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NOTATIONS AND CONVENTIONS

In this thesis, vectors are typed bold-faced. To locate a point in space, the orthogonal

Cartesian coordinates x;, x, and x; and the unit vectors i;, i and i 3 are employed in a right-
handed system with i3 pointing downwards. Temporal and spatial Fourier transforms are used,
where quantities in the frequency (f) domain are denoted by a circumflex (*) on top and in the
wavenumber (k), or slowness (p) domain by a tilde (~) and in the double slowness domain by a

double tilde (=) on top.
Symbols
iy, iy, i3 Cartesian unit vectors
X1, X2, X3 Cartesian coordinates (m)
x cylindrical coordinate (m)
ky, k2 wavenumber parameters (m-1)
P1, P2 horizontal slowness parameters (sm™1)
q vertical slowness parameter (sm™!)
t time coordinate (s)
f frequency (s-1)
s Laplace transform parameter (s-1)
§( f) source spectrum (kgs-1)
v compressional wave velocity (ms-1)
i complex number
P pressure (kgm-15-2)
Jo Bessel function of the first kind and zero order
R, global reflection coefficient of the n-th layer
n local reflection coefficient of the n-th layer
&) temporal delta function (s-1)
&x) spatial delta function (m1)




T intercept time (s)

o angular frequency (rads-!)

A wavenumber parameter (m-1)

€ imaginary part of complex frequency (rads1)

P volume density of mass (kgm3)
Abbreviations

2D 2-dimensional

21/2D 21/2-dimensional

3D 3-dimensional

CMP Common midpoint

DMO Dip move out

DRT Discrete Radon Transform

FFT Fast Fourier Transform

GRT Generalized Radon Transform

PWD Plane Wave Decomposition

RT Radon Transform

VSP Vertical Seismic Profile



INTRODUCTION

1.1 The application of the Radon transform to the interpretation of seismic
data: the motivation for this thesis.

The Radon transform has conventionally been applied to seismic data to decompose the data
into plane wave components. This decomposition allows waves which travel with different
slownesses to be separated. In land seismic reflection data for example, the Radon transform can
be applied to separate compressional waves, shear waves and surface waves (Tatham et al.,
1982). In vertical seismic profiling (VSP) data the Radon transform may be applied to separate
the upgoing waves from the downgoing waves, and to separate different converted modes
(Moon, 1986).

In the calculation of synthetic seismograms from well-logs the theory of wave propagation in
plane horizontal layers is very often handled in the frequency-slowness domain using the
reflectivity method (Fuchs and Miiller, 1971; Kennett, 1983), especially when there is a large
number of layers in the model, or when some of the layers are thin. In order to compare the
synthetic seismograms with field data in the time-space domain, the synthetic data have to be
transformed to the time-space domain with the inverse Radon transform.

Thus the forward Radon transform is required for plane wave decomposition and allows
further data processing to proceed on each wave component separately. The inverse Radon
transform is required either to get the data back to the time-space domain after processing in the
plane wave domain, or to transform synthetic data to the time-space domain for comparison with
field data.

An example of the application of the forward transform is shown in Fig.1.1.1. Fig.1.1.1a
shows a shot gather from the northern part of the North Sea in which there is a big problem with
reverberation of the source energy trapped between the sea floor and the sea surface.
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Fig.1.1.1b shows the Radon transform of this shot record: the multiples, which are not periodic
in the time-space domain (Fig.1.1.1a), become periodic in the intercept time-slowness domain,
the period decreasing with increasing slowness.

gl

Fig.1.1.1a: The North Sea data set; first offset = 125 m, Ax= 12.5 m.
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Fig.1.1.1b: The intercept time-slowness response of the North Sea data set; Ap = 5.28 ms/km.

An example of the application of the inverse Radon transform is shown in Figs.1.1.2 -
1.1.5. Fig.1.1.2 shows the configuration of an airgun array and a 100-channel streamer in the

water overlying a 326-layer acoustic earth model with the acoustic impedance profile shown in
Fig.1.1.3,
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Fig.1.1.2: The configuration of an airgun array of the Delft Airgun experiment.
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Fig.1.1.4 shows the corresponding synthetic seismogram in the time-space domain. This was
calculated by Tijdens (1990) in the following way: the point source response was first calculated
in the frequency-slowness domain (Appendix A); the result was transformed to the time-space
domain with the appropriate offset for each airgun position, using the inverse Radon transform,
and then convolved with the appropriate notional source signature for that airgun, as shown in
Fig.1.1.5 (Ziolkowski et al.,, 1982, Parkes et al., 1984, Ziolkowski, 1987); the resulting
synthetic seismograms for the full array of airguns were then superposed.

= ac. impedance (kg/m2 5)
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Fig.1.1.3: The acoustic impedance profile of the well log from the Delft Airgun experiment.
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Fig.1.1.5: The calculated notional sources of the airgun subarray, shown in Fig.1.1.2.

The requirement for forward and inverse Radon transformations is clear. The reason that the
Radon transform is not used very extensively in seismic data processing is because of a number
of difficulties in its numerical implementation. One difficulty is that the forward and inverse
discrete Radon transforms are not exactly reversible, unlike, for example, the forward and
inverse discrete Fourier transforms. Something is always lost when the discrete Radon
transform is applied to field data. However, this price may be worth paying in order to
decompose the data into the plane wave components. Another difficulty is that the transform can
be very costly to perform accurately.

It is the aim of this thesis to examine the theory of the Radon transform, and to develop and
apply a theory for its efficient and accurate numerical implementation. The theory is worked out
first for the case of plane horizontal layers, or a one-dimensional earth, and is then extended to
two- and three-dimensional earth models.

1.2 Historical overview of the Radon transform

A good agreement between a synthetic seismic record and the raw seismic data implies a
good understanding of the seismic source, the earth structure and the theory of wave
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propagation relevant to the frequency content of the data. The Radon transform lends itself to the
purpose of transformations as well as to the analysis of seismograms. While the ray aspects of
the 7-p (intercept time-slowness) interpretation were being developed and implemented over
many years, the corresponding wave aspects were almost ignored. Schultz and Claerbout (1978)
first recognized the connection between slant stacking and the synthesis of plane-wave
equivalents from the data. As Treitel et al. (1982) pointed out, the idea of representing harmonic
spherical waves as a superposition of plane-wave components (homogeneous as well as
inhomogeneous) is hardly new. It goes at least back to Whittaker (1902), Sommerfeld (1909)
and Weyl (1919). But Treitel et al. (1982) observed that the reflectivity method of wave analysis
had been developed independently some time earlier, and closely related results on the synthesis
of plane waves had appeared (Fuchs and Miiller, 1971) without noting the connection. They
covered wave propagation in a uniform medium and emphasized the importance of the point-
source wave treatment for an optimum deconvolution.

The most thorough wave theory of the 7-p method was given by Chapman (1978, 1979,
1981). Chapman included explicit recognition of its proper application for point sources as well
as for other source geometries. His technique of evaluating the frequency integral first and
keeping the slowness integral real was new, and enabled each seismogram to be interpreted as
an integrated cross section of a "density" function at a given angle. Chapman also acknowledged
the affinity to the much older mathematical formulation of the Radon transform. Phinney et al.
(1981), Henry et al. (1980) and Harding (1985) concentrated on details of the numerical
computations and related asymptotic evaluations. McMechan and Ottolini (1980) made extensive
use of the observation that slant stacking is capable of unfolding triplications present in
refraction data. Later on, in 1986, Brysk and McCowan rewrote the Radon transform for a 3D
geometry such that the original integral is replaced by a conventional slant-stack procedure
followed by a square-root filter.

A different algorithm was submitted by Benoliel et al. (1987). They proposed a f-k
(frequency-wavenumber) approach to the Radon transform which is a 2D FFT followed by an
interpolation and then by an inverse-time FFT. To reduce edge effects, a mute due to the
Nyquist wavenumber is incorporated. However the use of their algorithm is restricted because
they use the asymptotic approximation of the Bessel function. Zero-offset cannot be calculated
and near-offset amplitudes are unreliable. In the same year , Beylkin (1987) presented the
discrete Radon transform (DRT) as a matrix-vector multiplication which has a block-circulant!
structure and hence allows construction of fast direct and inverse transforms. His definition of
the DRT gives an exactly invertible and efficient back transform. Moreover, Beylkin (1987)
extended his DRT into the generalized Radon transform (GRT), in which the integrals over more
general curves (hypersurfaces) instead of over hyperplanes are evaluated.

Kappus et al. (1990) compare existing Radon transform methods. They discuss five
methods: the conventional slant stack (2D), the slant stack for the point source configuration

1 a2 mathematical determinant in which each row is derived from the preceeding by cyclic permutation,
each constituent being pushed into the next column and the last into the first so that constituents of the
principal diagonal are all the same.
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(3D), the cylindrical slant stack according to Brysk and McCowan (1986, 3D), the point source
configuration with the asymptotic approximation of the Bessel function (2D+), and the linear
inverse approach to construct the entire wavefield in 7-p (3D). They conclude that if accurate
amplitudes are required, a full 3D Radon transform should be used. If only correct arrival times
are needed, an asymptotic approximate method will do. The techniques and uses of the Radon
transform in a more general context (medical applications in particular) were detailed by Deans
(1983), including a translation of Radon's paper in 1917.

1.3 Numerical aspects of the Radon transform

There are three numerical problems that must be tackled in order to implement the Radon
transform on discrete, sampled data. First, because the data are collected over a finite aperture,
the range of integrations is finite. Second, because the data are sampled in space at discrete
points, an interpolation is required in the transformation to the slowness domain. Third, for
cylindrical symmetry, a Bessel function of the first kind has to be evaluated.

The finite range of the integrations

The analytic expression for the classical Radon transform requires the projection of the data
as a continuous function, infinitely differentiable, of two variables: space and time. In practice
this continuous function is never available, as only a finite number of data can be collected.
Therefore the analytic expression must be approximated by a form suitable for the finite, discrete
data set. Such approximations are extremely common in data processing. Once the function has
been sampled at a finite number of discrete points, the integral must be approximated, normally
by the finite series.

The performance of the integrations over a finite range is the first main problem of the
numerical implementation, because the lack of a spatially infinite aperture causes so-called edge
effects. The edge effects or truncation effects, which can be severe, introduce coherent noise and
have been noticed by several geophysicists. Durrani (1984) amongst others noticed that, because
of the spatially finite integration, a linear event in the #-x (time-space) domain does not map into
a point in the 7—p domain, according to the conventional view (Phinney, 1981), but maps into
an hour-glass structure in 7—p. Several techniques to reduce these effects have been developed,
which are outlined below.

The application of an appropriate spatial window function reduces the truncation effects
according to Schultz and Claerbout (1978), Brysk and McCowan (1986) and Singh (1989). The
same sort of solution was given by Stoffa et al. (1981) who introduced a window function
based on semblance, which can be considered as the ratio of output to input energy along a
proposed trajectory. Another approach was submitted by VerWest et al. (1984), Harding
(1985), Dobbs et al. (1990) and Dietrich (1988, 1990). These authors all made use of the
asymptotic approximation of the Bessel function which consists of two exponential factors, one
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with a positive argument and the other with a negative argument. Then, they use only the part
that represents the downgoing waves, the positive argument. The upgoing waves, associated
with the negative argument introduce only numerical artifacts and cause the negative-dip events
in the 7-p domain, according to Harding (1985).

Dobbs et al. (1990) grouped the aliased energy caused by the finite aperture into two types.
The first type is due to a lack of energy recorded by the finite aperture array, and the second type
is due to the finite integration and appears as linear artifacts. They derived a linear p-dependent
filter and-demonstrated that these artifacts could be predicted by their filter. While Milkereit
(1987) focused his attention on the localized slant stack which has to deal even more with a finite
aperture of the data set, he noticed that his bow-tie effects (truncation effects) were also
predictable and could therefore be minimized by a decorrelation process used for image
restoration in optics following Bagnuolo (1985).

Another kind of problem, also related to the finite range of the integrations, is the maximum
available p-range present in a r-x data set. Usually the restriction on the p-range in the
transformed #-x data is not taken into consideration and this results in numerical noise. One way
to avoid this is to apply a velocity filter (Noponen and Keeney, 1982; Kelamis and Mitchell,
1989 and Mitchell and Kelamis, 1990). This filter puts a restriction on the range of possible
velocities related to the traveltime. The larger the traveltimes, the higher the velocities are
allowed to be. The improvement achieved by this filter is worthwhile. The near-offset and far-
offset information gets lost, but this was never really available in the first place. The problem of
the edge effects and the restrictions on the available p-range present in a r-x data set, are
extensively discussed in Chapter 4.

The interpolation

Interpolation is the second main problem of the transform (Fig.1.3.1). For example, a linear
event with a certain slope in 7-x maps into a point in 7-p in the ideal case, and this point in 7-p
describes the linear event completely in t-x without loss of information. But the linear event in
t-x is known only at regular grid points and not necessarily known at points intersecting with the
dipping linear event. Therefore some kind of interpolation is needed.

The first question is the order of the interpolation procedure. The higher the order, the more
accurate the results, but the more expensive the algorithm. Then the next question is: Where and
how should the interpolation step be introduced in the algorithm? Brysk and McCowan (1986)
implement the interpolation in the time domain, performing their cylindrical slant stack as a
double integral over time-shifted traces. But the entire operation can also be carried out in the
frequency domain (Beylkin, 1987; Benoliel et al., 1987; Vissinga et al., 1989). This results in
an incorporation of the interpolation in the frequency dependence of the filter coefficients. Less
numerical noise is generated by this minor but essential change. This problem is explained in
more detail in the Chapters 3 and 4.
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Fig.1.3.1: The non-uniqueness problem of the Radon transform.

Evaluation of the Bessel function

For the point source solution of the Radon transform the Bessel function of the first kind and
zero order is involved and has to be evaluated. Because direct numerical evaluation of the Bessel
function is rather inefficient and difficult to control due to its oscillatory behaviour, it is usually
reformulated. A possibility is to replace the Bessel function by its asymptotic approximation.
The only restriction for this option is that when the argument of the Bessel function becomes
smaller than a certain number, the approximation fails (Mithal and Vera, 1987). Another option
is to make use of symmetry properties of the Bessel function and rewrite it as a square-root filter
combined with a slant stack operator (Brysk and McCowan, 1986, amongst others).
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1.4 Outline of the thesis

The mathematical framework of the Radon transform is given in Chapter 2. The algorithm
developed for implementation of the transform on discrete data developed in this thesis is a
combination of those derived by Brysk and McCowan (1986) and by Benoliel et al. (1987).
Instead of rewriting the algorithm as the conventional slant stack operator followed by a square-
root filter, it is reformulated as a spatial Fourier transform with the same square-root filter except
that these filter coefficients are frequency dependent instead of time dependent. This minor but
essential change of integration variable improves the results significantly. Moreover, a sinc2-
operator (the Fourier transform of the linear interpolator) is introduced to make a better
performance of the interpolator. This is discussed in Chapter 3. Then according to the aliasing
criterion in the frequency-slowness domain, only the unaliased part of the data is used for the
transform (Benoliel, 1987). Chapters 3 and 4 cover this. Chapter 3 focuses on the numerical
implementation of the inverse transform given a synthetic data set in the f-p domain, and Chapter
4 covers the numerical implementation and limitations of the forward and inverse Radon
transform given a data set in the ¢-x domain, either recorded or synthetic. The point source as
well as the line source solution of the algorithm are derived and special attention is paid to the
interpolation procedure. Furthermore, in Chapter 4 the consequences of the common problems
of spatially limited aperture and the lack of near-offset measurements are reviewed. Chapters 3
and 4 both conclude with some data examples.

Chapter 5 deals with the classification of the events in the 7-p domain. In order to be able to
do this, the method of stationary phase is employed. The theory developed is supported by a
number of data examples such as the hyperbolic gvent, the linear event, a noise pulse and the
diffraction hyperbola. Further, there is another limitation which is also discussed by Benoliel et
al. (1987) on the 7-p data besides the "anti-aliasing" restriction. Given the minimum and
maximum offset and the velocity-depth model of the input data set, one can calculate which
values of slowness p for certain values of intercept time 7 are reliable. Outside this range, only
noise due to the end effects, is present. Knowledge of the reliability of the p-values is
indispensable when, for instance, the 7-p data are used for inversion purposes. After the
synthetic data examples, two marine data sets are displayed and the main events in their 7-p
responses are discussed.

Chapter 6 gives a numerical procedure to process a seismic line or 3D survey by means of the
double Radon transform. When the seismic survey is considered as a coherent set of
information, its spatial complexity shows a well-defined topological subdivision in the double
Radon transformed domain. The main advantage of the algorithm is that the restriction of a
planar velocity distribution is withdrawn. Therefore it offers a number $f applications with
respect to the allowed laterally varying velocity distribution. The application we discuss is a
migration procedure, comparable with the well-known DMO (Dip move out) technique. The
theory developed in this chapter is supported by some synthetic data sets and to conclude the
chapter, a split-spread land seismic data set is transformed and discussed.
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Chapter 7 gives the overall conclusions, summarizing the main limitations of the Radon
transform and secondly, the limitations due to the input data.
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MATHEMATICAL FRAMEWORK

2.1 Introduction

The problem of reconstruction from projections is an old one and can be found in many fields
such as astronomy, medical science, molecular biology, optics and geophysics. An appropriate
unifying mathematical framework for this is given by the Radon transform (Radon, 1917).
However, major developments in these areas did not come as a result of Radon's work. In fact,
all of these fields were highly developed before connections with the Radon transform were
recognized. Today its relevance is apparent in several different fields.

The Radon transform of an arbitrary function f defined on an n-dimensional Euclidean space
R™, is determined by the integration of f over all hyperplanes of dimension n-1. A
hyperplane/hypersurface is a figure corresponding to a plane/surface in hyperspace, where a
hyperspace is a space of more than three dimensions. Thus, if fis defined on the plane R?, then
its Radon transform is determined by the line integrals of f, and if fis defined on the plane R3,
its Radon transform is determined by the surface integrals of f over 2D planes (Deans, 1983).
Conforming this general definition with current usage in geophysics for a 2D configuration
gives basically a reformulation of the way a line is parameterized. Instead of characterizing a line
in normal form, the line is expressed in a slope-intercept form, where p is the slope and 7 the
intercept. Then the Radon transform is performed by sweeping over the wavefield (the function)
with lines, each given by its p- and 7-value, adding (integrating) all the values on each line and
finally associating the sum (integral) with its slope p and intercept 7. Now for a 3D
configuration, the connection of the Radon transform with the plane-wave decomposition
(PWD, Treitel et al., 1982) is easily conceived. A point-source data set can be decomposed into
a set of plane-wave components for arbitrary angles of incidence in which each plane-wave
component is defined by its angle of incidence and the slowness, being the parameter p.



18

2.2 The mathematical introduction to the Radon transform

To relate the algorithm of the Radon transform, developed in this thesis, to the published
literature, and to clarify the cohesion between the existing methods an outline is given of the
most important derivations. In order to do that the basic tools, which are the temporal and spatial
Fourier transform and the definition of the Radon transform by Radon (1917) are given.

The temporal Fourier transform pair for causal time functions is defined by

-~ +oo 7
w(xf) = f e P wxpar 2.2.1)
0
and
too . -
u(x,t) =f e 2 L df, (2.2.2)

where the integral of the inverse transform (eq.(2.2.2)) is performed for negative and positive
frequencies. Since we need a unique relation between the wavenumber k which may be positive
or negative and the horizontal slowness p (k = 27fp) which may also be positive or negative, we
need to know the inverse transform for positive frequencies only.

Therefore the Heaviside step function ;;0’) (Fig.2.2.1) is introduced as

~ 1 f>0
0 f<o0 2:2.3)
k()
_.._.___>f
Fig.2.2.1: The Heaviside step function.
The next step is to introduce the analytic function as
“+co n ~ ~
Wixe) = f e 2R wx o 2.2.4)

—O
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where the inverse Fourier transform of the step function, ’i:(f) is, according to Bracewell
(1978), given by

oo . ~ oo .
h(e) = f e P wpar = f e P 4
- 0 (2.2.5)
1 i
= = &1t) - — .
2 2m
Then, eq.(2.2.4) is rewritten as a convolution
A “+oo
u(xt) = f h(t—-T) u(x,t) dt
¢ (2.2.6)

1l

;_[u(x,t) - i}[{u(x,t) ]] s

where 7 denotes the Hilbert transform and is, in accordance with Bracewell (1978, p- 267),
defined as

Hlu(x,t) ] =

N~

“+o0
]f W) gr (2.2.7)
oo -7

where the right-hand side of €q.(2.2.7) is to be understood as a Cauchy principal value integral.
The last part of eq.(2.2.6) is also known as the analytic signal. Note that u(x,z) = 2Re[uA(x,1)].
Therefore the temporal Fourier transform pair for causal time functions (egs.(2.2.1) and (2.2.2))
is now obtained, by combining eq.(2.2.4) and using the fact that u(x,t) = 2Re/ uwA(x,1)], as

uxp) = f e 2wy ar (2.2.8)
0
and
u(x,t) = 2Re [f e -2t ;;(xﬂ df:l , (2.2.9)
0

where Re [...] denotes the real part, and eq.(2.2.9) is clearly evaluated for positive frequencies
only, as required.
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The next definitions are the spatial Fourier transform pair for the Cartesian coordinates x; and
X in a horizontal plane (Fig.2.2.2) and are given by

= oo oo —i(k k ~

Utks. ka.f) = f f e THkixirkaxa) B xaf) dusdxs | (2.2.10)

~ too p4oo =

utxp,xaf) = = f e HFIT R G ko p) sty | @2.2.11)
4r —o0 —o0

t
{ ‘
T
Fig.2.2.2: The Cartesian and Polar coordinate system where x denotes
the offset (m), p the horizontal slowness (s/m), k the

wavenumber (1/m), ¢ the two-way travel time (), f the
frequency (1/s) and 7 the intercept time (s).

Now, after having defined the temporal and spatial Fourier transforms (egs.(2.2.8) and
(2.2.9) and (2.2.10) and (2.2.11)) for causal time functions, an outline is given of the main
formulations of the Radon transform in the literature. Therefore we start with the definition of
the classical Radon transform of Radon (1917) for n-dimensions in the Euclidean space R"

w(p.&) = f u(x) &p — €.x) dx , (2.2.12)
R

where & denotes the unit vector perpendicular to the hyperplane or hypersurface, and where the
inner product p = £.x is defined as

p=§.x =§1x,+§2x2+ ..... +§,,xn. (2.2.13)
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When line integrals or integrals over hyperplanes have to be evaluated, the classical Radon
transform is used. Extending now the classical Radon transform to a more general form, the
generalized Radon transform (GRT) is introduced (Beylkin, 1983)

wp.&) =f u(x) a(x,8) &p — &.x) dx , (2.2.14)
Rn

where a(x,§) defines some weighting function. In this case, the integral over more general
curves or hypersurfaces has to be evaluated.

An example of the classical Radon transform for a 2D geometry is shown below in Fig.2.2.3
where the line L is defined by the normal p:

P =X;C08¢ + x,8ing . (2.2.15)

/

4

X2

Fig.2.2.3: The line integral depending on p and ¢.

The reformulation for use in seismology is based on the different way a line (in the case of a
2D geometry) is parameterized. Instead of writing the equation in normal form, the equation is
expressed in slope-intercept form as

t=71+px;, (2.2.16)

where p now represents the slope of the line L in the #-x plane and 7 denotes the intercept of L
with the r-axis. The origin of the reference is chosen such that negative 7-values violate the
causality constraint, hence 7 >0. This is shown in Fig.2.2.4,
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X

t

Fig.2.2.4: The line integral depending on p and 7.

