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Summary 

In order to predict waterlevel changes in rivers due to floodwaves and local bedshapes for navigation, the 

local behaviour of the riverbed should be known. 

In many cases the bed of a river ~onsists of dunes, which propagate downstraam due to the sediment transport 
along the dunes. 

In this report mainly the watermovement but also the sediment transport along a dune is studied. 

The investigation consists of a theoretica! and an experimental part. 

In the theoretica! part a calculation of the flowfield above a dune is carried out using a computer model 

for the watermovement (ODYSSEE computer program of the Delft Hydraulica Laboratory, DHL). 

In the experimental part the mechanism of the local sediment transport along the dune is studied. 

The experimental set up consists of a solitary sanddune on a conveyor belt in a flume. 

The position of the dune is constant due to: conveyor belt velocity = - propagationvelocity of the dune. 

In this situation the flowfield above the duneis measured using a Laser Doppier Anemometer (LDA), which 

is tested first in a uniform flow situation. 

The local sediment transport, which is known along the steady dune, is related to the local bedshearstress. 
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1. Introduction 

1.1 General 

Sediment transport in a l l u v i a l rivers can be divided into bedload transport, which occurs mainly over the 

bottom of the ri v e r and suspended transport, which occurs between bottom and watersurface, 

Changes in the geometry of the riverbed due to changing flowconditions are important for the estimation of 

the local bedroughness and local bedshape. 

The flowconditions, i n turn, are influenced by the riverbed geometry, which makes the interaction flow-

sediment transport very complex. 

The forecasting of the local waterlevel i n a river due to floodwaves, for example, or local bedlevels for 

navigation requires inseight in the behaviour of the riverbed. 

The bedload transport can take place in diff e r e n t ways. Sediment particles are transported downstream, in 

the v i c i n i t y of the bed, over dunes, ripples or over a f l a t bed. 

The particles move with a velocity almost equal to the flowvelocity of the water near the bed. 

Dunes and ripples propagate downstream, with a velocity which i s an order smaller than that of the i n d i v i ­

dual particles. 

In a natural situation dunes and ripples are shaped three-dimensionally, are catching up eachother and so 

influence the local flowconditions of the ri v e r . 

To get inseight i n the interaction flow-sediment transport, detailed investigations of the sediment transport 

mechanism are necessary. 

In t h i s report an investigation of the local watermovement and local bedload transport over a dune i s des­

cribed. 

The phenomina are studied under quasi-steady flowconditions i n a v e r t i c a l plane p a r a l l e l to the main flow 

direction. 

Ihe investigation i s divided into a theoretical part and an experimental part. 

In the theoretical part, the watermovement and the sediment movement are studied separately. 

The Navier-Stokes equation i s used to describe the watermovement. For the decription of the turbulent vis­

cosity there has been chosen for a two-dimensional k-e model. 

With this model accelerating flows and wakes can be described satisfactory. 

Ihe k-e model is used i n the computer program ODYSSEE of the Delft Hydraulics Laboratory (DHL), with the 

program a numerical solution of a fl o w f i e l d is derived. 

For the sediment movement different models for local bedload transport can be used. 

However, specific models for sediment transport are not studied, but a general treatment of bedload transport 

i s given. Furthermore tyio simple models for local changes of the duneheight are treated. 

ViguAt I . ) : ZQ.diha.pe. and choAaateAlitlc. \je.tocltle.i ioA a dune oA AippZz, peA mit w-idth. 
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In the experimental part, experiments carried out in a straight flume w i l l be described. 

The set up of the experiments must be so, that measurements can be carried out easily and measurements of 

mean flowvelocities as well as turbulent flowquantities are possible. 

An important l i n k can be made between the local sediment transport and the local bedshearstress. 

In the experiments measurements could have been carried out over a series of moving or solid dunes in a 
flume. 

However, measurements over moving dunes are d i f f i c u l t and measurements over solid dunes have already been 

carried out (Raudkivi, 1975). 

There has been chosen for a 'solitary dune' which propagates downstream due to the flow, but i s placed on 

a conveyor bel t . The velocity of the belt is equal but opposite directed with respect to the dune-propaga¬

ting velocity. 

In t h i s way the dune 'stands s t i l l ' in the flume. Ihe experiment i s carried out in a flume with horizontal 

bottom upstream and downstream the so l i t a r y dune. 

For a description of the development of the experiment to a sol i t a r y dune, see appendix B. 

c^ + cj^ = 0 

V 

FlguAz 1.2: SolitaAy dum on a o-omzyok. 

Advantages of this set up are: 

- Ihe measurements can be carried out easily (stationary dune) and are done with a Laser Doppler Anemometer 

(LDA) which measures instantaneous flowvelocities in a very small area i n the water. 

- The local sediment transport can be determined easily as the product of the conveyor belt velocity and the 

local duneheight. 

- With respect to a solid dune the influence of the moving sediment particles on the flow near the dunesurface 
i s present. 

- For the numerical solution of the fl o w f i e l d a simple inflow boundary can be chosen. Upstream the dune a 

flow over a horizontal bed occurs with developed (logarithmic) flowvelocity-, turbulent energy- and shear-

stressprofile. 

- The k-e model can be tested in th i s flowsituation, numerical results can be compared with results of measu­
rements. 

A disadvantage i s that the situation is not similar to the situation with a series of dunes, but the inves­

ti g a t i o n of sediment transport in an accelerating flow is s t i l l interesting. 

In t h i s report the results of theoretical study and experiments are given: 

- Treatment of applications of the Navier-Stokes equation, treatment of the k-e model and treatment of simple 

models for local duneheight changes. 

- Results of measurements carried out with the LDA in a flume with horizontal bed. The tDA is specially 

adapted for the experiments and tested i n a flow situation for which analytical solutions of meanflowvelo-

c i t y and shearstress p r o f i l e s exist. 

- Results of measurements above the so l i t a r y dune,carried out with the LDA. 

Ihe results are compared with the numerical solution of the flo w f i e l d calculated with the computer pro­

gram ODYSSEE (DHL) based on a two-dimensional k-e model. 

- Relating the local sediment transport and local flowquantities near the dunesurface. 
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1.2 Definitions and assumptions vdth respect to f l u i d and sediment 

To describe the physical behaviour of the f l u i d and sediment mathematically, f i r s t some definitions and assump­

tions must be made. 

The mathematical description i s done i n a three-dimensional orthogonal coordinate system, with the positive 

x-j-axis pointed upward with respect to gravity. 

g = (D,D,-g) 

fiquAQ. 1.3: Vziinltion oi the. 

dooKdiyrnXs. iy^tem. 

The equations are often simplified to equations for a v e r t i c a l plane (x-|^,Xj) because, whether the X2-direc-

tion i s not of importance, or the simplification results i n a less complicated equation which can be solved 

more easily. 

The Einstein summation convention i s used, with 1=1,2,3 th i s holds: 

means 

means + - — + - — 

- — ^ means - — ^ + ^ + ^ 

ax. ax-^ 0x2 3x3 

The laws for conservation of mass and momentum are regarded with respect to a control volume. The f l u i d and 

sediment move through t h i s volume. 

The control volume has an arbitrary but steady position in the coordinate system and i s constant of size. 

The f l u i d and sediment are thus considered in an Eulerian frame. 

The volume of the control volume reads: A V = dXj^.dx^.dXj and becomes zero at the l i m i t and physical laws hold 

for t h i s mathematical point. 

This yields, however, that molecules are i n f i n i t e small, which they are d e f i n i t e l y not i 

So when A V = Q, what i s the d e f i n i t i o n of the density, temperature, velocity, acceleration and pressure ? 

The problem w i l l be solved here for the density, the other properties can be treated i n a similar way. 

The density i s defined by; A M / A V in which A M i s an arbitrary mass and A V i s an arbitrary volume. 

In general i t holds that for large volumes the density depends on the magnitude of the volume. 

When A V i s taken smaller and smaller the density appears to be constant. 

At very small values of A V the density i s dependant on A V again and i s strongly fluctuating with decrea­

sing A V , because the amountof molecules in the volume can fluctuate strongly. 

At the l i m i t A V = 0, no molecule i s present in the volume and the density becomes zero. 

A M 

Av 

VigixAe 1.4: Vtnilty cu> iunation oi the. contAot volume ilze [ihom PAandtt, Ï957). 
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In practice, however, A V = A V ^ w i l l be taken small enough to make the density constant and f i n i t e but 

s t i l l large enough to prevent the influence of the number of molecules on the density. 

The d e f i n i t i o n of the density reads; 
, . A M dM 

The control volume A V ^ i s now a physical point instead of a mathematical point. 

In this way the f l u i d and sediment can be treated as continua and molecular forces can be neglected. 

The sediment consists of discrete particles of different size, shape and density in practice and the par­

t i c l e s are very large compared to the molecular scale. 

However, the derivations made in this report are done for sediment as a continuum, which i s a reasonable 

approach because time averaged considerations are held. 

In this way the sediment transport can be seen as a flow with mean physical properties. 

In the report the general terms ' f l u i d ' and 'sediment' are often used. 

However, more specific terms to indicate the different phases are 'water' and 'sand'. 

This should be kept in mind when assumptions are made or effects are neglected in derivations. 
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2 • Theory 

2.1 Introduction 

The movement of water and sediment is treated in separate mathematical models. 

A conservation of mass equation and conservation of momentum equation are set up for water as well as 

for sediment. 

The conservation of mass equation together with the conservation of momentum equation describe the water-

movement generally and are treated separately. 

A good description of the conservation of momentum is the Navier-Stokes equation which is appropriate for 

watermovements in many situations. 

For turbulent flow a 'turbulent viscosity' appears in the Navier-Stokes equation and for this viscosity 

d i f f e r e n t mathematical models exist. 

In t h i s report only two turbulent viscosity models are treated, the mixing length model of Prandtl and a 

two-equation k-e model. 

The mixing length model i s based on an analogy with the kinetic gas theory (see Rodi, 1980). 

The k-e model describes the turbulent viscosity with an extensive mathematical model, which describes 

tvio dimensional flows , even with v/akes, reasonably well, see the applications in Rodi (1980). 

Furthermore the ODYSSEE computer program (Alfrlnk,1983) is based on this k-e model. 

ODYSSEE was used to derive numerical solutions for a flow f i e l d which occured in the experiments. 

A general conservation of momentum equation for the sediment is yet not known (1984). 

In this report two diff e r e n t equations for the conservation of momentum are used to describe the sediment­

movement. 

2.2 Watermovement 

2.2.1 General 

The conservation of mass and momentum equations hold generally, the choise of the mixing length model or 

the k-e model depends on the type of flow or the desired accuracy of the calculation. 

The difference of a mixing length model and a k-e model l i e s fundamentally in the description of the t u r ­

bulent viscosity. 

In the mixing length model the turbulent viscosity is expressed directly i n length scales. 

In the k-e model, however, the turbulent viscosity i s expressed in turbulent energy and energy dissipation. 

2.2.2 Conservation of mass and momentum 

The equations are derived i n an orthogonal Xj^,X2,Xj-coordinate system. 

The density of the f l u i d i s ^ ( x ^ j X ^ j X j , t ) and the flowvelocity U consists of the flowvelocity components 

Qj^(Xj,X2,Xj,t) with 1=1,2,3. 

The equations are worked out for a stationary two dimensional flow i n a v e r t i c a l plane. Also an expression 

for the shearstress under these circumstances i s derived. 

Conservation of mass 

I t generally holds for a f l u i d that the difference of inflow and outflow of mass through a control volume is 

equal to the increase of mass in the control volume In time (an Eulerian frame). 

This yields; 

dp 

a t + 
aip-Qi» 

a 
= 0 1=1,2,3 (2-1) 



-8-

In the experiments, described in th i s report, the f l u i d i s water and no extreme density differences occur, so 

I t safely can be stated that p i s constant in time and space. 

Equation (2-1) now reads; 

a x , 
= 0 i 1=1,2,3 (2-2) 

The flow is further assumed to be two-dimensional in the v e r t i c a l plane with flowvelocity components, 

\ - Öi(X]̂ ,X3,t) and = Üj(x,,Xj,t) . 

So equation (2-2) reduces to: 

ao, 

a ^ 

aüj 

ax^ (2-3) 

The instantaneous flowvelocity components and Ü3 can both be separated in a mean flowvelocity and a 

turbulent flowvelocity, the Reynolds decomposition: 

0,(x,,X3,t) = U,(x,,X3,t) + u,(x,,X3,t) 

03(x,,X3,t) = U3(x,,X3,t) + U3(x,,X3,t) 

These flowvelocities are defined as follows: 

dt E 0 

ax, = T ^ a x , = a ^ ' W = i j 4^, dt = u,u, + u,u, ; 0,03 = i 10,03 dt = u,u3 +1^73 

for example: gO^ ^ Lq^ gU, ^ ^ 

The time T i s in principle I n f i n i t e long, but in practice a f i n i t e value of T is accurate enough. 

A mean flowvelocity depending on time requires deviding the time axis into areas inwhich the flowvelocity 

Ö, and U3 do not alter s i g n i f i c a n t l y , this case i s not treated further. 

riguAt 2.1: exmpte- of, lnitaivtane.OLU ilomtlodtij, conitant mean \)Ztoc.ltij and changlnQ with time.. 

After decomposition, equation (2-3) results i n two equations; 

conservation of mass for mean flowvelocity: 

conservation of mass for turbulent flowvelocity; 

_au, au3 

ax, + " P J 

a ^ i a u j 

ax, ax. = 0 

(2-4) 

(2-5) 

Conservation of momentum 

Generally Newton's second law can be applied to the f l u i d in a control volume i n the orthogonal x,,x ,x -

coordinate system. ^' 

There must be equilibrium between the acceleration of the mass in the control volume and external forces 

acting on the control volume. 

This leads to the Navier-Stokes equation, which i s exact for a laminar flow of homogeneous f l u i d , and 

gives generally a good description for turbulent flow. 

The equation yields: 

^ - i a i ^ 1 a r 
" " p aX, ̂  p d^. ^ g ! 1=1,2,3 (2-6) 

A complete derlv ation of equation (2-6) can be found in Prandtl (1957). 
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The l e f t hand side of equation (2-6) is the acceleration per unit mass of the f l u i d and reads: 

00. 00, 

0-r ^ 
^ - Q.;r-J^ ; 1=1,2,3 and j=l,2,3 

J 

The f i r s t term on the r i g h t hand side of (2-6) i s a pressure gradient, p(x,,X2,x-j)=P(x,,X2,x-j)+p(x,,X2,x-j). 

The second term on the r i g h t hand side of (2-6) is the stress tensor of viscosity acting on the control 

volume and reads: 

00, 00. 
T= T.J = p . i ; ( g 3 ^ + ) ; 1=1,2,3 and j=l,2,3 (2-7) 

The t h i r d term on the r i g h t hand side of (2-6) is the gravity vector: g*= (0,0,-g) 

For further considera tions the flov/veloclty and deriv ates i n the x^-direction are omitted. 

The equations are derived for a v e r t i c a l plane so, equation (2-6) can be rewritten with the equations 

stated above, equation (2-3) and taking the average over a period T. 

This yields conservation of .momentum equations in the x, and x-j direction: 

0U1U3 , au, ^ g au , _ 

0 ^ " ^ " fl^i^'a-^ - "1 ^ " 0^3 ^ a - ^ " ^ ^ ^ 

ou u 0U3 , Qp a au3 a a S -7 
^ a -^ = - ^ 0 % ^ o^^ ' ^a - ^ - V 3 ) - a^^ ' ^o -^ - - g (2-9) 

The terms u,, u^u^ and u^ are the Reynoldsstresses. 

The equations (2-8) and (2-9) are conservation of momentum equations for a turbulent flow averaged over a 

period T and are too complex to give an analytical solution in general. 

Shearstress equation 

In some cases an approximated analytical solution of (2-8) and (2-9) can be found, l i k e the flow in one of 

the experiments, a stationary flow in a straight flume with rectangular cross-section and horizontal bottom. 

In this particular case the flow f i e l d can be approximated as a boundary layer i n a v e r t i c a l plane. 

The layer reaches from the horizontal bottom of the flume to the s l i g h t l y inclined watersurface. 

fla_ 

a.x, 

^ ^ ' ' l ^ 1 • Q,(x,,X3) 

VlguAz 1.2: Vo-dinitLon oi the ilowiiatd 

The terms on the l e f t hand side of (2-8) and (2-9) can be simplified with the aid of the conservation of 

mass equation (2-4), because the next expressions hold: 

au^ 
r + 
ax, 

0U,U3 

3x3 

3U, 
: U, • r - i + U, 

1 ax, 3 

3U, 

• 3xJ 

OUjUj 

Ox, 

3U3 
+ T = 

3X3 

au3 

1 ax, 3 

3U3 

3x3 

F i r s t equation (2-9) i s further simplified. Length scales and velocity scales can be defined to neglect some 

terms, t h i s is clearly outlined i n Tennekes (1977). 

The velocity scales are U, 0(1/) and u, = Ö(v). 

The length scales (scales of change in x,-direction) are Ox, ~ Ö(i) and 3X3 ^ 0(1). 

With the conservation of mass equations (2-4) and (2-5) this yields: U3 = ö( V.l/L) and U3 ()( v.l/L). 
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For the case of pa r a l l e l flow the r a t i o l/L~0 and for nearly pa r a l l e l flow l/L « 1; th i s yields for 

some terms: ö/Ox, < Q/öx^ . 

With these de f i n i t i o n s , equation (2-9) becomes: 

Integrating of (2-10) from x^=0 to X3=a(x,)=a, with boundary conditions at x̂ zO which read: 

P = /3 . g . a , au^/öXj = 0 and I ] ^ = 0 , the result i s : 

1 -2 

'--p' '^•^ ̂ 'öT^ - - (2-11) 

The derivative to x, of (2-11) reads: 

-,2,, .,2 
1 ap aa a U3 au 
p d^,- 5-a-7, ^ ^ a - ^ 3 - d^, ^2-12) 

After simplifying,equation (2-8) reads: 

a s a s , -.p au, 

^1 a-^ - S a-^ = - ^ a i ^ k^'d, " V 3 > 

Substitution of equation (2-12) gives f i n a l l y : 

n 3^1 „ a s aa a S d\ a ^ j o v . 

This equation can be simplified further. In Tennekes (1977) a length scale consideration is carried out to 

neglect the term Û . 3U,/3x3 with respect to Uj . aU^/ax,, which seem to be both of order ( V'^/L). 

For this f l o w f i e l d ,however, i t can be stated that near the bottom Û  i s almost zero and au^/Ox^ is large 

and at some distance from the bottom Û  has a certain value but a u , / a x j is almost zero. 

In both cases Uj.OU^/ax^^ U,.aö,/3x, . 

3̂ U 2y 
Furthermore 3 ^ = 0 ( 1 / / ih can be neglected with respect to ^ = 0 ( V/ th. 

^ 1 ^ 3 ax. 
2 

And f i n a l l y 3 u^ 2,, ^ nTTTT 
-J)— = 0 { V /L ) can be neglected with respect to ou^u^ ^ 
OX, ^0(^/1). 

The conservation of momentum equation after a l l these assumptions reads: 

11 aa 1 3 t , , 

3 ^ = - 53"1̂ 1 ^ p 3-3 (2-14) 

_ au, ^ 
" " h : _ = p _ . (2-15) 

Equation (2-15) expresses the t o t a l shearstress acting on the control volume, this stress 'consists of two com­

ponents. The f i r s t component i s the viscous shearstress which i s dominant near the wall i n a turbulent flow. 

The second component is the Reynoldsshearstress which i s dominant at some distance from the wall. 

In which region the components are domina nt w i l l be explained in the next sub-section. 

2.2.3 Uniform channel flow 

Under uniform flowconditions, d^-^/OXy = 0, and with some simple assumptions, a mean flowvelocity p r o f i l e 

i n the boundary layer and even for the complete waterdepth can be determined. 

Some layers in the f l u i d with specific properties have to be defined for t h i s . Also an expression for the 

shearstress in the boundary layer and even for the complete waterdepth can be derived. 
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Definition of layers 

In a turbulent flow the smallest length scale of the turbulence i s the Kolmogorov micro scale, which reads, 

see Tennekes (1977): 

r]= ( v^/e 

and e ^ uj{ (C.Xj) i s the dissipation rate of the turbulence near the wall. 

In this expression is the shearstressvelocity defined as: 

= T(x3=0)//) 

A dimensionless distance i s defined as: Xj —%.^.\i^/v ( a kind of Reynoldsnumber ). 

So the Kolmogorov micro scale reads: 

TJ= K^.X3.(x;)-^ 

Near the wall the integral scale of the turbulence i s , according to the Prandlt mixing length theory: 

I K.x^ 

The dimensionless Kolmogorov length scale reads 

and the dimensionless integral scale reads: 

Both relations are sketched in figure 2.3: 

rf = T].u^/v = ( K.xp^' 

t = I.UJV (£.X, 
(2-16) 

FigiMe 2.3: IntzgAal iaaZe. and KoimogoAov mioAO icaZe., iKom Tmmku l;9?7). 

For Xj<2,5 i t follows that < if which i s not possible because the smallest turbulence scale i s the Kol­

mogorov micro scale. So the region x^<2,5 of the flov/ i s not turbulent. 

In practice the following regions are defined: 

1. viscous sublayer, < 5 and 

2. buffer layer, 5 < xT < 30 

3. I n e r t i a l sublayer, x-j < 30, x-j < a 

and 

and 

4. outer region. X-j < 30, Xj < a and 

OS 

- "^os; 
OS 

^/P - ''d^ - "l"3 

r/p 

VP 

(2-17) 

(2-15) 

(2-18) 

(2-18) 

Now a mean flowvelocity p r o f i l e can be derived for the viscous aiid i n e r t i a l sublayer and for the outer region . 

Mean flowvelocity and shearstress pr o f i l e s 

1.' very close to the wall and for X-^<b, the shearstress reads: V d^^/d x^ ^u^ , soaU,/0x3=u^/p . 

This equation can be solved, with the boundary condition at Xj=0, U,=0; 

U, = u^ . Xj /V 

or dimensionless with = U,/u^ this reads: 

(2-19) 
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3. At some distance from the wall, for x^>30, but s t i l l i n a region where X-j<a, so T/p = u^ = T(x-j=0)/p 

the shearstress reads: ~u,Uj = u^ . 

The Reynoldsstress i s expressed according to Boussinesq as: 

in which is the turbulent viscosity, a flow property. 

The turbulent viscosity now, is expressed according to Prandtl's mixing length theory: 

2 
Ox-, 

and I = K.x, 

So f i n a l l y u.̂  
OU, ̂  

with boundary condition at X-j=z^, U,j;0 results i n : 

U, = uJk . ln(Xj/z^) (2-20) 

Dimensionless t h i s equation reads: 

= l/K . In Xj + C (2-21) 

The equations (2-19) and (2-21) follow from assumptions for l/p and not from the conservation of momentum 

equation (2-14). 

2. The buffer layer l i e s between case 1 and 3, the shearstress can be expressed as: 

OU, 

4. For the region, x^>30, but not to close to the wall, x-j < a so T/p < u^ , another assumption can be made 

for an uniform flow, 3U,/öx, =0. 

Equation (2-14) then results i n : 0 = -g. + i . ̂ JL 
0 X, P (JXj 

Integration of this equation with boundary conditions at x,=D ; T/p = g.a. §^ = u? and at x,=a ; T/p =0 
> CJX, 3 

T(X3)= p . g . 2 f ^ . ( a - X 3 ) = p . . , . ? ^ (2-22) 

The shearstress decreases l i n e a r l y from bottom to watersurface. 

The same mean flowvelocity p r o f i l e , described with equation (2-20), can be derived when an integral scale is 

chosen which holds aswell for case 3: 

I 
r K . Xj. \ 1 - x-j/a 

In case 3, x^^a, so £ =/c. Xj. Near the watersurface the mixing length deceases, at x-^-a; Z = 0, 

I t i s profitable to describe the mean flowvelocity p r o f i l e from bottom to watersurface with the same equa­

t i o n , but instead of the logarithmic flowvelocity p r o f i l e (2-20) also a power flowvelocity p r o f i l e could 

have been chosen for the region X3>30 and X-j far from the wall. 

Finally the flowvelocity profiles in the dif f e r e n t regions are sketched i n figure 2.4. 

V = viscous layer 

b = buffer layer 

1 = i n e r t i a l layer 

o = outer region 

TlguAe. 2.4: flome-tocity pioillz in a. anidom itationoAy éhanne.1 ilow. 
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2.2.4 Non-uniform channel Flow 

When the flow is stationary, but the flowvelocity is increasing in downstream direction, convection, the 

mean flowvelocity p r o f i l e and shearstress p r o f i l e are influenced, with respect to the profiles described 

in sub-section 2.2.3. 

In this sub-section the influence of convection on the bottomshearstress is derived and the local change 

of the mean flowvelocity p r o f i l e i s treated. 

Furthermore the development of the boundary layer in downstream direction i s treated. 

Bottomshearstress 

When a sl i g h t convection occurs in the whole fl o w f i e l d , clU,/Ox,9tO, then the convection term influences 

the bottomshearstress. 

The convection influence w i l l be regarded for a flow situation vdth horizontal bottom and a waterlevel with 

constant slope. 

The conservation of momentum equation i n a two-dimensional stationary flow is given by equation (2-14): 

The term g.Oa/öx, produces the energy for the flow and this energy i s distributed over the shearstress 

and the acceleration of the flow in -direction. 

When aU,/3X, = 0, a l l energy goes to the shearstress. The shearstress passes the energy to turbulence. 

From the derlv ation in sub-section 2.2.3 i t follows that forOU^/flx, = 0 the mean flowvelocity p r o f i l e 

i s logarithmic and the shearstress p r o f i l e is l i n e a i r over the waterdepth: 

U, = u^/K.ln(x^/z^) (2-20) 

T ( X 3 ) = p.g. |a^.(a - X3) (2-22) 

T(0) = p.ul (2-23) 

Equations (2-20) and (2-23) hold for the region near the wall, x^^a, and they hold with or without convec­

tion because they were derived without the aid of equation (2-14). 

What the effect of convection i s on equation (2-22) w i l l be regarded next. 

An overall influence of a sl i g h t convection can be derived by taking the depth-average of equation (2-14); 

The convection term can be su f f i c i e n t accurate enough approximated by; U, .3U,/0 x, s U,. 3U,/3x, , see 

\èrspuy (1981). - _ ^_ 

The conservation of mass equation reads: Ŝ. _ — _ g + ÏÏ, = 0 . 
OXi Ox, 3x, 1 3x, 

This leads to: ^ ^ 

U '-^ (2 25) " l O x , - a Ox, ^2-25) 

Substitution of equation (2-25) into (2-24) gives: 

a 

The mean value of the shearstress can be calculated by: ; f - dx, = T(a) - t ( 0 ) ) = — • t ( 0 ) , when 
f^n/üX-z J ' pa pa 

the shearstress at the surface i s assumed to be zero. 

Equation (2-26) results i n : 

T ( 0 ) = p.g.a. I f (1 - Fr^) (2-27) 

with Fr^ =IJ^/(g.a) ; a = a(x,). 

Equation (2-27) i s the bottomshearstress with influence of convection, for s l i g h t convection the shearstress 

can be taken l i n e a i r l y from bottom to watersurface s t i l l . 
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Mean Flowvelocity p r o f i l e 

The influence of convection on the flowvelocity p r o f i l e based on empirical results i s given i n Tennekes 

(1977). A pressure-gradient parameter is defined as: 

A au„ 
n = u„ • ax, (2-28) 

with as the flowvelocity in the outer layer just outside the boundary layer, i n this case U = U (a) i s 

taken, the flowvelocity at the surface. ° 

Also a normalized boundary layer thickness is defined as: 

"^-k ho - S; '̂X3 (2-29) 

In which is the flowvelocity somewhere i n the boundary layer. 

A complete deriv ation is given in Tennekes (1977), here only the results are given. 

The effect of the convection on the flowvelocity of the outer layer results in an extra term depending on 

A(n) (2-30) 

is the flowvelocity of the outer layer, for the flowvelocity U, in the boundary layer with influence a 

set of equations i s given in Tennekes (1977). This is not treated here further. 

Under certain conditions solutions of the set of equations can be found, in the expressions constants depending 

on noccur. These constants for different values of n have to be determined empirically. Clauser was the 

f i r s t who carried this out. 

The result i s that to the logarithmic flowvelocity p r o f i l e a so-called wake-function must be added to get the 

effectof convection. In figure 2.5 some wake-functions depending on IT are sketched. 
0.01 

S= boundary layer thickness 

VlguAZ 2.5; Initamcz oi convection 

on mean itoiweloc-Uy pioi-Ue 

ioA dliieAent vatixeA oi JJ , 

iKom Tennekzi (J97?). 

An expression for the wake-function which gives reasonable results reads (see Tennekes, 1977): 

W(x3/a) = % . ( s i n 7l(x3/a - %) + 1) (2-31) 

I t must be mentioned that the stated above i s valid for pipe-flow, which i s symetric with respect to the 

axis. When thi s i s applied to a flow with free watersurface i t should be done carefully. 

Boundary layer development 

The shearstress derived in sub-section 2.2.3 holds for f u l l y developed boundary layers. 

In practice a boundary layer starts at some point, for example the inflow of a flume, and increases i n thick­

ness downstream. Ofcourse i t takes some distance to get a f u l l y developed boundary layer stretching out from 

bottom to surface. 

In Tennekes (1977) a derivation for the development of a boundary layer for 11= 0 i s given. 

Again only the results are given here. 

The equations governing the boundary layer development read: 

_ X3 _a(ui - û ^ 1 a s s S a(^"*) s , 
axj u^ ! • g„ = 1 ! — = - . l n ( — ) + A( o ) (2-32) 
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The growth of the boundary layer thickness is expressed in an angle which is approximated by: 

The angle i s sketched i n figure 2.6: 

ViguAe. 2.6: PowruitA.e.m development od boundoAy laijeA. 

The importance of the boundary layer development i s the effect of i t on the shearstress p r o f i l e when the 

layer i s not f u l l y developed. 

No simple expression for the shearsstress p r o f i l e i n a developing boundary layer i s known. 

In Tennekes (1977) a set of equations i s given which is numerically soluted for the case 17= 0. 

The set of equations reads: 

Xj-U* - U^) QU^Uj 

3 X, 3x, 

S 1 Au* 
^ = i l n ( - V ^ ) - (2-34) 

A numerical solution i s sketched in figure 2.7 for the Reynoldsshearstress: 

Itj 

0.5. 
• calculated p r o f i l e 

linear p r o f i l e 

PlguAQ 2.7; Jnitumne, boundoAy 

(ayeA gAowth on 

Rzynoidi-iheoAMAeAi 

ioAn = 0, diom 

Tennekes [1977]. 

I t follows from figure 2.7 that-u^Uj is not l i n e a i r from bottom to surface. 

