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Summary

In order to predict waterlevel changes in rivers due to floodwaves and local bedshapes for navigation, the
local behaviour of the riverbed should be known.

In many cases the bed of a river consists of dunes, which propagate downstream due to the sediment transport
along the dunes.

In this report mainly the watermovement but also the sediment transport along a dune is studied.

The investigation consists of a theoretical and an experimental part.

In the theoretical part a calculation of the flowfield above a dune is carried out using a computer model
for the watermovement (UDYSSEE computer program of the Delft Hydraulics Laboratory, DHL).

In the experimental part the mechanism of the local sediment transport along the dune is studied.

The experimental set up consists of a solitary sanddune on a conveyor belt in a flume.

The position of the dune is constant due to: conveyor belt velocity = - propagationvelocity of the dune.
In this situation the flowfield above the dune is measured using a Laser Doppler Anemometer (LDA), which
is tested first in a uniform flow situation.

The local sediment transport, which is known along the steady dune, is related to the local bedshearstress.
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1. Introduction

1.1 General

Sediment transport in alluvial rivers can be divided into bedload transport, which occurs mainly over the

bottom of the river and suspended transport, which occurs between bottom and watersurface.

Changes in the geometry of the riverbed due to changing flowconditions are important for the estimation of
the local bedroughness and local bedshape.

The flowconditions, in turn, are influenced by the riverbed geometry, which makes the interaction flow-
sediment transport very complex.

The forecasting of the local waterlevel in a river due to floodwaves, for example, or local bedlevels for
navigation requires inseight in the behaviour of the riverbed.

The bedload transport can take place in different ways. Sediment particles are transported downstream, in
the vicinity of the bed, over dunes, ripples or over a flat bed.

The particles move with a velocity almost equal to the flowvelocity of the water near the bed.

Dunes and ripples propagate downstream, with a velocity which is an order smaller than that of the indivi-
dual particles.

In a patural situation dunes and ripples are shaped three-dimensionally, are catching up eachother and so
influence the local flowconditions of the river.

To get inseight in the interaction flow-sediment transport, detailed investigations of the sediment transport
mechanism are necessary.

In this report an investigation of the local watermovement and local bedload transport over a dune is des-
cribed.

The phenomina are studied under quasi-steady flowconditions in a vertical plane parallel to the main flow
direction.

= dune propagation
velocity

= velocity of a
single sediment
particle

= flowvelocity near

.f:\g;aune or ripple the bedsurface

Figure 1.1: Bedshape and characteristic velocities fon a dune or ndipple, per unil width.

The investigation is divided into a theoretical part and an experimental part.

In the theoretical part, the watermovement and the sediment movement are studied separately.

The Navier-Stokes equation is used to describe the watermovement. For the decription of the turbulent vis-
cosity there has been chosen for a two-dimensional k-€ model.

With this model accelerating flows and wakes can be described satisfactory.

The k-€ model is used in the computer program ODYSSEE of the Delft Hydraulics Laboratory (DHL), with the
program a numerical solution of a flowfield is derived.

For the sediment movement different models for local bedload transport can be used.

However, specific models for sediment transport are not studied, but a general treatment of bedload transport

is given. Furthermore two simple models for local changes of the duneheight are treated.




In the experimental part, experiments carried out in a straight flume will be described.
The set up of the experiments must be s0, that measurements can be carried out easily and measurements of
mean flowvelocities as well as turbulent flowquantities are possible,

An important link can be made between the local sediment transport and the local bedshearstress.

In the experiments measurements could have been carried out over a series of moving or sclid dunes in a
flume.

However, measurements over moving dunes are difficult and measurements over solid dunes have already been
carried out (Raudkivi, 1978).

There has been chosen for a 'solitary dune' which propagates downstream due to the flow, but is placed on
a conveyor belt. The velocity of the belt is equal but opposite directed with respect to the dune-propaga-
ting velocity.

In this way the dune 'stands still' in the flume. The experiment is carried out in a flume with horizontal
bottom upstream and downstream the solitary dune.

For a description of the development of the experiment to a solitary dune, see appendix B.

'!l\
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Fégure 1.2: Solitary dune on a conveyox,

Advantages of this set up are:

~ The measurements can be carried out easily (stationary dune) and are done with a Laser Doppler Anemometer
(LDA) which measures instantaneous Flowvelocities in a very small area in the water.

- The local sediment transport can be determined easily as the product of the conveyor belt velocity and the
local duneheight.

~ With respect to a solid dune the influence of the moving sediment particles on the flow near the dunesurface
is present.

~ For the numerical solution of the flowfield a simple inflow boundary can be chosen. Upstream the dune a
flow over a horizontal bed occurs with developed (logarithmic) flowvelocity-, turbulent energy- and shear-
stressprofile.

~ The k-€ model can be tested in this flowsituation, numerical results can be compared with results of measu-
rements.

A disadvantage is that the situation is not similar to the situation with a series of dunes, but the inves-

tigation of sediment transport in an accelerating flow is still interesting.

In this report the results of theoretical study and experiments are given:

- Treatment of applications of the Navier-Stokes equation, treatment of the k~-€ model and treatment of simple
models for local duneheight changes.

- Results of measurements carried out with the LDA in a flume with horizontal bed. The LDA is specially
adapted for the experiments and tested in a flow situation for which analytical solutions of meanflowvelo-
city and shearstress profiles exist.

- Results of measurements above the solitary dune,carried out with the LDA.

The results are compared with the numerical sclution of the flowfield calculated with the computer pro-
gram ODYSSEE (DHL) based on a two~dimensional k—€ model.

- Relating the local sediment transport and local flowquantities near the dunesurface.
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1.2 Definitions and assumptions with respect to fluid and sediment

To describe the physical behaviour of the fluid and sediment mathematically, first some definitions and assump-
tions must be made.

The mathematical description is done in a three-dimensional orthogonal coordinate system, with the positive
Xz—axis pointed upward with respect to gravity.

X3 g = (0,0,-g)
Figure 1.3: Definition of zhe
coordinate system.

X1
The equations are often simplified to equations for a vertical plane (Xl’XB) because, whether the x2—direc—

tion is not of importance, or the simplification results in a less complicated equation which can be solved
more easily.

The Einstein summation convention is used, with i=1,2,3 this holds:

Xg means X1s Xgr Xy
2% means X] o+ Xy o+ Xy
oy, ay; au, aug

= means i Tl vin
%5 g%y 3% 9%
OTis Ty 4 To s Tz

ij nBans a7y 5 +O 2] +O 33
9%y 9%y 0% 3%

The laws for conservation of mass and momentum are regarded with respect to a control volume. The fluid and
sediment move through this volume.

The control volume has an arbitrary but steady position in the coordinate system and is constant of size.
The fluid and sediment are thus considered in an Eulerian frame.

The volume of the control volume reads: AV = dxl.dxz.dx3 and becomes zero at the limit and physical laws hold
for this mathematical point. ’

This yields, however, that molecules are infinite small, which they are definitely not |

So when AV = 0, what is the definition of the density, temperature, velocity, acceleration and pressure 7

The problem will be solved here for the density, the other properties can be treated in a similar way.

The density is defined by: AM/ AV in which AM is an arbitrary mass and AV is an arbitrary volume.

In general it holds that for large volumes the density depends on the magnitude of the volume.

When AV is taken smaller and smaller the density appears to be constant.

At very small values of AV the density is dependant on AV again and is strongly fluctuating with decrea-
sing AV, because the amountof molecules in the volume can fluctuate strongly.

At the limit AV = 0, no molecule is present in the volume and the density becomes zero.

Figuie 1.4: Density as function of the control volume size |from Prandte, 195%).




In practice, however, AV :AV0 will be taken small enough to make the density constant and finite but
still large enough to prevent the influence of the number of molecules on the density.
The definition of the density reads:
lim am = ==
vo AV dv
The control volumeAV0 is now a physical point instead of a mathematical point.

In this way the fluid and sediment can be treated as continua and molecular forces can be neglected.

The sediment consists of discrete particles of different size, shape and density in practice and the par-
ticles are very large compared to the molecular scale.

However, the derivations made in this report are done for sediment as a continuum, which is a reasonable
approach because time averaged considerations are held.

In this way the sediment transport can be seen as a flow with mean physical properties.

In the report the general terms 'fluid' and 'sediment' are often used.
However, more specific terms to indicate the different phases are 'water' and 'sand'.

This should be kept in mind when assumptions are made or effects are neglected in derivations.




2. Theory

2.1 Introduction

The movement of water and sediment is treated in separate mathematical models.

A conservation of mass equation and conservation of momentum equation are set up for water as well as
for sediment.

The conservation of mass equation together with the conservation of momentum equation describe the water-
movement generally and are treated separately.

A good description of the conservation of momentum is the Navier-Stokes equation which is appropriate for
watermovements in many situations.

For turbulent flow a 'turbulent viscosity' appears in the Navier-Stokes equation and for this viscosity
different mathematical mndels exist.

In this report only two turbulent viscosity models are treated, the mixing length model of Prandtl and a
two-equation k-€ model.

The mixing length model is based on an analogy with the kinetic gas theory (see Rodi, 1980).

The k-€ model describes the turbulent viscosity with an extensive mathematical model, which describes

two dimensional flows , even with wakes, reasonably well, see the applications in Rodi (1980).
Furthermore the ODYSSEE computer program (Alfrink,1983) is based on this k-€ model.

ODYSSEE was used to derive numerical solutions for s flowfield which occured in the experiments.

A general conservation of momentum equation for the sediment is yet not known (1984},

In this report two different equations for the conservation of momentum are used to describe the sediment-
movement .

2.2 Watermovement

2.2.1 General

The conservation of mass and momentum equations hold generally, the choise of the mixing length model or
the k-€ model depends on the type of flow or the desired accuracy of the calculation.

The difference of a mixing length model and a k-€ model lies fundamentally in the description of the tur-
bulent viscosity.

In the mixing length model the turbulent viscosity is expressed directly in length scales.

In the k-€ model, however, the turbulent viscosity is expressed in turbulent energy and energy dissipation.

2,2.2 Conservation of mass and momentum

The equations are derived in an orthogonal xl,xz,xB—coordinate system.

The density of the fluid is p(xl,xz,x3,t) and the flowvelocity U consists of the flowvelocity components
Oi(xl’XZ’XB’t) with i=1,2,3.

The equations are worked out for a stationary two dimensional flow in a vertical plane. Also an expression
for the shearstress under these circumstances is derived.

Conservation of mass

It generally holds for a fluid that the difference of inflow and outflow of mass through a control volume is
equal to the increase of mass in the control volume in time (an Eulerian frame).
This yields:

ip.ay) ]
ax; = 0 3 i=1,2,3 (2-1)

9P
ot *
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In the experiments, described in this report, the fluid is water and no extreme density differences occur, so
it safely can be stated that P is constant in time and space.
Equation (2-1) now reads:

e
3% =0 3 i=1,2,3 (2-2)

The flow is further assumed to be two-dimensional in the vertical plane with flowvelocity components,

0, = Ol(xl,xj,t) and 0y = Gj(xl,x3,t) .

So equation (2-2) reduces to:
da d0s (2-3)
5 + -/ =0 2-3
I J%3

The instantaneous flowvelocity components Gl and 03 can both be separated in a mean flowvelocity and a

turbulent flowvelocity, the Reynolds decomposition:

Ol(xl’XB’t) = Ul(xl’XB’t) + Ul(xl’XB’t)
OB(XI’XB’t) = U3(xl,x3,t) + uz(xl,xj,t)
These flowvelocities are defined as follows:
- 1 [ 1 {
Oi = Ui =5 U[Oi dat u; = ¥ D[ui dt =0
—_ T T T

For example: g

S b R A R = s B - = - R
5, 5T o dt'axl ; alol_TJalol dt = Uy + w5 GGy = Tﬂ[olo3 dt = UpUy + ujug

The time T is in principle infinite long, but in practice a finite value of T is accurate enough.

A mean flowvelocity depending on time requires deviding the time axis into areas inwhich the flowvelocity
Ul and U} do not alter significantly, this case is not treated further,

01 0]_’
u
%WWW#
U
0 t 0 * t
TlTZ Tn

Figure 2.1: example of instantaneous §Lowvefocity, constant mean vedfocity and changing with time.

After decomposition, equation (2-3) results in two equations:

conservation of mass for mean flowvelocity; alﬁ. OU}
+ = 0 (2-4)
Oxl OX3
conservation of mass for turbulent flowvelocity: Yy . d U3 S (2-5)
d X d X3

Conservation of momentum

Generally Newton's second law can be applied to the fluid in a control volume in the orthogonal Xy 3%5yX3=
coordinate system.

There must be equilibrium between the acceleration of the mass in the control volume and external forces
acting on the control volume,

This leads to the Navier-Stokes equation, which is exact for a laminar flow of homogeneous fluid, and
gives generally a good description for turbulent flow.
The equation yields:

HJCL

19p , 197 = N
Pax;T pax, * 9 i 1=1,2,3 (2-6)

oo

A complete deriv ation of equation (2-6) can be found in Prandtl (1957),
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The left hand side of equation (2-6) is the acceleration per unit mass of the Fluid and reads:

a0,

1

ot

a0,
+C|,(_—J—X—l- 3
J9%5

i=1,2,3 and j=1,2,3

The first term on the right hand side of (2-6) is a pressure gradient, ﬁ(xl,XZ,x3)=P(xl,xz,x3)+p(xl,x2,x3).
The second term on the right hand side of (2-6) is the stress tensor of viscosity acting on the control
volume and reads:

- a0; 9%y , .
i p.v(éx—j + 3%, ) s i=1,2,3 and j=1,2,3 (2-7)

The third term on the right hand side of (2-6) is the gravity vector: @ = (0,0,~g)

For further considera tions the flowvelocity and deriv ates in the x2-direction are omitted.

The equations are derived for a vertical plane so, equation (2-6) can be rewritten with the equations
stated above, equation (2-3) and taking the average over a period T.

This yields conservation of momentum equations in the x; and X direction:

2
oy aUUs 1 ap 5 ,.QU — 3 ay; L
éx_l + ax3 = - ﬁ (-F]_ + 5;1(1)&—]—)(—; - U1 Y o+ 53 (Da——x-; - u]_u3 ) (2-8)
2
e e B L 1 Qe g , Vs Uy
aXl + a—x; = - ﬁ (;_)—X} + a—)‘('l( vaTl - U1U3) + ax}(va_xg' - U3 ) - g (2_9)

The terms uf,

1Y3 and u; are the Reynoldsstresses.

The equations (2-8) and (2-9) are conservation of momentum equations for a turbulent flow averaged over a

period T and are tooc complex to give an analytical sclution in general.

Shearstress equation

In some cases an approximated analytical solution of (2-8) and (2-9) can be found, like the flow in one of
the experiments, a stationary flow in a straight flume with rectangular cross-section and horizontal bottom.
In this particular case the flowfield can be approximated as a boundary layer in a vertical plane.

The layer reaches from the horizontal bottom of the flume to the slightly inclined watersurface.

da_
0
« N 11 05 (%, yX<)
3 N e
] ig 6‘(Xl) l__ Ol(xl’XB)

X
1
Figure 2.2: Definition of the §Lowfield

The terms on the left hand side of (2-8) and (2-9) can be simplified with the aid of the conservation of
mass equation (2-4), because the next expressions hold:

2
N,
0% R 1 g% 30 0%
2
Wl % %,
axl (')x3 1 axl 3 ax3

First equation (2-9) is further simplified. Length scales and velocity scales can be defined to neglect some
terms, this is clearly outlined in Tennekes (1977).
The velocity scales are Ul ~ 0{VY and u o(v).

The length scales (scales of change in x;-direction) are Ixy = O(Ly and Oxg = 0(L).

With the conservation of mass equations (2-4) and (2-5) this yields: U

3

= 0( .2/ L) andugy ~ 0Cv. 2/ L).
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For the case of parallel flow the ratic £/L—0 and for nearly parallel flow £/L < 1; this yields for
some terms: /3 x) < 0/0X3 .
With these definitions, equation (2-9) becomes:

(V--'—:g') - g (2-10)

Integrating of (2-10) from x3=0 to x3=a(xl)=a, with boundary conditions at x4=0 which read:

P=p.g.a , aU3/0x3=0 and U;:U,theresultis:
U JE—
L1 0z
0-—pP + g.a ~:—vax3 - Uz - gy (2-11)

The derivative to x; of (2-11) reads:

2 2
au qu
%g—z— = g.a—g -+ l)a*'x—za—x - 073 (2-12)
1 1 173 1
After simplifying,equation (2-8) reads:
UO_Ul._*.UEE_:_l_P.F_Q_(])aUl_U—G)
1 axl 3 ax3 P axl ax} ax 173
Substitution of equation (2-12) gives finally:
yJ 2 2 —
qu gu gu gy Qu Ju,u
Ul é—x—l‘ + U3 5)(—1 = ~-g g——s - Uax}ax +l)a—x‘2i - aTB - aiB (2-13)
1 3 1 1¥73 3 1 3

This equation can be simplified further. In Tennekes (1977) a length scale consideration is carried out to
neglect the term Us. a Ul/a x5 with respect to U, 3dU,/Q x;, which seem to be both of order ( VZ/L).
For this flowfield ,however, it can be stated that near the bottom U3 is almost zero and OUl/O X is large
and at some distance from the bottom U3 has a certain value but OUl/O X3 is almost zero.

In both cases UB' GUl/a X3 & Ul.a Ul/a Xy e

VA 2
Qv U
Furthermore 2 =0( W Lz) can be neglected with respect to = 0w 22).
.:'Jxl 0 X3 x5
aul —x
And finally 3 = 0 v2/L ) can be neglected with respect to Oulu3 0¢ v2r0
axl = VV/C g,

The conservation of momentum equation after all these assumptions reads:

gu QJa 1 d7
Ul axl =-4g J Xl + l—) O_X3 (2—14)
au
s T 1 —
with: —f—)' = UOTB - UlU3 (2-15)

Equation (2~15) expresses the total shearstress acting on the control volume, this stress 'consists of two com-
ponents. The first component is the viscous shearstress which is dominant near the wall in a turbulent flow.
The second component is the Reynoldsshearstress which is dominant at some distance from the wall.

In which region the components are domina nt will be explained in the next sub-section.

2.2.,3 Uniform channel flow

Under uniform flowconditions, OUl/{]xl = 0, and with some simple assumptions, a mean flowvelocity profile
in the boundary layer and even for the complete waterdepth can be determined.
Some layers in the fluid with specific properties have to be defined for this. Also an expression for the

shearstress in the boundary layer and even for the complete waterdepth can be derived.
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Definition of layers

In a turbulent flow the smallest length scale of the turbulence is the Kolmogorov micro scale, which reads,
see Tennekes (1977):

7= (v/e)s

and € = uz/( K,.xz) is the dissipation rate of the turbulence near the wall.

In this expression u, is the shearstressvelocity defined as:
2
Uy = T(XB:O)/’J

A dimensionless distance is defined as: x, = x3.u*/v ( a kind of Reynoldsnumber ).

So the Kolmogorov micro scale reads:

L = K.Xg
L
The dimensionless Kolmogorov length scale reads: T’+ = Nu/v = (Iﬁ.x;)“
and the dimensionless integral scale reads: Al Lo /v = rc.x; (2-16)

Both relations are sketched in figure 2.3:
1

0,1 Io 100 1000
Figure 2.3: Integral scafe and Kofmogorov micro Acale, from Tennekes (1977).

x;<2,5 it follows that £%< 1’)+ which is not possible because the smallest turbulence scale is the Kol-

mogorov micro scale. So the region x;<2,5 of the flow is not turbulent.

For

In practice the following regions are defined:

+ Yy
1. viscous sublayer, x3 <5 and T/p = l)a—— (2-17)
*3
+ aUl _—
2. buffer layer, 5 < x3 < 30 and T/p = Vax. - UYibs (2-15)
3
3. inertial sublayer, x; <30, x; < a and T/p = - U_IUB (2-18)
4. outer region, x; < 30, X3 < @ and T/p = - u U4 (2-18)

Now a mean flowvelocity profile can be derived for the viscous and inertial sublayer and for the outer region.

Mean flowvelocity and shearstress profiles

1. very close to the wall and for x§<5, the shearstress reads: vOUl/O Xy ui , S0 aUl/ OXBEU_E/U .
This equation can be solved, with the boundary condition at x3=0, Ul=0:

2
Ul = Uy . X3 /v
or dimensionless with UI = Ul/u* this reads:

1 = )(3 (2-19)
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3. At some distance frem the wall, for x;3>30, but still in a region where x3<a, s0 T/p = ui = T(x}:O)/P

the shearstress reads: “UyUg Uy .

The Reynoldsstress is expressed according to Boussinesq as:

in which Dy is the turbulent viscosity, a flow property.

The turbulent viscosity now, is expressed according to Prandtl's mixing length theory:

2 OV .
Ut = £°, a——)(}- and = x5
2 _ 2 aY,2 ' . :
So finally uy = K. X3 ( 6;;» with boundary condition at X327, Ul=0 results in:
U, = u, /K . ln(x3/zo) . (2-20)
Dimensionless this equation reads:
Ul =1/k. Inxy + C (2-21)

The equations (2-19) and (2-21) follow from assumptions for T/P and not from the conservation of momentum
equation (2-14).

2. The buffer layer lies between case 1 and 3, the shearstress can be expressed as:

qu
ax

K

T/p: (v + vt).

W

4. For the region, x;:>30, but not to close to the wall, X3 <a so T/P<<u§ , another assumption can be made
MranUMfmmfhm,a%/axlza

Equation (2-14) then results in: 0 = -g. ggi + %'. gi%
Integration of this equation with boundary conditions at x3=0 j T/Pp = g.a. §§~ = ui and at Xg=a j T/p =0
. 1
gives: u
- da - e} (2-22)
T(x5) = p.g. Oxl'(a - %3) = p.p. 3%,

The shearstress decreases linearly from bottom to watersurface.
The same mean flowvelocity profile, described with equation (2-20), can be derived when an integral scale is
chosen which holds aswell for case 3:

2
= K. Xy V1 - xg/a
In case 3, X3<8, so L=k, g Near the watersurface the mixing length deceases, at X3=aj £ =0,

It is profitable to describe the mean flowvelocity profile from bottom to watersurface with the same equa-
tion, but instead of the logarithmic flowvelocity profile (2-20) also a power flowvelocity profile could
have been chosen for the region x; >30 and X4 far from the wall.

Finally the flowvelocity profiles in the different regions are sketched in figure 2.4.

+
Yy

v = viscous layer
b = buffer layer
i = inertial layer

o = outer region

Figure 27.4: FRowvelocity profife in a uniform stationary dHannel §Low.
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2.2.4 Non-uniform channel flow

When the flow is stationary, but the flowvelocity is increasing in downstream direction, convection, the

mean flowvelocity profile and shearstress profile are influenced, with respect ta the profiles described
in sub-section 2.2.3,

In this sub-section the influence of convection on the bottomshearstress is derived and the local change

of the mean flowvelocity profile is treated.

Furthermore the development of the boundary layer in downstream direction is treated.

Bottomshearstress

When a slight convection occurs in the whole flowfield, aUl/a xl#:U, then the convection term influences
the bottomshearstress.

The convection influence will be regarded for a flow situation with horizontal bottom and a waterlevel with
constant slope.

The conservation of momentum equation in a two-dimensional stationary flow is given by equation (2-14):

Ju
1 Qe 1 9T _
ulaxl i TR (2-14)

The term g. Oa/{)xl produces the energy for the flow and this energy is distributed over the shearstress
and the acceleration of the flow in xl—direction.

WherlaUl/E)xl = 0, all energy goes to the shearstress. The shearstress passes the energy to turbulence.
From the deriv ation in sub-section 2.2.3 it follows that ForalJl/O x) = 0 the mean flowvelocity profile

is logarithmic and the shearstress profile is lineair over the waterdepth:

Up = up/ie.n(x5/2 ) (2-20)
T(x;) = pog. B (a - xq) (2-22)
R P
7(0) = p.u? (2-23)

Equations (2-20) and (2-23) hold for the region near the wall, x3«a, and they hold with or without convec-
tion because they were derived without the aid of equation (2-14).
What the effect of convection is on equation (2-22) will be regarded next.

An overall influence of a slight convection can be derived by taking the depth-average of equation (2-14):

i (2-24)

The ¢onvection term can be sufficient accurate enough approximated by: Ul'aul70 X = U;. aﬁl/f)xl , see

\erspuy (1981). T n :
U .a qu _
The conservation of mass equation reads: dq _ { 1 } = 1 + U Ja

= = ag— =0,
i axl Qx axl laxl
This leads to:
ou
TRy —1—@ (2-25)
axl a g%y
Substitution of equation (2-25) into (2-24) gives:
N UQ
19t _ _1yQa (2-26)
p 0%, (g -—) 0%,
The mean value of the shearstress can be calculated by: pa IOT dx = ——{ T(a) - T(0)) = T(U) , when
the shearstress at the surface is assumed to be zero.
Equation (2-26) results in:
7(0) = p.g.a. 2 (1 - Frd) (2-27)
axy

with Fr2 :U?/(g.a) ; a= a(xl).

Equation (2-27) is the bottomshearstress with influence of convection, for slight convection the shearstress

can be taken lineairly from bottom to watersurface still.
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Mean flowvelocity profile

The influence of convection on the flowvelocity profile based on empirical results is given in Tennekes
(1977). A pressure-gradient parameter is defined as:

4 9%

= m 'OXl (2-28)

%
with UO as the flowvelocity in the outer layer Just outside the boundary layer, in this case U0 = Ul(a) is
taken, the flowvelocity at the surface.

Also a normalized boundary layer thickness is defined as:

_1
A= T, [(u0 - “1,) dx (2-29)

In which Ul is the flowvelocity somewhere in the boundary layer.
A complete deriv ation is given in Tennekes (1977), here only the results are given.

The effect of the convection on the flowvelocity of the outer layer Uo results in an extra term depending on

I :

E—: = & 1n (‘/‘:‘;’i) + AU (2-30)
U0 is the flowvelocity of the outer layer, for the flowvelocity Ul in the boundary layer with infiuence a

set of equations is given in Tennekes (1977). This is not treated here further.

Under certain conditions solutions of the set of equations can be found, in the expressions constants depending
on [T occur. These constants for different values of [I have to be determined empirically, Clauser was the

first who carried this out.

The result is that to the logarithmic flowvelocity profile a so-called wake-function must be added to get the

effectof convection. In figure 2.5 some wake-functions depending on [T are sketched.
0.01 0.1

0

X3/8

&= boundary layer thickness

Figure 2.5: Influence of convection
on mean fLowvelocdity profile
for different values of IT,
from Tennekes [1977).

An expression for the wake-function which gives reasonable results reads (see Tennekes, 1977):
W(xB/a) = %.(sin n(xj/a - %) +1) (2-31)

It must be mentioned that the stated above is valid for pipe-flow, which is symetric with respect to the
axis. When this is applied to a flow with free watersurface it should be done carefully,

Boundary layer development

The shearstress derived in sub-section 2.2.3 holds for fully developed boundary layers.
In practice a boundary layer starts at some point, for example the inflow of a flume, and increases in thick-

ness downstream. Ofcourse it takes some distance to get a fully developed boundary layer stretching out from
bottom to surface.

In Tennekes (1977) a derivationfor the development of a boundary layer for IT= 0 is given.
Again only the results are given here.

The equations governing the boundary layer development read:

X5 QU - U ) 1 Qupuy U  a(Au,) u Au,
_—a-~——]a—x3—°— -2 el iTl* =1 i:—’lz-ln( ==+ Ao) (2-32)
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The growth of the boundary layer thickness is expressed in an angle which is approximated by:

. 0.28
b= U/, - 17k (2-33)
o

The angle is sketched in figure 2.6:

& = boundary layer thickness

Figure 2.6: Downstream development of boundary Layer.

The importance of the boundary layer development is the effect of it on the shearstress profile when the
layer is not fully developed.

No simple expression for the shearsstress profile in a developing boundary layer is known.

In Tennekes (1977) a set of equations is given which is numerically soluted for the case II= 0.

The set of equations reads:

X3 QWU - U gupug U 1 Aux
— 3% = 3%, ; E:Eln(—) + A(0) (2-34)

v

A numerical solution is sketched in figure 2.7 for the Reynoldsshearstress:

Fégure 2.%: Influence boundary
fayer growth on
Reynoldsshearstress
e i gonIl=0, from
Tennekes (1977},

calculated profile

— ~ ~ linear profile

173

2
Uy

It follows from figure 2.7 that- 1Y3 is not lineair from bottom to surface.

It must be mentioned that the profile is calculated for a boundary layer with II= 0 and an outer region
which is thick compared to the boundary layer thickness.

