe, h, Rc, Wc, dfαcot , ufαcot (front slope in general) and P. 

4.4.2 Unimportant parameters in the prediction 
There are some parameters present, which seem to have a low influence on the prediction 
performance. In fact it seems that without these parameters the prediction even improves, when 
concerning the test set. These parameters are: the entire berm presence (berm width and berm 
depth), roughness factor and angle of wave incidence. The values are summarized in Table 4-7. 
 
Parameter B and hb fγ  β  all 

RMSE training set 0.0296 0.0287 0.0298 0.0268 

RMSE test set 0.0388 0.0394 0.0407 0.0423 

Table 4-7 Performance of neural network excluding individual parameters 
 
A wrong conclusion would be to exclude those parameters from the neural network by thinking that 
all these parameters are not of importance. The difference between the RMSE of training- and test 
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sets gives more important information: Showing which parameters become important according to 
the type of breakwater structure. The predictions of training set give information about how 
important certain parameters are in general; the training set consists of 11,700 tests so the network 
has enough data to evaluate the importance of the different parameters. Having this in mind and 
also Figure 4-13, it can be stated that all parameters are important in the learning phase (all of 
them are positioned above the red line). However, the test set only consists of 468 tests, hence it is 
likely that only a few structures with berm or with a certain angle of wave attack or impermeable 
were present in this test set. Because of minor presence, the overall prediction capacity of this test 
set underestimates the influence of these parameters. These parameters only reveal their 
importance when a characteristic structure with one of these properties is asked to predict. These 
input parameters, B + hb, fγ  and β , are analyzed in more detail. 

 
Berm influence 
An aNN is trained and tested with a ROD without including a berm width (B) and berm depth (hb) as 
input parameters (in total 10 input parameters). In this way it is possible to gain insight in the 
importance of berm parameters (width berm and depth berm) for the prediction model. Additionally, 
the aNN will be also checked with only those tests of the test set with structures having a berm 
(around 150 of the total test set of 468). 
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Figure 4-14 Test set B ≠ 0 and training set B 
and hb excluded 
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Figure 4-15 Test set B ≠ 0 and training set B 
and hb included 

 
Sets with B and hb excluded Correlation R2 RMSE 

Training set (85% of total tests) 0.9825 0.0316 

Test set (15% of total tests) 0.9628 0.0453 

Test set only containing tests with 0≠B  0.9212 0.0496 

 
Table 4-8 Results of the prediction with B and hb excluded as input parameters 
 
 
Sets with B and hb included Correlation R2 RMSE 

Training set (85% of total tests) 0.9860 0.0283 

Test set (15% of total tests) 0.9745 0.0371 

Test set only containing tests with 0≠B  0.9750 0.0260 

 
Table 4-9 Results of the prediction with B and hb included as input parameters 
 
The overall predictions are very similar although it is clear that the prediction of breakwaters with a 
berm worsens without a berm included to the input parameters. This kind of structures is better 
predicted if the berm parameters are used because in this way the breakwater is better defined. 
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Furthermore, a third of the total tests are breakwaters applied with a berm (although only Aquareef 
structures) hence, the utilization of parameters, which represent the berm is advisable to predict 
properly structures with berm. 
 
Roughness factor influence 
The roughness factor is able to separate the database in mainly two types of structures: smooth 
structures (with 1=fγ ) and rough structures (with 1≠fγ ). However, this differentiation is also 

done with the P and because of that the network seems to have enough information about the 
permeability using only this parameter. Nevertheless, the roughness factor is introducing relevant 
information about the type of armour unit that the permeability parameter can not. The fγ  can 

notice for rough structures small differences depending on the kind of armour unit used, especially 
in the interval [0.40, 0.50]. In addition to this, it is possible that for a impermeable mound structure 
(P=0.1) the fγ  takes different values (from 0.38 to 0.9) because of the type of armour unit  

 
Therefore, the roughness factor will be included as input parameter in order to define properly the 
surface of the breakwater. 
 
Angle of wave incidence influence 
Just like the roughness factor, β is a parameter with the same problem. Most of the tests have a 
β=0 and from this the network may show that this parameter is not relevant due to the limited 
number of tests having a β > 0. However, taking the physics into account, this parameter has 
influence on wave transmission, especially for smooth structures (Van der Meer et al., 2004): the Kt 
decreases for increasing the angle of wave attack. Therefore this parameter has to be included to 
the set of inputs of the model in order to predict this physical effect. 

4.4.3 Alternative parameters for improvement 
The notional permeability P (Van der Meer, 1988a) is used to include the permeability of the 

structure. But also the ratio 
armourn

coren
f D

Dp
50

50=  is found to be a possible way to describe the 

permeability of the structure in a more quantitative manner. During the analysis of the 
homogeneous database these two parameters were found to be equally suitable for describing the 
permeability. 
 
Like the case of permeability, there is another possibility to include a berm to the prediction model. 
This can be done by means of the use of the determined inclαcot . In this way three less parameters 

are used in the performance; hence fewer neurons would be needed to carry out the training (saving 
time). 
 
The influence on the prediction of these alternatives is studied in the following sections. 
 
Permeability parameter selection 
Till so far P has been used as parameter to include the permeability of the structure to the 
prediction model. However, the ratio pf is also found possible. To distinguish which parameter is 
better to describe the permeability in case of wave transmission a network is trained with the P and 
another one with the ratio of the Dn50’s, both as permeability factor. The found RMSE’s are: 
 

Parameter taken into 
account 

RMSE of training set RMSE of test set 

Notional permeability 0.0303 0.0549 
Ratio of Dn50’s 0.0305 0.0466 

 
Table 4-10 Performance of neural network including different permeability parameters 
 
The results are very similar using one or the other. The improvement with the ratio of Dn50’s is only 
noticeable for the test set. Next a box plot is shown to analyze this case in detail. 
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Figure 4-16 Box plots for two different permeability factors 
 

Parameter Upper 
whisker 

Lower 
whisker 

75 percentile 25 percentile Median 

P 0.081 -0.083 0.019 -0.023 -0.00077 
Ratio of Dn50 0.082 -0.080 0.020 -0.021 -0.0009 
 
Table 4-11 Specific data of box plots 
 
Note: 
A box plot is a very useful statistical tool to interpret data samples. The box plot is a box and 
whisker plot. The lower and upper lines of the box are the 25th and 75th percentiles of the sample 
thus the distance between the top and bottom is the interquartile range. The red line in the middle 
of the box is the sample median; there is skewness if the median is not centered in the box. The 
whiskers are lines extending above and below the box and they show the extent of the rest of the 
sample (minimum and maximum values of the sample), assuming no outliers. An outlier (signed with 
a plus sign) is a value more than 1.5 times the interquartile range away from the top or bottom of 
the box. These points represent a bad prediction. 
 
Both box plots of Figure 4-16 have the same aspect; they have approximately the same sizes. Both 
predictions give the same accurate results, although the mean of the P is closer to zero. Concluding: 
the difference between parameters is marginal. There are more outliers present with P. These 
outliers make the prediction worse and are difficult to correct. The reasons of these outliers may be 
because a wrong value of the parameter is assigned to those tests or simply the network cannot 
predict properly those tests. 
 
Concluding, there is a marginal difference on the prediction performance between the two possible 
permeability parameters. It seems that the use of the ratio might improve a little bit the prediction 
of new data (test set). Nevertheless, the P will be the parameter to describe the permeability in the 
final model because this parameter is well known in the field of coastal engineering. Introducing a 
new parameter does not improve the results. 
 
One can think of including both permeability parameters too as inputs. The ratio gives a relationship 
between the size of the armour and core units and the notional permeability would give information 
about the composition of the structure. The number of inputs parameters increases with one and the 
overall results are not improving, as can be seen in Table 4-12. 
 

Performance R2 (training 
set) 

RMSE 
(training set) 

R2 (test set) RMSE (test set) 

With 2 permeability’s 0.9848 0.0295 0.9686 0.0412 
Only with 1 permeability 0.9860 0.0283 0.9745 0.0371 

 
Table 4-12 Performance of neural network combining two permeability factors 
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Therefore, only one input parameter is used to describe the permeability of the breakwater and it 
will be the notional permeability P. 
 
Berm parameter selection 
To find the best option, a same analysis as the last section is followed. The results obtained are: 
 
Parameters taken into account RMSE of training set RMSE of test set 

inclαcot  0.0346 0.0385 

B, hb, dfαcot  and ufαcot  0.0321 0.0412 

 
Table 4-13 Performance of neural network including different berm parameters 
 
The inclαcot  gives better results in the test set, but not in the training set. The difference in RMSE 

between the two possibilities is not very large (around 0.025). A box plot is drawn to receive more 
information: 
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Figure 4-17 Box plots for two different berm parameters 

 
Parameter Upper whisker Lower whisker 75 percentile 25 percentile Median 

inclαcot  0.077 -0.080 0.022 -0.025 -0.0034 

Berm&others 0.084 -0.078 0.022 -0.020 -0.00014 

 
Table 4-14 Specific data of box plots 
 
Both box plots have approximately the same sizes and statistics, although the outliers are more 
spread in the case of Berm & others. Both results are very similar, but a relevant better prediction 
was expected with the utilization of the inclαcot  because 3 less parameters were used and the 

same number of neurons was kept, so the network was more powerful in order to improve the 
results (without taking into account overfitting).  
 
The similarity between the results can be explained as follows: a better description of the structure 
is written using the berm parameters, which compensates the advantage of using less relative 
neurons. Actually, when using all berm parameters one is using real breakwater dimensions and, 
furthermore, these parameters are easier to determine for a future user than the invented including 
berm slopes. There is still one more drawback for the case of inclαcot ; it is unable to differentiate 

between the case of a shallow berm and a deep berm if they have the same upwards and 
downwards slopes (see Figure 4-18). 
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Figure 4-18 Deep berm (berm 1) and shallow berm (berm 2) 
 
Therefore, the chosen parameters to describe the front part of the structure are the berm width, its 
berm depth and the downward and upward slopes. With these, real parameters are used and the 
prediction of breakwaters with berm is covered. However, since all the structures applied with berm 
belong to the same dataset (Aquareef) the network may not predict properly new structures with 
berm. For this reason a thorough study of the berm will be done in Section 4.6.2. 