I t must be mentioned that the p r o f i l e i s calculated for a boundary layer with I i r 0 and an outer region 

which i s thick compared to the boundary layer thickness. 

So again applied to a boundary layer which i s nearly as thick as the waterdepth should be done carefully. 

For n^O no p r o f i l e for -u,u-j i s given, but for small deviations from IT= 0 the p r o f i l e i n figure 2,7 can 

be used for obtaining an indication. 
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2.2.5 The k-e model 

The description of turbulent quantities can be done in different ways. 

The problem i s to find suitable mathematical expressions for the turbulent viscosity, length scales, tur­

bulent energy and energy dissipation. 

Many diff e r e n t turbulence models have been developed already, an overview can be found in Rodi (1980) and 

Launder (1972) . 

In this sub-section only one turbulence model is treated, the two-equation k-emodel i n which k i s the tur­

bulent kinetic energy and e l s the rate of turbulent kinetic energy dissipation. 

This model is the basis for some computer programs, for example the ODYSSEE program of DHt and the PHQENICS 

program of Cham. 

Calculations with the model give reasonable results for many tested flowtypes (Rodi, 1980) and constant 

factors i n the model are ve r i f i e d for these flowtypes. 

The conservation of momentum equation describes the flowfield and the turbulent viscosity i n the equation 

i s expressed in k and e . 

The k-e model relates k and e . 

In this sub-section the k-e model is treated and also some boundary conditions are given. 

The k-e model 

The Navier-Stokes equation (2-6) for incompressable fluids and steady mean motion reads: 

2, 

at ^ ( ^ j - ^ ^ j ) Ox - - Pdx,-p^, ^ ax. ax. ^ g > 
j=l,2,3 

Now add the conservation of mass equation times u,; (u,.aUj/aXj) to (2-35), subtract the average value 

of the resulting equation and multiply the new result by Uj. 

Do the same for the Uj equation and multiply now by u,. 

.Add these two resulting equations and after some manipulation the turbulent energy equation reads: 

au^u, au ou.u, -) u.u a^u.u. a^^ a^^ 

^ ^ ^ V j a i r - = - 2 - 1 ^ - a V a ^ , -'-^-k-k ^^^^ 
J J J J J J J 

A more detailed deriv ation is given in Hinze (1975). 

To equation (2-36) also a bouyancy effect can be added, however, temperature effects are omitted here. 

In the ODYSSEE program bouyancy effects are added, see A l f r i n k (1983). 

The turbulent kinetic energy per unit mass i s defined by : 

k =%(u,u,) (2-37) 

Equation (2-36) can be rewritten with the aid of (2-37) i n : 

J J J J J 

This equation i s an exact description of the turbulent kinetic energy derived from the Navier-Stokes equa­

tio n and holds for high Reynoldsnumbers. 

To apply t h i s equation i t has to be modified, so the exact equation i s approximated. 

-| u.u. 

-The turbulent energy diffusion term: q^. ( p + " T ^ ^ ' ^ j ' Produces correlations u^u^u/ which are too 

complex to handle. 

So th i s term i s modelled by a 'diffusive expression': ^ • §7 > with ffj^ as an empirical constant. See also 

Rodi (1980). •< ^ i 
_ _ OU. 

-The production of turbulent energy from-the main stream i s described by: u.u.. ^r-^ . 
1 J aXj 
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- ^ i i . . au, öu. 
The expression u,Uj i s a Reynoldsstress : —^^ = -u,Uj = p. V^.( + , according to Boussinesq. 

The complete term can be rewritten as: .., .,n .̂ n ^ 

^ f ^ d x . * ax,) -
2 

-The term V. y-^^-^— i s the moleculair diffusion of the turbulent kinetic energy, which is generally small 

for high Reynoldsnumbers. 

-The term V. 0 u,/ OXj. au,/a Xj i s the turbulent kinetic energy dissipation e . 

The energy from the main stream i s transported from large eddies \dasmaller eddies,to the smallest eddies 

with micro-length scales. 

In these eddies the kinetic energy i s dissipated in heat as a result of the moleculair viscosity, see also 

sub-section 2.2.3. 

For the dissipation an expression i s given which i s based on empirical grounds (Rodi, 1980). 

Different expressions for the dissipation e as function of k and £, the integral length scale, are 

known, however, a general accepted convenient expression for the dissipation reads: 

,3/2 
k 

"D- I 
c,. T (2-39) 

In which c^ i s an empirical constant. The dimension ofe is rate of kinetic energy disspation per unit mass, 

which i s not an exclusive result of physical laws, but much more a 'desired coincidence' . 

The unknown integral scale demands an extra equation, this i s the so-called closure-problem. 

Without the expression for 6 by equation (2-39) a general equation for e can be derived from the Navier-St.oke 

equation. This deriv ation i s complex and w i l l not be given here.. 

To be mentioned has that the dissipation equation contains very troublesome correlations. 

For reasons of convenience, however, the exact equation for e i s rewritten in a form which agrees with the 

eguation for k. 

Whether this i s admissible from a physical point of view is not answered here, but the main reason to adapt 

the e-equation l i e s in the f i e l d of solution techniques for p a r t i a l d i f f e r e n t i a l equations. 

Again a closure-problem occurs in the e-equation, this i s solved in this model by defining a source term 

(kind of dissipation) which solely depends on k and e. 

The f i n a l unknown variable i s the turbulent viscosity. 

Generally i t i s stated that ~ k^.l (Rodi, 1980) together with equation (2-39) the equation for the 

turbulent viscosity reads: 2 

^ t = V Ï 

In which c,, i s an empirical constant. 

Now the complete k-e equations are given (see also Rodi, 1980): 

at + ^lax, - a x , l a | ^ - a x , J ^ ''f^axj ^ax.^-ax. 

R O D P diss 

ae n ae a r ^ t a e i e ^au, au, ^2 

p. = c... ^ (2-40) 

diss 

The empirical constantswith generally accepted values are (Rodi, 1980): 

ff,^ = 1 i (7^=1.3 i c,g = 1.44 ; C2e=1.92 i c^ = 0.09 

The k-e model holds for: - isotropic turbulence, 

- high Reynoldsnumbers, 

- regions outside the viscous layer and near the wall. 
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The terms in the equations (2-U) and (2-42) have the following physical meaning: 

R 

C 

D 

P 

diss 

rate of change of turbulent energy in time, or rate of change of dissipation i n time 

convection of turbulent kinetic energy 

diffusion of kinetic turbulent energy 

production of kinetic turbulent energy (energy flow from main stream to turbulence) 

dissipation of kinetic turbulent energy due to molecular viscosity. 

Remark: the term V.(^k/(dx-•. öXj) is generally small compared to the term D in equation (2-41), but for c 

pieteness t h i s term is added to D, so V. i s defined as V. = V,_ , , , + v , 
t t turbulent moleculair 

Boundary conditions 

For the numerical solution of (2-41) and (2-42) together with (2-4), (2-8) and (2-9), boundary conditions 

required. 

Conditions for some di f f e r e n t types of boundaries are given below (see also Rodi, 1980). 

0 

boundary condition a: 
ViQuAZ I.i: Ve.(,inition o(, boundoAie^. 

On this boundary the p r o f i l e s of U,, Û , p, k and € must be known, 

boundary condition b: 

For a solid wall, the no-slip condition holds, 0. =0 and k and c are f i n i t e . 

A large number of grid points near the wall i s required to compute the steep flowvelocity and energy 

dissipation p r o f i l e s accurate enough. 

The viscous layer can not be calculated by the k-e model, so the f i r s t grid-point must be taken at some 

distance from the wall. The law of the wall i s applied in the region from wall to f i r s t grid-point. 

For large Reynoldsnumbers the viscous and buffer layer are very thin with respect to the t o t a l boundary 

layer thickness, so the viscous and buffer layer can be omitted. 

A logarithmic flowvelocity p r o f i l e i s used i n the i n e r t i a l layer which reads: 

U, = .in (E.x^) (2-43) 

this equation holds for 30<Xj<100 (Rodi, 1980), with E = 9 for hydraulic smooth walls. 

For hydraulic rough walls equation (2-20) holds. 

The flowvelocity normal to the wall i s Ü = u = 0 . 
+ n n 

In the region 30 <x-5 <100 the pressure is nearly constant and not changing in the direction along the wall 
dp/d^i = 0, otherwise accelerations in the i n e r t i a l layer w i l l occur. 

Furthermore the convection and diffusion of u,Uj are neglectible so local equilibrium prevails and the 

production of turbulent energy equals the dissipation P= e (Tennekes, 1977). 

This leads to the fact that the shearstress equals the wall stress and so the boundary condition for k 

reads: 2 

With P= e = ul. ~ and equation (2-43) the boundary condition for e reads: 

(2-44) 

e = 
K.X, (2-45) 

Equations (2-44) and (2.45) hold for smooth and rough walls, the roughness enters i n the equat ions via u„ 
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boundary condition c: 

Through th i s boundary the f l u i d leaves the area and generally the so-called weak boundary conditions are 

used here; 

ÖS ' ° ' 0 ^ 
0 .0^2 = 0 ; ̂ 2 = 0 . if e 2 

' Oxf 
0 

boundary condition d; 

This boundary i s free and generally a r i g i d - l i d approximation i s applied. 

The conditions for the velocities read; 

öXi 
= O 

1 ax, 
See also \i-eugdenhlll (1980) 

The condition for the pressure reads: p = p = constant. 
o 

The condition for k, with no shearforce acting on this boundary reads; 

(2-46) 

(2-47) 

3k 
ax. 

otherwise: 

= 0 

Dface] (Rodi, 1980) 

The condition for e i s part of a discussion. Generally the condition 36/3 x^ = 0, but th i s leads to a 

f i n i t e mixing length I near the watersurface. 

Equation (2-39) reads; e= c^.v!'^'^ll . 

And the derivative from £ to x-j reads: 3 k^ak k̂ /2 31 n 
= r'^D-I- 573 - ̂ D-F •31^3 = ° 

The f i r s t term i s zero because ofdk/Ox^ = 0, the second term, however, i s zero whenO£/3x3 = 0, or when 

1 = 0 and3i /ax3 = 0. 

FxguAe 2.9: Shape oi mixing length pAoiile ioA diUeAent boandaAy conditions. 

The demand for dt/ dx-^ = 0 is not necessary,only t= 0 i s required, so why should 3 e / 3 x 3 = 0 7 

Experiments lead to the conclusion that t reduces near the surface. 

Rodi (1980) gives a condition for e which reads; 

K.a.Cp 
(2-48) 

In which Cq = 0,07 i s an empirical constant (Rodi, 1980). 
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2.2.6 Sidewall effects for channel floiv 

Generally walls in a flume affect the flowvelocity and shearstress p r o f i l e s . 

The rate of influence depends on the geometry of the flume and the flowconditions. 

In this sub-section two methods are given to derive the influence of the sldewalls, the Einstein-method and 

a method described by Knight (1981). 

The Einstein-method 

The method can be used for steady flow in a channel, river or flume with arbitrary geometry of the cross-

section. Here the geometry of the cross-section is assumed to be as sketched in figure 2.10. 

\ 

A / \ A 
w / b \ w 
/ \ 

P-LguAe 2.TO: V&iin-Ltion of, cAo-ii-Mction and aAeoA. 

According to the philosophy of the method, the areas Â,̂  and Â^ have the same mean flowvelocity and for 

each area the energy slope is equal. 

Via the Chézy formula for the mean flowvelocity. U, = C. •/ R.i^ -lis assumption yields: 

w w 

With Ĉ^ as wall-roughness factor, Ĉ^ as bottom-roughness factor, R̂  

The roughness according to V/hite-Colebrook reads: 
and R, = 

b 

(2-49) 

12 .R 

^̂w = " - i ^ g ^ k . 8/3,5 and 

With k̂ ^ as wall-roughness and k̂^ as bottom-roughness. The thickness of the viscous layer re 

s,., and S 11,6 .1 

An expression for R̂^ can be derived via, A = 2.Â ^ + A,, = a.B,and reads 
2.R 

With these expressions R̂^ and R̂^ can be calculated which satisfy equation (2-49) 

(2-50) 

(2-51) 

The Kniqht-method 

This method is based on experiments carried out in a straight flume with a number of diff e r e n t values for 

wall and bottom roughness and waterdepth, the results are described by Knight (1981). 

The following expressions are defined by Knight: 

Ty(p.g.a.i^) = ?iSF^.B/(2.a.lOO) ; Tj,/(/3.g.a.i ) = ?iSF /lOO ; T = 2-a.^ + B.I (2-52) 

with: T̂^ as mean wall shearstress, ÏJ as mean bottom shearstress, ̂  as overall mean shearsstress, %Sf as 

percentage wall shearstress, ?̂ SFĵ  as percentage bottom shearstress. 

The emperical relations of wall and bottom shearstress are given in figure 2.11. 

pgai 

flguAZ 2.11: InitumcQ. s-idmalU on shtMAitAUi, iiom Knight [19S1). 
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2.3 Sedimentmovement 

2.3.1 General 

The conservation of mass equation for sediment holds generally. A general conservation of momentum equation, 

however,is d i f f i c u l t to derive for sediment. 

Parameters l i k e the mean flowvelocity, turbulent quantities, sediment grain size and shape strongly influence 

the motion of sediment particles. 

Empirical conservation of momentum equations have been derived for different types of sediment. 

Many of these equations hold for average flowconditions and average sediment q u a l i t i e s , l i k e the Mayer-

Peter-Müller, Engelund-Hansen and Ackers&White equations. 

In this section the sediment movement i s regarded locally along a dune. 

For this purpose two simple transport equations are used. 

The f i r s t i s an expression in which the sediment transport depends strongly on the flowvelocity, S = f ( t l , ) . 

The second expression reads, S = f(U,,x,) in which the sediment transport depends strongly on the flow-

velocity and the position along the dune. 

2.3.2 Conservation of mass equation 

The da?ivEtion is carried out in the x^jX^jX-j-orthogonal coordinate system, with instantaneous flowveloci­

ties 0, = (sAx^,x.^,x^,t) for i=l,2,3 and an instantaneous sediment concentration 6(x,,X2,Xj,t). 

A mass balance for a controle volume (Eulerian frame) is set up as sketched i n figure 2.12. 

dx. 

PiguAe. i.U: Vei-iyUtlon of, 

ilomt-loditlzs and 

concentration in 

the contAol voiume. 

The sediment concentration in the control volume changes per unit time due to changes of the sediment flux 

through the control volume. 

This yields the conservation of mass equation for sediment concentration: 

dt 

at a x i a x. 

3Ü36 

ax. 
= 0 (2-53) 

The derivation i s carried out for the two-dimensional x,,Xj-coordinate system in a v e r t i c a l plane, so equa­

tion (2-53) reduces to: 

ax. at a X, 
(2-5A) 

The instantaneous flowvelocities and concentration w i l l be asperated in mean and fluctuating components, 

6 = C + c , with the same tre a t -U3 + U3 Reynoldsdecomposition; Ü, = U, + u, ; 0^ = U2 + u^ 

ment as given in sub-section 2.2.2,this results for example for the concentration i n : 6 = C and c = 0 

when the concentration i s averaged over a period T. 

After decomposition and averaging over a period T equation (2-54) reads; 

ac 
a t 

aU,C QU^C 

ax. ax. ax, Ox, 
(2-55) 

-1 ""3 "̂ "1 " 3 

Now the flow f i e l d over the dune and the dune i t s e l f w i l l be regarded more detailed in order to rewrite 

equation (2-55) in a more convenient form. 
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fhe flo w f i e l d above the movable bed is sketched in figure 2.13, dune on a conveyor belt: 

Oh/Ot =0h/0x, = 0 

= conveyorbelt 
velocity 

FiguAe 2.13: Vtilnition. oi the ilowilzU. 

The dune is moved upstream with a constant velocity which is equal and reverse to the dune propagation 

velocity , so the dune does not move with respect to the x,,x-j-coordinate system. 

Due to acceleration of the flov/ above the dune, the watersurface w i l l not be horizontal, however, devia­

tions from a horizontal plane w i l l be small. 

In the derivation a r i g i d - l i d assumption w i l l be made, ah,''ax, = 0. The watersurface does not change with 

time, öh/ flt = 0. 

In the x^-direction three regions can be distinguished as sketched i n figure 2.14. 

3̂ 

D 
Zp^Z^Z, 

z,£zlz2 

Z2^z^Z3 

reference at x^ = 0, 

region with U, = -c^^, = u, = Uj = 0 and C = Ĉ , c = 0, 

in this region the sediment transport takes place, a l l 

variables are non-zero., 

in this region a l l flow quantities are non-zero, for the 

sediment concentration i t holds that C = c = 0. 

V-LguAZ 2.14: Veiinition oi Aegiom. 

Before working out equation (2-55) an important mathematical relation is given (Abramowitz, 1972): 

j d f i ^ ^ ^ _ _ - i 7«x>b(x)) + g t f ( x , a ( x ) ) (2-56) 

Equation (2-55) w i l l be integrated along the x^-axis and the terms of the equation w i l l be treated sepe-

rately, with the aid of equation (2-56). 

The term ac. 
at- z, 

^ J c d x 3 -C(x,,Z3)§^ H- C(x,,Z3) If 

The concentration at the surface C(x,,Z3) = 0 and the terms az3 / a t = a Zg/01 = 0, so the remaining expression 

reads: 

[C^.H + C.H'] 

I t i s assumed that C < and H'«H, the transport layer i s very thin with respect to the t o t a l duneheight, 

so f i n a l l y for th i s term the result i s : 

The term 
au,c 

ax,' 

P OH 

, / ^ d x 3 = |^J^U,Cdx3 - U,C(x,,Z3)g^ ^ ^l^^^V^O^^ 

The terms flzj/ ax, =aHg/ax, = 0 so the remaining expression reads: 

0 
Ox 

•J-Cj^.C^.H +Ju,C d x j ] 

The term ƒU,C dx3 describes the mean sediment transport i n the transport layer, this term i s estimated 

by S.Ĉ , in which S is the mean transport per unit time and mass, including pores. 
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So f i n a l l y t h i s term can be approximated by: 

ÖU3S 

^3/aU3C 

-c,.c .3Ü , c .as 
b o dx, 0 3x, 

The term Ox, 

The term Öx," 
0 ^ 0̂ 

^3yau,c ^3, 3Z3 ^ gzg 

Z ( j / ^ ^ ' ^ 3 = a ^ j _ | v ^^3 - v ( x i ' ^ 3 ) a ^ + ^ I ' ^^XI'^q ) a ^ 

vdth cCx^.Zj) = 0 andazj/öx, =ÖZg / ax , = O, the remaining expression reads: 

ÖX 
- j j u , c d x j ] 

The term ƒu,c dx-j describes the fluctuation of the sediment transport in the transport layer, t h i s term 

i s estimated by s.Ĉ , in which s i s the fluctuation of the sediment transport with = 0, whén i s averaged 

over a period T. 

So f i n a l l y this term can be approximated by: 

z. 

a _ l f c 
flx. 

The term 
ÖX,' 

^̂ 3 = j a v 
'0 '0 

When the above derived expressions for the diff e r e n t terms of equation (2-56) are substituted,when (2-56) 

is integrated over the Xj-axis and the instantaneous sediment transport is defined as §_=_S_+_s, and 

the local dune height H = Zj^, then the conservation of mass equation reads: 

a§ a^b 
Ox, at 

afb 
-b- ax, (2-57) 

The f i r s t term expresses the change of the sediment transport in time, the second term expresses the change 

of dune height i n time and the t h i r d term expresses the influence of the conveyor belt velocity. 

2.3.3 A simple transport equation 

The sediment transport rate strongly depends on the mean flowvelocity so the most simple conservation of 

momentum equation reads (see also de Vries, 1981); 

S = f(U,) (2-58) 

This equation is used to express the transport term in equation (2-57). 

I t holds that: 

• h = a(x,,t) + Zj^(x,,t) = a + Z|̂  = constant 

. q = U,(x,,X3) .a(x,,t) " ' " ' l ' ^ ~ constant (specific discharge) 

. as _ Of a s 

Ox," au,* ax . 

After substitution of; 

in equation (2-57) and averaging over a period T, the result i s ; 

i f . K . a - | ^ = 0 (2-62) 

with; K = K(a)=Üf^.-f - c, (2-63) 
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Equation (2-62) is a non-linealr hyperbolic p a r t i a l d i f f e r e n t i a l equation with a ce l e r i t y K(a), this 

equation i s based on the r i g i d l i d approximation. 

Now a more specific model is chosen for the conservation of momentum equation (2-58): 

S = m.(U, - U^)" (2-64) 

In which m and n are constants and denotes the c r i t i c a l flowvelocity for sediment transport. 

The expression for K after using equation (2-64) reads: 

K = ™ . ( U 3 - U ^ ) " - l - c, (2-65) 
a 

Lineairization of K is not required because i t i s essential that K depends on U, and a, but K w i l l be re­

garded in a different way. 

The celerity K is the local propagation velocity of the dune at an arbitrary coordinate {x^,z^) . 

The t o t a l dune propagates with a certain velocity and is moved upstream with velocity c^. 

During the experiments i t i s required that the position and height of the dune do not change in time, so 

3 a / a t = 0, and because Oa/flx, ^0 it follows that K must be zero for a l l x,. 

From equation (2-65) i t can be seen that with constant m,n,q,C|̂  and this demand i s impossible, because 

and a change v/ith x,. 

So K i s non-zero along the x,-axis exept for one point where; "'•"•^.(U, - U ) " ' ^ = c, . 
-L 2 1 O b 

a 

The shape of the dune according to equation (2-64) and (2-65) changes to a horizontal bed where in every 

coordinate X,, K = 0. A so-called shockwave appears. 

t = t t = t . 

-b % 

flguAZ 2.15: VtvUopmznt of, a dune according to cq. [2-64] and [2-65] 

Another way to look at K i s to define a local velocity = Cj^(x,) so, 

K = a ^ . ( U , - U )"-^ - !^.{U - U f'-^ 
jL X o z e e (2-66) 

In which m,n,q,U are constants and U, ,a, U and a depend on x, . 
o J. e e 1 

The variables and a^ hold i n an arbitrary coordinate x,, where they denote the equilibrium flowvelocity 

and waterdepth. Once Ü, becomes and a becomes a^ the dune propagation stops and K = 0. 

So l< i s large as Ü, and a d i f f e r much from U and a . 
J- e e 

In t h i s way a stable dune shape and position can exist after some time, but now the conveyor belt velocity 

C|̂  i s a function of x,, so C|̂  i s not constant along the dune. 
t - t 

0 

— - u , 
l o 

' q a 
0 

• . '. . \\ 

t = t 

^11 

C|^(x,)-

t = t« 

ct,(x,) 

TlguAQ. 2.16: Development oi a dune according to eq. [2-64] and [2-66]. 

Both expressions for K,(2-65) and (2-66),can not describe the dune propagation s u f f i c i e n t l y with respect to 

the demands: a constant dune propagation velocity and dune height. 

A more detailed description for S must be chosen, because the expression (2-58) is in fact a relation set 

up for the overall transport. 
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2.3.4 A comprehensive transport equation 

The description of the sediment transport by equation (2-58) is not su f f i c i e n t as pointed out i n the pre­

vious sub-section. 

So the relation i s extended by dependence of S of the x,-coordlnate: 

S = f(U,,x,) (2-67) 

Reasons for making S dependent of x, are; 

- A part of the mean flowvelocity U, i s important for the transport, say; p U,. In this way the boundary 

layer thickness above the dune can be taken into account. 

q 
pboundary layer 

figuAZ 2.)7: BoundoAy ZayeA above a dune. 

- The factor p = p(x,) i s only a function of x,, not of U, and is independant of changes of the dune 

shape. The factor p belonges to one equilibrium dune shape. In this way the influence of position along 

the dune and the flowvelocity are separate. 

So equa tion (2-67) can be written as; 

S = f(U,,p(x,)) (2-68) 

Using equation (2-68) i n equation (2-57) this results, after averaging over a period I , and with; 

OS _ as ^ OS fl£ 
Ox, " OU,' Ox, OP • Ox, ' 

as O S ^ flfb _ ^ fl!b _ QS 

au,- Ox, ^ a t ""b- ax, - OP • ox, 

The terms on the l e f t hand side also occur in equation (2-57), the term on the right hand side, however, 

is added with respect to (2-57) and denotes the local influence on the transport. 

A model is chosen for which S reads; 

S = m.(p.U,)" (2-70) 

In which p = p(x,) includes the i n i t i a t i o n of sediment transport, S = 0 for p = 0. 

Remark; in the previous sub-section a l l variables were expressed in a ( x , , t ) , i n this sub-section, however, 

Zj^(x,,t) i s used. 

In fact nothing changes because h = a + Zj^ = constant. 

Equation (2-70) i s used to determine the function p. 

In a situation of equilibrium the shape of the dune does not change and i t propagates with a constant 

velocity , soOZj^/Ot = 0 and equation (2-57) reduces to; Ŝ  = ĉ .̂ẑ ^ = m.p".u" . With q = U,.a = U,.(h - Zj^) this yields; 

b 

p = ( z , X ^ " . ( h - z^^) (2-71) 

with M = ^ , and z^^ is the equilibrium dune height, 
b 

Equation (2-71) is zero for;Zj^^ = 0 and for-.z^^^ = h (which is not relevant). 

An maximum value for p appears for : z = h/(n + 1 ) . 
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Knowing the constants M and h and the shape of the dune, z^^(x^), the function p can be calculated for that 

particular shape. 

The general shape of p for an arbitrary dune is sketched in figure 2.18. 

h/(n+l) 

UguAe. 2. IS: Gmvial shape, oi the imcUon p. 

The terms as/0U,.0 U,/a and as/ö p. ö p/0 in equation (2-69) w i l l be treated seperately and be 

pressed in z^, z^^ and derivatives. 

as a s 
The term . au, ax, 

This results i n : 

The derivative of equation (2-70) reads 

I t holds that q = U,.(h - zjj) , so: 

as n ,,n-l : p-^ = m.n.p .U, 

a_S _ j a ^ 
axi - ( h . , )2 • ax, 

as ^ m.n.q.p^ ,,n-l 3 ^ 

a s * ax, - . ^^)2 • S -ax, (2-72) 

The term 9^. : 
OP ax. 

The derivative of equation (2-70) reads: ~ = m.n .U? .o""""̂  

ap i ^ 
V/ith equation (2-71) i t follows: 

This results i n : 

an _ (̂  - -be) , a^he 
ax, - n.M •(^be/'^) • a i r - (-be/"> -If 

K"-as 0£ r"^-p"- \u;4h-z,^) 1 /„//"la-be 

Equation (2-69) can now be rewritten i n the same form as equation (2-62), and after -some 

rearrangement: 

^ . 3Jb . 
at ax. 

(2-73) 

(2-74) 

with: 

and K" is equation (2-73). 

n.n.q.p̂ .Û -̂̂  

(2-75) 

In the situation of equilibrium, a z^^/01 = 0, but K' i s not zero. The term K'.aZ|^/ax, is compensated 

by the term K" so an equilibrium situation can occur. 

With this model no etjuilibrium shape of a dune can be predicted, the equilibrium shape must be known to 

determine the function p. But the model can be used to estimate the time needed for an arbitrary shape 

of the dune to reach the equilibrium shape. 

This holds even when is started with a horizontal bed situation. 

Some remarks can be made upon the function p. 

According to Freds^ie (1982) the results of two interesting experiments are treated. 
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An experiment by Bradshaw and Wong i n , a i r , measurements of shearstresses above a trianguler bottom step in 

a boundary layer. 

Another experiment by Smith,in water, measurements of shearstresses above a triangular shape. 

The set up of the experiments i s sketched in figure 2.19, also some dimensions and flowconditions are 

given. 

U,=25 m/s 

- 6H 

lamini i n ^ i r b .1_._ turbulent b .1. 

H 

0 I -
3 z r r 

U,=0.5 m/s 
water • ^ 

0 1 -X, 

Figure 2.19: Ved-initlon oi gtometiiy In txpeAirmnti by EAadshm and IDong [teit] and Smith [right]. 

The shearstress was measured ju s t above the bottom and expressed in a dragforce coefficient: 

The results are given in figure 2.20, 

1000. c 1000 .c 
bed p r o f i l e 

1/ 1 
10 20 

.x,/H^ 

FiguAe. 2.20: ResuiH irom zxpfiimznti by nradshaw and Wong [tdit] and Smith [right], irom Fredsie. [19S2] 

In the experiment of Bradshaw and Wong the value of c- remains nearly constant after x^/H^ = 16. 

t x,/H„ 16, the Increase of after this In the experiment of Smith a local maximum value of ĉ . appears at x,, 

coordinate is an effect of the shape of the bottom, on the convergence of the flow. 

Comparing the triangular shape with a general shape of a dune, i t appears that the dune is almost h o r i ­

zontal near the top , so no convergence of the flow occurs i n that region and does not increase after 

the local maximum. 

The shape of c^ in both experiments , after adjusting for a general dune shape, i s i d e n t i c a l , aswell as the 

shape of the function p from figure 2.18, when the part Zj,>^h of p i s not taken into account. 

After some rearrangement c^ and p can be compared. In general i t holds that S = f(T) = f(cj,.%.p.U,) . 

So S ~ ( . U,)2. 

From equation (2-70) i t follows that S~(p.U,)" . So for a constant value of n , i t holds that p~\/^ . 

One should be careful with the comparison of p and c^, because p = ^^^J-^i^ = f(x,/Hg), so 

p is an implicid function of x, and c^ is an explicid function of x,. 

Furthermore ĉ , i s related to a bottom step upstream and p i s related to the shape of a dune. 

Resulting i t can be stated that both p and have suprisingly identical shapes, both express the i n ­

fluence of the flow on the bottom shearstress and through t h i s the sediment transport is influenced 

along the shape of the bottom. 
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3• Experiments 

3.1 Introduction 

In cases where no analytical solution of the hydrodynamic equations can be found, numerical solutions can 

be calculated and physical experiments can be carried out. 

Experiments can be used to test the theoretical model and give insight in the physical phenoirina. 

For the simple flov/conditions, as a part of the investigation, analytical solutions are found, which are 

compared with results of experiments. 

For the flowconditions i n case of a solitary dune, numerical solutions are calculated, which are compared 

with results of experiments. 

In the solitary dune situation sediment particles are transported along the surface of the dune, this effect 

affects the flo w f i e l d near the surface of the dune. 

The numerical solution does not include moving sediment particles, so comparing both cases should be done 

with care. 

In this chapter the flowconditions, the measuring method and the processing of data are described. 

3.2 Experimental f a c i l i t i e s 

The flume: 

The experiments are carried out in a straight flume, with a t o t a l length of 2A.0 m and a cross-section of 

0.5 * 0.5 m̂ . 

The bottom of the flume is horizontal and consists of very smooth concrete elements, with a length of 1.5 m. 

Between the elements there i s a 0.5 cm wide j o i n t f i l l e d with s i l i c o n . 