5o again aspplied to a boundary layer which is nearly as thick as the waterdepth should be done carefully.
For IT#0 no profile for —Uzﬁg'is given, but for small deviations from II= O the profile in figure 2,7 can
be used for obtaining an indication.
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2.2.5 The k-€ model

The description of turbulent quantities can be done in different ways.
The problem is to find suitable mathematical expressions for the turbulent viscosity, length scales, tur-
bulent energy and energy dissipation.

Many different turbulence models have been developed already, an overview can be found in Radi (1980) and
Launder (1972).

In this sub-section only one turbulence model is treated, the two-equation k-e€model in which k is the tur-
bulent kinetic energy and € is the rate of turbulent kinetic energy dissipation.

This model is the basis for some computer programs, for example the ODYSSEE program of DHL and the PHOENICS
program of Cham.

Calculations with the model give reasonable results for many tested flowtypes (Rodi, 1980) and constant

factors in the model are verified for these flowtypes.

The conservation of momentum equation describes the flowfield and the turbulent viscosity in the equation
is expressed in k and € .

The k~€ model relates k and € .

In this sub-section the k-€ model is treated and also some boundary conditions are given.

The k-€ model

——

The Navier-Stokes equation (2-6) for incompressable fluids and steady mean motion reads:

an a(Ui + ui)

Yy © , o 1p 1 az(Ui+ui)
ot T Nty ax; T TPax, T Pax

— , 1i=1,2,3
: X, Q% 9 50, (2-35)
i JUd J=1,2,3
Now add the conservation of mass equation times ug; (ui.al{y’axj) to (2-35), subtract the average value
of the resulting equation and multiply the new result by uj.
Do the same for the uj equation and multiply now by uj
Add these twe resulting equations and after some manipulation the turbulen energy equation reads:
aﬁ;ﬁ; ay; duuy 3 U, gu;u, Ju. gu,
—Y73 . . 9 P ii ii 5,0, 971 O _
ot + 2uiuj OXj iy an 2. Oxj ( P 2 >'Uj +-vax_ 3% 2.0, axj. OXJ (2-36)

A more detailed deriv ation is given in Hinze (1975).
To equation (2-36) also a bouyancy effect can be added, however, temperature effects are omitted here.
In the ODYSSEE program bouyancy effects are added, see Alfrink (1983),

The turbulent kinetic energy per unit mass is defined by :

k

il

() (2-37)

Equation (2-36) can be rewritten with the aid of (2-37) in:

Qu, 2 a4 9y
=+ vgxgax. 'v5§% '5;%
J J J J

ok ak _ . (p, Y% o
at * ligx, T - ax, (p + 7wy - uuy dx;

(2-38)

This equation is an exact description of the turbulent kinetic energy derived from the Navier-Stokes equa-
tion and holds for high Reynoldsnumbers.

To apply this equation it has to be modified, so the exact equation is approximated.

u,u, )
=The turbulent energy diffusion term: é%' ( % + ; 1).uj , produces correlations u;U;U; which are too
complex to handle. + v
So this term is modelled by a 'diffusive expression': a; . g{% , with 0, as an empirical constant. See also
k i

Rodi (1980).

. _Qu,
=The production of turbulent enefdy from'the main stream is described by: uiuj. 5;£ .
J
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Tss . .
The expression u.u, is a Reynoldsstress : S TN TIANN T TN =+ ) , according to Boussinesq.
Y5 p TP Pl Ak 9 q
The complete term can be rewritten as: u U u J
v.(él__i_+q_i).(:)_,i_
t axj axi an

2
~The term V. g;E?T;- is the moleculair diffusion of the turbulent kinetic energy, which is generally small
for high Reynol&enu&bers.

=The term v.aui/{)xj. (‘)ui/a X is the turbulent kinetic energy dissipation €.

The energy from the main stream is transported fromlarge eddies viasmaller eddies,to the smallest eddies
with micro-length scales.

In these eddies the kinetic energy is dissipated in heat as a result of the moleculair viscosity, see also
sub-section 2.2.3.

For the dissipation an expression is given which is based on empirical grounds (Rodi, 1980).

Different expressions for the dissipation € as function of k and £, the integral length scale, are

known, however, a general accepted convenient expression for the dissipation reads:
€= & 7 (2-39)

In which p is an empirical constant. The dimension of € is rate of kinetic energy disspation per unit mass,
which is not an exclusive result of physical laws, but much more a 'desired coincidence'.

The unknown integral scale demands an extra equation, this is the so-called closure-problem.

Without the expression for € by equation (2-39) a general equation for € can be derived from the Navier-Stokes
equation. This deriv ation is complex and will not be given here..

To be mentioned has that the dissipation equation contains very troublesome correlations.

For reasons of convenience, however, the exact equation for € is rewritten in a form which agrees with the
equation for k.

Whether this is admissible from a physical point of view is not answered here, but the main reason te adapt

the €-equation lies in the field of solution techniques for partial differential equations.

Again a closure-problem occurs in the €-equation, this is solved in this model by defining a source term
(kind of dissipatien) which solely depends on k and €.
The final unknown variable is the turbulent viscosity.
Generally it is stated that Vt ~ k%.l (Rodi, 1980) together with equation (2-39) the equation for the

turbulent viscosity reads:

Ut = CP’. —6— (2—40)

In which ¢,, is an empirical constant.

Now the complete k-€ equations are given (see also Rodi, 1980):

ok ak _ o P2 ok ay;  aYy aY;
= + U,%= = — 5= + V.5 + Yo 57— =~ € (2-41)
QE. 1axi axi[ Uk axi] t Oxj Oxi Oxj
R C D P diss
Qe g _ 2 [P ge e, (99 Y € :
at * Yidx, T oax, [oe 'Jii] * Clee ”t'(axj +Oxi)‘axj - Coek (2-42)
R C D P diss

The empirical constantswith generally accepted values are (Rodi, 1980):

=1.92 ; ¢, =0.09

O,=1 5 G=13 3 ¢ = 1,44 m

1€ C2¢

The k-€ model holds for: - isotropic turbulence,
- high Reynoldsnumbers,

- regions outside the viscous layer and near the wall.
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The terms in the equations (2-41) and (2-42) have the following physical meaning:

R + rate of change of turbulent energy in time, or rate of change of dissipation in time
c ¢ convection of turbulent kinetic energy

D + diffusion of kinetic turbulent energy

P : production of kinetic turbulent energy (energy flow from main stream ta turbulence)

diss ¢ dissipation of kinetic turbulent energy due ta molecular viscosity,

Remark: the term D.Ozk/Qixj. Oxj) is generally small compared to the term D in equation (2-41), but for com-

pleteness this term is added to D, so b is defined as by = Vturbulent + Pooleculair

Boundary conditions

For the numerical solution of (2-41) and (2-42) together with (2-4), (2-8) and (2-9), boundary conditions are
required.

Conditions for some different types of boundaries are given below (see also Rodi, 1980).

Figure 2.8: Deginition of boundaries.

On this boundary the profiles of U,, U,, p, k and € must be known.
P 1’ 73
boundary condition b:

for a solid wall, the no-slip condition holds, Oi = 0 and k and € are finite.

A large number of grid points near the wall is required to compute the steep flowvelocity and energy
dissipation profiles accurate enough. '

The viscous layer can not be calculated by the k-€ model, so the first grid-point must be taken at some
distance from the wall. The law of the wall is applied in the region from wall to first grid-point.

For large Reynoldsnumbers the viscous and buffer layer are very thin with respect to the total boundary
layer thickness, so the viscous and buffer layer can be omitted.

A logarithmic flowvelocity profile is used in the inertial layer which reads:

Uy .

Up = 5 +In (E.x3) (2-43)
this equation holds for 30 <x; <100 (Radi, 1980), with £ = 9 for hydraulic smooth walls,
For hydraulic rough walls equation (2-20) holds.
The flowvelocity normal to the wall is Un U= o .
In the region 30 <x;'<100 the pressure is nearly constant and not changing in the direction along the wall
ap/élxl = 0, otherwise accelerations in the inertial layer will occur.
Furthermore the convection and diffusion of u;u; are neglectible so local equilibrium prevails and the
production of turbulent energy equals the dissipation P= € (Tennekes, 1977).
This leads to the fact that the shearstress equals the wall stress and so the boundary condition for k
reads: 2

k = —= (2-44)
Veu
2 qu

With P= € = Uy, 5;l and equation (2-43) the boundary condition for € reads:
3

Uy
€= e (2-45)

Equations (2-44) and (2.45) hold for smooth and rough walls, the roughness enters in the equations via u,.
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Through this boundary the fluid leaves the area and generally the so-called weak boundary conditions are

used here:
2 2
ou gu 2 2
——i:[]; =0;aEE2=0;_0_k2=0;.O_62=[]
o%y 0%3 %y axy ax
boundary condition d:
This boundary is free and generally a rigid-1id approximation is applied.
The conditions for the velocities read:
oy
-1 .0 (2-46)
a%
da _
Ul'é?l - U= 0 (2-47)
See also ‘reugdenhill (1980)
The condition for the pressure reads: p = p = constant.
0
The condition for k, with no shearforce acting on this boundary reads:
3 u2
otherwise: K = —:—b“rface] (Rodi, 1980)

Vou
The condition for € is part of a discussion. Generally the condition J€/d Xg = 0, but this leads to a

finite mixing length £ near the watersurface.
Equation (2-39) reads: €= c ,kj/z/g .

D % 3/2
. . . J€e _ 3 k* Qk k ae _
énd the derivative from € to X5 reads: 373 = 5:Cp 7 3?3 - Cyep , OX3 =0 .

The first term is zerc because of c')k/())(3 = 0, the second term, however, is zero when Ol,’ax3 = 0, or when
=0 and{)@/(’]x3 = 0,

Figure 2.9: Shape of mixing Length profile for different boundary conditions.

The demand for Q4£/ {)x3 = 0 is not necessary,only £= 0 is required, so why should Q€ /Q x3 =07
Experiments lead to the conclusion that £ reduces near the surface.

Rodi (1980) gives a condition for € which reads:

3/2
gk._\/c“!! )

fc.a.cs

(2-48)

In which Cg = 0,07 is an empirical constant (Rodi, 1980).
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2.2.6  Sidewall effects for channel flow

Generally walls in a flume affect the flowvelocity and shearstress profiles.
The rate of influence depends on the geometry of the flume and the flowconditions.

In this sub-section two methods are given to derive the influence of the sidewalls, the Einstein-method and
a method described by Knight (1981),

The Einstein-method

The method can be used for steady flow in a channel, river or flume with arbitrary geometry of the cross-

section. Here the geometry of the cross-section is assumed to be as sketched in figure 2.10.

Figure 2.10: Definition of cross-section and areas.

According to the philosophy of the method, the areas Aw and Ab have the same mean flowvelocity and for
each area the energy slope iE is equal.

Via the Chézy formula for the mean flowvelocity, Ui = L.y R.iE , this assumption yields:
21 - 21 (2-49)
Cw.Rw Cb.Rb
Aw Ab
With Cw as wall-roughness factor, Cb as bottom-roughness factor, Rw = —5—'and Rb =5
The roughness according to White-Colebrook reads:
o 12.R lZ.Rb
C, = 18.10qg ( E;I—S;7§:§) and Cb = 18.10g ( E;:T—;73j§9 (2-50)
With kw as wall-roughness and kb as bottem-roughness. The thickness of the viscous layer reads:
11,6 .v 11,6 .v
S = and o, = - (2-51)
W ,7g.§w.1E b ,7g.§b.1E
2.R
An expression for Rb can be derived via, A = 2.Aw + Ab = a.B,and reads: Rb = a.(l - 8 w)

With these expressions R, and R, can be calculated which satisfy equation (2-49),

The Knight-method

This method is based on experiments carried out in a straight flume with a number of different values for
wall and bottom roughness and waterdepth, the results are described by Knight (1981).
The following expressicns are defined by Knight:

}_7(p.g.a.i ) = %SF,,-B/(2.a.100) ; %"7(p.g.a.i ) = %SF p/100 ;7 = 2.a %7 + B.Eg (2-52)

with: T as mean wall shearstress, Tb as mean bottom shearstress, T as overall mean shearsstress, mSF as
percentage wall shearstress, mSFb as percentage bottom shearstress.

The emperical relations of wall and bottom shearstress are given in figure 2.11,

0.7 ' ' . 1.0

106 1 0.9

J 0,5 To 0.8

: k, /k
al,

0.4 Poe L \\\x_ ~b 0.7

G.3 | \\\j\\ _ 10 1 0.6

{0.2 I \\\\\::\__ 100 la.s

o1 I '\ — 1ooo lo.a

. 10000

D 5 10 15 20 B/a 0 5 10— ) 20 B/a

Figure 2.11: Influence sidewalls on shearstress, from Knight (19811,
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2.3 Sedimentmovement

2.3.1 General

The conservation of mass equation for sediment holds generally. A general conservation of momentum equation,
however,is difficult to derive for sediment.
Parameters like the mean flowvelocity, turbulent quantities, sediment grain size and shape strongly influence

the motion of sediment particles.

Empirical conservation of momentum equations have been derived for different types of sediment.

Many of these equations hold for average flowconditions and average sediment qualities, like the Mayer-
Peter-Miiller, Engelund-Hansen and AckersdWhite equations.

In this section the sediment movement is regarded locally along a dune.

For this purpose two simple transport equations are used.

The first is an expression in which the sediment transport depends strongly on the flowvelocity, S = f(Ul).
The second expression reads, S = f(Ul,xl) in which the sediment transport depends strongly on the flow-

velocity and the position along the dune.

2.3.2 Conservation of mass equation

The derivation is carried out in the xl,xz,x}—orthogonal coordinate system, with instantaneous flowveloci-
ties Oi = Gi(xl’XZ’XZ’t) for i=1,2,3 and an instantaneous sediment concentration é(xl’XZ’XB’t)'

A mass balance for a controle volume (Eulerian frame) is set up as sketched in figure 2.12,

(0,8) !
3 i dx
g +dxs ! 1
(a é)l
! R Xprdxy Figure 2.12: Definition of
(0,8) ‘ 1 (0,8) , o
124 4. . Y A | §Lowvelocities and
dx3 Rl xl+dxl
‘//./”110261 concenthation in
X
2y the control volume.
- «AZ-

The sediment concentration in the control volume changes per unit time due to changes of the sediment flux
through the control volume.

This yields the conservation of mass equation for sediment concentration:

aﬂle 0026 5036
+ %] + 3%, + aX3 = 0 (2-53)

QJlQ}
[udle}d

The derivation is carried out for the two-dimensional xl,x3—coordinate system in a vertical plane, so equa-
tion (2-53) reduces to:

aole RICT

+
9% 9%3

+

=0 (2-54)

QJiQ)
o

The instantaneous flowvelocities and concentration will be seperated in mean and fluctuating components,

Reynoldsdecomposition: Ol = Ul + Uy 02 = U2 + Uy 03 = U3 +Ug ¢=C+c, witi the same treat-

ment as given in sub-section 2.2.2.this results for example for the concentration in: & =C and c =0,

when the concentration is averaged over a period T.
After decomposition and averaging over a period T equation (2-54) reads:
c aUlC ausC gy e dusc

v 3x, + ax; + aXl + 3y = 0 (2-55)

(a9}

(@3]

Now the flowfield over the dune and the dune itself will be regarded more detailed in order to rewrite

equation (2-55) in a more convenient form,
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The flowfield above the movable bed is sketched in figure 2.13, dune on a conveyor belt:

ah/at :ah/OXl =0

! 0.0y yXz) I c, = conveyorbelt
3V°1073 a(xl,t) ' velocity
‘ a (xl,x '
" X
. 3
. =
*1

Figure 2.13: Definition of the f{Lowfield.

The dune is moved upstream with a constant velocity cy which is equal and reverse to the dune propagation
velocity , so the dune does not move with respect to the xl,xj—coordinate system.,

Due to acceleration of the flow above the dune, the watersurface will not be horizontal, however, devia-
tions from a horizontal plane will be small.

In the derivation a rigid-lid assumption will be made, c’)h/c’)x1 = 0. The watersurface does not change with
time, dh/ Jt = Q.

In the x3—direction three regions can be distinguished as sketched in figure 2.14.

i Z}
zZ4 reference at X3 = o,
zogzézl ¢ region with Ul = -Cps U3 Uy =ug o= 0 and C = Co’ c=0,
h " zl§z§22 : in this region the sediment transport takes place, all
z
S@SS zi variables are non-zero,
< e H 22§z§23 ¢ in this region all flow quantities are non-zero, for the
oL - sediment concentration it holds that C = ¢ = 0.
0

Figure 2.14: Definition of regions.

Before working out equation (2-55) an important mathematical relation is given (Abramowitz, 1972):

Fix,z) d db Ja
AR IAS LR o -2 =S -
[250mk g = D feton) 0z -§8 rob00) +32 nat)  (2-56)
Equation (2-55) will be integrated along the xj—axis and the terms of the equation will be treated sepe-
rately, with the aid of equation (2-56).

________ Z z

dz3 %

J = atjc dX - C(Xl’z)')(jT + C(Xl,ZD) (-]T
0

The concentration at the surface C(xl,zj) = 0 and the terms E]z}/Ot =aZO/Ot = 0, so the remaining expression

reads:
5% [c,.H+cCuH]

It is assumed that C<C, and H'<H, the transport layer is very thin with respect to the total duneheight,

so finally for this term the result is:

ou.C C'g—H
o t

z
3 z z

3:9U,cC
1 _a %3 %
%] dx3 = 3%, ZU Cdxy - ”1C(x1’23) a-x—l— + UlC(xl,zo) E

The terms 023/ Oxl = ('JZU/('JXl = 0 so the remaining expression reads:

z
d
5;1 [-cb.C Ho+ l7U1C dxj]

The term [UlC d><3 describes the mean sediment transport in the transport layer, this term is estimated

by S'Co’ in which S is the mean transport per unit time and mass, including pores.
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o 1 . . o (e can g5
o finally this term can be approximated by: Cb'CoE)xl + Co.axl .
UsC :
The_term 3
3 #37.9UsC ja
o Tx=—dx, = U, = .
du,e 74 g X3 3 0 ? [:]
The term -s—:
________ axl

SO o oy -
2o % dxg = a%, Z-ulc dxg - ulc(xl,zj) 5;1» + ulcixl,zos 5;;
8]

with C(Xl’ZZ) = 0 and quzj/Oxl :OZO/Oxl = 0, the remaining expression reads:

z

[jul_c dxs ]

1

The term j.ulc dx3 describes the fluctuation of the sediment transport in the transport layer, this term

Fy

X

[aF
[l

is estimated by s.CD, in which s is the fluctuation of the sediment transport with s = 0, wheén is averaged
over a period T.

os C
So finally this term can be approximated by: —5:F£l
1
Ty
The_term G

z OU3C z _
Ix dX3 = jaUBC :[E) .
75 “0

When the above derived expressions for the different terms of equation (2-56) are substituted,when (2-56)
is integrated over the X3-axis and the instantaneous sediment transport is defined as 8 = S + s, and
the local dune height H = Zy, then the conservation of mass equation reads:
as , 9% 0% | -
%, * 3T % ax. 0 (2-57)
The first term expresses the change of the sediment transport in time, the second term expresses the change

of dune height in time and the third term expresses the influence of the conveyor belt velocity.

2.3.3 A simple transport equation

The sediment transport rate strongly depends on the mean flowvelocity. so the most simple conservation of
momentum equation reads (see also de Vries, 1981):

S = f(Ul) (2-58)

This equation is used to express the transport term in equation (2-57).
It holds that:

= a(xl,t) + Zb(xl’t) = a + 2z = constant

h
« Qq= Ul(xl,x3).a(xl,t) = U;.a = constant (specific discharge)
S

After substitution of:

gs _df da (2-59)
0%~ Uy T2 dxy
gz
éx_b . Qg (2-60)
1 1
e
_tg = - g-i (2-61)
in equation (2-57) and averaging over a period T, the result is:
Qa Qda
= + K.=—= =10 (2-62)
ot a%y
. - .0f g
with: K = K(a) ~5U1' 2 - cy {2-63)
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Equation (2-.62) is a non-lineair hyperbolic partial differential equation with a celerity K(a), this

equation is based on the rigid 1lid approximation.
Now a more specific model is chosen for the conservation of momentum equation (2-58):
n
S=m(Uy -U) (2-64)

In which m and n are constants and U0 denotes the critical flowvelocity for sediment transport.

The expression for K after using equation (2-64) reads:

_Mm.n.q B n-1
K = 5 .(Ul UO)

c, (2-65)
a

Lineairization of K is not required because it is essential that K depends on Ul and a, but K will be re-

garded in a different way.

The celerity K is the local propagation velocity of the dune at an arbitrary coordinate (X1’25> .

The total dune propagates with a certain velocity and is moved upstream with velocity C-

During the experiments it is required that the position and height of the dune do not change in time, so

da/dt = 0, and because da/d%y #0 it follows that K must be zero for all Xy

From equation (2-65) it can be seen that with constant myn,q,c, and UD this demand is impossible, because

Ul and a change with X .

So K is non-zerc along the x,-axis exept for one point where: mi%lsu(ul - Uo)n_l =y .
a

The shape of the dune according to equation (2-64) and {2-65) changes to a horizontal bed where in every

coordinate X1 K = 0. A so-called shockwave appears.

9
\_/ © Lt
‘b
Figure 2.15: Development of a dune according to eq. (2-64) and (2-65).
Another way to look at K is to define a local velocity oy = cb(xl) s0,
_ m.n.g _ n-1 _ m.n.g _ n-1 _
K= =5 (U ~U) 2 U, -0 (2-66)
e

In which m,n,q,UO are constants and Ul,a, Ue and a, depend on X
The variables Ue and a, hold in an arbitrary coordinate X1 where they denote the equilibrium flowvelocity
and waterdepth. Once Ul becomes Ue and a becomes a, the dune propagation stops and K = O,

So K is large as Ul and a differ much from Ue and a.

In this way a stable dune shape and position can exist after some time, but now the conveyor belt velocity

oy is a function of Xp» 80 ¢ is not constant along the dune.

i e
o (x7)

cp(xy)

Figure 2.16: Devefopment of a dune according zo eq. 12-64) and {2-66).

Both expressions for K,(2-65) and (2-66),can not describe the dune propagation sufficiently with respect to
the demands: a constant dune propagation velocity and dune height.
A more detailed description for S must be chosen, because the expression (2-58) is in fact a relation set

up for the overall transport.
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2.3.4 A comprehensive transport equation

The description of the sediment transport by equation (2-58) is not sufficient as pointed out in the pre-
vious sub-section.

So the relation is extended by dependence of S of the xl—coordinate:

S = fU},x) (2-67)

Reasons for making S dependent of X, are:

- A part of the mean flowvelocity Ul is important for the transport, say: p Ul' In this way the boundary
layer thickness above the dune can be taken into account.

Figure 2.1%: Boundary fayer above a dune.

- The factor p = p(xl) is only a function of Xy not of U1 and is independant of changes of the dune
shape. The factor p belonges to one equilibrium dune shape. In this way the influence of position along
the dune and the flowvelocity are separate,

So equa tion (2-67) can be written as:

S = f(Ul,p(xl)) (2-68)

Using equation (2-68) in equation (2-57) this results, after averaging over a period T, and with:

ox; ToU; " 8% T apt ax)
os % 9% 9% _ 95 Q@ ]
aUl. axl + 3 - oy axl = -3p " Oxl (2-69)

The terms on the left hand side also cceur in equation (2-57), the term on the right hand side, hawever,

is added with respect to (2-57) and denotes the local influence on the transport.

A model is chosen for which S reads:
S = m.(p.Ul)n (2-70)

In which p = p(xl) includes the initiation of sediment transport, S = 0 for p = O.

Remark: in the previous sub-section all variables were expressed in a(xl,t), in this sub-section, however,
zb(xl,t) is used.

In fact nothing changes because h = a + z, = constant.

Equation (2-70) is used to determine the function p.

In a situation of equilibrium the shape of the dune does not change and it propagates with a constant
velocity ¢, , so azb/ot = 0 and equation (2-57) reduces to: S = CpeZy = m.pn.UT .
With q = U;.a = Ul’(h - zb) this yields:

n
. n
zb.(h - zb)n = m;g— . p )
. _ 1/n . _

or: p = (zbé/M) Ah "‘Zbe) (2-71)

n.q"
with M= —ég— , and Ze is the equilibrium dune height.

b

Equation (2-71) is zero For:zbe = 0 and for:zbe = h (which is not relevant).

An maximum value for p appears for : z be = h/(n+1) .
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Knowing the constants M and h and the shape of the dune, Zbe(xl)’ the function p can be calculated for that
particular shape.

The general shape of p for an arbitrary dune is sketched in figure 2.18,

0 h/}n+l) h Zy,

Figute 2.18: Generat Ahape of the {uncition p.

The terms OS/{JUl.O Ul/(J x; and as/dp. ('Jp/()xl in equation (2-69) will be treated seperately and be ex-
pressed in 25 7 and derivatives.

qu

as 1, s . .45 n,n-1
The_term a——Ul. a——xl. The derivative of equation (2-70) reads: aTJl = m.n.p ’Ul
Y 9%
It holds that q = Uj.(h - 2.), so: B e T

This results in:

ds (EB_ _ m.n.g.gn gn-1 ai (2-72)
R B O L
The term Q§ 9p : The derivative of equation (2-70) reads: 9s | m.n.Un.pn_l .
———————— ap’ axy P 1
With equation (2-71) it follcws:
l1-n
¢th -z ) { b oz 1/n gz
O bel oy n o Pbe " Pe
Ix n.M be ax be Ox
1 1 1
This results in:
n-1 .n;: l-n
. uy.Ch -z, ) { 1/nqynz
ds Jp [mp L1 be n n n-1 9%be
Kt o= ==, = Az, /M) - m.n U L (z /M)
ap " dx; M be 1 be %
(2-73)
Equation (2-69) can now be rewritten in the same form as equation (2-62), and after some
rearrangement:
gz a7
30 ¢ K. T = K (2-74)
1
m.n.q.pn.UT_1
with: ) K' = —— c (2-75)
{h - zb)2 b

and K" is equation (2-73).

In the situation of equilibrium, azb/ Jt = 0, but K' is not zero. The term K'. ('sz/axl is compensated

by the term K" so an equilibrium situation can occur.

With this model no efuilibrium shape of a dune can be predicted, the equilibrium shape must be known to
determine the function p. But the model can be used to estimate the time needed for an arbitrary shape
of the dune to reach the equilibrium shape.

This holds even when is started with a horizontal bed situation.

Some remarks can be made upon the function p.

According to Fredsde (1982) the results of two interesting experiments are.treated.
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An experiment by Bradshaw and Wong in,air, measurements of shearstresses above a trianguler bottom step in
a boundary layer.

Another experiment by Smith,in water, measurements of shearstresses above a triangular shape.

The set up of the experiments is sketched in figure 2.19, alsc some dimensions and flowconditions are

given.

Ul=25 m/s
air —
6HS U,=0.5 m/s
water —1

laminair b.l. tgrbulent b.1.

e S _ —
HsI';?;h(r*q,*::\“\ TN 7 T A I

0 ——x; SZHy 0 b—x

1
Figure 2.19: Definition of geometry in experiments by Bradshaw and Wong (Left) and Smith (right).

The shearstress was measured just above the bottom and expressed in a dragforce coefficient:

I
Foypu?
The results are given in figure 2.20.
bed profile
0.
1000.c¢ 1000 .¢ Il

2

1

0 I5770 s 1 /Mg

Figure 2.20: Results from experiments by Bradshaw and Wong |Left) and Smith {night), from Fredsge (1982).

In the experiment of Bradshaw and Wong the value of Ce remains nearly constant after xl/Hs = 16,

In the experiment of Smith a local maximum value of Cp appears ?t xl/Hs = 16, the increase of ce after this
coordinate is an effect of the shape of the bottom, on the convergence of the flow.

Comparing the triangular shape with a general shape of a dune, it appears that the dune is almost hori-
zontal near the top , so no convergence of the flow occurs in that region and Ce does not increase after
the local maximum.

The shape of e in both experiments , after adjusting for a general dune shape, is identical, aswell as the

shape of the function p from figure 2.18, when the part z > %h of p is not taken into account.

b

After some rearrangement c. and p can be compared. In general it holds that S = f(T) = f(cf.%.p.Ui) .
so S~(ve. . U2 '

From equation (2-70) it follows that S ~(p.Ul)n . So for a constant value of n,it holds that p«vvﬁ} .
One should be careful with the comparison of p and c., because p = F(zbe(xl) and c, = f(xl/HS), s0

p is an implicid function of Xy and Ce is an explicid function of Xy

Furthermore Ce is related to a bottom step upstream and p is related to the shape of a dune.