4.4.4 Investigating uncertain relation 
According to the Table 4-6, the back slope has a RMSE very similar although always above the case 
of using all the input parameters, showing a moderate importance. 
 
The possible conflict may exist between this parameter and the front slopes because the values of 

ubαcot  are very comparable to the values of ufαcot (as it has been explained in Section 3.9.4) and 

maybe the network detect it as a superfluous parameter because it was not introducing new 
information. Despite this, the RMSE of the back slope is always above the overall prediction (Figure 
4-12 and Figure 4-13) and this parameter might give information about what it is happening with 
the wave, which overcomes the structure. 
 
Therefore, the prediction with the back slope is sufficiently better than the prediction with all the 
parameters to keep it as an input parameter. Nevertheless, a detailed analysis of this parameter will 
be carried out in Section 4.6.2 to ensure that there is no disturbance with the other slopes. 

4.4.5 Conclusion about input parameters 
It can be concluded that all the parameters selected on forehand are important for the overall 
performance of the prediction model. It has been proven that using real berm parameters (berm 
width, berm depth and the two front slopes) is more practical and gives better results than the use 
of a mean slope. As for the permeability, the P is kept because no relevant improvement is obtained 
with pf and for practical reasons. 
 
Therefore, the final 12 input parameters till this moment are (the wave height is implicitly in all of 
them because of the scaling process): 
Tm-1,0 toe, h, hb, B, Rc, Wc, dfαcot , ufαcot , ubαcot , fγ , P, β . 

 
However, the back slope as well as the berm parameters will be studied in detail in Section 4.6.2 in 
order to ensure their relevance in the final prediction. 

4.5 Gathering a committee of networks 
Now the aNN is properly configured, a consistent aNN is possible to be carried out. For this task, 
like in the CLASH project, a bootstrap resampling technique is used. Resampling techniques are tools 
used for uncertainty analysis of the predictions and for skipping the problem of splitting the data in 
two sets (training and test sets). The use of these techniques involves the generation of different 
training resamples for every aNN’s based on the ROD. The resample is generated by randomly 
picking data from the ROD with replacement. It means that every individual draw within a resample 

is independent but with replacement, thus the probability of a certain test to be chosen is N
1  for 

every single draw, being N the total number of tests of the ROD (3,118 tests). In this way several 

Berm 1 

Berm 2 
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tests results from the ROD will be selected more often than others and of course, some test will 
completely not appear. Tests, which are not selected for the training set, will be used as test set.  

 

Therefore, the probability that a test is not present in a resample is ( )N

N
11−  and for a large value 

of N this becomes close to e
1 . In other words, the probability of a test to be selected for the 

training set of a resample is 63% and then the probability that a test belonged to the test set was 
37%. Therefore, the size of the test set will be around 1,150 tests whereas the size of the training 
set should be around 1,960 tests, but the WF is applied another time to the training set, so this set 
exceeds the amount of tests of 13,000 tests. Therefore, with this technique, more tests are being 
used for the testing and training; moreover, repeating this operation all the tests will be used for 
training and for testing. 
 
The following scheme summarizes the resampling process: 

 
Figure 4-19 Schematization of resampling process 
 
The bootstrap resampling technique is highly time-consuming (taking almost 40 minutes to train one 
resample), so only a total of 100 aNN’s are generated in this way. According to Efron (1982), an 
amount of 500 or 1000 resamples is preferable in a final stage. 

 
After the resampling phase, it is possible to ensemble all the aNN’s and make an analysis of the 
accuracy of this ensemble. A so-called sensitivity analysis of input parameters used for different 
types of breakwaters can be performed. With the committee of networks (ensemble) it is possible to 
make a better prediction of wave transmission than could have been done with only one aNN. At the 
same time information can be obtained concerning the reliability and accuracy of the prediction 
itself. Another advantage to mention, it is that the entire database is used for training of aNN. In 
case of a single aNN, a part of the database (test set) has to be left for validation. If one is 
interested in knowing the wave transmission coefficient of a certain breakwater (given as an input 
vector), it is enough with determining its wave transmission for L aNN’s, being L the number of 
aNN’s which have been generated by means of bootstrap resampling. The final result is calculated 
with the mean of L predictions: 

L

K
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== 1  (L = 100 in the current study)      Eq. 4.7 
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Before ensemble the aNN’s, a statistical study about the set of networks is carried out with the help 
of a box plot of the RMSE of the test set. Those networks which appear as outliers (a RMSE greater 
than 1.5 times the interquartile range) will be rejected. The reason of the existence of these 
networks is simply because of a bad run. Therefore, the global prediction is improved proceeding in 
this way. 
 
The result of this analysis is the next one: 
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Figure 4-20 Box plot of RMS error distribution 
 
Parameter Upper whisker Lower whisker 75 percentile 25 percentile Median 
RMSE 0.062 0.036 0.051 0.043 0.045 
 
Table 4-15 Specific data of box plots 
 
Six outliers are detected during resampling and training. These aNN’s give a RMSE for the test set 
higher than the 1.5*interquartile range above the 75 percentile (RMSE = 0.063). Therefore the total 
number of aNN’s in the set is revised (L = 94). 
 
Summarizing, the configuration of the aNN prediction model is: 
 
Architecture Transfer 

Function 
Training 
algorithm 

Number of 
epochs 

Number of 
bootstraps 

Time to 
calculate 

I12 – H17 – O1 Log sigmoid 
Saturated linear 

Bayesian- 
regularization 

1000 94 (100) 65 hours 
(Pentium 4) 

 
Table 4-16 Final configuration of the prediction model 

4.6 Checking the prediction model 
Once the prediction model is finished with a final set of 94 aNN’s, its results can be studied and 
checked by analyzing techniques (accuracy and sensitivity analysis) which are described in Section 
4.6.1 and are carried out in Section 4.6.2. 
 
These studies can show the more reliable ranges and structures for the model are as well as the 
behavior of the input parameters to wave transmission. 

4.6.1 Analyzing Techniques 
Accuracy analysis 
The accuracy of the model is checked with the ROD, the same database used for the creation of 
resamples. The method is to predict the tests of the ROD and analyze its results by means of the 
values of the RMSE and the R2 correlation as well as the histogram of the error between the 
predicted and the measured value in order to detect if under- overprediction is present. 
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Sensitivity analysis 
One of the relevant options that the ensemble of aNN’s allows is to study the uncertainty of the 
prediction model. With a total set of 94 aNN’s, it is possible to measure this uncertainty by means of 
the standard deviation, variance, mean and confidence interval.  
 
The mean is already used to obtain the final value of the predicted Kt. To quantify how good this 
prediction is confidence intervals are used. To be precise, the 95%-confidence interval is chosen, 
given by the quartiles 2.5% (lower boundary) and 97.5% (upper boundary). In addition to this, the 
prediction of DELOS is screened in order to have a reference and, in this way, to establish a 
comparison between the two predictions. 
 
The sensitivity of the prediction model to the input parameters is important for the following 
reasons: 
 

• To validate the behavior of the prediction model. Depending on the type of structure, the 
behavior may be different. All parameters can be studied for every type of structure. The 
process is to vary a certain parameter while other parameters are kept fixed, hence the 
influence on the transmission coefficient can be examined. The showed influences should 
agree with the known expectation, or have to be physically possible at least.  

• To analyze the reliability of the prediction model. For every type of structure a 
representative structure is selected to carry out the sensitivity analysis. For these structures 
the prediction model should give accurate results within certain boundaries. With confidence 
intervals the reliability of the prediction model can be determined. The reliability will be 
different for every type of structure; because of this representative structures are examined. 

• To find new relations. For most parameters the influence is well-known and is used to 
validate the model. There are also parameters present from where the influence on the 
transmission coefficient is not clear. For these parameters it is interesting to see what 
tendency the prediction model shows and if this physically can be reasoned. It has already 
been found in an earlier stage, that all parameters used have influence on the accuracy of 
the model. 

 
It is important to remark that the model is checked with new structures using this analysis. The new 
structures are created varying the different possible input parameters from a certain known 
structure of the database. A representative mound and smooth structure have been selected to carry 
out the analysis. 
 
Representative structures of the dataset 
A total number of 2,795 tests are present to perform a sensitivity analysis on mound structures for 
12 governing parameters. The selected breakwater to represent a mound structure belongs to the 
UPC subset and its characteristics are: 
 

Hmo 

toe 
Tm-1,0 

toe h hb B Rc Wc dfαcot  ufαcot  ubαcot  γ  β  P 

[m] [s] [m] [m] [m] [m] [m] [-] [-] [-] [-] [º] [-] 

0.313 2.331 1.680 0.0 0.0 -0.105 1.825 2.00 2.00 2.00 0.4 0.0 0.500
 
Table 4-17 Input parameters for specific mound structure 
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Figure 4-21 Profile of specific mound structure 
 
The wave transmission predictions for the selected breakwater are: 
 

aNN prediction Measured Kt DELOS prediction 
Mean Std. deviation Variance 

0.416 0.4038 0.4186 0.0165 0.0003 
 
Table 4-18 Predictions of the specific mound structure 
 
 

Box Plot of aNN prediction
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Figure 4-22 Box plot of the prediction model 
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Figure 4-23 Histogram of the prediction model 
 

As for the case of smooth structures, there are a total number of 282 tests to perform a sensitivity 
analysis for 12 governing parameters. The selected breakwater to represent a smooth structure 
belongs to the Wang subset and its characteristics are: 
 

Hmo toe Tm-1,0 toe h hb B Rc Wc dfαcot  ufαcot ubαcot  γ  β  P 

[m] [s] [m] [m] [m] [m] [m] [-] [-] [-] [-] [º] [-] 

0.100 1.482 0.50 0.0 0.0 0.00 0.20 2.0 2.0 2.0 1.00 0.0 0.100
Table 4-19 Input parameters for specific smooth structure 
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Figure 4-24 Profile of specific smooth structure 
 
The wave transmission predictions for the selected breakwater are: 
 

aNN prediction Measured Kt DELOS prediction 
Mean Std. deviation Variance 

0.567 0.5765 0.5874 0.0109 0.0001 
 
Table 4-20 Predictions of the specific smooth structure 
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Figure 4-25 Box plot of the prediction model 
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Figure 4-26 Histogram of the prediction model 

4.6.2 Applying analyzing techniques 
The two analyzing techniques have been performed in this paragraph in order to evaluate the model. 
The accuracy analysis gives a global indication of the quality of the prediction model, whereas a 
sensitivity analysis gives insight in the behavior of the model to certain input parameters. 
 