The walls of the flume are v e r t i c a l and consists of 1.5 m long glass plates (thick 9 mm.) and the j o i n t 

between'the plates is 0.5 cm wide and f i l l e d with s i l i c o n . 

The j o i n t s affect the roughness of bottom and walls. 

V/ater is withdrawn from a reservoir in which the waterlevel is constant and led through a pipe with a diameter 

of 0.15 m at the inflow of the flume. 

The water flows into the flume via a s t i l l i n g basin and damping is brought into the flume at the inflow to re­

duce translatory waves tr a v e l l i n g up and down the flume. 

The discharge i s measured by an orfice in the pipe. 

At the end of the flume a weir controls the waterdepth and the slope of the watersurface i n the flume. 

The complete i n s t a l l a t i o n of the flume is sketched i n figure 3.1, in which the coordinate system i s given as 

well. Just after the Inflow x, = 0, in the flume axis X2 = 0 and Xj = 0 at the bottom of the flume. 

The measuring section is situated from x, = 15.0 to x, = 17.0 m. 

reservoir 
orfice 

0.15rtii 

0.50 m cross-section 

0.50 m 

13.20 m 

damping measuring section 

J 

3 m 21 m 0.70 

FlguAZ 3.1: The. itmz. 

2A.70 
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Measurlnq the instantaneous Flowvelocity! 

A taser Doppler Anemometer (LDA), heterodyne system, i s used to measure the instantaneous flowvelocity. 

The working principle of the tDA i s described in appendix A. 

A great advantage of the LDA i s that the flow is not affected by any measuring device and measurements 

carried out close to the surface of the solitary dune,where the transport takes place, do not disturb 

the sediment transport. 

In the water a measuring volume is created through intersecting laser beams. 

The measuring volume i s adjustable and can be made smaller than 1 mm^ In the measuring volume the flowveloci 

is measured, small particles in the water are illuminated by the laser beams and re f l e c t the l i g h t . 

Due to the velocity of the particles a doppler s h i f t occurs in the frequency of the reflected light,compared 

with the frequency of the l i g h t leaving the laser. 

The frequency s h i f t i s a direct measure for the velocity of the particles and so a measure for the flow-

velocity of the water, i f the particles move in the same way as the water does. 

The frequency s h i f t i s transfered by a tracker into a voltage which can be translated into a flowvelocity. 

The tracker can follow, within a certain range, the fluctuations of the flowvelocity, so the instantaneous 

flowvelocity of the water i s measured. 

Theinstantaneous flowvelocity i s transfered from analog to d i g i t a l information and stored on tape. 

The stored data can be processed by a computer. 

The instantaneous flowvelocity can be decomposed into a mean flowvelocity and a fluctuating flowvelocity, 

Reynoldsdecomposition. 

Turbulent quantities (energy, shearstress) can be calculated now, see sub-section 2.1.2. 

With the IDA system used in the experiments two flowvelocity components i n the measuring volume can be mea­
sured at the same time. 

These components l i e i n a v e r t i c a l plane parallel to the flume axis, the plane in which the main flow-
directions l i e . 

After the tracker an analog f i l t e r i s used to reduce noise and the frequency peak of 48.5 Hz. generated 

by the rotating grating (see appendix A). 

The complete LDA system used in the experiments can be seen on pictures at the end of appendix A. 

The measuring frame: 

The LDA equipment is placed on a frame which i s placed over the flume. 
The measuring frame consists of a bridge with olateaus on both sides of the flume. 

On one plateau the laser and optics are placed on the other plateau the photodetectors. The frame can be 

moved in the x,- and x^-direction. 

The optics of the LDA are placed on a special base plate on the plateau. The base plate can be moved in the 
X2-direction. 

The measuring frame i s sketched in figure 3.2. 

base plate-' optics photodetector flume 

cross-section side view 

figuAe. 3.2: The. masuJilng iAom.. 
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The coordinates of the measuring volume can be measured with the following accuracies: 

X,-direction : 0.5 mm. 

X2-direction : 1.0 mm. 

x-j-direction : 0.5 mm. 

The X,-coordinate i s related to the flume, the Xj-coordinate i s related to the flume bottom. 

The X2-coordlnate i s related to the position of a thin perspex plate which is placed v e r t i c a l l y into the 

flume. 

The perspex plate i s placed in the right x^-coordinate and than the optics on the base plate i s moved in 

the x^-direction u n t i l the measuring volume is placed in the perspex plate. 

The doppler bursts are maximal, because particles i n the perspex remain at their position and the signal 

remains maximal. 

Furthermore the velocity of the particles in the perspex i s zero, so the offset voltage in the tracker 

can be adjusted to zero. 

A photo of the measuring frame can be seen at the end of appendix A. 

The conveyor: 

In order to reduce the celerety of the dune to zero, a conveyor i s b u i l t into the bottom of the flume. 

The length of the conveyor i s 2 m and i t s wide is 39.5 cm , the height i s 6 cm. 

The conveyor belt i s driven by a spindle which i s driven by an el e c t r i c engine. The conveyor belt can be 

stretched. 

The speed of the conveyor belt i s continiuosly adjustable between 0.0 and 10.0 m/h. 

The conveyor i s fixed to the bottom by two v e r t i c a l rods, which are placed near the walls of the flume, 

but influence the flow a l i t t l e . The rods are placed, however, downstream the dune. 

The belt to drive the spindle is placed near a wall but too influences the flow downstream the dune. 

The conveyor i s sketched in figure 3.3. 

To support the dune two perspex supports are placed on the conveyor, see figure 3,3. The supports are 

fixed to the walls of the flume and do not rest on the conveyor belt. There i s a small space between 

support and b e l t , but no sediment particles can get inbetween. 

The reasons for the perspex supports are (see also appendix B); 

- near the wall of the flume the flowvelocity is too small to transport sediment, so only the centre 

part of the flume i s used, 

- a dune as wide as the flume, 0.50 m , i s strongly three-dimensional of shape, 

- no sediment particles may be lost in either direction. 
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3.3 Flowconditions 

3.3.1 General 

Measurements in two diff e r e n t flowsituations are carried out: 

- a horizontal bed situation, set up to test the adapted tDA system, 

- a s o l i t a r y dune situation, for the investigation of the flow over a dune. 

3.3.2 Horizontal bed situation 

In t h i s situation the bottom of the flume i s horizontal and the width of the flume i s 0.50 m. 

The slope of the watersurface i s : Oa/O = 0.992*10"'̂  + 0.01*10-^, except for a small region at the i n ­

flow of the flume and a small region at the outflow. 

The discharge through the flume i s : Q = 24*10""̂  + 0.1*10"^ m̂ /s and i s constant. 

The IDA-measurements are carried out at x, = 16.0 m., in three verticals : x.^ = 0.0, x^ = 0.02 m and 

x^ = -0.02 m. The waterdepth at these positions i s : a = 0.093 + 0.001 m and i s constant. 

The mean flowvelocity over the cross-section at x, = 16.0 m i s : ÏÏ, = 0.516 +0.008 m/s. 

The mean temperature of the water during,the measurements i s : I = 19.5 + 0,5 °C, and the density of the water 

i s : = 1000 kq/m . 

So the kinematic viscosity of the water i s : V- 1.017*10"^ + 0.012*10"^ m'/s. 

The overall Reynoldsnumber i s : Re =; 47000, 

The roughness of the glasswalls i s : k^ = 0,3*10"' to 0,4*10""' m and the concrete bottom has a roughness: 

k^ = 0.2*10"' to 0.5*10"' m. 

3.3.3 Solitary dune situation 

In the situation with the s o l i t a r y dune the conveyor i s situated between x, = 15.0 and x, = 17.0 m. 

Upstream and downstream the conveyor the bottom of the flume is horizontal. 

The slope of the watersurface i s : Oa/iDx, = 0.475*10"' + 0.02*10"', exept for a region at the inflow and the 

outflow of the flume 

The discharge through the flume i s : Q = 58*10"' +0.1*10"' m'/s and is constant. 

Measurements with the LDA are carried out from x, = 15.0 to x, = 17.0 m in several verticals at X2 = 0, the 

axis of the flume. 

The undisturbed waterdepth just upstream the dune, at x, = 15.00 m i s : a = 0.234 + 0.001 m. 

So the mean flowvelocity i n that cross-section i s : Ü, = 0.496 + 0.008 m/s. 

The mean temperature of the water during the experiments is : T = 19.0 +0.5 °C, and the density of the water 

i s : p^^ = 1000 kg/m'. 

The kinematic viscosity of the water i s : V= 1.029*10"^ + 0.013*10"^ m̂ /s. 

The waterdepth and the shape of the s o l i t a r y dune are given in chapter 4. 

An impression of the s o l i t a r y dune on the conveyor i s given in figure 3.4. 

Over the dune the flow accelerates and furthermore the width of the dune is only 0.20 m, while the width of 

the flume i s 0.50 m. 

The dune i s supported at the sides by perspex walls. 

Due to the perspex walls the flow near the bottom i s divided into three sections. 

The height of the perspex walls i s 0.10 m., while the waterdepth is more than 0.20 m, so the supports remain 

under water. 
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figuAz 3.4: Jhn SolitaAy dune. 

Inbetween the 

peAipex suppoAti. 

The Flowfield i s disturbed by the perspex supports, but only through the supports the creation of a nearly 

two-dimensional stationary dune i s possible. 

No mean flowvelocity or Reynoldsnumber over the dune is given, because the complete flowfield i n the three 

sections i s not measured. 

The roughness of the glass walls of the flume and the perspex supports i s : k = 0.3*10 ' to 0.4*10 ' m. 
-3 -3 

The roughness of the concrete bottom of the flume and the conveyor belt i s : k, = 0.3*10 to 0.5*10 m. 
-3 3 

The sand used for the dune has an uniform diameter of 10 m and i t s density i s : = 2650 kg/m . 
The t o t a l weight of the sand on the conveyor i s : 5.2 kg (dry weight). 

3.4 Measurements 

3.4.1 General 

The measurements of instantaneous flowvelocities i s carried out with the Laser Doppler Anemometer (LDA). 

The principle of the tDA i s treated i n section 3.2, a more extensive treatment is given in appendix A. 

The sedimenttransport can be easily determined when the conveyor belt velocity and the local dune height 

are known. 

In t h i s section the measured quantities of water and sediment are treated, also the influence of the size 

of the measuring volume i s regarded. 

3-4.2 Measured guantities 

VJatermovement: 

The quantities measured with the tDA are two instantane perpendicular flowvelocity vectors in a v e r t i c a l plane. 

When possible, flowvelocities are measured with the 45°-configuration of the laser beams (see appendix A). 

With this configuration measurements close to a wall or watersurface can be carried out. 

Because the reference beams are i n a horizontal plane and can reach the photodetectors on the other side of 

the flume when the 45°-configuration is used. 

When the bottom i s not horizontal, the beam configuration must be changed so that the reference beams l i e i n 

a plane p a r a l l e l to the bottom. 

Near the watersurface the configuration i s rotated 180°, the illumination beam does not intersect the water-

surface before reaching the measuring volume. 

The watersurface i s not complete at rest, so due to refraction of the beam the position of the illumina­

ting beam intersecting the surface i s not constant viben the 45°-conflguration should be used near the surface. 

In figure 3.5 the d i f f e r e n t configurations are sketched. 

In general the measured flowvelocity vectors make an angle Q;+B with the horizontal plane. 
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Thö rotating grating in the tDA'generates: a frequency in the doppler'signal of 48.5 Hz. 

So an analog low pass f i l t e r (LPF) i s used with boundaries 0 to 45 Hz. 

The upper boundary i s required to reduce the 48.5 Hz component s u f f i c i e n t l y , i t w i l l be shown that after 

45 Hz no important contributions to the signals occur. 

This i s investigated by a measurement with LPF boundaries D to 200 Hz. 

Sample Intervals for the A/D conversion are chosen in a way aliasing i s prevented. 

In the case of LPF boundaries 0 to 45 Hz the sample interval i s : f^ = 100 Hz, in the case of 0 to 200 Hz , 

the sample Interval i s : f^ = 500 Hz. 

The duration of the measurements i s 8 minutes and in some cases 15 minutes. 

An overview of measurements i s given in table 3.A. 

Table 3 .A 

measuring 

time (s) 

f 

(Hz) 

IPF boundaries 

(Hz) 

horizontal bed 480 

900 

100 

500 

0 to 45 

0 to 200 

solitary dune 240 100 0 to 45 

Measurements with a duration of 4 minutes (240 s ) appeared to be long enough, compared to the results of mea­

surements of 8 minutes (480 s ) only s l i g h t differences occured (see sub-section 4.2.2). 

The processing of the measured instantaneous flowvelocities i s treated in section 3.5. 

Sedimenttransport! 

The local sedimenttransport is calculated from the conveyor belt velocity and the local dune height, 

S(x,) = Cj^.z^(x,), the relation w i l l be derived in chapter 4. 

Only in the axis of the flume the dune height i s measured. 

The conveyor belt velocity i s adjusted with an accuracy of 0.005 m/h, and i s chosen so that the dune remains 

for several hours in the same position. 

The dune height i s determined with the LDA. 

The measuring volume i s moved v e r t i c a l l y so that the reference beams of the LDA j u s t intersect the dune surface, 

the presence of the signals on:the^tracker becomes zero. 

The Xj-coordinate of the measuring volume, now, i s defined as the dune height at t h i s x -coordinate. 

The accuracy of the dune height determination i n this way i s : 0.5*10"' m. 
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3.4.3 Influence of the measuring volume 

As derived i n appendix A, the dimensions of the measuring volume in v/ater read: 

Ax, = 4. A^.fj/C 7i:.d,.cos0) ; Ax2 = 4. .F3 .n/( TT.d,. sin 0 ) ; A x j = 4. A^ ,. fj/C 7r .d,) (3-1) 

with: 

measuring volume 

: the wavelength of the laserlight in air (m) 

: focus length,of the lens just before the measuring volume (m) 

: the beamdiameter after the rotating grating (m) | '^i=^^-^2^^1' 

: the beamdiameter leaving the laser (m) 

: focus lengths, see figure 3.6. 

: angle between the illuminating and reference beam i n a i r . 

: refraction index between air and water. 

rotating 
d, reference beam 

I. /_ illuminating beam 

lens f„ lens f. 

measuring 

volume 

Figwie. 3.6: Ue.cuuAlng volume, and de(,lnlt(.onA. 

In the horizontal bed situation two dimensions of the measuring volume are tested, in the so l i t a r y dune 

situation one dimension i s used. 

Ihe measuring volume can be made smaller by chosing lenses with different focus lengths. 

To create a small measuring volume at some distance from the wall of the flume, the flume axis, the angle 2Ö 

must be large and so the diameter of the lens must be large. 

The measuring volumes used in the experiments are given in table 3.B, with the constants: 

AQ = 632.8*10"^ ' S -"-̂ "̂  and n = 1.333 . 

Table 3.B 

Horizontal bed situation Solitary dune situation 

configuration: t l L2 L2 

^1 
50 mm 120 mm 120 mm 

250 mm 250 mm 250 mm 

b 330 mm 330 mm 330 mm 

e 5.25° 5.13° 5.20° 

'1 5 mm 2 mm 2 mm 

Ax, 0.05 mm 0.13 mm 0.13 mm .•/idth 

Ax^ 0.77 mm 1.98 mm 1.96 mm length 

A x j 0.05 mm 0.13 mm 0.13 mm thickness 

K 
0 

289373 282675 286722 

To measure small scale turbulence, which contains most of the turbulent energy, the measuring volume has 

to be so small, that the eddy sizes of importance are detectable. 

The instantaneous flowvelocity measured by the LDA i s a mean value over the measuring volume. 

When the measuring volume i s rel a t i v e large compared to the size of the eddies, the LDA does not detect the 

smaller eddies inside the Tneasuring volume so the large volume i s l i k e a f i l t e r . 

The mean flowvelocity i s not much influenced by a rela t i v e large measuring volume, but the turbulent quantities 

are affected by the relative large measuring volume, the measured values are smaller than expected. 
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2 2 

In the experiments the turbulent quantities, u, , u^ and u,U-j are interesting. 

These quantities are mainly dominated by the Prandtl integral scale t= /C.Xj (Hinze, 1975). 

Eddies with this size and larger contribute mainly to the mentioned turbulent quantities. 

The Prandtl integral scale is only valid close to the wall, there also the smallest energy containing 

eddies occur. 

From table 3.B i t is clear that the principle dimension of the measuring volume i s i t s length, which i s 

directed i n the X2-direction. 

The main direction of the flow i s in the x,-x-j-plane, but turbulence is three-dimensional, so the X2-

direction i s of importance, and the length of the measuring volume as well. 

The length of the measuring volume of the configuration t l and 12 i s , 1 mm respectively 2 mm. 

So with the Prandtl integral scale t= 0A*x^ an estimate can be made for the distance from the wall at 

which the LDA does not detect the energy containing eddies very well. 

With £ i s 1 mm respectively 2 mm, the distances from the wall are 2.5 mm, respectively 5 mm. 

From the bottom to 2.5 mm,respectively from the bottom to 5 mm (Ll respectively L2) poor results of the tur­

bulent quantities can be expected. 

The influence of the size of the measuring volume i s sketched i n figure 3.7. 

Near the watersurface the influence of the size of the measuring volume i s much less, because the energy 

containing eddies are much larger in that area. 

Figure 3.7 i s an indication of the effect, results from prelimnary measurements and experiments by the DHL 

are interpretated. 

FiguAe. 3.7: EUzcit oi the size oi the. mecuuAtng volume on tuAbalent quantitieA, prinelple. 

3.5 Processing of measured data 

Mean flowvelocity; 

As already mentioned i n sub-section 3.4.2, two perpendular flowvelocity vectors i n a v e r t i c a l plane are measu­

red instantaneously by the tDA. 

ViguAe 3.S: MeasuAed ilomelodtij vectoAA. 
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The flowvelocity vectors and 0^ are transformed to flowvelocity vectors ( j , and . 

In general the angle between 0, and «2 Q;=7r/A, in the experiments. 

But near the surface of the dune sometimes a different angle is used, when the shape of the dune blocks 

one of the beams (a+ji ). 

The instantaneous flowvelocity vectors 0, and are transformed to and 0̂  as follows: 

Q,(t) = 0,(t).cosQ; + 92(t).sina; 

(3-2) 
Ü 3(t) = »,(t).sina - C'2(t).cosa 

The measured data are stored d i g i t a l l y on tape, so the flowvelocities in the equations (3-2) are not con-

tinious but discrete. 

The flowvelocities read i n a discrete form: Q,(t) = ü, . ; ü ( t ) = 0, . ; «,(t) = « . ; « ( t ) = « . 
with j = 1,2,....N . ^ -5J 1 I j 2 2j ' 

The local mean flowvelocities are calculated as follov/s: 

N 

^1 =ïï | / l j 

"3 = N 5: S j 

The local turbulent fluctuations of the flow read (Reynoldsdecomposition): 

u, . = . - U, 

U3 . = U3 . - U3 
(3-4) 

This relation holds that: u, . = u = 0 . 
I j 3 j 

Turbulent enerqy: 

The turbulent energy per unit mass can be estimated from the standard deviation of the fluctuations of the 

flowvelncitv- this reads: 

' 1 N 3 T . J , °lj 

-- M (3-5) 
,,2 1 y 2 
^ = N=T A ^3j 

The Reynoldsshearstress per unit mass, - ^ ^ 3 , is estimated from the correlation between u, and U3 and reads: 

, N 

-^"3 = NTT I , °lj^3j (3-6) 

The correlation coefficient between u, and U3 is defined as (see Tennekes, 1977): 

c = - ^ ^ 3 /(u^.Uj)^ ( (3_7) 

The transformation of the equations from an arbitrary coordinate system to the x,-X3-coordinate system, 

i s treated in appendix A. 

The equations (3-5) and (3-6) can be extended to a more general form, the correlation functions. 

These functions show the correlation as a function of time between u,j and i t s e l f , or U3. and i t s 

auto-correlation functions, or u,j and 03^ , cross-correlations functions. 

One of the two signals i s delayed with respect to the other, over a time t = n. At, i n which At i s the sample 

interval and n = 1,2,... 

Then a multiplication over the complete time interval is carried out. 

In figure 3.9 an example of the cross-correlation function i s given. 
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, t-t =(j-n)At ^ 

\—^3(j-n) 

t=.Bt 

figure 3.9: Vtinciple oi cAoss-corretaXioti oi u, • anrf u,, . ,. 

The auto-correlation functions read: 
N 

u,(t).u,(t-t) 
= —^ , or discrete: c,(n.At) = ~j 

1 " i j - ^ l ( j - n ) 

N 

U3(t).U3(t-t) ^ ^ ^ I , ^ j - ^ 3 ( j - n ) 

~7 
"3 

, or discrete: C3(n.At) = 

( 3 - 8 ) 

The cross-correlation function reads: 

N 

-Ü^TTÜTtlïy ^l j - ^ 3 ( j - n ) 
c , 3(t) = — ~ ^ — , or discrete: c,3(n.At) = -̂ -̂  

(uJ . U3¥ (u, . U3) 

(3-9) 

I t i s clear that for t = 0, the equations ( 3 - 8 ) and ( 3 - 9 ) read: Cj ( 0 ) = 0 3 ( 0 ) = 1 and 0 , 3 ( 0 ) = 

The general shape of a correlation function for stochastic signals, i s given in figure 3 . 1 0 . 
-u,U3/(u,^U32) 

c(*) 

ViguAZ 3.10: GeneAat ihapt oi a. coMetation iunction. 

The correlation function does not in general cross the time axis, this depends on the signal (Tennekes, 1977 

From the correlation function the decay of the correlation with time can be estimated. 

From the viewpoint of turbulence the following deviation is added (see Hinze, 1975): 

The Euler integral scale time scale i s defined as: 

and the Euler dissipation time scale reads; 

Also a spatial correlation can be defined as; 

The integral scale (Prandtl) reads; 

and the dissipation scale reads; 

0̂  
cU) dt 

Dr-
dt^ . 

t=0 

f ( r ) = u^(t).U0(t)/(u'2) 

u ^ _U3(t) 

oc 
f ( r ) dr 

r=0 

(3-10) 

(3-11) 

For a flowfield with a mean uniform flowvelocity U, « u, a simple relation between T̂- and holds, with 

the aid of x, = U,.f: 
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and so: 

S- \ 

f ( x , ) = cU) 

(3-12) 

(3-13) 

Equation (3-13)_ means that the spatial and time correlations are equal. The turbulence i s isotropic and 

u^ = Uj = constant throughout the f l u i d ) . homogeneous (u. 

And from equation (3-12) and the time correlation function, the integral scale L ^ can be estimated. 

Power spectra: 

To investigate the turbulent energy in d e t a i l , power spectra are useful . 

The power spectra are calculated numerically with a Fast Fourier Transform (FFT) computer routine. 

The Fourier Transformation for a discrete f i n i t e signal f ^ ^ , reads: 

k+1 

N-1 

I 
j=0 

f. , e 
J+1 

-(2.7r.i.j.k/N) 
k = 0,1,...,N-1 
i = complex number. 

(3-14) 

The signal F j ^ , can be any desired signal. 

In the case of power spectra from turbulent quantities, the following expressions are used (Blackman, 1958): 

E, : power spectrum of u, 

Ej : power spectrum of u-j 

E,-j: power spectrum of -u^Uj 

j+1 

^J+1 

^J+1 '13 

it) 
t) 
it) 

, see equation (3-8) 

, see equation (3-8) 

, see equation (3-9) 

The pov/er spectra are usually plotted on logarithmic scales and the frequency axis i s often transformed 

to a wavenumber axis, via the relation: 
l.n.v 

(L-1) (3-15) 

With Pas the Frequency in Hz and U, i s the local mean flowvelocity. 

The power spectra E,, Ê  and E,̂  ( L ' T " ) are plotted as a function of k,. 

The pov/er spectra given in th i s report; are one-dimensional spectra, in fact only a three-dimensional 

spectrum of the turbulent energy k is correct, because turbulence i s three-dimensional. 

But i n the experiments only the flowvelocity vectors in the x,- and Xj-direction could be measured instan­

taneously, so the power spectra of u, and u^ are treated seperately as one-dimensional spectra. 

A three-dimensional power spectrum is shaped as sketched in figure 3.11, the scales are logarithmic. 

E(k) 

three-dimensional 

power-spectrum 

1 ^ 
e 

k 

E,(k,) 

one-dimensional 

power-spectrum 

-5/3 

-7 

FlguAe. 3.11: GmeAal shape. o(, poweA specfia. 

The v/avenumber for which the viscosity becomes important i f k^ = ff^ (Hinze,1975), vdth TJ as Kolmogorov-scale. 

The maximum of the spectrum l i e s around k , where k .T)==0.1 (theoretically 0.09). 

This spectrum is valid for the i n e r t i a l sublayer in boundary layer flows and because no measurements 

could be carried out in the viscous layer but only in the i n e r t i a l sublayer and the outer region, the 

calculated spectra from measurements are shaped as i n figure 3.11. 

Because the t o t a l turbulent energy could not be measured, one-dimensional spectra are calculated which 

are shaped as presented in figure 3.11. 
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The extra contribution to the E,(k,) spectrum for low wavenumbers i s due to flowmovements i n the two 

other directions (x^ and x^). 

VlguJit 3.12: Confiibixtion oi WdveA In othvi dVizctlons to Ej(fej). 

Wavenumbers kèk, in other directions than s t r i c t l y x,, contribute to the one-dimensional spectrum, so extra 

energy with small wavenumbers i s added to the spectrum. 

The effect, sketched in figure 3.12, i s important, because the turbulent energy for small wavenumbers 

should become zero. 

Therefore the region of the. power spectrum, with small wavenumbers should be omitted when results are inte r ­

pretated . 

The shape of the one-dimensional power spectrum can be considered in more d e t a i l , see figure 3.11. 

Near the wall a strong production of turbulence takes place which means a strong interaction between mean 

and turbulent flow; further avmy from the wall t h i s interaction decays. 

In Hinze (1975) a complete derivation is given on the shape of the one-dimensional spectrum, here only 

the results are given. 

According to Tchen, the slope of the spectrum i s -1 for a wide range of wavenumbers. 

In the case of small interaction of turbulent and mean flow, Kolmogorov's law holds, which says that the 

slope of the spectrum is -5/3, for a wide range of wavenumbers. 

Panchev extended the theory of Tchen and derived,in case of a strong interaction between turbulent and 

mean flow, that the slope i s -1 and changes continually to -7, for wavenumbers near i n f i n i t y . 

In the experiments described in this report, the maximum value of the wavenumber i s about 1000. 

So near the v/all, where a strong interaction occurs between turbulent and mean flow, the slope of the 

spectrum i s about - 1 , which decreases via -5/3 to even smaller values. This is an effect of the analog 

f i l t e r , which removes a l l frequencies above 45 Hz. 

Further from the wall, the interaction between turbulent and mean flow decreases, and the slope of the spec­

trum is -5/3 in a region 50 <k<500 (according to Hinze, 1975). 

The interesting part of the one-dimensional spectrum starts at the point where the spectrum has i t s maximum 

value. For smaller v/avenumbers the spectrum should be omitted due to contributions of other directions, 

as pointed out before. 

Finally the following relations hold for the power spectra: 

03 

\ w * i = ^ 

00 

/E,3(k,) dk, = - I i ^ 3 

° (3-16) 

The surface of the spectrum can be Integrated and compared with the turbulent quantities, to check the nume­

r i c a l routine. 

F i l t e r i n g : 

In some cases i t i s convenient to have only the fluctuations of the flowvelocity for further treatment direc 

instead of the complete instantaneous flowvelocity. 

This can be achieved using an analog band pass f i l t e r (BPF) after the tracker. 

The upper boundary can be chosen according to the noise level in the signal or to reduce the frequency due 

to the rotating grating. 
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The problem i s , however, how to chose the lower boundary of the BPF. 

Because in fact the demand i s to remove the mean flowvelocity component, but no turbulent fluctuations 

with low frequencies. 

This is important because the low frequencies of the turbulence contain most of the energy. 

To investigate the effect of the lower boundary of the BPF, a d i g i t a l f i l t e r i n g proces with the aid of the 
computer is used. 

The complete signal, mean and fluctuating flowvelocity, i s transformed into a signal spectrum (an ampli¬

tude and phase spectrum). 

Now the amplitudes and phases with low frequancies from zero to a certain value f , are made zero. 

The f i l t e r e d signal spectrum is transformed to the time domain, so a f i l t e r e d signal remains. 

The proces i s presented in figure 3.13. 

amplitude 

V V A A A v . 

amplitude 

l l l l l l l l l h l l l 

signal 

FFT 

phase 

•freq. 

f i l t e r i n g 

phase, 

' ' i ' m'm' I ' l l ' l - ''req. 

[MM •freq. 

FFT 

flguAZ 3.T3: VJiinaipZe. o{, digital iiltiAing pKoatLS. 

f i l t e r e d signal 

The value of f , can be variated, through which the influence of the lower frequencies on the turbulent 

quantities can be determined. 

The main reason for the f i l t e r i n g i s to investigate the influence of f , on the Reynoldsshearstress, 

after f i l t e r i n g the shearstress i s calculated again and can be compared to the not f i l t e r e d shearstress. 

The value of f , i s variated from 0.1 to 20 Hz, with intervals of 0.2 Hz. 
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4. Results 

4.1 Introduction 

In t h i s chapter the results of the experiments are given and are compared with analytical and numerical solu­

tions of the f l o w f i e l d . 

In the horizontal bed situation the results are compared with an analytical solution. 

In the s o l i t a r y dune situation, no analytical solution is found, but the results are compared with a nume­

r i c a l solution of the f l o w f i e l d . In this situation the sediment transport is determined. 

Ihe sediment transport and the local f l o w f i e l d over the dune near the dunesurface are related. 

Numerical values of measured flowquantities, plotted i n the figures, can be found in tables i n appendix C. 

4.2 Watermovement 

4.2.1 General 

In the horizontal bed situation the measured mean flowvelocity and Reynoldsshearstress are compared with 

analytical solutions of these flowquantities. 

The turbulent energy i s considered and correlation functions and power spectra are calculated from the mea­

sured turbulent quantities. 

Results are given for measurements with two di f f e r e n t sizes of the measuring volume of the taser Doppler 

Anemometer (LDA) . 

In the so l i t a r y dune situation the mean flowvelocity, Reynoldsshearstress and turbulent energy are com­

pared with numerical solutions calculated with the ODYSSEE program ( A l f r i n k , 1983). 

The local Reynoldsshearstress near the surface of the dune is interesting because of the relation with the 

local sediment transport. 

Correlation functions and power spectra are not calculated for this flowsituation. 

The measurements in the s o l i t a r y dune situation are carried out with the measuring volume which gives the best 

results i n the horizontal bed situation. 