Resulting it can be stated that both p and cp have suprisingly identical shapes, both express the in-
fluence of the flow on the bottom shearstress and through this the sediment transport is influenced

along the shape of the bottom.
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3. Experiments

3.1 Introduction

In cases where no analytical solution of the hydrodynamic equations can be found, numerical solutions can
be caleulated and physical experiments can be carried out.

Experiments can be used to test the theoretical model and give insight in the physical phenorina.

For the simple flowconditions, as a part of the investigation, analytical solutions are found, which are

compared with results of experiments.

For the flowconditions in case of a solitary dune, numerical solutions are calculated, which are compared
with results of experiments.

In the solitary dune situation sediment particles are transported along the surface of the dune, this effect
affects the flowfield near the surface of the dune.

The numerical solution does not include moving sediment particles, so comparing both cases should be done
with care.

In this chapter the flowconditions, the measuring method and the processing of data are described.

3.2 Experimental facilities

The flume:

The experiments are carried out in a straight flume, with a total length of 24.0 m and a cross-section of
2

0.5 % 0.5 m".

The bottom of the flume is horizontal and consists of very smooth concrete elements, with a length of 1.5 m.
Between the elements there is a 0.5 cm wide joint filled with silicon.

The walls of the flume are vertical and consists of 1.5 m long glass plates (thick 9 mm.) and the joint
between "the plates is 0.5 cm wide and filled with silicon.

The joints affect the roughness of bottom and walls.

Water is withdrawn from a reservoir in which the waterlevel is constant and led through a pipe with a diameter
of 0.15 m at the inflow of the flume.

The water flows into the flume via a stilling basin and damping is brought into the flume at the inflow to re-
duce translatory waves travelling up and down the flume.

The discharge is measured by an orfice in the pipe.

At the end of the flume a weir controls the waterdepth and the slope of the watersurface in the flume.

The complete installation of the flume is sketched in figure 3.1, in which the coordinate system is given as
well, Just after the inflow x| = 0, in the flume axis Xy = G and X3 = 0 at the bottom of the flume.

The measuring section is situated from x, = 15.0 to X = 17.0 m.

1
X3
el ! 0.50 m cross-section
/ s
reservoir
orfice X,
0.50 m
damping measur ing section
T8 1 .
—_— 1 1 —a weir
! ._l
| 2o 2l m 0.70 m
2470 m

Figure 3.1: The flume.
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Measuring the instantaneous flowvelocity:

A Laser Doppler Anemometer (LDA), heterodyne system, is used to measure the instantaneous flowvelocity,
The working principle of the LDA is described in appendix A.
A great advantage of the LDA is that the flow is not affected by any measuring device and measurements

carried out close to the surface of the solitary dune,where the transport takes place, do not disturb
the sediment transport,

In the water a measuring volume is created through intersecting laser beams.

The measuring volume is adjustable and can be made smalier than 1 mm3. In the measuring volume the flowvelocity

is measured, small particles in the water are illuminated by the laser beams and reflect the light.

Due to the velocity of the particles a doppler shift occurs in the frequency of the reflected light,compared
with the frequency of the light leaving the laser.

The frequency shift is a direct measure for the velocity of the particles and so a measure for the flow-
velocity of the water, if the particles move in the same way as the water does.
The frequency shift is transfered by a tracker into a voltage which can be translated into a flowvelocity.

The tracker can follow, within a certain range, the fluctuations of the flowvelocity, so the instantaneous
flowvelocity of the water is measured.

Theinstantaneous flowvelocity is transfered from analog to digital information and stored on tape.
The stored data can be processed by a computer.

The instantaneous flowvelocity can be decomposed into a mean flowvelocity and a fluctuating flowvelocity,
Reynoldsdecomposition.

Turbulent quantities (energy, shearstress) can be calculated now, see sub-section 2.1.2.

With the LDA system used in the experiments two flowvelacity components in the measuring volume can be mea-
sured at the same time.

These components lie in a vertical plane parallel to the flume axis, the plane in which the main flow-
directions lie.

After the tracker an analog filter is used to reduce noise and the frequency peak of 48,5 Hz. generated
by the rotating grating (see appendix A).

The complete LDA system used in the experiments can be seen on pictures at the end of appendix A,

The measuring frame:

The LDA equipment is placed on a frame which is placed over the flume.

The measuring frame consists of a bridge with plateaus on both sides of the flume.

On one plateau the laser and optics are placed on the other plateau the photodetectoré. The frame can be
moved in the X1= and xj—direction.

The optics of the LDA are placed on a special base plate on the plateau. The base plate can be moved in the
xz—direction.

The measuring frame is sketched in figure 3.2,

44§== — =
T
"
g g
- { - Lo |
laser | E « ! ,
: 3 ‘
- = e g ! © I
e b f1 — flume |
base plate optics ume photodetector
X ' —1ox
cross-section Z side view

Figure 3.2: The measuring frame.
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The coordinates of the measuring volume can be measured with the following accuracies:

xl—direction t 0.5 mm.
xz—direction + 1.0 mm,
xz—direction : 0.5 wm.

The xl—coordinate is related to the flume, the xj—coordinate is related to the flume bottom.

The Xo,-coordinate is related to the position of a thin perspex plate which is placed vertically into the
flume.

The perspex plate is placed in the right xz—coordinate and than the optics on the base plate is moved in
the xz—direction until the measuring volume is placed in the perspex plate.

The doppler bursts are maximal, because particles in the perspex remain at their position and the signal
remains maximal.

Furthermore the velocity of the particles in the perspex is zero, so the offset voltage in the tracker
can be adjusted to zero.

A photo of the measuring frame can be seen at the end of appendix A.

The conveyor:

In order to reduce the celerety of the dune to zero, a conveyor iS built into the bottom of the flume.
The length of the conveyor is 2 m and its wide is 39.5 em , the height is 6 cm.

The conveyor belt is driven by a spindle which is driven by an electric engine. The conveyor belt can be
stretched.

The speed of the conveyor belt is continiuosly adjustable between 0.0 and 10.0 m/h.

The conveyor is fixed to the bottom by two vertical rods, which are placed near the walls of the flume,
but influence the flow a little. The rods are placed, however, downstream the dune.

The belt to drive the spindle is placed near a wall but too influences the flow downstream the dune.

The conveyor is sketched in figure 3.3.

rod

" electric
/ engine

conveyor belt

Figure 3.3: The conveyox.

To support the dune two perspex supperts are placed on the conveyor, see figure 3.3, The supports are
fixed to the walls of the flume and do not rest on the conveyor belt. There is a small space between
support and belt, but no sediment particles can get inbetween.

The reasons for the perspex supports are (see also appendix B):

~ near the wall of the flume the flowvelocity is too small to transport sediment, so only the centre
part of the flume is used,
- a dune as wide as the flume, 0.50 m , is strongly three-dimensional of shape,

- no sediment particles may be lost in either direction.
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3.3 Flowconditions

3.3.1 General

Measurements in two different flowsituations are carried out:

- a horizontal bed situation, set up to test the adapted LDA system,

- a solitary dune situation, for the investigation of the flow over a dune.

3.3.2 Horizontal bed situation

In this situation the bottom of the flume is horizontal and the width of the flume is 0.50 m.
The slope of the watersurface is: Ja/Q Xy = 0.992%107° + 0.01*10_3, except for a small region at the in-
flow of the flume and a small region at the outflow.

The discharge through the flume is: Q = 24%107° + 0.1%107° m3/s and is constaiit.

The IDA-measurements are carried out at X = 16.0 m., in three verticals : x, = 0.0, x, = 0.02 m and

2 2
Xy = -0.02 m. The waterdepth at these positions is: a = 0.093 + 0.001 m and is constant.

The mean flowvelocity over the cross-section at X; = 16.0m is: Ui = 0,516 + 0.008 m/s.

The mean temperature of the water during. the measurements is: T = 19.5 + 0.5 0C, and the density of the water
. _ 3
is: p, = 1000 kg/m” .

So the kinematic viscosity of the water is: D= 1.017%107°

6

+ 0.012%10° me/s.

The overall Reynoldsnumber is: Re = 47000,

The roughness of the glasswalls is: kw = 0.3*10_3 to O.li,*l[)—3 m and the concrete bottom has a roughness:

ky = 0.2¥107 to 0.5¥107 m.

3.,3.3 Solitary dune situation

In the situation with the solitary dune the conveyor is situated between x, = 15.0 and X) = 17.0 m.

1
Upstream and downstream the conveyor the bottom of the flume is horizontal.
The slope of the watersurface is: Oa/()xl = 0.475%107°
outflow of the flume

The discharge through the flume is: @ = 58%107° i_[].l*l(]_3 m}/s and is constant.

+ 0.02*10_3, exept for a region at the inflow and the

Measurements with the LDA are carried out from x, = 15.0 to X = 17.0 m in several verticals at x, = 0, the

1 2"
axis of the flume.
The undisturbed waterdepth just upstream the dune, at x| = 15,00 m is: a = 0.234 + 0.001 m.

So the mean flowvelocity in that cross-section is: U, = 0,496 + 0.008 w/s.

1
The mean temperature of the water during the experiments is : T = 19.0 + 0.5 OC, and the density of the water
ist p = 1000 kg/m .

The kinematic viscosity of the water is: p= 1.029¥10°¢ + 0.013%10°¢ n%/s.

The waterdepth and the shape of the solitary dune are given in chapter 4.

An impression of the solitary dune on the conveyor is given in figure 3.4,

Over the dune the flow accelerates and furthermore the width of the dune is only 0.20 m, while the width of
the flume is 0.50 m.

The dune is supported at the sides by perspex walls.

Due to the perspex walls the flow near the bottom is divided into three sections.

The height of the perspex walls is 0.10 m., while the waterdepth is more than 0.20 m, so the supports remain
under water.




32~

Figure 3.4: The solitary dune
Ainbetween the
penspex. supporis.

The flowfield is disturbed by the perspex supports, but only through the supports the creation of a nearly
two-dimensional stationary dune is possible.
No mean flowvelocity or Reynoldsnumber over the dune is given, because the complete flowfield in the three

sections is not measured.

3 3

to 0.4%1077 m.

to 0.5*10_} m.

The sand used for the dune has an uniform diameter of 10_3 m and its density is: P = 2650 kg/mj.

The roughness of the glass walls of the flume and the perspex supports is: kw = 0.3%107

The roughness of the concrete bottom of the flume and the conveyor belt is: kb = 0.3*10_3

The total weight of the sand on the conveyor is: 5.2 kg (dry weight).

3.4 Measurements

3.4.1 General

The measurements of instantaneous flowvelocities is carried out with the Laser Doppler Anemometer (LDA).
The principle of the LDA is treated in section 3.2, a more extensive treatment is given in appendix A.
The sedimenttransport can be easily determined when the conveyor belt velocity and the local dune height
are known.

In this section the measured quantities of water and sediment are treated, alsc the influence of the size

of the measuring volume is regarded.

3.4,2 Measured quantities

Watermovement:

The quantities measured with the LDA are two instantane perpendicular flowvelocity vectors in a vertical plane.
When possible, flowvelocities are measured with the 450—configuration of the laser beams (see appendix A).
With this configuration measurements close to a wall or watersurface can be carried out.

Because the reference beams are in a horizontal plane and can reach the photodetectors on the other side of
the flume when the 450—configuration is used.

When the bottom is not horizontal, the beam configuration must be changed so that the reference beams lie in
a plane parallel to the bottom.

Near the watersurface the configuration is rotated 1800, the illumination beam does not intersect the water-
surface before reaching the measuring volume.

The watersurface is not complete at rest, so due to refraction of the beam the position of the illumina-

ting beam intersecting the surface is not constant when the 450—configuration should be used near the surface.
In figure 3.5 the different configurations are sketched.

In general the measured flowvelocity vectors make an anglec¥+ﬁ with the horizontal plane.
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Figure 3.5: Beamconfigurations, Ln
practice and definition.

The rotating grating in the LDA.generates: a frequemey in the doppler signal of 48.5 Hz.

So an analog low pass filter (LPF) is used with boundaries 0 to 45 Hz.

The upper boundary is required to reduce the 48.5 Hz component sufficiently, it will be shown that after
45 Hz no important contributions to the signals occur.

This is investigated by a measurement with LPF boundaries 0 to 200 Hz.

Sample intervals for the A/D conversion are chosen in a way aliasing is prevented.

In the case of LPF boundaries O to 45 Hz the sample interval is: FS = 100 Hz, in the case of 0 to 200 Hz ,
the sample interval is: FS = 500 Hz.

The duration of the measurements is 8 minutes and in some cases 15 minutes.

An overview of measurements is given in table 3.A.

Table 3.A
measuring Fs LPF boundaries
time  (s) (Hz) (Hz)
horizontal bed 480 100 0 to 45
900 500 0 to 200
solitary dune 240 100 0 to 45

Measurements with a duration of 4 minutes (240 s ) appeared to be long enough, compared to the results of mea-
surements of 8 minutes (480 s ) only slight differences occured (see sub-section 4.2.2).

The processing of the measured instantaneous flowvelocities is treated in section 3.5.

Sedimenttransport:

The local sedimenttransport is calculated from the conveyor belt velocity and the local dume height,
S(Xl) = cb.zb(xl), the relation will be derived in chapter 4.
Only in the axis of the flume the dune height is measured.

The conveyor belt velocity is adjusted with an accuracy of 0.005 m/h, and is chosen so that the dune remains
for several hours in the same position.

The dune height is determined with the LDA.

The measuring volume is moved vertically so that the reference beams of the LDA just intersect the dune surface,
the presence of the signals on-the-tracker becomes zero.

The xj—coordinate of the measuring volume, now, is defined as the dune height at this x -coordinate.

The accuracy of the dune height determination in this way is: 0.5*18_3 m.
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3.4.3 Influence of the measuring volume

As derived in appendix A, the dimensions of the measuring volume in water read:

Axl = 4. /10.1-"3/( n.dl.cose) ; sz = 4./’\0.f3.n/(n.dl.sin 0) ; Ax3 = 4, AO.FB/(n’.dl) (3-1)

with:
j{o : the wavelength of the laserlight in air (m)
f3 + focus length,of the lens just before the measuring volume (m)
d; : the beamdiameter after the rotating grating (m); dl:dO.Fz/Fl.
d, the beamdiameter leaving the laser (m)
fl,Fz ¢ focus lengths, see figure 3.6.
X5 20 : angle between the illuminating and reference beam in air.
n : refraction index between air and water.
Ax ‘“\\\fiiz\\\\\v rotating dl reference beam
\}/ZZ grating L illuminating beam
X3 .
I “meast
2 e ) measuring
« . :
L measuring volume i lens f‘2 lens F3 volume

Figure 3.6: Measuring volfume and definitions.

In the horizontal bed situation two dimensions of the measuring volume are tested, in the solitary dune
situation one dimension is used.

The measuring volume can be made smaller by chosing lenses with different focus lengths.

To create a small measuring volume at some distance from the wall of the flume, the flume axis, the angle 20
must be large and so the diameter of the lens f3 must be large.

The measuring volumes used in the experiments are given in table 3.B, with the constants:

Ao = 632.8%107 n , d_= 107 m and n = 1.333 .

Table 3.B
Horizontal bed situation Solitary dune situation
configuration: L1 L2 L2
Fl 50  mm 120 mm 120 mm
fz 250 mm 250  mm 250 mm
f3 330 mm 330 mm 330 mm
] 5.25° 5.13° 5.20°
dl 5  mm 2 mm 2 mm
z&xl 0.05 mm 0.13 mm 0.13 mm vidth
Ax 0.77 mm 1.98 mm 1.96 mm length
Ax 0.05 mm 0.13 mm 0.13 mm thickness
K0 289373 282675 286722

To measure small scale turbulence, which contains most of the turbulent energy, the measuring volume has

to be so small, that the eddy sizes of importance are detectable.

The instantaneous flowvelocity measured by the LDA is a mean value over the measuring volume.

When the measuring volume is relative large compared to the size of the eddies, the LDA does not detect the
smaller eddies inside the measuring volume so the large volume is like a filter.

The mean flowvelocity is not much influenced by a relative large measuring volume, but the turbulent quantities

are affected by the relative large measuring volume, the measured values are smaller than expected.
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In the experiments the turbulent quantities, uf y u% and GIG? are interesting.

These quantities are mainly dominated by the Prandtl integral scale 4= x5 (Hinze, 1975).

Eddies with this size and larger contribute mainly to the mentioned turbulent gquantities.

The Prandtl integral scale is only valid close to the wall, there also the smallest energy containing
eddies occur.

From table 3.B it is clear that the principle dimension of the measuring volume is its length, which is
directed in the xz—direction.

The main direction of the flow is in the xl—x3—plane, but turbulence is three-dimensional, so the Xo-

direction is of importance, and the length of the measuring volume as well.

The length of the measuring velume of the configuration L1 and L2 is, 1 mm respectively Z mm.

So with the Prandtl integral scale 4£= D.4*x3 an estimate can be made for the distance from the wall at
which the LDA does not detect the energy containing eddies very well.

With £ is 1 mm respectively 2 mm, the distances from the wall are 2.5 mm, respectively 5 mm.

From the bottom to 2.5 mm,respectively from the bottom to 5 mm (L1 respectively 12) poor results of the tur-
bulent quantities can be expected.

The influence of the size of the measuring volume is sketched in figure 3.7.

Near the watersurface the influence of the size of the measuring volume is much less, because the energy
containing eddies are much larger in that area.

Figure 3.7 is an indication of the effect, results from prelimnéry measurements and experiments by the OHL

are interpretated.

a_‘, — a o sz =1 mm
o sz =2 mm
XBI X3 x sz = 20 mm
n\x — theory
& — —measurements
i
/¥
///”
,X")( -
0 2 0 0 e
1 “UYs
mean flowvelacity Reynoldsshearstress

Figure 3.7: Effect of the séze of the measuring volfume on turbufent quantities, principte.

3.5 Processing of measured data

Mean flowvelocity:

As already mentioned in sub-section 3.4.2, two perpendular flowveleccity vectors in a vertical plane are measu-
red instantaneously by the LDA.

Figure 3.8: Measured f{Lowvefocity vectors.
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The flowvelocity vectors Vl and 02 are transformed to flowvelocity vectors Gl and 03
In general the angle between Vl and 02 is &=7/4, in the experiments.

But near the surface of the dune sometimes a different angle is used, when the shape of the dune blocks
one of the beams (C¥+ﬁ ).

The instantaneous flowvelocity vectors Vl and 02 are transformed to 01 and 03 as follows:

Ol(t) = 01(t).cosc¥ + Vz(t).sinct

(3-2)
03(t) = Vl(t).sin(l - Vz(t).cos(x

The measured data are stored digitally on tape, so the flowvelocities in the equations (3-2) are not con-
tinious but discrete.

The flowvelocities read in a discrete form: Gl(t) = ulj ; Oj(t) = 03j $ Vl(t) =V

with j = 1,2,....N .

The local mean flowvelocities are calculated as follows:

[y
.

11}
Z[—=
‘Mz

o
S

o

j=1
1 N (3-3)
U, =5 5 0g.
37N i1 33
The local turbulent fluctuations of the flow read (Reynoldsdecomposition):
Uy =054
(3-4)
usj = O35 - Us
This relation holds that: U= Ug, =0,
137 735

Turbulent energy:
The turbulent energy per unit mass can be estimated from the standard deviation of the fluctuations of the

y
flowvelocity, this reads:

(3-5)

The Reynoldsshearstress per unit mass, —Uj U, is estimated from the correlation between uy and Uz and reads:

=
I [+
[

N
> UplUg. (3-6)
j=1 o N3

The correlation coefficient between uy and us is defined as (see Tennekes, 1977):
— 2 2.%
T /(Ul'UB) (-7

The transformation of the equations from an arbitrary coordinate system to the xl—x3—coordinate system,
is treated in appendix A.

The equations (3-5) and (3-6) can be extended to a more general form, the correlation functions.

These functions show the correlation as a function of time between Ulj and itself, or u
auto-correlation functions, or Ulj and u}j’ cross-correlations functions.

35 and itself,

One of the two signals is delayed with respect to the other, over a time £ = n. At, in which At is the sample
interval and n = 1,2,...

Then a multiplication over the complete time interval is carried out.

In figure 3.9 an example of the cross-correlation function is given.
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L=t =(j-n)At

Figure 3.9: Princdple of cross-cornelation of Uy and u3(j—nl'

The auto-correlation functions read:

N
Uy (E) oy () L& Uhen
cl(t) = — ——=——— , or discrete: cl(n¢ﬁt) N1 J:————ﬂ—f
u u
1 N 1
> ug..u G-8)
u3zt).u3(t—t5 1 i 31 3(§-n)
03<t) = =y~ , or discrete: c3(rhlkﬂ =T J:’-——-3r——*——
Uy Uz
The cross-correlation function reads:
N
ST T =) L& NG
Cy5(%) = ———2——— | or discrete: c,.(n.At) = — L~~~ (3-9)
13 — 51 13 N-1 A —
(u2 udy? (u2 uz)/2
1073 1773

e T Ty
It is clear that for % = 0, the equations (3-8) and (3-9) read: cJ(O) = 03(0) =1 and 013(0) = —uluz/(uf.ug)/2

The general shape of a correlation function for stochastic signals, is given in figure 3.10,

C(t)+\\\\\\

o ks

Figure 3.10: General shape of a coarefation function.

The correlation function does not in general cross the time axis, this depends on the signal (Tennekes, 1977).
From the correlation function the decay of the correlation with time can be estimated.

Frem the viewpoint of turbulence the following deviation is added (see Hinze, 1975):

[o.3]
The Euler integral scale time scale is defined as: TE = }’c(t) dt (3-10)
0
2 -%
and the Euler dissipation time scale reads: . DE = [—% Q_Ei%l
e Z:O_*_
Also a spatial correlation can be defined as: f(r) = uAft5.uBit5/(u'2)
_up(®) _ug(t)
A N B
Q0
The integral scale (Prandtl) reads: Le = 0[f(r) dr (3-11)
2 -%
and the dissipation scale reads: Dg = -k Qz§i§l]
T
r=0

For a flowfield with a mean uniform flowvelocity Ui «uy a simple relation between TE and LF holds, with

the aid of x| = Ul.t:
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LF = Ul. e (3-12)
and so: F(xl) = c(t) (3-13)

Equation (3-13) means that the spatial and time correlations are equal, The turbulence is isotropic and
homogeneous (ui = ug = u% = constant throughout the fluid).

And from equation (3-12) and the time correlation function, the integral scale LF can be estimated.

Power spectra:
To investigate the turbulent energy in detail, power spectra are useful .
The power spectra are calculated numerically with a Fast Fourier Transform (FFT) computer routine.

The Fourier Transformation for a discrete finite signal fj+l reads:

N-1 ~(2.70.1.k/N)
Fk+l = z f‘j+1 e H k =0,1,...,N-1 (3-14)
j=0 complex number.

[
1nou

The signal Fj+l can be any desired signal.

In the case of power spectra from turbulent quantities, the following expressions are used {(Blackman, 1958):

E; ¢ power spectrum of u fj+l = cl(t) , see equation (3-8)
E5 : power spectrum of ug Fj+1 = c}(t) , see equation (3-8)
Ey3: power spectrum of -Uqug Fj+l = cl3(t) , see equation (3-9)

The power spectra are usually plotted on logarithmic scales and the frequency axis is often transformed

to a wavenumber axis, via the relation:

K, = 2T0D wh (3-15)
1770

Withvas the frequency in Hz and Ul is the local mean flowvelocity.

The power spectra £ Ey and B4 (LBT_Z) are plotted as a function of k.

The power spectra given in this report, are one-dimensicnal s

\
©
i
g
&
o
[
)
el

spectrum of the turbulent energy k is correct, because turbulence is three-dimensional.
But in the experiments only the flowvelocity vectors in the Xy~ and xj—direction could be measured instan-
taneously, so the power spectra of up and ug are treated seperately as one-dimensional spectra.

A three-dimensionsl power spectrum is shaped as sketched in figure 3.11, the scales are logarithmic.

E(k) £y (k)
three-dimensiona one-dimensional
power-spectrum powet-spectrum q
-7
s t k t k
Ke kg ke

Figure 3.11: General shape of power Apectra.

The wavenumber for which the viscosity becomes important if kd = n_l (Hinze,1975), with 7 as Kolmogorov-scale.
The maximum of the spectrum lies around ke, where ke.n =0.1 (theoretically 0.09).

This spectrum is valid for the inertial sublayer in boundary layer flows and because no measurements

could be carried out in the viscous layer but only in the inertial sublayer and the outer region, the
calculated spectra from measurements are shaped as in figure 3.11.

Because the total turbulent energy could not be measured, one-dimensional spectra are calculated which

are shaped as presented in figure 3.11.
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The éxtra contribution to the El(kl) spectrum for low wavenumbers is due to flowmovements in the two
other directions (x2 and XB).

Figure 3.12: Contribution of waves in other directions to E,lk,).

Wavenumbers kZ:kl in other directions than strictly X1 contribute to the one-dimensional spectrum, so extra
energy with small wavenumbers is added to the spectrum.
The effect, sketched in figure 3.12, is important, because the turbulent energy for small wavenumbers

should become zero.

Therefore the region of the. pawer spectrtum, with small wavenumbers should be omitted when results are inter-
pretated.

The shape of the one-dimensional power spectrum can be considered in more detail, see figure 3.11.

Near the wall a strong production of turbulence takes place which means a strong interaction between mean
and turbulent flow; further away from the wall this interaction decays.

In Hinze (1975) a complete derivation is given on the shape of the one-dimensional spectrum, here only
the results are given.

According to Tchen, the slope of the spectrum is -1 for a wide range of wavenumbers.

In the case of small interaction of turbulent and mean flow, Kolmogorov's law holds, which says that the
slope of the spectrum is -5/3, for a wide range of wavenumbers.

Panchev extended the theory of Tchen and derived,in case of a strong interaction between turbulent and

mean flow, that the slope is -1 and changes continually to -7, for wavenumbers near infinity.

In the experiments described in this report, the maximum value of the wavenumber is about 1000.

So near the wall, where a strong interaction occurs between turbulent and mean flow, the slope of the
spectrum is about -1, which decreases via -5/3 to even smaller values. This is an effect of the analog
filter, which removes all frequencies above 45 Hz.

Further from the wall, the interaction between turbulent and mean flow decreases, and the slope of the spec-
trum is -5/3 in a region 50 <k <500 (according to Hinze, 1975).

The interesting part of the one-dimensional spectrum starts at the point where the spectrum has its maximum

value. For smaller wavenumbers the spectrum should be omitted due to contributions of other directions,
as pointed out before.

Finally the following relations hold for the power spectra:

r =
/El(kl) dky = Ul
0

(3-16)
Qo

/53“1)dﬁ.=*ﬁ%
0

The surface of the spectrum can be integrated and compared with the turbulent quantities, to check the nume-
rical routine.

Filtering:

In some cases it is convenient to have only the fluctuations of the flowvelocity for further treatment directly,

instead of the complete instantaneous flowvelacity.
This can be achieved using an analog band pass filter (BPF) after the tracker.

The upper boundary can be chosen according to the noise level in the signal or to reduce the frequency due
to the rotating grating.
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The problem is, however, how to chose the lower boundary of the BPF.

Because in fact the demand is to remove the mean flowvelocity component, but no turbulent fluctuations
with low frequencies,

This is important because the low frequencies of the turbulence contain most of the energy.

To investigate the effect of the lower boundary of the BPF, a digital filtering proces with the aid of the
computer is used.,

The complete signal, mean and fluctuating flowvelocity, is transformed into a signal spectrum (an ampli-
tude and phase spectrum).

Now the amplitudes and phases with low frequancies from zero to a certain value Fl are made zero.

The filtered signal spectrum is transformed to the time domain, so a filtered signal remains.

The proces is presented in figure 3.13.

amplitude amplitude

AM/WKMfM/«xMMNVm&m“ freq. freq.
1

FEr FFT j
signal = fﬂ_téring = ) t

filtered signal

phase phase,

freqg. freq.
1

Figute 3.13: Principle of digital fiftering proces.

The value of Fl can be variated, through which the influence of the lower frequencies on the turbulent
quantities can be determined.

The main reason for the filtering is to investigate the influence of Fl on the Reynoldsshearstress,
after filtering the shearstress is calculated again and can be compared to the not filtered shearstress.

The value of fl is variated from 0.1 to 20 Hz, with intervals of 0.2 Hz.
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4. Results

4.1 Introduction

In this chapter the results of the experiments are given and are compared with analytical and numerical solu-
tions of the flowfield.