The sensitivity analysis will be done for those parameters that show some problems in Paragraph 
4.4: berm parameters (berm width and berm depth) and back slope. 
 
Accuracy analysis 
The correlation factor (R2) and the RMSE represent the quality of the prediction model. The 
evaluation is carried out for several data sets: all type of structures, mound breakwaters, 
impermeable structures, smooth structures and breakwaters with berm. 
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The following table shows a summary of the obtained results: 
 
Dataset Number of tests R2 RMSE 
All 3,118* 0.9863 0.0267 
Mound 2,795 0.9867 0.0260 
Smooth 282 0.9812 0.0307 
Impermeable 29 0.9302 0.0672 
Berm 1,066 0.9819 0,0231 
*Note: the dataset includes 12 caisson tests. 
 
Table 4-21 Overview of prediction model performance for various structures 
 
Using all available data with a 0≠WF (3,118 tests), good results are obtained by the prediction 
model if one compares these results with other available prediction methods for wave transmission. 
For instance, taking as a reference the results of Panizzo et al. (2004), see Section 4.1.2, the 
prediction model of this study shows a higher R2 and a lower RMSE. However, almost 800 additional 
tests are used and more types of structures are being handled within one model. 
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Figure 4-27 Performance using all data 
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Figure 4-28 Histogram of the error 
 
Figure 4-27 shows that the prediction is very accurate along the whole range of values of Kt, 
although some points seem to be a bit far from the correlation line. Despite this, according to the 
histogram, more than 90% of the tests have an error below 0.05 (absolute value). Furthermore, the 
histogram seems to have a symmetrical distribution, showing no skewness, hence no special over- or 
under-prediction is found. 
 
Note: 
The error is defined as e = Kt measured – Kt predicted,, so a negative value would mean over prediction 
and positive values under prediction. 
 
A summary of the accuracy for the different methods is shown in the next table: (the results of 
Panizzo et al. (2004) are obtained with a different database with a different size. Notice that the 
comparison is not entirely valid). 
 
Dataset DELOS formulae Panizzo et al. (2004) Prediction model 

All 0.8851* - 0.9863 

Mound 0.9022* 0.973 0.9867 

Smooth 0.8177 - 0.9812 

Impermeable 0.8036  0.9302 

Berm 0.8484 0.974 0.9819 

Table 4-22 Comparison of results between different prediction methods 
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*Note: the reliable tests of Ahrens (75 tests with WF>0) have been removed because the Wc equals 
to 0.001 (heap of loose elements with no specific crest width) and the DELOS formulae cannot 
predict them with proper results. 
 
The model is able to give more accurate prediction than any of the other available prediction 
methods.  
 
To sum up, the main advantages of this model in comparison with other methods are: 
 

• High accuracy (the lowest R2 is 0.9302 for impermeable mound structures and the highest 
R2 is 0.9867 for the mound structures). 

• No important over- or under prediction and more than the 90% of the predicted Kt have a 
deviation below 0.05 from the measured Kt in the overall prediction. 

• The capacity to predict new low-crested breakwaters is expected to be high, because new 
low-crested breakwaters will be more or less consisting of the same elements and will have 
equal shapes. 

 
Sensitivity analysis 
This study is only applied for the back slope and berm depth in combination with berm width, in 
order to solve the uncertainty of their relevance. The back slope is analyzed for a representative 
mound structure and for a representative smooth structure. The front slope studied as well to 
ascertain if there is any disturbance in its prediction because of the back slope. The berm 
parameters are studied with one test from the only set with structures with berm: the Aquareef 
dataset. 
 
The sensitivity figures contain several lines. The dash lines show the band of the confidence 
interval, one line for the lower boundary (quartile 2.5%) and another one for the upper boundary 
(quartile 97.5%). The others two lines are the aNN prediction (mean value) and the DELOS 
prediction. The legend of the plots is: 
 
Legend of sensitivity figures 
 
 
 
 
 
 
Back slope for specific mound structure 
 
Parameter validation 
The trend line is decreasing until cot 
αub=3.5 and then increasing. The 
influence is small; all values of Kt are 
around 0.4 (the value of the DELOS 
prediction). This prediction is physically 
feasible: the gentler the slope is more 
dissipation occurs and a lower value of Kt 
is obtained. However, in the last region 
(from 3.5 to 5) the trend is to increase, 
which is a wrong tendency according to 
the previous statement.  
 
Reliability of prediction model 
The model has reliability in the range of 
1.75<cot αu b < 2.25. Outside this interval 
the reliability is very low. Despite this, the 
prediction is always close to the DELOS 
fixed prediction.  
 
 Figure 4-29 Sensitivity of back slope 
 
 
Front slope for specific mound structure (combined downward and upward slopes) 
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Parameter validation 
The influence of the front slope is not 
very clear. The mean prediction shows a 
fluctuating line with a slight influence on 
the Kt. For 0 < cot αf < 1.5 the 
transmission coefficient is decreasing and 
for 1.5 < cot αf < 5 the transmission 
coefficient is increasing. There is a 
transition point at cot αf = 1.7, 
corresponding to an Iribarren number of ξ 
= 3, which is also the transition point 
between breaking or non-breaking waves. 
Wave run-up appears to be in a maximum 
in this transition point, hence a maximum 
Kt is expected at the same point, but it is 
not the case.  
  
 
 
 Figure 4-30 Sensitivity of the front slopes 
 
Reliability of prediction model 
The figure shows only a narrow point of confidence at cot αf = 2.0. At this point the predicted value 
of Kt is equal to the DELOS Kt. For this specific structure the model is only giving a relatively high 
reliability in the range 1.75< cot αf <2.25. Outside this interval the model has a very bad reliability. 
 
To see clearer the possible influence of the back slope on the front slope a symmetrical structure is 
chosen, where both front- and back slope are varied at the same time to be sure that front- and 
back slope are fully related. 
 
The figure to the right is made for a 
symmetrical mound structure. Clearly the 
confidence band is narrow at values of 
the slope where also a lot of structures 
have been tested. It has to be stated 
that most tests in the database are 
concerning symmetrical structures, 
where cot αuf and cot αub are equal. The 
prediction model shows difficulties to 
separately detecting the sensitivity of 
slopes. The figure shows in general a 
fluctuating line around a Kt=0.4. 
Therefore, according to the plot, no 
influence of the slope of the mound 
structures is noticed, not following the 
trend of the prediction of DELOS. The 
prediction model shows a local maximum 
of Kt for cot α = 2 with a narrow band of 
confidence (so reliable). 
 
 Figure 4-31 Sensitivity for a symmetrical structure 
 
At cot α = 2, the Iribarren number is equal to ξ = 2.6, which is again just at the transition between 
breaking and non-breaking, where wave run-up appears to be in a maximum (see TAW, 2002), 
hence giving a higher Kt deviating from the trend line. The prediction is only reliable in the range 
[1.4, 3.25], where is giving physically right results. 
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Back slope for specific smooth structure 
 
Parameter validation 
On a smooth back slope there is nearly no 
energy dissipation, resulting in low influence 
on the wave transmission for different back 
slope angles. However, the figure is showing 
something totally different, the back slope 
seems to have a strong influence especially 
in the region of symmetry of the structure. 
Such influence on the Kt due to the back 
slope is physically not possible. 
 
Reliability of prediction model 
The prediction has a low reliability over the 
entire range of values of back slopes, except 
in the region where the structure is almost 
symmetrical (cot αu b=2). This is because 
the most of the structures are symmetrical 
or with slight differences between the 
different slopes. 
 Figure 4-32 Sensitivity of back slope 
 
Front slope smooth structure (combined downward and upward slopes) 
 
Parameter validation 
The case of combined front slopes has a 
decreasing overall trend, although a local 
maxima is detected at cot αf = 2.6, the 
Iribarren number is equal to ξ = 2.25, which 
is again just at the transition between 
breaking and non-breaking, where wave run-
up appears to be in a maximum, hence giving 
a higher Kt deviating from the trend line. This 
last effect is stronger in smooth structures 
than mound structures due to the run-up (see 
CUR/TAW, 1992). Therefore same conclusions 
as mound structures can be taken: the 
prediction model takes into account wave 
run-up. 
 
 
 
 Figure 4-33 Sensitivity of front slopes 
 
For the symmetrical case the results are 
physically impossible: a variation of 0.4 on the 
Kt varying the slope from a cot α=1.5 to cot 
α=2.5 is not possible. It was expected a 
decreasing line for gentler slopes 
 
Reliability of prediction model 
The case of combined front slopes has only a 
narrow confidence band at cot αf=2 and cot 
αf=3.5, the other regions are rather 
unreliable. The symmetrical case is reliable 
from cot α=1.5 to cot α=2.25, but the 
prediction is physically wrong. 
 

 Figure 4-34 Sensitivity for symmetrical structure 
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Relative berm depth for an Aquareef structure 
 
Parameter validation 
Beyond a relative berm depth of 2, the Kt is increasing for increasing depth berm. This region is 
physically right because the berm is losing its dissipating effect when it is locating deeper (it is 
moving away from the area of influence of the wave). 
 
For values of the relative berm depth 
smaller than 2, the behavior in is physically 
illogical. The Kt is increasing for decreasing 
hb / Hm0 toe, this is completely the opposite 
what it should be: the effect of the berm 
becomes more important if it is closer to the 
water line. The reason of this illogical result 
is that the Aquareef structures have a fixed 
relation between Rc and hb (the height of 
the special armour unit) and hence if one 
varies the berm depth without varying the Rc 
at the same time, the results will be bad 
because the network have not learnt about 
it. 