4.2.2 Horizontal bed situation 

The following flowquantities and data treatements are given i n this sub-section: 

mean flowvelocity p r o f i l e , Reynoldsshearstress p r o f i l e , turbulent energy, correlation functions, power 

spectra, the contribution of low frequencies to the Reynoldsshearstress, side wall effects , length of 

measuring time. A l l for the measuring volume L2 (see sub-section 3.4.3). 

Finally the results of mean flowvelocity p r o f i l e , Reynoldsshearstress p r o f i l e and turbulent energy are 

given for the measuring volume L l j these results are not as satisfactory as expected. 

Mean flowvelocity p r o f i l e : 

The f l o w f i e l d i n t h i s situation i s s l i g h t l y convergent and stationary (sub-section 3.3.2), the conser­

vation of momentum equation reduces to equation (2-14),derived in sub-section 2.2.2 and reads: 

1 ax, ^ a x , f o x j 

The driving force per unit mass g.üa/ax,, is distributed over the shearstress term and the convection 

term. 

The shearstressvelocity u* i s calculated from: 

u, = ( g . a . i j ^ (4-2) 
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i s the energy slope. This slope is derived in sub-section 2.2.4 and reads: 

= - ̂ ^') ' Fr2 = y'/(g.a) 

The shearstressvelocity i s calculated For a very v/ide Flume, because in the axis of the flume no effects from 

the side v/alls are noticed. This assumption i s valid for this particular situation as v ; i l l be pointed out i n 

the part 'side wall effects' at the end of th i s sub-section. 

VJith IT, = 0.516 m/s, a = 0.093 m, öa/cl x, = 0.992*10-' and g = 9.81 m/ŝ  (from sub-section 3.3.2) equation 

(4-2) can be solved, so = 0.0253 m/s. 

The mean flowvelocity p r o f i l e shows higher flowvelocities at some distance from the bottom to the water-

surface due to convection, as pointed out in sub-section 2,2.4. 

A logarithmic flowvelocity p r o f i l e can be determined from the measured values in the area 0 <X3 <750 

for Re ̂ 10^ (Hinze, 1975) 

In the area X3>750 a wake function should be added to the logarithmic flowvelocity p r o f i l e , the wake func­

tion i s given in sub-section 2.2.4, equation (2-31) and reads: 

CKXj/a) = J5(sin (xj/a - %) + 1) 

In figure 4.1 the flowvelocity p r o f i l e i s presented in two ways, linear plot and logarithmic pl o t . 

flguAe. 4.1: UzcunAzd mtan ilomztocUy pfiof,Ue., limaA plot [leit], logoAlthmlc plot [right]. 

In general the logarithmic flowvelocity p r o f i l e reads: 

U, x,.u* 

i - - i - l n ( - V - ) - °2 

The coefficient a, and a,^ are calculated from a l l measured values by linear regression and, because the 

flow i s convergent, also from measured values between 0 < X j i 7 2 5 . 

Both results are compared with values for a. and a„ which are generally accepted. 
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Table 4.A 

^1 difference 
^2 

P 
c 

P 
P 

complete p r o f i l e 

values Q <x^^725 

2.678 

2.473 

1% 

1% 

4.674 

5.111 

from l i t e r a t u r e 2.5 5 to 8 (smooth/rough) 

The p r o f i l e P̂  f i t s P, the best, the coefficient a^ of P shows that the bottom of the flume i s rather 

smooth. 

The coefficient a^ for the p r o f i l e P̂  is to small, due to the too high flowvelocities near the watersurface. 

The p r o f i l e P̂  i s calculated to demonstrate the effect of convection on the coefficients. 

The mean flowvelocity p r o f i l e is also described by (see sub-section 2.2.3): 

\ - - ^ . i n ( ^ ) (4-4) 
o 

in which K. = 0.4, the von Kdrmón constant and z i s the wall roughness. 

The complete flowvelocity p r o f i l e and values only near the bottom are used to calculated u* and z^. 

The results from a linear regression calculation are presented i n table 4.B. 

Table 4.B 

û f (m/s) difference difference 

P̂  complete p r o f i l e 0.0271 1% 7*10"^ 75?i 

P 
P 

values 0<XjS725 0.0250 4*10"^ 0?̂  

from theory 0.0253 4*10"° 

The theoretical value of i s calculated from the Chézy equation: Q/(B.a) = ÏÏ,= C.(R.i^)'^ , with 

C = 181og(12.R/(l<+S/3.5)) and 8= 11.6*V/û <. . The expression for z^ reads: z^ s k/32 (see de Vries, 1979). 

The value for z^ calculated in t h i s way is an overall value for the complete cross-section of the flume, the 

values for z^ calculated from the measurements hold for the axis of the flume. So both values can not be 

compared in f a c t , however, the theoretical value of z is used as an estimated value. 
o 

Here too, the p r o f i l e P̂  f i t s P, the best. The difference in z^ between P̂  and P, i s f l a t t e r i n g , because 

the values of z^ in both cases are of the same order. 

Again P̂  i s calculated to show the difference due to convection. 

The wake function i s plotted in figure 4.1 and i t i s s t r i k i n g that the measured flowvelocities for x^ >725 

f i t the p r o f i l e with the added wake function very well. 

I t shows that the asumptions for the influence of the convection on the mean flowvelocity p r o f i l e hold 

in this case. 

Reynoldsshearstress p r o f i l e : 

From the measured Instantaneous flowvelocities, the cross-correlation of the fluctuating flow velocity com­

ponents, u, and Uj, i s calculated, which is called the Reynoldsshearstress. 

The t o t a l shearstress consists of a turbulent part and a molecular viscous part (see sub-section 2.2.2) 

and reads: ^ 

iT ^ 3 ( x 3 ) = -U^3 + (4-5) 

The viscous part is only of importance close to the bottom, X3<30, the derivative of u, can be calculated 

from the logarithmic flowvelocity p r o f i l e . 

Theoretically the d i s t r i b u t i o n of the t o t a l shearstress i s linear from bottom to surface, in case of a sta­

tionary flow without convection and a completely developed boundary layer. 

In case of a s l i g h t convection the p r o f i l e can s t i l l be estimated with a linear p r o f i l e , but the shear-

stress at the bottom reads, due to convection: 

T,3(0) =p.g.a.|f^.(l - Fr^) (4-6) 
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This equation holds for a very viide flume where no side wall effects occur in the axis of the flume, t h i s 

holds for the experiment as well,which w i l l be confirmed l a t e r . 

The shearstress at the bottom in the axis of the flume reads, using the results: 

^ T̂ ĈO) = u^ = 6.40*10"^ mVs^ , and = 0.0253 m/s. 

In figure 4.2 the measured Reynoldsshearstresses are presented and also the linear theoretical shearstress 

p r o f i l e . The viscous shearstress is calculated with the aid of the measured mean flowvelocity p r o f i l e and is 

sketched in figure 4.2. 

Also the shearstress p r o f i l e i n a developing boundary layer i s presented in figure 4.2, see sub-section 2.2.4, 

the state of the development of the boundary layer in the experiment is reg rded l a t e r . 

figuAe 4.2: UeasuAid Reynotd-sihmAStneyiseA. 

The measures values f i t the linear p r o f i l e very well in general. 

For the region 0.7<x^/a <1.0, the measured values are clearly smaller than the theoretical values (10% to 50?0 • 

This can be an effect of the free surface in the experiment, where due to a i r resistance a 'negative' shear-

stress is developed. 

I t can also be an effect of convection, because in this region convection has i t s greatest influence (see 

the mean flowvelocity p r o f i l e ) . The term g. fla/flx, from eguation (4-1) is driving i n this region for a 

great part the convection, so the shearstress must be less. 

Near the bottom 0<X-j/a<0.1, the measured Reynoldsshearstress i s too small, compared with the theoretical 

Reynoldsshearstress (the dotted l i n e i n figure 4.2). 

This i s an effect of the size of the measuring volume of the IDA. 

As pointed out in sub-secticn 3.4.3, small eddies near the bottom are too small to be noticed i n the mea­

suring volume by the LDA. These small eddies contain an important part of the turbulent energy contributing 

to the Reynoldsshearstress. 

In sub-section 3.4.3 the distance from the wall at which t h i s effect should be noticed, i s estimated for the 

L2 measuring volume and reads: x^/a = 0.054. 

From figure 4.2 i t is clear that the effect due to the size of the measuring volume, occurs from X3/a<0.1 . 

Although the difference seems to be large, the values areof the same order and the estimate is calculated 

from ideal data. 

-4 2 2 

The value of T.^.^(0)/p extrapolated from the measured Reynoldsshearstresses i s : 6.40*10 m /s , so u* = 0.0253 

which is equal to the theoretical value calculated from equation (4-2). 
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One measurement is carried out where a l l Frequencies From zero to 200 Hz pass the law Pass F i l t e r (LPF), 

Xj/a = 0.043. 

The value oF -u,Uj is larger than the values measured in case a l l Frequencies between zero and 45 Hz pass. 

This i s an eFFect oF the 48.5 Hz component in the signal due to the rotating grating and i s deFinately no 

turbulence. 

So,however, the value Fits theory better, i t should be omitted. 

The InFluence oF the rotating grating is absent in the mean Flowvelocity (see Figure 4.1), because the mean 

value oF the 48.5 Hz component is zero. 

The InFluence oF the rotating grating is also shown in the part oF the power spectra in this sub-section. 

An estimate oF the state oF the boundary layer development can be made using equation (2-33). 

With U^s0.516 m/s and u* = 0.0253 m/s (value at x, = 16.0 m) the angle oF the development oF the layer 

i s = 0.0156 rad (0.9°). 

So for a waterdepth of a = 0.1 m, the boundary layer i s completely developed, from bottom to watersurface 

after: 0.1/tan 0.9° = 6.5 m . The measurement are carried out at x, = 16.0 m. 

Two remarks can be made. 

Equation (2-33) is derived for a boundary layer in an i n f i n i t e outer layer, here a free watersurface oc­

curs, so does equation (2-33) hold ? As a f i r s t estimate i t w i l l be s u f f i c i e n t . 

Furthermore the boundary layer i s completely developed aFter 6.5 m and measurements are carried out at 

X, = 16.0 m, but does the boundary layer s t a r t at x, = 0.0 m at the InFlow ? I t can be reasonably sta­

ted that i t does. 

So regarding Figure 4.2 i t can be concluded that the boundary layer is completely developed and the measured 

values F i t the theoretical linear p r o f i l e very well. 

Finally the parameter IlFrom eguation (2-28) is calculated using equation (2-29) and figure 4.1 . 

A=0.10.m , u* = 0.0253 m/s and OU^/ö x,== AU^/Ax, = 0.05/1 = 0.05 (from the surface slope) 

So 11^-0.2 and is not equal to zero, for which equation (2-33) and figure 2.7 hold. 

But r f i s close enough to zero to use the equation and figure carefully. 

Turbulent enerqy: 

From the measured Fluctuating flowvelocities u, and u^, auto-correlations and cross-correlations are cal­

culated. 

These correlations can be interpretated as turbulent energies. 

The t o t a l mean turbulent energy in an arbitrary point in the f l u i d i s defined as: k = k{u^ + u^ + u^) . 

In the experiment, however, the flowvelocity in the x^-direction i s not measured, due to limitations of 

the LDA. So the u^-component of the fluctuating flowvelocity vector is unknown. 

I t can be assumed that u^^u^ (u, i s the main direction), so that k==J5(u^ + 2.u^), but this i s not true i n 

this case. 

Near the wall the turbulence intensity i s not equal in the x.^- and x^-direction. 

This follows from the general accepted values for u^ and u^ near the wallj U2 = I-.4*u^j and u^ = 0.8*u* . 

Far from the wall isotropic turbulence could occur so_ u^^u^Su^ , but from the results presented i n 

figure 4.3 i t can be seen that this does not hold (u^ > u^). _ 

For these reasons no estimate For k i s made From the results, only the u^ and u^ measured prof i l e s are 

given. 

following relations hold (see Tennekes, 1977): 

~2" _ , 2 
u, £ 4 -u, 

= 0.64 ul 

measured energies. 

Near the bottom, in the i n e r t i a l layer, x^>30, the 

u, £ 2 u. 

Uj = 0.8 u* 

k £ 3.5 u! 

2 2 
The relations for and u-, hold very well for the 
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The turbulent energy k i s for s l i g h t l y convergent flow almost linear from bottom to surface, because 
2 2 

T,j(x^) is linear and r.^^(x^) ~ u* , k ~ u^^so T^jCxj) ~ k • 

The l i n e a r i t y of k, mainly consisting of the u^-component, i s not contradicted by the results presented 

in figure 4.3 . 

The measurement with frequencies from zero to 200 Hz, containing the 48.5 Hz component of the rotating 
2 2 

grating, shows higher values of u, and u-j , than the measurements with frequencies from zero to 45 Hz. 

The reason for this effect i s already pointed out i n the part of the Reynoldsshearstresses. 

Correlation functions; 

For some points, where measurements are carried out, correlation functions arc made of u, and u, . 
2 3 

The Functions: u,(t) . u , ( t - t ) = u,(t) , auto-correlation function of u, and - u , ( t ) . u ^ ( t - t ) = -u,U-j(t), 

cross-correlation function of u, and u.,, are calculated i n the ver t i c a l coordinates; x., = 2, 4 and 44 mm 

(Xj/a = 0.0215, 0.043 and 0.4731). 

The results are presented i n figure 4.4 . 

^lU) U^UjCt) 

VlQuJie. 4.4: ̂ uto-dOAAeZatlon iunction a, [te.it), cAoss-coMetatlon ianction -u-.ti, [Aigkt]. 
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The auto-correlation function of u,, shows that the correlation time is about 1 second and the correla­

tion time of the cross-correlation function is about 0.5 second. 

In both functions the correlation time for a point at some distance from the bottom (x^/a = 0.4731) i s 

longer than for a point close to the bottom (x^/a = 0.0215 and 0.043). 

This effect can be explained by the size of the eddies. 

Near the wall the eddies are small due to the strong flowvelocity gradient and far from the wall eddies are 

larger. 

So further from the wall turbulent fluctuations i n the flowvelocity are correlated over a larger area than 

close to the wall through which the correlation time in a fixed point,further from the wall, increases. 

2 2 

Ofcourse the auto-correlation function for t=0 is one, due to the d e f i n i t i o n u,(0) = u, . 

The cross-correlation function for t=0 i s -u,Uj(0) =;-0.45 u,Uj , in Tennekes (1977) the generally accepted 

value of the coefficient i s 0.4 , so the results from the measurements agree very well with results given 

in l i t e r a t u r e . 

Power spectra: 

For some points in the f l u i d , where measurements are carried out, one-dimensional power spectra are calculated 

( x y a = 0.0215, 0.043 and 0.4731). 

V/lth an analog low pass f i l t e r a l l frequencies higher than 45 Hz are removed from the instantaneous flowvelo­

c i t y . The measuring time i s about 8 minutes and the resolution of the spectrum i s (460.8)" = 0.00217 Hz. 

In one case (x-j/a = 0.4731) also another upper boundary of the f i l t e r i s used, a l l frequencies higher than 

200 Hz are removed from the signal, to investigate the effect of the 48.5 Hz component due to the rota­

ting grating. 

The measuring time in that particular case i s about 15 minutes and the resolution of the spectrum is 

(890)--'- = 0.00112 Hz. 

The power spectra are calculated with the aid of a Fast Fourier Transform (FFT) routine, see also section 3.5 . 

The power spectra and auto- and cross-correlation are related as Follov/s (see Hinze, 1975): 

CD CO 

E,(k,) dk, = u^ and | ̂ 13̂ *̂ 1) ̂ '̂ 1 " -^1^3 ' "•'"'-̂  '̂ 1 " ̂ ^ I T — ' 

0 0 ^ 

in which V is the frequency and Ü, is the local mean flowvelocity. 

The power spectra E, (k,) and E,,(k,) i n x,/a = 0.0215, 0.043 and 0.4731 are presented in figure 4.5 . 
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For k ^ S l , the spectra are not Interesting because the one-dimensional spectrum has no physical meaning 

in this region, as pointed out in section 3,5 . 

The maximum For both spectra l i e s near =?3. 

The E,(k,)-spectrum has a slope -1 for k, >10, For points near the viall (x^/a = 0.0215 and 0,043) accor­

ding to theory (section 3.5), 

For k,> 250 the slope becomes steeper. For Xj/a = 0.4731, the E,(k,)-spectrum has approximaletly a slope 

-5/3 in the region 30<k,S 300, according to theory For points at some distance from the wall. 

A pov/er spectrum i s calculated for x^/a = 0.043 with frequencies in the range of zero to 200 Hz. 

In the results the 48.5 Hz component (k, = 705) can be seen. 

The shape of the spectrum is not affected in the region k,< 445, whether the upper boundary of the F i l t e r 

removes frequencies higher than 45 Hz or 200 Hz. 

So the choice of 45 Hz as upper boundary i s satisfactory, because freguencies higher than, say 45 Hz 

do not contribute noticable energy to the turbulent energy uJ. 

The contribution of the region k, > 700 i s about 250 times less than the contribution i n the region 1 < <10 . 

Furthermore the 48.5 Hz component i s no effect of turbulence and must be removed. 

The most important frequencies contributing to turbulent energy l i e in the region l < k , < 300. 

The values of E,(k,) for x^/a = 0.4731 are smaller than those for the points x^/a = 0.0215 and 0,043, because 

the t o t a l turbulent energy near the wall is higher than at some distance from the v/all. 

The t o t a l turbulent energy i s the integraI_of the power spectrum over k,, these integrals are calculated and 

are compared with the theoretical result u^ in table 4,C. 

Table 4. 

Xj/a (m/s) l E , ( k , ) u^ (ui^/sh difference lE,3(k,) 
. 2 2 
-u,Uj (m /s ) difference 

0.0215 

0 .0430 

0.4731 

0.403 

0.432 

0.595 

2.795*10-' 

2.864*10-' 

1.326*10"' 

2.810*10"' 

2.891*10"' 

1,392*10"' 

-0.5% 

-0 .9?i 

-5% 

0.503*10"' 

0.542*10"^ 

0 .343*10"' 

0.517*10"' 

0.550*10"' 

0.359*10"' 

1.5% 

C\.5% 

The E,-j(k,)-spectrum is less steep than the E,(k,)-spectrum. 

Near the wall, x^/a = 0.0215 and 0.043, the slope of the spectrum is - 1 , i n the region 30Sk,< 300 and 

becomes steeper in the region k, 300. 

For x-j/a = 0.4731 the slope oF the spectrum i s -5/3 in the region 30 S k, < 100. 

The power spectrum For x^/a = 0.043 with frequencies from zero to 200 Hz, shows also a maximum value for 

k, = 705 (48.5 Hz component). Although i t i s less pronounced than in the E,(k,)-spectrum. 

For the three points {x^/a = 0.0215, 0.043 and 0.4731) the values of E,3(k,) are almost equal i n the re­

gion 1 < k, < 10. 

For higher values oF k, the spectrum For x^/a = 0.4731 shows lower values oF E,3(k,), due to the minor 

importance oF high Frequencies at some distance from the wall. 

The integrated power spectra over k, compared with the theoretical result - I ^ i j , i s presented in table 4.C . 

From the power spectra E,(k,) and E,3(k,) i t i s clear that near the wall higher Frequencies contribute-

also an important part to the turbulent energy, the region which contain important turbulent energy is 

l < k , < 300. 

Further From the wall the higher frequencies become less important and do not contribute any energy of impor­

tance to the turbulent energy, The important region is 1< k,< 100 . 

Contribution of low frequencies to Reynoldsshearstresses; 

The influence of low frequencies 0 <f , < 10 Hz on the Reynoldsshearstress (cross-correlation of u, and u^) 

can be determined from the pov/er spectra, 

However, this i s not done here, the influence i s determined with the aid of a numerical f i l t e r i n g proces in 

the frequency domain, see see section 3.5 . 

The results of the f i l t e r i n g are presented in figure 4.6, in which T̂ ,,/ i s plotted versus f , 
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' ^ f i l Reynoldsshearstress calculated after f i l t e r i n g , T̂^ i s the Reynoldsshearstress before f i l t e r i n g , 

and f , is the upper boundary of the frequencies V(hlch are removed between zero and f,. 

The f,-axis i s a logarithmic p l o t . 

X3/a=0.0215; -U^^ = 0.5173»10-'(m2/s2 

X3/a=0.0430; - i y j j = 0 .5366*10-'(m^/s^ 

X3/a=0.4731; - [ y j ^ = Q .3434*10"'(m^/s^ 

0.1 0.2 0.3 0.5 1.0 1.5 2 

figuAZ 4.6: Indtutme. o(, tow dAtqumclzA on RnynotcLishzoASVieAS. 

The frequencies up to 15 Hz are of importance for -u-̂ û  for point near the wall, x^/a = 0.0215 and 0.043, as 

showed in figure 4.6 . 

Further from the wall x^/a = 0.4731 frequencies up to 6 Hz are of importance for -U-̂ U-, . 

I t i s interesting to see IF the burst frequency of the turbulence plays a role of importance. 

The burst frequency reads (see Dronkers, 1983): g-

F„ = ^ (A-7) 
•B - Cg.a 

with Cg = 3 to 7. The waterdepth i s a = 0.093 m and D", = 0.516 m/s, so in th i s flowfield fg = 0.8 to 2 Hz. 

For x-j/a = 0.0215 and 0.043 the shearstress decreases rapidly for f, >1.5 Hz. 

This i s an indication that the burst frequency i s of importance, higher frequencies (higher than 2 Hz) 

contribute considerably less to the shearstress. 

Further From the wall the burst Frequency is of less importance, because part of the energy of the bursts 

i s already used. 

So for x^/a = 0.4731, '̂ p,,/ decreases gradually with f , which starts already from f , = 0.2 Hz. 

The dependance of the Reynoldsshearstress with f , i s also given by Dronkers (1983) for measurements i n s i t u . 

In that case the Reynoldsshearstress also decreases rapidly for frequencies higher than the burst frequency. 

Side wall effects: 

The influence of side wall on the mean bottom shearstress can be estimated with the analytical method of 

Einstein and the graphical method of Knight (see sub-section 2.2.6). 

V/ith the Method of Einstein the following equation has to be satisfied: 

1 1 

ŵ-̂ w 

(4-8) 

The estimated roughness for wall and bottom is k = k, = 1.3*10 m. With U, = 0.516 m/s, B = 0.50 m, 
-4 6 7 

i ^ = 7.025*10 , a = 0.093 m and V= 1.017*10 m/s, the hydraulic radius of wall and bottom are: 

R = 0.067 m and R, = 0.068 m. 
w b 
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The mean shearstress for the v/all or the bottom can be calculated v/ith: 

T = p.g.R.i^ (4_9) 

So the mean v/all shearstress i s T^^/p = 4.617*10"^ mVs^ and the mean bottom shearstress i s r^/p = 4.686*10-^mVs2. 

The t o t a l shear force per unit mass i s : 

Tj- = ̂ ( V 2 a + T^.B) = 3.20*10"^ m̂ /ŝ  

With the method of Knight the mean wall shearstress and the mean bottom shearstress, for kj^/k^ =1 and 

B/a = 5, can be determined from figure 2.11 in sub-section 2.2.6 . 

Ty(p.g.a.i^) = 0.65 and T^/(p.g.a.i^) = 0.74, so T^/p = 4.166*10-'''' m̂ /ŝ  and \/p = 4.743*10"^ mVs^. 

The t o t a l shear force per unit mass i s : 

T|̂  = p(T̂ ;̂ .2a + T^.B) = 3.15*10"^ m̂ /ŝ  

The bottom shearstress is equal to p.u* , so u* can be calculated. 

Also u* i s extrapolated from the measured Reynoldsshearstress p r o f i l e and u* i s calculated from the logarithmic 

part of the flowvelocity p r o f i l e . 
Comparing of the values of u* calculated in different ways i s done in table 4.D. 

Table 4.D 

(m/s) 
to t a l shear-
force per 
unit mass. 

extrapolated from measured Reynolds­

shearstress p r o f i l e . 0.0253 

calculated from flowvelocity 

p r o f i l e x^«:725. 0.0250 local bottom 

shearstress 2 " 
calculated from u* = g.a.i,- (B—oo) 

~ 2 -t— 
0.0253 

local bottom 

shearstress 

calculated from u* = g.R.i^ , 

with R = a.B/(2a + B). 0.0216 3.20*10"^ 

calculated with the method of 

Einstein. 0.0216 3.20*10"'* mean bottom 

shearstress 
calculated with the method of 

Knight. 0.0218 3.15*10"^ 

mean bottom 

shearstress 

The situation in the axis of the flume is best described with the equations as i f the flume i s very wide. 

The values of u*, as local shearstress velocity, from shearstress p r o f i l e , flowvelocity p r o f i l e and calcu­

lated for a very wide flume, agree very well. 

The values of u* calculated for a mean shearstress velocity also agree very well, however, they are less impor­

tant because no complete shearstress d i s t r i b u t i o n over the cross-section of the flume i s measured, so no 

measured t o t a l shear force is known. 

To confirm the absence of side wall effects near the axis of the flume, measurements are carried out in 

two verticals X2 = 0.025 m and x^ = 0.025 m at x, = 16.0 m. 

Mean flowvelocities, Reynoldsshearstresses and turbulent energies are measured in some points and are com­

pared with measured p r o f i l e s in'the v e r t i c a l x^ = 0. 

The results are presented i n figure 4.7. 

The mean flowvelocities f i t the p r o f i l e i n the axis of the flume very well. 

The Reynoldsshearstresses and the turbulent energies in X2 = + 0 .025 m f i t the p r o f i l e at X2 = 0 also 

very well. 

Only a s l i g h t asymetrlc effect can be seen for a l l measured quantities, values at x^ = 0.025 m are a 

l i t t l e higher than those at x^ = -0.025 m. 

Generally i t can be stated that at least in a region -0.025^X2^0.025 m the values of U,, Up u^ and - l y j ^ 

are almost equal at x, = 16.0 m. 

This supports the conclusion that side wall effects are absent in the axis of the flume in this experiment. 
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VlguAe. 4.7: RtynotdsihzoAStktMU, mean ilowve.loc.itij and twibalcnt mvigiu at x„ = 0.025 m and x„ = -0.025 m. 

Length of measuring time; 

The measuring time of an instantaneous flowvelocity i n a point is 8 minutes (only one point i s measured 

15 minutes for specific reasons) 

To check whether t h i s time i s long enough or too long, the flov/quantities are also calculated using only 

4 minutes of the data. 

The results are presented in table 4,E, 

Table 4.E 

x,/a 
U, (m/s) (m/s) difference -u^u^ (m~/s ) 

9 9 
-u^Uj (m"/s") difference 

3 8 min. 4 min. 8 min. 4 min. 

0,0215 0.4027 0.4010 0.4 0,5173*10"' 0.5201*10 ' -0.5 

0,0430 0.4282 0.4282 0.0 0.5366*10"' 0.5357*10"' 0.2 

0,0753 0.4655 0.4679 -0.5 0.5667*10"' 0.5508*10"' 2.8 

0,0968 0.4791 0.4805 -0.3 0.5410*10"' 0.5458*10"' -0.9 

0.1505 0.5057 0.5051 0,1 0.5507*10"' 0.5528*10"' -0.4 

0.2043 0.5267 0 .5279 -0.2 0.5146*10"' 0.5163*10"' -0 .3 

0.2581 0.5427 0.5429 -0.1 0.4756*10"' 0.4691*10"' 1.4 

0.3118 0.5592 0.5605 -0.2 0.4374*10"' 0.4462*10"' -2.0 

A measuring time of 4 minutes seems to be long enough, the difference for the mean flowvelocity i s less 

than + l?i. The difference for the Reynoldsshearstress is less than + 3?i. 

For the measurements i n the so l i t a r y dune situation a measuring time of 4 minutes i s chosen. 

Measuring volume t l : 

The size of the measuring volume of the LDA i s made smaller to measure the Reynoldsshearstresses more 

accurate. 

The length of the measuring volume i s changed to about 1 mm (see sub-section 3.4.3), the width and thick­

ness of the measuring volume are hardly changed. 

Calculating the Prandtl mixing length scale, the measured Reynoldsshearstresses should be accurate from 

2.5 mm (x^/a = 0.0269) distance from the bottom (see sub-section 3.4.3). 

Measurements with the measuring volume Ll are carried out in the axis of the flume (x2 = 0) at x, = 16.0 m, 

and are compared with the results of measurements with the measuring volume L2. 

Comparing the results of t l and L2 i s done in figure 4.8. 

The mean flowvelocity p r o f i l e measured with Ll f i t s the p r o f i l e measured with L2, but not satisfactory. 
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ViguAe. 4.S: ReynoidMheoAStAeASzs, mean flowvelocity and tuAbalent eneAgies iok measuAing volume U. 

The constants a, and from equation (A-2) and û ^ and from equation (4-3) for the mean flowvelocity 

p r o f i l e measured with the measuring volume Ll are compared with the values for the measuring volume L2, 

the results are presented in table 4.F. 

Table 4.F 

^1 difference 
^2 difference u* (m/s) d i f ferenc( 

= 0̂ ̂ '") difference 

Ll; logarithmic p r o f i l e 

0 < -< 725 2.249 

2.473 

9% 6.855 

5.772 

20?o' 0.0235 

0.0250 

1% 2.4*10"'' 

4.0*10"^ 

40?i 

t2! logarithmic p r o f i l e 

0 <x^ 4.125 

2.249 

2.473 

9% 6.855 

5.772 

20?o' 0.0235 

0.0250 

1% 2.4*10"'' 

4.0*10"^ 

40?i 

The difference between the results of the two measurements i s considerable. 

From Figure 4.8 i t i s also clear that the Reynoldsshearstresses are very poor, too low values occor 

for x,/a<0.4. ' 
2 2 

This effect also occurs for the turbulent energies u, and u-^ . 

In general the results of the measurements with the measuring volume Ll are poor compared to results with 

the measuring volume t 2 . 

Reasons for the poor results with Ll are: 

- The measuring volume Ll is not adjusted as accurate as the measuring volume L2, the three laser beams do 

not intersect i n one point. This was checked later i n a test. 

- The accuracy of the lenses is important for the creation of a very small measuring volume. 

From tests with the optics oF the measuring volume L l , i t appeared that the dimensions of the measuring 

volume were not as calculated (see sub-section 3.4.3) but were even larger than the dimensions of L2 ! 

Prelimnary measurements are also carried out with a measuring volume L20 (length of the measuring volume 

about 20 mm), but results are not presented here because they are too poor, due to a bad adjustment of the 

tDA optics. Interpretation of the results makes no sense. 

So comparing results of the measuring volumes Q, L2 and 120, to show the effect treated i n sub-section 

3.4.3, can not be done unfortunately. 
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4.2.3 Solitary dune situation 

The results of measurements with the tDA (measuring volume L2) and results of computations with the ODYSSEE 

computer program ( A l f r i n k , 1983) of the fl o w f i e l d i n the sol i t a r y dUne situation, are treated i n this sub­

section. 