In the horizontal bed situation the results are compared with an analytical solution.
In the solitary dune situation, no analytical solution is found, but the results are compared with a nume-
rical solution of the flowfield. In this situation the sediment transport is determined.

The sediment transport and the local flowfield over the dune near the dunesurface are related.

Numerical values of measured flowquantities, plotted in the figures, can be found in tables in appendix C.

4.2 Watermovement

4.2,1 General

In the horizontal bed situation the measured mean flowvelocity and Reynoldsshearstress are compared with
analytical solutions of these flowguantities.

The turbulent energy is considered and correlation functions and power spectra are calculated from the mea-
sured turbulent quantities.

Results are given for measurements with two different sizes of the measuring volume of the Laser Doppler
Anemometer (LDA).

In the solitary dune situation the mean flowvelocity, Reynoldsshearstress and turbulent enerqgy are com-

pared with numerical sclutions calculated with the ODYSSEE program (Alfrink, 1983).

The local Reynoldsshearstress near the surface of the dune is interesting because of the relation with the
local sediment transport.

Correlation functions and power spectra are not calculated for this flowsituation.

The measurements in the solitary dune situation are carried out with the measuring volume which gives the best
results in the horizontal bed situation.

4.2.2 Horizontal bed situation

The following flowquantities and data treatements are given in this sub-section:

mean flowvelocity profile, Reynoldsshearstress profile, turbulent energy, correlation functions, power
spectra, the contribution of low frequencies to the Reynoldsshearstress, side wall effects , length of
measuring time. All for the measuring volume L2 (see sub-section 3.4.3).

Finally the results of mean flowvelocity profile, Reynoldsshearstress profile and turbulent energy are

given for the measuring volume L1; these results are not as satisfactory as expected.

Mean flowvelocity profile:

The flowfield in this situation is slightly convergent and stationary (sub-section 3.3.2), the conser-

vation of momentum equation reduces to equation (2-14),derived in sub-section 2.2.2 and reads:

aUl Jda

- d
Ula—q

1
-go-xl + 5873 (4-1)

The driving force per unit mass g.Ja/d X1 is distributed over the shearstress term and the convection

term.

The shearstressvelocity u, is calculated from:

u, = (g.a.iE)% A (4-2)




_42-

iE is the energy slope. This slope is derived in sub-section 2.2.4 and reads:

2
2) Fr? = Ui/(g.a)

. - da
i = axl.(l - Fr

The shearstressvelocity is calculated for a very wide flume, because in the axis of the flume no effects from

the side walls are noticed. This assumption is valid for this particular situation as will be pointed out in

the part 'side wall effects' at the end of this sub-section.

With Ui = 0.516 m/s, a = 0.093 m, da/d Xy = 0.992%107 and g =9.81 rn/s2 (from sub-section 3.3.2) equation

(4-2) can be solved, so u, = 0.0253 m/s.

The mean flowvelocity profile shows higher flowvelocities at some distance from the bottom to the water-

surface due to convection, as pointed out in sub-section 2,2.4,
A logarithmic flowvelocity profile can be determined from the measured values in the area O <x; <750

for Re ~10% (Hinze, 1975)
In the area x; 2750 a wake function should be added to the logarithmic flowvelocity profile, the wake func-
tion is given in sub-section 2.2.4, equation (2-31) and reads:

W(x3/a) = %(sin (x3/a - % +1)

In figure 4.1 the flowvelocity profile is presented in two ways, linear plot and logarithmic plot.

1.0+ . l.%
oJ 2000 . 5
| log-profile o 1500 [log-groflle /f
]x} [0<x3s725 ', 0.5l 0 <x5 €725 !
a | 1000 orofil
— —wake function 3 § o+ 1 ——~——‘i?9Up5? /199
f |><3 X3 O<xy/a <.
! = s
o Uy ,(0-45 He, /7 spot '@ o Uy, (0-45 Hz,
8 min.) l 8 min.)
|
x U, ,{(0-200Hz | x U ,(D-ZUU Hz,
0.5 1715 min.) 7’ 0.1 17715 min.)
0.05
1 1007 a = 0.093 m.
u, = 0.0253 m/s.
50T
304 /
o - ——t ] —t—t—t 261 0.0L 4 4 ' " '
10 20 U/u, 10 20 U /u,

Figure 4.1: Measwied mean {Lowvelocity profite, Lineax plot {Left), Logarithmic plot (night).

In general the logarithmic flowvelocity profile reads:

u X ol
_ X3+ Ux
-U__; = al.ln( ) ) + 82

(4-3)

The coefficient a; and a, are calculated from all measured valuesby linear regression and, because the
T<725 .

flow is convergent, also from measured values between O <x5
Both results are compared with values for a; and a, which are generally accepted.
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Table 4.,A
3y difference a,
c complete profile 2.678 % 4.674
Py values 0 <xy 5725 2.473 % 5.722
Py from literature 2.5 5 to 8 | (smooth/rough)

The profile Pp fits Pl the best, the coefficient a, of Pp shows that the bottom of the flume is rather
smooth,

The coefficient a, for the profile Pc is to small, due to the too high flowvelocities near the watersurface.

The profile PC is caleulated to demonstrate the effect of convection on the coefficients.

The mean flowvelocity profile is also described by (see sub-section 2.2.3):

U X3
U = 7.1n(§) (4-4)

in which & = 0.4, the von K4rman constant and z, is the wall roughness.
The complete flowvelocity profile and values only near the bottom are used to calculated u, and z_.

The results from a linear regression calculation are presented in table 4.B.

Table 4.8
u, (m/s) | difference z, (m) difference
P complete profile 0.0271 % 7%1076 75%
Py values 0<x3<725 | 0.0250 % 4x1078 %
P from theory 0.0253 4*10°°

The theoretical value of z is calculated from the Chézy equation: Q/(B.a) = ﬂi: C.(R.iE)l/2 , with

C = 18log(12.R/(k+ &/3.5)) and &= 11.6%V/u, . The expression for z, reads: z = k/32 (see de Vries, 1979).
The value for z, calculated in this way is an overall value for the complete cross-section of the flume, the
values for [N calculated from the measurements hold for the axis of the flume. So boath values can not be

compared in fact, however, the thecretical value of z is used as an estimated value.

Here too, the profile Pp fits Pl the best. The difference in z, between PC and Pl is flattering, because
the values of z, in both cases are of the same order.

Again PC is calculated to show the difference due to convection.

o+

3 >725

The wake function is plotted in figure 4.1 and it is striking that the measured flowvelocities for x
fit the profile with the added wake function very well,
It shows that the asumptions for the influence of the convection on the mean flowvelocity profile hold

in this case.

Reynoldsshearstress profile:

From the measured instantaneous flowvelocities, the cross-correlation of the fluctuating flow velocity com-
ponents, uy and Ugs is caleulated, which is called the Reynoldsshearstress.
The total shearstress consists of a turbulent part and a molecular viscous part (see sub-section 2.2.2)
and reads: L L Oul
7 le(x3) = -Ujug o+ U&; (4-5)

The viscous part is only of importance close to the bottom, x;<<30, the derivative of uy can be calculated
from the logarithmic flowvelocity profile.

Thearetically the distribution of the total shearstress is linear from bottom to surface, in case of a sta-
tionary flow without convection and a completely developed boundary layer.

In case of a slight convection the profile can still be estimated with a linear prnfile, but the shear-
stress at the bottom reads, due to convection:

%)

7:13(0) = p.g.a%gl.(l - Fr (4-6)
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This equation holds for a very wide flume where no side wall effects occur in the axis of the flume, this
holds for the experiment as well,which will be confirmed later.

The shearstress at the bottom in the axis of the flume reads, using the results:

% 113(0) = ui = 6.40*10_a mz/s2 , and u, = 0.0253 m/s.
In figure 4.2 the measured Reynoldsshearstresses are presented and alsoc the linear theoretical shearstress
profile. The viscous shearstress is calculated with the aid of the measured mean flowvelocity profile and is
sketched in figure 4.2.

Also the shearstress profile in a developing boundary layer is presented in figure 4.2, see sub-section 2.2.4,

the state of the development of the boundary layer in the experiment is reg rded later.

1.07

X3 a = 0.093 m.
a 0.0253 m/s.
0.5

-Uj Uy linear profile
° 5= ,(0-45 Hz, B min.)
u
_Mi \tf———profile from figure 2.7
-uu
X X 73 ,(0-200 Hz, 15 min.)
Uy

AN viscous shearstress
0 } } ) } ; + WIDHNDD TR :

0.5 2 1.0
—ulu}/u*

Figure 4.2: Measured Reynoldsshearstresses.

The measures values fit the linear profile very well in general.

For the region 0.7 <x3/a <1.0, the measured values are clearly smaller than the theoretical values (10% to 50%).
This can be an effect of the free surface in the experiment, where due to air resistance a 'negative' shear-
stress is developed.

It can also be an effect of convection, because in this region convection has its greatest influence (see

the mean flowvelocity profile). The term g.azn/axl from equation (4-1) is driving in this region for a

great part the convection, so the shearstress must be less.

Near the bottom D<<x3/a~<0.l, the measured Reynoldsshearstress is too small, compared with the theoretical
Reynoldsshearstress (the dotted line in figure 4.2).

This is an effect of the size of the measuring volume of the IDA.

As pointed out in sub-secticen 3.4.3, small eddies near the bottom are too small to be noticed in the mea-
suring volume by the LDA. These small eddies contain an important part of the turbulent energy contributing
to the Reynoldsshearstress.

In sub-section 3.4.3 the distance from the wall at which this effect should be noticed, is estimated for the
L2 measuring volume and reads: x3/a = 0.054,

From figure 4.2 it is clear that the effect due to the size of the measuring volume, occurs from x3/a <0.1 .
Although the difference seems to be large, the values areof the same order and the estimate is calculated

from ideal data.

The value of 713(0)/p extrapolated from the measured Reynoldsshearstresses is: 6.40%107% mz/sz, so u, = 0.0253 n/s,

which is equal to the theoretical value ealculated from equation (4-2).
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One measurement is carried out where all frequencies from zero to 200 Hz pass the low Pass Filter (LPF),
x3/a = 0.043,

The value of —Uyus is larger than the values measured in case all frequencies between zero and 45 Hz pass.
This is an effect of the 48.5 Hz component in the signal due to the rotating grating and is definately no
turbulence.

So,however, the value fits theory better, it should be omitted.

The influence of the rotating grating is absent in the mean flowvelocity (see figure 4.1), because the mean
value of the 48.5 Hz component is zero.

The influence of the rotating grating is also shown in the part of the power spectra in this sub-section.

An estimate of the state of the boundary layer development can be made using equation (2-33).

With U, =0.516 m/s and u, = 0.0253 m/s (value at X = 16.0 m) the angle of the development of the layer
is @, = 0.0156 rad (0.9°).

So for a waterdepth of a = 0.1 m, the boundary layer is completely developed, from bottom to watersurface
after: 0.1/tan 0.9° = 6.5 m . The measurement are carried out at Xy = 16.0 m.

Two remarks can be made.

Equation (2-33) is derived for a boundary layer in an infinite outer layer, here a fres watersurface oc-
curs, so does equation (2-33) hold ? As a first estimate it will be sufficient.

Furthermore the boundary layer is completely developed after 6.5 m and measurements are carried out at

X = 16.0 m, but does the boundary layer start at X = 0.0 m at the inflow ? It can be reasonably sta-

ted that it does.

So regarding figure 4.2 it can be concluded that the boundary layer is completely developed and the measured
values fit the theoretical linear profile very well.

Finally the parameter II from equation  (2-28) is calculated using equation (2-29) and figure 4.1 .
A=0.10.m , u, = 0.0253 m/s and OUO/O X) = AUD/ Axl = 0.05/1 = 0.05 (from the surface slope)
So Il =-0.2 and isnotequal to zero, for which equation (2-33) and figure 2.7 hold.

But ITis close enough to zero to use the equation and figure carefully.

Turbulent energy:

From the measured fluctuating flowvelocities Uy and Uss auto-correlations and cross-correlations are cal-
culated.

These correlations can be interpretated as turbulent energies. .

The total mean turbulent energy in an arbitrary point in the fluid is defined as: k = %(u% + ug +-u§) .
In the experiment, however, the flowvelocity in the xz—direction is not measured, due to limitations of

the LDA. So the uz—component of the fluctuating flowvelocity vector is unknown.

It can be assumed that Uy =usg (ul is the main direction), so that k:z¥(uf + 2.u§), but this is not true in
this case.

Near the wall the turbulence intensity is not equal in the Xp= and x3—direction.

This follows from the general accepted values for u,y and us near the wall; u, = 1.4%u, and ug = 0.8%u,

Far from the wall isotropic turbulence could occur s0_ ulé%p225u3 » but from the results presented in
5. _

For these reasons no estimate for k is made from the results, only the uf and u§ measured profiles are

given.

figure 4.3 it can be seen that this does not hold (uf > u

Near the bottom, in the inertial layer, x; >30, the following relations hold (see Tennekes, 1977):

up =2 uy uf = 4,u£
uy = 0.8y, u? = 0.64 u2
k =3.5u2

LaadiN]

The relations for uf and u§ hold very well for the measured energies.
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u¥/u (0-45 Hz, 8 min)

_57 2 :

uj/uy (0-200 Hz, 15 min)
2,2 .

o uz/uy ,(0-45 Hz, 8 min)

u?/uf (0-200 Hz, 15 min)

] 7
5 ul/uz ; U3/U§

The turbulent energy k is for slightly convergent flow almost linear from bottom to surface, because

. . 2 2
T 5(x3) is linear and Ti3{x3) ~ Uy, k ~u, so Ty5(x5) ~ k.

a = 0.093 m.
u, = =.0253 m/s.
Figure 4.3: Measured Zurbulent
enengy, uf and ug.

The linearity of k, mainly consisting of the ul—component, is not contradicted by the results presented

in figure 4.3 .

The measurement with frequencies_from zero to 200 Hz, containing the 48.5 Hz component of the rotating

grating, shows higher values of uf and u§ , than the measurements with frequencies from zero to 45 Hz.

The reason for this effect is already pointed out in the part of the Reynoldsshearstresses.

Correlation functions:

For some points, where measureme t= are carried out, cerrelation functions are made of Uy and u}.
The functions: ft) Zt t5 = u) (t) auto-correlation function of up and - i y.u it t) = ~uju (t),

cross—correlatlon functlon of u, and uq, are calculated in the vertical coordlnatES' Xz = 2, 4 and 44 mm

(xg/a = 0.0215, 0.043 and 0.4731).

The results are presented in figure 4.4 .
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Figure 4.4: Auto-conredation function u, (Left), cross-connelation §unction u1u3

{night).
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The auto-correlation function of uy, shows that the correlation time is about 1 second and the correla-
tion time of the cross-correlation function is about 0.5 second.

In both functions the correlation time for a point at some distance from the bottom (xz/a = 0.4731) is
longer than for a point close to the bottom (x}/a = 0.0215 and 0.043).

This effect can be explained by the size of the eddies.

Near the wall the eddies are small due to the strong flowvelocity gradient and far from the wall eddies are
larger.
So further from the wall turbulent fluctuations in the flowvelocity are correlated over a larger area than

close to the wall through which the correlation time in a fixed point,further from the wall, increases.

Ofcourse the auto-correlation function for #=0 is one, due to the definition ui(ﬂ) = ui .
The cross-correlation function for Z=0 is —3153(0)22—0.45 ujug , in Tennekes (1977) the generally accepted
value of the coefficient is 0.4 , so the results from the measurements agree very well with results given

in literature.

Power spectra:

For some points in the fluid, where measurements are carried out, one-dimensional power spectra are calculated
(x3/a = 0.0215, 0.043 and 0.4731),

With an analog low pass filter all frequencies higher than 45 Hz are removed from the instantanecus flowvelo-
city. The measuring time is about 8 minutes and the resolution of the spectrum is (46[].8)-l = 0.00217 Hz,

In one case (x3/a = 0.4731) also another upper boundary of the filter is used, all frequencies higher than
200 Hz are removed from the signal, to investigate the effect of the 48.5 Hz component due to the rota-

ting grating.

The measuring time in that particular case is about 15 minutes and the resolution of the spectrum is
(890)~} = 0.00112 Hz.

The power spectra are calculated with the aid of a Fast Fourier Transform (FFT) routine, see also section 3.5 .
The power spectra and auto- and cross-correlation are related as follows (see Hinze, 1975):
T 2 T 2.V
[El(kl) dk, = b and fEB(kl) diy = -juy , with k= 22D
1
[¢] o
in which v is the frequency and Ul is the local mean flowvelocity. o

The power spectra El(kl) and ElB(kl) in x3/a = 0.0215, 0.043 and 0.4731 are presented in figure 4.5 .
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Figure 4.5: Power Apectra, uf (Lef2) and ug {night).
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For kls 1, the spectra are not interesting because the one-dimensional spectrum has no physical meaning
in this region, as pointed out in section 3.5 .

lg3.

The El(kl)~spectrum has a slope -1 for k; >10, for points near the wall (x3/a = 0.0215 and 0.043) accor-
ding to theory (section 3.5).

The maximum for both spectra lies near k

For k, > 250 the slope becomes steeper. For x}/a = 0.4731, the El(kl)—spectrum has approximaletly a slope
-5/3 in the region 30 SI<15 300, according to theory for points at some distance from the wall.

A power spectrum is calculated for xj/a = 0.043 with frequencies in the range of zero to 200 Hz.

In the results the 48.5 Hz component (kl = 705) can be seen.

The shape of the spectrum is not affected in the region kl< 445, whether the upper boundary of the filter
remnoves frequencies higher than 45 Hz or 200 Hz.

So the choice of 45 Hz as upper boundary is satisfactory, because frequencies higher than, say 45 Hz

do not contribute noticable energy to the turbulent energy uf.

The contribution of the region kl >700 is about 250 times less than the contribution in the region l‘<k1< 10 .
Furthermore the 48.5 Hz component is no effect of turbulence and must be removed.

The most important frequencies contributing to turbulent energy lie in the region 1< kls 300.

The values of El(kl) for x3/a = 0.4731 are smaller than those for the points x3/a = 0.0215 and 0.043, because
the total turbulent energy near the wall is higher than at some distance from the wall.

The total turbulent energy is the integral of the power spectrum over kl, these integrals are calculated and
are compared with the theoretical result u2 in table 4.C.

1
Table 4.C
X-/a U, (m/s) e (k) ;i-(mz/”z) difference | »E,.(k,) -u;u. (mz/sz) difference
3 1 1(ky 1 s 13K 1Y3
0.0215 0.403 2.795%107> 2.810%107° -0.5% | 0.503%107° 0.517*10™° %
0.0430 0.432 2.864%107° 2.891%107° -0.9% | 0.502%10™> | 0.550%107> 1.5%
0.4731 0.595 1.326%107° 1.392%107° -5% 0.343%107° 0.359%107°> 4.5%

The ElB(kl)—spectrum is less steep than the El(kl)-spectrum.

Near the wall, x}/a = 0.0215 and 0.043, the slope of the spectrum is -1, in the region BU:Skls 300 and

1 300,

For x}/a = 0.4731 the slope of the spectrum is -5/3 in the region 305k £100.

The power spectrum for x3/a = 0.043 with frequencies from zero to 200 Hz, shows also a maximum value for

becomes steeper in the region k

ky = 705 (48.5 Hz component). Although it is less pronounced than in the El(kl)—spectrum.

For the three points (x3/a = 0.0215, 0.043 and 0.4731) the values of ElB(kl) are almost equal in the re-
gion 1<kl< 10.

For higher values of l<l the spectrum for x3/a = 0.4731 shows lower values of ElB(kl)’ due to the minor
importance of high frequencies at some distance from the wall.

.

The integrated power spectra over kl compared with the theoretical result —Ugus is presented in table 4.C

From the power spectra El(kl) and ElB(kl) it is clear that near the wall higher frequencies contribute -

also an important part to the turbulent energy, the region which contain important turbulent energy is

1< kl < 300.

Further from the wall the higher frequencies become less important and do not contribute any energy of impor-
tance to the turbulent energy, The important region is 1< kl< 100 .

Contribution of low frequencies to Reynoldsshearstresses:

The influence of low frequencies O <fl< 10 Hz on the Reynoldsshearstress (cross-correlation of uy and u3)

can be determined from the power spectra,

However, this is not done here, the influence is determined with the aid of a numerical filtering proces in

the frequency domain, see see section 3.5 .

The results of the filtering are presented in figure 4.6, in which Tfil/ T, is plotted versus Fl .
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Tfil is the Reynoldsshearstress calculated after filtering, 7, is the Reynoldsshearstress before filtering,
and Fl is the upper boundary of the frequencies which are removed between zero and fl.

The Fl—axis is a logarithmic plot.

1.0
Tril — 3, 2,2
T, x3/a:0.0215; -uyuy = 0.5173*%10 (m“/s%)
— = — x;/a0.0430; 0,0, = 0.5366%10™° (n%/s%)
. N\ - x3/az0.4731; -O)Uy = 0.3434%107° (n%/s?)
0.5 1 \
AN
\ \
D n 3 1 + + " 4 I I " — \1\,_
0.1  0.20.3 0.5 1.01.52 567 10 15 20 £ (H)

Figure 4.6: Influence of fLow frequencies on Reynofdsshearstress,

The frequencies up to 15 Hz are of importance for ~Uu4 for point near the wall, x}/a = 0.0215 and 0.043, as
showed in figure 4.6 .

Further from the wall xj/a = 0.4731 frequencies up to 6 Hz are of importance for 'GIUZ .

It is interesting to see if the burst frequency of the turbulence plays a role of importance.

The burst frequency reads (see Dronkers, 1983): -

(4-7)
with Cg=3 to 7. The waterdepth is a = 0.093 m and Ui = 0.516 m/s, so in this flowfield fy = 0.8 to 2 Hz.

For x3/a = 0.0215 and 0.043 the shearstress decreases rapidly for Fl >1.,5 Hz.

This is an indication that the burst frequency is of importance, higher frequencies (higher than 2 Hz)
contribute considerably less to the shearstress.

Further from the wall the burst frequency is of less importance, because part of the energy of the bursts
is already used,

So for x3/a = 0.4731, T%il/ 7, decreases gradually with fl which starts already from Fl = 0.2 Hz.

The dependance of the Reynoldsshearstress with fl is also given by Dronkers (1983) for measurements in situ.

In that case the Reynoldsshearstress also decreases rapidly for frequencies higher than the burst frequency.

Side wall effects:

The influence of side wall on the mean bottom shearstress can be estimated with the analytical method of

Einstein and the graphical method of Knight (see sub-section 2.2.6).

With the Method of Einstein the following equaticn has to be satisfied:

—21 - —21 (4-8)
Cw'Rw Cb.Rb
The estimated roughness for wall and bottom is kw = kb = 1.3*10—4 m. With Ui = 0.516 m/s, B = 0.50 m,
-4 -6 2

iE = 7.025¥10 7, a = 0,093 m and V= 1.017¥10 m”~/s, the hydraulic radius of wall and bottom are:
Rw = 0.067 m and Rb = 0,068 m.
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The mean shearstress for the wall or the bottom can be calculated with:

T= p.g.R.iE (4-9)

So the mean wall shearstress is i;/p = 4.617*10—4 mz/s and the mean bottom shearstress is T, /p = 4.686%10 4 2

The total shear force per unit mass is:

[%T .28 + 7_.B) = 3.20%10

-4 m2/82
With the method of Knight the mean wall shearstress and the mean bottom shearstress, for k /k =1 and
B/a = 5, can be determined from figure 2.11 in sub-section 2.2.6

v —_— -
T,/(p-g-a-ig) = 0.65 and T /(p.g.a.ig) = 0.74, so T /p= 4.166x107" n?/s? and T/p = 4.743%107% n’/s2.
The total shear force per unit mass is:
I = ay - -4 2,2
Te = p(TW.Za + T, .B) = 3.15%10 m*/s

The bottom shearstress is equal to p.uz y S0 u, can be calculated.

Also u, is extrapolated from the measured Reynoldsshearstress profile and u, is calculated from the logarithmic
part of the flowvelocity profile.

Comparing of the values of u, calculated in different ways is done in table 4.D.

Table 4.D total shear-
.« (m/s) force per
unit mass.
extrapolated from measured Reynolds-
shearstress profile. 0.0253
calculated from flowvelocity 0.0250 local bottom
profile XX 725. ) shearstress
calculated from uj = g.a.ip (B—o) 0.0253
calculated from uz = g.R.i -4
*
with R = a.B/(2a + B). 0.0216 3.20%10
calculated with the method of 0.021¢ 3 20*10_4 mean botiom
Einstein. shearstress
calculated with the method of _4
. 0.0218 3.15%10
Knight.

The situation in the axis of the flume is best described with the equations as if the flume is very wide.

The values of u,, as local shearstress velocity, from shearstress profile, flowvelocity profile and calcu-
lated for a very wide flume, agree very well.

The values of u, calculated for a mean shearstress velocity also agree very well, however, they are less impor-
tant because no complete shearstress distribution over the cross-section of the flume is measured, so no

measured total shear force is known.

To confirm the absence of side wall effects near the axis of the flume, measurements are carried out in
two verticals Xy = 0.025 m and Xy = 0.025 m at X] = 16.0 m.
Mean flowvelocities, Reynoldsshearstresses and turbulent energies are measured in some points and are com-

pared with measured profiles in the vertical x, = 0.

2
The results are presented in figure 4.7.

The mean flowvelocities fit the profile in the axis of the flume very well.
The Reynoldsshearstresses and the turbulent energies in Xy = + 0.025 m fit the profile at Xy = 0 also
very well,

Only a slight asymetric effect can be seen for all measured quantities, values at x

little higher than those at Xy = -0.025 m.

2 = 0.025 m are a

Generally it can be stated that at least in a region -0.025 <x2_§U 025 m the values of Ul’ ul, ug and —GIGS
are almost equal at Xy = 16.0 m.

This supports the conclusion that side wall effects are absent in the axis of the flume in this experiment.
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Figure 4.7: Reynoldsshearstresses, mean §Lowvelocity and turbulent energies at Xy = 0.025 m and Xy = =0.025 m, .

Length of measuring time:

The measuring time of an instantaneous flowvelocity in a point is 8 minutes (only one point is measured
15 minutes for specific reasons) )

To check whether this time is long enough or too long, the flowquantities are also calculated using only
4 minutes of the data.

The results are presented in table 4.E.

Table 4.E
y Ul {(m/s) Ul (m/s) |difference -6153 (mz/sz) —GIGS (mZ/SZ) difference

Ea 8 min, 4 min. 8 min. 4 min.

0.0215 0.4027 0.4010 0.4 0.5173%107° 0.5201%107° 0.5
0.0430 0.4282 0.4282 0.0 0.5366%¥107° | 0.5357%10™° 0.2
0.0753 0.4655 0.4679 -0.5 0.5667¥107° | 0.5508%107> 2.8
0.0968 0.4791 0.4805 0.3 0.5410%¥107° | 0.5458%10™ 0.9
0.1505 0.5057 0.5051 0.1 0.5507%107° | 0.5528%10° 0.4
0.2043 0.5267 0.5279 0.2 0.5146x107° | 0.5163%107 0.3
0.2581 0.5427 0.5429 -0.1 0.4756*107° | 0.4691%¥107° 1.4
0.3118 0.5592 0.5605 0.2 0.4374¥107 | 0.4462%107° -2.0

A measuring time of 4 minutes seems to be long enough, the difference for the mean flowvelocity is less
than + 1%, The difference for the Reynoldsshearstress is less than + 3%.

For the measurements in the solitary dune situation a measuring time of 4 minutes is chosen.

Measuring volume Ll:

The size of the measuring volume of the LDA is made smaller to measure the Reynoldsshearstresses more
accurate.

The length of the measuring volume is changed to about 1 mm (see sub-section 3.4.3), the width and thick-

ness of the measuring volume are hardly changed. ]
Calculating the Prandtl mixing length scale, the measured Reynoldsshearstresses should be accurate From

2.5 mm (x3/a = 0.0269) distance from the bottom (see sub-section 3.4.3).

Measurements with the measuring volume L1 are carried out in the axis of the flume (xz = 0) at Xy = 16.0 m, l
and are compared with the results of measurements with the measuring volume L2.

Comparing the results of L1 and L2 is done in fiqure 4.8,

The mean flowvelocity profile measured with L1 fits the profile measured with L2, but not satisfactory. l
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Figure 4.8: Reynoldsshearstresses, mean f§Lowvelocity and turbufent energies for measuring vofume L1,

The constants a; and a, from equation (4-2) and u, and z,, from equation (4-3) for the mean flowvelocity
profile measured with the measuring volume L1 are comparedlwith the values for the measuring volume 12,

the results are presented in table 4.F.