 
Therefore, the behavior of this parameter 
along its range of possible values is wrong, 
especially in the most important region 
where its effect should be more noticeable 
(are of wave influence).  
 
Reliability of prediction model 
The model only shows relative reliable results between the values of relative berm depth of 0.5 and 
1.5. However, as it has said before, the results are wrong. 
 
Relative berm width for an Aquareef structure 
 
Parameter validation 
Like in the previous case, the prediction 
shows a wrong trend. According to the 
physics, a longer berm will cause more 
dissipation for a given depth berm and hence 
a decreasing Kt trend line (more or less the 
same behavior as the wide crest); but in the 
plot this trend only is visible in the interval 
(0.5,1) and (1.75,5), describing an important 
oscillation in between. Besides, this illogical 
fluctuation is located in the most reliable 
part of the drawing. On the other hand this 
region of high reliability the prediction of 
this model and DELOS is very similar 
because here the value of B is the original 
one and of course the model predicts it very 
well (the model has been trained with that 
test).  

Figure 4-36 Sensitivity of berm width 
Reliability of prediction model 
The model only seems to be reliable between 0.75 < B / Hm0 toe < 2, outside this range the model 
has a rather low reliability. Furthermore, the reliable results are physically wrong. 
 
Conclusion about the back slope and the berm 
For the case of the slopes, the model predicts physically wrongs trends, especially for the case of 
smooth structures. The back slope is disturbing the prediction of the front slopes and taking too 
much importance on the value of Kt when according to the Figure 4-12 and Figure 4-13 the influence 
of the back slope should be minor to zero. Because of this, it is worth to leave the back slope out of 
the final prediction model in order to obtain better physical predictions in the front slope, which are 
the really important ones on the wave transmission phenomenon. 

Figure 4-35 Sensitivity of berm depth 
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As for the berm matter, unlike it has thought before the sensitivity analysis, the model cannot 
predict structures with berm; it is only handling Aquareef structures, which have a fixed relation 
between Rc and hb. Moreover, low-crested breakwaters are not often applied with a berm, because 
the goal of both structures is to dissipate the wave energy and the low-crested breakwater can be 
understood as a berm structure located in front of high-crested breakwater (Figure 4-37) whereas a 
berm is more typical of being part of a high-crested breakwaters (Figure 4-38). Therefore, in order 
to improve the overall prediction, the berm parameters will be left out and an immediate 
consequence of this is the fact that only one slope is needed to represent the front of the structure. 
 

 
 
Figure 4-37 High-crested breakwater with berm 
 
 

 
 
Figure 4-38 High-crested breakwater with low-crested breakwater 
 
Concluding, this model has some problems to predict properly the behavior of the slopes and 
structures with berm thus, in order to solve this matter and improve the prediction, a new predictive 
model is required where the back slope and the berm parameters will be left out. 
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4.7 Final prediction model 
Now the set of inputs have been set, the definitive model can be carried out. The steps to obtain the 
last model are: 
 
• To prepare the database with the final parameters for the network (Section 4.7.1) 
• To determine the architecture of the network (Section 4.7.2) 
• To gather a committee of networks (Section 0) 
 
Finally, once the model is defined, the results of the final performance are shown (Section 0) by 
means of an accuracy analysis (explanation of the technique in Section 4.6.1). 

4.7.1 Preparing network data 
This database receives the same processes as the database of Paragraph 4.2: scaling process, 
weight factors and training and test composure. 
 
The only changes are on the number of input parameters but also on the size of the database. A 
new subset has been added with 552 tests of smooth structures, increasing the total number of 
tests of ROD from 3118 to 3670 tests. 
 
Information new dataset added to database 
A new dataset (Taveira-Pinto et al., 1997) is included to the database. It concerns 552 model tests 
with different impermeable and smooth low-crested breakwaters, under random waves. Water depth, 
wave period and wave height were varied. The data is implemented to the final prediction model 
before investigating the influence of parameters. It is assumed this data is not influencing the 
conclusions of the selection of the final input parameters. The structures have symmetrical shapes 
for different slopes.   
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Figure 4-39 Relative crest height versus wave transmission coefficient 
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Figure 4-40 Applying the dataset to the DELOS formulae  
 
Taking into account Section 4.6.2, the final 8 input parameters of the definitive model are: 
Tm-1,0 toe, h, Rc, Wc, ufαcot , fγ , P and β  (the wave height is implicitly in all of them because of 

the scaling process). 
 
The upward slope in front of the structure has been selected to represent the front slope against 
other alternatives (for instance front slope including berm) because it is a real measurable slope, 
easy to determine by the user, without calculating. 
 
The final distribution of the scaled parameters is: 

Parameter Mean 
Standard 
deviation Maximum Minimum Unit 

Hmo toe 1 0 1 1 m 
Tm-1,0 toe 5.17 1.96 21.70 2.32 s 
h  3.96 2.92 34.43 1.02 m 
Rc -0.41 1.20 8.87 -9.84 m 
Wc 6.58 10.72 90.48 0.01 m 
cot α uf 1.49 0.98 5.00 0.00 - 
γf 0.56 0.23 1.00 0.38 - 
P 0.44 0.20 0.60 0.10 - 
β 1.90 8.72 83.00 0.00 - 
 
Table 4-23 Final input parameter distribution after Froude scaling 

4.7.2 Defining the architecture 
The procedure to define the architecture is based on Section 4.3. The architecture of the new model 
remains the same as the first model although the number of hidden units (neurons) will change 
because the number of input parameters has changed. 
 
With the same method as Section 4.3.5 the following figure is generated: 
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Figure 4-41 Number of neurons versus the RMSE 
The trend line of the test set starts to oscillate after the value of 11 neurons in the hidden layer, 
showing an unstable behavior, typical of the overfitting effect. Therefore, the number of hidden 
units will be 11 in order to avoid the overfitting problem and obtain relative good results at the 
same time. 
 
The final set-up for the aNN is: 
 
aNN structure Transfer Functions Training method 
I8 – H11 - O1 Log-sigmoid hidden layer)  

Saturated linear (output layer) 
Bayesian Regularization 

 
Table 4-24 Final architecture of neural networks in the prediction model 

4.7.3 Gathering a committee of networks 
The same procedure as in Paragraph 4.5 is followed here. In this case 100 bootstraps are run for 
the analysis (the same number as the model of Verhaeghe (2005)), but 500 bootstraps will be run 
for the final model according to the recommendation of Efron (1982). 
 
The box plot of the 100 bootstraps is: 
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Figure 4-42 Box plot of RMS error distribution 
 
Parameter Upper whisker Lower whisker 75 percentile 25 percentile Median 
RMSE 0.057 0.047 0.053 0.050 0.051 
 
Table 4-25 Specific data of box plots 
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Five outliers have been detected during the resampling and the training. These aNN’s give a RMSE 
of the test set higher than the 1.5*interquartile range above the 75 percentile (RMSE = 0.0575). 
Therefore the total number of aNN’s in the set is L = 95. 
 
Summarizing, the configuration of the prediction model is: 
 
Architecture Transfer 

Function 
Training 
algorithm 

Number of 
epochs 

Number of 
bootstraps 

Time to 
calculate 

I12 – H17 – O1 Log sigmoid 
Saturated linear 

Bayesian- 
regularization 

1000 95 (100) 10 hours 
(Pentium 4) 

 
Table 4-26 Final configuration of the prediction model 

4.7.4 Final performance 
The correlation factor (R2) and the RMSE are used here to represent the quality of the prediction 
model like in Section 4.6.2. The performance is evaluated for several data sets: all type of 
structures, mound breakwaters, smooth structures and impermeable structures. 
 
The following table shows a summary of the obtained results. Every dataset will be discussed in 
more detail in following sections. 
 
Dataset Number of tests R2 RMSE 
All 3,670* 0.9702 0.0402 
Mound 2,795 0.9715 0.0380 
Smooth 834 0.9262 0.0364 
Impermeable 29 0.9763 0.0391 
*Note: the dataset includes 12 caisson tests. 
 
Table 4-27 Overview of prediction model performance for various structures 
 
All type of structures 
In general, taking into account that different structures with different physical behavior are been 
used, the prediction model obtains accurate results. 
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Figure 4-43 Performance using all data 
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Figure 4-44 Histogram of the error 
 
Figure 4-43 shows that the prediction is very accurate along the whole range of values of Kt, 
although some points (most of them belong to the new dataset) seem to be a bit far from the 
correlation line. Despite this, according to the histogram, more than 80% of the tests have an error 
below 0.05 (absolute value). However, the histogram seems to have a little bit of underprediction in 
the tail. 
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Mound structures 
The total number of mound structures of the ROD is 2,795. This subset has an important influence 
on the global results because it represents more than 75%. The results are very similar to the initial 
model: 
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Figure 4-45 Performance of mound data 
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Figure 4-46 Histogram of the error 

 
The prediction along all possible values of Kt is quite accurate (the band of results is very narrow) 
although there are some points with lower accuracy with a measured Kt between 0.2 and 0.3 and on 
the other hand 0.6 and 0.8. In any case, more than 85% of the tests have an error below 0.05 
expressed as absolute value. Nevertheless, the error distribution shows a slight underprediction in 
the tail. 
 
Smooth structures 
834 tests from the ROD concern smooth structures. The performance is: 
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Figure 4-47 Performance of smooth data 
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Figure 4-48 Histogram of the error 
 
The prediction is not as accurate as for permeable (mound) structures, but its correlation is 
relatively high. The most of the smooth test have a Kt between 0.6 and 0.9; this region is well 
predicted by the model. There are a few points especially deviated from the correlation line with an 
overprediction of 0.2. Despite this, the histogram shows that more than 80% of the error of the 
tests is below 0.05 (in absolute value). 
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Impermeable structures 
The impermeable subset (29 tests) consists of only impermeable mound breakwaters, without taking 
into account smooth structures. Despite the few available tests, the prediction is rather accurate: 
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Figure 4-49 Performance of impermeable set 
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Figure 4-50 Histogram of the error 
 
The prediction is even better than permeable (mound) structures, although this comparison is not 
entirely valid because of the great difference on the number of tests. The 80% of the prediction has 
an error below 0.05 (in absolute error). No important over- and underprediction is noticed. 
 