Measurements are carried out in three situations, the experiments: Tl, T2 and T3. 

The shape of the dune and the flow f i e l d i n the three experiments d i f f e r , due to disturbances in the fl o w f i e l d , 

although the t o t a l discharge is constant for T l , T2 and T3. 

To compare the measurements with theory and to test the mathematical model, a numerical solution of the flow-

f i e l d over the dune i s computed with the ODYSSEE program. 

One calculation is carried out for a mean dune shape which f i t s the shape of the dunes in Tl, T2 and T3 

best. 

The program solves the equations of mass and momentum, (2-3), (2-B) and (2-9), together with the k-e equa­

tions, (2-41) and (2-42) numerically with f i n i t e difference methods in fractional time steps, as described 

in A l f r i n k (1983). 

In this sub-section the following aspects are treated: The boundaries and grid and the boundary conditions 

for ODYSSEE, the numerical results, comparison of the measured and calculated f l o w f i e l d , comparison of mea­

sured and calculated flowquantities along the dunesurface. 

Boundaries and grid: 

From the experiments T l , T2 and T3, a mean duneshape is determined which i s used as a boundary for the cal­

culation with ODYSSEE. 

The dune i s situated from x, = 15.75 m to x, = 16.25 m. Upstream and downstream the dune a horizontal bed 

with a length of 0.50 m is present, so the t o t a l length of the numerical model i s 1.50 m, with an inflow 

boundary at x, = 15.25m and an outflow boundary at x, = 16.75 m. 

For the watersurface a r i g i d - l i d approximation i s made, with a waterlevel at x^ = 0.210 for the complete 

model. 
The geometry of the model i s presented i n figure 4.9. 

0.210 m 

figure. 4.9: Geomüiy and g/tld used In the OWSSEE compwteA program. 

Only the coordinates of the boundaries are stated i n the program, the grid i s computed by ODYSSEE. 

The program calculates a curvilinear grid for the f i e l d between the boundaries. 

The grid consists of 15 grid lines and 60 ve r t i c a l s , the v e r t i c a l coordinates of inflow and outflow boundary 

are divided logarithmically. 

The waterdepth i n the experiments at x, = 15.00 m i s a = 0.234 m and at x, = 15.45 m a = 0.210 m, the strong 

decrease of waterdepth over this small distance is an effect of the perspex supports, which s t a r t at x, = 1 

The waterlevel above the dune is also at x^ = 0.210 m, although the watersurface i s whirly. 

For the calculation the waterlevel is chosen at x, = 0.210 m. 

Boundary conditions: 

The boundary conditions are already given i n sub-section 2.2.5, here only the inFlow boundary i s treated 

more s p e c i f i c a l l y . 
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In the experiments, the flowquantities upstream the dune at x, = 15.45 m and X2 = 0 from bottom to water-

surface are measured. This v e r t i c a l i s positioned inbetween the perspex supports. 

The U,-profile i s used for the inflowboundary at x, = 15.25 m, the U,-profile i s a mean flowvelocity p r o f i l e 

which f i t s the profiles of T l , T2 and T3 best. 

The measured values of in the v e r t i c a l are very small and close to zero, so = 0 is stated at the i n ­

flow boundary. 
2 2 

Profiles for the turbulent energy k and the dissipation e have to be estimated because only u, and u-j are 

measured and u? and e could not be measured. . 

For uniform flow k i s proportional to x-̂  and e is proportional to x-j i n a region near the bottom, in an 

equilibrium situation (law oF the w a l l ) . 

Both relations are used as an estimate For the proFiles over the complete waterdepth and over the horizon­

t a l bed upstream the dune the profiles can adjust to equilibrium p r o f i l e s . 

The relations for k and e read (see sub-section 2.2.5): 

. (1 X3) and 
;c.x. 

(4-9) 

with c,, = 0.09 and /£= 0.4. 
1" 

A value for u* must be known, so u* is estimated from the U,-profile. 

From the mean Flowvelocity proFile U, at x, = 15.45 m For Tl, T2 and T3, a mean value oF u* and z^ i s de­

termined . 

Using equation (2-20) and with linear regression the values read: 0.0230 m/s and z = 0.35*10 ̂  m. 

No estimate For u* and z^ is made From theory (equation (2-27) and the Chézy-equation), because the perspex 

supports produce sidewall eFfects and InFluence the flowfield in a way which can not be detected from the 

measurements. 

With the equations (4-9) and the estimated value of u*, k and e can be calculated. 

The boundary conditions at x, = 15.25 m are presented in figure 4.10, values are stated from x-j = 0.002 m 

(x. 

the watersurface) 

-J - 0 belongs to the condition of the bottom) to x^ = 0.180 m (x^ = 0.210 m belongs to the condition of 
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TIQUAZ 4.10: lyiflow boundoAy conditions at Xj = 15.25 m (,oA OWSSBE. 

When the input data for ODYSSEE were prepared a value for e(x^=0.07 m), which is 10 times smaller than 

ment, was used by mistake. 

The results of the calculation are influenced by t h i s , because the turbulent viscosity i s proportional 

to so the turbulent viscosity is 10 times higher at x^ = 0.07 m (x, = 15.25 m), see equation (2-40). 

This affects the shearstress which is proportional to the turbulent viscosity (equation 2-22). 

Furthermore e inFluences k through the equations (2-41) and (2-42). 
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The disturbance due to the wrong value of e w i l l decay downstream, but due to diffusion i t has also i t s i n ­

fluence in the X-j-direction. 

The effect of the disturbance w i l l be regarded l a t e r . 

Time step and convergance; 

Before the results are regarded, the proces of the calculation i s described. 

The ODYSSEE program is based on difference methods in fractional time steps, how the equations are solved 

i n d e t a i l i s treated i n A l f r i n k (1983). 

The calculation starts from a non-stationary situation and iterates i n time to a stationary solution of the 

fl o w f i e l d . 

A small time i n t e r v a l (= Iteration step) i s necessary, smaller than about 0,02 s for this case, to prevent 

an instable calculation. 

The small time step i s demanded by the interaction of U,, Û , k and e . 

An estimate of the time needed for a stationary solution can be made from the length of the model (1.50 m) 

and the overall mean flowvelocity (0.50 m/s), so 1.50/0.50 = 3 seconds. 

The small time i n t e r v a l and the required time result in a considerable amout of time steps. 

In a few point i n the grid (see figure 4.9), the values of k and e (which become instable f i r s t ) are plotted 

during the proces of calculation. 

The results for 9 points (3 verticals, 3 points each) are presented in figure 4.11. 
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VlQuAd 4.U: Vzvdlopmznt of k and e AM time duAing the. eatculatlon with OVVSSBE. 

The calculation i s started with a time interval of 0.015 s, k and e at the foot and the top of the dune 

reach after about 2 s stationary values. 

The proces in the wake takes longer, because this area i s governed mainly by diffusion which has a larger 

time scale than the proces of accelerating flow above the dune. 

After 2.73 s (173 time steps) the time interval i s changed to 0.025 s. 

The values above the dune remain stable, the values i n the wake osc i l l a t e strongly, especially values i n 

the point at the edge of the wake and the main flow. 

After 3.95 s (220 time steps) the time interval i s decreased to 0.01 s. 

Again the values in the wake are influenced largely, the values decrease strongly for the point at the 

edge of wake and main flow. 

After 4.305 s the calculation i s stopped. 

The fl o w f i e l d above the dune i s stationary and th i s part i s most important, the wake i s s t i l l developing, 

but i s less interesting for the purpose of the investigation (the fl o w f i e l d along the dune surface). 
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Numerlcal results: 

The numerical results are presented i n the figures 4.13 , 4.14 and 4.15 , but are treated extensively 

i n the next part together with the experimental results. 

To show some of the results of the calculation and the influence of the disturbance in e at the inflow boun­

dary, the turbulent viscosity i n several cross-sections i s presented in figure 4.12. 

VlguAZ 4.12: Caldulatdd tuAbalent v-uco-ilty in szveAat cAoM-szctioni, hoAizontal axli (m^/4 ). 

The coordinate x, = 15.45 m is chosen because the flow f i e l d i n the calculation can develop from the Inflow 

boundary x, = 15.25 m to x, = 15.45 m and later the measured flowquantities at x, = 15.45 m are compared 

with the results of ODYSSEE. 

The disturbance at x, = 15.45 m due to the small value of e at x^ = 0.07 m i s clear, the influence i s de­

creasing downstream. 

As pointed out i n sub-section 2.2.5, the boundary conditions at the watersurface, h/ö x^ =de/Qy.^ = 0, 

give through equation (2-40); öUj./iD Xj = 0, so at the surface the turbulent viscosity i s not zero. 

Apart from the disturbance the turbulent viscosity p r o f i l e i s satisfactory and has a nearly constant 

shape i n the accelerating part of the flow above the dune. 

In the v/ake the turbulent viscosity i s large, due to the production of turbulence, furthermore the p r o f i l e 

i s s t i l l developing due to the developing of k and £ in the wake. 

Comparison of experimental and numerical results: 

Comparing results of the experiments T l , T2 and T3 with the numerical results of ODYSSEE, i s done i n the 

figures (4.13, 4.14 and 4.15. 

At the top of the figures the shape of the dune i n the experiments is plotted as well as the shape of the 

dune i n ODYSSEE (sol i d lines) 

In each figure the cross-sections are sketched where measurements are carried out. 
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riguAt 4.13 : üuulU of zxpvihnmt Tl ( « , • ) , compoAzd with nwniAtcal ASAolti of OWSSBB ( , ). 
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FliuAe. 4.14 : RiAulti oi e.xpvim<Lnt n {",'], eompoAzd with mmVLical AUulU oi OWSSEE I , ). 
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Below the dune three plots with values for {U^,U^), (u-^,Uj,k,e) and -u^u^ per cross-section are presented 

next to eachother. 

\fertically the profiles per flowquantity progressing dov/nstream can be compared. 

The measured flowvelociies and turbulent energies are given in the x,- and x,-direction. 
2 2 2 2 2 

The measured values of u, and u^ are only part of the t o t a l turbulent energy k = % ( u , + u^ + u^), which 

is given by the program. 
2 

The U2-component could not be measured as even as e , the calculated e is given as an indication. 

The Reynoldsshearstress -Uj.u^ i s given as the shearstress along a streamline, with t perpendular to the 

streamline and n normal to the streamline. 

The direction of the streamline i s calculated as the angle a between U, and . 

The direction of the streamlines in diff e r e n t points for measurements and calculation i s given i n appen­

dix C. 
From the measurements the Reynoldsshearstress i s calculated with the relation: 

2 2 2 

-Uj.u^ = (u, - u-j) .sino; .cosa - u,u-j.(2cos a - 1 ) 

From the calculation the Reynoldsshearstress i s calculated with the relation: 

-ü^^ = V^.ÖU^/ÖXj. , with Uj. = (U^ + U^)^ . 

After these general remarks the results are treated more detailed. 

For the three experiments the flowvelocity p r o f i l e U, at the inflow boundary f i t s very well into the com­

puted one. 

For cross-sections above the dune the measured values are smaller than computed. 

This i s possibly caLeed by the three-dimensional FlowFleld in the experiments. Due to the perspex supports 

(see section 3.2) and the symmetrical but not uniform cross-section of the dune in the x^-direction, the 

flow f i e l d i s influenced. 

Part of the water i n the axis of the flume upstream the dune does not flow in the axis of the flume above 

the dune, so the specific discharge in the axis of the flume i s not f u l f i l l e d i n each cross-section. 

The numerical sloution holds for a v e r t i c a l plane, so here continuity for the specific discharge is f u l f i l ­

led i n each cross-section. 

In the wake two problems occur: the wake in the calculation i s not yet in equilibrium as explained before 

and the position of the cross-section in the measurements i s not exactly determined. 

So differences occur between calculated and measured p r o f i l e s . 
2 2 

The turbulent energy pro f i l e s show that half the sum of u, and u, for the three experiments i s not roughly 
2 ? 

equal to the calculated k, i f the u^ i s considered small (about the order of u p . 
Further from the bottom the calculated value of k i s large due to the disturbaoce in 

2 2 

Close to the bottom calculated values of k are high compared with the measured u, and u^ . 

Upstream the dune a horizontal bed i s present, so k i s almost linear with the waterdepth, except near 

the bottom where k increases. 

The measured Reynoldsshearstress -Uj.u^ can not d i r e c t l y be compared with the calculated values, because of 

the difference in the direction of the streamlines i n measurements and calculation. 

However, a reasonable s i m i l a r i t y can be seen betv/een experiment and calculation. 

The influence of the disturbance in € on -U|.u^ i s clear, but remains i n the v e r t i c a l position near x-j = 0.07 

Again the measured values do not f i t the calculated values in the wake very w e l l . 

Considering the calculated flowquantities along the dune the next remarks can be made: 

- The flowvelocity p r o f i l e U, becomes steeper downstream near the bottom, this results i n a higher value 

for u^. 

What causes the steep flowvelocity p r o f i l e downstream i s not clear, i t can be an effect of convection. 

In the program the boundary condition at the bottom f i t s a logarithmic p r o f i l e , w i t h a certain value of 

u^,from the bottom to the f i r s t grid point. An increasing value of u^ results in a steeper p r o f i l e . 
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- Due to the steep flowvelocity p r o f i l e near the bottom resulting in a high value of û ,̂ the values of 

k and e near the bottom are high as well, (equations 4-9) 

- Due to the steep flowvelocity p r o f i l e the flowvelocity gradient near the bottom i s high which results 

i n high values of the Reynoldsshearstress - u ^ ^ (even though the turbulent viscosity i s small near the 

bottom) near the bottom. 

Considering the measured flowquantities along the dune the next remarks can be made: 

- The steepness of the flowvelocity p r o f i l e U, i s different in each cross-section, but no specific trend 

i s noticable. 

The values of u^ from the flowvelocity profiles along the dune show arbitrary differences, this i s trea­

ted lat e r . 
2 2 

- The shape of the turbulent energy profiles for u, and u^ at x, = 15.45 m agree reasonably with the mea­

sured pr o f i l e s in the experiment with the horizontal bed (sub-section 4.2.2). 

Above the dune the shape of the profiles coincide for every cross-section, also the turbulent energies 

near the bottom do not d i f f e r considerable. 

- The Reynoldsshearstress at x, = 15.45 m i s not linear with the depth as expected in case of a developed 

uniform flow. 

This can be an effect of the disturbed flowfield upstream the dune due to the perspex supports. 

The profiles coincide but show considerable variations in values, the bottom shearstress i s for a l l cross-

sections almost equal. 

Computed and measured flowquantities along the dune surface: 

For a better interpretation of flowquantities near the dune surface, these quantities are plotted along 

the dune surFace. 

Measurements are carried out at about 3.10"' m from the transport layer above the dune surface. 

In the calculations the distance to the dune surface decreases downstream from 2-10-'m at the foot of the 

dune to 1.4*10" m at the dune top, for the f i r s t grid line above the dune surface. 

The next grid l i n e i s 4.10-'m from the dune surface at the foot of the dune and 2.8*10-'m at the dune top 

(see also figure 4.16). 

Calculated flowquantities of both grid lines are used. 

In figure 4.16 the mean flowvelocity, turbulent energy and Reynoldsshearstress for T l , T2 and T3 are p l o t ­

ted and compared with calculated values. 
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For the three experiments the measured values oF the Flowvelocity is smaller than the calculated values, 

which can be mainly an eFFect of the three-dimensional FlowFleld in the experiments. 

An increase of the flowvelocity For measured and calculated values downstream occurs. 

HalF the sum oF the measured turbulent energy components u^ and u^ d i f f e r s considerably from the calculated k 
2 

Even though the U2-component i s not known from measurements i t can not be too large and certainly i t i s 

smaller than u^. 

Near the foot of the dune the calculated value of k i s even larger than the u^-component alone. 

The measured Reynoldsshearstress deviates strongly from the calculated values. 

Even the calculated values of -Uj.u^ along the two stream lines d i f f e r strongly (about 50%). This i s an effect 

of the steep flov/velocity p r o f i l e . 
The measured values of -Uj.u^ along the dune surface s l i g h t l y decrease downstream, the calculated values of 
-u.u Increase downstream, t n 

The high values of -u^u^ from measurements and calculation at the dune top is an effect of the wake, which 

has i t s influence already near the dune top (due to high shearstresses in the v/ake). 

Some general reasons for the difference between the calculated and measured flowquantities and the beha­

viour of the measured quantities above the dune are: 

- The f l o w f i e l d i s three-dimensional i n the experiments, due to the perspex supports. 

- The stream lines in the experiment and in the calculation d i f f e r , so comparison of Reynoldsshearstresses 

i s troublesome. 

- The size of the measuring volume L2 affects the turbulent quantities near the bottom ( i n a region of about 

1 cm from the bottom) • 
2 2 

Measured values of u,, Uj and -u^.u^ are less than expected (as pointed out i n sub-section 3.4.3). 

However, in this situation i t is unknown v/hat the shearstress near the bottom should be, only the bedshear­

stress can be estimated from the logarithmic part of the flowvelocity p r o f i l e , which i s i n t h i s case not 

accurate enough (see also figure 4.17). 

- The position of the dune surface i s not accurately known. 

Definition of the dune surface i s troublesome due to the transport layer with moving sand particles. 

This inaccuracy has great influence on the determination of u^ from the logarithmic part of the flow-

velocity p r o f i l e . 

A minor difference in v e r t i c a l position results i n considerable differences in the flowvelocity due to 

the steepness of the flowvelocity p r o f i l e . 

- The moving sand particles in the transport layer influence the flowquantities j u s t above the dune surface. 

The transport layer i s l i k e a moving wall which makes the wall smoother, but on the other hand the flow 

provides the sand particles with kinetic energy. 
From the measurements i t follows that the Reynoldsshearstress i s almost constant along the dune surface. 

2 9 
Finally u^ calculated from the logarithmic part of the flowvelocity p r o f i l e i s compared with u^ from the 

-u.u p r o f i l e . This i s done both for measurements and calculation. 
2 

The correlation between u^ from the U-profile and the -u^u p r o f i l e should be one. 

The re l a t i o n i s presented i n figure 4.17. 

For the measurements the correlation i s weak. 

9 
The values from the calculation are correlated, but u^ from the -Uj.u^ p r o f i l e i s consequent higher than 

u^ from the U-profile. 
I t i s mentioned that in both cases the used values from the -u.u p r o f i l e are not the bottomshearstresses, 

t n ' 
but values of -u.u close to the bottom, 

t n 
Known values as close as possible to the bottom are used, so figure 4.17 i s of minor importance. 
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° 10 ' 2.10 ' 3.10 ' 4.10-' (mVs^) 

(from l o g a r i t h m i c p r o f i l e ) 

riguAz 4.U: CoAAzUtlon al {,Aom log-p/ioiUz and budshejvistAeAi. 

Ij.'i Sedimentmovement 

4.3.1 General 

The sediment transport can be calculated accurately i f the conveyor belt velocity ĉ^ and the local dune 

height Zj^(x,) are known. 

The realtion between the local sediment transport S and the local Reynoldsshearstress -Uj.u^ i s studied. 

No comparison took place with existing transport models. 

The calculated shearstress is not regarded, because of the difference with-the measured shearstress. 

Furthermore the measured shearstress i s lo g i c a l l y related to the local sediment transport, i n the calcu-

tion no tranport occured. 

4.3.2 Sediment transport 

In the experiments T l , T2 and T3, three dlFFerent dune shapes occured with three different conveyor belt 

velocities, which are presented i n the figures 4.13, 4.14 and 4.15. 

The local sediment transport along the dune surface i s presented in figure 4.18. 
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The local sediment transport can easily be deduced from equation (2-57), vvhere for an equilibrium situa­

tion özj^/at = 0, so the remaining expression reads: 

After integration over x, and with the boundary condition at x, = 0 ; S = Q, the result i s 

S(x,) = c^ . z^(x,) (4-10) 

The transport i s proportional to the shape of the dune. 

I t i s mentioned that the local sediment transport i s a mean local transport, instantaneous transports 

could not be determined. 

4.3.3 Sediment transport and flowguantities 

In t h i s sub-section the local sediment transport and the measured local flowquantities are related. 

A f i r s t indication of the rel a t i o n transport-flowfield is presented in figure 4.16. 

The mean flowvelocity and the turbulent energy, however, are less important to be related d i r e c t l y to the 

local sediment transport. 

An important flowquantity i s the Reynoldsshearstress which d i r e c t l y governs the sediment transport. 

The Reynoldsshearstress i s in fact transporting energy from the main flow to turbulence, but i n th i s case 

also transports energy to the sand particles, which gain kinetic energy. 

In figure 4.19 the local sediment transport S is plotted versus the local Reynoldsshearstress -Uj.u^ for T l , 

T2 and T3. 
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FiguAe. 4.19: Rztation of, local sediment tAanspoAt S and local ReynoldssheoAStAess 

The transport and shearstress at the foot of the dune are plotted i n area A and values near the dune top 

are plotted i n area B. 

From the figure i t follows that a small transport and large shearstress coincide as well as a large transport 

and a small shearstress ! 

This i s not commonly found in l i t e r a t u r e . 

Before the results are treated further, f i r s t some results from l i t e r a t u r e are presented. 

Raudkivi (1976) carried out measurements above a series of solid dunes, which i s also treated i n (—, DHL, 1981). 

Puis (1981) also gives results of measurements and calculations of shearstresses above a series of so l i d 

dunes. 

In figure 4.20 results from l i t e r a t u r e above solid dunes are presented. 
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F-cgtue. 4.20: ShzaASfieM, O\IQA a solid dam and S \jvuas T^, qaalvtaUve. ploU [iKom —,VHL, 19S1]. 

The transport (deduced from the dune shape) is increasing with increasing shearstress follows from figure 

4.20. The rate of increase of S with -u^u^ is decreasing for large values of S, because the shape of the 

dune becomes almost horizontal near the dune top. 

The shape of S = f(-Uj.u^) i n figure 4.20, disagrees with the shape presented in figure 4.19. 

Reasons for the s i m i l a r i t y are already mentioned at the end of sub-section 4.2.3, but a possible reason 

can be added: 

- Near the foot of the dune the sand particles have to be accelerated from velocity zero to a certain 

value (area A in figure 4.19). 

This demands a large shearstress, also because the slope of the dune in steep near the foot. 

Once moving the sand particles lose kinetic energy due to collisions with other particles in and below 

the transport layer, but less energy i s needed to keep them moving compared to the particles near the 

foot of the dune (area B in figure 4. 19). 

Also the slope of the dune decreases near the top of the dune. 

Considering the dune,more particles are moving going downstream from foot to top of the dune, the transport 

increases. 

So for this effect extra shearstress i s needed to accelerate more sand particles futher downstream. 

So downstream the foot of the dune a decreasing shearstress i s expected due to sand particles with a 

certain kinetic energy, on the other hand further downstream the foot of the dune more sand particles 

are moving so the shearstress must increase. 

Which effect i s most portant i s not answered here, but from the experiments i t i s clear that the shear-

stress near the dune surface along the dune i s almost constant. 

4.4 Recapitulation 

4.4.1 Horizontal bed situation 

The results of the measurements agree very well with theory. 

The measured flowvelocity p r o f i l e , turbulent shearstress p r o f i l e and power spectra f i t theoretical p r o f i ­

les satisfactory. 

Near the bottom there is some influence of the size of the measuring volume of the LDA ( i n a region of 

about 1 cm from the bottom), so the measured shearstress occurs to be smaller than expected. 

The shearstressvelocity u^ calculated from the logarithmic part of the flowvelocity p r o f i l e f i t s theory, 

and the extrapolated shearstress gives a bedshearstress which f i t s the theoretical value of u^ as well. 

The Influence of the convergent flow i s minor but noticable. 

As a test for the LDA th i s experiment is succesful and a valuable preparation for the measurements i n the 

sol i t a r y dune situation. 
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IjA.l Solitary dune situation 

The results of the measurements can be compared reasonably well with the results of the calculation with the 

computer program ODYSSEE. 

An Important relation between the local sediment transport and the measured local Reynoldsshearstress gives 

a troublesome picture (see figure 4.21). 

The relation found in l i t e r a t u r e above solid dunes d i f f e r s strongly from the relation found in the experi­

ments (see figure 4.21). 

S t 

0 

Fxgiae 4M: fKinciple. oi S = (5l-u_^^) ioJi a solid dune. [llteAatuAe] and a. sanddune [expeximinU], 

the Aetatlons aAe qaalitatlve. 

The reasons for the weak agreement between the results for a series of solid dunes and a s o l i t a r y dune with 

a transport layer are: 

- In the experiments a three-dimensional f l o w f i e l d occured. 

- The measuring volume L2 of the LDA provides smaller values of the measured Reynoldsshearstresses near the 

bottom. 

- The position of the measuring volume i s inaccurately determined with respect to the dune surface. 

- The moving sand particles in the transport layer above the dune create a moving wall, which i s smooth 

with respect to a r i d i g wall. 

- The sand particles near the foot of the dune have to be accelarated which demands a high shearstress. 

Once moving the sand particles need less shearstress to keep them moving, but more sand particles are mo­

ving downstream the foot of the dune, so for t h i s effect an increasing shearstress is required. 

- The kinetic energy transported by -Uj.u^ to the sand particles results in less energy for the f l o w f i e l d . 

However, the moving sand particles create a smooth wall, which has i t s effect on the flowquantities. 

A l l these effects can not be detected separately from the results of the measurements. 

Finally i t i s mentioned that i n the experiments a horizontal bed upstream the dune i s present, so at the 

foot of the dune a high shearstress occurs. 

In a series of dunes a wake is present near the foot of the dune, so the shearstress i s small (negative 

or even zero). 

The wake, however, plays an important role i n the sediment transport phenumina. 

An experiment with wakes and moving sand particles should be carried out to study the mechanism of loc a l 

sediment transport i n a more natural s i t u a t i o n . 

But f i r s t a two-dimensional flowsituation with a s o l i t a r y dune should be created, to determine the i n ­

fluence of moving sand particles on the Reynoldsshearstress along the dune surface. 
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5. Recommendations 

5.1 Introduction 

During the investigations of watermovement and sediment transport as described in this report, a f i r s t 

attempt i s made to investigate the mechanism of local sediment transport with the experimental set up 

described in section 3.2. 

The conveyor i s especially designed for the experiments and under certain flowconditions a stable s o l i ­

tary dune is created which satisfies the demands. 

The LDA is adapted for the experiments and showed to be satisfactory accurate, i n an experiment in a 

flume with a horizontal bed. 

The measurements i n the so l i t a r y dune situation are not too comprehensive, but showed that measurements 

above the dune with moving sediment are possible. 

The results of the measured flow f i e l d above the dune are satisfactory. 

To understand the mechanisme of local sediment transport, however, comprehensive measurements in a 

so l i t a r y dune situation are necessary. 

In this chapter recommendations for the experimental set up and measuring equipment are given, as well as 

for further experimental and theoretical research. 

5.2 Solitary dune 

In the so l i t a r y dune situation a stable dune i s created by adapting the flowfield just upstream the conveyor 

The flow upstream the dune appeared to be asymmetric which created a strongly asymmetric dune. 

By partly blocking the space between glasswalls and perspex supports the dune is made nearly symmetric. 

Adapting the flow f i e l d made the flow and the watersurface whirly. 

The dune i s reasonably symnetric and stable due to the whirly flowpatern and eddies generated by the pers­

pex supports. 

For further experiments the flowfield should be symmetrical just after the inflow section of the flume, so 

a completely developed symmetrical flo w f i e l d appears at the measuring section. 

The measuring section i n the flume should be so far downstream the inflow section, that a completely de­

veloped boundary layer flow is present. 

The v/alls and bottom of the flume should be very plane, the present flume contains j o i n t s i n the walls and 

bottom which influence the roughness in an undefined way. 

The position of the so l i t a r y dune on the conveyor must be constant. 

The measurements last at least 8 hours and during the experiments i t appeared that the complete dune some­

times moves over about 5 to 10 cm in 2 to 4 hours, the shape is not much affected. 

The velocity of the conveyor belt i s increased or decreased temporarely to move the dune to the r i g h t po­

s i t i o n again and the measurements can carry on. 

I t i s , however, advisable to prevent movements of the complete dune and to adjust the velocity of the con­

veyor belt very accurately. 

5.3 Measuring eguipment 

The results of measurements with the LDA are satisfactory, the L l measuring volume, however, gave poor re­

sults . 

I t can be recommended to use lenses of high quality and to adjust the LDA very accurately. 

Then i t i s possible to create a real Ll measuring volume and the accuracy of the results increases with 

respect to the L2 measuring volume. 

The laser beam should pass the rotating grating perpendicularly, otherwise the angles between the i l l u m i ­

nating beam and the two reference beams are not not equal. 
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When this demand i s not f u l f i l l e d , the 45° configuration i s not present and errors of 5 to 10 % can occur 
in the results. 

In general the angle between the reference beams and the illuminating beam should be measured accurately 

after every adjustment of the beams, i n order to calculate the proper conversion factor. 

The v e r t i c a l position of the measuring volume in the experiments i s read from a scale, with an accuracy 
of 0.5 mm. 

Near the bottom of the flume or near the dune surface the flowvelocityprofile i s very steep, so a small 

error i n the v e r t i c a l position results i n a large error i n the flowvelocity. 

I t i s recommended to use an electronic scale for the determination of the v e r t i c a l position of the mea­
suring volume. 

With this device the v e r t i c a l position can be adjusted accurately and reproducable. 

The scale must be gauged with respect to a determined fixed point in the flume. • 

5.4 Experiments 

For a complete inseight i n the interaction between watermovement and local sediment transport a series of 

experiments is needed, i n which flowconditions are varied. 

Different flowconditions create different duneshapes and propagatingveloclties of the sol i t a r y dune. 

Also different grain sizes or a mixture of grain sizes can be used. 

A quantity which i s used in the DUGRO program (de Ruiter, 1981) is the standard deviation of the Reynolds­

shearstress, as pointed out i n figure 5.1. 

This quantity can be calculated easily from the measured data. 

cross-correlatior) 
delay over t 

I 

i 
FiguAe. 5.1: VdilnW-on of standaAddtviaXlon of RzijnoUsshzaAitJieAS In turn.. 

To investigate the influence of the moving sand particles, an experiment with a solid dune could be carried 

out with the same flowconditions as i n the sol i t a r y dune situation. 

The shape of the so l i t a r y dune can be measured and a solid dune of the same shape can be placed in the flume 

instead of the sanddune. 

An advantage i s that the local sediment transport i s known from the sol i t a r y dune situation (the sanddune). 

Another way to investigate the influence of the moving sand particles on the flowquantities near the dune­

surface, i s to reduce the flowvelocity so the shearstress decreases and the sand particles j u s t do not move. 

