
SeqClu-PV: An extension of online K-medoids to efficiently cluster sequences real-time

Ruben E.C. te Wierik1,
Supervisors: A. Nadeem1, S. Verwer1

1Delft University of Technology

Abstract
Real-time sequence clustering is the problem of
clustering an infinite stream of sequences in real-
time with limited memory. A variant of the k-
medoids algorithm called SeqClu is the suggested
approach, representing a cluster with p most rep-
resentative sequences of the cluster, called proto-
types, to solve the problem of maintaining a high-
quality representation of a cluster that requires lit-
tle memory throughout time. However, the compu-
tational cost of this algorithm is considerable due
to many distance computations that use Dynamic
Time Warping (DTW), which is a computationally
expensive distance measure that can be applied to
sequences and is proven to be robust to noise and
delays. Therefore, this paper proposes an exten-
sion of SeqClu called SeqClu-PV, characterised by
a decision-making mechanism for updating proto-
types that improves the balance between the num-
ber of distance computations and the cost incurred
due to incorrect clustering and reviews its perfor-
mance.

1 Introduction
Practical algorithms for clustering streams of sequences in
an online setting would be helpful in a wide range of appli-
cations involving sequences of data generated in real-time,
such as the analysis of internet traffic [20], Internet of Things
(IoT) applications [15, 18, 3] and real-time systems involving
multimedia [17]. Such sequences of data are referred to as
time-series if an ordering can be inferred, as is the case in, for
instance, handwriting data and any other sequences of data
that are generated at a specific moment in time.
There is a vast literature on both online and offline clustering
algorithms for various kinds of data, including time-series.
The main conclusion drawn from the literature review is that
none of the algorithms proposed in the found papers are suit-
able for the extension of the k-medoids algorithm involving
multiple prototypes. A few other notions about each of the
found papers are as follows.
Cardot et al. propose an online clustering algorithm based
on the k-medoids algorithm [4]; however, this algorithm as-
sumes high-dimensional data. Ailon et al., Liberty et al. and

Cohen-Addad et al. propose promising online variants of the
k-means algorithm [2, 11, 6]; however, these algorithms as-
sume high-dimensional data. Grua et al. propose an exciting
online clustering algorithm that assumes time-series data [8].
The algorithm introduces the concept of a microcluster that
summarises the data within the cluster to obtain a more com-
pact representation of the cluster. The idea of using more
compact representations of clusters is also used in this pa-
per. Choromanska and Monteleoni propose an algorithm that
approximates the k-means objective by applying batch clus-
tering algorithms to sliding windows of the data stream [5];
however, this algorithm assumes high-dimensional data and is
more aimed at minimizing the objective rather than the com-
putational complexity. Islam et al. propose a buffer-based on-
line clustering algorithm for evolving data streams [9] that
served as inspiration for the buffer proposed in this paper to
improve the algorithm’s robustness to the order in which data
arrive. Like Grua et al., the authors also discuss the concept
of microclusters but instead assumes high-dimensional data.
Lastly, Kobren et al. propose an exciting online hierarchical
clustering algorithm that works for large numbers of clusters
and data points and assumes high-dimensional data [10].
As for relevant literature on offline clustering of time-series
data, the reader is referred to various papers, most notably
an extensive review of time-series clustering by Aghabozorgi
et al. that provides a lot of insight on the challenges this prob-
lem poses [1]. Moreover, Yu et al. propose the idea of candi-
date medoids [21] that is used as inspiration for the buffer of
candidate prototypes proposed in this paper.
This paper proposes a variant of SeqClu called SeqClu
with prototype voting (SeqClu-PV). SeqClu is an online and
sequence-based variant of the k-medoids algorithm that aims
to tackle the problem of clustering a stream of data in an en-
vironment where data are clustered when they arrive and can
only be processed once due to limited available memory. In
the algorithm, k clusters are represented using p prototypes,
which are the p most representative data points in a cluster
and are meant to characterize the clusters. The research aims
to find a combination of efficient decision-making mecha-
nisms for updating prototypes that have the optimal balance
between the number of distance computations and the cost
incurred due to incorrect clustering. To this end, SeqClu-
PV extends SeqClu with a feature called prototype voting,
which improves the accuracy with which the centres of mass

Delft University of Technology, In Partial Fulfilment of the Requirements For the Bachelor of Computer Science and Engineering

mailto:r.e.c.tewierik@student.tudelft.nl

of the clusters are modelled and therefore improves the over-
all accuracy of the algorithm. Furthermore, this feature can
be paired with another feature that approximates the distance
from an incoming sequence to a cluster to reduce distance
computations. The final feature proposed in this paper in-
volves delaying the updating of prototypes by introducing
a buffer for candidate prototypes to improve further the al-
gorithm’s decision-making regarding the updating of proto-
types.
The protocol that defines how prototypes are updated has a
significant influence on the performance of the clustering al-
gorithm. Suppose high-quality prototypes are discarded and
replaced by prototypes of poor quality. In that case, the
cluster that the prototypes characterize is no longer accu-
rately represented, and incoming data might be assigned to
the wrong cluster as a result. An example situation in which
this is the case is shown in figure 6 in the appendix.
Considering the research from a more practical perspective:
the most notable application of the proposed algorithm would
be real-time analysis of internet traffic to detect malicious
internet traffic. Using the algorithm for this purpose would
improve the security of many web applications since these
applications would have a better opportunity to defend them-
selves against malicious intent. Finally, the research is es-
pecially relevant considering the recent advances in technol-
ogy: the algorithm in this paper could be a powerful addition
to a world where systems operate more in a real-time setting
where data is processed as soon as generated to assist humans
more quickly and adequately.
This paper shows that a more efficient algorithm capable of
clustering infinite streams of sequential data in an online set-
ting is established and proves that the performance gain of
the algorithm is substantial through a series of experiments
that evaluate the performance using various evaluation met-
rics. The paper is organized as follows.
First, section 2 provides a formal description of the problem
that will serve as the basis for the remaining content in the
paper. Then, in section 3, section 4 and section 5, the mod-
ifications to the baseline implementation are presented and
a mathematical foundation for these modifications as both
mathematical and intuitive proofs is provided. Section 6 fol-
lows up with a description of the experiments that were car-
ried out. The obtained results from the experiments and the
conclusions drawn from these results are then discussed in
section 7. Next, section 8 discusses the reproducibility of
the research and provides a few ethical considerations related
to the research. Finally, the paper concludes with section 9
and section 10 that summarize the conclusions drawn and
suggests possible improvements and questions that arose dur-
ing the research process but have not been answered, respec-
tively.