Conclusions 
This model is especially accurate for mound (permeable and impermeable) structures. Smooth 
breakwaters are predicted with a lower reliability by the model, but still useful results are obtained. 
 
On the other hand, using the new available data, the total number of tests to perform with a 

0≠WF  is 3,670. The difference with the prediction method of Panizzo et al. (2004) is now around 
1300 test, which more than 500 are smooth structures, a difference too large. Consequently the only 
prediction method available to establish a truly comparison with the model of this research is the 
Delos formulae. 
 
A summary of the accuracy for the Delos and the current model is exposed in the next table:  
 
Dataset DELOS formulae This prediction model 

All 0.8201* 0.9702 

Mound 0.7906* 0.9715 

Smooth 0.6084 0.9262 

Impermeable 0.9277 0.9763 

*Note: the reliable tests of Ahrens (75 tests with WF>0) have been removed because the Wc is 
equals to 0.001 (a cone shape) and the DELOS formulae cannot predict them with proper results. 
 
Table 4-28 Comparison of results between different prediction methods 
 
The model is able to predict more accurate Kt’s than the Delos, especially this fact is clearer for 
smooth structures. 
 
Concluding, the main advantages of this model in comparison with Delos method are: 

• High accuracy (the lowest R2 is 0.9262 for smooth structures and the highest R2 is 0.9715 
for mound structures). 

• No important over- or underprediction and more than the 80% of the predicted Kt have a 
deviation below 0.05 from the measured Kt in the overall prediction. 

 



 

4-82 

Therefore, it is possible to state that this model can be used to predict: mound structures 
(permeable or impermeable) and smooth structures. This is true provided that the new structures 
have similar characteristics to the structures of the database. 
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5 Validity and reliability of the prediction 
model 

An optimum of 9 input parameters is found for the prediction model of wave transmission. All 
parameters relevant for a reliable prediction of the wave transmission coefficient are taken into 
account, representing different behaviors for various types of breakwater structures. This chapter 
gains insight in the input boundaries of the prediction model for all 9 parameters. The final input 
boundary of individual input parameters is based on: 
 

• Physical boundary. For every parameter there is a physical range present within a certain 
parameter may vary. Values outside this range are physically impossible and can logically 
not be entered to the prediction model.    

• Data distribution. The data distribution on which the model is based, determines the range 
where the model is expected to give a reliable prediction. In regions with a lot of data 
points the model will give reliable predictions, contrary to regions with few or no data 
points. The boundaries are based on the 2.5%-quantile and 97.5%-quantile data 
distribution, representing the 95% data interval of the total amount of available data points, 
because the neural network is able to interpolate within that range.    

• Model validation. With help of sensitivity analysis of individual parameters, the provided 
tendencies are validated with earlier findings from different studies on wave transmission. 
Boundaries are determined where the model predicts physical right tendencies. For the 
sensitivity figures the follow legend is valid.  
 
Legend of sensitivity figures 

 
All three boundaries have resulted in the normative final input boundaries of the prediction model. 
Within the given ranges the model is capable of providing reliable predictions. Different boundaries 
are determined for mound and smooth structures as these structures behave very differently to 
wave transmission. A summery of all input boundaries is given in Section 5.10.2. 
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Figure 5-1 Input parameters of the prediction model for a general breakwater section 
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5.1 Incident wave height 

The incident significant wave height, Hm0 toe [m], is defined directly in front of the structure (at the 
toe). Within the prediction model the incident wave height is used as scaling parameter for applying 
Froude scaling. All input parameters are scaled to Hm0 toe = 1.0m by the prediction model itself, 
making it possible to handle all kind of situations: Small-scale models, large-scale models and 
prototype situations. Therefore, the boundaries of input parameters in this chapter (with a certain 
dimension) are given as a ratio to the incident wave height Hm0 toe [m].   

5.1.1 Physical boundary 
Very small waves, with a wave height lower than 0.03m, are very difficult to generate in a wave 
flume or wave basin and is stated to be a physical lower boundary. The height of the incident waves 
is restricted to the depth of the foreshore in front the structure. It is recommended to use the 
following wave height to water depth ratio: Hm0 / h < 0.50. If this condition is exceeded it could be 
that breaking waves will be present, for which the model is not able to give a reliable prediction.    

5.1.2 Data distribution 
The available data is obtained from small- and large-scale tests. Scaling effects can therefore 
influence the predicted transmission coefficient, but this effect is not different from other available 
prediction methods for which the same is true. In Figure 5-2 and Figure 5-3 the distribution of the 
wave height is presented. The data distribution is not important for the prediction model as this 
parameter is scaled to a wave height of 1.0m.  

5.1.3 Model validation 
A model validation cannot be performed by means of a sensitivity analysis because the incident 
wave height is used as scaling parameter in the prediction model. The validation of the incident 
wave height is assumed to be included in the validation of all scaled input parameters. The 
boundaries of these parameters are based on physically right tendencies and in this way the incident 
wave height is indirectly taken into account and validated. 

5.1.4 Boundary of the prediction model 
The following input boundaries for the incident wave height within the prediction model are found. 
This boundary is equal for both mound and smooth structures and is completely based on the 
physical boundaries. 
 
The lower boundary of the significant incident wave height: 
 
Hm0 toe > 0.03m 
 
The upper boundary of the significant incident wave height: 
 
Hm0 toe / h < 0.50 
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5.2 Incident wave period 

The incident mean wave period is like the incident wave height present at the toe of the structure. 
The spectral mean wave period Tm-1,0 toe [s] is used as input parameter, because it is found most 
suitable for rather shallow water conditions (Verhaeghe et al., 2003 after TAW, 2002). The following 
relations can be used as best approximation for Tm-1,0 toe if different characteristic wave periods are 
known: 
 

1 0,2
3

1.20 mT T≈ , 
1

3
1.05pT T≈ , 1,01.10p mT T −≈  

 
In principle the incident wave period determines the wave steepness of the incident waves. Because 
all parameters are treated relative to the incident wave height (except for dimensionless 
parameters), the wave steepness is used to set the input boundary of the incident mean wave 
period of the prediction model.  

5.2.1 Physical boundary 
A wave steepness over 0.07 is physically not possible, as the waves should break beyond this point. 
A wave steepness lower than 0.005 is difficult to generate in a wave flume or wave basin. Therefore 
the physical boundary of wave steepness (indirectly the wave period for a constant wave height) is 
stated to be: 
 
0.005 < s0 m-1,0 < 0.070 
 
Or expressed like the mean wave period for a constant wave height of Hm0 toe = 1.0m: 
 
3.27s < Tm-1,0 toe  < 11.32s  

5.2.2 Data distribution 

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Hm0 toe [-]

s 0
m

-1
,0

[-]

 
Figure 5-2 Distribution of wave height versus wave steepness for available data (smooth) 
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Figure 5-3 Distribution of wave height versus wave steepness for available data (mound) 
 
The distribution of data shows the following boundaries: 
 
Smooth structures:  
0.010 < s0 m-1,0 < 0.076 
2.90s < Tm-1,0 toe < 7.87s 
 
Mound structures:  
0.006 < s0 m-1,0 < 0.079 
2.85s < Tm-1,0 toe < 10.34s 

5.2.3 Model validation 
The sensitivity figures below are based on a constant wave height of Hm0 toe = 1.0m.  
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Figure 5-4 Sensitivity of prediction model to mean wave period (smooth & submerged) 
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Figure 5-5 Sensitivity of prediction model to mean wave period (smooth & emerged) 
 
The influence of the mean wave period is obvious for a smooth structure. The model shows an 
increasing transmission coefficient between the shown data boundaries (vertical lines). In case of a 
smooth structure the influence is clear and valid: a longer wave passes a structure more easily, 
resulting in a higher transmission coefficient.  
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Figure 5-6 Sensitivity of prediction model to mean wave period (mound & submerged) 
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Figure 5-7 Sensitivity of prediction model to mean wave period (mound & emerged) 
 
The prediction model shows the expected tendency for both submerged and emerged mound 
structures too. The confidence band is narrow for both cases between the data boundaries, 
indicating the prediction model is unambiguous in predicting the transmission coefficient. Clearly, for 
an emerged mound structure the predicted transmission coefficient deviates considerable from the 
DELOS formulae, contrary to a submerged mound structure, where the prediction of both methods is 
nearly equal. Apparently the prediction model is more capable to deal with relative higher crest 
freeboards than the DELOS formulae. 

5.2.4 Prediction model boundary 
The boundary of the prediction model for the wave steepness (indirectly the wave period), is based 
on the distribution of the data points, leading to the following boundaries:  
 
Smooth structures:  
0.009 < s0 m-1,0 < 0.060 
 
Mound structures:  
0.006 < s0 m-1,0 < 0.080 
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5.3 Mean angle of wave incidence 

The mean angle of wave incidence β [o] is defined as the angle of the incident waves to the normal 
of the breakwater structure. An angle of β = 0o means that waves are propagating perpendicular to 
the structure. An angle of incidence of β = 90o means that waves are propagating parallel to the 
structure.  

5.3.1 Physical boundary 
Because the angle of wave incidence is restricted between a direction perpendicular and parallel to 
the structure, the angle of wave incidence has the following physical boundary: 0o < β < 90o. It is 
clear that for β = 90o there will be no wave transmission, because there is no transfer component 
present to the lee side of the structure. 