When the local Reynoldsshearstress in both cases (moving and not-moving sand particles) i s made dimension­

less i n a convenient way (deviding by the local value of u^) the results can be compared. 

The simplest way to investigate the effect of moving sand particles i s an experiment with moving sand par­

t i c l e s over a horizontal bed. 

Comparison of Reynoldsshearstresses in case of a r i g i d horizontal bed and a bed with moving sand particles 

shows the influence for a horizontal bed. 

The disadvantage of the so l i t a r y dune i s that the situation deviates strongly from a natural situation, a 

series of dunes. 

To create a situation which i s more r e a l i s t i c with respect to the situation i n nature, i t i s useful to t r y 

to create two dunes on one conveyor, as sketched in figure 5,2. 

In this set up a wake occurs upstream thé second sanddune, which i s essential in a natural s i t u a t i o n . 
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- q 
.wake 

1 2 conveyor 

figuAZ 5.2; Two MnddaneA on a conveyor. 

5.5 Theory 

The investigation described i n th i s report mainly considered the watermovement above a solitary dune. 

Theoretical or empirical models for the local sediment transport are not studied. 

For further investigations, however, i t is essential to study theoretical and empirical models and expe­

rimental results oF sediment transport over dunes. 

Mean Flowvelocities and turbulent energy seem to be insuf f i c i e n t to be related to local sediment trans­

port. 

A more important quantity i s the Reynoldsshearstress and of great importance is the influence of moving 

sand'particles along the bed on the Reynoldsshearstress. 

Powerspectra and correlation functions are convenient to get inseight i n the structure of the turbulent 

quantities of the fl o w f i e l d . 

Knowledge of the influence of convection on the flowquantities i s important with respect to estimates 

of shearstressvelocities (u^) from the logarithmic part of the mean flowvelocity p r o f i l e and with respect 

to the turbulent energy and Reynoldsshearstress pr o f i l e s . 

Furthermore a su f f i c i e n t knowledge of the k-e model i s required when the ODYSSEE program i s used. 



-70-

Symbols 

A ( n ) 

f 

dx, 

dx2 

dx. 

w 

E,3(k,) 

j+1 
Fr 

^j+1 
F(r) 

F(..) 

g 

h 

H 

H' 

local waterdepth, 

with subscript! 

1 coeFficient 

2 coefFicient 

e equilibrium v/aterdepth 

t o t a l area cross-section 

with subscript! 

b area with bottom influence 

w area with wall influence 

coefficient 

flume width 

fluctuation of concentration, or 

correlation coefficient, 

with subscript! 

b conveyor belt velocity 

D empirical coefficient 

f drag coefficient 

s empirical coefficient 

l e empirical coefficient 

2e empirical coefficient 

jU empirical coefficient 

instantaneous concentration 

mean concentration, 

with subscript: 

b bottom roughness (Chézy) 

B coefficient 

0 concentration of dune 

w wall roughness (Chézy) 

correlation function, 

with subscript: 

1 auto-correlation function ' u 
2 i 

3 auto-correlation function u^ 

13 cross-correlation function -u^u^ 

Euler dissipation scale 

dissipation scale of integral scale 

i n f i n i t e s i m a l distance in x,-direction 

i n f i n i t e s i m a l distance i n X2-direction 

i n f i n i t e s i m a l distance in x^-direction 

coefficient 
2 

power spectrum of u, 
2 

power spectrum of u^ 

power spectrum of -u^u^ 

burst frequency 

lower boundary BPF 

Fourier transForm oF F j ^ , (time domain) 

Froude number (ÏÏ,/(g.a)) 

Fourier transForm of f j ^ , (freq. domain) 

spatial correlation 

function of 

gravity 

gravity vector (0,0,-g) 

waterlevel with respect to x^ = 0 

local dune height 

transport layer thickness 

K 

K' 

K" 

Lf 
m 

M 

n 

N 

P 

P 

P 

p(x,) 

q 

Q 

r 

R 

Re 

s 

T 

Ê 

"A' "B 

bottomstep height 

integer, complex number, 

with subscript: 

E slope of energy l i n e 

integer 

integer, wavenumber, turbulent energy (%(Lirriï.)), 

with subscript: 

b bottom roughness 

b wavenumber where influence viscosity starts 

e wavenumber at maximum spectrum 

w wall roughness 

1 wavenumber in x,-direction 

non-linear dune celerety 

non-linear dune celerety 

non-linear term 

integral scale 

coefficient 

constant (m*q^/c^) 

integer, power, direction normal to streamline 

t o t a l number of values in a measured discrete signal 

fluctuating pressure 

instantaneous pressure 

mean pressure 

function describing equilibrium duneshape 

specific discharge 

t o t a l discharge 

distance 

hydraulic radius, 

with subscript: 

b hydraulic radius of bottom 

w hydraulic radius of wall 

Reynoldsnumber 

fluctuating sediment transport 

instantaneous sediment transport 

mean sediment transport 

time, direction tangent to streamline, 

with subscript: 

e equilibrium time 

0 starting time 

1 time 

temperature, measuring time 

Euler integral scale time scale 

flowvelocity i n point A respectively point B 

fluctuating flowvelocity 

fluctuating flowvelocity in x,-, x^-direction 

shearstress velocity 

instantaneous flowvelocity 

instantaneous flowvelocity i n x,-, Xj-direction 

with subscript: 

e equilibrium local mean flowvelocity 

mean flowvelocity 

flowvelocity outer layer, c r i t i c a l flowvelocity 

mean flowvelocity tangent to streamline 

mean flowvelocity in x,-direction 
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U 

u:} 

2 2 2 

^ i S 

1 
X,, X2 ,X-j 

with subscript: 

3 mean flowvelocity i n x-j-direction 

l e mean flowvelocity at t ^ 

10 mean flowvelocity at t ^ 

11 mean flowvelocity at t , 

dimensionless mean flowvelocity 

depth averaged mean flowvelocity in x,-dir. 

flowvelocity vector 

turbulent energy 

turbulent energy in x, 

Reynoldsshearstress i n t,n-plane 

Reynoldsshearstress in x,,X-j-plane 

auto-correlation function of u^ 

cross-correlation function of -u^u^ 

instantaneous flow velocity vector 

wake function 

coordinate 

coordinate 

dimensionless coordinate 

x^-, Xj-direction 

n 

p 

^ f i l 

-13 
T 

molecular viscosity, frequency, 

with subscript: 

t turbulent viscosity 

pressure parameter 

density, 

with subscript: 

s density of sand 

w density of water 

emperical constant 

f i l t e r e d shearstress 

shearstress vector 

non-filtered shearstress 

Reynoldsshearstress in x, ,x-j-plane 

shearstress vector 

mean bottom shearstress 

mean overall shearstress 

mean wall shearstress 

'b 

^be 

with subscript: 

o bottom roughness 

0 reference level 

1 level with respect to 

2 level with respect to z^ 

3 level with respect to z^ 

local dune height 

equilibrium local dune height 

3a/ax, watersurface slope 

"óSf-ĵ  percentage of bottom shearforce 

?óSF percentage of wall shearforce 

I integral length scale 

dimensionless integral length scale 

I length scale 

0(..) order of .. 

P production of turbulent energy 

t delay time 

V, C flowvelocity scale 

a angle 

OC^ angle of boundary layer development 

^ angle 

y angle 

8 boundary layer thickness 

with subscirpt: 

b viscous layer thickness of bottom 

w viscous layer thickness of wall 

A normalized boundary layer thickness 

At time in t e r v a l 

6 dissipation rate of turbulent energy 

7] Kolmogorov length scale 

7̂^ dimensionless Kolmogorov length scale 

K von Kérmón constant 
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Operation of the Laser Doppler Anemometer, heterodyne system 

Introduction 

The Laser Doppler Anemometer (LDA) is a very suitable apparatus for measurements of mean and turbulent 

flowquantities i n f l u i d s . 

The principle of the LDA i s based on the Doppler-effect which occurs when a l i g h t emitting body moves 

with respect to an observer, 

V/hen the body moves away from an observer then the observer sees the l i g h t at a lower frequency and when 

the body moves toward an observer the l i g h t i s seen by the observer at a higher frequency. 

So the frequency s h i f t i s a measure for the velocity of a body moving with respect to an observer. 

With the LDA two or more l i g h t beams, generated by a laser, are made to intersect in an area of the f l u i d 

where the flov/velocity and i f desired some turbulent quantities are to be known. 

At the intersection of the lightbeams a so called 'measuring volume' is created. 

Small particles in the f l u i d passing through the measuring volume scatter the laserlight and cause a 

frequencyshift, 

The scattered l i g h t i s caught by a detector and i t s frequencyshift measured, 

The velocity of the particles is determined in this way and so indirectly the flowvelocity. 

The lightbeams passing through the f l u i d do not disturb the f l u i d , besides a neglegible temperature r i s e . 

The la s e r l i g h t must satisfy certain requirements which means i n practice: 

- a narrow lightbeam to create a small measuring volume, 

- monochromatic laserlight which has a narrow frequency band, 

- the laserlight must be coherent, 

Tv/o systems of measuring flowvelocities with the tDA are the real fringe system and the heterodyne system. 

The_real fringe system 

Two lightbeams of equal intensity intersect in the f l u i d . The l i g h t i s scattered i n a l l directions by 

particles moving through the measuring volume. 

Outside the f l u i d in an arbitrary direction scattered l i g h t from the measuring volume is caught and 

concentrated on a photodetector. 

The signal from the photodetector i s converted to a flowvelocity i n the measuring volume, (See figure A-1) 

This system is not treated futher, extensive treatment of the system can be found in Durrani (1977). 

The_heterodyne system 

Two lightbeams of unequal intensity intersect in the f l u i d . The beam with high intensity i s called the 

illuminating beam, the beam with low intensity i s called the reference beam. 

Scattered l i g h t , o f the illuminating beam,by particles moving through the measuring volume,is mixed 

(heterodyned) with l i g h t of the reference beam. 

The reference beam i s d i r e c t l y projected on a photodetector. 

The signal from the photodetector is converted to a flowvelocity i n the measuring volume. (See figure A-1) 

This system i s treated futher. 

signal 

flguAZ A-1: VKlnclple. of the. /lecU i^tnge syUem [leit] and the heteAodyne iy.item Utgkt). 
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The doppler effect 

Light radiated by a body which moves away from an observer with a velocity Û , is seen by the observer with 

a frequency (Menzel,1960); 

V= v^.il - U^/c) (a-1) 

The number of lightwaves per unit time which reach the observer decreases when the body moves away, the t o t a l 

number of lightwaves however remains constant. 

A body moving away from the observer in an arbitrary direction radiates l i g h t seen by the observer with a 

freguency: ^ 

P= p^.d - cos^.U/c) U/ (a-2) 

bodyv_ 

/ 

Formula (a-2) holds generally for velocities of the body much less than the velocity of l i g h t , U < c. 

In which p^ i s the undisturbed Frequency oF the l i g h t , observator ^ ̂ ^ / v . U 

and c is the velocity of l i g h t . c /̂ 

The frequency of l i g h t radiated by a body moving toward an observer in an arbitrary direction, is seen by 

the observer with a frequency: 

P= P ^ d - cos (p .U/c) (a-3) 

The illuminating beam and the reference beam create at their intersection a measuring volume in the f l u i d , 

as shown i n figure A-2. 

illuminating , ,̂ , 

0 ^ observer 

reference beam 

FxguAe A-2: VHlnltion of, the angles. 

Assume a par t i c l e P in the f l u i d moves in the plane of the two beams through the measuring volume. 

The particle P sees the l i g h t from the reference beam and the illuminating beam with frequencies respectively: 

fpj, = PQ.(1 - cos (jl),.U/c) 

and Pp^ = i ; ^ . ( l _ cos -U/c) 

An observer i n 0 sees the l i g h t reflected by P from the reference and Illuminating beam with freguencies: 

^01 = I'o-^^ - cos 9),.U/c)/(l - cos?),.U/c) = p^ (a-4) 

fgj. ^V^Al - cos 9)2.U/c)/(l - cos (p,.U/c) (a-5) 

Formula (a-4) shows that there is no change i n Freguency of l i g h t from the reference beam in the direction 

of the beam , when a pa r t i c l e passes the beam. 

An observer in 0 however does not see the l i g h t reflected by particles passing the measuring volume with 

frequencies discribed by the formulas (a-4) and (a-5), see figure A-3. 

The two lightwaves interfere, the l i g h t of the reference beam is mixed with the l i g h t from the illuminating 

beam reflected by the pa r t i c l e P. This is called heterodyning. 

The velocity of l i g h t is a constant, so c = V^-^o^-^Qi= ^Or'-^or ' with A as the wavelength. 

So a lightwave sin V^^.t and a lightwave sin V^^.t are mixed and produce a new lightwave (sin Pg^.t + sin V^^.t) 

The amplitude of the l i g h t signal i s not regarded in this deviation. 
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This expression can be rewritten i n : (Z.sin^sC V^^ + Vg^)t . cos%( V^^ - I'gj,)t) . 

Two new frequencies occur, one high frequency %( i ; ^ ^ + v^^) of order and a beat frequency k( Pg, - V^^) . 

The high frequency i s not of importance, but the beat frequency i s of importance to determine the doppler 

frequency, see figure A-3. 

VlguXtL A-3: IntviiviinQ lightmvu Kditddted bij a piuticle. P In tha mext^uAlng volume.. 

Generally i n 0 a photodetector i s placed which is capable to detect only the beat frequency, the detector 

is not fast enough to detect the high frequency. 

The photodetector follows l i g h t intensities, whether the amplitude of the lightwave i s positive or negative 

i s not of importance. 

The photodetector thus sees a lightwave with twice the beatfrequency, this i s called the doppler frequency: 

This frequency is much smaller than p^ because of the sl i g h t difference between the frequencies p^, and P̂ .̂ 

(see the forthcoming example) 

The intensity of the reference beam must be of the same order as the intensity of the lightwaves reflected 

by the particles i n the measuring volume. 

A difference in intensity which is to great does not show the doppler frequency, this effect i s pointed out 

in the next figure. 

I 

I 

Intensity of the sum of A and B. 

I 

I 

flguAe. A-4: Infiumce of, IntensitieA of lightrnvu. 

The laserlight must be monochromatic for reasons of interference. Light b u i l t up by many different frequencies 

does not generate a doppler frequency when interference occurs. 

Particles i n the f l u i d which pass the lightbeams outside the measuring volume do not contribute to the doppler 

frequency. 

Formulas (a-4) and (a-5) substituted i n (a-6) give: 

Pj =P^.(cos(p, - cos ̂ 2 ) - ( U / c ) / ( l - cos 9),.U/c) (a-7) 
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The denominator of (a-7) is almost one compared with the nominator for flowvelocities of U occuring generally 

in fluids (U/c « 1). 

So formula (a-7) reduces to: 

= P^.(cos9), - cos f.^).U/c (a-8) 

The flowvelocity vector U can be expressed in a velocity vector Û , which stands normal to the bisectrice 

of the angle between the two lightbeams. 

U and U, l i e in the plane of the two beams. 

FlguAe. A-5: Vnilnltlon. of vetociti/ U^^. 

The following equations hold: 

(p^ - = 29 and a = k( f-^ + f^) 

So (cos^j^ - cos^^)'^ = -2.sin%(<p^ - (p.^) .sinki (p.^ + (̂ 2)-U = 2.sin 0 .sin cr.U = 2.sin0.Uj^ 

Substituted in (a-8) with c = V^.X^ in which i s the wavelength of the undisturbed lightbeam, gives: 

p^ = 2.sin0.U^^/A^ (a-9) 

The constantsA^ and 0 are known and is known from measurements, so the flowvelocity Û^ can be determined. 

U^ l i e s in the plane of the reference and illuminating beam. 

The expression 2 . s l n 0 / A j j i s called the optical transfer factor. 

The doppler freguency i s mixed with the l i g h t of the reference beam which has the freguency p . 

The mixed lightbeam is projected dn the photodetector. 

Example to point out the simplifications and assumptions: 

Data: c = 3.10^ m/s , Ü = 3 m/s , cos (Pj^= 0,8 , cos 9>2= 0,3 , p^ = lO""-̂  Hz. 

The nominator of formula (a-7) i s ; 5.10"^and the denominator is: (1 - 8.10"^) 

I t i s j u s t i f i e d to simplify the denominator to one. 

From equation (a-8) i t follov/s that; p, = 5.10"^. p = 5.10^ Hz. 
o • 

The photodetector can determine frequencies i n the range of 5.10 Hz to 5.]0 Hz, which does contain the 

doppler frequency but not the frequency p . 

Frequency pre-shiFt and d i f f r a c t i o n 

The sign of the doppler frequency is not detected i n the way described above, so a change of direction of 

is not precieved. 

A method to detect the direction of U^ i s to add a frequency p^. This can be done by preshifting the 

frequency of one beam , illuminating or reference beam, by p^. 

So the measured freguency reads: 

P̂ ^ = 2.sin0.Uj^/A^ + Pg (a-10) 

The pre-shift frequency i s constant and has a known value. The direction of Û  can be detected: 
b 

Ub>° ' ^ds > ^s 

° ' "̂ ds = ^s 
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Adding i ; ^ to can be done in di f f e r e n t ways; the method described here i s based on d i f f r a c t i o n due to 

a rotating grating. 

The laserbeam is projected on the rotating grating and due to d i f f r a c t i o n of the lightwaves, lightbeams 

of d i f f e r e n t order occur. 

laser 

lens 

grating photodetector 

VlguAz A-6: VlUnaction of, the. fjueAbeam due to the Jiotatlng giattng. 

For futher explanation only the high intensity 0*̂ ^ order lightbeam (illuminating beam) and the low 

intensity +1 order lightbeam (reFerence beam) are taken into account. 

The grating consists oF a disc with slots i n radial direction. The disc rotates with a constant velocity. 

The velocity i n tangential direction at the point where the laserbeam passes the grating is V . 

The number oF slots nf the grating i s N. ^ 

The tangential velocity = Pg-d^.N, in which is the rotation frequency of the disc and d„ i s the 
9 

A doppler frequency results: = 2. .sin a : ^ / , the difference in frequency between the 0̂ *̂  and +1̂ '̂' 

distance between the slots. 

A doppler frequency results 

order beams i s : = ' ̂ g-sinCKg/A^j , the pre-shift frequency. 

The angle i s determined by d^ andA^ : sin =X^/d^ , so = V/d or p = p .N . 

The pre-ahift frequency i s only consequently determined by the geometry of the grating (N) and the rotating 

frequency ( p^) of the disc. 

How do the beams of the ...-2""^, - l ^ * " , o''̂ , +1^*^, +2""^,... order arise ? 

Assume a lightwave arrives at a s l o t , which is not moving, and i s deflected by an angle a . 

n>>*plane A 

ViguAe A-f: VlUAaeting lightxmie and Iti inteniity, one slot. 

The front of the beam consists of n equal waves. I t i s clear that at a plane A a phase difference 

between wave 1 and n. 

I t can be shown (Durst,1976) that the intensity of the lightwave reads; 

I ^ = w2.sin2( n.\i.sma^/X^)/{ Tr.w.sin a ^ / A ^ ) ^ 

the so called Frauenhofer deflection, i n which w i s the amplitude of the lightwave. 

In figure A-7 i t i s also shown that a maximum of intensity occurs at a =0. 

For N slots the intensity reads (Durst,1976); ^ 

From the formula for and from figure A-8, i t can be seen that maxima of intensity occur at k.n radians, 

with k = 2, -1,- 0, +1, +2,. .. 
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I 

d 

figuAe. A-S: VlWta-ctlng lightwave and i t i Intensitij, W slots. 

So sin = k.Ajj/dg, and I ^ ^ i s maximal Tor k = 0 ( a ^ = 0) the 0*̂ ^ order beam. 

The 1^ order beams make an angle sin CK̂  = A^d^ with the 0*̂ ^ order beam and also their intensity i s lower. 

In practice the higher order beams (z'"''̂ , 3*'̂ , ...) are screened. 

The measuring volume 

The two lightbeams which create the measuring volume are focussed through a lens. 

The l i g h t intensity of a beam is Gaussian in a cross-section of the beam. 

After passing the lens the lightbeam diameter is decreasing by convergance, but does not become zero. 

The minimum beam diameter, the waist of the beam, occurs in the focal point of the lens. 

After the waist the beam diverges again. 

FtguAe. A-9; ConveAgence of the tigktbeasM, 

Scattered l i g h t in a point r^^ from stationairy particles i n a point r in an optical f i e l d can be discribed 

by Mie's scattering theory, ( r ^ and r are vectors in the three-dimensional space) 

For more background information see Weyl (1952). A f i r s t approximation of the optical Field i s given i n 

Durrani (1977): 

Ed-p = <7.H(r)/(i.k. I r ^ - r l ).ê -'<- K " 1̂ (a-11) 

(Tdenotes the dimensionless scattering amplitude function and consists of a series of Legendre polynomials, 

which are not given here. The wavenumber k = l.n / X • 
o 

In the following analysis the asumptions are: 

- the scattering particles i n the f l u i d are spherical, 

- the wave fronts i n the v i c i n i t y of the focal point are plane and p a r a l l e l . 

The intensities of the lightbeams near the focal point are Gaussian and read: 

I(x,y,z) = I .e- Z - ( x V ) / ( r 2 . ( l + ( A ^ . y / ; a . r 2 ) 2 ) ) ^ ^ ^_2_^2^Zy2 
o o 

I ^ i s the intensity i n the centre of the lightbeam and r^ = 2. A y ( 7r.A0) i s the radius of the lightbeam 

i n the waist. A 0 i s the far f i e l d convergence angle of the lightbeam, A0= d^/f. ( f i s focal length) 

The d e f i n i t i o n of r^ i s the radius of the lightbeam where the l i g h t intensity i s I^.e'^. 

The optical d i s t r i b u t i o n in the f i e l d of the focussed lightbeam may be expressed as: 

H(x,y,z) = E^.e^^y " (x'-y')/r^) (3_,2) 

with E = l ^ . e - 2 ^ i - l ' - t 
0 0 
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The reflected l i g h t from the particles i n the f l u i d i s f i n a l l y projected to a photodetector. 

illuminating beam 

reference beam 

figuAz A-10: Vt^JnltLon of cooAdimte sy-itzmi. 

For a point s on the surface of the photodetector formula (a-11) reads: 

E.^(x',d ,z') = ( j / d . k . d ).E..e^-''-''l , 

the Field oF the reFlectcd l i g h t by particles due to l i g h t from the illuminating beam. 

And E (x',d ,z<) = CT/(i.k.d ).E .e^-'^-^l , 

rs r 

the f i e l d of the reflected l i g h t by particles due to l i g h t from the reference beam. 

With ' ^ l = ̂ o •*• - x')V(2.d ) + (z^ - z ' f / i l . d ) 

which is defined in the x^,y^,z^-coordinate system. 

The complete f i e l d i n a point on the surface of the photodetector reads: 

Ej(x',d ,z') = Ej,(x',d ,z') + E.g(x',d .Z') + Ej,g(x',d ,z') (a-13) 

In v/hich E^(x',d ,z') denotes the f i e l d of the reference beam directly projected on the photodetector. 

The t o t a l intensity of the l i g h t on the surface of the photodetector i s : 

(a-14) 

A 

rf i s the s e n s i t i v i t y of the photodetector. 

Note that For complex numbers the following operation yields: Ix + Y I ^ =1X1^ +|Y|2 + X*Y + X Y * . 

Substituting (a-13) in (a-14) givés: 

i , = r,J( | E j 2 , | y 2 , | E j 2 ) . , , , r,J(E^.E;3 + E;.E^^).dA + 

^ "ij^hAs - 4 - ^ i s ) - ' ^ ' ^ - »j/^^r-4 - Er-^is)-'^'^ 

In short notation this reads: 

i . = i . + i + i + 1 . (a-15) 
d 1 r r s r i 

: contribution of the individual f i e l d s , 

i j , j , : contribution due to mixing of the reference beam with scattered l i g h t from the reference beam, 

i ^ : contribution due to mixing of the two scattered radiations, 

i ^ ^ : contribution due to mixing of reference beam and scattered l i g h t from the illuminating beam. 

The terms i ^ and i ^ ^ do not contain doppler frequency information, so these intensities are not s i g n i f i c a n t . 

The intensity of the illuminating beam i s far greater than that of the reference beam, which gives a very 

poor fringe contrast. The amplitude of i is very small compared to the amplitude of i .. 

When the surface of the photodetector is large compared to the beam cross-section, than the f i r s t term of 
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i ^ ^ reads; 

jEj,-4-dA = / / f r t x ' . d ,z')£*^(x',d ,z').dx'.dz' 

Z.Tt.a/k^.E* ||Ej,(x',d , z ' ) / ( - l . A^.d ).e-^-''-^l.dx',dz' 

In Durrani (1977) a sollution for t h i s equation i s given which reads; 

The integral represents the inverse propagation convolution of the reference f i e l d at a point (x',d^,z'), 

on the photodetector surface, to the reference f i e l d on the particle at (x^,yj,,z^). 

Hence l^r'hs-'^^ = 2. 7r . (7/k2 .E*(x. , y . ,2.) . E ^ ( x ^ , y ^ , z ^ ) 

and 

with 

A.TT.CT.T, A .Re(E.(x.,y.,z.).£^(x^,y^,z^)) 

E , ( x,,ypZ,) = E p e ( - ^ - V i - K - X ) 

E > ^ , y ^ , z J = E , . e ( - ^ - y r - ( X r - ^ X ) 
r r " r ' r 

E J andEp are intensities of the illuminating and reference beam in the measuring volume. 

Substitution i n (a-16) and = A.Tt.CT/k^ gives: 

\ i -ri\-h.^,.[eM " " ^ " ^ r ) / ^ o ] . cosk(y^ - y.) 

(a -16) 

(a-17) 

Transformation of (x^,yj^,z^) and (x^,y^,z^) to (x,y,z), see also figure A-10 , gives: 

X.COSÖ + y.sinö 

y.cos0 - x.sin0 

X = X.COS0- y.sin0 

y^ = y.cos0 + x.sin 10 

Substitution i n ( a - 1 7 ) ; 
T,.n .F^.F_Je-2(x-.oos2ö + y2.sin20 + z^/vl^ ^ ̂  „ 
' O ^ i 'K"̂ ' — • "-..t7. 

The maximum of i ^ ^ occurs for x=y=z=0 and the intensity i s decreased to a value of e times the 

maximum at: 

x^.cos^e + y^.sin^e + z^ = r^ 

(a -18) 

(a -19) 

Formula (a-19) represents an ellipsoïde. 
—2 

The measuring volume i s limited a r b i t r a r i l y by the value e , so the dimensions of the measuring volume are; 

Ax = Z.r /cos0 ; Ay = Z.r / s i n 0 ; A z = Z.r 

beam w i d t h 

ViQOAQ A-1U The. mexuuAlng voixmn. 

Example: 

data: 0 = 10° , Z.r = 1 mm. The dimensions of the measuring volume are: Ax= l.OZ mm, 

Ay= 5.76 mm, 

Az= 1.00 mm. 

with 0 = Z0° the dimensions of the measuring volume are: Ax= 1,06 mm, 

Ayr Z.9Z mm, 

Az= 1.00 mm. 
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Intensity due to moving particles In the measuring volume 

The coordinates of particles in the measuring volume moving with a velocity Û^ are (x^ + U|^.t,y^,z^). 

The expression cos(2.k.x.sinÖ) i n formula (a-18) can be corrected in case of a pre-shift frequency v^, 

the expression then reads: cos(2.7r. v^.t + 2.k.x.sin0). 

V/ith x^ = 0 for conveniance formula (a-18) reads: 

i ^ . ( t ) = T/.C^.Ej.E^.[e-2^Ub-t2.cos20+ y^.sin^O^ z2)/^2^, cos(2.7r. + 4. ;r.U^.sin0/A„)t 

(a-2Q) 

The behaviour of i j , j ^ ( t ) when a particle moves through the measuring volume with a velocity U i s shown 

in figure A-12. This effect i s called the doppler burst. 

flguAz A-12: The. doppteA buAst. 

_ t 

The l i g h t intensity scetched i n figure A-12 i s converted by the photodetector to a voltage. 

This voltage i s processed by a so-called tracker, which selects the frequency p^^ from the doppler burst. 

Through formula (a-10) the par t i c l e velocity Ü, i s known. 

Signal processing by a frequency tracker 

There are different methods to detect the doppler frequency from a doppler burst. 

In this part the method with a frequency tracker i s described. 

From figure A-12 i t is clear that the signal consists of a part with low frequency, the pedestal, and a 

part with high Frequency. 

To detect the frequency v^^ the pedestal is removed with a high pass f i l t e r (HPF), this i s done inside the 

tracker. 

AFter F i l t e r i n g the Following signal results: | l 

TlQuAe A-13: The doppleJi bvjiit afteJi the HPF. 

The tracker converts the voltage From the photodetector to a voltage level which i s proportional to v^^. 

Different particles moving through the measuring volume with different doppler frequencies, generate 

converted voltages y^,V.^,... The doppler frequency i s replaced by: V .K . 

Vis the voltage due to a moving par t i c l e through the measuring volume and K i s the conversion factor of the 

tracker i n Hz/volt. 

The principle of the tracker i s shown in figure A-14. 

The BPFĵ  removes the pedestal oF the doppler burst and also the high frequencies due to noise. 

The resulting signal x ( t ) i s mixed with the signal y ( t ) from the VCO. 

The mixed signal has a frequency - V^^ and i s f i l t e r e d by a BPF^ with bandwidth B2« B̂ . 

The frequency discriminator determines the difference between - V^^ and and generates a voltage to 

change the frequency v , i n such a way as to make V - V. equal to v • 
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BPF = bandpass F i l t e r , tPF = lowpass F i l t e r , FD = Frequency discriminator, I = integrator, 

V C O = voltage controlled o s c i l l a t o r . 

FxgiiAe. A-N; fAtqumcy tAackeA [VuAkml, 1977] 

The variations in the voltage due to the FD are analogous to V^^. 

From the analog output signal' V ( t ) the Flov/ velocity oF the f l u i d can be determined. 

The pre-shift frequency can be eliminated by setting the output voltage of the tracker to zero, when the 

flow velocity of the f l u i d i s zero. 

The voltage read from the output voltmeter i s a direct measure for the flow velocity of the f l u i d i n the 

measuring volume. 

The relation between the doppler frequency = V(t).K and the flow velocity Uĵ  i s : 

U^(t) = A / ( 2 . s i n 0 ) . K . V(t) 

Note: The tracker must be fast enough to determine changes in V 

(a-21) 

ds" 

V/hen two particles enter the measuring volume almost simutaniously the doppler burst of the second 

particle can not be distinguished from the doppler burst of the f i r s t p a r t i c l e . A mean doppler 

frequency is determined in that case. This situation occurs when too many particles are present 

in the f l u i d . 