The adjusted formulation due to eq.(2.2.16) then redefines the classical Radon transform in two-
dimensions as

- 400 p oo
u(p,t) =f f u(xy,t) &t - v —px;)dedx; 2.2.17)
—o 70

Oor as

~ +oo
u(p,t) f u(x;,tT+px;)dx; , for t+px; >0

-00

(2.2.18)
=0 ., for t+px; <0 ,

where the causality condition of u(x,z) is used. The latter formulation is mostly found in the
literature for the forward 2D Radon transform. To obtain the frequency equivalent of
€q.(2.2.18), we apply a forward temporal FFT (eq.(2.2.8)), resulting in

wWpJS) =f e 2™ upyar (2.2.19)
0

Then, substituting eq.(2.2.17) and using the expression for the line in slope-intercept form
(eq.(2.2.16)) gives
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P} ~+c0 oo (-] .
ulp.f) = f dx; f u(xy;,t) dtf e 2afe HNt—T1—px,) dv
o

—o0 0
(2.2.20)
+oo . oo .
=[ e—tZﬂfpx, dx, f exant w(xs.t) dt
—o0 0
where the last part is rewritten as
2 doo . ~
wpp) = f e PTIPX Uik y ) dxs 2.221)

—o0

The inverse transform for a 2D geometry is obtained by using the Fourier inversion form of
eq.(2.2.21) as

~ oo 2
wxrf) = f e PP Y pfdp . 2.2.22)

—oo

The eqs.(2.2.21) and (2.2.22) are part of the projection-slice theorem (Mersereau and
Oppenheim, 1974) which provides a connection with the spatial Fourier transform pair
(eqs.(2.2.10) and (2.2.11); Bracewell, 1956). According to this, the following relation is used

Utkf) = u2nfp.f) . (2.2.23)

which clearly shows the implicit interpolation. To obtain the inverse classical Radon transform,
€q.(2.2.9) is applied on eq.(2.2.22) and results in

oo . 400 . =
w(x;,t) = 2Re f e 2 4 ] e 2HP* Y p f@]. (2.2.24)
0

Then, changing the order of integration and transforming f to ﬁ— g, this becomes

+oo , oo . _ 2
u(x;,1) = 2Re f w» L2 f e EHOPE) Y par|. (2.2.25)
= 2r ot 0

Using eqs.(2.2.5) and (2.2.6) we obtain



R I I | e ™
u(xy.t) = 2Re f_w @ 27 90 E[u(p.t—ph) —iH u(p,t~px1)] . (2.2.26)
and finally
_1 3 (™ [~
wan =32 5| ey @227

where 7/ denotes the well-known Hilbert transform. The inverse Radon transform derived by
Chapman (1978) differs by the minus sign due to his different definition of the Hilbert
transform. The formulation of the classical Radon transform for a 2D geometry (egs.(2.2.18)
and (2.2.26)) is also mentioned as slant stacking. When the slant stack operator is employed, the
calculation is performed in the time domain. Therefore the frequency domain version of the
classical Radon transform, given by the eqs.(2.2.21) and (2.2.22), must no longer be called
slant stack.

The classical Radon transform or slant stack for a 2D geometry is

. oo
u(p,t) = f u(x;,T+px;y) dx;

' (2.2.28)
oo ~
u(x;,t) = 2L % ﬂ[u(p,t—pxz)]tb
n
and its frequency domain equivalent is

= +oo -7 ~

upf) = f e “EHPE 1) dix,
(2.2.29)

~ oo 3 =
u(xpf) =f f e PP ) do

Formulating now the classical Radon transform or slant stack operator for a 3D geometry
(Fig.2.2.2) in Cartesian coordinates (Brysk and McCowan, 1986), eq.(2.2.18) is extended to

~ 400 p oo
w(p;.p2.7) =f f U(x7,%2.T + pyx;+ paxy) dedx; , (2.2.30)
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and this formulation is also referred to as plane-wave decomposition (PWD), by Treitel et al.
(1982). Its equivalent in the frequency domain is obtained by applying eq.(2.2.8) on
€q.(2.2.30)

= Lad i2 ~
wpr.p2.f) = f e P upipat) dr (2.2.31)
0

Then substituting eq.(2.2.17) into eq.(2.2.31) and using eq.(2.2.16) gives
=~ +oo oo oo oo .
upp.p2.f) = f f dx;dxy f u(xl,xz.t)dtf e 2nf S(t—T—px ;—paxy) dt
—o0 0 0

oo p 400 . oo .
=f f e”'2”f(””"+”2"2’dx,dx2f 2 e, (2232)
—C0 —0 0

where the last part is rewritten as

2 o0 pa4oo
wprpaf) = f f RH(P1x1+P2¥2) Tis o f) dyds (2.2.33)

Eqs.(2.2.32) and (2.2.33) for the 3D case are exactly analogous to egs.(2.2.20) and (2.2.22)
for the 2D case. To derive the inverse slant stack operator of eq.(2.2. 30), eq.(2.2.22) is
extended to

- 400 p oo
uxi x2f) = £ f f PHOEIPED o py ) dosdos . (2234)

—0o Y—oo

Then applying again eq.(2.2.9)
oo .
u(x;,x5,t) = 2Re [f e—zan;f zdf

+oo e 4oo
f f zzfrf(mxz‘rpz"z) u(p1.pa2.f) dpdpz |, (2.2.35)

—00 Y —co

2
and, changing the order of integration and transforming f2 to — Lz -

4 at
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-0 T —00

+o0 p oo
u(x;,xz,t) = 2Re f f dp 1dp2

-1 9 (*

2
4qr 6:2 0

=

w(py.p2.f) df|. (2.2.36)

e_iz nf(t-px ;—p2x3)

After transforming to the time domain in the same way as we did before, we obtain

1 32 400 oo |
u(xy,xz,t) = — ] f f Wpr.p2.t—pix; —paxsy) dpidps . (2.2.37)
4in at —o0 —o0

The Radon transform or slant stack for a 3D geometry is thus given by

- 400 p oo
w(p1.p2.7) =f f u(xy,x2,T +pyx;+ paxz) dx;dx;
(2.2.38)
7 82 400 p4oo
U(xy,x2,8) = iy w;f f Wpy.p2.t—pix; —paxy) dpidp;
4 ot —oo —oo
and its frequency domain equivalent is
= Foo oo -1 ~
u(ps.pa.f) = f f e 2nf(p1x1+P2x2) u(x;,x3.f) dx;dx;
(2.2.39)

o~ Hoo  ptoo i2 o]
u(xp,x2.f) = f2 f f ¢ PHPIRI+Px2) L by ) dprdps

Exploiting the cylindrical or radial symmetry of the medium in the configuration, the
configurational parameters are written in a radial and angular parameter (Fig.2.2.2), as

p; =p cosy’ x; =x cos@’
(2.2.40)

p2 =p siny’ x; =x sin@’ ,
and egs.(2.2.39) become

~ oo 2 . ~
u(pf) = f f ¢ TH2TIPRCOSO U f) dxdx (2.2.41)
0 ‘o
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~ oo p2T . ~
uxp) = f*? f f e PPHPXOSX i) dypdp . (2.2.42)
0 "0

where 6=60-)" and y=x'-6". Because axisymmetry is demanded for the source as well as for
the medium, the functions in the latter two equations are independent of the angles y and 6.
However, the angular integrations cannot be eliminated because they involve the relative
orientation of the position vector (eq.(2.2.41)) and of the direction of propagation (eq.(2.2.42)).
Therefore the latter two equations can also be written as a Hankel transform or a Fourier-Bessel
transform (Abramowitz and Stegun, 1965) as

+oo

ulp.f) = 2n f u(xf) Jo (2nfpx) xdx (2.2.43)

0

“oo

uxf) = 2nf? f w(pp) Jo (2nfpx) pdp |, (2.2.44)

0

where Jo is the Bessel function of the first kind and zero order. So in the case of cylindrical
symmetry the Hankel transform comes out of the solution. A direct numerical evaluation of the
Hankel transform is relatively inefficient. Therefore the second integral in eq.(2.2.41) is
considered again and rewritten as

2 . n/2 ; )
f p —i2nfpxcosd o f (o izmtpreoro _, sznpprcase) 4o (2.2.45)
0 0

Since u(pf) = E(—pf) and E(xf) = a(—xf) , that is, they are even, the eqs.(2.2.41) and
(2.2.42) after substitution of eq.(2.2.45) and extension of the definition of p and x to the range
of —o0 < p< o0 and —o0 < x< ocoresult in

= +oo w2
upf) =2 f u 1x|.f) |x|ax f ¢ T2TIPx0086 4o (2.2.46)
—_—00 0
~ 2 f1o= 2 2 nfpxcosy
u(x.f) = 2f f u( |pl.o) |pldp f e ay . (2.2.47)
—o0 0

Then the same procedure can be applied to the 3D slant stack operator and eq.(2.2.38) is
rewritten as
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~ +oo n/2
u(p,t) = 2 f xde’ [u(x,r + px cosB) + u(x,T — px cosO)] ae , (2.2.48)
0 0
] 32 +oo /2. ~
u(x,t) =— — = pdpf [u(p,t — px cosy) + u(p,t + px cosx)] dy . (2.2.49)
2" ar ‘0 0

The Radon transform or slant stack for a 3D geometry with the assumption of axisymmetry is

~ +oo /2
u(p,t) = 2 f xdxf [u(x,r + px cos@) + u(x,T — px cos9)] de
0

0
(2.2.50)
7 92 R w/2r.. -
u(x,t) =— — 2 pdp] [u(p,t — px cosy) + u(p.t + px cosx)] dx
2 2
2n ot 0 0
and its frequency domain equivalent is
= oo w2
ups) = 2 [ el el [ 7200 g
- [4]
(2.2.51)

f /2 . i2nfpxcosy dax

~ 2 +oo o
u(x.f) = 2f f u( |pl.f) lpldp
—00 0

Introducing a new variable of integration, p’ = p cos8 and x’ = x cosy, and changing the order
of integration, turns eqs.(2.2.50) into

~ )4 . +oo
u(p,t) = 2 f __dp° f [u(x,r +p’'x) + u(x,T — p'x )]xdx s (2.2.52)
0 Vp -p’ 0
13 (F ax ool ~
u(x,t) = — -5 73 ] T — f [u(p,t —px’) + u(p,t +px')]p@ . (2.2.53)
2 3y Y0 Nx —x" 70

These two expressions were also derived by Brysk and McCowan (1986).

Instead of defining the Radon transform as a function of the horizontal slowness p and the
intercept time 7, it can also be formulated as a function of the direction of the propagation angle ¥
of the plane-wave component and the frequency (Treitel et al., 1982). Then, defining a new
function,
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~

U4 (Y.f) Where p =SiL0°’ , (2.2.54)

Utk.f) = w(2nfp.f)

and where vy denotes the velocity in the first layer (Fig.2.2.5) , eq.(2.2.46) is rewritten as

2 _i2xf S0 scose
f e Vo do (2.2.55)
0

st oo
ua(v.f) = 2 f u( |x|.f) |x|dx

—oo

Note that 7y is restricted to the range of —x < ¥ < 7 because only the propagating part of the
wavefield is taken into consideration. Then introducing a new variable of integration, t = #
cos@, which denotes the horizontal travel time, and where fyp = xsiny/ vy, and changing the
order of integration in eq.(2.2.55), yields

-~ oo to _ —~
ug(y,t) = ZJ' xdx *‘;t-"—-—z e i2zfin u(x.f) . (2.2.56)
i 0 0 Vig ~ts
X
Y
normal ray fy
Plaae\ Yo
“'apef’
001[
Vi
vﬂ
t

Fig.2.2.5: The plane-wave front in relation with the propagation angle v.

Although the last equation is hardly used, it shows clearly the connection between the PWD, the
slant stack operator and the other related Radon transforms.
The inverse operator following eq.(2.2.47) results in

~ 2f 2 T2 . w2 2nf siny xcosy
u(x,f) = =— ug (v.f) siny cosy dy e Vo dy
2 , (2.2.57)
Vo - 0
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where the lower and upper limit of the angular integral is restricted from —z to + 7. Then again
introducing the same variable of integration, t, = tp cosy, where 29 = xsiny/ vp, and changing
the order of integration, turns eq.(2.2.57) into

~ 2 pt+xlivo L/ i2 =
acra) = 2L to dty =t T p (2.2.58)

x —x/vg 0 Nitg ~1y

The transform pair for the PWD is thus
= oo to dt ) ~
h —i27ft,
ug(y.t) = 2[ xdx —_— u(x.f)
0 [} V 102 - Ihz
xlv . (2.2.59)

~ 2 (4] 0 dr i2 =~
u(x,t) = 2_2_ f todtg ——2h—z el i ug(v.f)

X —-X/VO 0 V o " tp
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THE INVERSE RADON TRANSFORM
APPLIED TO SYNTHETIC SEISMOGRAMS
OVER PLANE HORIZONTAL LAYERS

3.1 Introduction

The aim of this chapter is to generate a synthetic seismogram in the z-x domain. When the
elastic/acoustic parameters of the model vary only with depth in a plane, cylindrical or spherical
geometry, the computation of synthetic seismograms reduces to the solution of an ordinary
differential equation (first part) plus the evaluation of the inverse transform (second part).
Several methods exist to solve the first part, that is the differential equation but in this thesis it is
based on the reflectivity method (Fuchs and Miiller, 1971) and the critical reflection theorem
(Fokkema and Ziolkowski, 1987). The solution of the differential equation gives a Green's
function which is extensively described by Koster (1991) for the marine case in which the
hydrophones measure the pressure, and by Baeten (1989) for the land situation in which the
geophones record the particle velocity. The free surface is included in both cases. Internal
multiples and free surface multiples are treated as part of the forward modelling scheme. The
model configuration is shown in Fig.3.1.1 and a summary of the algorithm to generate a
Green's function is given in the appendix (A.1).

The second part concerns the inverse Radon transform which is the goal of this chapter.
Because cylindrical symmetry is assumed the inverse Radon transform according to eq.(2.2,39)
—(2.2.44) can be written as a Hankel transform. The method is illustrated for the simple case of
scalar wave motion but can be easily extended to more complicated problems as, for example,
full elastic-wave propagation problems.

In section 3.2 an overview is given of the literature published on the numerical computation of
Hankel transforms. After that the transform itself is discussed for the 3D-case in sections 3.3
(analytic expression) and 3.4 (discrete expression) and for the 2D-case in section 3.5. Then
section 3.6 goes into detail on the main problems caused by the numerical implementation of the
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transform and the solutions for them. The interpolation used in the transform is discussed in
section 3.7. Further, two synthetic data sets are shown, one of them compared with the

X
X2
free surface /
x
3
Po Vo
Py M
*31
] t
[} 3
] ]
[} ]
] i
[} 1
p n+1 v n+l
x3,n+1
PN VN
X 3N
lower half space

Fig.3.1.1: The earth model, bounded by a free surface on top and
a homogeneous half space at the bottom with N
plane, isotropic and homogeneous layers in between.

Cagniard-De Hoop technique (section 3.8) which calculates the response exactly. Finally the
artifacts due to the numerical implementation of the transform are briefly discussed in section
3.9.

3.2 Development of the numerical implementation of the Hankel transform

The Hankel or Fourier-Bessel transform plays an important role in optics, acoustics and
geophysics. The linear filter method, based upon the theory of Fourier analysis and the theory of
convolution was introduced by Ghosh (1971) and provided an algorithm to avoid Bessel
function evaluations. In 1977 Siegman presented a nonlinear change of variables used to convert
the one-sided Hankel transform integral into a two-sided cross integral. This correlation integral
is then evaluated on a discrete sampled basis using a FFT. The latter inspired Johansen and
Serensen (1979) among others to develop a more general theory for numerical evaluation of
integrals of the Hankel type. They replaced the Hankel transform by a Fourier integral and
evaluated it as a contour integral in the complex plane. The necessary interpolation was
performed by the sinc-function. Further improvements were obtained by properly adjusting the
sampling interval as well as the abscissa shift according to Guptasarma (1982). Hence the digital
linear convolution or the linear filter method can be speeded up according to Anderson (1982) by
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using both related and lagged convolution concepts. The Hankel transform can also be computed
as a combination of an Abel transform which maps an axisymmetric 2D function into a line
integral projection and a 1D Fourier transform (Hansen, 1985; Wilson, 1986). His line integral,
the Abel transform, is interpreted as a shift-variant recursive filter in which he exploits the "zero-
order hold" approximation. He tested his implementation with known transform pairs. All
applications mentioned above are related to resistivity, electromagnetic and optical problems.

The algorithm introduced here is based on a frequency-wavenumber approach and exhibits a
2D FFT (temporal and spatial FFT) followed by an interpolation and an inverse temporal FFT
(Vissinga et al.,1989). What is new about this algorithm is the introduction of the sinc2
function. The sinc? function is the Fourier transform of the triangle function and is implemented
before the spatial FFT to improve the subsequent linear interpolation of the triangle function.
When a higher than linear order interpolation is used, the sinc2 function is replaced by the
Fourier transform of its interpolator. Furthermore the algorithm exploits causality and the
interpolator, first presented by Chapman (1981) and later reformulated by Brysk and McCowan
(1986), is performed in the frequency domain instead of the time domain. In this way higher
accuracy is accomplished, which is necessary because it appears that the slant stack procedure in
7-p is too coarse to show the details needed for the modelling. For numerical reasons, complex
frequency is introduced (see Appendix A.3).

3.3 The inverse Radon transform for the point source configuration

In the configuration shown in Fig.3.1.1 the Cartesian coordinates x;, x2 and x3 locate a point
in a horizontally stratified medium. The impulsive wave motion u(x;,x2,x3,2), is generated by a
point source that starts to act at # = 0. The model parameters depend only on x3. But the wave
motion u(x;,x2,x3,¢) is a function of all three space coordinates and the time coordinate ¢. Since
we are interested in the behaviour of the wave motion in a time-invariant configuration and since
the source starts to act at ¢ = 0, the Fourier transform pair of the causal wave motion is,
following the eqs.(A.3.10) and (A.3.11), given by
°°e i2nft

;(x,,xz,x3f+ie) =f u(x;,xz,x3,t)dt 3.3.1)

0

and

2ner * _i2mfr ~
u(x;,x3,x32,1) = 2e ﬁ Ref e 4 u(xy.xp,x3+ie) df

0 , (3.3.2)
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where € is positive (Fig.A.3.1). As soon as E(xI X2,X3,f+i€) has been calculated, the integral
on the right hand side can be computed efficiently using a FFT-routine, provided a proper
positive value of € is chosen. The function e e i the so-called inverse taper.

In view of the shift invariance in space of the configuration in horizontal directions, the 2D
Fourier transform of the wave motion, the spectral quantity in eq.(2.2.10) is extended to

= , oL ikyxg—ikyxy ,
Ulky, kp,x3 f+ig) = e U(Xy1,X2,X3f+ig) dx;dx, | (3.3.3)

in which kj and k2 denote the wavenumber parameters. As soon as the spectral quantity
U (k1.k2,x3f +i€) has been calculated, the wave motion u (x;,x2,x3f"+i€) is obtained from the
inverse Fourier transform, shown as

~ haadll dh sl ik =
W(x1,X2,%3 S +i€) =4L2f J' e IR G kauxs frie) dhydks . (3.3.4)
n

The next step is to take advantage of the rotational symmetry in the horizontal directions
(Fig.2.2.2). The Cartesian coordinates x; and x; reduce to one parameter, x; the same applies
to the wavenumber parameters, k; and k. They reduce to 4 and this is pointed out as

X7 =Xx cos@’, k; =27A cos(x+6) (3.3.5)
X2 =x sin@’, k,=27A sin(x+9) ,
W(xx3 fHIE) = w(xy. x2.% 3 f+iE)

3 1:%2,% 3" (3.3.6)

U, x 3 f+i€) = Ulky, ky,x 3 f+i€)
where 0 <x < 0,0 <A < oo, the angles 0 < 0’ <27 and 0 S ¥ <27. Further, using the
property that the spectral quantity U (k1.k2,x3f+i€) is an even function of k and following

€qs.(2.2.41) - (2.2.47), the latter is then with the substitution of A =p V (f*°+€?) given by

Vr 3—8 ?ucosx

~ 2 2 400 2 /2 i
u(x,x3 f+i€) =2(f “+¢ )f u( |pl,x3 f+ie) |p|¢;f e dx . (3.3.7
—0 o

A [ .2
Introducing now a new variable of integration y = wcosy where w =x ¥ (f +£2) and
changing the order of integrations, we arrive at



3 The inverse Radon transform applied to synthetic seismograms 35

~ w ;
u(x,x,,zf+ie)=f YoxsSHR Ay, (3.3.8)

0 Vw —y

where v(y,x3f"+i€) is obtained from the Fourier transform with y as transform parameter: viz.

~ Yoo =

V(. x5 f+ig) = f e 2TPY Sipxsfrie) dp | (3.3.9)
in which

Vpxsfrie) =2(7%+2) |p| u(lpl xsFrie) . (3.3.10)

The inverse Fourier transform of eq.(3.3.9) is

+o _i2npy
-4

S(poxs frie) = f YOy.xs frie) dy . (3.3.11)

—00

The main difference with Brysk and McCowan (1986) is the addition of the frequency as part of
the new integration variable y. Note that in the special case x = 0, eq.(3.3.7) reduces to

w(0,x3 f+i€) =z WO0.x3 f+ie), x=0. (3.3.12)

3.4 The computational procedure of the inverse Radon transform Jor the point
source configuration

For the various values of y, a discretized version of the Fourier transform of eq.(3.3.9) can
be computed efficiently using a FFT. In order to calculate the integral of the right hand side of
€q.(3.3.8), we need the values of 3( Y.X3f"+i€) for all y in the range of the integration
0 <y < w. The discretization of the FFT, applied to eq.(3.3.9), yields these values at discrete
y-points only. A direct numerical approximation of eq.(3.3.8) leads to inaccuracies. Therefore in
this section, a proper interpolation technique is discussed.