2 The clustering problem
The problem of clustering an infinite stream of sequences in
an online setting using Seqclu is as follows. Consider an infi-
nite set, S, of sequences in Rd, where d ≥ 1 and new mem-
bers of this set arrive over time. Important to note is that a
sequence can be uni- or multivariate. S[0,T] is defined as a
finite set of sequences that have been received from t = 0 up

until and including t = T and Sτ is defined as a finite set of
sequences that have been received at t = τ , where t ∈ N is a
positive integer representing the moment in time, and t = 0 is
the moment when the algorithm is started. Time is quantified
using ticks, where an iteration of SeqClu is executed at every
tick. A few definitions that are essential for understanding the
problem are as follows.

Definition 1. The Dynamic Time Warping distance between
two sequences, x and y, is denoted as DTW(x, y).
Definition 2. A cluster C is a set of p | p ∈ Z, p ≥ 1
sequences in Rd, where d ≥ 1 and where the sequences rep-
resent the prototypes of the cluster.
Definition 3. The sum of distances between some sequence
x in Rd, where d ≥ 1, and all prototypes in some cluster C is
SDC,x =

∑
y∈C DTW(x, y). The average distance between

some sequence x in R and all prototypes in some cluster C is
DTWAVG

C,x =
SDC,x
|C| .

Definition 4. The set of sums of distances between any of
the prototypes in a cluster C and all other prototypes in that
cluster is SDC = {SDC,x | x ∈ C}. The average sum of
distances between any of the prototypes in a cluster C and
all other prototypes in that cluster is SDAVG

C =
∑
x∈C SDC,x
|C| .

The average distance between any of the prototypes in a clus-
ter C is DTWAVG

C =
SDAVG

C

|C|−1 .
Definition 5. The set of q | q ∈ Z, q ≥ 1, q ≤ p most repre-
sentative prototypes of a cluster C is defined as PC,q. These
most representative prototypes are defined as those proto-
types in C that maximize a function that models the value
of the prototype.
Definition 6. The objective of the SeqClu algorithm is to
choose a set of k sets of p cluster prototypes at time t,
{Ct | ∀(x, y) ∈ Ct × Ct (x 6= y)}, which represents a set of
clusters where no sequence can be a prototype for more than
one cluster, that minimizes the cost function given in Defini-
tion 7.
Definition 7. The cost of the solution at time t, de-
noted as the set of clusters Ct, is defined as Φ(t) =∑
τ≤t

∑
x∈SτDTWAVG

Ax,x
, where Ax is the set of p prototypes

that represents the cluster that a sequence x is assigned to.

The goal is to design approximation algorithms due to the on-
line nature of SeqClu that try to approximate the solution of
the same algorithm in the offline version of SeqClu, where all
data are known upfront.

3 Approximating the distance to a cluster
The strategy for updating prototypes characterises the online
baseline algorithm. The procedure for processing an incom-
ing sequence x, and updating the prototypes in the process, is
as follows. The algorithm computes the distance DTWAVG

C,x
to every cluster C ∈ Ct and assigns the sequence x to the
cluster Cmin that minimizes this distance. The sequence also
becomes a prototype for this cluster and replaces the proto-
type y that maximizes DTWAVG

Cmin,y , regardless of whether or
not the incoming sequence is a better prototype than the one
that is discarded for the incoming sequence.

A key observation regarding this baseline algorithm is that
many distance computations must be done for every pro-
cessed sequence. The algorithm first performs k × p dis-
tance computations to determine the cluster that the incom-
ing sequence should be assigned to and then performs another
p × p distance computations to determine the prototype that
maximizes the average distance between that prototype and
all other prototypes in that cluster, which is then replaced by
the incoming sequence. Luckily, most of the distance com-
putations in the second step can be memoized and reused in
the next iteration of the algorithm since only one prototype
changes at every iteration. However, the distance computa-
tions in the second step have to be executed at every algo-
rithm iteration. Hence this step is the most sensible step for
which to identify improvements involving approximation.

The first mechanism proposed in this paper is the idea of
approximating the distance between an incoming sequence
and a cluster. The algorithm can achieve this approximation
by computing the distance between that sequence and a subset
of the prototypes rather than the entire set. The mathematical
foundation for this idea is established using the definition be-
low.

Definition 8. An approximation of the average distance from
an incoming sequence x to the cluster prototypes is the av-
erage distance from the incoming sequence to the p′ < p
most representative prototypes of the cluster and is defined as
DTWAVG′

C,x,p′ = DTWAVG
PC,p′ ,x.

To conclude, the idea of approximating the distance between
an incoming sequence and a cluster involves computing the
average distance between that incoming sequence and the p′
most representative prototypes and assuming this distance is
equal to the average distance between the incoming sequence
and all prototypes. The assumption can be quite dangerous if
the p′ most representative prototypes do not represent all pro-
totypes well since the accurate distance to some cluster could
be significantly different from the approximated distance to
the same cluster; an example of a situation in which this is
the case is provided in figure 7 in the appendix.
Hence a definition for representativeness is provided below
and used to define an upper bound for the error in the ap-
proximated distance from some incoming sequence to some
cluster.