The influence of glass walls on the measuring volume 

Generally the laser, the lenzes, the photodetectors and the tracker w i l l be positioned outside the medium 

in which the measurements are done. 

For example in case oF measurements in water in a Flume the lightbeams enter and leave the water generally 

through glass walls. 

A l i g h t beam passing From a i r into glass undergoes retraction due to the change in retractive index. 

The same occurs when the beam passes From glass into water. 

( a i r ) ( g l i s s ) (water) 

f-iguAz A-IS: JniZuznce- of, thz mil on thz pos-cUon of thz mzoAuAtng volumz. 

Due to reFractlon the two beams w i l l intersect at a greater distance from the wall. 

In that case Snell's law can be used: sin a^^/sin = n^/n^ , with n.^, as refractive index for the 

two materials. 
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For determination of Û ,̂ s i n 0 is of importance. The angle bebveen the beams i s 2 . 0 in a i r , 2 . 0 ' in water 

and 2 . 0 ' ' in glas. 

So, s i n 0 ' ' / s i n 0 = n^/n^ and s i n 0 ' / s i n 0 ' ' = n^/nj, 

give: s i n 0 ' = n^nj^.sin© (a-22) 

The values of the refractive indices are: n . ^ 1 ; n , =; 1.5 : n , 1.3 

air glass ' water 

From formula (a-22) follows, that 0 ' is independent from the glass. The same holds for refraction which 

occurs for a beam passing water, glass and a i r . 
As the photodetector i s placed in air on the other side of the flume formula (a-9) holds: 

= 2.U , .s in0/A^ 

and is independent of glass and f l u i d , because both s i n 0 a n d X are proportional to n. 

The length y to the measuring volume in the f l u i d is however influenced by refraction. 

So ^p = d . t a n 0 ' ' = d.arcsin(n /n . s i n 0 ) and 
a g 

y = (p - A p ) / t a n 0 ' (a-23) 

In practice AP <K P J SO (a-23) simplifies to: y =; p / t a n 0 ' 

Particles i n the f l u i d 

Essential for the determination of a doppler burst is the presence of scattering particles which scatter 

the laser l i g h t i n the f l u i d . 

Generally there are enough scattering particles present in water, but often particles have to be seeded 

to receive a good doppler signal, specially when a small measuring volume i s used. 

Particles have to f u l f i l l the following demands specific for water: 

- The density of particles must be approximately equal to the density of the surrounding f l u i d , 

- The particles must have the same velocity as the surrounding f l u i d , 

- The particles size must be small enough to follow the fluctuations of the flow almost instanta-

nlously. (mass and acceleration forces must be very small), 

- The particles must scatter the laser l i g h t s u f f i c i e n t l y , 

- The particles concentration in the f l u i d must be so that a homogeneous refractive index i n the 

f l u i d occurs, 

- The number of particles in the f l u i d must be large enough to give a detectable signal, but must 

not be to large. 

Notes: 

- In a stagnand f l u i d the tracker can sometimes determine a 'flow velocity' which i s due to 

Brownian movements, 

- Particles may be subjected to l i f t forces due to flow velocity gradients, which occur near walls. 

Due to these forces extra flow velocity components are added. 

Two component flow velocity measurements with the IDA 

With the beam configuration of one illuminating and one reference beam, one flow velocity component can be 

determined. 

This flow velocity component i s normal to the bisectrice of the angle between the two beams and l i e s i n 

the plane of the two beams. 
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To determine another flow velocity component i n the same measuring volume, an extra reference beam can be 

added. For instance the other - 1 ^ ^ ^^^^^ Ughtbeam of the rotating grating can be used for this 

Interference of the - l ' ^ order beam and the Ô h and the other . 1 ^ ^ ^^^^ ̂ .̂ .̂^ ^.^^ discribed 

in formula (a-15) . 

However these signals are not sig n i f i c a n t because they do not contain doppler frequency information. 

The beam configuration with two reference and one illuminating beam sketched in figure A-16, can be used to 
obtain two velocity components Vĵ  and V2. 

o = optical axis of 

the lens 

2X "2 

flow velocity components 

f-lguAZ A-16: Two component LVA Mistm. 

In principle a 3^^ reference beam can be added to determine three flow velocity components, this confi­
guration i s not treated. 

The beams are set i n a configuration as sketched in figure A-16. The angle 2 . 0 between the beams R. and I 
is equal to the angle between the beams R̂  and I . 

Flow velocity component i s measured in the plane of the beams R̂  and I and component V, i s situated 
in the plane of R̂  and I . 

Composition of V̂^ and V̂  gives the velocity vector IT and turbulent quantit 

the anqle f= 45°. This w i l l be made clear i n figure A-17. 
quantities are easily determined when 

plane I I planei I 

ftguAZ A-17: VlnzctLon of thz flow vzlocltij vzctoA In AztaUon to <p . 

The given length's are y, b and the angle 0 is known, the plane I is par a l l e l to plane I I . 
The sine-rule gives; 

(\/yW - d ) / s i n i ^ = e/sin(J3.7C -/5) = e.y'y^+b^ /y 

so: i n i ^ = (1 - d/y/y^+b^ ).y/e 
f a - 2 4 ) 

I t i s convenient when the flow velocity vectors v, and V̂  are i n the plane I I , which Is par a l l e l to plane I . 

For example plane I i s a glass wall and plane I I i s an imaginary plane somewhere i n the Fluid. 

To obtain this situation ^ must be zero, substituting t h i s i n (a-24) gives: d / V y ^ = 1 , and 

From figure A-17 i t is clear that d =yyhc^ . 

This yields b = c and so 9, = 45°. The beam configuration with b = c is called the 45° beam configuration. 
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Resolution of flow velocities 

In some cases i t is not possible to measure di r e c t l y the desired flow velocity components, so two other 

components are measured and resolved in the desired components. 

A demand for the two reference beams i s that these beams must be projected to the photodetectors, so no 

obstacles are allowed in the path of the reference beams. 

A demand for the illuminating beam i s that this beam cannot pass a free water surface before intersecting 

the measuring volume. A free water surface is not at rest when the water flows, so due to th i s effect 

and refraction the direction of the illuminating beam is not stable. 

For instance near a wall or a water surface flow velocity components have to be measured as sketched i n 

figure A-18. 

illuminating beam 

reference beam 

V-iguAZ A-/«: W-tocUy componznti. 

cosj3= sino: 

sin^i = cos a 

In many situations i t i s convenient to transform the flow velocity components V̂^ and V̂ , to the components 

U and W. This transformation reads: 

U(t) = V^(t).cosa + V2(t).cosp 

W(t) = V-|^(t).sina - V2(t).sin^ 
(a-25) 

Turbulent quantities can be determined after the Reynolds decomposition: 

V^(t) = + v| 

V2(t) = V2 + v^ 

and 

and 

v̂ (t) 
V2(t) = V2 

; V ' = 0 
(a-26) 

The mean flow velocities with the aid of (a-26) read: 

U = Vj^.cosa + ^^-cosj!) 

W = V2.sinQ; - V2.sin^3 

The turbulent quantities can be determined with the aid of (a-25), (a-26) and (a-27) and read: 

2 2 2 2 

u'w' = -̂ 2 ).sinQ: .cosa + v|v^.(sin a - cos a ) 

u'2 = V|2.COS2Q; + 2.vjv|.sina; .COSQ; + v'^.siri^a 

2 2 2 2 2 

w' = vj .sin a ^ 2.vjv^.sina:.cosa + v^ .cos a 

(a-27) 

(a-28) 

(a-29) 

(a-30) 

Formula (a-28) denotes the Reynoldsshearstress, (a-29) and (a-30) denote turbulent energies. 
—2 —7 —9 — ^ . — 

The terms vj^ , v^ , u' and w' are auto-correlations, the terms vjv^ and u'w' are cross-correlations. 

The overall LDA system 

The system sketched in figure A-19 is for a situation i n which the instantane flow velocities in a v e r t i c a l 

plane are measured. 

The measurements are carried out i n a flume and the f l u i d i s water. 
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PD = photodetector 

FlguAZ A-19! The. oveAatt LVA system. ANAtOG PROCESSING 

The laser beam i s focussed on the rotating grating. The 0̂ *̂  and l ^ * " order beams are focussed in the measuring 

volume by means of optics. 

The 0 order beam i s displaced by a beam displacer in order to create the 45°beam configuration. 

The measuring volume i s projected in the water at the desired position. 

The photodetectors registrate the doppler bursts and the tracker converts this into a voltage level for both 

signals. The signals from the tracker are f i l t e r e d i n order to remove high frequencies (noise) or i f desired 

low frequencies (mean ve l o c i t y ) . 

The f i l t e r i n g i s carried out with lowpass f i l t e r s (LPF), highpass f i l t e r s (HPF) or bandpass f i l t e r s (BPF). 

The voltage levels represent the Flow velocities V̂  and V̂  as a function of' time. 

The signals can be stored analog asv/ell as d i g i t a l . 

Analog: The signals are recorded with a taperecorder. From the tape the signals can be processed by a correlator/ 

spectrum analyser, to produce auto- and cross-correlations and power-spectra oF the turbulent 

quantities. The results can be shown on a screen or can be plotted. 

D i g i t a l : The analog signals are lead to an A/D-converter which converts the signals and sends the d i g i t a l 

InFormation to the computer. 

The data are stored on computer tape, and can be processed by the computer, 

When software i s available mean values of the flow velocities can be calculated and also turbulent 

quantities or correlations or spectra. 

The results can be printed, plotted or stored on tape or disk. 

A LDA system used i n practice i s shown in figure A-20. 
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Overview of important Formulas and data 

The data given below are specific for one of the types of the IDA systems in use at the Laboratory of 

Fluidmechanics DelFt. 

Laser: 

5mW Spectra Physics Model 120, TPD heterodyne system. 

He-Ne laser with a wavelength: A„ = 632.8,10"' m, beamdiameter d = 1 mm at I .e'^. 

Grating: 

rotation frequency: = 48.5 Hz. | 

There are three tracks of gratings on the disc: number of lines N: | T}-'^ 

distance between I 

pre-shift frequency p = 800.lo' Hz. 

the lines d 

ol3 .12 2"' I 2" 

1 1 \ 
6.08//m I 11.45(Um I 21.4^m I 

Optical system: 

Type 400. 

optical transfer factor: = 2.sin0/A^ (m"^) , with 20 as the angle in a i r between the illuminating 

beam and the reference beam. 

Lenses: 

focus lengths: f̂ ^ = 120 mm or 50 mm 

f^ = 250 mm 

f j = 330 mm or 600 mm 

beamdiameter after passing the grating: d̂^ = d -^^/f-y • 
lens 1 

lens 2 lens 

Measur ing_ volume: 

dimensions: width Ax = 2.rycos0 ; length Ay = 2 . r ^ / s i n 0 ; thickness A z = 2.r 

Near the measuring volume the beam radius is r^ - 1. X / 7i .AO and A 0 = d̂ /̂F̂  

The width and thickness of the measuring volume are not influenced by refraction of the beams, the length how­

ever is influenced through s i n 0 ' = s i n 0 / n . With refractive index n = n /n . = 1 333 
water a i r • 

After substitution the dimensions of the measuring volume in water are: 

width: Ax = 4. A ^ . f j / ( 7r.dj^.cos0) 

length: Ay = 4. A^. f j .n/( TT.d^ , s i n 0 ) 

thickness: A z = 4. A^.fj/C T T . d j ^ ) 

(m) 

(m) 

(m) 

Photodetectors: 

HP 4220, freguency range: 60.lo' - 5.10^ Hz. 

Tracker: 

Frequency tracker type 1077/2M 

Input frequency range: 100 .lo ' - 2.10^ Hz. 

Conversion factor: K = 200.lo' Hz/volt. 

A/D-converter: 

convei rsion: 10 vol t H 2 - 1 = 16383 ( d i g i t a l ) 

[i2!:!-y2l2£iiy_E5P̂ ŝentation: 

The representation i n volts from the tracker i s : 1 vo l t = K/K (m/s) 

The representation from the A/D-converter: 1 s K/(16383.K ) (m/s) 

Note that amplification of the signals must be taken into account to derive the ri g h t conversion. 
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A LDA heterodyne system in practice 

1.1 

- i — 

^ ^ ^ ^ ^ 
• / 1 J / • / / / / / / 

7///;i / / / / / / / / / 

V , -

overall view optics and photodetectors 

optics 

AD-convertor 

plo t t e r 

spectrum analyser 

correlator 

illuminating and reFerence beams 

taperecorder 

oscilloscoop 

f i l t e r s 

Ï T T tracker 

" 1 | 

1-^ 
analog and d i g i t a l processing equipment 

F-tgu/te A-20: Tfee IPA system in ptactlce 
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List 0 tf symbols 

a distance w width of slot 
A Surface of the photodetector X coordinate, or with index: i , o, r , ' 
b distance y coordinate, or distance, or with 

h bandwidth of f i l t e r index: i , r 
c velocity of l i g h t , or distance z coordinate, or with index: i , r, ' 
C 
0 

factor: 4. tt . ( j / k ^ Ax width of measuring volume 
d distance. Ay length of measuring volume 

with subscript: Az thickness of measuring volume 
g distance between slots x ( t ) , y ( t ) s i g n a l i n the tracker 
o beam diameter from the laser 

0 distance measuring volume to photodetector E(..) optical f i e l d , or with index: d, I , i s . 
1 beamdiameter after grating: d . f ^ / f , 

o z 1 
r,R,rs 

e distance Re(..) real part of a complex expression 
f focal length 

h ' ̂2 * f j focal length a angle, or with index: 1, 2 
i complex number, jj) angle 

with subscript: 0 angle, or with index: ', '' 
d t o t a l l i g h t intensity (p angle, or with index: 1, 2 
1 l i g h t intensity of induvidual fields lj> angle 

r l intensity after mixing of l i g h t rj s e n s i t i v i t y of the photodetector 
r r intensity after mixing of l i g h t A wavelength of the laser l i g h t , or with 
s intensity after mixing of l i g h t index: o, 01, Or 

I intensity of optical f i e l d . V frequency of the laser l i g h t , or with 
with subscript: index: a, d, ds, g. Pi, Pr, o, 01, Or, s 
N intensity for N slots (T dimensionless scattering amplitude function 
0 intensity i n the centre of the beam of the optical f i e l d 
1 intensity for 1 sl o t A 0 far f i e l d convergence angle of the beam 

k wavenumber: 2.n/\^, or integer 
K conversion factor 

K 
0 

optical transfer factor Literature 

n refractive index air-water. 

with subscript: Durrani T.S., Created C ,A ., tasersystems i n flow 

a refractive index of air measurement. Plenum Press, New York, 1977 

g refractive index of glass 
Durst F., Melling A., Whitelaw J.H., Principles Durst F., Melling A., Whitelaw J.H., Principles 

w refractive index of water 
Durst F., Melling A., Whitelaw J.H., Principles 

and practice oF laser-doppler anemometry, 
1 refractive index of material 1 

and practice oF laser-doppler anemometry, 
1 refractive index of material 1 

Academic Press, london, 1976 
2 refractive index of material 2 

N number of slots on the disc Evers D.J.W.M., Huigen G., Welling W.A., Laser-doppler 

Pi distance snelheidsmetingen, signaalverwerking ( i n dutch) 

r,: ̂1 place vector i n the optical f i e l d PT-werktuigbouw 38, nr. 9, 1983,, p. 71-75 

r 
0 

beam radius i n the waist Menzel D.H., Fundamental formulas of physics (2 vol) 

^1 distance Dover Publications, New York, 1960 

t time 
Welling W.A., De laser-doppler methode ( i n dutch). 

u' fluctuating flowvelocity 
PT-werktuigbouw 37, nr. 12, 1982, p. 72-75 

u, instantane flowvelocity 
PT-werktuigbouw 37, nr. 12, 1982, p. 72-75 

D* velocity vector Weyl H., Space-Time-Matter, 

D mean flow velocity Dover Publications, New York, 1952 

fluctuating flowvelocity 

\ instantane flowvelocity, of voltages 

mean flov/velocity 

V 
g 

tangential velocity of the grating 

w' fluctuating flowvelocity 

W instantane flowvelocity 

W mean flowvelocity 
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Prelimnary experiments with a dune on a conveyor 

To measure local instantaneous flowvelocities and local sediment transport under well defined conditions, an 

experiment in a straight laboratory flume i s suitable. 

The flowconditions i n the flume are kept constant, so a quasi-steady situation occurs. 

When a series of sanddunes i s created in the flume, however, the shape of the dunes i s changing, dunes are 

catching up and the local sediment i s not constant. 

To create a steady situation solid dunes can be used, but than no sediment transport occurs so the local trans­

port along the dunes i s not known in principle. 

However, an estimation of the transport can be made from experiments with moving sanddunes. 

Another set up i s to f i x a series of solid dunes to the bottom of the flume, remove one solid dune and put 

a conveyor in i t s place, on the conveyor belt a certain quantity of sand (the volume of one dune) is layed. 

The solid dunes upstream and downstream the conveyor create a watermovement which corresponds with the 

situation of moving dunes and the sand on the conveyor belt behaves l i k e a moving dune. 

The sand on the conveyor belt is transported downstream over the surface of the sanddune and so the dune 

propagates downstream. 

The propagation of the sanddune, however, i s neutralized by the upstream propagationvelocity of the conveyor 

belt . The sanddune has a propagationvelocity zero relative to the flume. 

-conveyor 

Figu-te B-!: P.ilncipte of a sanddune on a conveyoJi. 

The advantages of th i s set up are; 

- The mean local sediment transport along the dune is known (conveyor belt velocity times local dune height), 

- The measuring equipment does not have to be moved in order to keep up with a point along the dune, 

- The set up corresponds satisfactory with a situation of a series of moving dunes. 

Prelimnary experiments showed that the sanddune on the conveyor is not stable. 

Due to the wake behind the solid dune the propagationvelocity along the sanddune i s not constant. 

With respect to the solid dunes a so-called 'return transport' occured. 

ViguAZ B-2: Retiun fianipokt in the wake upstream the sanddune. 

The top of the dune propagated with a velocity c^, but the foot of the dune in the v i c i n i t y of the wake 

has a propagationvelocity C2<c-j^, so the dune 'streched' more and more sand piled up i n the wake. 

This effect i s even stronger near the walls of the flume where the flowvelocity i s to small to transport 

the sand s u f f i c i e n t l y . 

Due to both effects the dune height decreased i n time, the sand piled up in the wake and one large dune 

occured consisting of the solid dune upstream the conveyor and the sand. 

Different shapes of the solid dunes upstream the conveyor did not prevent the return transport. 

In figure B-3 the shape of the sanddune in time i s sketched i n topview. 
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VIQUAZ B-3; BehaviouA of the. ianddane In. time. 

To create a stationary sanddune the return transport has to be eliminated. 

The next rigorous step is to remove the solid dunes and furthermore to reduce the width of the sanddune. 

This situation i s called the 'solitary dune situation'. 

Due to the absence of the vmke upstream the dune and the reduced influence of the wall of the flume no 

return transport occured. 

The dune width is reduced by using supports on both sides of the dune as sketched in figure B.4. 

The supports also prevented loss of sand on both sides of the dune and the flowvelocity i n the centre 

part of the flume i s high enough to transport the sand s u f f i c i e n t l y even in the v i c i n i t y of the supports. 

Due to the abrupt upstream end of the supports a vortex street i s generated which introduces enough turbu­

lence to transport sand particles very close to the supports. 

topview 
wall 

support 
cross-section 

-conveyor 

figuAe B-4: PAinciple of set up wvth sotitoAij dune. 

^upport 

TL conveyor 

Prelimnary experiments showed that the sand on the conveyor belt shaped as a dune. 

With this set up a dune is created which: 

- has a constant shape during a long period, 

- is easily accessible for the measuring eguipment, 

- has a known local transport along the dune 

The flowvelocity p r o f i l e upstream the s o l i t a r y dune is almost logarithmic due to the long straight horizon­

t a l bed. 

This i s an advantage for the upstream boundary condition used in the computer program to calculate the flow-

f i e l d above the dune. 

A disadvantage of the set up i s that the situation of one dune is not comparable with the natural situation 

of a series of dunes 

But for a s t a r t of the investigation of the mechanisme of sediment transport in an accelerating flow, the set 

up is interesting. 

The shape of the solitary dune i s reasonably symmetric with respect to the flume axis and the sediment trans­

port is mainly directed in the main flowdirection. 
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Tables of measured data 

contents! 

Table C.l; figures: 4.1, 4.2, 4.3 

Table C.2; figure : 4.8 

Table 0.3; figure : 4.7 

Table C.4; figures: 4.13, 4.16 

Table C.5; figure : 4.13 

Table C.6; figures: 4.14, 4.16 

Table C.7! figure : 4.14 

Table C.8: figures: 4.15, 4.16 

Table C.9! inflow boundary, figure: 4.10 

Table C.lOjdune heights, figures: 4.13, 

4.14, 4.15, 4.16, 4.18 

Table C.11 jangles of streamlines i n 

measurements and calculation 
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Table C.l figures: 4.1, 4.Z, 4.3 

\ 
(m) 

X3 
(mm) 

^1 

(m/s) 

S 
-Z 

*10 

(m/s) 

~2 

"̂ 1 
-Z 

*10 
(m /s ) 

Z 

*10 ̂  
( 2/ 2. (m /s ) 

- ^ l " 3 ^ 
*10 
2, 2. (m Is ) 

a;+/3 

(°) 

16.00 Z 0.40Z7 -0.6445 0.Z811 0.44Z9 0.5173 45 

4 0.4Z8Z -0.6639 0.Z793 0.4804 0.5366 

7 0.4655 -0.7305 0.Z603 0.544Z 0.5667 

9 0.4791 -0.7161 0.Z604 0.5311 0.5410 

14 0.5057 -0.7699 0.Z4Z9 0.568Z 0.5507 

19 0.5Z67 -0.7970 0.Z199 0.5638 0.5146 

Z4 0.54Z7 -0.8389 0.Z019 0.5547 0.4756 

Z9 0.559Z -0.9105 0.1774 0.5Z53 0.4374 

34 0.579Z -0.9453 0.1696 0.5140 0.4ZZ5 

39 0.5804 -0.956Z 0.1510 0.4817 0.39Z6 

44 0.5950 -0.9717 0.1338 0.435Z 0.3434 

54 0.6098 -1.0Z4 0.1089 0.3683 0.Z665 

64 0.6Z53 -1.077 0.0803 0.Z917 0.1856 

74 0.6331 -1.017 0.0581 0.2109 0.11Z6 225 

84 0.6384 -1.041 0.0388 0.1151 0.0338 

89 0.6390 -1.05Z 0.0561 0.0510 0.0027 

74 0.6340 -0.9307 0.0616 0.2188 0.1159 

44 0.5950 -1.038 0.1444 0.4496 0.3746 

Z4 0.5546 -0.8914 0.1871 0.5450 0.4522 45 

9 0.4905 -0.7816 0.Z459 0.5504 0.5237 

4 0.4363 -0.7Z9Z 0.Z756 0.4814 0.5281 

conversion tape WW8438 
pte.mv2mm.C311 
label: 1 

reorganisation tape: WW8439 
pte.mv2mm.R311 
label: 3 

sample interval : 10 ms 

number of values : 47000 

conversion factor : 1 = 4.3154*10"^ m/s 

conversion tape WW8438 
pte.me2mm.C312 
label: 2 

reorganisation tape: WW8439 
pte.me2mm.R312 
label: 4 

sample interval : 10 ms 

number of values : 47000 

conversion factor : 1 = 4.3154*10"'' m/s 

remark: reorganised data on thi s label (4), 

also on tape: V/W6681/pte.mv2mm.R312/ 
label: 2 

Table C.2 figure: 4.8 

^1 x^ 
^1 U3 

-2 
*10 

2 
" " l 
-2 

*10 

2 

*10 ̂  
""1^3, 
*10 

(m) (mm) (m/s) (m/s) ( 2/ 2. (m /s ) 1 2/ 2. (m /s ) c 2/ 2s (m /s ) (°) 

16.00 2 0.3924 -0.7380 0.2261 0.3905 0.4419 45 conversion tape : WW8003 

4 

7 

9 

0.4280 

0.4587 

0.4749 

-0.6655 

-0.6344 

-0.4685 

0.2362 

0.2378 

0.2274 

0.4248 

0.4492 

0.4665 

0.4948 

0.5015 

0.4831 

pte.mvlmm.C313 
label: 3 

reorganisation tape: WW8056 
pte-mvlmm.R313 

14 0.5031 -0.4529 0.2100 0.4863 0.4717 label: 2 

19 0.5197 -0.4405 0.2057 0.4850 0.4616 sample interval : 10 ms 

29 0.5557 -0.4576 — 0.4680 0.3807 number of values : 47000 

39 0.5749 -0.4445 0.1378 0.4222 0.3523 conversion factor ; 1 = 4.Zl87*10"^ m/s 

54 0.6028 -0 .6093 0.0969 0.3311 0.2467 

64 0.6144 -0.3700 0.0740 0.2507 0.1607 

84 0.6254 -0.3883 0.0382 0.1054 0.0461 225 

54 0.5993 -0.3319 0.1027 0.3484 0.2537 

29 0.5530 -0.2751 0.1747 0.4945 0.4149 

9 0.4843 -0.2896 0.2219 0.4441 0.4467 45 

4 0.4391 -0.2932 0.2340 0.3705 0.4120 

2 0.4092 -0.2480 0.2231 0.3053 0.3409 
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Table C.3 figure: 4.7 

^1 
(m) 

2̂ 
(m) 

^3, 
(mm) 

" l 

(m/s) 

S 
-2 

*10 

(m/s) 

2 
" l 
-2 

*10 
/ 2/ 2 s (m /s ) 

2 

*10 

(m^/s^) 

-"1^3, 

no" 
(m^/s^) n 

16.00 0.0 ** 

0.025 

0.025 

0.025 

0.025 

-0.025 

-0.025 

-0.025 

-0.025 

4 

2 

9 

19 

54 

2 

9 

19 

54 

0.4161 

0 .4261 

0.4925 

0.5410 

0.6211 

0.4168 

0.4866 

0.5374 

0.6164 

-1.049 

-0.9777 

-1.127 

-1.177 

-1.250 

-0.9243 

-1.092 

-1.196 

-1.391 

0.3121 

0.2814 

0.2580 

0.2144 

0.0993 

0.2558 

0.2432 

0.2036 

0.0942 

0.6078 

0.4812 

0.5633 

0.5479 

0.3473 

0.5348 

0.5851 

0.5536 

0.3402 

0.5842 

0.5550 

0.5897 

0.5162 

0.2555 

0.5436 

0.5692 

0 .4883 

0.2378 

45 conversion tape : WW8438 
pte.mv2mm.C315 
label: 3 

reorganisation tape: WW8439 
pte.mv2mm.R315 
label: 5 

sample interval : 10 ms (**: 2 ms) 

number of values : 41000 
(**•: 445000) 

conversion factor : 1 = 4.3154*10"^ m/s 

remark: reorganised data also on tape: 
WW6681/pte.mv2mm.R315/label: 1 

Table C.4 figures: 4.13, 4.16 

' ^ l 
(m) 

3̂ 
(mm) 

" l 

(m/s) 

S 
-2 

»10 

(m/s) 

2 

^1 
- 2 

*10 
(m /s ) 

2 

*10 ̂  
/ 2/ 2 s (m /s ) 

- ^ l " 3 , 
*10 

/ 2, 2 s (m /s ) 

-u.u 
t n, 

no ^ 
/ 2, 2 s (m /s ) (°) 

15.79 

15.83 

15.87 

15.91 

15.95 

15.99 

16.03 

16.07 

16.12 

16.17 

14 

23 

31 

41 

44 

55 

60 

63 

0.3535 

0.4211 

0.4130 

0.5010 

0.5127 

0.5352 

Ü.5614 

0.5823 

7.735 

9.707 

9.707 

10.03 

8.794 

7.825 

5.664 

4.659 

0.5703 

0.5094 

0.5845 

0.5147 

0.5187 

0.4895 

0.4517 

0 .4504 

0.6350 

0.5329 

0.5837 

0.4940 

0.5009 

0.5339 

0.5311 

0.5359 

0.0615 

0.1117 

0.1583 

0.0887 

0.1473 

0.2934 

0.4241 

0.5306 

0.9989 

1.100 

1.028 

0.9760 

0.9172 

0.9041 

0.8162 

0.8410 

56 

56 

56 

54 

54 

51 

50 

50 

conversion tape : WW8831 
pte.mv2mm.C075 
label: 2 

reorganisation tape: WW8832 
pte.mv2mm.R075 
label: 2 

sample interval : 10 ms 

number of values : 23500 

conversion factor : 1 = 4.2577*10"'' m/s 

15.79 

15.83 

15.87 

15.91 

15.95 

15.99 

16.03 

16.07 

16.12 

16.17 

66 

66 

0.5477 

0.4662 

2.355 

-0.3574 

0.5439 

0.8020 

0.7182 

1.078 

0.7937 

1.455 

0.9964 

1.406 

45 conversion tape : WW8831 
pte .mv2mm.C077 
label: 4 

reorganisation tape: WW8832 
pte.mv2mm.R077 
label: 5 

sample interval ; 10 ms 

number of values : 23500 

conversion factor : 1 = 4.2577*10"^ m/s 

16.27 40 

50 

56 

60 

64 

66 

68 

70 

74 

-0.006 

0.0302 

0.1046 

0.1864 

0.2819 

0.3352 

0.3856 

0.4219 

0.5616 

2.087 

1.024 

-0.7616 

-1.296 

-1.170 

-1.817 

-2.040 

-1.740 

-1.713 

0.2244 

0.4573 

0.9467 

1.319 

1.634 

1.786 

1.897 

1.795 

1.447 

1.544 

3.124 

5.110 

5.592 

5.662 

5.555 

5.181 

4.639 

3.274 

0.3459 

1.091 

3.017 

4.117 

4.962 

5.202 

5.214 

4.807 

3.679 

0.4750 

1.307 

2.666 

3.548 

4.274 

4.507 

4.465 

4.233 

3.341 

45 conversion tape : WW8831 
pte .mv2mm.C077 
label: 4 

reorganisation tape: WW8832 
pte.mv2mm.R077 
label: 5 

sample interval ; 10 ms 

number of values : 23500 

conversion factor : 1 = 4.2577*10"^ m/s 

16.39 2 

6 

10 

20 

40 

60 

100 

140 

180 

-0.005 

0.0159 

0.0314 

0.0723 

0.2278 

0.4779 

0.7675 

0.8158 

0.8711 

-0.7614 

-1.548 

-2.001 

-3.230 

-6.899 

-10.68 

-9.764 

-7.346 

-6.266 

1.331 

1.404 

1.445 

1.668 

2.304 

2.129 

0.2120 

0 .0747 

0.0519 

3.768 

7.850 

10.80 

16.28 

18.59 

13.68 

1.079 

0.4177 

0 .4911 

1.477 

2.574 

3.901 

5.574 

10.56 

10.26 

0.4166 

0.2053 

0.0596 

3.605 

3.031 

0.0054 

3.566 

7.564 

7.663 

0.2719 

0.1729 

0.0610 

45 

conversion tape : WW8831 
pte.mv2mm.C076 
label: 1 

reorganisation tape: WW8832 
pte.mv2mm.R076 
label: 1 

sample interval : 10 ms 

number of values : 23500 

conversion factor : 1 = 4.2577*10" m/s 
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Table C.5 figure; 4.13 

9 

^1 3̂ 

^1 3̂ -2 
*10 

c. 