Since the data are calculated at a number of discrete points p, = nAp, where ne {-N+1, . ..
N} and Ap is the sampling interval, we also define the discrete Fourier transform pair in
eq.(3.4.1) and eq.(3.4.2), where y,, = mAy withm € {-N+1, ... N } and Ay is the sampling
interval in the y-domain. The transform pair is given by
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~ N X in hm

vm=4p 3 vne N, (3.4.1)
n=-N+1

= N ~ —ig hm

va=4y 3 Vme N, (3.4.2)
m=-N+1

in which Ay and Ap are defined by

AyAp =% ) (3.4.3)

However, a continuous representation for v(y,X3/+i€) in the analytical integration of eq.(3.3.8)
is needed and therefore an interpolation function ¢ is introduced

-~ N .
V(y.x3 f+E€) = 3 V(Vpy X3 fHIE) QY ~Ym ). Y _N+1 <Y <YN. (3.4.4)
m=-N+1

Then eq.(3.3.8) can be rewritten as

~ N ~ w B
u(x,x3 f+i€) = 3 V(¥ X3 +i€) M,,)—dy

m=-N+1 (1] '\/ w2 _ ymj

0<w<ypy, (3.4.5)

The interpolation function ¢ is chosen such that the integral of eq.(3.4.5) can be calculated
analytically. The aim is to match the representation of eq.(3.4.4) to the known discrete values
3(p,,,x3f+i£) in the p-domain. To determine the coefficients of ;(ym, x3f+ie), eq.(3.4.4)
has to be transformed to the p-domain using eq.(3.3.11). Then

= —~ N ~ _'2
V(p.xs fHE) =B(p) Y Vypm.xsfrie) e POm (3.4.6)
m=-N+1
where
~ +eo i
3) = f TETPY 4y) dy . (3.4.7)
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Further, ¢(y) is chosen such that ¢(p) can be calculated analytically via the Fourier transform
(eq.(3.4.7)). Subsequently, the coefficients of V(y,,x3f+i€) are determined by requiring that
€q.(3.4.6) holds in the discrete points p = p,. This implies that

nm

= ~ N -~ —ig P
VPn X3 fHE) =P(Pr) X Wym.xsfrie)e TN . (3.4.8)
m=-N+1

Using the definitions of the discrete Fourier transform pair of egs.(3.4.1) and (3.4.2), we
conclude that the coefficients of v(y,,, X3 +i€) are given by

-~ N 5( X3 f+ie) ig P
v(ym.x3f+ie)=2LN b o Xsdvie) N (3.4.9)

n=-N+1 ¢(Pn )

Note that the discrete Fourier transform of eq.(3.4.9) can be carried out by a FFT routine as
soon as we have identified the data v( P X3S +i€) and the analytical values of ¢@ n).

A suitable choice of the interpolation function is the triangle function (Harrington, 1968,
p- 12). The triangle function and its Fourier transform are given as

I—b’—[.lylsm FFT

.2
o) = W & g =S (mpdy) (3.4.10)
0 Llyl>ay (p)" Ay

Nevertheless, higher-order interpolation functions such as the cubic cardinal spline (Ahlberg et
al., 1967) can be used as well and are discussed in section 3.7. In €q.(3.4.9) the values of
€q.(3.4.10) for the discrete points p = p,, = nAp are required. Then using eq.(3.4.3) the second
expression in eq.(3.4.10) becomes

sin ( nn

Fp, )= — 2N T (3.4.11)
(E2  INAP
2N

Using the interpolation function of eq.(3.4.11) in the integral of eq.(3.4.5), these integrals can
be computed analytically and the values of E(y,x 3f+i€) can be calculated from €q.(3.4.5).
However, the particular choice of eq.(3.4.10) together with eq.(3.4.4) results in a simplification
of the integral of eq.(3.3.8). Using the triangle function as interpolator, we note that eq.(3.4.4)
rcprescnts a linear interpolation of v( ¥.X3f+i€) in the interval y,.; < y < y,. The
v( Yn_bX3f+i€) =Ap_; and 3( YwX3f+i€) = A, are consecutive function values at the end
points of each interval. The linear interpolation used in €q.(3.3.8) leads to
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;(x,x3‘f'+ie) = z = >

& fy" v(yxsf+ie) dy
n=17y, ; w -y

]Ww k:im(x) (3.4.12)
i w2—y2 Ay

where

nAn-I—)’n—IAu+ An—An—Iy ,
Ay Ay

Vyxsfrie) = 2 (3.4.13)

in which y,/Ay and y,.;/Ay represent the weighting factors for the function values A, and A,,_;
according to the linear interpolation. Then carrying out the integrations in eq.(3.4.12), the final
result is obtained as

~ k
u(xxsfrie) = ) [(r An-z - (n-D)A,;) arcsin
n=I

(n Yni— (n=1) Yn) .
(rn)2

(An_I—AnX'yn_I—yn)]+((k+1) Ap—k Ak+1)arcsin( :’: ) +

2 2
(Arsr—Ar)ve o Y=Y\ m —(Z—;) and m=%. (3.4.14)

Finally, a simple FFT-routine and the inverse taper in eq.(3.3.2) transform the complete point
source response to the time domain,

3.5 The inverse Radon transform for the line source configuration

In this configuration the coordinates x and x3 locate a point in a horizontally stratified
medium. The impulsive wave motion u(x,x3,t), is generated by a line source that starts to act at
t = 0. The model parameters depend only on x3. But the wave motion u(x,x3,t) is a function of
both space coordinates and the time coordinate ¢. Since the source starts to act at ¢ = 0, one can
take advantage of this situation mathematically, by carrying out a one-sided Laplace transform
with respect to time. Then following eq.(3.3.1) - (3.3.4) and substituting k = 27fp, and using
the property that the spectral quantity U(k,x3f+i€) is an even function of k, the wave motion
u(x,x3f+i€) is obtained as
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2 2 ~
+€ x ~

u(x.xs frie) = Viiee j. P*ul |ploxs fvie) ap (3.5.1)

Then, following the same procedure as for the point source configuration, the final result is
obtained as
WX 3 fHiE) —(';) (v(y,,_, X3 fHIE) = 20(Y s X3 LHIE) + V(Y. X3 F+IE) )

VrPelx 352

;—"(V(ymz,xsfﬂe) - v(yn_z.x3f+i£)) . m=

Ay
where
~ too =
V(X3 fHie) = f e TPV Spxsfrie) dp (3.5.3)
and
Vp.xs frie) =Nf e ? u(pl.xs frie) . (3.5.4)

Again, a simple FFT-routine and the inverse taper in eq.(3.3.2) transform the line source
response into the time domain.

3.6 Problems caused by the numerical implementation

The singulariiy of the square-root in the Green's function

The evaluation of the recursion algorithm based on the reflectivity method is unstable. This
instability is caused by the singularities of the square-root when Ip | = I / v,,. The square-root,
being a part of eq.(A.1.5) is given by

2
an=,4 L -p° , (3.6.1)

where g, represents the vertical slowness, p the horizontal slowness and v, the velocity of the n-
th layer. Usually g, is calculated for a fixed number of p-values in which the p-increment is held
constant. As p approaches I / v, the vertical slowness g, rapidly decays to zero. This rapid
decay causes a region of rapid oscillations in the frequency domain. Therefore the evaluation of
this region leads to inaccuracies. Two options are used to damp these rapid oscillations. The first
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option is to introduce the complex frequency which is discussed in Appendix A.3 and, the
second option is to improve the sampling by changing the p-increment per frequency
component.
The introduction of the complex frequency is shown in eq.(3.3.3) and compensation for it is
. . T . 2net .
easily obtained by the multiplication of the inverse taper e when the impulse response of
the model is in the complex frequency-space domain (shown in eq.(3.4.14)). Including the
complex frequency, changes eqs.(3.6.1) and (A.1.13), respectively, as follows

// {2 arctan(€/f) 2
Gn= "——z——p , (3.6.2)

Vn

. < i [47ti f'?w"q,,xgyn +1]
Rn(pfrie) = ~ntRn+i(pfrie)e - (3.6.3)

aniVfhe’ guxs, +1]

1+ rnién +1(pSf+ie)e

where f denotes the frequency, r, the local reflection coefficient and R, the global reflection
coefficient of the n-th layer. A proper value of £ (s-!) is dependent upon the numerical precision
of the computer, the temporal sampling interval and the number of temporal samples of the data
set. When, for example e Imet =10 is acceptable as the maximum value of the inverse taper, €
should be something like 0.4 s~! with a recording time of the data set of 1 s. When the recording
time of the data set is 2 s, € should be something like 0.2 s-1. And the chosen maximum value
of the inverse taper is acceptable when the noise does not outweigh the signal of the data set after
applying the inverse taper.

Another side-effect of the complex frequency is the suppression of wrap-around noise. This
noise is an anti-causal effect and is generated by a too large p-increment compared with the
steepness of the last part of the elliptic and quasi-elliptic events, when p approaches 1/vp.

Aliasing in the f-p domain
The second option introduces a frequency-dependent p-increment according to

=—1 __ in whi = .20 3.6.6
SNFAx in which Ax T e ( )

Ap

in which N denotes the number of p-samples, fuyq the Nyquist frequency, Ax the spatial
sampling according to the aliasing criterion and vy presents the velocity in the upper layer. In
this way the p-increment is chosen such that the unaliased part of the data in the f-p domain
(Fig.3.6.2) are sampled with a constant number N, meaning the same number of p-traces is
calculated for each frequency. Thus the number N, vg and the Jayq are chosen and they fix Ax
and Ap. But this Ax is not necessarily the desired receiver-spacing in the ultimate result. And
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because the p-increment changes per frequency, the generated data set in the f-p domain cannot
be shown without interpolation in, for example, the 7-p domain.

I/VIO P max
NAp'
< p—
NAp"
>

fp>1/2Ax

fmax
T

Fig.3.6.2: The p-dependence on the frequency.

Owing to this restriction put upon the modelled data in the f-p domain, the wrap-around noise
is reduced as well. Still the modelled elliptic and quasi-elliptic events have to map into
hyperbolic and quasi-hyperbolic events with finite aperture, so the sampling interval and the
number of samples of the slowness as well as of the frequency have to be accurate; that is, a
small increment and a large number of increments are required. Any carelessness in choosing the
parameters can still result in wrap-around noise. Another point worth considering is the
complexity of the model. The more complex the model, that is the greater the number of layers,
the larger the number of samples that is required in order to get a satisfactory result.

3.7 Interpolation

In the inverse Radon transform linear interpolation is preferred to cubic spline interpolation
because of the relatively short calculation time. But in general, an interpolation procedure of
higher than linear order should improve the results (Brysk and McCowan, 1986). In order to
support or to reject this statement, the cardinal cubic spline (Appendix A.4) is taken to test this
assumption and thereby compare with the above discussed linear interpolation procedure. The
number of points of support (M, eqs.(A.4.1) and (A.4.2)) determines the accuracy of the
interpolation. The larger M is, the more accurate the result will be, but the more calculation time
is required. In order to determine an appropriate value for M a simple cosine function is taken
for testing. The function f{n) is given by
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fin) = cos” [2”5—"0“‘-] ,n =049 (3.7.1)

and is shown in the upper half of Fig.3.7.1. In the lower part, the relative error is plotted for the
linear interpolator compared with the spline interpolator for M = 4 and 6. Because of the large
improvement of the spline interpolator already for M = 4, it was decided to continue with this
spline for further comparison. The largest relative errors correspond to the change of sign of the
first derivative of the cosine function.
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Fig.3.7.1: (a) The cosine function to interpolate and (b) the relative error of the linear
interpolator compared with the spline interpolator with 4 and 6-points of

support.

Fig.3.7.2 shows the 4-point spline and the triangle function (eq.(3.4.10)) with their Fourier
transforms respectively.
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Fig.3.7.2: (a) The 4-point spline compared with the triangle function and (b) their
Fourier transforms.

The next step is to substitute a cosine function in the Fourier-Bessel transform because it has a
known analytic solution and is given by

To(wt) =4 f _cos(2zft) af (3.7.2)
—(an)

Figs.3.7.3 and 3.7.4 show the result of the integration (eq.(3.7.2)) for the linear and the spline
interpolator (eq.(A.4.5)). When the sampling interval is twice as small, the relative error for
both interpolators becomes less, but the spline interpolator is far more accurate than the linear
interpolator. Again it is clear that the local maxima and minima of the Bessel function, that is the
change of sign of the first derivative, cause problems for both interpolators.
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Fig.3.7.3: The cosine function substituted in the Sommerfeld Weyl integral; (a) denotes the cosine itself, (b) is
the result of the integration for the linear and spline interpolator (they coincide), (c) represents the
relative error for both (dotted line: linear, solid line: spline) and (d) is the enlargement of (c) for the
fatter.
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Fig.3.7.4: The cosine function substituted in the Sommerfeld Weyl integral; (a) denotes the cosine itself, (b) is
the result of the integration for the linear and spline interpolator (they coincide), (c) represents the
relative error for both (dotted line: linear, solid line: spline) and (d) is the enlargement of (c) for the

latter.
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Fig.3.7.5: (a) The analytic solution, (b) the model calculated for the linear procedure and (d) the model
calculated for the 4-point spline procedure; (c) denotes the difference between the analytic
solution and the linear procedure and (e) denotes the difference between the analytic solution and
the spline procedure; Ax = 10 m, Ar = 0.002 s and vy = 855 m/s.

The last step is to implement both interpolators in the algorithm and the results are shown in
Fig.3.7.5. The analytic solution is represented by (a), the model for the linear procedure by (b)
and the model for the spline procedure by (d). No difference is visible with the naked eye.
Taking the absolute difference between the analytic solution and (a) the linear and (d) the spline
procedure respectively gives (c) and (e). Fig.3.7.6 compares the relative difference of the linear
with the spline interpolator in more detail for the 7-th trace in the time domain as well as in the
frequency domain.
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Fig.3.7.6: The relative differcnce in more detail in the time domain (max. error =
1.5 %) and the relative diffcrence of the amplitude of the 7-th trace (max.
error = 0.3 %).

From Fig.3.7.6, it is not quite clear which interpolator does a better job. Applying it to the other

traces of Fig.3.7.5, the outcome is more or less the same. Therefore, another measure for the
etror is introduced, that is the cumulative error energy, Ecym

N 2
Z {tran - Uint} (k)
k=1

Ecum = R 3.7.3)
N 2
Z tran (k)
k=1

where tran denotes the analytic result and triy the interpolated result.
In the next figure (3.7.7) four different situations are considered. Part (a) and (b) yield the
results when w = yy and part (c) and (d) show the results when w = Yk Further, for part (a) and
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(c) the division by the Fourier transform of the interpolator respectively is carried out and for
part (b) and (d) the division by the Fourier transform of the interpolator respectively is omitted.
The accuracy of the interpolation procedure in the algorithm is determined by the division of its
Fourier transform (eqs.(3.4.8) and (3.4.10)) as well as by the difference between w and yi
according to eq.(3.4.4) and may be dependent on the offset.
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Fig.3.7.7: The cumulative error energy (dotted line: linear, solid line: spline) in the calculation when w = yi
where (a) represents the energy when divided by the Fourier transform of the interpolator respectively
and (b) when the division by the Fourier transform is omitted; the cumulative error energy in the
calculation when w # y; where (c) represents the energy when divided by the Fourier transform of the
interpolator respectively and (d) when not divided by the Fourier transform.

Considering all the results in this section, the conclusion can be drawn that the spline
procedure is more accurate than the linear procedure when the division by the Fourier transform
of the interpolator is omitted. The major difference in accuracy is obtained when the spline is
used as interpolator alone (Figs.3.7.3 and 3.7.4). However the difference in accuracy when
implemented in the algorithm is far less pronounced. Since the division by the Fourier transform
of the interpolator is part of the mathematical solution, the results are improved when it is done
(Fig.3.7.7) and are worse when it is not done as far as the linear interpolator is concerned.
Thus, the linear interpolator is more benefitted by the division of its Fourier transform than the
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spline interpolator is. Furthermore, there is hardly any difference in accuracy between w = yy
and w #y;. And finally, the offset slightly influences the accuracy when the division of the
Fourier transform is carried out, and substantially affects it when the division is omitted.

What explanation can be given for the unexpectedly good resemblance in accuracy between
the interpolators? When the division by the Fourier transform of the interpolator is carried out,
the performance of the two interpolators is more or less equal. This means tha. the division by
the Fourier transform of the interpolator preconditions the data such that a linear interpolation is
as good as the spline interpolator (more expensive) when the data is not aliased. Thus, any
higher order interpolation is only time consuming and does not improve the results significantly.
This is also confirmed by Benoliel et al. (1987).

3.8 Numerical results

Modelled with the inverse Radon transform

Two synthetic data sets are shown, a 9-layer model containing small density/velocity contrasts
shown in Fig.3.8.2, and a complicated 326-layer model extracted from a well log (Fig.3.8.3)
and shown in Fig.3.8.5. The well log is originated from the Delft Air Gun experiment, shot
over well 2/1-2 of B.P. Both data sets are modelled for the marine situation with a free surface.
Internal multiples as well as free surface multiples, are included. The temporal sampling interval
is 2 ms and 4 ms respectively, the spatial sampling interval is 12.5 m and the nearest offset is 0

m. Elastic effects are neglected. For the 9-layer model, the Blackman-Harris function is taken as
the source wavelet (Fig.3.8.1)
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Fig.3.8.1: (a) The Blackman-Harris function and (b) its spectrum

and calculated according to

w(i) = 48829 sin(M)+.28256 sin(ﬂ) +.02561 sin(M), i=0N, (38.1)
NAt NAt NA?
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where At denotes the temporal sampling interval, i the sampling number and N the total number

of samples of the wavelet.

=— offset (m)~—
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Fig.3.8.2: The simple 9-layer model calculated with the inverse Radon transform

For the 326-layer model, the notional sources are used as source signatures (Fig.3.8.4).
These are derived from the near-field hydrophone measurements that were recorded during the

experiment (Ziolkowski et al., 1982).



3 The inverse Radon transform applied o synthetic seismograms

— ac. impedance (kg/mZs) —»-
4.0E+06 5.5E+06
0.0 f 1 | |

g (S} oum —

1.6 ~

3.2 —

Fig.3.8.3: The acoustic impedance profile of the well log from the Delft Airgun
experiment,
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Fig.3.8.4: The calculated notional sources of the airgun array of the Delft Airgun experiment.
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Fig.3.8.5: The complicated 326-layer model calculated with the inverse Radon transform

Modelled with the exact Cagniard-De Hoop technique

In Fig.3.8.6 a comparison of the calculation with the reflectivity method for the 9-layer model
is made with the exact Cagniard-De Hoop technique (Drijkoningen and Fokkema, 1987) for the

53
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same configuration as shown above including the use of the Blackman-Harris function, except
that only primary reflections are computed. The first offset is 50 m instead of 0 m. No noticeable
difference can be observed. However with a small increase of computation time, all internal
multiples can be included in the reflectivity method. This is in contrast with the Cagniard-De
Hoop technique where the inclusion of an extra generalized ray leads to extra computational
effort. Because of the large amount of calculation time the 326-layer model was not calculated
with the exact Cagniard-De Hoop technique.

For this model, our method needed 5 minutes CPU time, where the exact Cagniard-De Hoop
technique used 3 hours CPU time. Including the internal multiples (only 1-st order) would
double the calculation time for the exact Cagniard-De Hoop technique and increase the
calculation time for our method with 1 %.
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Fig.3.8.6: The simple 9-layer model; (a), the inverse Radon transform; (b), the exact Cagniard-De Hoop
technique,
3.9 Artifacts due to the numerical implementation of the transform

The synthetic seismogram of the 326-layer model (Fig.3.8.5) contains a considerable amount
of noise in the lower right hand part, that is at large offset and at relatively late times. Here no
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primary reflections occur, only internal multiples are present. Because the internal multiples are
very weak at these times, they are smaller than the numerical noise. When the inverse taper is
applied (eq.(3.3.2)), it blows up the noise for large time-values, because it increases
exponentially with time. The noise level is constant along the trace and the amplitude of the
reflectors decays with increasing depth of the reflectors.

This kind of noise is lacking in the simple 9-layer model. Here the chosen parameters are
accurate enough because the Green's function in this model is much simpler than the Green's
function of the 326-layer model. To improve the latter, a larger number of samples and a smaller
increment in slowness as well as in time has to be used for the calculation.
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THE FORWARD & INVERSE RADON TRANSFORMS
APPLIED TO T-X DATA: A SHOT GATHER OR A
CMP GATHER

4.1 Introduction

The aim of this chapter is to derive a numerical procedure for a 3D configuration as well as for
a 2D configuration that maps ¢-x seismic data into 7-p and vice verse. In the introduction two
main problems (section 1.3) inherent to the Radon transform are mentioned. These are (1) the
interpolation necessary for stacking of the slant lines and (2) the limited aperture (in space) of the
data set. The latter problem does not exist in the previous chapter because the synthetic data are
generated in the f-p domain. The numerical implementation of the Radon transform changes for
field data. Although Brysk and McCowan (1986) managed to improve the numerical procedure
of the Radon transform for the point source configuration, their procedure still suffers from
severe edge effects. These edge effects play an increasingly important role as the aperture of the
data set decreases.

Another point worth improvement is the operation of the square-root filter of Brysk and
McCowan (1986) in the time domain. According to Beylkin (1987) and Vissinga et al. (1990)
more accurate results are obtained when the filter coefficients of the square-root filter are
frequency dependent.

In section 4.2 the modification of the Brysk and McCowan algorithm (1986) is derived for the
Radon transform (forward and inverse) for the point source, and in section 4.3 for the line
source configuration, following the same procedure as in the previous chapter and again
assuming rotational symmetry and plane horizontal layers. In section (4.4) the problems due to
the numerical implementation are discussed. The main differences with the inverse Radon
transform in Chapter 3 are the omitted complex frequency, the absence of the sinc? operator
(eq.3.4.9) and the constant p-increment. Section 4.5 outlines these differences. At last section
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4.6 shows some synthetic data examples of a hyperbolic event (2D & 3D) with their inseparable
frequency reduction due to aliasing criterion in the f-p domain.

4.2 The Radon transform for the point source configuration

Starting with the frequency equivalent of the 3D slant stack operator and assuming cylindrical
symmetry

= Hoo w2 ;s e
up.f) = 2[ u(|x|.p) |x|dxf g T2IPxe0s8 g
0

—o0

(4.2.1)

*

- too w2
sy = 22 [T ulolplolap [ ¢ B gy
et 0

new variables of integration are introduced. Instead of introducing p* = pcos@ and x’ = x cosy
according to Brysk and McCowan (1986), the variables ¢ = fp cos@ and b = fx cosy are
proposed by us. Then, changing the order of the integrations, we arrive at

= fp =
u(pp) = f 9P h | o, (4.2.2)
0 fr) —¢q

where

= +oo - ~

waf) = f e T Do pdx | (4.2.3)
and

wxf) =2 x| u|x|.p) - (4.2.4)

For the inverse operator we arrive at

~ fx =
u(xf) = f wbHd | feso, (4.2.5)
0 N(x) b

where
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~ Rand i2nbp =

W (b.f) =§f e “TPwipp (4.2.6)
and

wip f) =4nf 2 |p| ulpl.f) - 4.2.7)

Note that in the special case for fp = 0 or fx= 0, eqs.(4.2.2) and (4.2.5) respectively reduce to

U (0.f) =§ v (0.0, p=0
= = 4.2.8)
u(p,0)=§v(p0). f=0,

and

w(0f) =Ew(0f), x=0

kg
. 2 (4.2.9)
u(x,0) =§w(x,0), f=0.

The values of f( q.f) and w (b.f) are available only in a discrete number of points ¢, = n4q,
where Agq is the sampling interval and b, = nAb, where Ab is the sampling interval and
ne {-N+1,...N } respectively. In order to calculate the integral of the right hand side of
eqs.(4.2.2) and (4.2.5), we need the values of ;(qf) and u’;(b,f) for all ¢ or for all b in the
range of the integration 0 < g < fp and 0 < b < fx respectively. Since the interpolation procedure
is the same for the eqs.(4.2.2) and (4.2.5), they are replaced by

~ fa -~
haf) = f _syNdy (4.2.10)
0 Y@ -y

where the function E( y.f) is interpolated linearly on each subinterval. This linear interpolation
leads to

~ k y ~ fa ~
hap) = 3 f P ePdy +f _SOND 4 _in (%) (4.2.11)
y

.2 2 S 2 2
n=l%y 1 Nf)" -y kY () -y

with
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e Ay Y, (4.2.12)

2y =2n

and where the E(y,,_ f) =A,_; and E(ymf) = A, are consecutive function values at the end
points of each interval. The weighting factors for the function values A, and A,_; according to
the linear interpolation are represented by y,/Ay and y,_;/Ay. Higher-order interpolation
functions such as cardinal cubic spline (Ahlberg et al., 1967) can be used as well and are
explained in the section 3.7. Then, carrying out the integrations in eq.(4.2.11), the final result is
obtained as

- k
haf)= Y, [(n An—s- (n-DA,) arcsin
n=I

(n Yp_1—(n-1) 7,,)+
(rn)z

(An—l -A, )(y,,_I - Yn ) ]+ ((k+1) Ap—k Ak+1) arCSin( t: ) +

[ 2 2
(Ake1=Ar)7ve » Ya=Af () —(Z—;) and rn =§. (4.2.13)

Finally, a simple FFT-routine transforms the complete point source response to the time domain.