Definition 9. The representativeness of a prototype x that is a
member of some cluster C is defined as REPC,x =

SDAVG
C

2×SDC,x .

This definition of representativeness can be viewed as the de-
gree to which a cluster prototype represents all prototypes in
that cluster. The higher the representativeness of the proto-
type, the lower the average distance between that prototype
and all other prototypes in the cluster, the better the distance
computation from some sequence x to that prototype approxi-
mates the average distance from x to all prototypes. A lemma
stating that the representativeness has an upper bound of 1,
and proof of this lemma is as follows.

Lemma 1. The maximum value of the representativeness of
a cluster prototype is 1. In mathematical notation, this trans-
lates to maxx∈C REPC,x = 1.

Proof. Consider a cluster C containing infinitely many pro-
totypes in which all prototypes are the same, except for one
of the prototypes. Consider the distance between any of the
infinitely many identical prototypes and the one unique pro-
totype to be d. In that case, the average sum of distances
SDAVG

C is (|C|−1)×d+(|C|−1)×d
|C| . Intuitively, the infinitely

many identical prototypes should be highly representative of
the cluster considering all these prototypes have a distance of
0 to each other and a distance of d to the unique prototype
and are therefore very close to the other prototypes overall.
Evaluating REPC,x where x is one of the infinitely many

identical prototypes yields
(
(|C|−1)×d+(|C|−1)×d

|C|)

2×d , which can

be simplified to 2×(|C|−1)×d
2×|C|×d , which can be further simplified

to |C|−1|C| . Considering the size of the set C is infinitely large,
we can obtain the upper bound for the representativeness as
lim|C|→∞

|C|−1
|C| = 1. �

A definition that is required to define the error in the approx-
imated distance from an incoming sequence to a cluster as
well as a definition of the error itself can be found below.

Definition 10. The average representativeness of the p′

representative prototypes of some cluster C is defined as

REPAVG
C,p′ =

∑
x∈P

C,p′
REPC,x

|PC,p′ |
.

Theorem 1. The error in the approximated distance from
any incoming sequence to a cluster C is defined as EDTW

C =

(1− REPAVG
C,p′)×

∑
x∈P

C,p′
SDC\P

C,p′ ,x

p−p′ .

To clarify Theorem 1, we can define an error factor that is the
average degree of inaccuracy in the approximation of the av-
erage distance between x and all cluster prototypes inC. This
error factor is scaled by the average distance from all repre-
sentative prototypes, PC,p′ , to all non-representative proto-
types, C \ PC,p′ .
The proof of Theorem 1 is left as a future work due to the
complexity of the mathematical proof. An interesting fact to
note is that the triangle inequality does not hold for the Dy-
namic Time Warping distance measure, which might affect
the ability to prove Theorem 1.

The error as defined above is used to determine whether or
not assigning an incoming sequence to a cluster by approxi-
mation is justified. The definition for a function that decides
whether or not a pair of distance computations is ambiguous
is as follows.

Definition 11. The function isAmbiguous : (x,C1, C2) →
boolean that takes an arbitrary sequence x and two clusters,
C1 and C2, is defined as |DTWAVG′

C1,x,p′ − DTWAVG′

C2,x,p′ | ≤
max(EDTW

C1 , EDTW
C2).

The above definition is used to determine whether or not the
algorithm risks assigning a sequence to the wrong cluster if
approximated distances are used to determine the cluster that

the sequence is closest to. If any ambiguity exists, the al-
gorithm calculates the distance to all p prototypes instead to
establish more accurate distances from the sequence to the
clusters and then assigns the sequence to the closest cluster
using these more accurate distances.

4 Buffering prototype candidates
A second idea to improve the algorithm’s accuracy and there-
fore account for the expected loss of accuracy due to the ap-
proximation of the distance from incoming sequences to the
clusters is to buffer incoming sequences that could represent
a cluster and become a prototype. This mechanism is a trade-
off where low memory usage is traded off for a slight im-
provement in accuracy due to delaying deciding whether or
not to update the prototypes. A definition of all principles
that are used to establish this mechanism can be found below.

Definition 12. The minimum average representativeness that
the p′ representative prototypes of some cluster should have
is defined as REPMIN.
Definition 13. The computation of the average distance be-
tween an incoming sequence x and some clusterC is accurate
enough if the average representativeness of the p′ representa-
tive prototypes of the cluster REPAVG

C,p′ is equal to or greater
than the minimum average representativeness REPMIN.

The above two definitions can be used to decide whether or
not the approximation of the distance of some sequence to
some cluster is satisfactory enough. The higher the average
representativeness, the higher the degree of approximation of
the average distance between some sequence x and all pro-
totypes of the cluster C. Intuitively, this translates to: the
higher the average representativeness, the higher the likeli-
hood that a candidate prototype is a better prototype than one
of the current prototypes and, therefore, the higher the quality
of candidate prototypes. If the prototypes are not representa-
tive enough, the accurate average distance to the cluster pro-
totypes is computed instead and used to determine whether or
not x is a candidate prototype.

With the above two definitions to decide whether or not to
rely on an approximation of the distance to a cluster to decide
whether or not an incoming sequence is a candidate proto-
type, the function that decides whether or not an incoming
sequence is a candidate prototype for some cluster is defined
as follows.

Definition 14. The function candidate : (C,PC,p′ , x) →
boolean determines if an incoming sequence x is a candidate
to become a prototype of the cluster C. In the case where
the prototypes of cluster C meet the condition specified in
Definition 13, the function returns true if DTWAVG′

C,x,p′ <

DTWAVG
C + EDTW

C and false otherwise. In the case
where the prototypes of cluster C do not meet the condi-
tion specified in Definition 13, the function returns true if
DTWAVG

C,x < DTWAVG
C and false otherwise.