^1 
-2 

*10 

2 

*10 ̂  
-^1^3, 
*10 ' 

-u.u 
t n, 

*10 

(m) (mm) (m/s) (m/s) ( 2/ 2 s (m /s ) t 2/ 2 s (m /s ) 1 2/ 2 s (m /s ) ( 2/ 2 s (m /s ) ( ° ) 

15.45 2 0.5343 -0 .2170 0.2359 0.3208 0.5034 45 conversion tape ; WW8831 

4 0.5626 0.2764 0.2178 0.3080 0.4664 pte.mv2mm.C075 0.4664 
label: 2 

6 0.5790 0.5477 0.1820 0.3219 0.4268 _ _ 

reorganisation tape; WW8832 
0.4268 

reorganisation tape; WW8832 
8 0.5954 0.6264 0.1470 0.3116 0.3554 — 

reorganisation tape; 
pte.mv2mm.R075 

10 0.6042 1.121 0.1394 0.3397 0.3840 — label; 2 

14 0.6188 1.194 0.1152 0.3819 0.3731 — sample int e r v a l ; 10 ms 

18 0.6268 1.160 0.0982 0.3986 0.3178 
number of values ; 23500 

25 0.6419 1.874 0.0984 0.4131 0.2960 — 
conversion factor : 1 = 4.2577*10-^m/s 

35 0.6594 1.858 0.0909 0.4349 0.2970 — 

55 0.6864 1.809 0.0846 0.4577 0.2769 — 

75 0.7071 1.640 0 .0744 0.4966 0.2990 — 

100 0.7340 1.494 0.0603 0.4254 0.2531 

120 0.7551 1.291 0.0531 0.3580 0.2245 — 

175 0.8209 0.0157 0.0209 0.1685 0.0781 — 

185 0.8325 -0.3006 0.0194 0.1385 0.0538 — 

15.79 16 0.3757 8.030 0.5045 0.6082 0.1576 1.053 conversion tape : WW8831 

18 0.4026 8.255 0.4668 0.6399 0.0981 0.8835 
pte .mv2mm.C076 
label: 1 

20 0.4285 9.044 0.4549 0.7606 0.4823 1.206 reorganisation tape; WW8832 0.7606 0.4823 1.206 reorganisation tape; WW8832 
25 0.4671 9.729 0.4821 0.8689 0.8112 1.534 pte.mv2mm.R076 

35 0.5275 10.74 0.4216 0.7929 0.7536 1.362 label: 1 

50 0.5937 10.87 0.2322 0.5873 0.5106 0.7853 
sample interval ; 10 ms 

75 0.6526 10.34 0.1162 0.4980 0.3723 0.4567 
number of values ; 23500 

100 0.6913 9.249 0.0843 0.4498 0.2634 0.3057 
conversion factor ; 1 = 4.2577*10"'m/s 

170 0.7838 6.771 0.0404 0.2565 0.1426 0.1530 

16.07 63 0.6114 6.953 u.4226 0.5370 0.2972 0.7047 49 

65 0.6403 6.740 0.3797 0.5532 0.2962 0.6269 45 

67 0.6567 7.013 0.3634 0.5567 0.3435 0.6609 

72 0.6764 7.206 0.3021 0.6383 0.4700 0.7111 

80 0.7045 7.162 0.2542 0.6798 0.4938 0.6709 

95 0.7466 6.279 0.1896 0.5997 0.4630 0.5646 

110 0.7705 4.845 0.1038 0.5157 0.3196 0.3498 

140 0.7970 0.9410 0.0657 0.4566 0.2480 0.2504 

180 0.8304 -7.141 0.0402 0.2941 0.1006 0.0899 

16.17 68 0.5579 0.2339 0.5453 0.7498 0.9811 1.006 conversion tape : WW8831 

70 0.6074 0.5703 0.5251 0.6334 0.7893 0.8295 pte.mv2mm.C077 0.6334 0.7893 0.8295 
label: 4 

74 0.6887 1.428 0.3422 0.4840 0.4689 0.5032 
reorganisation tape: WW8832 

0.4689 0.5032 
reorganisation tape: WW8832 

78 0.7100 2.091 0.2719 0.5202 0.4273 0.4917 pte.mv2mm.R077 

85 0.7382 3.022 0.2195 0.5674 0.4031 0.4671 label: 5 

95 0.7633 3.525 0.1884 0.6121 0.4637 0.5194 
sample interval : 10 ms 

110 0.7919 3.994 0.1268 0.5621 0.3763 0.4100 
number of values : 23500 

130 0.8327 3.579 0.0782 0.4664 0.2717 0.2844 
conversion factor ; 1 = 4.2577*10"^m/s 

150 0.8543 3.810 0.0600 0.4270 0.2309 0.2378 

180 0.9049 3.783 0.0429 0.3346 0.1247 0.1282 
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Table C.6 figures: 4.14, 4.16 

^1 3̂ 

^1 3̂ 
- 2 

*10 ̂  

"T 
" l 
-2 

*10 

2 

*10 ̂  
-°l"3, 
no"' 

-u.u 
t n, 

n o ' 

(m) (mm) (m/s) (m/s) (m /s ) (mVs^) 1 2 / 2 v (m Is ) (°) 
15.81 12 0.3087 6.187 0.5317 0.6108 0.0695 0.9684 45 conversion tape : WW8831 

15.84 16 0.3520 7.821 0.5185 0.5794 0.0318 1.002 pte.mv2mm.C081 
label: 5 

WW8832 
pte.mv2mm.R081 

15.87 

15.90 

21 

25 

0.3812 

0.3287 

8.451 

6.210 

0.5198 

0.4953 

0.6043 

0.5990 

0.0914 

0.1160 

1.054 

0.9023 
reorganisation tape: 

pte.mv2mm.C081 
label: 5 

WW8832 
pte.mv2mm.R081 

15.93 32 0.3644 6.102 0.4426 0.5709 0.3039 0.9149 label: 6 

15.96 36 0.3465 4.681 0.4003 0.5651 0.2538 0.7012 

16.02 56 0.4803 5.634 0.3668 0.5779 0.4226 0.7692 conversion tape : WW8831 

16.05 

16.08 

16.11 

60 

62 

66 

0.5225 

0.5092 

0.5370 

5.329 

3.760 

1.934 

0.3613 

0.4291 

0.4573 

0.5550 

0.6657 

0.6245 

0.4235 

0.5541 

0.7008 

0.7194 

0.8130 

0.8435 
reorganisation tape: 

pte.mv2mm.C081 
label: 5 

WW8832 
pte.mv2mm.R081 

16.14 66 0.5017 -1.308 0 .5190 0.7369 0.9406 0.8228 label: 7 

16.30 4 -0.1094 0.7736 0.4535 0.8135 0.1951 0.0658 conversion tape : WW8831 

8 -0.1084 1.195 0.4231 1.115 0.3632 0.0146 pte.mv2mm.C083 
label: 3 

WW8832 
pte.mv2mm.R083 

12 

20 

-0.0951 

-0.0883 

1.652 

2.181 

0 .4462 

0.5045 

1.347 

1.943 

0.4688 

0.7668 

0.0865 

0.0451 
reorganisation tape: 

pte.mv2mm.C083 
label: 3 

WW8832 
pte.mv2mm.R083 

25 -0.0777 2.604 0.5450 2.532 0.9144 0.1478 label: 3 

35 -0.0122 1.337 0.7594 4.137 2.128 1.907 
sample interval : 10 ms 

45 0.1049 -0.3805 1.284 6.867 4.351 4.121 
number of values : 23500 

50 0.1568 -1.203 1.546 8.155 5.421 4.798 
conversion factor : 1 = 4.2577n0-^m/s 

55 0.2295 -2.226 1.554 7.883 5.613 4.779 

60 0.2934 -2.552 1.736 8.426 6.484 5.610 

70 0 .4595 -3.177 1.703 6.495 5.823 5.033 

90 0.7017 -2.401 0.4006 1.608 0.9508 0.8648 

110 0.7575 -2.058 0.1882 0.7211 0 .4491 0.4160 

140 0.7966 -1.048 0.0860 0.5050 0.2741 0.2690 

180 0.8332 1.130 0.0595 0.3621 0.1898 0.1930 

16.45 4 0.0082 -1.113 1.203 5.116 1.934 3.874 

10 0.0434 -2.578 1.386 9.866 3.179 0.2316 

15 0.0893 -2.746 1.569 12.66 4.471 4.549 

25 0.1551 -4.794 1.928 14.45 6.395 3.912 

30 0.2113 -5.488 1.997 14.32 8.043 5.643 

40 0.2940 -6.709 1.922 14.17 7.509 5.662 

45 0.3210 -7.803 1.938 14.89 7.726 5.826 

50 0.3695 -8.366 1.974 12.63 7.820 5.516 

60 0.4636 -9.337 1.871 10.13 7.108 4.890 

75 0.5916 -9,200 1.173 5.513 4.059 2.929 

100 0.7087 -7.783 0.2686 1.454 0.6593 0.5090 

140 0.7566 -5.259 0.0943 0.4832 0.2576 0.2231 

180 0.7967 -3.810 0.0732 0.3626 0.2418 0.2234 
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Table C.7 figure: 4.14 

9 

-2 

no ^ 

Z 
^1 
-2 

*10 

2 

no ^ 
- " l % 

no" 

-u.u 
t n, 

*10 ̂  
(m) (mm) (m/s) (m/s) (m /s ) (mVs^) f 2, 2s (m /s ) / 2/ 2s (m /s ) 

15.45 2 0.4983 0.2984 0.2987 0.4443 0.6198 — 
4 0.5232 0.6621 0.2945 0.4643 0.6045 — 
6 0.5464 0.9402 0.3032 0.4920 0.6387 — 
10 0.5772 1.636 0.2674 0.5285 0.6311 — 
20 0.6232 2.575 0.2291 0.5476 0.6260 — 
40 0.6807 2.809 0.1315 0.4621 0.3766 — 
70 0.7110 2.941 0.0865 0.4503 0.2580 — 
90 0.7259 2.879 0.0692 0.4108 0.2270 — 
140 0.7632 2.132 0.0479 0.3225 0.1955 — 
180 0.7923 0 .4606 0.0266 0.1901 0.1003 — 

15.81 16 0.2989 5.858 0.5897 0.7123 0.2550 0.7434 
18 0.2481 4.219 0.6223 0.7377 0.2774 0.6494 
24 0.3710 6.792 0.5607 0.5795 0.2851 1.159 

30 0.4468 9.174 0.4813 0.8163 0.5898 1.329 

35 0.4772 10.11 0.4068 0.9471 0.7149 1.288 

40 0.5066 10.27 0.4156 0.9367 0.7812 1.348 

50 0.5582 10.22 0.3551 0.8304 0.7101 1.147 

75 0.6537 9.426 0.1706 0.5713 0.4393 0.5816 

100 0.6890 8.076 0.0920 0.4510 0.2790 0.3258 

140 0.7322 5.119 0.0652 0.3808 0.2390 0.2555 

180 0.7768 0.1857 0.0358 0.2299 0.1000 0.1030 

16.02 55 0.5136 7.525 0.4864 0.5738 0.3931 0.9895 

57 0.5591 8.053 0.4204 0.5956 0.4042 0.8972 

60 0.5759 8.329 0.4057 0.6480 0.4581 0.9207 

63 0.5931 8.437 0.3741 0.6912 0.4743 0.8809 

66 0.6101 8.401 0.3544 0.6913 0.4987 0.8639 

70 0.6319 9.078 0.3275 0.7506 0.5526 0.8865 

80 0.6665 9.328 0.3063 0.8504 0.6915 0.9697 
100 0.7242 8.655 0.2193 0.6657 0.5684 0.7320 

140 0.7680 5.516 0.0703 0.4656 0.2403 0.2548 

180 0.7929 2.359 0.0481 0.3205 0.1280 0.1325 
16.17 66 0.5100 -1.357 0.5399 0.7783 0.9660 0.8438 

68 0.5570 -0.8128 0.4597 0.6511 0.8032 0.7478 

70 0.6100 0.1237 0.4213 0.5824 0.5424 0.6179 

75 0.6646 1.220 0.3240 0.5619 0.4188 0.4699 
90 0.7230 2.541 0.2608 0.7603 0.5529 0.6160 

110 0.7789 1.885 0.2034 0.6632 0.5197 0.5526 
140 0.8163 0.4215 0.0691 0.4460 0.2076 0.2089 

180 0.8566 -2.477 0.0461 0.3192 0.1370 0.1325 

(°) 

45 conversion tape : 

reorganisation tape: 

sample interval 

number of values 

conversion factor 

WW8831 
pte.mv2mm.C081 
label: 5 

WW8832 
pte.mv2mm.R081 
label: 7 

10 ms 

23500 

1 = 4.2577n0-\/s 
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Table C.8 figures: A.15, 4.16 

^ 1 
x^ 

" l ^ 3 
- 2 

* 1 0 

2 

" l 
- 2 

* 1 0 

2 

* i o 
- " l " 3 , 

* 1 0 ^ 

-u.u 
t n, 

n o " 

(m) 
J 

(mm) (m/s) (m/s) ( 2 / 2 - , (m /s ) < 2 / 2 s (m /s ) 1 2 / 2 s (m /s ) / 2 , 2 s (m /s ) 

1 5 . 4 5 2 0 . 5 1 4 2 0 . 0 9 9 6 0 . 3 0 2 6 0 . 3 4 6 5 0 . 5 3 2 1 — 
4 0 . 5 5 3 6 0 . 3 2 2 4 0 . 3 2 2 3 0 . 3 9 3 7 0 . 5 8 9 2 — 
6 0 . 5 7 6 2 0 . 6 0 7 8 0 . 3 1 1 4 0 . 3 9 0 0 0 . 5 5 6 6 — 
8 0 . 5 9 0 3 0 . 8 6 2 9 0 . 3 9 7 3 0 . 5 5 5 8 — 

1 0 0 . 6 0 2 2 1 . 0 3 2 0 . 2 5 9 9 0 . 4 1 1 3 0 . 5 4 8 9 — 
1 5 0 . 6 3 3 5 1 . 6 2 5 0 . 1 8 2 5 0 . 4 2 2 1 0 . 4 7 6 5 — 
3 0 0 . 6 7 3 5 2 . 1 5 9 0 . 1 2 9 0 0 . 4 7 7 6 0 . 3 8 1 1 — 
7 5 0 . 7 1 9 7 2 . 1 9 2 0 . 0 8 8 9 0 . 4 3 8 2 0 . 2 6 5 2 — 

1 1 0 0 . 7 4 1 8 1 . 9 5 5 0 . 0 6 2 9 0 . 3 9 1 7 0 . 2 1 8 6 — 
1 4 0 0 . 7 6 0 7 1 . 5 1 9 0 . 0 4 7 2 0 . 3 1 8 3 0 . 1 7 5 7 — 
1 8 0 0 . 7 7 9 8 0 . 1 7 3 1 0 . 0 2 6 0 0 . 2 0 4 9 0 . 0 7 5 8 ~ 

1 5 . 8 2 2 9 0 . 4 7 0 3 8 . 3 8 8 0 . 4 0 6 7 0 . 8 3 6 9 0 . 4 4 7 6 0 . 9 7 7 7 

3 1 0 . 4 7 4 4 9 . 5 8 2 0 . 3 9 5 3 1 . 0 0 5 0 . 7 4 6 6 1 . 2 5 9 

3 5 0 . 5 0 2 3 9 . 6 4 8 0 . 4 2 5 5 1 . 0 4 0 0 . 8 6 3 5 1 . 5 7 3 

3 7 0 . 5 0 7 4 9 . 7 8 7 0 . 4 4 5 2 1 . 0 3 9 0 . 8 7 3 4 1 . 6 1 8 

3 9 0 . 5 1 6 5 1 0 . 0 0 0 . 4 5 2 3 1 . 0 9 3 0 . 9 0 6 3 0 . 9 9 0 3 

1 5 . 8 7 3 2 0 . 4 7 6 2 9 . 6 7 3 0 . 3 8 1 6 0 . 7 1 5 3 0 . 3 7 6 4 0 . 9 5 2 2 

3 4 0 . 4 8 9 4 9 . 8 8 2 0 . 3 4 7 1 0 . 8 4 9 9 0 . 5 1 9 4 0 . 9 8 6 7 

3 6 0 . 4 9 6 5 9 . 8 7 7 0 . 3 8 0 5 0 . 9 9 2 8 0 . 7 1 8 8 1 . 2 0 4 

3 8 0 . 4 9 7 6 9 . 7 7 7 0 . 3 9 1 9 0 . 7 2 2 8 0 . 3 7 7 5 0 . 9 5 3 3 

4 0 0 . 5 1 6 6 9 . 8 8 9 0 . 3 5 7 5 0 . 8 0 3 8 0 . 4 9 0 9 0 . 9 6 6 5 

4 2 0 . 5 3 0 2 8 . 8 5 9 0 . 3 9 0 3 0 . 8 1 9 7 0 . 4 4 7 4 0 . 9 2 5 0 

1 5 . 9 2 4 3 0 . 4 6 3 0 7 . 7 0 8 0 . 4 9 4 7 0 . 7 6 4 9 0 . 2 0 5 3 0 . 8 7 4 9 

4 5 0 . 5 0 4 2 8 . 5 9 9 0 . 5 1 1 9 0 . 5 9 8 7 0 . 2 2 6 6 0 . 9 5 9 6 

4 7 0 . 5 3 9 3 9 . 3 8 3 0 . 3 7 9 3 0 . 7 4 0 3 0 . 4 2 8 2 0 . 9 1 9 9 

4 9 0 . 5 5 7 1 9 . 5 4 4 0 . 3 4 7 2 0 . 8 1 6 8 0 . 5 1 8 3 0 . 9 2 9 8 

5 1 0 . 5 6 0 5 9 . 9 1 3 0 . 3 6 9 1 0 . 8 8 9 0 0 . 6 0 5 8 1 . 0 4 8 

5 3 0 . 5 6 6 1 9 . 7 9 1 0 . 3 5 6 3 0 . 9 4 5 8 0 . 6 8 5 9 1 . 0 8 5 

1 5 . 9 7 5 0 0 . 5 0 1 6 7 . 5 9 1 0 . 5 1 6 8 0 . 6 1 3 7 0 . 3 0 2 5 0 . 9 6 2 3 

5 2 0 . 5 2 1 7 7 . 5 3 3 0 . 4 6 0 3 0 . 6 1 4 7 0 . 3 0 7 9 0 . 8 5 8 4 

5 4 0 . 5 6 6 6 9 . 2 0 2 0 . 3 6 3 1 0 . 7 1 4 3 0 . 4 4 3 1 0 . 8 8 0 8 

5 6 0 . 5 7 4 4 8 . 7 9 1 0 . 3 4 5 9 0 . 7 4 7 3 0 . 5 0 2 7 0 . 8 8 5 2 

5 8 0 . 5 8 7 7 8 . 2 1 3 0 . 3 8 4 0 0 . 7 8 2 0 0 . 6 0 8 0 1 . 0 0 6 

6 0 0 . 5 9 7 4 7 . 9 6 4 0 . 3 7 3 6 0 . 8 0 6 1 0 . 5 7 4 3 0 . 9 3 8 3 

1 6 . 0 2 5 6 0 . 5 2 3 3 6 . 3 9 3 0 . 4 4 8 6 0 . 5 8 6 9 0 . 3 9 0 9 0 . 9 1 3 2 

5 8 0 . 5 6 0 6 6 . 8 1 2 0 . 4 3 3 0 0 . 5 9 6 1 0 . 3 9 7 0 0 . 8 9 2 3 

6 0 0 . 5 7 8 0 7 . 0 6 3 0 . 4 1 0 6 0 . 6 4 0 6 0 . 4 3 2 4 0 . 8 6 0 0 

6 2 0 . 5 9 8 1 7 . 3 7 7 0 . 3 8 1 4 0 . 6 6 0 3 0 . 4 8 1 7 0 . 8 5 5 6 

6 4 0 . 6 1 2 9 7 . 4 5 8 0 . 3 6 4 8 0 . 6 7 2 8 0 . 4 6 0 1 0 . 8 5 2 9 

6 6 0 . 6 2 3 3 7 . 7 4 8 0 . 3 2 0 8 0 . 7 1 1 9 0 . 4 4 7 2 0 . 7 3 9 7 

1 6 . 0 7 5 9 0 . 5 1 7 8 4 . 8 1 4 0 . 4 9 8 1 0 . 6 4 2 8 0 . 4 0 0 3 0 . 7 9 2 5 

6 1 0 . 5 6 0 5 4 . 9 5 0 0 . 4 2 8 0 0 . 6 0 2 0 0 . 4 6 7 1 0 . 7 7 9 3 

6 3 0 . 5 7 8 6 5 . 4 0 3 0 . 4 2 5 7 0 . 6 0 5 0 0 . 4 3 1 0 0 . 7 5 9 5 

6 5 0 . 6 0 8 0 5 . 8 2 0 0 . 3 8 9 0 0 . 6 7 1 6 0 . 4 8 0 6 0 . 7 7 8 8 

6 7 0 . 6 2 8 8 5 . 3 4 9 0 . 3 6 0 6 0 . 6 8 8 5 0 . 5 1 9 9 0 . 7 6 0 6 

6 9 0 . 6 4 0 3 5 . 5 5 4 0 . 3 5 3 8 0 . 6 9 9 9 0 . 5 0 6 1 0 . 7 4 4 8 

1 6 . 1 2 6 7 0 . 6 2 3 5 3 . 5 6 6 0 . 3 8 7 2 0 . 5 8 0 0 0 . 4 8 2 4 0 . 6 6 8 4 

6 9 0 . 6 4 0 9 4 . 4 8 4 0 . 3 5 2 0 0 . 6 4 0 6 0 . 5 0 1 1 0 . 6 9 6 6 

7 1 0 . 6 5 5 2 4 . 4 3 7 0 . 3 2 3 0 0 . 6 4 7 7 0 . 4 4 2 2 0 . 6 1 3 3 

7 3 0 . 6 6 7 7 4 . 3 7 9 0 . 3 0 8 6 0 . 6 8 2 0 0 . 5 0 4 1 0 . 6 5 8 6 

(°) 

45 conversion tape : WW8831 
pte.mv2mm.C088 
label: 6 

reorganisation tape: WV/8832 
pte.mv2mm.R088 
label: 8 

sample interval 

number of values 

conversion factor 

10 ms 

23500 

4.2577*10 m/s 
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Table C.9 Inflow boundary ODYSSEE, figure: 4.10 

^1 X3 

^1 k 

* i o - ^ 

e 

*io--^ 

(m) (m) (m/s) (m/s) 1 2/ 2s (m /s ) 1 2/ 2s (m /s ) 

15.25 0.000 — — — — u^ = 0.0230 m/s 

0.002 0.497 0.0 1.747 15.21 

0.004 0.537 0.0 1.730 7.604 = 0.35*10"^ m 

0.006 0.561 0.0 1.713 5.070 

0.009 0.584 0.0 1.688 3.380 

0.012 0.600 0.0 1.663 2.535 

0.017 0.620 0.0 1.621 1.789 

0.025 0.643 0.0 1.553 1.217 

0.035 0.662 0.0 1.469 0.869 

0.050 0.683 0.0 1.343 0.608 

0.070 0.702 0.0 1.176 0.044 

0.100 0.722 0.0 0.924 0.304 

0.140 0.742 0.0 0.588 0.217 

0.180 0.756 0.0 0.252 0.169 

0.210 — — — — 

Table C.IO dune heights. figures: 4.13, 4.14, 4.15 , 4.16, 4.18 

experiment: Tl experiment : T2 experiment: T3 

^1 
(m) 

^b 
(mm) 

water-
level 

(m) 
^1 
(m) 

^b 
(mm) 

water-
level 

(m) 
Xl 
(m) 

^b 
(mm) 

water-
level 

(m) 

conveyor-
belt 

velocity 

15.75 0 15.75 0 15.75 0 c,̂  (m/h) 
15.79 12 0.213 15.81 12 0.212 15.82 25 0.220 

15.83 21 1 Q / i 16 15.07 nrs r , 0, r 15.83 21 15.07 
U . exp . 1± : 

15.87 28 15.87 21 15.92 40 0.215 4.13 

15.91 38 15.90 25 15.97 47 0.215 

15.95 41 15.93 32 16.02 53 0.215 exp.T2 

15.99 52 15.96 36 16.07 56 0.210 3.75 

16.03 57 15.99 42 16.12 60 0.210 

16.07 59 0.211 16.02 50 0.211 16.17 60 0.210 exp. T3 

16.12 63 16.05 56 16.25 0 3.58 

16.17 63 0.215 16.08 58 

16.25 0 16.11 

16.14 

16.17 

16.25 

62 

63 

63 

0 

0.206 



c-8 

Table C.ll angles of streamlines i n measurements and calculation 

exp 

( angle 

y^ angle 

from measurements 

from calculation) 

^1 
(m) 

^3 
(mm) 

Vm 
* n ̂  

Vc ^1 3̂ v„ Vc ^1 3̂ Fm Vc ^1 X3 Vm 
(°) 

Vc 
^1 
(m) 

^3 
(mm) ( ) (°) exp (m) (mm) (°) exp (m) (mm (°) (°) exp (m) (mm 

Vm 
(°) (°) 

15.79 16 12.1 13.1 Tl 15.95 44 9.7 10.2 T2 16.45 4 -53.6 -1.1 T3 16.02 62 7.0 6.7 
18 11.6 12.5 15.99 55 8.3 9.5 10 -30.7 -2.6 64 6.9 6.6 
20 

25 

11.9 

11.8 

12.0 

11.4 

16.03 60 5.8 6.9 15 -17.1 -3.8 66 7.1 6.4 
20 

25 

11.9 

11.8 

12.0 

11.4 16.07 63 4.6 3.7 25 -17.2 -4.7 16.07 59 5.3 3.6 
35 11.5 9.5 16.12 66 2.5 0.0 30 -14.6 -4.6 61 5.0 3.6 
50 10.4 8.4 16.17 66 -0.4 -16.9 40 -12.9 -4.2 63 5.3 3.7 
75 9.0 5.9 T2 15.81 16 11.1 11.4 45 -13.7 -3.9 65 5.5 3.8 
100 7.6 4.4 18 9.7 11.3 50 -12.8 -3.5 67 4.9 3.8 
170 4.9 1.4 24 10.4 10.8 60 -11.4 -3.0 69 5.0 3.8 

16.07 63 6.5 3 .7 30 11.6 
-3.0 69 5.0 3.8 

16.07 63 6.5 3 .7 30 11.6 10.0 75 -8.8 -2.3 16.12 67 3.3 0.0 
65 6.0 3 .8 35 12.0 9.7 100 -6.3 -1.7 69 4.0 0.0 
67 6.1 3.8 40 11.5 9.4 140 -4.0 -1.0 71 3.9 0.0 
72 

80 

6.1 3.7 

3.6 

50 10.4 8.4 180 -2.7 -0.3 73 3.8 0.0 
72 

80 5.8 

3.7 

3.6 75 8.2 6.5 15.81 14 11.3 11.5 
95 4.8 2.9 100 6.7 4.8 15.84 19 12.5 11.2 
110 3.6 2.4 140 4.0 3.0 15.87 24 12.5 11.2 
140 0.7 1.8 180 1.4 1.4 15.90 28 10.7 11.2 
180 -4.9 0.5 16.02 55 8.3 7.2 15.93 35 9.5 11.2 

16.17 68 0.3 -13.9 57 8.2 7.1 15.96 40 7.7 10.2 
70 0.5 -9.3 60 8.2 6.9 16.02 56 6.7 7,1 
74 1.2 -7.9 63 8.1 6.6 16.05 60 5.8 5.0 
78 1.7 -6.7 66 7.8 6.4 16.08 62 4.2 3.6 
85 2.3 -5.8 70 8.2 6.1 16.11 66 2.1 0.0 
95 2.6 -4.7 80 8.0 5.5 16.14 66 -1.5 0,0 

110 2.9 -3.7 100 6.8 4.2 T3 15.82 29 10.1 10.5 
130 2.5 -2.9 140 4.1 2.0 31 11.4 10.3 
150 2.6 -2.0 180 1.7 0.9 35 10.9 9.9 
180 2.4 -1.5 16.17 66 -1.5 -16.9 37 10.9 9.8 

16.27 40 -74.9 -9.2 68 -0.8 -13.9 39 1.1 9.6 
50 18.7 -6.4 70 1.2 -11.2 15.87 32 11.5 11.0 
56 -4.2 -6.4 75 1.1 -7.9 34 11.4 10.7 
60 -4.0 -6.2 90 2.0 -5.8 36 11.3 10.5 
64 -3.5 -6.0 110 1.4 -3.7 38 11.1 10.4 
66 -3.1 -5.5 140 0.3 -2.7 40 10.8 10.2 
68 -3.0 -5.2 180 -1.7 -1.5 42 9.5 10.0 
70 -2.4 -5.0 16.30 4 -4.0 184.1 15.92 43 9.5 10.6 
74 -1.7 -5.0 8 -6.3 197.7 45 9.7 10.4 

16.39 2 

6 

10 

20 

-122 

-44.3 

-32.5 

-24.1 

-1.1 

-4.7 

-6.2 

-8.3 

12 

20 

25 

35 

-9.9 

-13.9 

-18.5 

-47.5 

231.4 

-30.0 

-18.1 

-10.3 

47 

49 

51 

53 

9.9 

9.7 

10.0 

9.8 

10.2 

9.9 

9.8 

9.6 
40 -16.8 -6.9 45 -2.1 -9.0 15.97 50 8.6 10.2 
60 -12.6 -4.0 50 -4.4 -6.0 52 8.2 9.8 

100 -7.3 -2.2 55 -5.5 -5.5 54 9.2 9.5 
140 -5.1 -1.3 60 -5.0 -5.0 56 8.7 9.2 
180 -4.1 -0.4 70 -4.0 -4.2 58 8.0 9.0 

15.79 14 12.3 13.1 90 -2.0 -3.5 60 7.6 8.8 
15.83 23 13.0 10.9 110 -1.6 -3.0 16.02 56 7.0 7.1 
15.87 31 13.2 11.0 140 -0.8 -2.0 58 6.9 7.0 
15.91 41 11.3 10.8 180 0.8 -0.7 60 7.0 6.9 

Tl 