4.3 The Radon transform for the line source configuration

Now the seismic data are considered to be due to a line source that starts to act at ¢ = 0. Then,
starting from the frequency equivalent of the 2D slant stack operator

= +oo —i. ~
upp) = f e 2HPH u(xy.f) dx,

4.3.1)
~ hand ; =
uxrf) =f f e 2PN wppap
the forward transform, following eq.(4.2.13) is written as
i(pf)=M('A —2A,+A )+ﬂ(A —A ) m =12, (4.3.2)
2 n—-1 n n+l 2 n+l1 n-1)- Ay
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where y = fp , E( Ynirf) =An-1, g(ymf) =A, and g(yn +1.f) = Ans1 are the consecutive function
values and given as

~ +oo —1 ~
g(y.f) = f e 2T Uik d . (4.3.3)

—oo

The inverse transform is immediately deduced as

2
u(xf) = V%’(A,,_,-ZA,, +A,,+1)+521(A,,+,_An_,), rn =£_’;, (4.3.4)

where y = fx, E( Ynnf) =An_1, E(y,,,f) =A, and g(yn +1.J) =Ans1 are the consecutive function
values and given as

~ teo =
8.f) =f f e upp dp . (4.3.5)
Again, a simple FFT-routine transforms the line source response to the time domain.

4.4 Problems caused by the numerical implementation

Aliasing in the f-p domain

g
]

rlll.i,\’

Fig.4.4.1: The restriction on the Radon transform.
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Aliasing in the f-p domain versus the f-x domain has been well described by Turner (1990)
and by Benoliel et al. (1987). The data are not aliased if

< 1

24Ax

L

4.4.
ap (4.4.1)

fr

and fx <

According to eq.(4.4.1) part of the input data has to be muted in the f-x domain and replaced by
zeros before the actual Radon transform is applied. The muting accounts for both transforms,
i.e. the forward and the inverse Radon transforms and is shown in Fig.4.4.1. Unless the
orthogonal hyperbola (eq.(4.4.1)) falls outside the range of the data, the data after application of
a forward and an inverse Radon transform are never the same. This is not true of forward and
inverse Fourier transforms applied to the same data, whether aliased or not.

Spatially finite aperture, including the lack of near-offset measurements

Aliasing of the data in the f-p domain is one reason for padding with zeros. Another reason to
pad zeros is the frequent absence of near-offset measurements. In order to get the correct
curvature of the elliptic and quasi-elliptic events, some values have to be added. Since it is
unknown which values are missing, zeros are filled in because incorrect values are even worse.
And since the number of input traces must be a power of two because of the use of the FFT-
routine, usually some zero traces must be appended at the end of the data set.

Abrupt changes in the data set generate the well known Gibb's phenomenon after an exposure
of the data to a FFT-routine. In order to protect the transformed data set from these artifacts,
proper windowing is required in the space direction to both ends of the data set and in the time
direction to the end of the data set (Fig.4.4.2). Thus, padding zeros and windowing both
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Fig.4.4.2: The average recorded data set.
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decrease the quality of the transformed data set.

Suitable tapers for the transform
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Fig.4.4.3: The subdivision in scveral areas for a 2D-taper.
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Several kind of tapers are available and there are also some possibilities how to apply the
chosen taper. Following Oppenheim and Schafer (1975) three tapers are tested, the Gaussian
taper

2
on

win) = e " L (4.42)
the Hanning taper
wip) =L —cos BBy, o= L ang B=2ra = X
=211 - cos (2ppany . -
and the Hamming taper
w(p.f) = 0.54 — 0.46 cos (2fpAx) - 4.4.4)

The taper coefficients can be dependent on one parameter (1D) being slowness or offset, or
on two parameters (2D) being frequency and slowness or offset. Both methods give good
results. As far as the kind of taper is concerned, the best result, having the least muting and the
smallest artifacts is obtained by the Hanning taper. An example of a 2D-taper is shown in
Fig.4.4.3.

4.5 Main differences from the algorithm of Chapter 3

The interpolation in the square-root filter is linear, just as in Chapter 3. The sincZ operator to
improve the above mentioned interpolation is omitted. No noticeable difference can be seen when
the operator is applied or is not applied because the noise level present in field data usually
outweighs the improvement. For the introduction of a cubic spline interpolation, the same
arguments can be used as before (section 3.7). Another but essential difference between the
above algorithm and the numerical procedure in Chapter 3 is the non-varying p-increment per
frequency component. Since the receiver increment is a field parameter and therefore constant,
the possibility to vary it is lost according to eq.(3.6.6).

The next problem is closely related to a variable versus a constant p-increment. The measure
of inaccuracy of the linear interpolation in the square-root filter is amongst others dependent
upon the difference between fa and yi following eq.(4.3.13). Since this difference is constant
per frequency component, but gradually changes per frequency depending on the desired
receiver interval in the ultimate result, its response in the time domain turns into linear events
(down-dip) showing up in the lower right hand part of the 7-p response, for example
Fig.4.6.2d. The oscillating precision is illustrated in the test function, f{x) = 22 in Fig.4.5.1.
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The first part is the function itself and the second part denotes the absolute and the relative error.
This problem disappears when the p-increment decreases per increasing frequency component
according to eq.(3.6.6).

15 —
ﬁ 10 —
E
2 5
=]
<
| ---- linear
0 — ~—— analytic
T T L]
-2. E-02 —
-4. E-02
-6. E-02
--== rel. error
—— abs. error
| 1 |
10 20 30
= (race =

Fig.4.5.1: The oscillating behaviour of the linear interpolation procedure; (a) denotes the
test function, f{x) = x? and (b) presents the absolute and relative error;
Axinpu( =0.2and Axou[put =0.12.

Further, the complex frequency is also taken out of the transform because there is no need for
it. That part of the #-x data set which should map into the end of the elliptic and quasi-elliptic
events and can cause errors is absent in field data. Therefore the elliptic and the quasi-elliptic
events only approximate the ideal case where the events reach the refraction points.

4.6 Synthetic data examples

To show the accuracy of the forward and inverse Radon transforms two synthetic data sets
are presented. Of both examples the input data in #-x, its 7-p response and the response after the
forward and inverse Radon transform and the amplitude spectra in f-x and in f-p are depicted.
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The results are shown for a line source configuration (2D) as well as for a point source
configuration (3D). The main differences between the 2D and 3D situation is the decay of the
amplitude related to increasing offset and the way the edge effects are treated, but this is
extensively discussed in Chapter 5. The model parameters for the first example are Ax = 10 m,
Ar = 0.002 s, Ap = 1.3 ms/km and v, = 3000 m/s. The number of spatial samples is chosen to
be 256 and the number of temporal samples is 512. The wavelet used for the calculation is
shown in Fig.4.6.1. In the chosen set-up of the model parameters, there is at least 150 Hz
available in the 7-p response when Ax = 10 m; it becomes a quarter of this (37 Hz.) when
Ax = 40 m.

Furthermore, the 7-p response of a data set is multiplied with —icg (@ denotes the angular
frequency, g the vertical slowness and i the imaginary number) because the data set is integrated.
This is inherent to a forward Radon transform (eq.(4.2.1)). From an interpretational point of
view, it is convenient that the bandwidth of the data set in both domains remains the same as
much as possible, which is established by this differentiation factor. When the 7-p response is
transformed back to #-x, the data set is divided by this factor in order to recover the original data
set, as far as possible after the forward and inverse Radon transform. And this factor comes
from the reflectivity method as part of the solution for the Green's function (eq.(A.1.10)).

@ (b)
0.5 o -
A 10.]
é p—
=
§ | 5.1
|
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0.0 0.01 0.02 0.0 100 200.0
— time (s) 4 — frequency (Hz) -

Fig.4.6.1: The wavelet: (a) its time response and (b) its amplitude spectrum.,

Then in Fig.4.6.2 a seismogram of a hyperbolic event in #-x, starting at zero offset (a) and its
amplitude spectrum in f-x (right hand side) are shown. The amplitude spectrum is represented by
"iso-amplitude" contour lines. Figs.4.6.2b & 4.6.2c give the 7-p responses for the 3D and 2D
configuration with their amplitude spectra respectively, and the elliptic events do not reach the
critical point where p = 1/ vp. This is explained in Chapter 5. At the amplitude spectra the
changing frequency reduction per p-value following the orthogonal hyperbola is not visible, only
the reduction due to the tapering in the spatial direction. Because the 2D Radon transform does
not treat the ¢-x data set correctly, due to a point source configuration, the edge effects are more
severe. This holds in particular for the zero-offset trace, causing the edge effect to be horizontal
(Fig.4.6.2c).
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The responses after the forward and inverse Radon transform of the hyperbolic event
(Figs.4.6.2d and 4.6.2e) show some decrease in resolution due to the frequency reduction
(eq.(4.4.1)) and the tapering (eq.(4.4.3)). Again it is clear that a 2D Radon transform, applied to
a t-x data set, due to a point source gives worse results than a 3D Radon transform does.

The next data set (Fig.4.6.3) is composed of a quarter of the number of input traces of the
data set shown in Fig.4.6.2, thus the receiver spacing is four times as large and a
Ap = 5.2 ms/km. Then the inevitable frequency reduction following the orthogonal hyperbola,
depicted clearly in Figs.4.6.3a and 4.6.3b is more severe and lowers the resolution of
Figs.4.6.3c & 4.6.3d (transformed back to 7-x). Again the 2D transformed data set suffers more
from the incorrect treatment of the source than the 3D transformed data set.
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Fig.4.6.2a: A hyperbolic event, starting at zero-offset in t-x; Ax = 10 m (256 input traces).
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Fig.4.6.2b: The 7-p response (3D) of the hyperbolic event; Ap = 1.3 ms/km (256 input traces).
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Fig.4.6.2c: The 7-p response (2D) of the hyperbolic event; Ap = 1.3 ms/km (256 input traces).
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Fig.4.6.2¢: The t-x response (2D) of (c); Ax = 10 m (256 input traces).
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Fig.4.6.3a: The 7-p response (3D) of the hyperbolic event; Ap = 5.2 ms/km (Ax = 40 m, i.e. each 4-th trace
of the t-x section of Fig.4.6.2).
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Fig.4.6.3b: The 7-p response (2D) of the hyperbolic event; Ap = 5.2 ms/km (Ax = 40 m, i.e. each 4-th trace
of the t-x section of Fig.4.6.2).
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CLASSIFICATION OF EVENTS IN THE T-P DOMAIN

5.1 Introduction

Now the events in the 7-p domain can be classified. If the arrival times only are considered, a
seismic record in time and space may be regarded as a coherent set of events: hyperbolic, quasi-
hyperbolic (primary and multiple reflections) and linear events (headwaves) are distinguished.
After a proper plane-wave decomposition (eq.(4.2.12) or eq.(4.3.3)) the t-x data are
transformed into the 7-p domain. By applying an asymptotic expansion using the method of
stationary phase (Bath, 1968, Felsen and Marcuvitz, 1973, Stokes and Kelvin, 1887; Erdélyi,
1956, Fuchs, 1971) it is shown that the hyperbolic and quasi-hyperbolic events map into the
well-known elliptic and quasi-elliptic events (Vissinga et al., 1990).

However the linear events do not map into points as is suggested by the conventional point of
view of the 7-p representation (Phinney, 1981, amongst others) because there are no stationary
points in the transform integral. The major contribution to the value of the integral according to
Stokes and Kelvin (1887) arises from the immediate vicinity of the endpoints of the integral.
Consequently, a linear event in £-x maps into two linear events in 7-p with a positive dip (up-dip)
and a negative slope (down-dip) starting at the 7-axis. The intercept time on the 7-axis relates to
the time value in the 7-x domain where the linear event starts, while the slope in 7-p represents
the corresponding offset x. In the case of headwaves, the up-dip linear event is tangent to the
ellipse at the focus point in the conventional view.

Furthermore, it will be shown that the positive and negative dip events for the point source
configuration have a different temporal behaviour that is predicted by the theory. This
knowledge allows us to interpret the linear events corresponding to headwaves in more detail.
Specifically, the negative-dip events can be isolated either by f-k filtering of the 7-p data or by
taking only the negative offset of the transform integral into account. Since the data set is finite in
space there are also edge effects. These discontinuities show the same behaviour as headwaves
in the 7-p domain, so they also map into linear up-dip and down-dip events. These effects are
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minimized by employing a suitable window in the ¢-x domain. The linear events are often
interpreted as artificial consequences of an imperfect plane-wave decomposition and therefore
removed by filtering. However, after proper windowing in #-x, the linear events that remain are
headwaves and contain valuable information which should not be removed.

Section 5.2 starts with the equation for a hyperbolic event in f-x, applies the forward Radon
transform (for the 3D configuration, eq.(2.2.51)) to the event and employs an asymptotic
expansion to arrive at the elliptic event. If the lower and upper limit of the spatial integral are
replaced by more realistic numbers instead of the zero and infinite offset, one can calculate the
range of reliable p-values in the 7-p response as well as the behaviour of the edge effects. The
same procedure is also followed for a linear event (headwave) in section 5.3 and for a diffractor
in section 5.4. Section 5.5 covers the edge effects. For the 2D configuration, the same events as
for the 3D configuration are discussed and then the method of stationary phase is applied (only
one integral has to be evaluated). Further, all equations representing the events in section
5.2-5.4 are given in the frequency domain since the phase function is as clear in the frequency
domain representation as in the time domain representation. The amplitude factor is only an
approximation and therefore not worth while transforming to the time domain. After that a
summary is given of the main events in 7-x and their 7-p responses. The last section (5.6)
discusses two marine data sets.

5.2 Hyperbolic event

Consider the model in Fig.5.2.1, where z denotes the thickness, v the rms velocity of the n-th
layer and 6 the angle of incidence. Further, for the 3D configuration when cylindrical symmetry
is assumed, x represents the horizontal component of the polar coordinate system. For the 2D
configuration, x represents one of the horizontal components of the Cartesian coordinate system.

source receivers
* - x VVVVVVVV
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0 N 7/
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N 7/
\ 7/
N 7/
z o7 v

Fig.5.2.1: The x-z model for the hyperbolic event.
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This is valid for all the synthetic data examples.
A hyperbolic event in the f-x domain is then formulated as

~ i2nf __—_M"'z*‘z. (5.2.1)
u(x,f) =A(x) e v

where A(x) represents some space dependent amplitude factor. The next step is to subject
€q.(5.2.1) to the forward Radon transform following eq.(2.2.51) and this results in

1/_2—“7

= deo e 7/2 i2nf Vdz +x _ pxcos@
u(p.f) = 2 f f A(x) e v dBxdx +
0 0

I‘V422+x2
v

+oo pm/2 ;
f f Alx) e tZﬂfl
0 0

where the spatial integral is split into two parts. The method of stationary phase assumes that the

+ pxcos@
} dBxdx ), (5.2.2)

major contribution to the integral comes from that region where the phase function is stationary
on condition that the space dependent amplitude factor, A(x) is varying smoothly in that region.
Since that condition is fulfilled and using eq.(A.2.11) and substituting the two stationary points,
the phase function can be approximated by

Jo 2 2 2. 2 .V 32
h(p,x,0) = -ui-pxcose =~ 229 + 8 _2zp [x xs) v _, (5.2.3)
v 2 q 2 2z
where x; and Oy, given by
xg =222 and @,=0, withg=N1/v'_p°, (5.2.4)

q

are the stationary points where the first derivatives are zero. Note that the first-order terms are
taken zero in eq.(5.2.3). Substituting now eq.(5.2.3) in the full integral (eq.(5.2.2)) results,
according to Felsen and Marcuvitz (1973) and following eq.(A.2.14) finally in

;(pf) =A(x,) iZz2 e i47rfzq. (5.2.5)
vfq

The spatial stationary point x; is valid only for the first part of eq.(5.2.2), and not for the second
part because the latter does not give a contribution. In the final result, eq.(5.2.5), the exponential
term introduces the well-known elliptic move-out with the intercept time 7 = 2zq.
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The result given in eq.(5.2.5) is based upon an infinite aperture. But what happens if the
stationary point x; falls outside the range of the integrals in eq.(5.2.2), i.e. Xmin > x5? When, for
example, the near-offset measurements are missing, the lower limit of the spatial integral in
€q.(5.2.2) changes from 0 to X,;p

-

Xmin

[4 2 2
i2nf\Y*2 * X pxcos®
v

upp = 2 dBxdx +

/2
f A(x) e
0

2
R n/2 i2 Y4z +x ‘
f J’ Adx) i2nf {——-—v +pxcos9/ dOxdx ) (5.2.6)
Xmin®0
Then, we take an expansion around the point where
O P Xmin®), =0, (5.2.7)
20 le=6,

Now, we do not get a contribution of the spatial stationary point, only the end contributions.
Then following eq.(A.2.11), the phase function is approximated by

2
2
h(p,x,0) = xmin(l/v p,m-,,ip) + (X~Xpin ) (PmintP) + %px,,,i,,. (5.2.8)

with

Xmin . (5.2.9)

Pmin =
1/ 2 2
v Vdz +x,:,

Substituting the expansion of the phase function into eq.(5.2.6) and determining the amplitude
factor using eqs.(A.2.12) - (A.2.14) then gives

2 P el PR (1/v% vin—p)
u(pf) =A(Xpmin) — 'v "z +
T —i2nf X ~ifp Pmin—P

ie 27 X ppin (1 / vzpm +p)

, 0<p <Ppmin, (5.2.10)
Pmin + P
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where the first exponentional term has a contribution for negative p-values and the second
exponentional term for positive p-values. Note that the i in front of the second exponential term
in €q.(5.2.10) is part of the contribution of the stationary point 6; to the principal value of the
integral. Further, this approximation only holds for p » 0 and, compared with eq.(5.2.5), the
extra factor, YI/—ifp results in a lower frequency contribution. In the exponentional term, we
recognise that the intercept time ¢ =X ,,;, (1/v 2p,m-,l ip).

In eq.(5.2.8), we assumed that x,,;,; > x5 but if x,,;, is very close to x5 neither the
approximation shown in eq.(5.2.5) nor the approximation shown in eq.(5.2.10) applies. In
order to determine the major contribution to the integral, we start again with eq.(5.2.6) but now
the expansion of the phase function in eq.(5.2.3) is still valid instead of in eq.(5.2.8). Then, the
evaluation of the spatial integral gives

;(1—1;) : (13v2

. ian\ > >, }dx o o w4 23:2 erfc(x,,;p) - (5.2.11)
Xmin fav

G0

where the error function, erfc(x,,;) is given in Abramowitz (1965, p. 297). The final result is
obtained as

i2z e i4nfzq
vfq

u(p.f) =A(xy)

erfe(x,,;,)

, (5.2.12)

only differing from eq.(5.2.5) by the error function. The same procedure can also be followed
when the infinity sign of the upper limit is changed into x4y and then in egs.(5.2.10) and
(5.2.12) Xpin are replaced by Xy

Now, taking into account the influence of a limited aperture (eq.(5.2.10)), one can quantify
the reliable p-values in the 7-p seismogram. Given the velocity distribution of the input data and
the minimum and maximum offset Xpin and Xpqy , the reliable p-values are, due to eq.(5.2.4),
restricted to

Xmin <ps< X max (5.2.13)

A2 2 A2 2’
Vv Y4z +X,,in V Y4z + X4y

which, after substitution of

2: =% o T (5.2.14)

T
T A1 v’

into eq.(5.2.4) may be rewritten as
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1 2 1 2
S+ T T S+ L2 -—_r (5.2.15)
v 4x v 4x

IA
=
A

min zxmin max 2xma.x

As soon as p falls outside the range of eq.(5.2.15) as a result of the limitation of the input data,
eqs.(5.2.10) and (5.2.12) become valid and when xmi > x4 the elliptic event is no longer
“elliptic” but turns into two linear events both starting at the 7-axis. One is tangent to the elliptic
event at the stationary point and the other has the same but opposite dip. The linear event being
tangent to the elliptic event is proven as

lim ot lim ot { ( 2 )}
) = 3, \Emin IV Pmin—pP|| = ~Xpin . 5.2.16
xs‘l’xmin ap { zq) XTxmin ap Tmin V Pmin—P Xmin ( )
and
1i 1
m 2zq = m Xmin (]/vzpmi,, —P) . (5217)
Xg J'xmu—x X Txmm

Mitchell and Kelamis (1990) also quantify which p-values should be reliable with respect to
the spatial aperture and to the estimated velocity model of the input data. Their result is almost
the same as eq.(5.2.15) although their derivation runs along different lines. They start with the
traveltime equation for a hyperbolic event

2
(22N v x” (5.2.18)

p =9 - x_ (5.2.19)

Next, they replace ¢ = 7 + px into the expression for p (eq.(5.2.19)) and end up with

2
Ip| < L2 s T _T (5.2.20)
v 4x2 2x

By associating a stacking velocity range (Viin,Vmax) With each (2,x) point, a limited range of p-
values can be determined from eq.(5.2.19) by the inequalities
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X _ _<ps X 5 (5.2.21)
Womin Wmax

The velocity values, vy, and v, associated with the point (£,x) are chosen such that all
possible stacking velocities associated with that point are within the chosen range. Therefore the
inequalities in eq.(5.2.20) change into

2
1 T T
A S (5.2.22)
Vimin 4x 2x

Then, by fixing the offset x, the inequalities of eq.(5.2.22) may be interpreted as a mute pattern
in 7-p, which is convenient when a slant stack algorithm is performed.

Given a generated data set in the 7-p domain with a certain py;, and ppygy, the same procedure
can be followed to calculate the reliable x-values in the back transformed 7-p data set. Then
starting from eq.(5.2.5) and applying the inverse Radon transform (eq.(2.2.51)), the first-order
derivative of the phase function with respect to the slowness p is given by

% hpx0) = 2P+ xc056,=0 with 6,=0, (5.2.23)
/v —p

where after rewriting its stationary point defines the reliable offset range as

2Pmin o n o PPmax (5.2.24)

A2 2 A2 2
1V = Pmin 1/v - Pmax

Then, substituting pm;in and pmax due to eq.(5.2.13) into the inequalities of eq.(5.2.24), we
notice that there is a unique relation between Xpin and pmin and Xy and ppmax respectively.

For the 2D configuration, the Bessel function is absent and eq.(5.2.2) becomes

W, 2 2
= o i2nf Ydz +x i2nfpx
u(p.f) =f A(x) e v

0

V422 +x2

f Ay e 2T e (5.2.25)
0
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Then applying the method of stationary phase (A.2.7), the final result yields

= . i4
w(p.f) = Alxg) %’3 e (5.2.26)
vy

When the aperture is not infinite, the same procedure as for the point source configuration can be
followed. Then eq.(5.2.10) changes into

~ . 2 . 2
Z(pﬂ =A(x,0) [e E2T0f X mpin (I/v P min —p) e L2 X ppin (Ilv P min +p)] , (5.2.27)

where pmin is given in €q.(5.2.9). The differences with eq.(5.2.10) are the absence of the i in
front of the second exponential term, and a scaling factor.