The above definition can be used to determine whether or not
incoming sequences are candidate prototypes for any of the
clusters and are then stored in a buffer up to the point where

the maximum capacity of the buffer is reached. When this
happens, all the items in the buffer need to be processed and
added to the set of prototypes for some cluster if they turn out
to be better prototypes than one of the current prototypes in
that cluster. The next problem is how to decide which proto-
type to update, which is discussed in the following section.

5 Voting for prototypes
As mentioned in section 3, the online baseline algorithm pro-
motes an incoming sequence x to a prototype for the cluster
Cmin that minimizes DTWAVG

Cmin,x and replaces the prototype
y that maximizes DTWAVG

Cmin,y , regardless of whether or not
the incoming sequence is a better prototype than the one that
is discarded for the incoming sequence.

A problem with this approach is that the cluster’s centre of
mass is not modelled correctly. The online baseline algorithm
merely attempts to minimize the average distance between all
prototypes of some cluster and does not consider the simi-
larity of prototypes to the earlier assigned sequences. The
online baseline algorithm processes new sequences after ini-
tializing the prototypes for all clusters, part of which are pro-
moted to prototypes since these sequences decrease the aver-
age distance between prototypes. Suppose most of the later
processed sequences assigned to that cluster are very simi-
lar to each other. In that case, the closest prototype should
become a prototype of higher value than the other prototypes
since it is most similar to the sequences assigned to the cluster
overall. A hypothetical situation in which one of the proto-
types is of higher value than the other prototypes is depicted
in figure 8 in the appendix.
This prototype of higher value should not be discarded while
it is considered of high value. However, in the online baseline
algorithm, this prototype is discarded, and the representation
of the cluster diverges from the centre of mass. After the pur-
ple sequence arrives in figure 8, the prototypes are the green,
purple and right-most dark red sequences. Then, the two blue
sequences arrive and replace the purple and green prototypes
in that order. To tackle this issue, this paper proposes a third
mechanism called prototype voting to address modelling the
centre of mass of a cluster.

The idea behind prototype voting is to keep track of how
often an incoming sequence that is not a candidate prototype
is closest to any of the prototypes.

Definition 15. The amount of times a sequence has been ob-
served as being closest to a prototype P ∈ C compared to
all other prototypes in C at time t is defined as OP,t. The
total amount of times a sequence has been observed as being
closest to any of the prototypes of some cluster C at time t
is defined as OC,t =

∑
P∈C OP,t. The weight of a prototype

P ∈ C at time t is defined as wC,P,t =
OP,t
OC,t

.

The above definition of the weight of a prototype can be used
in combination with the representativeness of a prototype dis-
cussed in section 3 to define the value of a prototype as a
linear combination of the two.

Definition 16. The function prototypeV alue : (C,P, t) →
[0, 1] computes the value of a prototype as a linear combina-
tion of the weight and representativeness of the prototype P
and is defined as α ·wC,P,t+β ·REPC,P where β

α = r and r
is the ratio that defines the importance of the representative-
ness relative to the importance of the weight.

An issue that remains with the above definition is what hap-
pens to the weight when a new prototype replaces an existing
prototype. If the new prototype is added to the set of pro-
totypes, the prototype will not be valuable since it does not
have any votes. Moreover, the votes of the prototype that was
replaced by the new prototype are discarded; therefore, in-
formation on the cluster’s centre of mass is lost. A way to
tackle this problem is to distribute the votes of the discarded
prototype to the updated prototypes depending on the rela-
tive distance from a prototype to the discarded prototype. A
definition of the algorithm for distributing the votes of a dis-
carded prototype as pseudo-code is as follows.

Algorithm 1: Procedure for updating prototypes
Result: The votes of some discarded prototype Pold have

been distributed to the updated prototypes in C.
fractions← empty(p); // creates empty array of size p
sumOfDistances← 0;
foreach prototype P ∈ C do

sumOfDistances += DTW(P, Pold);
end
i← 0;
foreach prototype P ∈ C do

fractions[i] = 1− DTW(P,Pold)
sumOfDistances

;
i++;

end
sumOfFracs← sum(fractions); // sums values in array
fractions /= sumOfFracs; // divide every value by sum
i← 0;
foreach prototype P ∈ C do

OP,t += int(fractions[i] ·OPold,t);
i++;

end

6 Experimental setup
The experiment compares four variants of the SeqClu-PV
algorithm to the two baseline variants of the SeqClu al-
gorithm, namely the offline variant based on Partitioning
Around Medoids (PAM) and the online variant provided at
the start of the research project and explores the strengths and
weaknesses of each variant.

The four variants differ in whether or not the two features
discussed in section 3 and section 4 respectively are enabled.
Moreover, the voting for cluster prototypes proposed in sec-
tion 5 is enabled for all four variants.

All algorithm variants are single-threaded and imple-
mented in Python using the package FastDTW [16] for the
distance computations. The variants of the SeqClu-PV algo-
rithm will be evaluated on two open-source data sets: a data
set of handwritten characters [7, 12] and a data set of gestures
performed with the Pebble smartwatch [14].

The experiment is divided into three stages. First, both
the experimental- and baseline variants of the algorithm are

run on all data sets with a base set of parameters. Since the
offline baseline variant is a deterministic algorithm, it only
needs to be run once on each data set. All other variants are
non-deterministic algorithms and are hence run 30 times on
each data set, where the order of incoming sequences is ran-
domized, to observe the average behaviour of each variant.
This part of the experiment aims to observe each experimen-
tal variant’s performance on a sensible set of parameters com-
pared to the two baseline variants mentioned earlier.