5.3.2 Data distribution 
93.3% of the available data concerns tests with an angle of incidence to the normal of the structure 
(β = 0o). Only a small amount of data is tested with a deviating angle. For mound structures 95.4% 
has no angle of incidence and for smooth structures this is 90.8%.  
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Figure 5-8 Distribution of angle of incidence for the available data (smooth) 
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Figure 5-9 Distribution of angle of incidence for the available data (mound) 
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The distribution of the angle of incidence shows the following boundaries: 
 
Smooth structures: 0o < β < 70o 
Mound structures: 0o < β < 45o   

5.3.3 Model validation 
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Figure 5-10 Sensitivity of prediction model to angle of incidence (smooth & submerged) 
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Figure 5-11 Sensitivity of prediction model to angle of incidence (smooth & emerged) 
 
The influence of the angle of incidence is of significant influence for a smooth breakwater structure 
as found in earlier studies (Van der Meer et al., 2004). The model shows more or less the same 
tendency as the formula of Van der Meer et al. (2004). An increasing angle of incidence results in a 
decreasing transmission coefficient. Unlike the formula of Van der Meer et al. (2004) there is a 
maximum present for a small angle of incidence for both a submerged as an emerged structure. This 
maximum cannot be validated, because a decrease is expected for the whole range. A reason can 
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possibly be overfitting of this specific parameter, as the total number of tests for smooth structures 
with an angle of influence is small.    
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Figure 5-12 Sensitivity of prediction model to angle of incidence (mound & submerged) 
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Figure 5-13 Sensitivity of prediction model to angle of incidence (mound & emerged) 
 
The angle of incidence is found to be of minor importance for mound structures in earlier studies 
(Van der Meer et al., 2004) and was not taken into account. The predicted transmission coefficient 
increases for an increasing angle of incidence for both submerged and emerged mound structures. 
This tendency is physically not right. A possible explanation is again the presence of overfitting of 
prediction model, caused by the limited amount of data points for this parameter. Therefore, it is 
recommended to apply β = 0o in every case, like the formula of Van der Meer et al. (2004). In this 
way the model predicts the most reliable wave transmission coefficient for mound structures. The 
range is equal to the boundaries given for the distribution of data. 
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5.3.4 Prediction model boundary 
The use of the angle of incidence within the prediction model is limited for mound structures. The 
following boundary is found for the prediction model, based on the given data range. 
 
Smooth structures:  
0o < β < 70o 

 
Mound structures:  
0o < β < 45o, but enter as input value: β = 0o 
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5.4 Depth in front of the structure 

The depth in front of the structure h [m] has to be determined at the toe of the structure. At this 
depth the hydraulic parameters Hm0 toe, Tm-1,0 toe, and β are present.  

5.4.1 Physical boundary 
The physical boundary of the water depth in front of the structure is given by: 
 
h > 0 
 
Of course no waves can exist if there is no water depth present. Therefore only positive values can 
be entered to the prediction model.  

5.4.2 Data distribution 
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Figure 5-14 Distribution of relative water depth for the available data (smooth) 
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Figure 5-15 Distribution of relative water depth for the available data (mound) 
 
From the distribution figures the follow data boundaries are found: 
Smooth structures: 1.18 < h / Hm0 toe < 9.79    
Mound structures: 1.55 < h / Hm0 toe < 10.92 
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5.4.3 Model validation 
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Figure 5-16 Sensitivity of prediction model to relative water depth (smooth & submerged) 
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Figure 5-17 Sensitivity of prediction model to relative water depth (smooth & emerged) 
 
The prediction model shows to be very sensitive to the value of the water depth in front of a smooth 
structure. In earlier studies the influence was not taken into account, but for smooth structures 
(submerged and emerged) the model is showing a strong decrease of wave transmission as the 
water depth at the toe of the structure increases. The confidence band is narrow within the 95%-
data confidence range, indicating the ensemble of neural networks is reliable in its prediction. An 
explanation of this strong influence cannot be given at this moment. A possible explanation could be 
that shallower water conditions result in a steep front of the incident waves, having influence on the 
type of breaking and therefore also on the wave transmission coefficient.  
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Figure 5-18 Sensitivity of prediction model to relative water depth (mound & submerged) 
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Figure 5-19 Sensitivity of prediction model to relative water depth (mound & emerged) 
 
The influence of the relative water depth seems to be less important for submerged mound 
structures, where the tendency is more of less constant indicating there is no influence. For a 
emerged mound structure the tendency is different from smooth structures and the prediction model 
shows an increasing transmission coefficient for an increasing water depth, for a rather wide band 
of confidence. No possible explanation of this last mentioned tendency can be given at this moment, 
but assumed is the influence should be small too.  

5.4.4 Prediction model boundary 
The prediction model boundary is based on the data distribution for smooth and mound structures: 
 
Smooth structures:  
1.20 < h / Hm0 toe < 9.80    
 
Mound structures:  
1.55 < h / Hm0 toe < 11.00 
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5.5 Crest freeboard 

The crest freeboard Rc [m] is the vertical distance between sea water level and the crest of the 
breakwater structure. 

5.5.1 Physical boundary 
There is no physical boundary of the relative crest freeboard present as the parameter can be either 
positive (emerged) or negative (submerged). 

5.5.2 Data distribution 
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Figure 5-20 Distribution of relative crest freeboard for the available data (smooth) 
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Figure 5-21 Distribution of relative crest freeboard for the available data (mound) 
 
From the distribution figures the follow data boundaries are found: 
 
Smooth structures: -2.04 < Rc / Hm0 toe < 0.70  
Mound structures: -3.48< Rc / Hm0 toe < 2.27 
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5.5.3 Model validation 
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Figure 5-22 Sensitivity of prediction model to relative crest freeboard (smooth) 
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Figure 5-23 Zoom in on Figure 5-22 for the range –3.0 < Rc / Hm0 toe < 3 
 
The influence of the relative crest freeboard is very clear. An increasing relative crest freeboard 
results in a decreasing transmission coefficient, which is physically expected. Within the range of the 
test data this tendency is very strong and the confidence band is very narrow. The prediction model 
is even able to predict a right tendency outside the range of data, indicating the model is adapting 
the strong influence of the relative crest freeboard of mound structures as well. For the range -7.0 
< Rc / Hm0 toe < 2.0 the tendency is still valid.  
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Figure 5-24 Sensitivity of prediction model to relative crest freeboard (mound) 
 
Also for mound structures is expected that an increasing relative crest freeboard always results in a 
decreasing transmission coefficient. Within the range of -8.0 < Rc / Hm0 toe < 1.8 this tendency is 
shown by the prediction model. For Rc / Hm0 toe > 1.8 the model shows a deviating prediction, which 
is caused by the limited number of data points within this region.  

5.5.4 Prediction model boundary 
The lower boundary of the prediction model is based on the distribution of the available data, 
although the prediction model is showing a right tendency (but with a wide confidence band) for 
even smaller values of the relative crest freeboard. The upper boundary of the prediction model for 
the relative crest height is determined by the tendency which is physically wrong beyond Rc / Hm0 toe 
= 1.8.   
 
Smooth structures:  
-2.00 < Rc / Hm0 toe < 0.70 
 
Mound structures:  
-3.50 < Rc / Hm0 toe < 1.80 
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5.6 Crest width 

The total crest width Wc [m] is the horizontal distance between front- and back slope at the crest of 
the structure.  

5.6.1 Physical boundary 
Crest widths with a value of zero are physically possible if the shape of a breakwater structure is 
like a heap of loose elements (the case for a reef breakwater, like Ahrens).  

5.6.2 Data distribution 
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Figure 5-25 Distribution of relative crest width for the available data (smooth) 
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Figure 5-26 Distribution of relative crest width for the available data (mound) 
 
From the distribution figures the follow data boundaries are found: 
 
Smooth structures: 0.62 < Wc / Hm0 toe < 5.96    
Mound structures: 0.009 < Wc / Hm0 toe < 47.17 
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5.6.3 Model validation 
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Figure 5-27 Sensitivity of prediction model to relative crest width (smooth & submerged) 
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Figure 5-28 Zoom in on Figure 5-27 for the range 0 < Wc / Hm0 toe < 6 
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Figure 5-29 Sensitivity of prediction model to relative crest width (smooth & emerged) 
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Figure 5-30 Zoom in on Figure 5-29 for the range 0 < Wc / Hm0 toe < 6 
 
The prediction models shows for both submerged and emerged smooth structures a decreasing 
transmission coefficient as the relative crest width increases. This decreasing tendency becomes 
smaller as the relative crest width increases. The confidence band is only narrow within the range of 
data: 0.62 < Wc / Hm0 toe < 5.96. This is completely deviating from mound structures, where the 
confidence band is very narrow over a much wider range and showing a stronger decreasing 
tendency. This indicates that the prediction model clearly separates the behavior of smooth 
structures from mound structures concerning the influence of the relative crest width. Additionally, 
the influence of the relative crest width is much smaller for smooth structures compared to mound 
structures. This difference is explained in earlier studies by the fact that no energy dissipation is 
present at the crest of a smooth structure, contrary to mound structures where energy dissipation is 
present due to friction and permeability effects of the rough and permeable crest.   
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Figure 5-31 Sensitivity of prediction model to relative crest width (mound & submerged) 
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Figure 5-32 Sensitivity of prediction model to relative crest width (mound & emerged) 
 
The prediction model shows a decreasing transmission coefficient for an increasing relative crest 
width for both emerged and submerged mound structures, which is physically right. This tendency 
continues for both cases till a constant transmission coefficient is reached. Note that for an mound 
structures the transmission coefficient is decreasing to zero, which is to be expected as the rough 
crest keeps causing wave energy dissipation as a wave travels over the crest. The confidence band 
is most narrow in case a mound structure is emerged. The range of validity of the prediction model 
to this relative crest width is equal to the boundary of the data distribution. 
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5.6.4 Prediction model boundary 
The prediction model boundary is based on the data distribution for both smooth and mound 
structures: 
 
Smooth structures:  
0.60 < Wc / Hm0 toe < 6.00    
 
Mound structures:  
0.01 < Wc / Hm0 toe < 47.00 
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5.7 Upward front slope 

The upward front slope is described as the cotangent front slope cot αuf [-]. This is the slope from 
toe to the crest of the structure, or if a berm is present from berm to the crest. The cotangent is 
defined as the ratio of the horizontal distance over the vertical distance.  

5.7.1 Physical boundary 
The upward front slope can vary between 0 < cot αuf < 5. A lower boundary of cot αuf = 0 means a 
completely vertical structure, while an upper boundary of cot αuf = 5 is a very gentle slope. Gentler 
slopes are close to a sloping beach and cannot be entered to the prediction model. 