Table 4.F
a; difference| a, |difference| u, (m/s) |difference z, (m) | difference
L1: logarithmic profile ! ’ ; -6 .
0 <X§=§725 2.249 % 6.855 20% 0.,0235 % 2.,4%10 40%
L2: logarithmic profile -6
0 <x-;-\<725 2.473 5.772 0.0250 4.0%10

The difference between the results of the two measurements is considerable.

From figure 4.8 it is also clear that the Reynoldsshearstresses are very poor, too low values occor
for x3/a<0.4. T
This effect also occurs for the turbulent energies ui and u§ .
In general the results of the measurements with the measuring volume L1 are poor compared to results with
the measuring volume L2,

Reasons for the poor results with L1 are:

- The measuring volume L1 is not adjusted as accurate as the measuring volume L2, the three laser beams do
not intersect in one point. This was checked later in a test.

- The accuracy of the lenses is important for the creation of a very small measuring volume.
From tests with the optics of the measuring volume L1,it appeared that the dimensions of the measuring

volume were not as calculated (see sub-section 3.4.3) but were even larger than the dimensions of L2 !

Prelimnary measurements are also carried out with a measuring volume L20 (length of the measuring volume
about 20 mm), but results are not presented here because they are too poor, due to a bad adjustment of the

LDA optics. Interpretation of the results makes no sense.

So comparing results of the measuring volumes L1, 12 and (20, to show the effect treated in sub-section

3.4.3, can not be done unfortunately.
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4.2.3 Solitary dune situation

The results of measurements with the LDA (measuring volume L2) and results of computations with the ODYSSEE }
computer program (Alfrink, 1983) of the flowfield in the solitary dune situation, are treated in this sub-

section.

Measurements are carried out in three situations, the experiments: T1, 72 and T3.
The shape of the dune and the flowfield in the three experiments differ, due to disturbances in the flowfield,
although the total discharge is constant for T1, T2 and T3. i

To compare the measurements with theory and to test the mathematical model, a numerical solution of the flow-

field over the dune is computed with the ODYSSEE program. l
One calculation is carried out for a mean dune shape which fits the shape of the dunes in T1, T2 and T3

best.

The program solves the equations of mass and momentum, (2-3), (2-8) and (2-9), together with the k-e equa-

tions, (2-41) and (2-42) numerically with finite difference methods in fractional time steps, as described i
in Alfrink (1983).

In this sub-section the following aspects are treated: The boundaries and grid and the boundary conditions
for ODYSSEE, the numerical results, comparison of the measured and calculated flowfield, comparison of mea-

sured and calculated flowquantities along the dunesurface.

Boundaries and grid:

From the experiments Tl, T2 and T3, a mean duneshape is determined which is used as a boundary for the cal-
culation with ODYSSEE.

The dune is situated from X) = 15,75 m to Xy = 16.25 m. Upstream and downstream the dune a horizontal bed
with a length of 0.50 m is present, so the total length of the numerical model is 1.50 m, with an inflow
boundary at X) = 15.25m and an outflow boundary at x| = 16.75 m.

For the watersurface a rigid-1id approximation is made, with a waterlevel at x5 = 0.210 for the complete
model.

The geometry of the model is presented in figure 4.9.

o point where k and € are regarded

[grid line 15 ///vertical during the calculation.
P
BERARR e X
0.210 m e 3
1
15.25 m 15.75 m 16.25 m 16.75 m
grid line 1

Figure 4.9: Geometrny and gnid used in the ODYSSEE computer proghram.

Only the coordinates of the boundaries are stated in the program, the grid is computed by ODYSSEE.

The program calculates a curvilinear grid for the field between the boundaries.

The grid consists of 15 grid lines and 60 verticals, the vertical coordinates of inflow and outflow boundary

are divided logarithmically.

The waterdepth in the experiments at x; = 15.00 m is a = 0.234 m and at x; = 15.45 m a = 0.210 m, the strong

decrease of waterdepth over this small distance is an effect of the perspex supports, which start at x; = 15.25 m.

The waterlevel above the dune is also at Xg = 0.210 m, although the watersurface is whirly.
For the calculation the waterlevel is chosen at x5 = 0.210 m.

Boundary conditions:

The boundary conditions are already given in sub-section 2.2.5, here only the inflow boundary is treated b

more specifically.
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In the experiments, the flowquantities upstream the dune at Xy = 15.45 m and X, = G from bottom to water-
surface are measured. This vertical is positioned inbetween the perspex supports.

The Ul
which fits the profiles of Tl, T2 and T3 best.

The measured values of U

-profile is used for the inflowboundary at Xy = 15.25 m, the Ul—profile is a mean flowvelocity profile

5 in the vertical are very small and close to zero, so U3 = 0 is stated at the in-

flow boundary. . .
Profiles for the turbulent energy k and the dissipation € have to be estimated because only uf and u% are
measured and ug and € could not be measured.. N

For uniform flow k is proportional to X3 and € is proportional to X3 in a region near the bottom, in an
equilibrium situation (law of the wall).

Both relations are used as an estimate for the profiles over the complete waterdepth and over the horizon-
tal bed upstream the dune the profiles can adjust to equilibrium profiles.

The relations for k and € read (see sub-section 2.2.5):

U2 U3
K= —— (1 - x;)  and €= — (4-9)
\ﬁal KeXs

with %u = 0.09 and K= 0.4,

A value for uy, must be known, so u, is estimated from the Ul—profile.

From the mean flowvelocity profile Ul at Xy = 15.45 m for T, T2 and T3, a mean value of u, and z, is de-
termined.

Using equation (2-20) and with linear regression the valués read: u, = 0.0230 m/s and z, = 0.35*10~6 m.

No estimate for u, and z, is made from theory (equation (2-27) and the Chézy-equation), because the perspex
supports produce sidewall effects and influence the flowfield in a way which can not be detected from the
measurements.

With the equations (4-9) and the estimated value of u,, k and € can be calculated.

The boundary conditions at X = 15.25 m are presented in figure 4.10, values are stated from Xy = 0.002 m
(x3 = 0 belongs to the condition of the bottom) to x5 = 0,180 m (x3 = 0,210 m belongs to the condition of

the watersurface).

X3 (*10™m) X3 (*107%m) X (*10™%m)
210 p—————m—— 210 {— 200 f—
180 ° 180 1 ° 180 P
140 o 140 4 ° 140 4
100 ° 100 | ° 100 1},

70 ° 70 ° 70 Le—error (10 times to small)
3520 °  y, =0 350 ° 3520 1o

25 3 25 25
17 ° 17 4 o 17 o
912 1 ° 912 p o 912 °

4 o <o
4 g E‘j 4 2 £ i % 4 g ° e o ° . N ; o};
0 0.5 1.0 U (w/s) =0 107 K (nP/s?) 0 5,107 102 € (n?/s)

Figure 4.10: Inflow boundary condifions at X, = 15,25 m for ODYSSEE.

When the input data for ODYSSEE were prepared a value for 6(x3=0.07 m), which is 10 times smaller than
ment, was used by mistake.

The results of the calculation are influenced by‘this, because the turbulent viscosity is proportional

to 6—1, so the turbulent viscosity is 10 times higher at X3 = 0.07 m (xl = 15.25 m), see equation (2-40).
This affects the shearstress which is proportional to the turbulent viscosity (equation 2-22).

Furthermore € influences k through the equations (2-41) and (2-42).
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The disturbance due to the wrong value of € will decay downstream, but due to diffusion it has also its in-
fluence in the xj—direction.

The effect of the disturbance will be regarded later.

Time step and convergance:

Before the results are regarded, the proces of the calculation is described.

The ODYSSEE program is based on difference methods in fractional time steps, how the equations are solved
in detail is treated in Alfrink (1983).

The calculation starts from a non-stationary situation and iterates in time to a stationary solution of the
flowfield.

A small time interval (= iteration step) is necessary, smaller than about 0,02 s for this case, to prevent
an instable calculation.

The small time step is demanded by the interaction of Ul’ U3, k and € .

An estimate of the time needed for a stationary solution can be made from the length of the model (1.50 m)
and the overall mean flowvelocity (0.50 m/s), so 1.50/0.50 = 3 seconds.

The small time interval and the required time result in a considerable amout of time steps.

In a few point in the grid (see figure 4.9), the values of k and € (which become instable first) are plotted
during the proces of calculation.

The results for 9 points (3 verticals, 3 points each) are presented in figure 4.11.
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Figute 4.11: Development of k and € in time during the calewlation with ODYSSEE.

The calculation is started with a time interval of 0.015 s, k and € at the foot and the top of the dune

reach after about 2 s stationary values.

The proces in the wake takes longer, because this area is governed mainly by diffusion which has a larger

time scale than the proces of accelerating flow above the dune.

After 2.73 s (173 time steps) the time interval is changed to 0.025 s.

The values above the dune remain stable, the values in the wake oscillate strongly, especially values in

the point at the edge of the wake and the main flow.

After 3.95 s (220 time steps) the time interval is decreased to 0.0l s.
Again the values in the wake are influenced largely, the values decrease strongly'for the point at the

edge of wake and main flow.
After 4.305 s the calculation is stopped.

The flowfield above the dune is stationary and this part is most important, the wake is still developing,

but is less interesting for the purpose of the investigation (the flowfield along the dune surface).
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Numerical results:

The numerical results are presented in the figures 4.13 , 4.14 and 4,15, but are treated extensively

in the next part together with the experimental results.

To show some of the results of the calculation and the influence of the disturbance in € at the inflow boun-
dary, the turbulent viscosity in several cross-sections is presented in figure 4.12,
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Figure 4.12: Caleufated turbulent viscosity in several cross-sections, horizontal axis v (ml/s ).

The coordinate Xy = 15.45 m is chosen because the flowfield in the calculation can develop from the inflow

boundary Xy = 15.25 m to Xy = 15.45 m and later the measured flowquantities at X, = 15.45 m are compared
with the results of ODYSSEE.

The disturbance at Xy = 15.45 m due to the small value of € at X3 = 0.07 m is clear, the influence is de-
creasing downstream.

As pointed out in sub-section 2.2.5, the boundary conditions at the watersurface, c')h/(')x3 =de/ {)x3 =0,
give through equation (2-40): ('J'ut/('Jx3 = 0, so at the surface the turbulent viscosity is not zero.

Apart from the disturbance the turbulent viscosity profile is satisfactory and has a nearly constant

shape in the accelerating part of the flow above the dune.

In the wake the turbulent viscosity is large, due to the production of turbulence, furthermore the profile
is still developing due to the developing of k and € in the wake.

Comparison of experimental and numerical results:

Comparing results of the experiments T1, T2 and T3 with the numerical results of ODYSSEE, is donme in the
figures (4.13, 4.14 and 4.15,

At the top of the figures the shape of the dune in the experiments is plotted as well as the shape of the
dune in ODYSSEE (solid lines)

In each figure the cross-sections are sketched where measurements are carried out.
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Figure 4.13 : Results of experiment T1 (o, ), compared with numerical resulis of ODYSSEE |— ,~—).
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Fifure 4.14 : Results of experiment T2 | °, o |, compared with numerical results of ODYSSEE (—— — —].
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Figure 4.15 : Results of experiment T3 ( o, o ), compared with numerical results of ODYSSEE {—— ,——].

6.30m 0.42 m 0.08 m

C PDDDODE T

| |
]~0.05 m ;

o = measured dune height

15.75 m 15.682 15.87 15,92 15.97 16,02 16.07 16.1Z T&.17 1875w
u X ? ? X
1 3 ° e 3 Y, = 15,45
Uy (m —k , (m) oYty X = eonm
$yq=2,m
——€: 2.51107°(5) @
0.1 s
0.1
0 ' f ¥ ' 0 3 I =3 7,72
(m/s) 10°2 21072 (nZ/e2) 2.10 (m“/s%)
xj(r - x3(m
0.11 o U)5 o U3 0.4 olu x, = 15.82 m
— Kk — =
2
——€: 2.5%107%(M) @
— . 3 o
s s @
o , 0 ’ A
(m/s) x5 (1 2.19:2 Qz/sz) x5 (m) 1077 2,107 (n/s%)
7 2
Ul 0,11 o U5 o U3 0.1
U3 —k ) °Utun Xl = 15.87 m
P #g-2 (M
€: 2,5%10 (53) . @
0 + + + + D + + 3 + + 3 2 2
(m/s) X}(m 1072 2.10°2 (mz/sz) X}(m) 10 2.10 (m~/s%)
0.1 u_z u_z 0.1
° M1 e 3 TR Xy = 15.92 m
—k —_——————————
3 3 2 g &
é8, ——€: 2.5%07 2y ®
AL
O ¢ A 7 O ' R "3 (m?/s%)
10 2.10 (m“/s%) 10” 2.10° m/s
x5 (m)
2.2 o
o Uyi o Usg °utun Xl = 15.97 m
_k o e
2 [
——€: 2510745 O]
0 ; : 0 ‘ . + ' oo . s — — 7
X3( ) 0.5 1.0 (m/s) X}(r) 10-2 2.10-2 (mz/sz) x3(m 10 2,10 (m“/s“)
0.1 U 0.17 22 0.17
o 5 \ o Ui Uz TRT X, = 16.02 m
£ U '\_ s —k t'n a- "t
__ e U3 T — 2 2 @
——€: 2.5%074(%)
220 3
0 . 0 ) ) 0 . .
0.5 .0 (m/s) ' -2 i =2 2,2 ’ 3 o3 2,2
X}( ) x3(n|) 10 2,10 (m®/s%) x5 () 10 2.10 (m"/s%)
.1 U 0.1“\ 22 0.1
1 e 717 & 73 Xy = 16.07 m
—e: 2.5%1070(%) olpuy j
0 t + g + + + + oo + + + + +
G 05 L0 ) o 102 2102 (m2/sly 107 2,107 (m?/s%)
3 3 x3(in)
0.1 : 5 3 + ,
' o U 0.1 o Upi o U3 0.1
&8 U T - K Xy = 16.12 m
* 3 ’ o 2 m? u.u
—_c . *n-cm °
€1 2,5%0 (83) t'n
0 4 0 + + 0 + + +

0.5 1.0  (n/s) 10-2 21072 (n2/s2) 10 2.107 (n’/s%)




—60-

Below the dune three plots with values for (Ul’Uj)’ (u%,u%,k,e) and QG;GH per cross-section are presented
next to eachother.

Vertically the profiles per flowquantity progressing downstream can be compared.

The measured flowvelociies and_;yrbulent energies are given in the Sk and x3—direc£ion.__

The measured values of ui and ué are only part of the total turbulent energy k = %(uf + u2 + ug), which

is given by the program. :
The ug—component could not be measured as even as € , the calculated € is given as an indication.

The Reynoldsshearstress U is given as the shearstress along a streamline, with t perpendular to the
streamline and n normal to the streamline.

The direction of the streamline is calculated as the angle & between Ul and U3.

The direction of the streamlines in different points for measurements and caleculation is given in appen-
dix C.

From the measurements the Reynoldsshearstress is calculated with the relation:

— 2 2 R
—uu = (ul - u}).sma.cosa -

2
uluj.(Zcos a - 1)
From the calculation the Reynoldsshearstress is calculated with the relation:

1
i + U§)1 .

-0, s 18U/ Bx,, with U = (U
After these general remarks the results are treated more detailed.

For the three experiments the flowvelocity profile Ul at the inflow boundary fits very well into the com-
puted one.

For cross-sections above the dune the measured values are smaller than computed.

This is possibly cawsed by the three-dimensional flowfield in the experiments. Due to the perspex supports

(see section 3.2) and the symmetrical but not uniform cross-section of the dune in the x.,-direction, the

flowfield is influenced. ’
Part of the water in the axis of the flume upstream the dune does not flow in the axis of the flume above
the dune, so the specific discharge in the axis of the flume is not fulfilled in each cross-section.

The numerical sloution holds for a vertical plane, so here continuity for the specific discharge is fulfil-
led in each cross-section.

In the wake two problems occur: the wake in the calculation is not yet in equilibrium as explained before
and the position of the cross-section in the measurements is not exactly determined.

So differences occur between calculated and measured profiles.

The turbulent energy profiles show_that half the sum of u% and u§ for the three experiments is not roughly
equal to the calculated k, if the ug is considered small (about the order of u§).

Further from the bottom the calculated value of k is large due to the disturbance in €.

Close to the bottom calculated values of k are high compared with the measured ui and u§ .

Upstream the dunea horizontal bed is present, so Kk is almost linear with the waterdepth, except near

the bottom where k increases.

The measured Reynoldsshearstress Q—EGH can not directly be compared with the calculated values, because of
the difference in the direction of the streamlines in measurements and calculation.

However, a reasonable similarity can Be seen between experiment and calculation.

The influence of the disturbance in € on “Upup is clear, but remains in the vertical position near Xg = 0.07 m.

Again the measured values do not fit the calculated values in the wake very well.

Considering the calculated flowquantities along the dune the next remarks can be made:

- The flowvelocity profile U1 becomes steeper downstream near the bottom, this results in a higher value
for uy.
What causes the steep flowvelocity profile downstream is not clear, it can be an effect of convection.
In the program the boundary condition at the bottom fits a logarithmic profile,with a certain value of

Uy, from the bottom to the first grid point. An increasing value of u, results in a steeper profile.
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- Due to the steep flowvelocity profile near the bottom resulting in a high value of u,, the values of
k and € near the bottom are high as well. (equations 4-9)

- Due to the steep flowvelocity profile the flowvelocity gradient near the bottom is high which results
in high values of the Reynoldsshearstress -u,u

tYn (even though the turbulent viscosity is small near the
bottom) ‘near the bottom.

Considering the measured flowquantities along the dune the next remarks can be made:

The steepness of the flowvelocity profile Ul is different in each cross-section, but no specific trend
is noticable.

The values of u, from the flowvelocity profiles along the dune show arbitrary differences, this is trea-
ted later.

The shape of the turbulent energy profiles for ui and ug at Xy = 15.45 m agree reasonably with the mea-
sured profiles in the experiment with the horizontal bed (sub-section 4.2.2).

Above the dune the shape of the profiles coincide for every cross-section, also the turbulent energies
near the bottom do not differ considerable.

The Reynoldsshearstress at Xy = 15.45 m is not linear with the depth as expected in case of a developed
uniform flow.

This can be an effect of the disturbed flowfield upstream the dune due to the perspex supports.

The profiles coincide but show considerable variations in values, the bottom shearstress is for all cross-

sections almost equal.

Computed and measured flowquantities along the dune surface:

For a better interpretation of flowquantities near the dune surface, these quantities are plotted along

the dune surface.

Measurements are carried out atabout 3.10_3 m frem the transport layer above the dune surface.

3

In the calculations the distance to the dune surface decreases downstream from 2-10""m at the foot of the

dune to 1.4*10_3 m at the dune top, for the first grid line above the dune surface.
The next grid line is 4.10-3m from the dune surface at the foot of the dune and 2.8%10"

(see also figure 4.16).

3m at the dune top

Calculated flowguantities of both grid lines are used.
In figure 4.16 the mean flowvelocity, turbulent energy and Reynoldsshearstress for T1, T2 and T3 are plot-
ted and compared with calculated values.
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Figure 4.16: Flowquantities along the dune surface.
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For the three experiments the measured values of the flowvelocity is smaller than the calculated values,
which can be mainly an effect of the three-dimensional flowfield in the experiments,

An increase of the flowvelocity for measured and calculated values downstream occurs.

Half the sum of the measured turbulent energy components ui and u§ differs considerably from the calculated k.
Even though tbg.ug—component is not known from measurements it can not be too large and certainly it is
smaller than u- .

Near the foot of the dune the calculated value of k is even larger than the u%—component alone.

The measured Reynoldsshearstress deviates strongly from the calculated values.

Even the calculated values of JG;GH along the two stream lines differ strongly (about 50%). This is an effect
of the steep flowvelocity profile.

The measured values of —G;GB along the dune surface slightly decrease downstream, the calculated values of
—Upup increase downstream.

The high values of - tYn from measurements and calculation at the dune top is an effect of the wake, which

has its influence already near the dune top (due to high shearstresses in the wake).

Some general reascns for the difference between the calculated and measured flowquantities and the beha-

viour of the measured quantities above the dune are:

- The flowfield is three-dimensional in the experiments, due to the perspex supports.

- The stream lines in the experiment and in the calculation differ, so comparison of Reynoldsshearstresses
is troublesome.

- The size of the measuring volume L2 affects the turbulent quantities near the bottom (in a region of about
1 cm from the bottom).
Measured values of uf, u§ and ;_;Gn are less than expected (as pointed out in sub-section 3.4.3).
However, in this situation it is unknown what the shearstress near the bottom should be, only the bedshear-
stress can be estimated from the logarithmic part of the flowvelocity profile, which is in this case not
accurate enough (see also fiqure 4.17).

- The position of the dune surface is not accurately known.
Cefinition of the dune surface is troubiesome due to the transport layer with moving sand particles.
This inaccuracy has great influence on the determination of u, from the logarithmic part of the flow-
velocity profile.
A mipor difference in vertical position results in considerable differences in the flowvelocity due to
the steepness of the flowvelocity profile.

- The moving sand particles in the transport layer influence the flowquantities just above the dune surface.
The transport layer is like a moving wall which makes the wall smoother, but on the other hand the flow
provides the sand particles with kinetic energy.

From the measurements it follows that the Reynoldsshearstress is almost constant along the dune surface.

Fipally uz calculated from the logarithmic part of the flowvelocity profile is compared with ui from the

Suug profile. This is done both for measurements and calculation.

The correlation between uz from the U-profile and the - tYn profile should be one.

The relation is presented in figure 4.17.

For the measurements the correlation is weak.

The values from the calculation are correlated, but uz from the —ugug profile is consequent higher than

uz from the U-profile.

It is mentioned that in both cases the used values from the —ugun profile are not the bottomshearstresses,

but values of —U;Gh close to the bottom.

Known values as close as possible to the bottom are used, so figure 4.17 is of minor importance.
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Figure 4.17%: Correlation u£ grom Log-profile and bedshearstress,

4.3 Sedimentmovement

4.3.1 General

The sediment transport can be calculated accurately if the conveyor belt velocity ¢y and the local dune
height zb(xl) are known.

The realtion between the local sediment transport S and the local Reynoldsshearstress - tYn is studied.
No comparison took place with existing transport models.

The calculated shearstress is not regarded, because of the difference with-the measured shearstress.
Furthermore the measured shearstress is logically related to the local sediment transport, in the calcu-

tion no tranport occured.

4.3.2 Sediment transport

In the experiments Tl, T2 and T3, three different dune shapes occured with three different conveyor belt
velocities, which are presented in the figures 4,13, 4.14 and 4.15.
The local sediment transport along the dune surface is presented in figure 4.18.
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The local sediment transport can easily be deduced from equation (2-57), where for an equilibrium situa-

tion azb/i)t = 0, so the remaining expression reads:

Q -

axl(S - cb.zb) =0
After integration over X and with the boundary condition at Xy = 0 ;S =0, the result is

S(xy) = ¢ .+ 2z, (x)) (4-10)
The transport is proportional to the shape of the dune.

It is mentioned that the local sediment transport is a mean local transport, instantaneous transports

could not be determined.

4.3.3 Sediment transport and flowquantities

In this sub-section the local sediment transport and the measured local flowquantities are related.

A first indication of the relation transport-flowfield is presented in figure 4.16.

The mean flowvelocity and the turbulent energy, however, are less important to be related directly to the
local sediment transport.

An important flowquantity is the Reynoldsshearstress which directly governs the sediment transport.

The Reynoldsshearstress is in fact transporting energy from the main flow to turbulence, but in this case
also transports energy to the sand particles, which gain kinetic energy.

In figure 4.19 the local sediment transport S is plotted versus the local Reynoldsshearstress —G;Uh for T1,
T2 and T3.
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Figure 4.19: Relation of Local sediment transport S and Local Reynoldsshearstress -'d—th‘n.

The transport and shearstress at the foot of the dune are plotted in area A and values near the dune top

are plotted in area B.

From the figure it follows that a small transport and large shearstress coincide as well as a large transport
and a small shearstress !

This is not commonly found in literature.

Before the results are treated further, first some results from literature are presented.

Raudkivi (1976) carried out measurements above a series of solid dunes, which is also treated in (--, DHL, 1981).
Puls (1981) also gives results of measurements and calculations of shearstresses above a series of solid
dunes.

In figure 4.20 results from literature above solid dunes are presented.
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= g solid dune

Figure 4.20: Shearstress over a solid dune and S versus T,

b qualitative pLots (from --,DHL, 1981},

The transport (deduced from the dune shape) is increasing with increasing shearstress follows from figure
4.20. The rate of increase of S with -GZGH is decreasing for large values of S, because the shape of the
dune becomes almost horizontal near the dune top.

The shape of S = f(—G;Un) in figure 4.20, disagrees with the shape presented in figure 4.19.

Reasons for the similarity are already mentioned at the end of sub-section 4.2.3, but a possible reason
can be added:

- Near the foot of the dune the sand particles have to be accelerated from velocity zero to a certain
value (area A in figure 4.19).
This demands a large shearstress, also because the slope of the dune in steep near the foot.
Once moving the sand particles lose kinetic energy due to collisions with other particles in and below
the transport layer, but less energy is needed to keep them moving compared to the particles near the
foet of the dune (area B in figure 4. 19).

Also the slope of the dune decreases near the top of the dune.

Considering the dune,more particles are moving going downstream from foot to top of the dune, the transport
increases.

5o for this effect extra shearstress is needed to accelerate more sand particles futher downstream.

So downstream the foot of the dune a decreasing shearstress is expected due to sand particles with a
certain kinetic energy, on the other hand further downstream the foot of the dune more sand particles

are moving so the shearstress must increase.

Which effect is most portant is not answered here, but from the experiments it is clear that the shear-~

stress near the dune surface along the dune is almost constant.

4.4 Recapitulation

4,4,1 Horizontal bed situation

The results of the measurements agree very well with theory.

The measured flowvelocity profile, turbulent shearstress profile and power spectra fit theoretical profi-
les satisfactory.

Near the bottom there is some influence of the size of the measuring volume of the LDA (in a region of
about 1 cm from the bottom), so the measured shearstress occurs to be smaller than expected.

The shearstressvelocity u, calculated from the logarithmic part of the flowvelocity profile fits theory,
and the extrapolated shearstress gives a bedshearstress which fits the theoretical value of u, as well.
The influence of the convergent flow is minor but noticable.

As a test for the LDA this experiment is succesful and a valuable preparation for the measurements in the
solitary dune situation.
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4.4.2 Solitary dune situation

The results of the measurements can be compared reasonably well with the results of the calculation with the
computer program ODYSSEE.

An important relation between the local sediment transport and the measured local Reynoldsshearstress gives
a troublesome picture (see figure 4.21).

The relation found in literature above solid dunes differs strongly from the relation found in the experi-

ments (see figure 4.21).

relation for a series of solid
dunes from literature, the wake

\\ is not considered.

\\ —.—relation for a solitary sanddune

from experiments, no wake occured.

-UtUn
Figure 4.21: Princdiple of S = ﬂl-E_tEZn) for a solid dune (Literature] and a sanddune {experiments),
the nelations are qualitative.

The reasons for the weak agreement between the results for a series of solid dunes and a solitary dune with

a transport layer are:

~ In the experiments a three-dimensional flowfield occured.

- The measuring volume L2 of the LDA provides smaller values of the measured Reynoldsshearstresses near the
bottom.

- The position of the measuring volume is inaccurately determined with respect to the dune surface.

- The moving sand particles in the transport layer above the dune create a moving wall, which is smooth
with respect to a ridig wall.

- The sand particles near the foot of the dune have to be accelarated which demands a high shearstress.
Once moving the sand particles need less shearstress to keep them moving, but more sand particles are mo-
ving downstream the foot of the dune, so for this effect an increasing shearstress is required.

~ The kinetic energy transported by ;_;Gn to the sand particles results in less energy for the flowfield.

However, the moving sand particles create a smooth wall, which has its effect on the flowquantities.

All these effects can not be detected separately from the results of the weasurements.

Finally it is mentioned that in the experiments a horizontal bed Upstream the dune is present, so at the
foot of the dune a high shearstress occurs. )

In a series of dunes a wake is present near the foot of the dune, so the shearstress is small (negative
or even zero).

The wake, however, plays an important role in the sediment transport phenumina.

An experiment with wakes and moving sand particles should be carried out to study the mechanism of local
sediment transport in a more natural situation.
But first a two-dimensional flowsituation with a solitary dune should be created, to determine the in-

fluence of moving sand particles on the Reynoldsshearstress along the dune surface.
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5.  Recommendations

5.1 Introduction

During the investigations of watermovement and sediment transport as described in this report, a first
attempt is made to investigate the mechanism of local sediment transport with the experimental set up
described in section 3.2,

The conveyor is especially designed for the experiments and under certain flowconditions a stable soli-
tary dune is created which satisfies the demands.