Second, the experimental variant SeqClu-PV-A, which
stands for SeqClu-PV with the approximation of the distance
to a cluster and without buffering, is run 30 times on one of
the data sets for each parameter set described as follows. The
SeqClu-PV algorithm takes three additional parameters as in-
put, which are the size of the buffer, the minimum average
representativeness of a cluster that is required to reliably ap-
proximate the distance between an incoming sequence and
that cluster and the factor that determines how many times the
representativeness of a prototype is more important than the
weight of a prototype. The latter parameter is used to com-
pute the value of a prototype as a linear combination of its
representativeness and weight, as discussed in section 5. This
part of the experiment aims to study the influence of each pa-
rameter to gain insight into the volatility of the parameters
and suitable values for specific parameters. Since one of the
parameters, namely the buffer size, involves the buffering fea-
ture discussed in section 4, the experiment where the value of
the buffer size is varied uses the experimental variant SeqClu-
PV-B (without approximation of the distance to a cluster and
with buffering) instead.

Last, the experimental variant SeqClu-PV-A is run on all
data sets with the base set of parameters and increasing num-
bers of prototypes and representative prototypes to study the
effect of the number of prototypes on the algorithm’s perfor-
mance.

The experimental variant SeqClu-PV-A is used in the sec-
ond and third stage of the experiment because this variant the-
oretically requires fewer distance computations to compute
the result and likely performs worst out of all variants due
to the approximation of the distance to a cluster discussed in
section 3 and the fact that this variant has the buffering feature
disabled. Therefore, this variant is the most practical in terms
of computational cost and memory requirements and likely
benefits most from analysing the effects of the parameters.

The performance of the algorithm is measured in various
ways, starting with the number of distance computations, the
macro F1-score and the accuracy of the algorithm to provide
a high-level overview of the overall performance of the algo-
rithm in terms of quality of the obtained set of clusters. The
definition of accuracy is as follows.

Definition 17. The following definitions take as in-
put two lists of predicted labels ŷ and actual la-
bels y. The accuracy of some list of predicted
labels ŷ given the actual labels y is defined as
accuracy(y, ŷ) = TP(y,ŷ)+TN(y,ŷ)

TP(y,ŷ)+TN(y,ŷ)+FP(y,ŷ)+FN(y,ŷ) ,
where TP, TN, FP and FN are defined as the number of true
positives, false positives, true negatives and false negatives
respectively.

Second, for the experimental variants of the SeqClu-PV
algorithm that approximate the distance to a cluster, the
sequences that are clustered by approximation are recorded
and used to compute the following three measurements:

• the number of sequences that were correctly clustered;
• the number of sequences that were correctly clustered

and incorrectly clustered by the online baseline variant;
• the number of sequences that were incorrectly clustered

and correctly clustered by the online baseline variant.
These data are transformed into fractions, where each num-
ber is divided by the total amount of sequences clustered by
approximation. Third, for the experimental variants of the
SeqClu-PV algorithm that have buffering of prototype candi-
dates enabled, the sequences that are buffered are recorded
and used to compute the same three data as mentioned above.
These data are again transformed into fractions, where each
number is divided by the total amount of buffered sequences.
Last, for the experimental- and online baseline variants of the
algorithm, the prototypes of all clusters after the algorithm
finished are recorded and compared to the prototypes of all
clusters after the offline baseline algorithm finished, which
yields a percentage of correct prototypes. This metric is used
to study the effectiveness of the prototype voting discussed
in section 5: the eventual representation of clusters obtained
by the experimental variants should match the representation
obtained by the offline variant since this representation is the
most optimal one from a perspective where all data can be
considered any number of times.

To verify that the experimental variants of the SeqClu-PV
algorithm outperform the online baseline algorithm, a statis-
tical test called the Wilcoxon signed-rank test is used to deter-
mine whether or not there is a significant difference between
two paired samples of evaluation metrics generated from the
first stage of the experiment [13]. These samples are paired
since a pair of evaluation metrics was generated for every in-
dependent run of the first stage of the experiment by using
some randomized stream of sequences as input for both the
experimental variant of the SeqClu-PV algorithm and the on-
line baseline algorithm. For the second and third stage of the
experiment, the Mann-Whitney U test is used instead since
the samples generated from these experimental stages are in-
dependent due to the experimental setup when conducting
these stages of the experiment [13]. The reason why non-
parametric statistical tests are used is because the data are not
normally distributed, as is shown in appendix C [13]. The
Shapiro-Wilk test is used to test if the data are normally dis-
tributed; the resulting p-values can be found in the caption of
the charts [13].

7 Experimental results and discussion
This section presents the experimental results described in
section 6 and discusses the conclusions drawn from these re-
sults. The entire set of experimental results can be found as
both tables and charts in appendix D and appendix E, respec-
tively. Some conclusions regarding the used data sets and a
few abbreviations used in the charts are provided below, after
which the results themselves are presented and discussed.

Conclusions regarding the used data sets
A few conclusions drawn from the information about the data
sets provided in appendix A, among which visualizations of
the data sets as t-SNE [19] charts, that are used in the re-
mainder of the discussion of the results are as follows. From
figure 4, it is concluded that the UJI-PenCharacters [7, 12]
data set is quite noisy and that the clusters of classes 2, 5 and
9 are sparse and very close to each other. The sequences in
these clusters are scattered across half of the y-axis, which in-
dicates that some sequences belonging to the same cluster are
relatively far away from each other. This fact makes finding a
good representation of the cluster that yields a relatively low
distance to the cluster for all sequences belonging to that clus-
ter quite a challenge. In conclusion, the UJI-PenCharacters
[7, 12] data set is presumably rather difficult to cluster accu-
rately due to the clusters of classes 2, 5 and 9.