5.7.2 Data distribution 
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Figure 5-33 Distribution of upward front slope for the available data (smooth) 
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Figure 5-34 Distribution of upward front slope for the available data (mound) 
 
From the distribution figures the follow data boundaries are found: 
 
Smooth structures: 1.0 < cot αuf < 5.0    
Mound structures: 1.0 < cot αuf < 5.0 
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5.7.3 Model validation 
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Figure 5-35 Sensitivity of prediction model to upward front slope (smooth & submerged) 
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Figure 5-36 Sensitivity of prediction model to upward front slope (smooth & emerged) 
 
A strong tendency of the influence of the upward front slope to the wave transmission coefficient is 
found for both submerged and emerged smooth structures. The decreasing trend line of the 
transmission coefficient for a milder slope is physically expected as waves are influenced over a 
longer distance and more wave energy dissipation is present. The found tendency is more or less 
equal to the DELOS formula of Van der Meer et al. (2004), although there is more fluctuation 
present for the prediction model. The increase of the transmission coefficient for cot αuf > 3.8 are 
physically not expected and will determine the upper boundary for smooth structures.  
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Figure 5-37 Sensitivity of prediction model to upward front slope (mound & submerged) 
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Figure 5-38 Sensitivity of prediction model to upward front slope (mound & emerged) 
 
The prediction model is showing a decreasing tendency of the transmission coefficient for a gentler 
slope, within the range of the distribution of data points. The prediction model is showing some 
fluctuations due to interpolations between the rounded values (1.5, 2.0, 3.0, etc.) of the upward 
front slope. These fluctuations are stated to be of minor importance as in practice front slopes are 
also given a rounded value.  For an emerged mound structure the transmission coefficient is even 
approaching a value of zero, as in case of a submerged mound structure the transmission coefficient 
is getting constant. 
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5.7.4 Prediction model boundary 
The prediction model boundary is based on the data distribution for both smooth and mound 
structures. The upper boundary for smooth structures is adapted to the range of a physically right 
tendency. 
 
Smooth structures:  
1.0 < cot αuf < 3.8 
 
Mound structures:  
1.0 < cot αuf < 5.0 
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5.8 Roughness factor 

The roughness factor γf [-] is introduced to characterize the roughness of the surface of a 
breakwater structure. The roughness factor is used within the empirical formula of wave run-up 
(TAW, 2002), but shows to be of use for the prediction of wave transmission as well to describe the 
roughness of the surface of breakwater structures for various types of armour material (see Table 
3-8) 

5.8.1 Physical boundary 
Till this moment the roughness factor is only defined within the range: 0.3 < γ < 1.0. In order to 
make a distinction between the roughness/permeability of different types of armour units, a lot of 
values between 0.40 and 0.50 are found, describing very well the difference in behavior to wave 
transmission. Because most structures concern rubble mound, the value of 0.45 is frequently 
present. 

5.8.2 Data distribution 
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Figure 5-39 Distribution of the roughness factor for all available data 
 
From the distribution figures the follow data boundaries are found: 
 
Smooth structures: γf = 1.00    
Mound structures: 0.38 < γ f < 0.90 
 
In order to avoid confusion about the transition of rough and smooth surfaces, a structure is only 
defined rough if the roughness factor γf = 1.0. 
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5.8.3 Model validation 
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Figure 5-40 Sensitivity of prediction model to roughness factor (mound & submerged) 
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Figure 5-41 Sensitivity of prediction model to roughness factor (mound & emerged) 
 
For both mound submerged and emerged structures is found that a smoother structure’s surface 
causes less wave energy dissipation, resulting in more wave transmission. Note the confidence band 
is most narrow for 0.40 < γf < 0.50, because most structures in the available data are rubble 
mound. Nevertheless, the prediction model is able to find a clear relation of the roughness factor for 
the whole range of data. The roughness factor mainly influences wave run-up, which is only present 
for an emerged structure. Therefore the influence of the roughness factor is smaller for a 
submerged structure. A rougher surface will cause more wave energy dissipation along the surface 
of the structure and will therefore reduce the wave transmission.   
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5.8.4 Prediction model boundary 
The prediction model boundary is based on the data distribution for both smooth and mound 
structures: 
 
Smooth structures:  
γf = 1.00 
 
Mound structures:  
0.38 < γf < 0.90 
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5.9 Notional permeability factor 

The notional permeability factor P [-] is well known from the stability formulae of Van der Meer 
(1988a). This input parameter represents the permeability for waves underneath the armour layer, 
but in this study the permeability of the core is taken into account as well. P is defined in the 
prediction model for describing four different composures of a breakwater structure: 
 
Value Definition 
  
P = 0.1 Impermeable structure, mound armour layer with filter on clay or sand 
P = 0.4 Low permeable structure, mound armour layer with filter on a rip-rap core 
P = 0.5 Medium permeable structure, mound armour layer on a rip-rap core 
P = 0.6 High permeable structure, homogeneous mound armour 
 
Table 5-1 Value for P [-] for various types of structures 
 
The notional permeability factor is introduced to take into account transmission through the 
breakwater structure for permeable structures and to distinguish in this way impermeable and 
permeable structures. In combination with the roughness factor all structures of the available data 
could be described.  
 

 
Figure 5-42 Examples of the notional permeability factor in combination with the γf 

5.9.1 Physical boundary 
As mentioned before, the notional permeability can adopt values between 0.1 and 0.6. Within the 
prediction model for simplicity reasons, only four different values are used. The values P = 0.1, 0.4, 
0.5 and 0.6 can be entered to the model.  

P = 0.6 
γf = 0.4 

Homogeneous mound 

P = 0.5 
γf = 0.4 

Mound armour layer 
Permeable core 

P = 0.4 
γf = 0.45

Mound armour layer 
Permeable filter layer 
Permeable core 

P = 0.1 
γf = 0.5 

Mound armour layer 
Impermeable core 

P = 0.1 
γf = 1.0 

Smooth surface 
Impermeable core 
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5.9.2 Data distribution 
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Figure 5-43 Distribution of the notional permeability factor for all available data 
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Figure 5-44 Notional permeability factor versus roughness factor for all available data 
 
Mound structures can be either permeable or impermeable. Smooth structures are always 
impermeable and should be given a notional permeability of P = 0.1 in combination with a 
roughness factor of γf = 1.0. 

5.9.3 Model validation 
A model validation of the notional permeability factor is be made for a roughness factor of γf = 0.45. 
The prediction model proves that it is capable of detecting smooth from mound structures and 
permeable from impermeable structures.  
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Figure 5-45 Sensitivity of prediction model to the notional permeability (mound & submerged) 
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Figure 5-46 Sensitivity of prediction model to the notional permeability (mound & emerged) 
 
The wave transmission coefficient is maximum for a notional permeability factor around P = 0.4. For 
a notional permeability factor of P = 0.1, there is an impermeable core present giving a lower 
transmission coefficient. For a homogeneous type of breakwater (P = 0.6) the wave transmission is 
lowest, apparently much of the wave energy is dissipated inside the core of the structure.  

5.9.4 Prediction model boundary 
The following boundaries are given for the notional permeability factor P [-], based on the data 
range and physical boundary. 
 
Smooth structures:  
P = 0.10 
 
Mound structures:  
0.10 < P < 0.60 
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5.10 Conclusion for the validity of the prediction model 

5.10.1 Structure types 
The prediction model has proven to be capable of handling both smooth and mound structures, 
although their behavior to wave transmission is completely different. The advantaged of handling 
both structures in one prediction model is that also structures in the transition between smooth and 
mound structure can be handled. Examples for instance are an impermeable mound structure or a 
reduced smooth structure. Clearly the neural networks used have proven to be powerful tools and 
very useful to this study. 

5.10.2 Parameter boundaries 
The following boundaries of input parameters have found to give reliable and valid predictions. 
 
Input Parameter  Prediction model input boundary 

Incident significant wave height, Hm0 toe [-] Hm0 toe > 0.03m 
Hm0 toe / h < 0.50 

Mean wave steepness, s0 m-1,0 toe [-] 0.009 < s0 m-1,0 < 0.060 

Angle of wave incidence, β [o] 0o < β < 70o 

Relative water depth, h / Hm0 toe [-] 1.20 < h / Hm0 toe < 9.80    

Relative crest freeboard, Rc / Hm0 toe [-] -2.00 < Rc / Hm0 toe < 0.70 

Relative crest width, Wc / Hm0 toe [-] 0.60 < Wc / Hm0 toe < 6.00    

Front slope, cot αu f [-] 1.0 < cot αuf < 3.8 

Roughness factor, γf [-] 1.0 

Notional Permeability factor, P [-] 0.10 

 
Table 5-2 Prediction model input boundaries for smooth structures 
 
Parameter considered  Prediction model input boundary 

Incident significant wave height, Hm0 toe [-] Hm0 toe > 0.03m 
Hm0 toe / h < 0.50 

Mean wave steepness, s0 m-1,0 toe [-] 0.006 < s0 m-1,0 < 0.080 

Angle of wave incidence, β [o] 0o < β < 45o, but enter as input value: β = 0o 

Relative water depth, h / Hm0 toe [-] 1.55 < h / Hm0 toe < 11.00 

Relative crest freeboard, Rc / Hm0 toe [-] -3.50 < Rc / Hm0 toe < 1.80 

Relative crest width, Wc / Hm0 toe [-] 0.01 < Wc / Hm0 toe < 47.00 

Front slope, cot αu f [-] 1.0 < cot αuf < 5.0 

Roughness factor, γf [-] 0.38 < γf < 0.90 

Notional Permeability factor, P [-] 0.10 < P < 0.60 

 
Table 5-3 Prediction model input boundaries for mound structures 
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6 Recommendations 

In this final chapter some recommendations are presented for the use of the model as well for some 
future studies to improve the prediction of wave transmission in a later stadium.  