The LDA is adapted for the experiments and showed to be satisfactory accurate, in an experiment in a
flume with a horizontal bed.

The measurements in the solitary dune situation are not too comprehensive, but showed that measurements
above the dune with moving sediment are possible,

The results of the measured flowfield above the dune are satisfactory.

To understand the mechanisme of local sediment transport, however, comprehensive measurements in a
solitary dune situation are necessary.

In this chapter recommendations for the experimental set up and measuring equipment are given, as well as

for further experimental and theoretical research.

5.2 Solitary dune

In the solitary dune situation a stable dune is created by adapting the flowfield just upstream the conveyor.
The flow upstream the dune appeared to be asymmetric which created a strongly asymmetric dune.

By partly blocking the space between glasswalls and perspex supports the dune is made nearly symmetric.
Adapting the flowfield made the flow and the watersurface whirly.

The dune is reasonably symmetric and stable due to the whirly flowpatern and eddies generated by the pers-
pex supports.

For further experiments the flowfield should be symmetrical just after the inflow section of the flume, so
a completely developed symmetrical flowfield appears at the measuring section.

The measuring section in the flume should be so far downstream the inflow section, that a completely de-
veloped boundary layer flow is present.

The walls and bottom of the flume should be very plane, the present flume contains joints in the walls and

bottom which influence the roughness in an undefined way.

The position of the solitary dune on the conveyor must be constant.

The measurements last at least 8 hours and during the experiments it appeared that the complete dune some-
times moves over about 5 to 10 cm in 2 to 4 hours, the shape is not much affected.

The velocity of the conveyor belt is increased or decreased temporarely to move the dune to the right po-

sition again and the measurements can carry on.

It is, however, advisable to prevent movements of the complete dune and to adjust the velocity of the con-

veyor belt very accurately.

5,3 Measuring equipment

The results of measurements with the LDA are satisfactory, the L1 measuring volume, however, gave poor re-
sults.

It can be recommended to use lenses of high quality and to adjust the LDA very accurately,

Then it is possible to create a feal L1 measuring volume and the accuracy of the results increases with

respect to the L2 measuring volume.

The laser beam should pass the rotating grating perpendicularly, otherwise the angles between the illumi-
nating beam and the two reference beams are not not equal.
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¥Yhen this demand is not fulfilled, the 45° configuration is not present and errors of 5 to 10 % can occur
in the results.
In general the angle between the reference beams and the illuminating beam should be measured accurately

after every adjustment of the beams, in order to calculate the proper conversion factor.

The vertical position of the measuring volume in the experiments is read from a scale, with an accuracy
of 0.5 mm.

Near the bottom of the flume or near the dune surface the flowvelocityprofile is very steep, so a small
error in the vertical position results in a large error in the flowvelocity.

It is recommended to use an electronic scale for the determination of the vertical position of the mea-
suring volume.

With this device the vertical position can be adjusted accurately and reproducable.

The scale must be gauged with respect to a determined fixed point in the Flume.

5.4 Experiments

For a complete inseight in the interaction between watermovement and local sediment transport a series of
experiments is needed, in which flowconditions are varied,

Different flowconditions create different duneshapes and propagatingvelocities of the solitary dune.

Also different grain sizes or a mixture of grain sizes can be used.

A guantity which is used in the DUGRO program (de Ruiter, 1981) is the standard deviation of the Reynolds-
shearstress, as pointed out in figure 5.1.

This quantity can be calculated easily from the measured data.
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Figure 5.1: Definition of standarddeviation of Reynoldsshearstress in time.

To investigate the influence of the moving sand particles, an experiment with a solid dune could be carried
out with the same flowconditions as in the solitary dune situation.

The shape of the solitary dune can be measured and a solid dune of the same shape can be placed in the flume
instead of the sanddune.

An advantage is that the local sediment transport is known from the solitary dune situation (the sanddune).

Another way to investigate the influence of the moving sand particles on the flowguantities near the dune-
surface, is to reduce the flowvelocity so the shearstress decreases and the sand particles just do not move.
When the local Reynoldsshearstress in both cases (moving and not-moving sand particles) is made dimension-
less in a convenient way (deviding by the local value of uf) the results can be compared.

The simplest way to investigate the effect of moving sand particles is an experiment with moving sand par~
ticles over a horizontal bed.

Comparison of Reynoldsshearstresses in case of a rigid horizontal bed and a bed with moving sand particles
shows the influence for a horizontal bed.

The disadvantage of the solitary dune is that the situation deviates strongly from a natural situation, a
series of dunes.

To create a situation which is more realistic with respect to the situation in nature, it is useful to try
to create two dunes on one conveyor, as sketched in figure 5.2.

In this set up a wake occurs upstream the second sanddune, which is essential in a natural situation.
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wake

e

Q Cp O] conveyor

Figure 5.2: Two sanddunes on a conveyor.

5.5 Theory

The investigation described in this report mainly considered the watermovement above a solitary dune.
Theoretical or empirical models for the local sediment transport are not studied.
For further investigations, however, it is essential to study theoretical and empirical models and expe-

rimental results of sediment transport over dunes.

Mean flowvelocities and turbulent energy seem to be insufficient to be related to local sediment trans-
port.

A more important quantity is the Reynoldsshearstress and of great importance is the influence of moving
sand particles along the bed on the Reynoldsshearstress.

Powerspectra and correlation functions are convenient to get inseight in the structure of the turbulent
quantities of the flowfield.

Knowledge of the influence of convection on the flowquantities is important with respect to estimates
of shearstressvelocities (u,) from the logarithmic part of the mean flowvelocity profile and with respect
to the turbulent energy and Reynoldsshearstress profiles.

Furthermore a sufficient knowledge of the k-€ model is required when the ODYSSEE program is used.
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- local waterdepth, HS
with subscript: i
1 coefficient
2 coefficient
e equilibrium waterdepth j

total area cross-section

with subscript:

b area with bottom influence
W area with wall influence
coefficient

flume width

fluctuation of concentration, or

correlation coefficient, K
with subscript: K!
b conveyor belt velocity K"
D empirical coefficient Lf
f drag coefficient m
s empirical coefficient M
lé empirical coefficient n
2€ empirical coefficient N
u empirical coefficient p

instantaneous concentration 5}
mean concentration, P
with subscript: p(xl)
b bottom roughness (Chézy) q
B coefficient Q
o concentration of dune r
W wall roughness (Chézy) R

correlation function,

with subseript:

1 auto~correlation function” ui
3 auto-correlation function u§ Re
13  cross-correlation function -l U, s
Euler dissipation scale 8
dissipation scale of integral scale S
infinitesimal distance in xl-direction t
infinitesimal distance in xz—direction
infinitesimal distance in x3—direction
coefficient

2
power spectrum of U

2

power spectrum of uz T
power spectrum of —UpUg TE
burst frequency Uy Yg
lower boundary BPF ug
Fourier transf?fm of Fj+l (time domain) up, Ug
Froude number (Ul/(g.a)) Uy
Fourier transform of fj+l (freq. domain) 0y
spatial correlation 01, 03
function of .. u

gravity

gravity vector (0,0,-g)
waterlevel with respect to x3 =0
local dune height

transport layer thickness

bottomstep height

integer, complex number,

with subscript:

E slope of energy line

integer

integer, wavenumber, turbulent energy (%(G;Ui)),

with subscript:

b bottom roughness

b wavenumber where influence viscosity starts
e wavenumber at maximum spectrum

W wall roughness

1 wavenumber in xl~direction

non-linear dune celerety

non-linear dune celerety

non-linear term

integral scale

coefficient

constant (m*qn/cb)

integer, power, direction normal to streamline
total number of values in a measured discrete signal
fluctuating pressure

instantaneous pressure

mean pressure

function describing equilibrium duneshape
specific discharge

total discharge

distance

hydraulic radius,

with subscript:

b hydraulie radius of bottom

4 hydraulic radius of wall
Reynoldsnumber

fluctuating sediment transport
instantaneous sediment transport

mean sediment transport

time, direction tangent to streamline,

with subscript:

e equilibrium time
0 starting time
1 time

temperature, measuring time
Euler integral scale time scale

flowvelocity in point A respectively point B
fluctuating flowvelocity

fluctuating flowvelocity in X1=s x3—direction
shearstress velocity

instantaneous flowvelocity

instantaneous flowveloecity in X1=s x3—direction
with subscript:

e equilibrium local mean flowvelocity
i mean flowvelocity
o flowvelocity-outer layer, critical flowvelocity

mean flowvelocity tangent to streamline

1 mean flowvelocity in xl—direction
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%SE
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O =T R R &
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=3 n

with subscript:
3 mean flowvelocity
le

lo  mean flowvelocity

in x3—direction
at t
e
at t
0
at tl

dimensionless mean flowvelocity

mean flowvelocity
11  mean flowvelocity
depth averaged mean flowvelocity in xl-dir.
flowvelocity vector
turbulent energy
turbulent energy in X1=s Xooy x3—direction
Reynoldsshearstress in t,n-plane
Reynoldsshearstress in xl,xj—plane
auto-correlation function of uy
cross-correlation function of -U Uy
instantaneous flow velocity vector
wake function

coordinate

coordinate

dimensionless coordinate

with subscript:
bottom roughness
reference level

level with respect to zy

0
0

level with respect to z

W N = O 0

level with respect to z
local dune height

equilibrium local dune height

watersurface slope
percentage of bottom shearforce

percentage of wall shearforce

integral length scale

dimensionless integral length scale
length scale

order of ..

production of turbulent energy
delay time

flowvelocity scale

angle

angle of boundary layer development
angle

angle

boundary layer thickness

with subscirpt:

b viscous layer thickness of bottom
W viscous layer thickness of wall
normalized boundary layer thickness
time interval

dissipation rate of turbulent energy
Kolmogorov length scale

dimensionless Kolmoéorov length scale

von KArmén constant
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(Tk,O'e

Tri1

h

3

éﬂ]oﬂlcﬁl A

molecular viscosity, frequency,
with subscript:

t turbulent viscosity
pressure parameter

density,

with subscript:

s density of sand

W density of water

emperical constant

filtered shearstress
shearstress vector

non-filtered shearstress
Reynoldsshearstress in xl,xj—plane
shearstress vector

mean bottom shearstress

mean overall shearstress

mean wall shearstress
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Operation of the Laser Doppler Anemometer, heterodyne system

Introduction

The Laser Doppler Anemometer (LDA) is a very suitable apparatus for measurements of mean and turbulent
flowquantities in fluids.,

The principle of the LDA is based on the Doppler-effect which occurs when a light emitting body moves
with respect to an observer.

When the body moves away from an observer then the observer sees the light at a lower frequency and when
the body moves toward an observer the light is seen by the observer at a higher frequency.

So the frequency shift is a measure for the velocity of a body moving with respect to an observer.

With the LDA two or more light beams, generated by a laser, are made to intersect in an area of the fluid
where the flowvelocity and if desired some turbulent quantities are to be known.

At the intersection of the lightbeams a so called 'measuring volume' is created.

Small particles in the fluid passing through the measuring volume scatter the laserlight and cause a
frequencyshift,

The scattered light is caught by a detector and its frequencyshift measured.

The velocity of the particles is determined in this way and so indirectly the flowvelocity.

The lightbeams passing through the fluid do not disturb the fluid, besides a neglegible temperature rise.

The laserlight must satisfy certain requirements which means in practice:

- a narrow lightbeam to create a small measuring volume,
- monochromatic laserlight which has a narrow freguency band,

- the laserlight must be coherent.

Two systems of measuring flowvelocities with the LDA are the real fringe system and the heterodyne system.

Two lightbeams of equal intensity intersect in the fluid. The light is scattered in all directions by
particles moving through the measuring velume.

Cutside the fluid in an arbitrary direction scattered light from the measuring volume is caught and
concentrated on a photodetector.

The signal from the photodetector is converted to a flowvelocity in the measuring volume. (See figure A-1)

This system is not treated futher, extensive treatment of the system can be found in Durrani (1977).

The_heterodyne system

Two lightbeams of unequal intensity intersect in the fluid. The beam with high intensity is called the
illuminating beam, the beam with low intensity is called the reference beam.

Scattered light,of the illuminating beam,by particles moving through the measuring volume,is mixed
(heterodyned) with light of the reference beam.

The reference beam is directly projected on a phetodetector.

The signal from the photodetector is converted to a flowvelocity in the measuring volume. (See figure A-1)
This system is treated futher.

signal
! signal

phOtOdetECtogg:::jf/’

measuring volume

beam 1 photodetector ‘ illuminating beam

measuring volume

beam 2
Flow f reference beam ff‘low

Figure A-1: Principle of the real {ninge system (Left] and the heterodyne system (night).




The doppler effect

Light radiated by a body which moves away from an observer with a velocity Uo’ is seen by the observer with
a frequency (Menzel,1960):

v=p .1 - U /e) (a-1)

The number of lightwaves per unit time which reach the observer decreases when the body moves away, the total
number of lightwaves however remains constant.

A body moving away from the observer in an arbitrary direction radiates light seen by the observer with a

frequency: /
vz v (1 - cos@.U/c) u/ (a-2)
bod
In which p_ is the undisturbed frequency of the light, observator YN AP
o B e R -—t [s]
and ¢ is the velocity of light. ¢

Formula (a-2) holds generally for velocities of the body much less than the velocity of light, U « c.

The frequency of light radiated by a body moving toward an observer in an arbitrary direction, is seen by

the observer with a frequency:

V= vo/(l - cos @ .U/c) (a-3)

The illuminating beam and the reference beam create at their intersection a measuring volume in the fluid,

as shown in figure A-2.

illuminating
sbserver

o
reference beam

Figure A-2: Definition of the angles.

Assume a particle P in the fluid moves in the plane of the two beams through the measuring volume.

The particle P sees the light from the reference beam and the illuminating beam with frequencies respectively:

vPr = UO.(l - cos ¢1.U/c)

and Vpjy = vo.(l -~ cos ¢2.U/c)

An observer in 0 sees the light reflected by P from the reference and illuminating beam with frequencies:

Vpy = Vo- (1 - cos @,.U/e)/(1 - cos @, .U/c) = v, (a-4)

Vop = vo.(l - cos ¢2.U/c)/(l - cos ¢1.U/c) (a-5)
Formula (a-4) shows that there is no change in frequency of light from the reference beam in the direction

of the beam , when a particle passes the beam.
An observer in 0 however does not see the light reflected by particles passing the measuring volume with
frequencies discribed by the formulas (a-4) and (a-5), see figure A-3.

The two lightwaves interfere, the light of the reference beam is mixed with the light from the illuminating
beam reflected by the particle P, This is called heterodyning.

A

The velocity of light is a constant, so ¢ = vd"lo: vDi' 0i° vUr'thr , with A as the wavelength.

So a lightwave sin Doi.t and a lightwave sin DUr't are mixed and produce a new lightwave (sin vUi.t + sin p
The amplitude of the light signal is not regarded in this deviation.

Or.t).
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. . . .. - 3 _
This expression can be rewritten in: (2.sin¥( Dg; + vOr)t . cosk( Vos DOr)t) .

Two new frequencies occur, one high frequency %( Vgs + vOr) of order vy and a beat frequency %( Dy; - vUr)'
The high frequency is not of importance, but the beat frequency is of importance to determine the doppler

frequency, see figure A-3.
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Figure A-3: Interfering Lightwaves reflected by a particle P in the measuring volume.

Generally in 0 a photodetector is placed which is capable to detect only the beat frequency, the detector
is not fast enough to detect the high frequency.

The photodetector follows light intensities, whether the amplitude of the lightwave is positive or negative
is not of importance.
The photodetector thus sees a lightwave with twice the beatfrequency, this is called the doppler frequency:

Py = Py; =~ Vgp (a-6)

This frequency is much smaller than v, because of the slight difference between the frequencies Vg; and Vop+
(see the forthcoming example)
The intensity of the reference beam must be of the same order as the intensity of the lightwaves reflected
by the particles in the measuring volume.

A difference in intensity which is to great does not show the doppler frequency, this effect is pointed out
in the next figure.
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Figure A-4: Influence of intensities of Lightwaves.

The laserlight must be monochromatic for reasons of interference. Light built up by many different frequencies
does not generate a doppler frequency when interference occurs.

Particles in the fluid which pass the lightbeams outside the measuring volume do not contribute to the doppler
frequency.,

Formulas (a-4) and (a-5) substituted in (a-6) give:

vy = vo.(cosq)l - cos (pz).(U/c)/(l - cos ng.U/c) (a-7)
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The denominator of (a-7) is almost one compared with the nominator for flowvelocities of U occuring generally
in fluids (U/c < 1).
So formula (a-7) reduces to:

vy = vo.(cos ¢, - cos ¢?).U/c (a~8)

The flowvelocity vector U can be expressed in a velocity vector Ub’ which stands normal to the bisectrice
of the angle between the two lightbeams.
U and Ub lie in the plane of the two beams.

Figure A-5: Defdinition of velLocity Uy

The following equations hold:
¢, - @y = 20 and a= %509, +0,)

So (cos @) - cos @,).U = -2.8in%( @, - @,).sink( @, +¢,).U = 2.5inf .sinc.U = 2.5in @ .U,
Substituted in (a-8) with ¢ = vo'jko in which)lo is the wavelength of the undisturbed lightbeam, gives:

vy = 2.sin9.Ub/_)\,0 (a-9)

The constantsjlo and O are known and vy is known from measurements, so the flowvelocity Ub can be determined.
Ub lies in the plane of the reference and illuminating beam.

The expression Z.Sjrlg/_lo is called the optical transfer factor.

The doppler frequency is mixed with the light of the reference beam which has the frequency v,

The mixed lightbeam is projected dn the photodetector.

14

Data: c = 3.108 m/'s , U=3m/s , cos $)= 0,8 , cos@y=10,3 , p_ =107 Hz.

The nominator of formula (a-7) is: 5.10  and the denominator is: (1 - 8.10_9)

It is justified to simplify the denominator to one.

4= 5207 v = 5.00° He,

The photodetector can determine frequencies in the range of 5.104 Hz to 5.]06 Hz, which does contain the

doppler frequency but not the frequency v,

From equation (a-8) it follows that: v

Frequency pre-shift and diffraction

The sign of the doppler frequency is not detected in the way described above, so a change of direction of
Ub is not precieved.

A method to detect the direction of Ub is to add a frequency D This can be done by preshifting the
frequency of one beam y illuminating or reference beam, by V.

So the measured frequency reads:

Vg = 2.8in 0 JJb/jLO + D (a-10)

The pre-shift frequency is constant and has a known value. The direction of Ub can be detected:

Ub>0 ! Vis > Vg
sz o, Vgs = Vg
IJb <0, Vds < Vg
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Adding Vg to v, can be done in different ways; the method described here is based on diffraction due to
a rotating grating.

The laserbeam is projected on the rotating grating and due to diffraction of the lightwaves, lightbeams
of different order occur.

lens

lager

grating -1 photodetector

Figure A-6: Diffraction of the faserbeam due o the rotating grating.

For futher explanation only the high intensity Uth order lightbeam (illuminating beam) and the low
intensity +lSt order lightbeam (reference beam) are taken into accaunt.

The grating consists of a disc with slots in radial direction. The disc rotates with a constant velocity.
The velocity in tangential direction at the point where the laserbeam passes the grating is %f

The number of slots nf the grating is N.

The tangential velocity V = vg.dg.N, in which Ug is the rotation frequency of the disc and dg is the

distance between the slots.

A doppler frequency results: p_ = 2.V .sina /A , the difference in freqguency between the Oth and +lSt
q Yy S o

order beams is: v, = ! Vg.sincxg/j\o , the pre-shift frequency.

The angle @_ is determined by dg andjlo : sin ab :.lo/dg ) 80 P = \(/J/dg or p_ = N
The pre-shift frequency is only consequently determined by the geometry of the grating (N) and the rotating

frequency ( pg) of the disc.
How do the beams of the ...—an, —ISt, Oth, +lSt, +2nd,... order arise ?
Assume a lightwave arrives at a slot, which is not moving, and is deflected by an angle ab.
W I
R . 2
W

T va ra 2

s

o] - A ¢] @
n\3-’plane A g

Figure A-7: Diffracting Lightwave and {ts intensity, one slot.

The front of the beam consists of n equal waves. It is clear that at a plane A a phase difference occurs
between wave 1 and n.

It can be shown (Durst,1976) that the intensity of the lightwave reads:

I = wh.sin?( masina / A V/( mow.sina /A )2

1 . M. o Ao W o’ Ao s
the so called frauenhofer deflection, in which w is the amplitude of the lightwave.

In figure A-7 it is also shown that a maximum of intensity occurs atclg =0,
For N slots the intensity reads (Durst,1976):

IN = Il .sinz(N. n.dg.sin ag/,lo)/sinz( T .dg.sin ag/ _/’Lo)

From the formula for IN and from figure A-8, it can be seen that maxima of intensity occur at k.7 radians,
with k = ...-2, -1,-0, +1, +2,...
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—Y%—

-— .

AN LA a

Figure A-8: Diffracting Lightwave and its intensity, N sL0ts.

So sina_ = k.jlo/dg, and 1 is maximal for k = 0 (a_ = 0) the 0™ order beam.

The lSt order beams make an angle sina = ﬁb/d with the Oth order beam and also their intensity is lower.

Bth,

In practice the higher order beams (an, ...) are screened.

The measuring volume

The two lightbeams which create the measuring volume are focussed through a lens.

The light intensity of a beam is Gaussian in a cross-section of the beam.

After passing the lens the lightbeam diameter is decreasing by convergance, but does not become zero.
The minimum beam diameter, the waist of the beam, occurs in the focal point of the lens.

After the waist the beam diverges again.

lens f

waist

Scattered light in a point ry from stationairy particles in a point r in an optical field can be discr ibed
by Mie's scattering theory. (rl and t are vectors in the three-dimensional space)
For more background information see Weyl (1952). A first approximation of the optical field is given in
Durrani (1977):

E(rl) = OZE(r)/(i.k.Irl - r|).ei'k'lrl -l (a-11)

O denotes the dimensionless scattering amplitude function and consists of a series of Llegendre polynomials,
which are not given here. The wavenumber k = 2.7t/){0.

In the following analysis the asumptions are:

- the scattering particles in the fluid are spherical,

- the wave fronts in the vicinity of the focal point are plane and parallel.

The intensities of the lightbeams near the focal point are Gaussian and read:

x,y,z) = 1 e—Z.(x2+y2)/(r§.(l+(J\O.y/7r.r§)2)) .1 e—2.(x2+y2)/r§
17 - 0' = 0-

I, is the intensity in the centre of the lightbeam and r, = 2.}\0/( 7.AB) is the radius of the lightbeam
in the waist, A@ is the far field convergence angle of the lightbeam, AQ= do/f. (f is focal length)
The definition of r, is the radius of the lightbeam where the light intensity is Io.e_z.

The optical distribution in the field of the focussed lightbeam may be expressed as:

£ oliky - (x2+y2)/r§)

E(x,y,z) = o (a-12)
1 ,
with E -1 27ti.D.t

o
=)
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The reflected light from the particles in the fluid is finally projected to a photodetector.

illuminating beam

reference beam

Figure A-10: Definition of coordinate systems.

For a point s on the surface of the photodetector formula (a-11) reads:
. ik
E,(x'yd ,2') = 0/(ik.d ).Ei.el 5,
the field of the reflected light by particles due to light from the illuminating beam.
. i.k.
And E(x'yd ,2') = U/(l.k.d').Er.el 5]
the field of the reflected light by particles due to light from the reference beam.
With sy =d + (x - x)2/(2.d) + (z, - 2)2/(2.d)
’ 1 o r * r ' !

which is defined in the xr,yr,zr~coordinate system.

The complete field in a point on the surface of the photodetector reads:
Eqlx'yd ,2') = E(x',d ,2') + E; (x',d ,2') + Eglx'hd ,2") (a-13)

In which Er(x',d ,z') denotes the field of the reference beam directly projected on the photodetector.

The total intensity of the light on the surface of the photodetector is:

. 2
iy = n/iEdl LdA (a-14)
A

7 is the sensitivity of the photodetector.
*
Note that for complex numbers the following operation yields: |X + Y‘Z =|X|2 +|YI2 + XY+ X Y* .
Substituting (a-13) in (a-14) givés:

[N
1t

g nA/( le |2 +le, |7 +le | %) .0 "J(Erf:s v ELE )R +

+

* * * *
nJ(ErS.EiB *E g Ey)dA s 7’/(Er‘EiS + E_E ) dA

In short notation this reads:

ig= iy +di +i o+ (a-15)

Ti

ii : contribution of the individual fields,

irr: contribution due to mixing of the reference beam with scattered light from the reference beam,
iS : contribution due to mixing of the two scattered radiations,

iri: contribution due to mixing of reference beam and scattered light from the illuminating beam.

The terms ii and i r do not contain doppler frequency information, so these intensities are not significant.

r
The intensity of the illuminating beam is far greater than that of the reference beam, which gives a very

poor fringe contrast. The amplitude of is is very small compared to the amplitude of ipg

When the surface of the photodetector is large compared to the beam cross-section, than the first term of




i_. reads: o
ri % %
A/Er.Eis-dA = j/Er(x',d ,z').EiS(x',d yz').dx'.dz' =
—Q0

il

[o s}
2.7r.a/k2.€ie //Er(x',d 20/ (i Aed ) e RS e g
—Q0

In Durrani (1977) a sollution for this equation is given which reads:
The integral represents the inverse propagation convolution of the reference field at a point (x' ,do,z'),

on the photodetector surface, to the reference field on the particle at (xr,yr,zr).

* 2 *
Hence A/Er'Eis'dA =2.m.0/k .Ei(xi,yi,zi).Er(xr,yr,zr)
. 2 *
and iy=4m.0.m /k .Re(Ei(xi,yi,zi).Er(xr,yr,zr)) (a-16)
. 2 2 2
with E.(x.,y.,2,) = Ep.elikeyy = O +2D/r0)
E R L R & I

. 2 2 2
ke -
Er(xr,yr,zr) ER.e(l Yr (Xr + Zr)/ro)

E% andfé are intensities of the illuminating and reference beam in the measuring volume.
Substitution in (a-16) and C_ = 4.7.0/k% gives:
, ~(x? v 22 et s 22)/1‘2
iy = ’q.CO.EI.ER.[e i i r v’/ ol

. cosk(yr - yi) (a-17)

Transformation of (Xi’yi’zi) and (xr,yr,zr) to (x,y,z), see also figure A-10 , gives:

x; = x.cos@ + y.sinf X, = x.cos8 - y.sin@
; = v.cos - x.sinf y, = y.cos0 + x.sinf
s = Z z = 2z
i r

Substitution in (a-17):
[ -2(x2.c0329 + yz.sinzf) + zz)/rz

iy s N.CEpeEple 1. cos(2.k.x.2inf)
(a-18)
The maximum of iri occurs for x=y=z=0 and the intensity is decreased to a value of e_2 times the
maximum at:
x2.00520 + yz.sinzg + 22 = rz (a-19)

Formula (a-19) represents an ellipsoide.

The measuring volume is limited arbitrarily by the value e_z, so the dimensions of the measuring volume are:

Ax = 2.r /eosf 5  Ay= 2.r /sin@ i Az = 2.r

-2
. // Azl \ z
beam wi = - 2
\\5%5 " SE

Figute A-11: The measuring volume.

data: Q= 10° y Z.ro = 1 mm. The dimensions of the measuring volume are: Ax= 1,02 mm,
Ay= 5.76 mm,
Az= 1.00 mm.
with  @= 20° the dimensions of the measuring volume are: Ax= 1,06 mm,
Ay= 2,92 mm,
Az= 1.00 mm.




Intensity due to moving particles in the measuring volume

The coordinates of particles in the measuring volume moving with a velocity Ub are (x0 + Ub.t,yo,zo).
The expression cos(2.k.x.sin@) in formula (a-18) can be corrected in case of a pre-shift frequency Vg
the expression then reads: cos(2.7. vt o+ 2.k.x.sin@).

With X, = 0 for conveniance formula (a-18) reads:
2,2 2 2 .2 2 2 .
i () = n.CO.EI_ER.b—Z(Ub.t .cos°@+ y_ .sin“O+ z.)/r 1. cos(2.7. v, + 4.7t.Ub.31n(9/JL0)t

(a-20)
The behaviour of iri(t) when a particle moves through the measuring volume with a velocity U is shawn

in figure A-12. This effect is called the doppler burst.