From figure 5, it is concluded that the GesturePebbleZ1
[14] data set contains clusters that are a lot denser and does
not exhibit any noise. The clusters of classes 2, 4 and 6 are
likely easy to cluster since they do not overlap with any other
clusters. The clusters of classes 1 and 5 are intertwined; hence
most mistakes are probably made there. Moreover, part of the
cluster of class 3 is closer to the cluster of class 4 than it is
to the rest of the cluster of class 3, which might be an addi-
tional cause of mistakes. In conclusion, the GesturePebbleZ1
[14] data set is presumably easier to cluster accurately than
the UJI-PenCharacters [7, 12] data set due to clusters being
denser and the data set being less noisy.

Legend for the charts presented in this section
Dist. Number of distance computations that the algorithm did during execution..

Acc. The accuracy of the solution provided by the algorithm.

F1 The macro F1-score.

Prot. The percentage of correct prototypes at the end of the algorithm.

App.↑ The percentage of sequences that were correctly clustered by approximation
and incorrectly clustered by the online baseline algorithm.

App.↓ The percentage of sequences that were incorrectly clustered by approximation
and correctly clustered by the online baseline algorithm.

Buff.↑ The percentage of buffered sequences that were correctly clustered
and incorrectly clustered by the online baseline algorithm.

Buff.↓ The percentage of buffered sequences that were incorrectly clustered
and correctly clustered by the online baseline algorithm.

PV-AB
SeqClu-PV with both approximating the distance from some sequence
to a cluster and buffering of candidate prototypes enabled.

PV-A
SeqClu-PV with approximating the distance from some sequence
to a cluster enabled and buffering of candidate prototypes disabled.

PV
SeqClu-PV with both approximating the distance from some sequence
to a cluster and buffering of candidate prototypes disabled.

PV-B
SeqClu-PV with approximating the distance from some sequence
to a cluster disabled and buffering of candidate prototypes enabled.

BL The online baseline variant of the SeqClu algorithm.

Table 1: Explanation of a few abbreviations used in the tables.

Performance of experimental variants of SeqClu-PV

Figure 1: The upper chart contains the results for the UJI-PenCharacters [7, 12] data set,
the lower chart contains the results for the GesturePebbleZ1 [14] data set. The meaning
of the abbreviated observed metrics can be found in table 1. The values are averages
of the corresponding metric observed in 30 independent runs of some experiment. The
italic variant is the variant to which all other variants present in the figure are compared
with the Wilcoxon signed-rank test described in section 6, the results of which can be
found in appendix D.

Performance of SeqClu-PV-A on first data set

Figure 2: Both charts contain results for the UJI-PenCharacters [7, 12] data set. The
upper chart varies in the parameter that defines the minimum representativeness. The
lower chart varies in the parameter that defines the importance of the representativeness
respective to the weight of prototypes. The values for these parameters are contained
in the variant name. The meaning of the abbreviated observed metrics can be found in
table 1. The values are averages of the corresponding metric observed in 30 independent
runs of some experiment. The italic variant is the variant to which all other variants
present in the figure are compared with the Mann Whitney U test described in section 6,
the results of which can be found in appendix D.

Performance of SeqClu-PV-A on second data set

Figure 3: All charts contain results for the GesturePebbleZ1 [14] data set. The upper
chart varies in the parameter that defines the minimum representativeness. The lower
chart varies in the parameter that defines the importance of the representativeness re-
spective to the weight of prototypes. The values for these parameters are contained in
the variant name. The meaning of the abbreviated observed metrics can be found in ta-
ble 1. The values are averages of the corresponding metric observed in 30 independent
runs of some experiment. The italic variant is the variant to which all other variants
present in the figure are compared with the Mann Whitney U test described in section 6,
the results of which can be found in appendix D.

Discussion
From the provided charts in figure 1, figure 2, and figure 3,
the following interesting observations can be made.

First, for the noisy UJI-PenCharacters [7, 12] data set,
the PV-B variant achieves the same accuracy as the online
baseline variant and a higher percentage of correct proto-
types. The PV-A variant shows a considerable loss of accu-
racy. However, the loss in accuracy is half as significant, and
the percentage of correct prototypes is the highest of all vari-
ants for the PV-AB variant. The variants that approximate
the distance to a cluster make more errors than the online
baseline variant for the sequences clustered by approxima-
tion. The F1 score of all variants is lower than the accuracy,
which is sensible considering the class distribution of the UJI-
PenCharacters [7, 12] data set is imbalanced and suggests
that all variants suffer from either low precision or low recall.
Moreover, for the well-separated GesturePebbleZ1 [14] data
set, all experimental variants outperform the online baseline
variant. The PV-B variant again achieves the highest accu-
racy, and the PV-A variant the lowest accuracy. The PV-AB
variant again achieves the highest percentage of correct pro-
totypes. All experimental variants cluster sequences clustered
by approximation or buffered with higher accuracy than the
online baseline variant.
Second, for the noisy UJI-PenCharacters [7, 12] data set and
the PV-A variant, the optimal value for the parameter that de-
fines the minimum representativeness is 0.15, resulting in an
increase in the accuracy and F1 score and in a decrease in
the sequences that were wrongly clustered by approximation.

The optimal value for the parameter that defines the impor-
tance of the weight respective to the value of a prototype is
3.0, which means the weight determines 25% of the value of
a prototype.

Last, for the well-separated GesturePebbleZ1 [14] data set,
the optimal value for the parameter that defines the minimum
representativeness is 0.15, since the balance between the ac-
curacy gain for sequences clustered by approximation and
the number of distance computations is optimal. The opti-
mal value for the parameter that defines the importance of
the weight respective to the value of a prototype is 3.0 since
the balance between the performance gain and the number of
distance computations is optimal.

8 Responsible research
This section contains information on the code and environ-
ment used to obtain the results presented in this paper to im-
prove the reproducibility of this research and discusses ethical
implications of the research.