In order to support the theory, some synthetic data sets are generated for both the 2D as well
as the 3D configuration. The Radon transform used is given in Chapter 4. In all the synthetic
examples the model parameters are the same: Az is 2 ms, Ax is 10 m except for the diffractor
event (4Ax is 12.5 m), the depth of the interface is 600 m and the velocity is chosen to be
3000 m/s. For the transform there are 256 spatial and 512 temporal sample points taken into
account. All pictures are plotted and scaled relative to the maximum value of each trace. The
wavelet to generate the synthetic data is shown in Fig.5.2.2 as well as its Hilbert transform.
Note that the latter becomes non-causal due to discretization.

— amplitude
5

o
n

... Hilbert transformed
— wavelet

0.0 0.01 002 0.03
- time (s)

Fig.5.2.2: The time response of the wavelet (solid line) and its Hilbert transform
(dashed line).

The first example, Fig.5.2.3a shows a reflection hyperbola with the first offset at 400 m. As
expected, the reflection hyperbola turns into an ellipse (Figs.5.2.3b & 5.2.3¢). However,
because the offset of the data set is non-zero and finite, the curvature of the beginning of the
ellipse is incorrect and the ellipse does not reach the critical point. The linear up-dip and down-
dip events resulting from the lack of zero offset, are Hilbert transforms of each other according
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to the theory. Then following eq.(5.2.13), the reliable p-range of the 7-p response is between the
p-values 1.04 10-5 and 3.02 104 (Fig.5.2.3¢). Further, the curvature of the ellipse at the p-value
of 3.02 10-4 shades off into the up-dip linear event, which is tangent to the local curvature of the
ellipse at that particular p-value (eq.(5.2.16)).

Fig.5.2.3d shows the result of the inverse transform applied to Fig.5.2.3c and Fig.5.2.3f
displays the result of the inverse transform applied to Fig.5.2.3e. The edge effects in both back
transformed seismograms differ. When eq.(5.2.13) is ignored the first 4 traces of the back
transformed seismogram show only noise and no signal since it was never present in the first
place. Further, the signal in the far offset is rather weak and has become smaller than the edge
effect of the first p-trace. This edge effect is horizontal because its py,;,; = 0. Looking at the edge
effects in Fig.5.2.3f, their amplitude in the first 4 traces is larger than the noise, present in
Fig.5.2.3d and again there is an up-dip and down-dip linear event because in the latter case its
Pmin #0. Despite the different edge effects, both the back transformed seismograms show the
same decrease in resolution due the Radon transform,
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Fig.5.2.3: (a) A reflection hyperbola in ¢-x, and its 7-p response: (b) the 3D response and (c) the 2D response;
Pmax = 1/3000 s/m, Ax = 10 m and first offset = 400 m.



5 Clussification of events in the conventional t-p domain 83

— offset (m) —
0.0 2560.0

0.0

—~-(5) own -
Il

=4
=1 |
0.8 =
—— slowness (s/m) ¥ @ — offset (m) ¥
0.0 0.0 3.328 E-04 0.0 2560.0
1
1555
J f—f‘ﬁiﬂ [ %t
11 L
:_:.Z;,“:' <Q:(
4
‘ el
e
=t
ge_

i

- (S) owm) —
b
MI&X Y
X
Av
\

0.8 ]

© ®

Fig.5.2.3: (d) The -x response of (c), 2D inverse transformed, (¢) the reliable p-range of (c) and (f) the
t-x response of (), 2D inverse transformed; ppax = 1/3000 s/m, Ax = 10 m.
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5.3 Linear event

The next step is to derive the 7-p response of a linear event (for example, a headwave in z-x).
The configuration is shown below.

source receivers

K —— X

\ i VVVVVV YV
./

ec\ /

\ /
\ /
\ /

z \ , v
Y

X3

Fig.5.3.1: The x-z model for the headwave.

Suppose the linear event, for example the headwave is presented in the f-x domain as

i27rf.('t,_. +X )
v

Uxf) =A(x) e , forx >x,

(5.3.1)

=0 , forx <x,
s

and exists only for x-values larger than the critical distance x.. Next, the forward Radon
transform according to eq.(2.2.51) is applied and results in

= w2 °° i2nf{x (1—— pcose) +T,
u(pf) =2 f de A(x) e v xdx +
x

0

n/2 oo i2nf{x (1— +pcos9) +7,
f def A(x) e v xdx | | (5.3.2)
0 x

[

Note that the lower boundary of the integral is x., and only the angular stationary point is
present. The spatial stationary point is absent, therefore we do not use the stationary phase
method. The next step is to introduce a new variable of integration, T=x [I/v £ pcosa(;i+ T, ,
leading to
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oo

o /2 4o J—
u(p.f) =2 f —_— 1 (‘r—'rc) A (1,0) e
0 (L—pcose) xc(v——pcose)+rc
\Z

i2
i2nfr dr .

j?t/Z
0

f 1 (rr) B 20) e 27" ar| (533
( +pcose C(\Tﬂmose

where

—* T— 1T,

A (10 = A (5.3.4)

(L + pcosG)
v

The minus sign of eq.(5.3.4) is used for the first part of eq.(5.3.3), derived from the first part of
€q.(5.3.2) where the phase function in the spatial exponent is negative and the plus sign is used
for the second part of eq.(5.3.3). Then, we split up the integration path into two parts and
change the order of integration

X

—+ T ~
= v ¢ . Ge (1) —
u(pf) =2 f (-z,) € 277 dTJ‘ A (1',9)d92 .
x,_-(l__p)+1c o (L—pcosa)
v A4

* N n2 -
f (r—rc) e i2nfr d‘tf —_—A (v.6)d6 +
x 1 2
0 (— — pcos 6)
\

- tTe ) 6,(t) —*
fv (t—1.) e s drf ¢ _A(odo |
v

2
+ pcose)
\%

1

s w2 =
L (r=z.) ¢ 2™ 4 f _A0d6 |, (5.3.5)
0 (—+pc0'se)
Vv
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where the angular integration limit 8,(7) is given by

6.(1) = arccos (*}% (é + T T )) (5.3.6)

Xc

Since we are not interested at the amplitude factor but only at the timing of the event in 7-p, we
rewrite eq.(5.3.5) as

u(pf) = f , E(De dr +
X

f E+(r) e i2nfz dz, (5.3.7)
X, L +p) + 7T
(e}

and recognize the representation of the Fourier transform. The arrival times of the linear events
are given by the lower limit of the integrals and the overall amplitude function is captured by
E i( 1), representing the angular integral. Further, the first integral of eq.(5.3.7) represents the
up-dip linear event and the second integral denotes the down-dip linear event. And, the factor
Pxc, shown at the lower limit of the integral gives the slope of the linear events which implies
that they become steeper as x, gets larger.

For the 2D configuration, eq.(5.3.2) changes into

’J(pf)=f Ax)e’ dx+] A(x) e
X

X c

21cf(£-—px+’rc) i27rf(£+px+'rc)
v v

dax, (5.3.8)

and introducing a new variable of integration, 7 = x(//v4p) + T the final result is given by

w(p f) =f AO i2nfe ar + A0, 2nT di, (5.3.9)
X

where

(5.3.10)
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The minus sign of eq.(5.3.10) is used for the first integral of €q.(5.3.9), and the plus sign is
used for the second integral of eq.(5.3.10). When comparing eq.(5.3.9) with eq.(5.3.7), we
notice that the arrival times of the linear events, given by the lower limit of the integral are the
same, but the amplitude factor is different.

The next example, Fig.5.3.2 exhibits a linear event in f-x and its 7-p response. The linear
event in ¢-x does not start at offset equals zero but at offset equals 400 m. Its 7-p response shows
two linear events as predicted by our theory and the up-dip and down-dip have an equal but
opposite slope. The t-value for p = 0 is the same as the ¢-value at which the linear event in z-x
starts to exist and the dip of the linear events in 7-p corresponds to the offset of the linear event
in z-x. When a linear event in t-x starts at zero offset, its 7-p response collapses into one
horizontal linear event, which is shown in Fig.5.3.3.

Furthermore, the down-dip linear events in the previous examples can easily be omitted by,
for example, changing eq.(5.3.2) into

ulpf) =2 f

/2 oe i2nf ] x (fl- ~ pcos 9) +1,
do A(x) e v xdx (5.3.11)
0 Xec

As a consequence, the second term in the final result of €q.(5.3.7) is lost. In the following
example, Fig.5.3.4b shows the result of this omission. The same parameters are used as for
Fig.5.3.2 and only the 3D configuration is calculated. The up-dip linear event can be dropped in
the same way, but then the elliptic and quasi-elliptic events, if present, are dropped as well
unfortunately. Fig.5.3.4c shows the down-dip linear event only.

In order to prove that a headwave in 7-x transforms into two linear events in 7-p, a point
source response is calculated with the exact Cagniard-De Hoop technique (Drijkoningen and
Fokkema, 1987). The same model parameters are used as for the hyperbolic event in Fig.5.2.1.
Then, the t-x response is shown at the upper part of Fig.5.3.5 and its 7-p response at the
bottom. The trace at which the headwave starts is indicated by an arrow. This t.-value indicates
the intercept time on the 7-axis which gives the starting time of the headwave and is clearly
visible in Fig.5.3.5b.
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Fig.5.3.2: (a) A linear event in t-x with offset = 400 m and its 7-p response: (b) the 3D response and (c) the 2D
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Fig.5.3.3: (a) A lincar event in t-x with zero offset and its 7-p response: (b) the 3D response and (c) the 2D

ICSPONSC; Pmax = 1/3000 s/m.



90

— offset (m) —p=

0.0 2560.0
0.0
04 1]
| 13-
5 <'E_:—=-
¥ T
08 e
—— slowness (s/m) ¥ —— slowness (s/m) =
0.0 0.0 3.328 E-04 0.0 3.328 E-04
0.4 L s
|
g
Z
0.8
(b) ©)

Fig.5.3.4: (a) A linear event in ¢-x with offset = 400 m and its 7-p response: (b) the 3D response for positive
offset only and (c) the 3D response for negative offset only; pyayx = 1/3000 s/m.
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5.4 Diffractor

Given the following configuration,

source receivers
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Fig.5.4.1: The x-2 model for the diffractor.

a diffractor in the f-x domain may be formulated as

v 422 + (x—xd)z

wxp =Ax) e Y v . (5.4.1)

where x4 denotes the diffraction point. Note that if x4 = 0, eq.(5.4.1) becomes eq.(5.2.1). The
next step is to apply the forward Radon transform following eq.(2.2.51) on eq.(5.4.1) and this
results in

vV 422 + (x—xd)z
- oo p7/2 2nf \———————————  _ pxcos@
u(p.f) =2 f f A(x) e v dOxdx +
o 0
,‘/ 2 2
427 + (x-x4)
oo /2 i —_— e
[ fﬂ Ax) e 127tf{ " +pxcos6} dOxdx ) ‘ (5.4'2)
0 ‘0

Then following eq.(5.2.3), the expansion of the phase function gives

v 422 + (x—xd)z

v

h(p.x,6) =

+ pxcos@ = {qu *pxg } +

2 2 2 32
6 )2z (x—xs) v
A ot st gv
2 { p ipxd}+ > 52 (5.4.3)
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substituting this in eq.(5.4.2) and employing the asymptotic expansion (eq.(A.2.14)), the
following result is obtained

i2zVQ
vig®

;(pf) =

Acx,) e i2nf (229 - px4) ve i2nf {229 + pxy }} ‘

(5.4.4)

The factor Q is given by

qaxq
2zp

Q =1+

and, the three stationary points by

x; = x4+ 222 and 6,=0. (5.4.5)

The plus sign of the spatial stationary points is valid for the first part (negative p-values) and the
minus sign applies for the second part (positive p-values) of €q.(5.4.2). In the final result
(eq.(5.4.4)), the exponential factor no longer exhibits the well-known ellipse but another curve
with a shift according to the factor pxg. And there are two contributions as opposed to the
hyperbolic event because both parts of eq.(5.4.2) give a contribution. The numerator of the
scaling factor consists of two parts in which the first part represents the known scaling factor for
the hyperbolic event in eq.(5.2.5) and the second part denotes the extra factor for the diffractor.

For the diffraction hyperbola for the 2D configuration, eq.(5.4.2) becomes

v 422 + (Jt—xd)2

S o) =f Ay o 2T - i2npx
0
oo i N 422 + (x—xd)z 2
f Ay e 2 v +i2nfpx ., (5.4.6)
0

and as final result

up) =Alxy) [ 22 [e 2nf (220 - pxa) |, i2nf (220 + ’”‘d}] . (5.4.7)
fve
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Again there are two contributions, but now the scaling factor is the same as for the hyperbolic
event of the line source configuration.

In Fig.5.4.2 a diffraction hyperbola is shown and, according to the eqs.(5.4.4) and (5.4.7)
its 7-p response is composed of two curves, one with a positive shift of pxy and the other with a
negative shift. The 74-value in the 7-p responses corresponds to the Ty of the diffraction
hyperbola, being 0.4 s. The next example (Fig.5.4.3) also shows a diffractor which is present at
each trace. Because of that, the edge effects are different from those in the previous example. In
Fig.5.4.3, the edge effects are horizontal where in Fig.5.4.2, they have a certain dip. Note that
the horizontal edge effects in the last example interfere with the down-dip curve for large p-
values at 0.65 s.
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Fig.5.4.2: (a) A diffraction hyperbola in (-x and its 7-p response: (b) the 3D response and (c) the 2D response;
Pmax = 1/3000 s/m.,
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Fig.5.4.3: (a) A diffraction hyperbola in ¢-x and its 7-p response: (b) the 3D response and (c) the 2D response;
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5.5 Edge effects

As mentioned before, edge effects are caused by the non-ideal values of the lower and upper
limit of the spatial integral. Comparing the 7-p response of the headwaves and that of the edge
effect the following is noticed. As the amplitude decreases with increasing offset, the amplitude
of the headwaves is much larger than the amplitude at the end of the seismic section. And so,
after suitable windowing, the edge effects as far as the upper limit of the integral is concerned are
taken care of properly, but the headwaves cannot be. However, the amplitudes of the edge effect
caused by the lower limit of the spatial integral are larger than those caused by the upper limit of
the integral. But because of windowing (Fig.4.4.2), the amplitudes of the "lower limit "edge
effects are far less strong than those belonging to headwaves. Moreover, by taking a careful look
at the #-x data set one can tell what linear events in the 7-p domain belong to headwaves and what
linear events belong to the edge effects.

The last example of the synthetic data presents a noise pulse and its 7-p response (Fig.5.5.1).
As is seen, the noise pulse shows the same behaviour in 7-p as the linear event does. However
the dip of the two linear events in 7-p differ from the previous case, because the larger the offset,
the steeper the event in 7-p becomes.
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Fig.5.5.1: (a) A noisc pulse in ¢-x and its 7-p response:(b) the 3D response and (c) the 2D responsc;
Pmax = 1/3000 s/m.
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'S ummary
A summary is given of the main events, where we concentrate on the phase. The first
example denotes the hyperbolic event, the second the linear event, the third the diffractor and the
last shows the noise pulse. As far as the stationary points are concerned, only the spatial points
are mentioned. The angular stationary point is the same for the three of them and is only present
for the 3D configuration.

t-x T-p stationary points
2 2
2 2
! = M T = 2z 1/v —-p X, = gi&
v q
Te— PXc
x—x,
t = T+ T = none
v Te + PXe

) 2 22q — pxg4
4z + (x—xg) 2

I = T = Xy = xd + —EE
v 2zq + pxg q
Tp —Pxp
t = 5(xp) T = none
Tp + Pxp

5.6 Field data examples

Two field data sets (shot gathers) are shown. Both data sets are marine shot gathers and are
collected in the northern part of the North Sea. Both gathers are transformed with the same Ap
and because the receiver spacing is also the same, the frequency reduction due to eq.(44.1) is
comparable in the two data sets.

Draugen data

In the first data set headwaves are showing up at about one and a half kilometre, that means
that the velocity contrast between the water layer and the first solid layer is relatively small but
the water is also quite deep. The first offset is 125 m and the receiver interval is 12.5 m
(Fig.5.6.1a). Since the first offset is not zero, zero traces have to be padded at the beginning in
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order to get the correct curvature of the elliptic events. For the first 7-p response only part of the
data set, that is 119 traces, are taken for the transformation and this is shown in Fig.5.6.1b.
According to eq.(5.2.15) the range of reliable p-values is calculated in which x,;, is 125 m and
Xmax is 1600 m. Then, knowing the velocity model (picked from the conventional velocity
contour plots) two curves can be estimated, one for the minimum and one for the maximum
reliable p-values. This range is marked by two solid lines in Fig.5.6.1b. Outside this range, only
edge effects as part of the noise, are present. The headwaves just mentioned are present in the
data but hardly in the first 119 traces, therefore the typical linear up-dip and down-dip linear
events are absent in this 7-p response.

For the Figs.5.6.1c and 5.6.1d, the same number of input traces are used as for Fig.5.6.1b,
only the Ap is chosen smaller. Therefore, the frequency reduction due to eq.(4.4.1) becomes
less and the resolution of the two seismograms increases.

The Fig.5.6.1f shows however a different picture. All 208 traces are taken as input
(Fig.5.6.1e) and a clear up-dip at 1.2 s linear event is visible in the z-p response. The down-dip
linear event however is hardly visible. Here, also the reliable p-range is calculated and the curve
for xin is unchanged but the curve for xp,x (= 2725 m) has shifted to the right. At 0.5 s for the
higher p-values, down-dip edge effects become visible. When the latter including the unreliable
parts is transformed back to ¢-x, the result is shown in Fig.5.6.1g. The direct wave, present in
the original ¢-x data set has disappeared and the first ten traces consist only of noise because
there was no signal in the first place. Furthermore, there is a slight frequency reduction due to
the Radon transform, which is explained in section 4.4 and shown schematically in Fig.4.4.1.
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Fig.5.6.1a: The Draugen data set in t-x; first offset = 125 m, Ax = 12.5 m and 119 input

traces.
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Fig.5.6.1g: The t-x response of the Draugen data set after forward and inverse Radon
transform; first offset = 125 m, Ax = 12.5 m and 208 input traces.

North Sea data

107

The second data set suffers from severe free surface effects (Fig.5.6.2a). Because of the large
impedance contrast in the data set between the water layer and the first solid layer strong
headwaves, P headwaves as well as P-S converted headwaves, show up at a relatively small
offset. The presence of severe free surface effects in the data set implies that a large amount of
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the energy generated by the airguns is kept in the water layer, bouncing up and down and only a
small amount of the energy travels into the underlying layers. Because the data set is spatially
aliased, Fig.5.6.2a is conventionally f-k filtered which is shown in Fig.5.6.2b. Then,
Fig.5.6.2c shows the 7-p response of the data set of Fig.5.6.2a and Fig.5.6.2d depicts the t-p
response of the f-k filtered data set. Because the headwaves show up at such a relatively short
offset, the linear up-dip and down-dip events (only in Fig.5.6.2c) are much more evident here
than in the previous case.

The dip of these linear up-dip events gives us the exact starting position of the headwaves.
And it tells also something about the character of the source wavelet since the up-dip and down-
dip linear events are Hilbert transforms of each other. When the #-x data are first filtered in the
J-k domain to get rid of the spatially aliased part, the 7-p response of the f- filtered data set lacks
the down-dip linear events (Fig.5.6.2d). Again according to eq.(5.2.15) the reliable p-values are
between the two solid lines in the last two figures. In this case because of higher velocities at
smaller times the unreliable part of the data has increased. In Fig.5.6.2d, the interpolation error,
mentioned in section 3.5 is quite clear at 0.8 s (down-dip event).

Then, the Figs.5.6.2e and 5.6.2f reflect respectively the -x responses of the previous two
seismograms. Again the first ten traces only exhibit noise. The f-k filtered seismogram shows
less noise than the unfiltered seismogram, and the discontinuities marked by an arrow indicate
the starting positions of refractions. In the last few traces of the back transformed seismograms
the noise outweighs the signal.
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Fig.5.6.2b: The f-k filtered North Sea data set; first offset = 125 m, Ax = 12.5 m.
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Fig.5.6.2d: The 7-p response of the f-k filtered North Sea data set; Ap = 5.2787 ms/km.
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Fig.5.6.2e: The ¢-x response of the raw North Sea data set after the forward and inverse

Radon transform; first offset = 125 m and Ax = 12.5 m.
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Fig.5.6.2f: The t-x response of the f-k filtered North Sea data set after the forward and
inverse Radon transform; first offset = 125 m and Ax=12.5m.

Finally, two seismograms are shown. The raw North Sea data set is transformed to 7-p
according to

n/2

;(pﬂ = 2 f ;(x’f) xdx f e i27tfpxc059
0 0

de (5.6.1)
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where the spatial integral runs from 0 till infinity. Then, only the down-dip events are present
and the ellipses vanish (Fig.5.6.3a).
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Fig.5.6.3a: The 7-p response of the raw North Sea data set; Ap = 5.2787 ms/km.

Next, this seismogram (Fig.5.6.3a) is transformed back to -x (Fig.5.6.3b) with eq.(4.2.12)
and then the starting positions of all the headwaves become visible. They are indicated by
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arrows. The maximum value, plotted in Fig.5.6.3b is about 100 times less strong than in
Fig.5.6.2e.
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Fig.5.6.3b: The -x response of Fig.5.6.3a; Ax = 12.5 m.




6

THE FORWARD RADON TRANSFORM APPLIED TO
T-X DATA: A SEISMIC LINE

6.1 Introduction

When a split-spread data set is taken as a whole (all shot gathers) and considered as a coherent
set of information covering a certain subsurface, its spatial complexity shows a well-defined
topological subdivision in the double Radon transformed domain. The main advantage of this
method is the absence of the planar velocity constraint imposed on the data when compared with
the algorithm given in Chapter 4.

In section 6.2 the theory is presented, where we start with the 3D formulation of the problem,
and pass into a 21/2D formulation because we are dealing with point source and point receiver
data, gathered in a 2D configuration. However, the whole algorithm can be completely
formulated for a 3D configuration without facing any extra problems. The source is a point
source of impulsive nature and we employ field coordinates implying that the point receiver is
referenced with respect to the corresponding source position by true offset.

Then, we represent the total scattered field as a superposition of distinct primary contributions
originating from a finite number of interfaces. By applying a forward Radon transform with
respect to the horizontal source and offset coordinates, the horizontal phase is separated from the
vertical phase in the data. The next step is to carry out a high-frequency analysis. The result of
this is a Fourier integral representing a decomposition of the complexity of the data set.

In section 6.3, we formulate a pre-stack migration procedure as the main application of this
method. Our migration procedure is an alternative approach for the NMO, DMO, CMP stacking
and the post-stack migration scheme. The conventional scheme works well on areas with
uniform dip. However when the stacking velocities are dip-dependent the final image will be less
accurate. The alternative is then to perform a full pre-stack migration. Although the result will be
accurate, this technique suffers from large computational efforts and the requirement of a detailed
velocity model. DMO, also referred to as pre-stack partial migration in the older literature, is a
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method which bridges these extremes (Hubral, 1980, Hale, 1983, Deregowski, 1986 and
Jacubowicz, 1990).