6.1 Use of the recent prediction model  

The recent prediction model is made with Matlab® 7, including the Neural Network Toolbox. 
Guidance to the use the prediction model is given in the following sections. Three basic steps are 
presented to obtain a prediction of the wave transmission coefficient for a specific case: 
 
• Introducing the specific characteristics of the designed breakwater structure and its hydraulic 

conditions by means of setting the right parameters in the input file (Section 6.1.1) 
• Running the Matlab M-files: ‘Prediction.m’ and / or ‘Sensitivity.m’ (see Section 6.1.2) 
• Analyzing the given results of the prediction model (Section 6.1.3) 
 
It is recommended to follow the guideline described in this paragraph to obtain a valid and reliable 
prediction of the wave transmission coefficient.  

6.1.1 Making the input file 
It is very important to apply the same definitions of parameters as used in this report. The reliability 
of the prediction of the wave transmission coefficient is very much depending on the right 
determination of the input parameters according to the definitions in Paragraph 3.3. Unreliable input 
parameters will cause in principle an unreliable prediction of the wave transmission coefficient.  
 
Hydraulic parameters 
All inputs of hydraulic parameters are defined at the toe of the considered structure. It is at this 
position were the prediction model is based on for all spectral wave parameters. It is recommended 
to use only wave characteristics from deeper water if at the toe of structure relative deep-water 
relations are valid. If not, it is recommended to simulate the waves to the toe of the structure like 
this is done in this study with the numerical model SWAN (free downloadable at: 
www.fluidmechanics.tudelft.nl/swan/). The input boundaries of the hydraulic parameters are given 
in Paragraph 5.10.   
 
Structural parameters 
The more easily the considered structure section can be described with the structural parameters 
present for the input file (h [m], Rc [m], Wc [m], cot αu f [-], P [-], γf [m]), the more reliable the 
prediction of the wave transmission coefficient will be. The input boundaries of the structural 
parameters are given in Paragraph 5.10.  
 
Input file 

The user has to introduce the structural characteristics of the designed breakwater as well as the 
hydrodynamic conditions into the model with use of an input file called ‘Input-LCS.xls’. This file is a 
simple Excel® sheet (see Figure 6-1) where the user can introduce easily the data of the structure. 
The file has to be saved with the original name ‘Input-LCS.xls’ (it will be necessary to overwrite the 
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file for each time changes are made). Scaling is done automatically by the program, so a user can 
enter either model- and prototype values to this file.  
 
 

 
 
Figure 6-1 Example of the input file ‘Input-LCS.xls’ within MS Excel 

6.1.2 Running the prediction model 
The prediction model can be opened with Matlab 7. There are two files present called ‘Prediction.m’ 
and ‘Sensitivity.m’. The file ‘Prediction.m’ results a prediction for the wave transmission coefficient 
for the specific case entered to the file ‘Input-LCS.xls’. When running the file ‘Prediction.m’, Matlab 
returns a predicted Kt and some additional information about the reliability of this predicted 
transmission coefficient. The file ‘Sensitivity.m’ can be used to perform a sensitivity analysis on 
individual parameters, to obtain insight of the influence of these parameters. For design purposes, 
the sensitivity analysis can be a helpful tool to optimize a design for the case of wave transmission.    
 
Using the file ‘Prediction.m’ 
After starting up Matlab 7, the file ‘Prediction.m’ can be opened. In the command screen must be 
typed: Prediction. Automatically, the program will read the input file ‘Input-LCS.xls’ for the specific 
case of the user and generates a prediction of Kt. Matlab will automatically calculate the predicted 
transmission coefficient and replies a Kt with additional information about the reliability of the 
prediction. Matlab returns the following results: 
 

 
 
Figure 6-2 Example of the Matlab interface with prediction results 
 

Figures 
• Histogram of the distribution of the predicted transmission coefficient Kt 
• Box plot of the predicted transmission coefficient Kt 
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Numerical values 
• Mean Kt: This is the mean predicted wave transmission coefficient by the ensemble of neural 

networks for the user’s case and should be used as the official prediction of Kt. 
• Standard deviation of the predicted Kt 
• Variance of the predicted Kt 
• The following quintiles of the predicted Kt: q2.5%, q25%, q50%, q75%, q97.5%. The q2.5% and 

q97.5% are used to give the 95% confidence interval for the sensitivity file. 
 
Using the file ‘Sensitivity.m’ 
After starting up Matlab 7, the file ‘Sensitivity.m’ can be opened. This file predicts a transmission 
coefficient for a given range of an individual parameter to examine the influence or sensitivity. In 
the command screen must be typed: Sensitivity. The command screen shows all parameters that can 
be selected to perform a sensitivity analysis. Only one parameter can be varied while all other 
parameters remain constant as given to the file ‘Input-LCS.xls’. To select one parameter one has to 
type in its corresponding number. 
 
Matlab will ask the lower- and upper boundary of the range of the sensitivity analysis. Also the step 
size has to be entered. A smaller step size will make the calculation slower, but the produced 
sensitivity figure shows a gentler line. The sensitivity figure shows the mean prediction of the 
transmission coefficient (thick black line), the 95%-confidence band (big-dashed lines), the 
prediction of the DELOS formulae as term of comparison (small-dashed line) and the valid input 
boundaries (vertical red lines). Of course results outside the valid input boundaries are very 
unreliable and results cannot be used. A wide confidence means an unreliable prediction, so results 
for these regions should be interpreted with care. Help about this matter is given in Section 6.1.3.               

6.1.3 Interpretation of results 
The statistical values of the predicted wave transmission coefficient give insight in the reliability of 
the predicted transmission coefficient. In general can be stated, that the larger the standard 
deviation, the more unreliable the prediction is. The q50% gives the median of all predicted 
transmissions coefficients by the ensemble of neural networks. In most case the q50% will be very 
close to the mean predicted transmission coefficient. If these two values deviate much, the 
prediction should be interpreted as unreliable too.   

6.2 Future use of the prediction model  

Because the model is made within Matlab 7, also the use of the prediction model is at this moment 
only possible if Matlab 7 is available for a user. Like the classical empirical formulae it is 
recommended to make this model available for all users in the field of coastal engineering in the 
nearby future. Some possibilities are found to make the model accessible worldwide.       

6.2.1 PHP in combination with Matlab 
PHP is a server-side, cross-platform, HTML embedded scripting language that creates dynamic web 
pages. PHP-enabled web pages are treated just like regular HTML pages and can be created and 
edited the same way like regular HTML pages are normally created. It is possible to connect a web 
page to a server-installed Matlab interface. Every user with access to the internet can use the 
prediction model everywhere at any time.  
 
A user would be able to enter his parameter to a website, submit the settings and a Matlab program 
on the web page server can easily read the information from the web page and perform the 
prediction calculation. After this, Matlab returns a file with the prediction of the transmission 
coefficient and PHP makes it possible to return the results this on the web page.   
 
A disadvantage of this method is the fact that a user cannot modify the model to its own preference, 
because the model itself cannot be entered. Secondly, problems concerning the license of using 
Matlab for this kind of purposes should be taken into account as well.   

6.2.2 Compiling the Matlab interface 
The Matlab interface can be compiled to another computer language (for instance the c-language) in 
order to obtain a stand-alone version of the prediction model. This stand-alone executable could be 
placed on a website making it possible for future users to download it from the Internet and use it 
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on their own computer. In principle a wave transmission prediction program is programmed in that 
case. 

6.2.3 Excel interface 
In principle is the final prediction model not more than a giant empirical formula, which consists of 
large matrices and some appliances of functions to these matrices. If the sizes of the matrices are 
not too large, it is possible to let Excel perform the calculation. It is questionable if Excel is capable 
of carrying out such a big calculation without any problems. It is worthwhile to examine this 
possibility having in mind that Excel is widely applied program and simple to use for most future 
users.  

6.3 Improvements of the prediction performance 

Some recommendations are given below to improve the prediction model performance in the future.  

6.3.1 Collecting more data with an angle of incidence 
The sensitivity figures for the parameter β: angle of incidence show a wide band of confidence 
indicating the reliability of using this parameter can be improved. It is recommended to collect more 
data for smooth structures with a varying angle of incidence in order to train the prediction model 
again with this data. Especially because the angle of incidence showed to be important for wave 
transmission for smooth structure there is a possibility to make the prediction model more useful for 
this kind of structures. For mound structures, the angle of incidence is found to be less important 
but with more data with a varying angle of incidence this finding can be made clearer and a wider 
boundary can be given than valid for the present model.  

6.3.2 Increasing the number of tests for smooth structure 
Still the total number of smooth structures is only 21.5% of the data where the prediction model is 
based on. The model proves to be able to distinguish smooth from mound structures, however the 
prediction of the mound structures is more reliable (smaller bands of confidence) and the input 
boundaries for the input parameters are wide, so the range of applicability is larger. Increasing the 
number of tests for smooth structures would make the prediction model better for the case of 
predicting smooth structure. The prediction will be more reliable (narrower confidence bands over 
the whole data range) and a wider boundary will be present.  

6.3.3 Increasing the number of tests for artificial reefs 
The Aquareef dataset is describing an artificial reef breakwater structure, deviating very much from 
other available test sections within the database. It is recommended to include more datasets of 
artificial reefs made from other reef type armour units than Aquareef. A widely applied artificial reef 
armour unit is the Reefball from which is known that tests are performed in the past. As term of 
comparison it would be right to include more of this kind of structures to give lower weight to the 
characteristics of the Aquareef armour units for wave transmission on artificial reefs.   

6.3.4 Investigating deviating prediction of certain datasets 
For a small number of datasets, the prediction model showed to find a deviating wave transmission 
coefficient than measured. These datasets have been examined but no clear explanation can be 
found. It is recommended to valid these tests with new tests. The performed tests are old compared 
to new data and measure techniques have improved during the years. It could be that a more 
accurate transmission coefficient will be found at this moment, resulting in a better fit.  

6.4 Future studies to wave transmission 

6.4.1 Wave period 
The wave period showed to be more important for smooth structures than for mound structures. 
Within this study no strong explanation can be given. It is therefore worthily to gather of perform 
more tests to find a possible explanation and check the found influence.   
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6.4.2 Water depth 
The water depth in front the structure is found to be very important for smooth structures. It can 
physically be explained that the water depth influences the shape of the incident waves. It is very 
interesting to examine the influence of a foreshore on the shape of the incident waves and the type 
of breaking / transmission at the breakwater structure. 
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