The code used to obtain the results presented in this pa-
per is available on GitHub1, this repository contains both the
online- and offline baseline implementation as well as an im-
plementation containing the mechanisms proposed in this pa-
per. The algorithm can be launched using a command-line in-
terface using either of the two data sets discussed in section 6
and any combination of parameters. The documentation for
how to use this command-line interface can be found in the
repository. The repository also contains the obtained research
results, consisting of both the logged output and Excel sheets
that record several evaluation metrics for all experiments car-
ried out. Moreover, the code is made available as a Python
package via PyPI2.

To conclude with a discussion about the ethical implica-
tions of this research, one should consider the consequences
of false positives to the people involved with the software that
employs the algorithm proposed in this paper. An excellent
example of this would be the internet traffic of some user who
does not have malicious intent unjustly being marked as ma-
licious internet traffic. This user suffers the consequences of
the defensive mechanism implemented in the software em-
ploying the algorithm proposed in this paper.

One of the conclusions that can be drawn from the results
presented and discussed in section 7 is that the experimental
variants of SeqClu-PV seem to perform equally well or bet-
ter than the online baseline algorithm in terms of accuracy,
thanks to the powerful prototype voting mechanic discussed
in section 5 that constitutes the main contribution of this pa-
per. As a result, the probability that false positives occur is
lower; however, sadly, not (close to) zero due to the online
nature of the algorithm. For people or companies who are
considering employing the algorithm proposed in this paper
in their software to improve the security of the software, it is
essential to note that false positives still occur and that they
carry the responsibility to deal with these false positives prop-
erly as part of the guarantees of their software.

Modern computer systems are great additions to the world
1https://github.com/rtewierik/SeqClu-PV
2https://pypi.org/project/SeqClu-PV/

we live in since they can assist humans in carrying out tasks.
However, it is essential to realize that these systems are not
perfect. Human supervision and sometimes even intervention
are necessary to ensure a good experience with these systems
and fairness for all humans involved.

9 Conclusion
This paper presents an extension to the SeqClu algorithm,
called SeqClu-PV, for clustering a stream of sequences in an
online setting. The algorithm employs a novel mechanism
called prototype voting to model the centre of mass of a clus-
ter more accurately. Moreover, the algorithm can approxi-
mate the distance between a sequence and a cluster, thereby
reducing the required distance computations. Lastly, the al-
gorithm can employ a buffer to delay updating the representa-
tion of a cluster, to reduce the risk of incorrectly updating said
representation due to not knowing data that will arrive in the
future. Through a series of experiments, it is proven that the
prototype voting mechanism is a powerful addition to the Seq-
Clu algorithm that results in a more optimal balance between
the number of distance computations and the cost incurred
due to incorrect clustering. The experiments demonstrate that
the SeqClu-PV-A variant minimizes the number of distance
computations at the expense of accuracy for noisy and im-
balanced data sets and yielding an increase in performance
for well-separated and dense data sets. The SeqClu-PV-AB
variant achieves an even more optimal balance between the
number of distance computations and the cost incurred due to
incorrect clustering at the expense of extra memory.

10 Future work
A few future research recommendations to answer the re-
maining questions that the research project that resulted in
this paper could not cover are as follows.

As mentioned in section 3, it could be interesting to prove
Theorem 1 provided in the same section to strengthen the
theoretical foundation of the research discussed in this paper.

In section 5, the value of a prototype is defined as a linear
combination of its representativeness and weight. It could be
interesting to explore other functions that model the value of
a prototype differently and test if these functions yield better
results in terms of the quality of prototypes throughout the al-
gorithm’s execution.

Another idea that was not explored is modelling the risk of
not updating prototypes to help decide when to update proto-
types if the buffer is not yet full. This risk could be modelled
by using data such as the tick at which any of the prototypes
of some cluster were last updated, the tick at which a spe-
cific cluster prototype was last observed as being closest to
an incoming sequence compared to other prototypes and the
number of sequences added to a cluster since the prototypes
were last updated. Logically, the algorithm’s time complexity
would increase due to having to keep track of additional in-
formation. However, the algorithm would be more capable of
using all available information to make the right decisions at
critical moments that can be identified using the risk metric,
thereby improving the algorithm’s accuracy.

https://github.com/rtewierik/SeqClu-PV
https://pypi.org/project/SeqClu-PV/

References
[1] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh

Ying Wah. Time-series clustering - A decade review.
Information Systems, 53:16–38, 2015. ISSN 03064379.
doi: 10.1016/j.is.2015.04.007. URL http://dx.doi.org/
10.1016/j.is.2015.04.007.

[2] Nir Ailon, Ragesh Jaiswal, and Claire Monteleoni.
Streaming k-means approximation. In Y Bengio,
D Schuurmans, J Lafferty, C Williams, and A Cu-
lotta, editors, Advances in Neural Information Pro-
cessing Systems, volume 22. Curran Associates, Inc.,
2009. URL https://proceedings.neurips.cc/paper/2009/
file/4f16c818875d9fcb6867c7bdc89be7eb-Paper.pdf.

[3] Sivadi Balakrishna, M. Thirumaran, R. Padmanaban,
and Vijender Kumar Solanki. An efficient incremen-
tal clustering based improved K-Medoids for IoT mul-
tivariate data cluster analysis. Peer-to-Peer Network-
ing and Applications, 13(4):1152–1175, 2020. ISSN
19366450. doi: 10.1007/s12083-019-00852-x.

[4] Hervé Cardot, Peggy Cénac, and Jean Marie Monnez. A
fast and recursive algorithm for clustering large datasets
with k-medians. Computational Statistics and Data
Analysis, 56(6):1434–1449, 2012. ISSN 01679473. doi:
10.1016/j.csda.2011.11.019. URL http://dx.doi.org/10.
1016/j.csda.2011.11.019.

[5] Anna Choromanska and Claire Monteleoni. Online
clustering with experts. Journal of Machine Learning
Research, 22:227–235, 2012. ISSN 15337928.