2.7/ Vys

-

the pedestal

Figure A-12: The doppler burst.

The light intensity scetched in figure A-12 is converted by the photodetector to a voltage.
This voltage is processed by a so-called tracker, which selects the frequency Vyq from the doppler burst.

Through formula (a-10) the particle velocity U, is known.

Signal processing by a frequency tracker

There are different methods to detect the doppler frequency from a doppler burst.

In this part the method with a frequency tracker is described.

From figure A-12 it is clear that the signal consists of a part with low frequency, the pedestal, and a
part with high frequency.

To detect the frequency Dy the pedestal is removed with a high pass filter (HPF), this is done inside the
tracker.

After filtering the following signal results: I

Figure A-13: The doppler burst after the HPF.

The tracker converts the voltage from the photodetector to a voltage level which is proportional to Uy
Different particles moving through the measuring volume with different doppler frequencies, generate
converted voltages Vl’VZ” .. The doppler frequency is replaced by:- "~ V.K .-

' Vis the voltage due to a moving particle through the measuring volume and K is the conversion factor of the
tracker in Hz/velt.

The principle of the tracker is shown in figure A-14.

The BPFl removes the pedestal of the doppler burst and also the high frequencies due to noise.
The resulting signal x(t) is mixed with the signal y(t) from the : vco.

The mixed signal has a frequency Uy = Vyg and is filtered by a BPF2 with bandwidth BZ<< Bl'
The frequency discriminator determines the difference between v, - Vys and v, and generates'a voltage to

change the frequency v in such a way as to make Uy - Vyg equal to vy
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doppler burstﬂ%t
|
photodetector

le
N

BPF = bandpass filter, LPF = lowpass filter, FD = frequency discriminator, I = integrator,
VCO = voltage controlled oscillator,

Fige A-14: Frequency tracken {Durhani, 1977)

The variations in the voltage due to the FD are analogous to Dyge

From the analog output signal’' V(t) the flow velocity of the fluid can be determined.

The pre-shift frequency can be eliminated by setting the output voltage of the tracker to zero, when the
flow velocity of the fluid is zero.

The voltage read from the output voltmeter is a direct measure for the flow velocity of the fluid in the
measuring volume.

The relation between the doppler frequency v, = V(t).K and the flow velocity Ub is:
Up(t) = A,/(2.5inO) K. V(1) (a-21)

Note: The tracker must be fast enough to determine changes in lﬁs'
When two particles enter the measuring volume almost simutaniously the doppler burst of the second
particle can not be distinguished from the doppler burst of the first particle. A mean doppler
frequency is determined in that case. This situation occurs when too many particles are present

in the fluid.

The influence of glass walls on the measuring volume

Generally the laser, the lenzes, the photodetectors and the tracker will be positioned outside the medium
in which the measurements are done.

For example in case of measurements in water in a flume the lightbeams enter and leave the water generally
through glass walls.

A light beam passing from air into glass undergoes refraction due to the change in refractive index.

The same occurs when the beam passes from glass into water.

Snell's law

n n n,
(agr)(glgss) (fater)

Figure A-15: Ingluence of the wall on the position of the measuring vofume.

Due to refraction the two beams will intersect at a greater distance from the wall.

In that case Snell's law can be used: sinal/sina2 = n2/nl , with Nys-n, as refractive index for the

two materials.
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For determination of Ub’ sin@ is of importance. The angle between the beams is 2.0 in air, 2.0' in water
and 2.0"'" in glas.

So, sin@''/sinO = na/ng and sin@'/sin@"' = ng/nF
give: sin@' = na/nf.sin€9 (a-22)
The values of the refractive indices are: n_., =1 ; n =1.5 3 n =~ 1.3 .

air glass water

From formula (a-22) follows, that @' is independent from the glass. The same holds for refraction which
occurs for a beam passing water, glass and air.

As the photodetector is placed in air on the other side of the flume formula (a-9) holds:
vy = 2.U.8in 0/ A
and is independent of glass and fluid, because both sin@and A are proportional to n.

The length . y to the measuring volume in the fluid is however influenced by refraction.
So Ap = d.tan@'' = d.arcsin(na/ng.sin€9) and

y = (p ~Ap)/tan ©' (a-23)

In practice Ap« p , so (a-23) simplifies to: y =~ p/tan@' .

Particles in the fluid

Essential for the determination of a doppler burst is the presence of scattering particles which scatter
the laser light in the fluid.

Generally there are enough scattering particles present in water, but often particles have to be seeded
te receive a good doppler signal, specially when a small measuring volume is used.

Particles have te fulfill the following demands specific for water:

-"The density of particles must be approximately equal to the density of the surrounding fluid,

- The particles must have the same velocity as the surrounding Fluid,

- The particles size must be small enough to follow the fluctuations of the flow almost instanta-
niously. (mass and acceleration forces must be very small),

-~ The particles must scatter the laser light sufficiently,

- The particles concentration in the fluid must be so that a homogeneous refractive index in the
fluid occurs,

- The pumber of particles in the fluid must be large enough to give a detectable signal, but must
not be to large.

Notes:

- In a stagnand fluid the tracker can sometimes determine a 'flow velocity' which is due to

Brownian movements,

- Particles may be subjected to lift forces due to flow velocity gradients, which occur near walls.

Due to these forces extra flow velocity components are added.

Two component flow velocity measurements with the LDA

With the beam configuration of one illuminating and one reference beam, one flow velocity component can be
determined.
This flow velocity component is normal to the bisectrice of the angle between the two beams and lies in

the plane of the two beams.
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To determine another flow velocity component in the same measuring velume, an extra reference beam can be
added. For instance the other —lSt order lightbeam of the rotating grating can be used for this.
Interference of the —lSt order beam and the Uth and the other +lSt order beam will occur, like discribed
in formula (a-15).

However these signals are not significant because they do not contain doppler frequency information.

The beam configuration with two reference and one illuminating beam sketched in figure A-16, can be used to

obtain two velocity components vl and VZ'

0 = optical axis of
the lens

flow velocity components

Figure A-16: Two component LDA system.

In principle a Bth reference beam can be added to determine three flow velocity components, this confi-
guration is not treated,

The beams are set in a configuration as sketched in figure A-16. The angle 2.0 between the beams Rl and I
is equal to the angle between the beams R2 and I,

Flow velocity component Vl is measured in the plane of the beams R1 and I and component Vo is situated

in the plane of RZ and I,

Composition of Vl and V2 gives the velocity vector U and turbulent quantities are easi}y determined when
the angle ¢-= 45°. This will be made clear in figure A-17,

plane II
! s
| d= \/ y“+b

plane II

Figure A-17: Direction of the §Low velocity vecton in refation to Q.

The given length's are y, b and the angle O is known, the plane I is parallel to plane II.
The sine-rule gives:

( y2+b2 - d)/sind = e/sinls. 7 -B) =e. )/2+t)2 /y ,
so: singg = (1 - d/ y2+b2 ).y/e (a-24)

It is convenient when the flow velocity vectors vy and V2 are in the plane II, which is parallel to plane I.
For example plane I is a glass wall and plane II is an imaginary plane somewhere in the fluid.

To obtain this situation ¢ nust be zero, substituting this in (a-24) gives: d/\/y2+b2 =1,and

from figure A-17 it is clear that d =\/y2sc? .

This yields b = ¢ and so Q= 45°, The beam configuration with b = ¢ is called the 45° beam configuration.




A-13

Resolution of flow velocities

In some cases it is not possible to measure directly the desired flow velocity components, su two other
components are measured and resolved in the desired components.

A demand for the two reference beams is that these beams must be projected to the photodetectors, so no
obstacles are allowed in the path of the reference beams.

A demand for the illuminating beam is that this beam cannot pass a free water surface before intersecting
the measuring volume. A free water surface is not at rest when the water flows, so due to this effect

and refraction the direction of the illuminating beam is not stable.

For instance near a wall or a water surface flow velocity components have to be measured as sketched in
figure A-18.

v 0/& Bl W
2 . ; s 1
cll;s v il v2 e illuminating beam Lg1///////’/,,//'
o 1 o reference beam 64 1
V.
M ? CDSﬂ= sina

Sinﬁ = coS (X

Figune A-18: llocity components.

In many situations it is convenient to transform the flow velocity components Vl and Vs to the components
U and W. This transformation reads:
ult) = Vv (t).cosa + V,(t).cosf
! 2 (a-25)
w(t) Vl(t).sinol - Vz(t).sinl}

Turbulent quantities can be determined after the Reynolds decomposition:

- v -V .U =
Vl(t) =Y + vi and _Yl(t) = Vl ; il = (0-26)
‘v’z(t) =V, + vy and Vz(t) = 72 s VL =0
The mean flow velocities with the aid of (a-26) read:
-Uwi \vil.C(.)sZ + ;Z.C?s[} -
= Vy.sin@ - Z.Sln/}

The turbulent quantities can be determined with the aid of (a-25), (a-26) and (a-27) and read:

u'w' = (viz—vé?‘).sina .COSQ + vivé.(sinza - cosza) (a-28)
w? - viz.cosza + 2.vivé.sina!.cosa + véz.sinza (a-29)
w'2 = viz.sinza - 2.vivé.sina.cosa + véz.cosza (a-30)

Formula (a-28) denotes the Reynoldsshearstress, (a-29) and (a-30) denote turbulent energies.
The terms vi y véz, u‘Z and w'~ are auto-correlations, the terms v:‘Lv'2 and u'w' are cross-correlations.

The overall LDA system

The system sketched in figure A-19 is for a situation in which the instantane flow velocities in a vertical
plane are measured.

The measurements are carried out in a flume and the fluid is water.
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Figure A-19: The overall LDA system. ANALOG PROCESS ING

h

The laser beam is focussed on the rotating grating. The Ut and lSt order beams are focussed in the measuring

volume by means of optics.
The Oth order beam is displaced by a beam displacer in order to create the 45°beam confiquration.

The measuring volume is projected in the water at the desired position.

The photodetectors registrate the doppler bursts and the tracker converts this into a voltage level for both
signals. The signals from the tracker are filtered in order to remove high frequencies (noise) or if desired
low frequencies (mean velocity).

The filtering is carried out with lowpass filters (LPF), highpass filters (HPF) or bandpass filters (BPF).
The voltage levels represent the flow velocities v and Vv, as a function of time.

The signals can be stored analog aswell as digital,

Analog: The signals are recorded with a taperecorder. From the tape the signals ean be processed by a correlator/
spectrum analyser, to produce auto- and cross-correlations and power-spectra of the turbulent

quantities. The results can be shown on a screen or can be plotted.

Digital: The analog signals are lead to an A/D-converter which converts the signals and sends the digital
information to the computer.
The data arestored on computer tape, and can be processed by the computer.
When software is available mean values of the flow velocities can be calculated and also turbulent
quantities or correlations or spectra.

The results can be printed, plotted or stored on tape or disk.

A LDA system used in practice is shown in figure A-20.
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Overview of important formulas and data

The data giveh below are specific for one of the types of the IDA systems in use at the Laboratory of
Fluidmechanics Delft.

5mW Spectra Physics Model 120, TPD heterodyne system.

He-Ne laser with a wavelength: ){0 = 632.8;10_9 m, beamdiameter d0= 1 mm at Io.e"2

Grating:

rotation frequency: v_ = 48,5 Hz. | ] | |

There are three tracks of gratings on the disc: number of lines N: | 214 [ 213 I 2lz |
distance between — = 7| — - T _|
the lines d_ ¢ | 6.08um | 1l.45pm|  21.4um |

pre~shift frequency v, = 800.103 Hz.

Type 400.

optical transfer factor: K, = Z.Sin(9/JlO (m_l) , with 20 as the angle in air between the illuminating
beam and the reference beam.

L5 s
Lenses: .
______ grating
focus lengths: £, = 120 mm or 50 mm L 1 H//////fX—_—_—__ﬁ_jﬁ{‘\\\\\\\\\\\\
fz = 250 mm ) U
f3 = 330 mm or 600 mm lens 1
beamdiameter after passing the grating: dl = dO.FZ/fl . lens 2 lens 3
Measuring_volume:
dimensions: width Ax = 2.r0/cos(9 ; ‘length Ay = Z.ro/sin(9 ; thickness Az = 2.r,
Near the measuring volume the beam radius is ro = 2.;{0/7t.zl€9 and AQ = dl/f'3 .

The width and thickness of the measuring volume are not influenced by refraction of the beams, the length how-

ever is influenced through sin@' = sin@/n. With refractive index n = Nyater’Majp = 1-333 .
After substitution the dimensions of the measuring volume in water are:

width: Ax = 4. A .F/(7.d).cosO) (m)

length: Ay = 4.)&0.F3.n/(7t.dl.sin(9) (m)

thickness: Az = 4, JLO.FB/(H.dl) (m)

Photodetectars:

HP 4220, frequency range: 60.103 - 5.106 Hz.

Tracker:

Frequency tracker type 1077/2M
Input frequency range: lOD.lU3 - 2.106 Hz.
Conversion factor: K = 200.10° Hz/volt,

A/D-converter:

14

conversion: 10 volt = 277-1 = 16383  (digital)

Flow velocity representation:

The representation in volts from the tracker is: 1 volt = K/KO (m/s)

The representation from the A/D-converter: 1 K/(16383.K0) (m/s)

i

Note that amplification of the signals must be taken into account to derive the right conversion.




A-16

A LDA heterodyne system in practice

overall view optics and photodetectors

optics

plotter

illuminating and reference beams

spectrum analyser

correlator

taperecorder

oscilloscoop

- filters
AD-convertor

tracker

analog and digital processing equipment

Figure A-20: The LDA system in practice




List of symbols

<0 W T oo

J X X K

distance

Surface of the photodetector
distance

bandwidth of filter

velocity of light, or distance
factor: 4.7, 0/k?

distance,

with subscript:

A-17

g distance between slots
o beam diameter from the laser
0 distance measuring volume to photodetector

1 beamdiameter after grating: dO.Fz/Fl
distance

focal length

focal length

complex number,

with subscript:

d total light intensity

i light intensity of induvidual fields
ri intensity after mixing of light

rr intensity after mixing of light

s intensity after mixing of light
intensity of optical field,

with subscript:

N intensity for N slots

o intensity in the centre of the beam
1 intensity for 1 slot

wavenumber: 2.7t/jk0, or integer
conversion factor

optical transfer factor

refractive index air-water,

with subscript:

a refractive index of air

g refractive index of glass

w refractive index of water

1 refractive index of material 1
2 refractive index of material 2

number of slots on the disc
distance

place vector in the optical field
beam radius in the waist

distance

time\

fluctuating flowvelocity
instantane flowvelocity

velocity vector

mean flow velocity

fluctuating flowvelocity

instantane flowvelocity, of voltages
mean flowvelocity

tangential velocity of the grating
fluctuating flowvelocity

instantane flowvelocity

mean flowvelocity

w width of slot
X coordinate, or with index: i, o, r, '
y coordinate, or distance, or with

index: i, r

z coordinate, or with index: i, r, '
Ax width of measuring volume

Ay length of measuring volume

Az thickness of measuring volume

x(t),y(t)signal in the tracker

EC..) optical field, or with index: d, I, is,
r,R,rs

Rel..) real part of a complex expression

« angle, or with index: 1, 2

ﬁ angle

(8] angle, or with index: ', "'

(1] angle, or with index: 1, 2

03 angle

U] sensitivity of the photodetector

A wavelength of the laser light, or with
index: o, 0i, Or

v frequency of the laser light, or with
index: a, d, ds, g, Pi, Pr, o, 0i, Or, s

(o dimensionless scattering amplitude function
of the optical field

AB far field convergence angle of the beam
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Prelimnary experiments with a dune on a conveyor
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Prelimnary experiments with a dune on a conveyor

To measure local instantaneous flowvelocities and local sediment transport under well defined conditions, an
experiment in a straight laboratory flume is suitable.

The flowconditions in the flume are kept constant, so a quasi-steady situation occurs.

When a series of sanddunes is created in the flume, however, the shape of the dunes is changing, dunes are
catching up and the local sediment is not constant.

To create a steady situation solid dunes can be used, but than no sediment transport occurs so the local trans-
port along the dunes is not known in principle.

However, an estimation of the transport can be made from experiments with moving sanddunes.

Another set up is to fix a series of solid dunes to the bottom of the flume, remove one solid dune and put

a conveyor in its place, on the conveyor belt a certain guantity of sand (the volume of one dune) is layed.
The solid dunes upstream and downstream the conveyor create a watermovement which corresponds with the
situation of moving dunes and the sand on the conveyor belt behaves like a moving dune.

The sand on the conveyor belt is transported downstream over the surface of the sanddune and so the dune
propagates downstream.

The propagation of the sanddune, however, is neutralized by the upstream propagationvelocity of the conveyor

belt. The sanddune has a propagationvelocity zero relative to the flume.

.|]’

q solid dune sanddune St €4 = 8]

(NI VAP T e QA NI i s AR
O‘——————Qb'*—’“-o'\conveyor

Figute B-1: Painciple of a sanddune on a conveyor.

The advantages of this set up are:

- The mean local sediment transport along the dune is known (conveyor belt velocity times local dune height),
- The measuring equipment does not have to be moved in order to keep up with a point along the dune,

- The set up corresponds satisfactory with a situation of a series of moving dunes.

Prelimnary experiments showed that the sanddune on the conveyor is not stable.
Due to the wake behind the solid dune the propagationvelocity along the sanddune is not constant.

With respect to the solid dunes a so-called 'return transport' occured.

q - {Cb +e = 0
ey + ¢y < 0

Figuwre B-2: Return transport in the wake upstream the sanddune.

The top of the dune propagated with a velocity Cqs but the foot of the dune in the vicinity of the wake

has a propagationvelocity Cy<Cyy SO the dune 'streched' more and more sand piled up in the wake.

This effect is even stronger near the walls of the flume where the flowvelocity is to small to transpart
the sand sufficiently.

Due to both effects the dune height decreased in time, the sand piled up in the wake and one large dune

occured consisting of the solid dune upstream the conveyor and‘the sand.

Different shapes of the solid dunes upstream the conveyor did not prevent the return transport.

In figure B-3 the shape of the sanddune in time is sketched in topview.
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Figure B-3: Behavioun of the sanddune in time.
To create a stationary sanddune the return transport has to be eliminated.
The next rigorous step is to remove the solid dunes and furthermore to reduce the width of the sanddune.
This situation is called the 'solitary dune situation'.
Due to the absence of the wake upstream the dune and the reduced influence of the wall of the flume no
return transport occured.
The dune width is reduced by using supports on both sides of the dune as sketched in figure B.4.
The supports also prevented loss of sand on both sides of the dune and the flowvelocity in the centre
part of the flume is high enough to transport the sand sufficiently even in the vicinity of the supports.
Due to the abrupt upstream end of the supports a vortex street is generated which introduces enough turbu-
lence to transport sand particles very close to the supports.
topview
- ./wall cross-section
suppor —
- pp P ==
Q— t:):ﬂﬂ.fiif'»'_:fﬁ‘-——conveyor —q _support
£ i
Q e C)-\conveyor

Figure B-4: Princdiple of set up with solitary dune.

Prelimnary experiments showed that the sand on the conveyor belt shaped as a dune.

With this set up a dune is created which:

- has a constant shape during a long period,
- is easilyaccessible for the measuring equipment,

- has a known local transport along the dune

The flowvelocity profile upstream the solitary dune is almost logarithmic due to the long straight horizon-
tal bed.
This is an advantage for the upstream boundary condition used in the computer program to calculate the flow-

field above the dune. .

A disadvantage of the set up is that the situation of one dunme is not comparable with the natural situation
of a series of dunes ’

But for a start of the investigation of the mechanisme of sediment transport in an accelerating flow, the set
up is interesting.

The shape of the solitary dune is reasonably symmetric with respect to the flume axis and the sediment trans-

port is mainly directed in the main flowdirection.
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Table C.1 figures: 4.1, 4.2, 4.3
2 7 —_
Ul U3 ) ul_2 u3 3 ~ulu23
X X *10~ *10 *10™ *10" 7o+
Ly 2,20, 2, 20,2, 2/ 0
(m) | (mm)| (m/s) (m/s) | (m"/s") (m™/s7)| (m°/s)] (7)
16.00 | 2 |0.4027 [-0.6445 | 0.2811 |0.4429 |D.5173 | 45 conversion tape @ WW8438
pte.mvZ2mm.C311
4 |0.4282 |-0.6639 | 0.2793 |0.4804 | 0.5366 Dbl 1
7 |0.4655 |-0.7305 | 0.2603 |0.5442 |0.5667 reorganisation tape: WHB439
9 10.4791 |-0.7161 | 0.2604 |0.5311 |0.5410 pte.mv2mm.R311
14 |0.5057 [-0.7699 | 0.2429 |0.5682 | 0.5507 label: 3
19 10.5267 |-0.7970 | 0.2199 |0.5638 | 0.5146 sample interval — : 10 ms
24 |0.5427 |-0.8389 | 0.2019 |0.5547 |0.4756 number of values i 47000 s
29 |0.5592 |-0.9105 | 0.1774 |0.5253 | 0.4374 conversion factor : 1 = 4.3154%¥107° m/s
34 10,5792 |-0.9453 | 0.1696 | 0.5140 | 0.4225
39 {0.5804 |-0.9562 | 0.1510 |0.4817 | 0.3926
44 10,5950 |-0.9717 | 0.1338 |0.4352 | 0.3434 conversion tape  : WWB43B
pte.me2mm.C312
54 10,6098 |-1.024 | 0.1089 |0.3683 |0.2665 bl o
64 |0.6253 |-1.077 | 0.0803 {0.2917 | 0.1856 reorganisation tape: W39
74 |0.6331 [-1.017 | 0.0581 |0.2109 | 0.1126 | 225 pte.me2mm.R312
84 | 0.6384 |-1.041 | 0.0388 [0.1151 |0.0338 . label: 4
89 |0.6390 |-1.052 | 0.0561 |0.0510 | 0.0027 sample interval — : 10 ms
74 |0.6340 |-0.9307 | 0.0616 |{0.2188 |0.1159 number of values : 47000 s
44 10,5950 | -1.038 | 0.1444 | 0.4496 | 0.3746 conversion factor : 1 = 4.3154%10 mn/s
24 {0.5546 | -0.8914 | 0,1871 |0.5450 | 0.4522 | 45
0.4905 | -0.7816 | 0.2459 | 0.5504 | 0.5237 remark: reorganised data on this label (4),
also on tape: WWé681/pte.mv2mm.R312/
0.4363 | -0.7292 | 0.2756 |0.4814 | D.5281 lobol: b
Table C.2 figure: 4.8
7 i —_—
Ul U3 ) ul_2 u}_3 -ulu23
x x #1074 | *10 *10 07| a+p
L 2,2\, 2, 2,2, 2/ 0
(m) | (mm)j (m/s) (m/s) | (m*/s%)| (m™/s7)| (m“/s%)| (7)
16.00 | 2 |0.3924 [-0.7380 [ 0.2261 [0.3905 |0.4419 | 45| conversion tape  : WW8003
4 10.4280 |-0.6655 | 0.2362 |0.4248 |0.4948 g;géTYlQm'C3l3
7 10.4587 |-0.6344 | 0.2378 |0.4492 |0.5015 reorganisation tape: WHEOS6
91 0.4749 |-0.4685| 0.2274 |0.4665 |0.4831 pte-mvlmm.R313
14 {0.5031 |-0.4529 | 0.2100 |0.4863 |0.4717 label: 2
19 | 0.5197 |-0.4405 | 0.2057 |0.4850 |0.4616 sample interval — : 10 ms
29 (0.5557 |-0.4576 | -- |0.4680 |0.3807 number of values : 47000 -
39 | 0.5749 | -0.4445 | 0.1378 |0.4222 |0.3523 conversion factor : 1 = 4.2187*%10°° m/s
54 | 0.6028 | -0.6093 | 0.0969 |0.3311 |0.2467
64 | 0.6144 | -0.3700 | 0.0740 |0.2507 |0.1607
84 | 0.6254 |-0.3883] 0.0382 |0.1054 {0.0461 | 225
54 {0,5993 |-0.3319 | 0.1027 |0.3484 |0.2537
29 | 0.5530 |-0.2751| 0.1747 |0.4945 |0.4149
9 [0.4843 |-0.2896 | 0.2219 |0.4441 |0.4467 | 45
0.4391 |-0.2932] 0.2340 |0.3705 |0.4120
2 | 0.4092 |-0.2480 | 0.2231 |0.3053 |0.3409