Section 6.4 discusses the theoretical and practical limitations of the pre-stack migration
procedure due to our method as well as due to the data (section 6.4). The dip slowness curves,
showing the dips of the interfaces in the double Radon transformed domain are also discussed.

The computational procedure is outlined in section 6.5. Section 6.6 shows five synthetic data
examples, simulating a split-spread seismic profile (2D), and one land seismic data set, gathered
in the Northern part of Holland. The synthetic data sets show an increasing complexity of the
subsurface and all examples are pre-stack migrated.

6.2 Formulation of the problem

In Chapters 3 and 4 a number of assumptions are made. In this chapter, the planar velocity
distribution is abandoned and non-planar interfaces are allowed. The earth model consists of M

different acoustic layers separated by non-planar interfaces.

surface
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G R SRR IRIRKS

RN RAIAILX X RRLLLXHHLKLIAN
LR RAIIRRLLRKS

aa e esatatetetatototateteleresatels:
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eletetotateleteteleteleletetsls’s’s % %

o //é

Fig.6.2.2: The total scattered field, decomposed.

Letp s?xr,x % 1) denote the measured scattered field recorded at x” = {x}, x5, x5 } due to an
impulsive point source which starts to act at # = 0 and is located at x* = [x}v,x“;,x_‘; }. Then, we
assume that the scattered response is considered as the superposition of M independent
contributions such that

M
Py = S patx ), (6.2.1)

m=1
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where p,,, represents the response of the m-th acoustic layer occupying the domain D, bounded
by the surface and the interface Q. Note that only the primary reflections are considered. The
interface O, coincides with the true layer interface between the (m—I)-th and m-th layer, that is
the intersection of the domains Dy,_; and D, denotes the m-th acoustic layer of the original
model (Fig.6.2.1). Further, the domain Dy, is acoustically characterized by the velocity v, being
the equivalent of the rms-velocity. When a data set is sorted into CMP gathe:s and only plane
horizontal interfaces are considered, our model then corresponds to the conventional stacking
model.
The next step is to transform the scattered field representation to the frequency domain

~SC oo .
p (xx'f) = f e P p x| (6.2.2)
0

where the inverse transform is, following eq.(2.2.9), given by

oo . SC
o x"xt ) = 2Re[f e M xS par | (6.2.3)
0

Re [...] denotes the real part, and €q.(6.2.3) is evaluated for positive frequencies only,

receiver

o

Am

Fig.6.2.2: The scattering geometry.

Each interface, Q,, is described as

X3 =h,(xy,x2), (6.2.4)
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where hy, denotes an arbitrary function of the Cartesian coordinates x; and x,. We assume that
both source and receiver are located above the interface Q, such that x; < x3 and x:; < x3 for all
x3 on On (Fig.6.2.2).

Then, the scattered field of the m-th interface is considered as the field generated by secondary
surface sources at the interface @,, and can be expressed in terms of these surface sources
(Bleistein, 1984; Fokkema and vd Berg, summitted for publ. in 1991) as

pm(x’ ") = f G549 809 x5

xe Q,,

1,V G(x-x"f) pm(x.x° ) |dA,  (6.2.5)

where n,,, .V denotes the normal derivative in the direction pointing away from D,, and where
G, presents the Green's function of the m-th interface. The Green's function, G, is defined as

i2nf|x|
1 rrixl

8m(x,f)=me Vo (6.2.6)

with
x| = ‘Vx12+x2 +x3 . (6.2.7)

Then, for large values of f, we employ a locally plane reflector approximation

~ s ~inc s
Dm (x,x .f) = NmPm (x,x ’f) s X € Qm
~inc

BV P (XX°f) = EnnmV pm (25°f) . x € O | (6.2.8)

~inc

where p,, represents the incident field in the m-th background medium defined by the rms-
velocity vy,. The quantities 7y, (x,x-x5) and {,(x,x—x5) are real, frequency-independent
functions of x and x-x, signifying the dependence on the absolute position on the reflector and
the relative position with respect to the source, respectively. The incident field is defined as

~inc

Pm (x.x°f) = S(F) Cm(x -x"p) . (6.2.9)

where § (f) denotes the source spectrum. Using the locally plane reflector approximation
(eq.(6.2.8)) and substituting this in the integral representation of eq.(6.2.5), we obtain
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pmix’x"f) = 5(5) ﬂ (60 G x4 D1 9 G5 -
<0

N G (33" )1 .V G (x-% ) ] dA . (6.2.10)

According to the reciprocity theorem, which states that source and receiver are
interchangeable, the following equation is valid:

pm(x X’ f) = pmix x P .

(6.2.11)
Then, the integral representation of eq.(6.2.10), extended to
pm(x"x"f) = 5P f f [cm (x%-%") G (x=x" itV Gm(x—x"f) ~
xeQ
N (£.5=5") Gom (x=%° )1V G (x—x"f) |dA,  (6.2.12)
changes, using eq.(6.2.11) into
;m (xx r.f) = E(f) ff [Cm (x.x—x") 8,,. (x—xs,f)nm.V a,..(x-xr,f) —
xeQ,,
N (X, X—X r) a,,. (x—xrf)nm.V Em (x—x",f) ] dA . (6.2.13)
This implies that
L (.2-x") = —p(x.x-x")
Nen (X, X—X x) = ~{,. (x.x-x’) . (6.2.14)
Using the latter two equalities reformulates the integral representation of eq.(6.2.10) into
pm(xx"f) = 5P f [nm (x,5-x") G (x5 1.V Gm(x—x"f) +
x€Q.n
Mm (x,x—x") Gnm (x—xsf)n,,,.V Gom (x-x"p) | da . (6.2.15)

which makes the scattered field representation independent of ¢ ol X X—X s) .
The normal derivative operating on the Green's function is given by
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Cm(x.f) = BH G, 1 - _¥m
n,,.V Gm(x.f) . G (I RETr n,.V|x|, (6.2.16)

so that eq.(6.2.15) simplifies to

pm(xx’f) = :‘f—”f S f f B G (x=x"f) Gm (x-x".f) dA , 6.2.17)
m xeQ,,

with the function §,,, = ﬁm (x,x’,xﬂf) as

-~ r 5 r v
Bm(x,x ,x .f) = Nm(x.x-x )|1 - m n,,,_le —xr| +
( i27rf|x —xrl )

Vm

Y™ (x,x—xs) (1 —m)nm.VIx -—xsl , (6.2.18)

which becomes independent of f as f — co.

In view of the practical situation, the data are obtained along a line in a cross-sectional plane
of the interfaces, for example xz = 0. Moreover, in our seismic experiment we do not obtain shot
and receiver coordinates but shot coordinates and offset coordinates with respect to the source
positions. Therefore, we define the following set of transverse coordinates

xr=(x;,0,x;)

%9 ={xl-x0.0.45) (62.19)

s § §
Xr ={X1,0,13}

Then, the representation of eq.(6.2.17) in case of transverse coordinates is written as

2|7 AT

P (X727 = =22 5(p) f B, < dA, (6.2.20)

%0n 1’V (R) o VRV

where B, =B, (x,x ‘T’,xi) is given by



6 The forward Radon transform applied to t-x data: a seismic line 123

2 2
o 3 o s r ( O)
B, (x,Xx7,X7) = N (XpXx;—X;,X2X3-%X3) N, .V R +x3 +

/ 2 2
n,,,(x,—x}y,xz.xg—x}v) n,V (Rs)+xz for f— e, (6.2.21)

and where

R = '\/(x,—x?—xf)z-i-(x;—x;‘)z
Rs '\/(x,—xf )Z + (x3-—x§ )2

(6.2.22)

[l

The next step is to apply the forward Radon transform with respect to the offset and source
coordinates:

= +oo A s s
~ o r s s ~-i2nfp x K3
pm(p ,0,x3,p ,0,x3,f} = '[ e P Tdx;
—0
0~ —i2nfpx;
f P (x5, x0.8) ¢ 2P 42 (6.2.23)

From the geometry and eq.(6.2.23) it follows immediately that when the m-th interface is plane
we only have a contribution from that interface in the plane ps=0, because in that case the
scattered field representation of the m-th interface is independent of xS, This implies that the
spatial complexity of a non-planar interface has to lead to a certain distribution in the pS-p°
domain. After interchanging the order of integrations this results in the following representation

= . ~ 2
om(p°0.x3:0°,0.53.) = Z2EL §(5) f V(@ 1k e0)] + 1 s
” X re A,,

+o0 +oo 400 .
f dxif dx? f B e "Pa,  (62.24)

~oo

where d;h,, denotes the spatial derivative of A, with respect to x; and A, represents the cross-
section of the interface Q,, In this cross-section, the problem is 2D but since we are dealing with
point source data, the present problem is called 21/2D (Bleistein, 1986). The phase function
@ =@ (x,x5x}) is given by
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o\2 2 sy2 2
o = ’J(R )+x2 v+ ’J(R )+x2 _psx.;' —pox?, (6.2.25)

In order to evaluate the contribution of the right-hand side of eq.(6.2.24) for large frequencies,
f—00, we employ the method of stationary phase to the triple integral with respect to
X2, x? andx}g (Appendix, A.2). The stationary points follow from

(;&E = viz_ ! + 1 =0, (6.2.26)
X m
’ V (Ro)2+x§ V (Rx)2+xj
o 5
.3_‘1‘25 2 e ev? BENS Y (6.2.27)
%1 Vo (R0)2+x§
and
o 5 5
ad: = Xr¥xp Xy *17%1 -p' =0, (6.2.28)
%1 Vo V (Ro)2+x; Vo V(Rs)zﬂc;
which give respectively
X, =0, (6.2.29)
IR (ps~p")(x3—x§), with ¢ = A/ 1 () (6.2.30)
n Vim
and
< = (o%p*) e -x3) . p"(x;—x?)’ with ¢ = A L () (6.2.31)
5 o
Im dm Vm

To determine the amplitude after the asymptotic approximation, we need the values of the second
derivatives in the stationary points. These are obtained as
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Then the determinant, denoted by Z in eq.(A.2.16), yields

L i A e R e

zZ = 3

(S )
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(6.2.32)

(6.2.33)

(6.2.34)

(6.2.35)

(6.2.36)

(6.2.37)

Next, when evaluating the integral on the right hand side of €q.(6.2.24) at the three stationary
points (eqs.(6.2.22)-(6.2.24)) following eq.(A.2.16), the phase function is approximated by

o r s s o( r) x( s) s
Dp X3P . X3.X7) = qm\X3—X3] + gm\X3—X3) ~P X,

B in €q.(6.2.21) must still be evaluated. This results in

(6.2.38)
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_ —(x: —X7-X1) 0P + (X3 ~x3)
R°V1 +(9n,)

s _ =(x1-%1)d1hp + (x5 -x3)

Ialy V1 +(¢91hm)2

(6.2.39)

and, after substitution of the stationary points of eqs.((6.2.29)-(6.2.31)), in

[poazhm + qf.] Vom

n,,,.VR‘7 =
v 1 +(alhm)2
VR [(ps—po)BIh,,, + qf,,] Vi (6.2.40)
n,. = ,

V1+ (81hm}2

Finally, substituting eqs.(6.2.37), (6.2.38) and (6.2.40) into €q.(6.2.24) leads to

~ ~
~
~

pm @ x5 x5 f) = — S0
8V -ifgmqmVm

J' B,;, e iZ”f(‘I:("J—x;) "'4:.("3—";) -pP 11) dx; . (6.2.41)

xTEAm

where the amplitude factor B'p(p ° x 3’,p Sx 33) is given by

r o [~]
——=0.x5x3 [p alhm"'qm]

. ,,m(_p;’(xrx;)
qm

B, =

Vo goles—x3) + v ailes—x5)

g P |

Vom Tl ,0,x5-x3 [(p‘—p")alhm + qi]

am

. (6.2.42)

Vom@2les—x3) + v gilxs—x3)
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6.3 Application: a pre-stack migration procedure

To carry out our migration procedure, we start from eq.(6.2.1) and consider one interface, for
example the m-th interface. Eq.(6.2.1) ignores any interaction between interfaces. Thus, no
internal multiples are considered which means that multiple reflections are treated as primary
reflections. This is the conventional assumption for migration. The first step is to perform a
source and receiver alignment once by multiplying eq.(6.2.41) by the factor
87 Y—if exp(i2nf qf(x3 —x3)) and by a scaled filter, Y 43, @V m for each interface. Note that
the source and receiver alignment is carried out for the first interface only. Now, let us define

P’ ) = Vananvm pm® x3p" 250 . (6.3.1)
Then, eq.(6.2.41) is rewritten as

Pu’p’f) = S(P f B, e ™ (. -p%) ax; (6.3.2)

xTEA,,,

where the normalised slowness function ¥y,=¥in(p %,p %) is given by

Vo

o s o §
¥,.(p.p) = S @mt ), (6.3.3)
while the laterally variant two-way traveltime, Tp=Tpm(x;) with respect to the source level
follows from

2(hy— x3)
: )

T,(x;) = (6.3.4)

m

The next step is to introduce the domain D, characterized by the dip-slowness, p dm eD dm
according to

ol = {( o) e & | bt =p, ¥, } (6.3.5)

where (p2,pS) pairs are chosen such that ¥, < 1, which is the reliable area of the stationary
phase analysis. The family of the (p2,pS) pairs belonging to a dip-slowness p d,,, are called dip
slowness curves (€9.(6.3.5)) and they are explained in more detail in section 6.4.

When we evaluate eq.(6.3.2) in this domain, D?,,, we obtain
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i27rf'[’,,,(T,,, —p:x,)

P’ ) = S(P f B, e dx,

XTEA,,

d
for (0’0 )eD” o) (6.3.6)

Operating in this way we have achieved a separation of the typical interface part (T,,—p dmxl)
from the (p2,p%) dependent part ¥, in the phase function. Since (Tp,—p dmxI) does not vary for
achosenp dm, the domain D7 (p dm) represents a particular part of the spatial complexity of the
interface. When for example, p dmﬂ, we are considering the plane pS=0 and in that case, ¥,
presents the well-known elliptical move-out.

In order to correct for the phase difference of the elliptical or semi-elliptical move-out, we take
the mean value of the frequency-scaled version of the quantity of eq.(6.3.6) over the domain D

pm@%ﬁas

f f P (p°.p" L) °d°
ad ®°p )61) @) "

P (0 f) = (6.3.7)
I f PR
@°.p )eﬂ Pip m)

This results in

24 4 o~ d i2f (T (2 )p" i, )

Pm(D jm.f) = f Won (X1.D o f) € m %P w4 ] gy (6.3.8)

xX€A,,

where

f f sty B, &°d°
o s p,d ¥on

~ (p.p)D, (P )
Won (X1 0 f) = . (6.3.9)

U b’

° p)em (pm)

From eq.(6.3.9), it follows that since ¥, <1, Wm is the mean value of the frequency-
compressed version of the wavelet weighted by the local plane amplitudes. Furthermore, we
recognize here the well-known NMO-streich of the data as a compression in the frequency
domain corresponding with a stretch in the time domain.
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The last step is to evaluate eq.(6.3.8). If the frequency f tends to infinity, the main

contribution of the integral of the right hand side of eq.(6.3.8) comes from the stationary point,

x7=x"% that is

Ty, d 2

a d
- I (6.3.10
ax, Vm aXI Pm. )

This shows immediately the relation of the dip-slowness p dm to the true gradient of the interface.
Further, the stationary point is a function of p dm. Therefore, we replace the integration variable
x; in the expression of W, by the stationary point x;%%. This does not change the result of the
integral on the right hand side of eq.(6.3.8) when f tends to infinity. w m becomes a function of
p dm only. But in this case we can reuse the expression of p dm of €q.(6.3.9) and define a

function W, (x.f) as

W (x1.) = Wi | 4 _ 2 3hn 6.3.11)

,
Ve dX;

which replaces ¢q.(6.3.8) by

~d

d
= d = i2 Tm_ m
Pm@ p.f) = f W (x1.) & nf( p xl)
x€ A,

dx;  forf —>eo, (6.3.12)

Note that for f tends to infinity, 'ﬁ,,‘,i is the result of a forward Radon transform. Hence, by
applying an inverse Radon transform we obtain

d i2nfT,,

P (x1.f) = Wm(x1.f) e for f — oo, (6.3.13)
where
~d S 2nfpnx, . d
Pp(xf) =f B de(P mf) e a (6.3.14)
PmED,

When we subsequently transform eq.(6.3.13) using €q.(2.2.9) back to the time domain and
observe that eq.(6.3.13) holds for f—oo, we obtain

lim

d p—
AT, gy TmOEY = Won[x1,6 = Ty (x1)] (6.3.15)
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It is clear that the space-time function of eq.(6.3.15) starts to act at the instant
(T, (x1) =2(h,,~ x"; )V ), so that we get a space-time image of the m-th interface. When we
repeat this procedure for all the interfaces, the complete pre-stack migrated section is obtained.

In order to calculate the p dm dip slowness curves, we need to know the rms-velocities. To
obtain the set of rms-velocities, we perform a conventional velocity analysis in the pS=0 plane
where, due to the plane layer assumption, we expect to have the best control on determining the
velocities. If the plane layer assumption does not hold when we have steep dipping interfaces or
salt-tectonics for example, we have to examine the data in the po-p domain and select planes,
which show high concentration of energy and follow the dip-slowness curves according to
€q.(6.3.5). These selected planes will display quasi-elliptic events as well, and again velocity
analysis can be performed.

6.4 Problems and limitations due to the method and due to the data

The input data set for the double Radon transform for the 2D case is a seismic line and for the
3D case is a seismic survey. Because of the use of the FFT in the algorithm the spacing between
the subsequent sources as well as the spacing between the receivers has to be constant. If this is
not the case, the data have to be interpolated.

When the data set is transformed into the double Radon domain, there are two main
restrictions for our migration algorithm. The first restriction is the limitation of the Radon
transform itself, extensively discussed in Chapter 5 and the second restriction is the maximum
retrievable dip, which is present in the data itself. To explain the latter, the dip slowness curves
are discussed.

Dip slowness curves
The dip slowness curves are given by eq.(6.3.3) which is repeated for convenience,

s Vo

o Kt d
p = 2 @m+ qm) P m, (6.4.1)

and are symmetric with respect to pS=2p?. This is easily seen in Fig.6.4.1. When we take for
example the pair (p2,p*) and keep the pS-value the same according to reciprocity (eq.(6.2.11)) its
equivalent is given by the pair (pS-p2,p%). Substituting (p$-p?) for p° in eq.(6.4.1) does not alter
€q.(6.4.1) nor does it change the phase function of eq.(6.3.8) or the amplitude factor of
€q.(6.2.42), as expected.

Then solving eq.(6.4.1) gives
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(pd”;vm) Po + Pdmvm = —(Po)
p’ = Vm . (6.4.2)
o)
7 4

However, pS and p¢ are valid only within the theoretical outer limits, that is ps_< poi 1tv,, and
pl<+1y m» shown in Fig.6.4.1. These theoretical limits are simply based on the condition that
q°m and q %y, must be real (eqs.(6.2.30) and (6.2.31)).

Fig.6.4.1: The top view of the p%-p? plane with the axis of symmeltry, the theoretical
limits and reciprocity.

This means that, due to the theoretical limits, ps_< por 1lv, , the following constraint is imposed
on p$
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lo°] < 2 _ (6.4.3)

The figure shown below shows one family of dip slowness curves, p dm belonging to a certain
rms-velocity. The increment in the dip-slowness is chosen constant. Furthermore, the theoretical
limits (eq(6.4.4)) are drawn in solid lines and the more realistic limits (¢qs.(6.4.5) & (6.4.6)) in
dashed lines, which are discussed below.

Fig.6.4.2: The top view of the pS-p° plane with dip slowness curves, the theorctical
and practical limits.

The inequality of eq.(6.4.3) is valid if the offset recorded for the data set is infinite. In reality,
this is never obtained. Therefore, following the same argumentation as in Chapter 5, the two
stationary points, given in eqs.(6.2.27) and (6.2.28) define the limits wherein the data are valid
in the double Radon domain. Those limits are then given by
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o xf +xf—x1
|p°| < l , (6.4.5)

o
v R

and

< p° + ]"—1‘—’1[ : (6.4.6)

VmR

o s . . . .
where |x 1HX1—x1 ’ is the length of the seismic line.

As is clear from Fig.6.4.1 and eqs (6.4.5) and (6.4.6), the maximum possible observable dip
in the data is determined by the offset, the depth of the interface and its rms-velocity. That is, the
higher the velocity and the deeper the interface, the less the maximum retrievable dip for that
particular interface. When the maximum retrievable dip is not enough, the offset should be
increased. Thus, when the data set is transformed into the double Radon domain, the maximum
chosen p-value for the offset as well as for the source has to be calculated in consideration of
egs.(6.4.5) and (6.4.6). Otherwise, we are looking at artifacts of the transform due to lack of
data.

6.5 The computational procedure and the presentation of the data

Computational procedure

Fig.6.5.1 shows the computational procedure for the double Radon transform. The first step
is to apply a Radon transform to all the shot gathers. Then the data set is reordered into constant
p°-gathers. After that, the second Radon transform is applied resulting in the pS-p° response of
the complete seismic line.

The pre-stack migration scheme is outlined in the next figure. When the double Radon
transform is applied to the data set, the first step is to perform a source and receiver alignment
with the scaled filter according to eq.(6.3.1). Note that if the depth of source and receiver are
equal, the correction for the alignment becomes zero. Then, after a conventional velocity analysis
in the 7-p domain for the plane p*=0, the first picked rms-velocity is used to calculate its family
of p ,,, dip slowness curves. These curves gives us the scaling of the frequency for each (p? p%)
pair of the data set.
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Fig.6.5.1: Overview of the numerical procedure of the double Radon transform.

Then, taking the mean value of the frequency-scaled data (eq.(6.3.7)) results in a 7-p section,
ready to be inverse Radon transformed. When this procedure is repeated for every rms-velocity,
that is for every interface, the pre-stack migration is completed. The only step left, is to select the
correct time window from each generated section and store them into one final section to
visualize the complete pre-stack migrated section of the whole seismic line.

Presentation of the data

Of each data set, three different kind of pictures are shown in the pS-p® domain. In order to
show the complexity of the data set in the pS-p¢ domain, stacking in the time direction is
performed. The values of each (pS,p?) trace is squared and summed, giving one value
(Fig.6.5.3). This summed value gives a measure for the amount of energy present in that
particular (pS,p?) pair. In stead of applying this procedure over the whole length of the trace, also
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a certain part of the trace can be used. In this way more detailed information is obtained for
certain reflectors.

‘ shot gathers )
QD Radon uansfo@
(source & receiver alignment)
Gelecu‘ng p%=0 planc)
C velocity analysis in T -p domain )
(taking mean value of frequency-scaled da@—

C 1D inverse Radon transform )

per vy,

Cparlial migrated section )

Fig.6.5.2: The processing steps of our pre-stack migration procedure in pS-p?

domain.

Further, the plane p5=0 which shows all the horizontal information present in the data, and the
plane p°=0 are selected. The latter gives information about the number of main events present in
the data and the character of these main events (dipping or horizontal and the consistency in dip).
The third kind of picture displays the result of pre-stack migration, that is the mean-valued
frequency-scaled data in the 7-p domain and the final result, its ¢-x response. Of the first three
synthetic examples, two more pictures are displayed. One plane, selected from the po-ps data set
for a constant p 4y, before the frequency scaling and the same selected plane after the frequency
scaling. Then, quasi-elliptic events becomes flattened.
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projection surface

a time slice

Fig.6.5.3: The stacking procedure with respect to time.