Table C.3 figure: 4.7
2 2 .
Ul U} ) ul_2 u:,’_3 —ulu23
x X x *10™ *10 *10 ¥107 | s
1 z 3, 2, 2,2, 2, 2,2.0 ;0
(m) (m) (mm)} (m/s) (m/s) | (m“/s%)] (m“/s%)[(m“/s%)] (7)
16.00 | 0.0 **| 4 |0.4161 |-1.049 | 0.3121 |0.6078 |0.5842 | 45! conversion tape  : WW8438
0.025 | 210.4261 | -0.9777 | 0.2814 |0.4812 {0.5550 E:EéTYZQm'C315
0.025 | 9 |0.4925 |-1.127 | 0.2580 |0.5633 |0.5897 reorganisation tape: WHBL39
0.025 | 19 |0.,5610 | -1.177 | 0.2144 |0.5479 {0.5162 pte .mv2mm.R315
0.025 | 54 |0.6211 | -1.250 | 0.0993 |0.3473 |0.2555 label: 5 )
3 » KK
-0.025 0.4168 | -0.9243 | 0.2558 | 0.5348 | 0.5436 sample interval zo ms (s 2 ms
number of values + 41000
-0.025 0.4866 | -1.092 | 0.2432 |0.5851 |0.5692 (¥%: 445000)
-0.025 | 19 |0.5374 | -1.196 | 0.2036 | 0.5536 |0.4883 conversion Factor : 1 = 4.3156%10°> m/s
-0.025 | 54 |0.6164 | -1.391 | 0.0942 | 0.3402 |0.2378 remark: reorganised data also on tape:
WW6681/pte.mv2mm,R315/1abels 1
Table C.4 figures: 4.13, 4.16
2 7 — J—
Ul U3_2 ul_2 u3 5 —ulu23 _Utun3
x; | *10 ¥10 ¥10” *10 107 | o+
2,2, 2,2|,2,2l|,2, 2.0 ,0
(m) | (mm)| (m/s) (m/s) | (m“/s%)| (/)| (m“/s7)| (m“/s“)| (%)
15.79 | 14 [0.3535 [ 7.735 | 0.5703 |0.6350 [0.0615 |0.9989 | 56 | conversion tape  : WW8831
15.83 | 23 0.4211 | 9.707 | 0.5094 |0.5329 {0.1117 |1.100 56 g;géTngm'C075
15.87 | 31 |0.4130 | 9.707 | 0.5845 | 0.5837 | 0.1583 |1.028 56 | reorganisation tape: WHBE3Z
15.91 | 41 {0.5010 | 10.03 | 0.5147 | 0.4940 | 0.0887 |0.9760 | 54 pte.mv2mm.RO75
15.95 | 44 {0.5127 | 8.794 | 0.5187 {0.5009 |0.1473 |0.9172 | 54 label: 2
15.99 | 55 |0.5352 | 7.825 | 0.4895 {0.5339 |0.2934 |0.9041 | 51 | S@mple dinterval - : 10 ms
s 2 18]
16,03 | 60 |0.5614 | 5.664 | 0.4517 [0.5311 | 0.4241 [D.8162 | 50 | "Umoer of values : 23500 s
16.07 | 63 |0.5823 | 4.659 | 0.4504 |0.5359 |0.5306 |0.8410 | so | conversion factor : 1 = 4.2577%10°° /s
16,12 | 66 |0.5477 | 2.355 | 0.5439 |0.7182 [0.7937 [0.9964 | 45 | conversion tape  : WW8831
16.17 | 66 |0.4662 | -0.3574| 0.8020 [1.078 |1.455 |1.406 pto.mvzan.CO77
16,27 | 46 |-0.006| 2.087 | 0.2244 |1.564 |0.3459 |0.4750 reorganisation tape: WHEE32
50 |0.0302 | 1.024 | 0.4573 |3.124 [1.091 [1.307 pte .mv2mm.RO77
56 |0.1046 | -0.7616| 0.9467 | 5.110 |3.0017 |2.866 label: 5
60 |0.1864 | -1.296 | 1.319 |[5.592 |4.117 |3.548 sample interval  : 10 ms
64 10.2819 | -1.170 | 1.634 |5.662 |4.962 |4.274 number of values : 23500 -
66 {0.3352 | -1.817 | 1.786 |5.555 |5.202 |4.507 conversion factor : 1 = 4.2577*10 ~ w/s
68 {0.3856 | -2,040 | 1.897 |5.181 |5.214 |4.465
70 |0.4219 | -1.740 | 1.795 |4.639 |4.807 |4.233
74 10.5616 | -1.713 | 1.447 |3.274 |3.679 [3.3:
16.39 -0.005 | -0.7614] 1.331 |3.768 |1.477 |3.605 conversion tape  : WW8831
0.0159 | -1.548 | 1.404 |7.850 |2.574 |3.031 EggéTYsz'C076
10 |0.0314 | -2.001 | 1.445 |10.80 |3.901 |0.0054 reorganisation tape: WHES3Z
20 10,0723 | -3.230 | 1.668 |16.28 |5.574 |3.566 pte .mv2mm.RO76
40 |0.2278 | -6.899 | 2.304 |18.59 |10.56 |7.564 label: 1
60 |0.4779 | -10.68 | 2.129 |13.68 |10.26 |7.663 sample interval — : 10 ms
100 |0.7675 | -9.764 | 0.2120 | 1.079 |0.4166 |0.2719 number of values  : 23300 s
3 . - *
140 |0.8158 | -7.346 | 0.0747 | 0.4177 | 0.2053 |0.1729 conversion factor : 1 = 4.2577%10°" m/s
180 |0.8711} -6.266 | 0.0519 | 0.4911 | 0.0596 |0.0610
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Table C.5 figure: 4.13
Ul U3_2 Uf-z u§~3 —ulu23 - tug}
x| % *10 *10 *10 107 *107°| axp
(m | ()| (w/s) | (w/s)| (n?/e®)| (m2/sD)| (/D) (n2/sD)|  (®)
15.45| 2 |0.5343 | -0,2170| 0.2359 |0.3208 | 0.5034 | —- 45| conversion tape : WhWeasl
4 {0.5626 | 0.2764|0.2178 |0.3080 | 0.4664 | -- E;Eészgm‘C075
6 |0.5790 | 0.5477|0.1820 |0.3219 | 0.4268 | -- reorganisation tape: WHBE3?2
8 {0.5954 | 0.6264|0.1470 {0.3116 | 0.3554 | -- pte.mv2mm.RO75
10 {0.6042 | 1.121 | 0.1394 |0.3397 |0.3840 | ~-- label: 2
14 |0.6188 | 1.194 | 0.1152 {0.3819 |0.3731 | -- sample interval — : 10 ms
18 |0.6268 | 1.160 | 0.0982 |0.3986 {0.3178 | -- number of values : 23500 5
25 |0.6419 | 1.874 | 0.0984 |0.4131 |0.2960 | -- conversion factor : 1 = 4.2577*10 “m/s
35 |0.6594 | 1.858 | 0.0909 |0.4349 |0.2970 | --
55 |0.6864 | 1.809 | 0.0846 |0.4577 |0.2769 | --
75 |0.7071 | 1.640 | 0.0744 |0.4966 | 0.2990 | ~-
100 |0.7340 | 1.494 | 0.0603 |0.4254 [ 0.2531 | --
120 |0.7551 | 1.291 |0.0531 |0.3580 |0.2245 | --
175 |0.8209 | 0.0157 | 0.0209 {0.1685 | 0.0781 | --
185 |0.8325 | -0.3006 | 0.0194 | 0.1385 | 0.0538 | --
15.79 | 16 [0.3757 | 8.030 | 0.5045 |0.6082 | 0.1576 | 1.053 conversion tape  : WW8831
18 |0.4026 | 8.255 | 0.4668 |0.6399 | 0.0981 |0.8835 pro -mv2mm.C076
20 [0.4285 | 9.044 | 0.4549 |0.7606 | 0.4823 |1.206 reorganisation tape: WHBE32
25 |0.4671 | 9.729 | 0.4821 |0.8689 [ 0.8112 | 1,534 pte.mvZmm.RO76
35 10.5275 | 10.74 | 0.4216 | 0.7929 | 0.7536 | 1.362 label: 1
50 |0.5937 | 10.87 |0.2322 |0.5873 | 0.5106 |0.7853 sample interval — : 10 ms
75 |0.6526 | 10.34 | 0.1162 |0.4980 | 0.3723 |0.4567 number of values : 23500 5
100 {0.6913 | 9.249 |0.0843 |0.4498 | 0.2634 |0.3057 conversion factor : 1 = 4.2577%10 “n/s
170 (0.7838 | 6.771 | 0.0404 |0.2565 |0.1426 |0.1530
16.07 | 63 [0.6114 | 6.953 | 0.4228 | 0.5370 | 0.2972 | 0.7047 45
65 |0.6403 | 6.740 |0.3797 [0.5532 | 0.2962 |0.6269 45
67 |0.6567 | 7.013 |0.3634 |0.5567 | 0.3435 |0.6609
72 |0.6764 | 7.206 |0.3021 {0.6383 |0.4700 |0.7111
80 |0.7045 | 7.162 |0.2542 | 0.6798 | 0.4938 |0.6709
95 |0.7466 | 6.279 |0.1896 |0.5997 | 0.4630 |0.5646
110 [0.7705 | 4.845 |0.1038 |0.5157 | 0.319¢ |0.3498
140 [0.7970 | 0.9410 | 0.0657 |0.4566 | 0.2480 |0.2504
180 |0.8304 |-7.161 |0.0402 |0.2941 | 0.1006 |0.0899
16.17 | €8 |0.5579 | 0.2339 | 0.5453 | 0.7498 | 0.9811 |1.006 conversion tape  : WW8831
70 |0.6074 | 0.5703 | 0.5251 |0.6334 | 0.7893 |0.8295 ﬁggészzm'CD77
74 |0.6887 | 1.428 |0.3422 |0.4840 | 0.4689 |0.5032 reorganisat ion tape: WHBB3Z
78 [0.7100 | 2.091 |0.2719 {0.5202 | 0.4273 |0.4917 pte.mv2mm.RO77
85 |0.7382 | 3.022 |0.2195 |0.5674 | 0.4031 [0.4671 label: 3
95 |0.7633 | 3.525 |0.1884 |0.6121 | 0.4637 |0.5194 sample interval — : 10 ms
110 {0.7919 | 3.994 |0.1268 |0.5621 | 0.3763 |0.4100 number of values  : 23500 5
130 |0.8327 | 3.579 |0.0782 |0.4664 | 0.2717 |0.2844 conversion factor : 1 = 4.2577¥10 “m/s
150 |0.8543 | 3.810 |0.0600 |0.4270 |0.2309 |0.2378
180 {0.9049 | 3.783 |0.0429 |0.3346 |0.1247 |0.1282




Table C.6 figures: 4.14, 4.16
U U u w2 | ow, | -iw
1 5, " 5 . 1%, et
X | x5 *10 *10 *10 *10 *107| s
(m) | (m} (n/s) | (n/s) | (m2/sD)] (m2/s2)| (n2/s®)| (nl/s®)| (©)
15.81 | 12| 0.3087| 6.187 { 0.5317{0.6108 | 6.0695 | 0.9684 45 conversion tape : WWes3l
15.84 | 16|0.3520| 7.821 | 0.5185 |06.5794 | 0.0318 |1.002 ?;gészgm'Coel
15.87 | 21| 0.3812| 8.451 | 0.5198 | 0.6043 | 0.0914 |1.054 reorganisation tape: WHG832
15.90 | 25| 0.3287 | 6.210 { 0.4953 | 0.5990 | 0.1160 |0.9023 pte .mv2mm.RO8L
15.93 | 32| 0.3644| 6.102 | 0.4426 | 0.5709 | 6.3039 |0.9149 label: 6
15.96 | 36| 0.3465| 4.681 | 0.4003 | 0.5651 | 0,2538 | 0.7012
16.02 | 56| 0.4803 | 5.634 | 0.3668 | 0.5779 | 0.4226 |0.7692 conversion tape : Wwes3l
16.05 | 60| 0.5225| 5.329 | 0.3613 | 0.5550 | 0.4235 | 0.7194 g:sészgm'Cogl
16.08 | 621 0.5092| 3.760 | 0.4291 | 0.6657 | 0.5541 | 0.8130 reorganisation tape: G832
16.11 | 66| 0.5370| 1.934 | 0.4573 | 0.6245 |0.7008 | 0.8435 pte.mv2mm .RO8L
16.14 | 66| 0.5017 | -1.308 | 0.5190 | 0.7369 | 0.9406 |0.8228 label: 7
16.30 | 4 |-0.1094 | 0.7736| 0.4535 | 0.8135 | 0.1951 | 0.0658 conversion tape  : WWB831
8l-0.1084 | 1.195 | 0.4231|1.115 |0.3632 |0.0146 g:géTyz?m.coaz
12|-0.0951| 1.652 | 0.4462 | 1.347 |0.4688 | 0.0865 reorganisation tape: WNBA32
20|-0.0883 | 2,181 |0.5045|1.943 |0.7668 | 0.0451 pte.my2mn.ROB3
25|-0.0777{ 2.604 | 0.5450 | 2,532 |0.9144 |0.1478 label: 3
35|-0.0122 | 1.337 |0.7594 |4.137 |2.128 |1.907 sample interval = : 10 ms
45| 0.1049 | -0.3805 | 1.284 |6.867 |4.351 |4.121 number of values 3 23500 s
50| 0.1568 | -1.203 | 1.546 | 8.155 |5.421 |4.798 conversion factor : 1 = 4.2577*10 “n/s
551 0.2295 | -2.226 | 1.554 |7.883 |5.613 |4.779
60| 0.2934 | -2.552 | 1.736 |8.426 |6.484 |5.610
70| 0.4595 | -3.177 | 1.703 |6.495 |5.823 |5.033
90| 0.7017 | -2.401 | 0.4006 { 1.608 |0.9508 | 0.8648
110| 0.7575 | -2.058 | 0.1882 | 0.7211 | 0.4491 | 0.4160
140 | 0.7966 | -1.048 | 0.0860 | 0.5050 | 0.2741 | 0.2690
160 0.8332 | 1.130 |0.0595 |0.3621 | 0.1898 |0.1930
16,45 | 4| 0.0082|-1.113 | 1.203 |5.116 |1.934 |3.874
10) 0.0434 | -2,578 | 1.386 |9.866 |3.179 |0.2316
15| 0.,0893 | -2.746 | 1.569 |12.66 |4.471 |4.549
250 0.1551 | -4,794 |1.928 |14.45 |6.395 [3.912
301 0.2113 | -5.488 | 1.997 |14.32 |8.043 |5.643
40| 0.2940 | -6.709 | 1.922 |14.17 |7.509 |5.662
45| 0.3210 | -7.803 |1.938 |14.89 |7.726 |5.826
50| 0.3695 | -8.366 |1.974 |12.63 |7.820 |5.516
60| 0.4636 | -9.337 | 1.871 |10.13 |7.108 |4.890
75( 0.5916 | -9,200 | 1.173 |5.513 |4.059 |2.929
100| 0.7087 | -7.783 | 0.2686 | 1.454 |0.6593 |0.5090
140| 0.7566 | -5.259 | 0.0943 | 0.4832 | 0.257¢ |0.2231
180 0.7967 | -3.810 | 0.0732 | 0.3626 |0.2418 |0.2234
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Table C.7 figure: 4.14
Ul U3_2 uf_z u§_3 -ulu23 —utur_13
x; | X *10 *%0 i *;o g ;102 ;102 ap
(m) | (mm)| (m/s) (m/s)| (m*/s) (m/s)| (m™/s%)| (m“/s%)| ()
15.45 | 2 |0.4983 | 0.2984 0.2987 | 0.4443 |0.6198 | — 45|  conversion tape  : WW8B31
410.5232 | 0.6621| 0.2945 | 0.4643 [0.6045 | - g;gészgm'C081
6 |0.5464 | 0.9402| 0.3032 | 0.4920 |0.6387 | - reorganisation tape: WB832
10 {0.5772 | 1.636 | 0.2674 | 0.5285 |0.6311 | - pte.mv2mm.ROBL
20 |0.6232 | 2.575 | 0.2291 | 0.5476 |0.6260 | - label: 7
40 |0.6807 | 2.809 | 0.1315|0.4621 |0.3766 | -- sample interval — : 10 ms
70 [0.7110 | 2.941 | 0.0865|0.4503 |0.2580 | -- number of values  : 23500 5
90 |0.7259 | 2.879 | 0.0692 | 0.4108 |0.2270 | -- conversian factor : 1 = 4.2577%10""w/s
140 {0.7632 | 2.132 | 0.0479 | 0.3225 |0.1955 | -
180 |0.7923 | 0.4606| 0.0266 | 0.1901 |0.1003 | --
15.81 | 16 {0.2989 | 5.858 | 0.5897 | 0.7123 |0.2550 |0.7434
18 |0.2481 | 4,219 | 0.6223 | 0.7377 |0.2774 | 0.6494
24 |0.3710 | 6.792 | 0.5607 |0.5795 |0.2851 |1.159
30 |0.4468 | 9.174 | 0.4813 | 0.8163 |0.5898 |1.329
35 10.4772 | 10.11 | 0.4068 | 0.9471 |0.7149 |1.288
40 10.5066 | 10.27 | 0.4156 | 0.9367 |0.7812 |1.348
50 |0.5582 | 10.22 | 0.3551 | 0.8304 |0.7101 |1.147
75 |0.6537 | 9.426 | 0.1706 | 0.5713 |0.4393 |0.5816
100 |0.6890 | 8.076 | 0.0920 | 0.4510 |0.2790 |0.3258
140 |0.7322 | 5.119 | 0.0652 | 0.3808 |0.2390 |0.2555
180 |0.7768 | 0.1857| 0.0358 | 0.2299 |0.1000 |0.1030
16.02 | 55 [0.5136 | 7.525 | 0.4864 | 0.5738 |0.3931 |0.9895
57 |0.5591 | 8.053 | 0.4204 | 0.5956 |0.4042 |G.8972
60 |0.5759 | 8.329 | 0.4057 | 0.6480 |0.4581 |0.9207
63 |0.5931 | B.437 | 0.3741 | 0.6912 |0.4743 |0.8809
66 |0.6101 | 8.401 | 0.3544 | 0.6913 |0.4987 |0.8639
70 |0.6319 | 9.078 | 0.3275 |0.7506 |0.5526 |0.8865
80 |0.6665 | 9.328 | 0.3063 | 0.8504 |0.6915 |0.9697
100 |0.7242 | 8.655 | 0.2193 | 0.6657 |0.5684 |0.7320
140 |0.7680 | 5.516 | 0.0703 | 0.4656 |0.2403 |0.2548
180 {0.7929 | 2.359 | 0.0481 | 0.3205 |0.1280 |0.1325
16.17 | 66 |0.5100 |-1.357 | 0.5399 | 0.7783 | 0.9660 |0.8438
68 (0.5570 |-0.8128 | 0.4597 | 0.6511 |0.8032 |0.7478
70 (0.6100 | 0.1237| 0.4213 | 0.5824 |0.5424 |0.6179
75 |0.6646 | 1.220 | 0.3240 |0.5619 |0.4188 |0.4699
90 |0.7230 | 2.541 | 0.2608 | 0.7603 |0.5529 |0.6160
110 {0.7789 | 1.885 | 0.2034 |0.6632 |0.5197 |0.5526
140 |0.8163 | 0.4215 | 0.0691 | 0.4460 |0.2076 |0.2089
180 |0.8566 |{-2.477 | 0.0461 |0.3192 |0.1370 |0.1325




Table C.8 figures: 4.15, 4.16
Ul U:,’—2 uf_z u%_} _u1u§3 —utuDB
x, | % x1072| #1072 | %10 *107°| *107°| s
(m | ) (n/s) | (m/s) | (n2/sD)| (m2/sPy| (mP/s?)| (/8| (%)

15.45] 2|0.5142| 0.0996]| 0.3026 |0.3465 |0.5321 | —- 45 | conversion tape  : WHB831
4]0.5536 | 0.3224|0.3223 [0.3937 |0.5892 | - g;gészgm'COBB
6|0.5762| 0.6078| 0.3114 |0.3900 |0.5566 | -- reorganisation tape: WHBE32
8|0.5903 | 0.8629|0.2797 [0.3973 |0.5558 | —- pte.mv2mm.RO88

10| 0.6022 | 1.032 | 0.2599 |0.4113 |0.5489 | - label: 8
1510.6335 | 1.625 | 0.1825 |0.4221 |0.4765 | -- sample interval — : 10 ms
30 | 0.6735 | 2.159 | 0.1290 |0.4776 |0.3811 | -- number of values : 23500 5
75| 0.7197 | 2.192 | 0.0889 |0.4382 |0.2652 | -- conversion factor : 1 = 4.2577¥10 “m/s
110 | 0.7418 | 1.955 | 0.0629 |0.3917 |0.2186 | --
140 | 0.7607 | 1.519 |0.0472 |0.3183 |0.1757 | --
180 | 0.7798 | 0.1731| 0.0260 |0.2049 |0.0758 | -
15.82| 29 |0.4703 | 8.388 | 0.4067 |0.8369 |0.4476 |0.9777
31| 0.4764 | 9.582 | 0.3953 |1.005 |0.7466 |1.259
35| 0.5023 | 9.648 | 0.4255 [1.040 |0.8635 |1.573
3710.5074 | 9.787 | 0.4452 [1.039 |0.8734 |1.618
39 |0.5165 | 10.00 | 0.4523 |1.093 |0.9063 |0.9903
15.87 | 32 |0.4762 | 9.673 | 0.3816 |0.7153 |0.3764 |0.9522
34 |0.4894 { 9.882 | 0.3471 |0.8499 |0.5194 |0.9867
36 | 0.4965 | 9.877 | 0.3805 |0.9928 |0.7188 |1.204
38 10.4976 | 9.777 | 0.3919 |0.7228 |0.3775 |0.9533
40 | 0.5166 | 9.889 | 0.3575 {0.8038 |0.4909 |0.9665
42 [0.5302 | 8.859 | 0.3903 |0.8197 |0.4474 |0.9250
15.92 | 43 |0.4630 | 7.708 | 0.4947 |0.7649 |0.2053 |0.8749
45 |0.5042 | 8.599 | 0.5119 |0.5987 |0.2266 |0.9596
47 |0.5393 | 9.383 | 0.3793 |0.7403 |0.4282 |0.9199
49 10,5571 | 9.544 | 0.3472 |0.8168 |0.5183 |0.9298
51 |0.5605 | 9.913 | 0.3691 |0.8890 |0.6058 |1.048
53 10.5661 | 9.791 | 0.3563 [0.9458 |0.6859 |1.085
15.97 | 50 | 0.5016 | 7.591 | 0.5168 |0.6137 |0.3025 |0.9623
s2 |0.5217 | 7.533 | 0.4603 |0.6147 |0.3079 |0.8584
54| 0.5666 | 9.202 | 0.3631 |0.7143 |0.4431 |0.8808
56 |0.5746 | 8.791 | 0.3459 |0.7473 |0.5027 |0.8852
58 |0.5877 | 8.213 | 0.3840 |0.7820 |0.6080 |1.006 -
60 | 0.5974 | 7.964 | 0.3736 |0.8061 |0.5743 {0.9383
16.02 | 56 | 0.5233 | 6.393 | 0.4486 |0.5869 |0.3909 |0.9132
58 | 0.5606 | 6.812 | 0.4330 {0.5961 |0.3970 |0.8923
60 | 0.5780 | 7.063 | 0.4106 |0.6406 |0.4324 |0.8600
62 | 0.5981 | 7.377 | 0.3814 |0.6603 |0.4817 |0.8556
64 10.6129 | 7.458 | 0.3648 |0.6728 |0.4601 |0.8529
66 |0.6233 | 7.748 | 0.3208 |0.7119 |0.4472 |0.7397
16.07 | 59 |0.5178 | 4.814 | 0.4981 |0.6428 |0.4003 |0.7925
61 |0.5605 | 4.950 | 0.42680 |0.6020 |0.4671 |0.7793
63 |0.5786 | 5.403 | 0.4257 |0.6050 |0.4310 |0.7595
65 |0.6080 | 5.820 |0.3890 |0.6716 |0.4806 |0.7788
67| 0.6288 | 5.349 | 0.3606 |0.6885 |0.5199 |0.7606
69 | 0.6403 | 5.554 |0.3538 |0.6999 |0.5061 |0.7448
16.12 | 67 |0.6235 | 3.566 | 0.3872 |0.5800 |0.4824 |0.6684
69 | 0.6409 | 4.486 |0.3520 |0.6406 {0.5011 |0.6966
71 {0.6552 | 4.437 |0.3230 |0.6477 |0.4422 |0.6133
73 | 0.6677 | 4.379 | 0.3086 |0.6820 |0.5041 |0.6586
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Table C.9 Inflow boundary ODYSSEE, figure: 4.10
U, Ug k B € .
X X3 *10 *10
(m | ) | w/s) | (w/s)| (mP/s?)] (mP/s?)

15.25| 0.000 | -~ - - - u, = 0.0230 m/s
0.002 | 0.497 | 0.0 | 1.747 |15.21
0.004 | 0.537 | 0.0 | 1.730 |7.604 2, = 0.35%107¢
0.006 | 0,561 | 0.0 | 1.713 |5.070
0.009 | 0.584 | 0.0 | 1.688 |3,380
0.012 | 0.600 | 0.0 | 1.663 |2.535
0.017 (0.620 | 0.0 | 1.621 |1.789
0.025|0.643 | 0.0 | 1.553 |1.217
0.035 | 0.662 | 0.0 | 1.469 |0.869
0.050 | 0.683 | 0.0 | 1.343 |0.608
0.070 {0.702 | 0.0 | 1.176 |0.044
0.100 {0.722 | 0.0 | D.924 |0.304
0.140 |0.742 | 0.0 | 0.588 |0.217
0.180 |0.756 | 0.0 | 0.252 |0.169
0.210 | -- — -- -

Table C.10  dune heights, figures: 4.13, 4.14, 4.15, 4,16, 4.18

experiment: T1 experiment: T2 experiment: T3
water- water- water-| conveyor-
Xq z, level X1 z, level X, 7, level belF
(m) | Gom)| (m) (m) | (mm)| (m) (m) | (mm)| (m) | Velocity
15.75 0 15.75 0 15.75 0 Eb_ﬁﬂlh)
15.79 | 12 0,213 15.81 | 12 {0,212 15.82 | 25 (0.220
15.831 21 15.84 1 1 15.87 1 2% 10.215 || exp.Ti:
15.87 | 28 15.87 | 21 15.92 1 40 |0.215 4.13
15,91 | 38 15.90 | 25 15.97 § 47 |0.215
15,95} 41 15.93 | 32 16.02 | 53 |0.215 | exp.T2
15.99 | 52 15.96 | 36 16.07 | 56 (0.210 3.75
16.03 | 57 15.99 | 42 16.12 | 60 (0.210
16.07 { 59 {0.211 16.02 | 50 |0.211 16.17 { 60 |0.210 || exp.T3
16.12 | 63 16.05 | 56 16.25 0 3.58
16.17 | 63 }0.215 16.08 | 58
16.25 0 16.11 | 62
l6.14 | 63
16.17 | 63 {0.206
16.25 0




C-8

Table C,11 angles of streamlines in measurements and calculation ( Vm angle from measurements
Y, angle from calculation)

X1 *3 Vm Ve 1] %3 Vm Ve X1 *3 Vm Ve 1L %] Pn Ye
exp| (m) [(mm)| (O) | (®) fexp| (m) [(am)] ()] (%) exp| {(m) | (mm} () )| exp| (m) [ (mm) (°)] (%)
11 115,79 | 16 |12.1] 13.1 TL] 15.95| 44| 9.7{ 10.2|| 72| 16.45 41-53.6 | -1,1 T3] 16.02) 62 {7.0] 6.7

18 | 11.61 12.5 15,99} 55| 8.3| 9.5 10 |-30.7 | -2.6 64 16,9 6.6
20{11.,9]12.0 16.03 60 5.8/ 6.9 15(-17.1 | -3.8 66 |7.1| 6.4
25111.8]11.4 16.07 | 63 4.6f 3.7 25 1-17.2 | -4.,7 16.07] 59 |5.3| 3.6
351 11.5} 9.5 16,12 66| 2.5| 0.0 30 ~14.6 | -4.6 61 15.0] 3.6
50110.4| 8.4 16,17} 66} -0.4/-16.9 40 -12.9 | -4.2 63 5.3 3.7
751 9.0} 5.9 T2y 15.81 | 16} 11.1| 11.4 45 1-13.7 | -3.9 65 15,51 3.8
100} 7.6 4.4 18| 9.7} 11.3 50 +-12.8 | -3.5 67 |4.9 3.8
170 4.9 1.4 241 10.4] 10.8 60 F11.4 | -3.0 69 |5.04 3.8
16.07 | 63 6.5 3.7 30( 11.6] 10.0 751 -8.8 -2.3 16.12} 67 3.3 0.0
65| 6.0 3.8 351 12.01 9.7 100 | -6.3 | -1.7 69 14.0| 0.0
671 6.1} 3.8 4041 11.5) 9.4 140 | -4.0 | -1.0 71 {3.9] 0.0
72 6.1 3.7 501 10.4( 8.4 180 | -2.7 | -0.3 73 13.8] 0.0
80| 5.8| 3.6 751 8.2 6.5 15,811 14 11.3} 11.5
95| 4.8 2.9 100 6.7 4.8 15.84 1 19 12.5] 11.2
110 | 3.6 2.4 140 4.0 3.0 15.87 24 | 12,5( 11.2
140 0.7 1.8 180 1.4] 1.4 15.90 28 | 10.74 11.2
180 | -4.9{ 0.5 16.02 | 55| 8.3} 7.2 15.93 | 35 9.5] 11.2
16.17 | 68} 0.3 +13.9 571 8.27 7.1 15.96 | 40 7.7 10.2
701 0.5]-9.3 60| 8.2 6.9 16.02{ 56 6.7 7.1
74 1.2-7.9 63 8.1 6.6 16.05}| 60 5.8 5.0
78| 1.7 | -6.7 66| 7.8| 6.4 16.08 | 62 4.2 3.6
85| 2.3|-5.8 70 8.2 6.1 16.11 | 66 2.1} 0.0
951 2.6 |-4.7 80 8.0 5.5 16,14} 66 | -1,5 0.0
110 2.9 | -3.7 100 6.81 4.2 T3115.82| 29 | 10.1| 10.5
130} 2.5|-2.9 1401 4.1! 2.0 311 11,41 10.3
150} 2.6 |-2.0 180} 1.7] 0.9 351 10.9| 9.9
180 | 2.4 |-1.5 16.17 | 66| -1.5|-16.9 371 10.9] 9.8
16.27 } 40| -74,9|-9.2 68| -0.81-13.9 39 1.1 9.6
50 18,7 -6.4 70 1.2]-11.2 15.87 | 32 | 11.5| 11.0
56 | -4.2 | -6.4 751 1.1} -7.9 34 | 11.4 ] 10.7
60 | ~4,0 | -6.2 90 2.0} -5.8 36 | 11.3 | 10.5
64 | -3,5 1-6.0 110} 1.4 -3.7 38 [ 11.1 ) 10.4
66 | -3,11-5.5 140 0.3 -2.7 40 | 10.8 | 10.2
68 1 -3.0 |-5.2 180} -1.7 | -1.5 42 9.5 | 10.0
70 | -2.4 | -5.0 16.30 41 -4.01184.1 15.92 | 43 9.5 ] 10.6
741-1.7 |~5.0 8| -6.3(197.7 45 9.7 | 10.4
16.39 -122 | -1.1 12} -9.9|231.4 47 9.9 | 10.2
-44,3(-4.7 20 |-13,9 |-30.0 49 9.7 9.9
10 | -32.5[-6.2 251-18.5|-18.1 51 | 10.0 9.8
20 | -24,1| -8.3 35 [-47.5 1-10.3 53 9.8 9.6
40 | -16.8]-6.9 451 -2,1| -9.0 15.97 | 50 8.6 | 10.2
60 | -12.6]-4.0 50§ -4.41 -6.0 52 8.2 9.8
100 | -7.3 | -2.2 55 -5.5] -5.5 54 9.2 9.5
140 { -5.1 [-1.3 60| -5.0| -5.0 56 8.7 9,2
180 | -4.1 |-0.4 70| 4.0} -4.2 58 8.0 9.0
15.79 | 14| 12.3[13.1 90| -2.0| -3.5 60 7.6 8.8
15.83 | 23| 13.0]|10.9 110} -1.6} -3.0 16.02 | 56 7.0 7.1
15.87 | 31| 13.2|11.0 140§ -0.8| -2.0 58 6.9 7.0
15.91 | 41 11.3110.8 i8¢ | o.s8| -0.7 60 7.0 6,9