6.6 Data examples

Five synthetic data examples and one land data set are shown. The first four models are
calculated acoustically with point scatterers (one interface consists of an infinite number of point
scatterers) and the last model is generated with an acoustic finite difference scheme. All the
synthetic data sets consist of 127 shot gathers and each gather is simulated with 127 receivers in
a split spread configuration. When the shot moves along the line, the receivers do the same. The
increment between two successive shots and the distance between two receivers is held the same
as well as the depth of source and receiver. A section of each model is shown.

Four point scatterers, all at the same spatial position

In the first example, we consider four point scatterers buried in a homogeneous background
and they are placed beneath the centre midpoint. This example was used originally by Yilmaz
(1987, p 337).

Fig.6.6.1 shows the depth of the four point scatterers, while the next figure displays the four
subsequent stacked time slices. The spatial increment of two successive sources as well as the
receiver spacing is 15 m and the velocity is chosen to be 3000 m/s. Further, Ap$ and Ap° equal
4.4E-6 s/m. Because diffractors are modelled, the energy is scattered over the whole po-p* space
with no particular dip showing. Note the axis of symmetry, pS=2p? in all four time windows and
the similarity between the time slices. In Fig.6.6.3a and 6.6.3b, the two selected planes, po=0
and p=0 both show symmetric elliptical events. Fig.6.6.3c depicts how the frequency scaling
performs on the plane, p$=0, Fig.6.6.3a. At both ends of the section after the frequency scaling,
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some stretching of the wavelet is visible. The last picture of this example is the mean-valued data
set in 7-p (Fig.6.6.4a) and the migrated result in 7-x. As we can see the four scatterers are
collapsed into points.

centre midpoint

3000 m/s

Fig.6.6.1: The x3-x; configuration of the first model.
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Fig.6.6.2: The "stacked" time slices: (a) 0.05 - 0.15 s, (b) 0.15-0.25 s, (c) 0.25-0.35s and (d) 0.35 - 0.45 s.
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Fig.6.6.3: The selected plancs: (a) p°=0 and (b) p*=0 and (c) after the frequency scaling of (a) following eq.(6.3.7).
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Four point scatterers, each at different spatial positions

The next example has a slightly different configuration (Fig.6.6.5). Now, the four scatterers
are placed outside the centre midpoint, showing the lateral performance of our method. The input
parameters of the data set are held the same as in the previous model. When we look at the
"stacked" time slices (Fig.6.6.6) the axis of symmetry is still present but the energy distribution
of the data set has changed and its maximum value is shifted either to the positive or to the
negative pS-value depending on the spatial position of the scatterer. If the scatterer is positioned
at the right hand side of the centre midpoint, the maximum is moved to the positive p¥-value and
vice-versa. Another difference with the previous example is the selected plane, p2=0
(Fig.6.6.7a) because three out of the four scatterers do not behave symmetrically any more with
respect to the centre midpoint. As we see, the quality of the migrated result (Fig.6.6.8b) is not
influenced by the spatial position of the scatterers. The four scatterers are migrated to exactly the
same place where they were positioned in the first place.

(8] (+)
—2.76E-04 — P > 56E04 ~2.76E-04 — P 5 6E-04

$0-39L°C

P-a9L'T

(a)

Y0-29L°T

PO-d9L°T

C)
Fig.6.6.6: The "stacked" time slices: (a) 0.05 - 0.15 s, (b) 0.15 - 0.25 s, (c) 0.25 - 0.35 s and (d) 0.35 - 0.45 s.
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Fig.6.6.7: The selected planes: (a) p°=0 and (b) p*=0 and (c) after the frequency scaling of (a) following eq.(6.3.7)
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Fig.6.6.8: The pre-stack migrated result of the complete line in (a) 7-p and in (b) t-x.

A constantly dipping interface
The third model contains one dipping interface of finite length. The spatial increment of two
successive sources and the receiver spacing is 12 m where the velocity is chosen to be 1500 mys.

Further, Ap® and Ap° equal 8.0E-6 s/m.

center midpoint

1500 m/s

Fig.6.6.9: The x3-x; configuration of the third model.
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Because there is only one event in the data set, the time slice is "stacked” over the whole time
window (Fig.6.6.10). Further, the event is mapped into a broad band of energy and not into a
narrow zone because of the diffraction energy of both ends of the finite interface. The centre of
the zone gives us the exact dip of the interface, which in this case is 15 degrees. Then,
Fig.6.6.11 shows in (a) as well as in (b) two elliptic events originating from the ends of the
interface as diffraction energy. If the interface has been of infinite length, only one elliptic event
would show. Again, a plane is selected in the po-pS space and depicted before and after the
frequency scaling is applied (Fig.6.6.11c and 6.6.11d). Because of the large move-out at the
maximum p-value, stretching of the wavelet becomes visible. Fig.6.6.12 shows the final
migrated result with the correct position and dip of the interface.

O
- 2.84E-04

¥0-av8°¢

YO-dv8'c

Fig.6.6.10: The "stacked” time slice (0.0 - 1.0 s).
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Fig.6.6.11: The selected planes: (a) p°=0 and (b) p*=0 and a selected p?,, curve before (c) and after (d) the
frequency scaling according t0 €q.(6.3.7).
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Fig.6.6.12: The pre-stack migrated result of the complete line in (a) 7-p and in (b) t-x.

A pyramid-shape interface

The fourth model has a pyramid-shaped interface with a horizontal part at both ends. The Ax
of source and receiver are again 12 m and the velocity is 1500 m/s. Further, ApS and Ap?° equal
4.5E-6 s/m.

center midpoint
'
1
1
L}
]
' 1500 m/s
]
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Fig.6.6.13: The x3-x; configuration of the fourth model.
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When we look at the time slice (Fig.6.6.14), three main contributions are visualized. One
contribution of the two horizontal parts of the interface, one of the positive dipping part and one
of the negative dipping part. Furthermore, all three contributions are connected with one another
because of the diffraction energy, caused by the sudden change in dip of the interface. Then the
effect of our migration procedure becomes again clear when we compare Fig.6.6.15b with
Fig.6.6.16a. At both ends of the section, the events are flattened. The fina; migrated section
(Fig.6.6.16b) shows the interface accurately. Note the collapse of the diffraction energy at the
top of the interface.

0
—2.84E-(4 —P > S EM

YO-2¥8'C

P0-3¥8'T-

Fig.6.6.14: The "stacked" time slice (0.0 - 1.0 s).
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Fig.6.6.15: The selected planes: (a) p?=0 and (b) p=0 and a selected p%, curve before (c) and after (d) the
frequency scaling according to eq.(6.3.7).
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6 The forward Radon transform applied to t-x data: a seismic line
— - —_— o
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Fig.6.6.16: The pre-stack migrated result of the complete line in (a) 7-p and in (b) r-x.

A pyramid-shape interface sandwiched between two horizontal layers

The last synthetic model is an extension of the previous model: one horizontal interface above

center midpoint

]
]
' 2500 m/s
'
'
700 m-!
i
§ ' 3000 m/s
)

Fig.6.6.17: The x3-x; configuration of the fifth model.
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and one below the pyramid-shaped interface. The Ax of source and receiver are again 12 m and
the velocities are respectively 1500 m/s, 2000 m/s and 2500 m/s. Further, Ap® and Ap? equal
4.5E-6 s/m. Three "stacked" time slices are shown (Fig.6.6.18), where the lower horizontal
interface shows the smallest aperture. Note also that it is influenced by the overburden. It no
longer appears to be completely horizontal. In Fig.6.6.19b, the three events are displayed, each
representing one interface. Then the last picture of this data set displays the migrated section
(Fig.6.6.19d). Note that the multiple energy is still present in the section, the first multiple at
about 0.4 s and the second multiple at 0.7 s.

[+ o
> 2 84E-4 -2 84E-04 — P > 84504

—2.84E-04

#0-9¢8°C

YO-av8'c-

(©)
Fig.6.6.18: Three "stacked” time slices: (a) 0.0 - 0.32 s, (b) 0.32 - 0.64 s and (c) 0.64 - 0.96 s.
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Fig.6.6.19: The selected planes: (a) p®=0 and (b) p°=0 and the pre-stack migrated result of the complete line
(c) in 7-p and (d) in ¢-x.
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6 The forward Radon transform applied to t-x data: a seismic line 153

gathers, (a) at the beginning of the line, (b) in the middle and (c) at the end of the line. The time
slices (Fig.6.6.21) are calculated over every 0.2 s, where the spreading of energy decreases with
increasing two-way traveltime. Note the difference of the energy distribution between (d) and
(e). The next figure (Fig.6.6.22) shows the two selected planes, displaying only five main
events as was already clear from the slices. Finally, the migrated section (Fig.6.6.23b) is
shown.
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Fig.6.6.20b: The shot gather of the land data sct in the middle of the seismic line.
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o o
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Fig.6.6.21a-d: The "stacked" time slices: (a) 0.0 - 0.2 s, (b) 0.2 - 0.4 s, (c) 0.4 - 0.6 s and (d) 0.6 - 0.8 s.
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Fig.6.6.21e-h: The "stacked" time slices: (¢) 0.8 - 1.0s, () 1.0-125,(g) 1.2-14sand (h) 1.4-1.6s.
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Fig.6.6.21i-j: The "stacked" time slices: (i) 1.6 - 1.8 sand (j) 1.8 -2.0 s,
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Fig.6.6.23c: The conventionally migrated section.
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CONCLUSIONS

The Radon transform has conventionally been applied to seismic data to decompose the data
into plane-wave components. This decomposition allows waves which travel with different
slownesses to be separated. In land seismic data for example, the Radon transform can be
applied to separate compressional waves, shear waves and surface waves, and in VSP data, the
Radon transform may be applied to separate the upgoing from the downgoing waves. In the
calculation of synthetic seismograms from well-logs the theory of wave propagation in plane
horizontal layers is very often handled in the f-p domain using the reflectivity method. In order
to compare the synthetic seismograms with field data in the r-x domain, the synthetic data have
to be transformed to the 7-x domain with the inverse Radon transform.

Thus the forward Radon transform is required for plane-wave decomposition and allows
further data processing to proceed on each plane-wave component separately. The inverse Radon
transform is required either to get the data back to the ¢-x domain after processing in the plane-
wave domain, or to transform synthetic data to the ¢-x domain for comparison with field data.
Owing to a number of difficulties in its numerical implementation, the Radon transform is not
used very extensively. One difficulty is that the forward and inverse discrete Radon transforms
are not exactly reversible. Something is always lost when the Radon transform is applied to a
data set.

In this thesis, the theory of the Radon transform is examined, and an efficient and accurate
numerical implementation is developed.

Data modelled in the frequency-slowness domain

When a data set is modelled in the f-p domain using the reflectivity method and transformed
to the z-x domain with the inverse Radon transform, three main numerical problems arise:

1) How to map the completely calculated elliptic events into hyperbolic events with finite
offset: this is solved by introducing a frequency dependent p-increment, where the p-increment is
chosen such that the unaliased part of the calculated earth's response in the f~p domain is
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sampled with a constant number of slowness values. Owing to this restriction put on the
modelled data in the f-p domain, the wrap-around noise in the #-x domain is reduced as well.
However, the choice of the sampling interval and the number of samples of the slowness as well
as the frequency have to be accurate. They have to agree with the complexity of the chosen earth
model, that is the larger the number of the layers and the thinner the layers, the smaller the
sampling interval and the larger the number of samples (section 3.6).

2) How and when to interpolate and what order of interpolation: the inherent interpolation is
carried out in the frequency domain instead of in the time domain, and it is performed after the
spatial Fourier transform. To improve the interpolation procedure, the analytically known
Fourier transform of the interpolator is calculated and the modelled earth's response is divided by
it. Linear interpolation is preferred because it is cheaper, but cubic spline is more accurate. When
a cubic spline is compared with a linear interpolation, the spline interpolator performs much
better. But when both interpolators are implemented in the algorithm and when the modelled
earth's response is first divided by the analytically known Fourier transform of the interpolator,
the results are very similar. The reason for this is that when the calculated earth's response is
sampled far beyond aliasing, a higher order interpolator becomes redundant (section 3.7).

3) How to evaluate the Bessel function of the first kind in the case of cylindrical symmetry:
this is solved by rewriting the Bessel function as a spatial Fourier transform followed by a
frequency dependent square-root filter. The Bessel function can also be replaced by its
asymptotic expansion, but for small values of the argument of the Bessel function, the
approximation fails. Further, a synthetic data set (primaries only) obtained with the inverse
Radon transform is compared with a data set modelled with the exact Cagniard-de Hoop
technique. The results are equally good within the chosen bandwidth but the Fourier-Bessel
method takes less computational effort (section 3.8).

Data in the time-space domain
When we start with a synthetic or field data set in the ¢-x domain and apply a forward Radon
transform to it, the data must fulfil the following condition:
1

fr < —, (7.1)
2Ax

because the data are aliased outside that range in the f-p domain. If this condition is not fulfilled,
the input data have to be muted according to the orthogonal hyperbola (eq.(7.1); section 4.4).
The second problem of the numerical implementation translates to the finite aperture of the data
set, which makes the range of integrations finite. It is well-known that the analytic solution of a
Radon transformed hyperbolic event is an elliptical event and that the analytic solution of a linear
event (for example, a headwave) is a point. However, due to the discrepancy between the
analytic and discrete Radon transform, only part of the elliptical event is truly elliptical. Because
of the finite aperture of the Radon transformed data set, the last part of the elliptical event is no
longer elliptical, but becomes tangent to the ellipse at the focus point. And, if the first offset of
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the data set is not equal to zero, the first part of the elliptical events also becomes the tangent and
therefore unreliable (section 5.2). Secondly, a linear event in z-x does not map into a point but
maps into two linear events with a positive and a negative dip starting at the z-axis. The intercept
time on the 7-axis relates to the time value in the t-x domain where the linear event starts, while
the slope in 7-p represents the corresponding offset (section 5.3). A high frequency
approximation, using the method of stationary phase confirms these resul:s. Moreover, this
approximation allows us to predict the reliable range of a Radon transformed data set, where the
larger the 7-value, the smaller the reliable p-range becomes according to the orthogonal hyperbola
(section 5.2).

Then, the method of calculating the Radon transform is extended to two- and three-
dimensional earth models, thereby allowing lateral velocity variations. By applying a double
forward Radon transform, one with respect to the offset coordinates and one with respect to the
source coordinates, the spatial complexity of the data set shows a well-defined topological
subdivision in the double Radon transformed domain. As the main application, we developed a
pre-stack migration algorithm, which is an alternative approach for the conventional normal-
move-out, dip-move-out, common depth point stacking and a post-stack migration scheme. The
algorithm ignores just as the conventional migration methods any interaction between the
interface, that is multiple reflections (internal multiples and free surface effects) are treated as
primary reflections. The advantages of our algorithm are lateral varying velocities, the restricted
computational effort and the lack of required detail of the velocity model due to the robustness of
our procedure. And, the computation time becomes a smaller fraction of the total time as more
processes are performed in the double Radon transformed domain.

Because of the use of the FFT in the migration algorithm, the spacing between the subsequent
sources as well as the spacing between the receivers has to be constant. If not, the data have to
be interpolated. Further, there are two more restrictions, (1) the limitation due to the Radon
transform, and (2) the maximum retrievable dip, present in the data itself (eq.(7.2); section 6.4).
The maximum possible dip is, using the stationary points of the transform integral, determined
by the offset, the depth of the interfaces and their rms-velocities:

[e] R} Ry
X -+, —-X —_
P J;l ad |pfl< p° 4 Mz_[. 7.2)

o 5
V. R VR

Therefore, the maximum slowness with respect to the source and with respect to the offset have
1o be chosen in harmony with the data set. Otherwise,we are looking at artifacts of the transform
due to lack of the data.

Comparing the pre-stack migration method with the conventional procedure, two conclusions
can be drawn from the field data set: (1) the dipping event at 1.0 s in the conventionally migrated
section is outside the range of the maximum retrievable dip following eq.(7.2) and therefore not
present in the pre-stack migrated section, and (2) the event at 1.6 s is far better focussed with the
pre-stack migration method than with the conventional migration procedure.
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APPENDIX

A.1 Calculation of the Green's function for the acoustic case

The spherical waves emitted by a point source can be regarded as a sum of plane waves;
these plane waves are reflected and transmitted at the interfaces. After the calculation of the
response of each plane-wave component, the plane-wave responses are superposed to give the
complete point source response. A plane-wave modelling scheme, based on the reflectivity
method (Fuchs and Miiller, 1971; Fokkema and Ziolkowski, 1987) is used, assuming that the
earth is horizontally-layered.

free surface
x3=0
point source receivers J___
r g
% VVVVVx 3
X
3 E
e
x30 2
Py V1 g
X3.1 l
Pn Va
X3’n
Pn+l Va+l
X3n+l
X
PN+t VN+1 3N
lower half space

Fig.A.1.1: The point source configuration.

The model shown in Fig.A.1.1 consists of N+ fluid layers, bounded by a free surface on
top and a homogeneous half space at the bottom. The source and the receivers are situated in the
top fluid layer at depths x; and depth x7, respectively. The plane wave is defined by its
horizontal slowness p and vertical slowness g, and are related in the following way:
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Fig.A.1.2: A plane wave in a homogeneous medium,

The g is found as that component of the direction of propagation that is normal to the p;-p, plane
and p is found by projecting the direction of propagation onto the p;-p; plane (Fig.A.1.2). This
is mathematically formulated as

i 2
p=30 aq g- /L _, (A.1.1)
v v2
and
2 2 2
P =p/+p;, (A.12)

where ydenotes the angle of incidence in Fig.A.1.2 and v the propagation velocity in the layer.
The pressure Py in the top fluid layer consists of an incident field P** and a scattered field

P
inc sc
Po(p1.p2.x3.f) = P (prp2.x3.f) + P (pr.p2.x3.f) - (A.1.3)
The incident field satisfies the inhomogeneous wave equation

a2Pinc

3x3

+ (Z’Irf)2qa2 P'"C = _S() 8(x3~x3) , (A.1.9)

in which § (f) is the source spectrum and gg represents the vertical slowness in the upper layer
and is defined as
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0 = —5-P;-P2 . (A.1.5)

The well-known solution of eq.(A.1.4) for the incident field is obtained as

~ine

S 2nflpix; +paxa+q lx —x"”
P (p1.p2.x3.f)=i(f-)—e P1X) ¥+ p2x2 o|x3—x3 s

Hrfag (A.1.6)

where the first factor represents the source spectrum with a scaling term. The exponentional term
[i2rf{pix1 + p2x2}] of eq.(A.1.6) is common in both the incident and scattered field and will be
omitted in the next equations for simplicity. Then, the scattered field consists of the upgoing and
the downgoing wavefield and is given as

asc

~t .
P (plpz,X3f) - AO( j)e lZﬂfqo (2x3p —x3) (A.1.7)

2nfqoxz . fo(p,f)e— )

in which X 0 “ is the spectrum of the pressure wave propagating in the positive x3-direction and
Ay isthe spectrum of the pressure wave propagating in the negative x3-direction. We now find
the global reflection coefficient Ry at the boundary x3 = x3,0, which is the ratio of the upgoing
to downgoing wave field, and the downgoing wave field consists of both the incident wave field
and the scattered wave field:

_ S -2 a0z, 5
Ao(pf) Ro(pf)[ +Ao(ps) (A.1.8)

4, fqo

At the free surface x3 = 0, the boundary condition is that the pressure is zero. Therefore, from
€gs.(A.1.3), (A.1.6) and (A.1.7) it follows that

~ s ~t
= —i2 _ =
Aopppe i ftf¢Iax3,o= [ﬁ% ‘Z”fq””+,40(p,j)}‘ (A.1.9)

in which the well-known reflection coeff1c1cnt -1 is clearly recognizable. Eqs.(A.1.8) and
(A.1.9) can be solved for Ay - and Ao , thus enabling the scattered field P*° in eq.(A.1.7) to
be determined. Combining this result with eq.(A.1.6) yields the complete expression of the total
field at depth z

ainc asc

Popipsxsf) = SL NP (pprxsf) +P (P1o2.x34) |, (A.1.10)
idrnfqo
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where

2 inc

s 5
i2m X3 —Xx i2 mj (x3 +x3)
P (P1P2.X3.f) = e fqol 3 3I -e a0 (%3 3

, (A.1.11)

in which the first term of eq.(A.1.11) represents the direct wave from the source, and the second
term the reflection of this wave against the free surface (the source ghost). The scattered field,
containing all the information of the layered earth, is then given as

o~ . s
-~ sc = 2nfqo (2x3p-x3 -x3)( . ,)( . )
P R 4 4
P (pip2x3f) = O(pf): 1_e WH0xs)|, i ﬁons’

1 +Eo (pf e i4nfqox3p
(A.1.12)

where five factors are present: Eo is the global reflection coefficient at depth x3=x3,0 and qg is
the vertical slowness in the fluid layer. The denominator describes the multiple behaviour in the
upper layer, the factor [ - exp [i4nfqox53]] represents the ghost operator at the source , the term
{1 - exp [i47fqox3]] represents the ghost operator at the receiver and the factor
(i27fq0 [2x3,0 - x53 - x3]] accounts for the time delay from the source to the first interface and
back to the receiver. The global reflection coefficient R o is obtained recursively from the bottom
of the model upwards and is given at the n-th interface by

~ = i4”fqnx.b¢+1
= R 1
Ratpg) = IntRurilphe , (A.1.13)

= i4nfq,
1 +raRns1(pf) e 2T 3mu

where the term exp [i47fgnx3,n+1] introduces the two-way traveltime in the n-th layer, the
denominator describes the behaviour of the internal multiples in the layers and r, denotes the
local reflection coefficient at the n-th interface given by:

= InPn+l = 9n+i1Pn (A.1.14)
4nPn+l ¥ 9n+1Pn

n

Since the model is bounded at the bottom by a half space, the recursion is started by assuming
that there are no upward travelling waves in the lower half space, thus:

RNe1(pp =0. (A.1.15)

The way the recursion is carried out, is shown below.
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( plane-wave response in (p,f) )

slowness

L N+1 (P i * Y

Fig.A.1.3: The flow diagram of the recursion: the inner
loop presents the layers, the next loop the
frequency and the outer loop denotes the
p-values.




A.2 The method of stationary phase

The method of stationary phase is well known and has existed for many years. The method is
a high frequency approximation and it therefore emphasizes the onset of events. The following
type of integral (Erdélyi, 1956) is evaluated

i2nfh(p,x)

C
2(p) =f A(x) e dx, for large values of f , (A.2.1)

B

where the exponential factor denotes a phase function
h(p.x) =G(x) + px (A.2.2)

that for the purposes of this thesis can represent either a hyperbolic move-out corresponding to
primary and multiple reflections, or a linear move-out corresponding to headwaves. The
hyperbolic or linear move-out is written as G(x) and its relation to A(p,x) is given in eq.(A.2.2).
The p denotes the horizontal slowness, x the offset, f the frequency, A(x) gives some space
dependent amplitude factor and B and C represent the end values of the integral. Then,
evaluating the integral for large values of f, the major contribution to the integral arises from the
immediate vicinity of the endpoints of the interval and from the vicinity of those points at which
the phase function is stationary according to

. 2 ’
ahf?x’x) =h(p.xs) =0 and oA 2,1) =h (p.xs) %0, (A.23)
ox

where x; denotes the stationary point of the phase function.

The exponent goes through a large number of periods, while the amplitude function, A(x)
changes comparatively slowly. Thus the integrand approximates a constant function, A(x)
multiplied by a rapidly varying exponent, which varies between +1 and —1. Therefore,
destructive interference between the various contributions to the integral will make it vanish,
except for those values of x for which the phase function is stationary. In the first approximation
the contribution of the stationary points, if there are any, is more important than the contribution
of the endpoints.

Then expanding A(p,x) in a Taylor series around the stationary point x; (£ is small) yields

’ 2 ”
hpx) = h(p.x,+8) =h(p.xs) + Eh (p.50) + 5 h (p.50) .. . (A24)
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We ignore higher-order terms in eq.(A.2.4) and substitute for'h(p,x) into eq.(A.2.1), in which
the integration is now allowed to run from —o0 10 + 9, Since 4 (p,x s ) is zero, by definition of
€q.(A.2.3), this yields

i +oo " 2
8(p) =A(x,) e 'Z”f"(”"‘s)f o i (P.xE

dag . (A.2.5)

—c0

Evaluating the integral in eq.(A.2.5), following Abramowitz & Stegun (1968) gives

400 ~ 2 “+o0 v r
f e infh (p.xs)% d& =f cos(nfh (p.xs)& %)+ isin(zfh (p.xg)& %) a

=(1 +1i) ,\/ i =,\/ 1
2nfh (p.xg) —ifh (p.xg)

and.substituting itin eq.(A.2.5) finally results in

(A.2.6)

1 , i27fh(p.x,)

——————— A(x,) . (A2.7)
V—ifh (p.x)

g(p) =

The method of stationary phase is valid only when one integral has to be evaluated. In case of
two integrals (Chapter 5), a similar approach is used. Following Felsen and Marcuvitz (1973),
we start from

C; rC, R
2nfh(p.x,
g(p) = j f Ax) e 2P0 4y (A2.8)
B; ‘B,

where the exponential factor denotes a phase function
h(p.x,8) = G(x) + px cos@ (A.2.9)

with G(x) being either a linear or a hyperbolic move-out. B; > and C; ; present the end values of
the integrals. Then, again, the main contribution to the integral arises from the immediate vicinity
of the endpoints and from the vicinity of those points at which the phase function, h(p,x,6) is
stationary according to

i"—(%;‘ﬁ =h(p.x;,0,) =0 and @%:—'Q)_ =h(pxs.05) =0
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and

2 , 2 14
M 'f—'e) =h (pxs.05) #0 and 2 h(p.x.0) ’Z'e) =h (p.x5.05) 20, (A.2.10)
a0 ax

where xs and 05 denote the two stationary points. Then, it is entitled to assume by Taylor's
theorem for two independent variables that

2
h(p.x,8) = h(p.x;,0;) +(x—xs}-%h{p,xs,9s) + %(x..xsf 2 2h(p,xs,es) +
ax
52
902

(6-6,) % h(p.xs.65) + é- (6-65)°2 h(p.x,.8,) +

b Y0-6,) 2 2 n(p.x,.8;) . (A2.11)

Of the terms in the exponential factor, apart from the first term of eq.(A.2.11), only the
quadratic group needs to be kept in the exponent. Then, to attain an accuracy equivalent to the
terms retained in eq.(A.2.11), the slowly varying factor A(x) needs to be expanded by Taylor's
theorem for the two variables only up to second derivatives. Integrating successively over x and
0, a tedious calculation punctuated by extensive cancellation of laboriously computed terms
ultimately leads to

1 i2nfh(p,xs,0,)
-~ A »Tsl A2.12
&(p) YZ (x) e ( )
where the denominator, Z is the determinant of the system which is given by
ok 9k
2 ox? dxa0
= 2.1
o ok | (A2.13)
dBox 202
or writing out by
a° 3 2 2 ’
Z="—h(px;5.05) -"— h(pxs,0;) — 36 2 h(p.xs,GJ)] . (A.2.14)
ax? 90° 0 ox

For the expansion of three integrals (Chapter 6), when we begin with
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C] C2 C3 N
2nfh(p,x;, x,,
2(p) =f f f A(xl,xz.xg) e i2nfh(p,x, X, x’)dx,dxzdxg ,
B, “B; “B;

the asymptotic approximation is, following Felsen and Marcuvitz (1973) given by

i(rd)or

1 e

Vir Az

g(p) =~

where the denominator, Z is the determinant of the system, given by

[ »

A(x,,s,xz.sxg,s) e

)

ok
8x,2 3x18x2 3x18x3
z-| 2% 3k _oh ,
3123)61 ax; 3x28x3
% % ok
dx30x, Ox309x2 ax3 2
and where
3
o =Y sgnd;,

=]

i20fh(p, X1, X245, %3,)
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(A.2.15)

(A.2.16)

(A.2.17)

(A.2.18)

and where d; denote the eigenvalues of the matrix comprising the elements of the determinant Z,



A.3 Complex frequency

When singularities are present along the path of integration, large numerical errors are made.
This problem is commonly avoided by choosing a different of path of integration, around the
singularities. In this section, it is shown that singularities on the real frequency axis are avoided
by introducing complex frequencies. When the temporal Fourier transform pair for complex
frequencies is derived for causal time functions, its inverse transform must be defined for
positive frequencies only because we need a unique relation between the wavenumber & and the
horizontal slowness p for the Radon transform (k=27p).

Following egs.(1.2.1) and (1.2.2), the temporal Fourier transform pair for causal time
functions is given by

~ 4o
2 = f e 2™ woar (A.3.1)
(4]
and
+o0 i ~
u(t) = f e P L ar. (A3.2)

Next, consider the contour C~ in the complex f-plane in the upper half in Fig.A.3.1.

Im(f)

Fig.A.3.1: The path of integration in the complex f-plane.

According to Cauchy's theorem, the contour integral C~ along this path equals the sum of the
residues in the upper half plane. When 1(2) is causal, u(f) contains no poles in the upper half
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plane. Therefore it is allowed to choose any closed contour in the upper haif plane. Then the
equality

f upe e <0 (A33)
o)

is true for negative times. The contour C consists of four contributions, two parallel and two
perpendicular to the real f-axis (Fig.A.3.1). Since u(f) has no singularities for f—eo, the
integration interval for the end contributions is finite and vanishes. Then eq.(A.3.3) can be
written as

—00

4oo _. ig—co _;
f u(f) e iznft ar + f u(f) e lznﬂdf= 0, (A.3.4)
i€ 400

and after substitution of eq.(A.3.2), as

ig+oo :
u(t) = f whe 2 g (A3.5)

Now, introducing a new variable of integration f° = f - i€, eq.(A.3.5) is reformulated as

400 _ :
u(t) = f W(frie) e “ZTIIEN 4 (A.3.6)
or as
oo g
uty e 27 o f uf+ieye 2 gp (A3.7)

—00

The causal function u(1) is evaluated for complex frequencies by using a standard FFT-routine,
followed by an inverse taper in the time domain. Next, the Heaviside step function according to
€q.(1.2.5) is introduced in eq.(A.3.7)

~i2mf"

+w ”~ ”~
Wy = e f h(F) u(f +ie) e df (A.3.8)

—c0

and, following egs.(1.2.5)-(1.2.7), €q.(A.3.8) is rewritten as
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W) = ;—[e “2mEL iy - ia{[e 2T ]] , (A3.9)

where #denotes the Hilbert transform. Because u() = 2Re[uB(1)], the temporal Fourier
transform pair for causal time functions (eqs.(A.3.1) and (A.3.2)) is now defined as

w(frie) = f e 2 e (A.3.10)
0
and
u(t) e 2" = 2Re [ f e T2 Lrvie) df'] , (A3.11)
0

where Re [...} denotes the real part, and is evaluated only for positive frequencies, as required.



A.4 Interpolation as part of the Radon transform

Interpolation is inherent to the Radon transform, but the order of the interpolation is open for
discussion. We have chosen for linear interpolation which is the least time consuming but a
higher-order interpolation might improves the results. In this section we compare the results of
the linear interpolation with the results of the cardinal cubic spline interpolation. The cardinal
cubic spline is a third order polynomial and is required to be periodic. By taking advantage of
the continuity of the function and filling in the boundary conditions, the system of equations can
be solved. Then, the spline is uniquely determined by its function-values at the points of support
and by the sampling interval. According to this, the triangle function (eq.(3.4.10))

-l y<a
& lylsd4y grr

2
O(y) = PN o(p) =M’EgéL) . (A4.])

0 Ay > ay (7p) Ay

changes into

Mp2-1 @ 2 3
(y) = 2 S;+p; (y—y;) + 2; (y~y;) + 6L(y—)’i) yfory,<y<y; ; , (A4.2)
i=—M/2

where the interpolator ¢(y) is written as a Taylor expansion and in which Di, q; and r; denote
respectively the first, second and third order derivative of the spline and & the Dirac pulse at the
point of support i. Since the spline is an even function, its Fourier transform can be written as a
cosine transform, resulting in

Mi2-1 Yi+l
~ N 2 . 3
o(p) =2 Z f (5,~ +p;(y-y;) + %‘— (y-y;)" + % (y=y;) )cos(yp)dy , (A4.3)
=0 Y

where M denotes the number of points in the spline. So, eq.(A.4.3) is equivalent to the right
hand side of eq.(A.4.1). The larger M is, the more accurate the result will be, but the more
calculation time is required. After some testing (Fig.A.4.1) it was decided to continue with M =
4. Then filling in the 4-point spline, the complete point source response in f-x, given below
(eq.(3.4.14))
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1.0

0.5 —

- amplitude —p-

0.0 T T T L

3.0 -3

e linear
«eee  cubic, 4-p
== cubic, 6-p

——— abs. error (E-03) —»

—-— frace ——

Fig.A 4.1: (a) The cosine function to interpolate and (b) the relative error of the linear
interpolator compared with the spline interpolator with 4 and 6-points of
support.

- k
u(xxsf+ie) = 3, [(n An_s- (n-D)A ) arcsin
n=1

(" Yn—1—(n=-1) 'Yn) +
(rn)2

(An—I_A'l Xyn_l_'yn)]+ ((k+1) Ak—k Ak+]) arcsin( Z'l: ) +

/ 2 2
(Aer—Ar) 1+ Ya="\] (m) —(%;‘7) and m =X’—y. (A.4.49)

changes into
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k
~ (y-yp) dy
u(xzfrie) =Y [B,,_, Y Vn

yn d yn
| 2ot Tz
n=1 Yn-1 w -y Yn-1 w -y

y _ y _
Dn]f " (yy,,) dy +En }f "oy y,,) dy ]+’ (A.4.52)
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d
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where
-~ 2 -~
B, = A, (f+ig) C, = Z An(f+ie)p;_;
i=-I
(A4.6)
1 2 A ) 72 -~ )
D, =23 An(f+ie)q;_y E, == Y Ap(f+ie)r;_y,
2% ;<

Solving the integrations analytically for the first part (eq.(A.4.5a)) leads to

u(x,zf+ze)—z [B g F,+C,_ I(Yn 1-Yn— yn_IF)

n=1
2
2} 37n-1vy
D,_ I(F (’5‘+an )—nT“ Yn (—+2}’n 1))"‘

2 2 2
2 Uy
Ep_1\-Fp¥ni (3‘2" + Yol )+y,,_ (2;” n—1 )

‘ 2 Yy 3yny 2
w n Yn¥n-1 |
YolPo— + 2 +3
n 3 3 2 y’ll

where F,, = arcsin (y,, Yn-1 —2}’n—1 y") R (A.4.72)

w
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and for the second part (eq.(A.4.5b)) to
w2 2] 37y
Bka+Ck(Yk_kuk)+Dk Fk T+yk ——-———2 +
2 2 2
3w 2 2w” | 1y )
Ek(_pk)'k (—§—+>’k )+Yk( 37 "% ,

where Fj = arcsin (Z-wli) and 7, = w? - ynz . (A.4.7b)

The coefficients B, Cp, Dy and E, in eq.(A.4.6) can be calculated with eq.(3.4.9) and p, g and"
r are given by

0 -1 3
p=-—3— é ;q=L2 23 ir= 33 _:55 . (A.4.8)
4Ay _1 4Ay 2 4Ay _3
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SUMMARY

The Radon transform has conventionally been applied to seismic data to decompose the data
into plane wave components, that is, to separate the waves which travel with different
slownesses. The calculation of synthetic seismograms from well logs employing the theory of
wave propagation in plane horizontal layers, is very often handled in the frequency-slowness
domain using the reflectivity method. In order to compare the synthetic seismograms with field
data in the time-space domain, the synthetic data have to be transformed to the same domain with
the inverse Radon transform. In conventional data processing, the Radon transformed is not
used extensively due to a number of difficulties in the numerical implementation. The forward
and inverse discrete Radon transforms are not exactly reversible is one of the difficulties.

In this thesis, the theory of the Radon transform is examined, and an efficient and accurate
numerical implementation is developed for the one-dimensional earth (only plane horizontal
layers). Attention is paid to the inherent interpolation of the discrete Radon transform, the
spatially finite integration, and the evaluation of the Bessel function of the first kind in the case
of cylindrical symmetry. Furthermore, a detailed analysis is performed of Radon transformed
synthetic and field data sets, subdividing the noise present in the intercept time-slowness
seismograms into three components: (1) incoherent noise, (2) coherent noise due to the finite
integration, and (3) coherent noise due to the inherent interpolation step of the discrete Radon
transform.

The theory is extended and worked out for two- and three-dimensional earth models,
allowing lateral velocity variations. The theory starts with the representation of the total scattered
field which is considered as a superposition of distinct primary contributions of an infinite
number of interfaces. By applying a forward Radon transform with respect to the offset and
source coordinates (as the data are collected in the field), the horizontal phase becomes separated
from the vertical phase in the data. The next step is to carry out a high-frequency analysis using
the method of stationary phase. The result of this analysis is a Fourier integral representing a
decomposition of the spatial complexity of the data set. Our main application is a pre-stack
migration algorithm, being an alternative approach for the conventional normal-move-out, dip-
move-out, common depth point stacking and a post-stack migration scheme. Our algorithm
ignores just as the conventional migration procedures any interaction between the interfaces, that
is multiple reflections are treated as primary reflections. The advantage of our algorithm is the
restricted computational effort and the lack of required detail of the velocity model due to the
robustness of our procedure. Further, the computation time becomes a smaller fraction of the
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total time as more processes, for example the removal of free surface effects, are performed in
the double Radon transformed domain. To demonstrate the accuracy of the migration algorithm,
both synthetic and field data examples are migrated.
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SAMENVATTING

De Radon transformatie is van oudsher gebruikt om seismische gegevens te ontbinden in
vlakke golf componenten, dat wil zeggen die golven te scheiden die zich met een andere
traagheid (reciproke snelheid) voortplanten. Het berekenen van synthetische seismogrammen
gebaseerd op de golftheorie voor een horizontaal gelaagd medium en aan de hand van
putgegevens, wordt vaak uitgevoerd in het frequentie-traagheids domein waarbij men gebruik
maakt van de reflectiviteit's methode. Om de synthetische seismogrammen te vergelijken met de
gemeten veldgegevens moeten de gegenereerde gegevens naar het tijd-ruimte domein
getransformeerd worden met behulp van de inverse Radon transformatie. Echter, door een aantal
numericke problemen wordt de Radon transformatie in conventionele gegevens verwerking
beperkt gebruikt. Het feit dat de voortwaardse en inverse Radon transformatie niet exact
reversibel zijn is een van de redenen.

In dit proefschrift is de theorie van de Radon transformatie bestudeerd en een efficient en
accuraat numericke implementatie is ontwikkeld voor de één-dimensionale aarde. Er is uitgebreid
aandacht besteed aan de interpolatie stap, inherent aan de discrete Radon transformatie, aan de
spatieel eindige integratie en aan de evaluatie van de Bessel functie van de eerste soort wanneer
er sprake is van cylindrische symmetrie. Verder is een gedetailleerde analyse uitgevoerd op
Radon getransformeerde synthetische gegevens en gemeten veldgegevens. Hierbij wordt de ruis
die aanwezig is na transformatie, onderverdeeld in drie componenten: (1) incoherente ruis, )
coherente ruis veroorzaakt door eindige integratie en (3) coherente ruis vanwege de
onontkoombare interpolatie stap in de discrete Radon transformatie.

Vervolgens is de theorie uitgebreid en ontwikkeld voor een twee- en drie-dimensionale aarde
met als gevolg dat laterale snelheidsveranderingen nu mogelijk zijn. De theorie begint met de
representatie van het totale verstrooide golfveld dat wordt beschouwd als de superpositie van
gescheiden contributies van een oneindig aantal lagen. Dan wordt een voortwaardse Radon
transformatie uitgevoerd met betrekking tot de offset coordinaten én de bron coordinaten.
Hierdoor wordt de horizontale fase van de vertikale fase in de gegevens gescheiden. Een hoge
frequentie benadering, gebruik makend van de stationaire fase methode resulteert vervolgens in
een Fourier integral die een ontbinding van de spatiele complexiteit van de gegevens
bewerkstelligd. De toepassing van deze theorie is een migratie algoritme dat een alternatief biedt
voor de conventionele "normal-move-out”, "dip-move-out”, "common midpoint stacking" en
een "post-stack” migratie schema. Het algortime verwaarloost net zoals de conventionele
migratie schema's enige interactie tussen de lagen onderling, dat wil zeggen dat veelvoudige
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reflecties op dezelfde manier worden behandeld als de primaire reflecties. Voordelen van deze
migratie techniek zijn de beperkte rekentijd die nodig is en de afwezigheid van een gedetailleerd
sneldheidsmodel door de robuustheid van het algoritme. Bovendien wordt de benodigde
rekentijd nog minder wanneer meerder bewerkingen, zoals het verwijderen van "free surface
effects” ook in hetzelfde domein worden uitgevoerd. Om de toepasbaarheidheid van het migratie
algoritme te laten zien, worden zowel synthetische als veldgegevens gemigreerd.



A

ACKNOWLEDGEMENTS

The research described in this thesis could only be carried out with the help and the support
of others.

I am acknowledged to prof. A.M. Ziolkowski for his valuable criticism and suggestions
during the writing of the manuscript, and I wish to express my gratitude to dr. ir. J.T. Fokkema
for his continuous support and stimulating ideas throughout the four years. Also, I like to thank
to Evert and Guy for critical reading of the manuscript.

Further, I greatly appreciate the use of the marine seismic data supplied by Norske Shell and
by Norsk Hydro. The Tubbergen data, supported by the EEC-project under contract nr.
TH/0112/88/NL and the synthetic data, generated with the acoustic finite difference program of
the Acoustics group of the Physics department, are gratefully accepted.




194

3 mei 1961

1980

1980 - 1982
1982 - 1986

febr. 1985
dec. 1986

15 april 1987 - 30 april 1991

1 mei 1991 - heden

Cv

CURRICULUM VITAE

geboren te Rijswijk, Zuid-Holland

diploma Gymnasium-B
Stedelijk Gymnasium te Leiden

Universiteit van Leiden (Biologie)
Universiteit van Amsterdam (Geologie)

kandidaats-diploma biologie
doctoraal-diploma geologie

Assistent in opleiding (AIO) bij de vakgroep Petroleum-
winning en Technische Geofysica van de faculteit Mijn-

bouwkunde en Petroleumwinning aan de TU Delft

Seismische interpretator bij Mobil



-3

4-

Stellingen

behorend bij het proefschrift
"The Radon transform and its application to the interpretation of seismic data"

Wanneer een functie ver beneden het Nyquist criterium wordt bemonsterd, is lineaire
interpolatie voldoende nauwkeurig en bovendien kostenbesparend vergeleken met
bijvoorbeeld een derde orde interpolatie zoals de kubische spline.

Hoofdstuk 3, dit proefschrift

De stationaire punten, die geassocieerd zijn met de stationaire-fase analyse van de Radon
transformatie, schrijven voor welke waarden van inverse snelheid nog betrouwbaar zijn,
gegeven een bepaalde offset en voortplantingssnelheid. Het hyperboliséhe snelheidsfilter,
o.a. van Mitchell en Kelamis (1990), is hieraan nauw gerelateerd en beoogt hetzelfde effect.
Mitchell, A.R. and Kelamis, P.G., 1990, Efficient tau-p hyperbolic velocity filtering:
Geophysics, 55, 619-625.
Hoofdstuk 5, dit proefschrift

In het dubbel Radon getransformeerde domein waarbij de bron- en offset-coordinaten
gescheiden behandeld worden, leidt de spatiéle complexiteit van de volledige data set tot een
goed gedefinieerde topologische klassificatie. De stationaire punten uit de transformatie
integraal kwantificeren de beperking van de data set, d.w.z. de grootste helling van een laag
die nog betrouwbaar is in de gemigreerde sectie, wordt bepaald door de offset, de
voortplantingssnelheid en de diepte van de laag.

Hoofdstuk 6, dit proefschrift

Het equivalente horizontale snelheidsmodel, behorend bij een seismische data set, wordt
verkregen door in het dubbel Radon getransformeerde domein een conventionele
snelheidsanalyse uit te voeren in het subdomein waar de inverse snelheidscomponent
gerelateerd aan de bron, gelijk is aan nul.

Hoofdstuk 6, dit proefschrift

De dubbel Radon getransformeerde data set leent zich uitstekend voor een
richtingsafhankelijke deconvolutie aangezien zowel bron- als offset-coordinaten gescheiden
getransformeerd worden.
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Voor een betrouwbare numeriecke behandeling van de Radon transformatie is een
symmetrische bedekking ten opzichte van de oorsprong noodzakelijk. Voor seismische data
met een enkelzijdige bedekking, bijvoorbeeld een mariene data set, kan een gedeeltelijke
reconstructie van de symmetrische bedekking gerealiseerd worden door gebruik te maken
van het reciprociteitsbeginsel voor bron en ontvanger.

Het verrichten van metingen door een geoloog en door een geofysicus onderscheidt zich
fundamenteel door de schaal van de metingen. Het daaruit voortvloeiend verschil in
oplossend vermogen van de parameters kan bij het geforceerd correleren van die
geofysische en geologische parameters leiden tot wetmatigheden die niet gestoeld zijn op
fysische wetten.

De conventionele methode om een synthetisch seismogram uit te rekenen is gebaseerd op
een niet-realistische configuratic van bron en geofoon. Wanneer men er vanuit gaat dat
bolvormige golven, uitgezonden door een puntbron (bijv. dynamiet) beschouwd kunnen
worden als de som van een oneindig aantal vlakke golven en dat deze vlakke golven
gereflecteerd en gebroken worden op de grensvlakken, dan zal de superpositie van al deze
golven de complete puntbron responsie geven. Daarom verdient het de aanbeveling het

synthetisch seismogram te berekenen in het inverse snelheidsdomein.
Vissinga, M., Ziolkowski, A.M. and Fokkema, J.T., 1989, A new method for
matching stacked seismic data with well log information: abstract EAEG, p. 117

De gebruikersvriendelijkheid van sommige software pakketten doet vermoeden dat deze
geschreven zijn door én voor niet-gebruikers.

Een goede samenwerking kenmerkt zich door de mate waarin beide partijen bereidAzijn
compromissen te sluiten.

Delft, 7 januari 1992 Marianne Vissinga