[6] Vincent Cohen-Addad, Benjamin Guedj, Varun Kanade,
and Guy Rom. Online k-means Clustering. In
Arindam Banerjee and Kenji Fukumizu, editors, Pro-
ceedings of The 24th International Conference on Artifi-
cial Intelligence and Statistics, volume 130 of Proceed-
ings of Machine Learning Research, pages 1126–1134.
PMLR, 2021. URL http://proceedings.mlr.press/v130/
cohen-addad21a.html.

[7] Dheeru Dua and Casey Graff. {UCI}Machine Learning
Repository, 2017. URL http://archive.ics.uci.edu/ml.

[8] Eoin Martino Grua, Mark Hoogendoorn, Ivano Mala-
volta, Patricia Lago, and A. E. Eiben. ClustreaM-GT:
Online clustering for personalization in the health do-
main. Proceedings - 2019 IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence, WI 2019, pages
270–275, 2019. doi: 10.1145/3350546.3352529.

[9] Md Kamrul Islam, Md Manjur Ahmed, and Kamal Z.
Zamli. A buffer-based online clustering for evolving
data stream. Information Sciences, 489:113–135, 2019.
ISSN 00200255. doi: 10.1016/j.ins.2019.03.022. URL
https://doi.org/10.1016/j.ins.2019.03.022.

[10] Ari Kobren, Nicholas Monath, Akshay Krishnamurthy,
and Andrew McCallum. A hierarchical algorithm for
extreme clustering. Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, Part F1296:255–264, 2017. doi: 10.1145/
3097983.3098079.

[11] Edo Liberty, Ram Sriharsha, and Maxim Sviridenko.
An algorithm for online k-means clustering. Proceed-
ings of the Workshop on Algorithm Engineering and Ex-
periments, 2016-Janua:81–89, 2016. ISSN 21640300.
doi: 10.1137/1.9781611974317.7.

[12] D. Llorens, F. Prat, A. Marzal, J. M. Vilar, M. J. Cas-
tro, J. C. Amengual, S. Barrachina, A. Castellanos,
S. España, J. A. Gómez, J. Gorbe, A. Gordo, V. Palazón,
G. Peris, R. Ramos-Garijo, and F. Zamora. The UJIpen-
chars database: A pen-based database of isolated hand-
written characters. Proceedings of the 6th International
Conference on Language Resources and Evaluation,
LREC 2008, (January):2647–2651, 2008.

[13] Evie McCrum-Gardner. Which is the correct statistical
test to use? British Journal of Oral and Maxillofacial
Surgery, 46(1):38–41, 2008. ISSN 02664356. doi: 10.
1016/j.bjoms.2007.09.002.

[14] Antigoni Mezari Mezari and Ilias Maglogiannnis. Ges-
ture recognition using Symbolic Aggregate approxi-
mation and Dynamic Time Warping on Motion Data.
ACM, 2018. doi: 10.1145/3154862.3154927.

[15] Daniel Puschmann, Payam Barnaghi, and Rahim Tafa-
zolli. Adaptive Clustering for Dynamic IoT Data
Streams. IEEE Internet of Things Journal, 4(1):64–
74, 2017. ISSN 23274662. doi: 10.1109/JIOT.2016.
2618909.

[16] Stan Salvador and Philip Chan. Toward accurate dy-
namic time warping in linear time and space. Intelligent
Data Analysis, 11(5):561–580, 2007. ISSN 15714128.
doi: 10.3233/ida-2007-11508.

[17] Shingo Tamura, Keiichi Tamura, Hajime Kitakami, and
Kaishi Hirahara. Clustering-based burst-detection algo-
rithm for web-image document stream on social media.
Conference Proceedings - IEEE International Confer-
ence on Systems, Man and Cybernetics, pages 703–708,
2012. ISSN 1062922X. doi: 10.1109/ICSMC.2012.
6377809.

[18] Xin Tao and Chunlei Ji. Clustering massive small data
for IOT. 2014 2nd International Conference on Systems
and Informatics, ICSAI 2014, (Icsai):974–978, 2015.
doi: 10.1109/ICSAI.2014.7009427.

[19] L J P van der Maaten and G E Hinton. Visualizing High-
Dimensional Data Using t-SNE. Journal of Machine
Learning Research, 9(nov):2579–2605, 2008. ISSN
1532-4435.

[20] Yu Wang, Yang Xiang, Jun Zhang, Wanlei Zhou, and
Bailin Xie. Internet traffic clustering with side infor-
mation. In Journal of Computer and System Sciences,
volume 80, pages 1021–1036. Academic Press Inc., 8
2014. doi: 10.1016/j.jcss.2014.02.008.

[21] Donghua Yu, Guojun Liu, Maozu Guo, and Xiaoyan
Liu. An improved K-medoids algorithm based on step
increasing and optimizing medoids. Expert Systems
with Applications, 92:464–473, 2018. ISSN 09574174.
doi: 10.1016/j.eswa.2017.09.052.

http://dx.doi.org/10.1016/j.is.2015.04.007
http://dx.doi.org/10.1016/j.is.2015.04.007
https://proceedings.neurips.cc/paper/2009/file/4f16c818875d9fcb6867c7bdc89be7eb-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/4f16c818875d9fcb6867c7bdc89be7eb-Paper.pdf
http://dx.doi.org/10.1016/j.csda.2011.11.019
http://dx.doi.org/10.1016/j.csda.2011.11.019
http://proceedings.mlr.press/v130/cohen-addad21a.html
http://proceedings.mlr.press/v130/cohen-addad21a.html
http://archive.ics.uci.edu/ml
https://doi.org/10.1016/j.ins.2019.03.022

A More information about the data sets
The data sets that are used in the experiments are described
in section 6. This appendix provides more information about
these data sets to the reader. The distribution of samples for
both data sets described in section 6 is provided in subsec-
tion A.1. The data in both data sets were also used to compute
a matrix of pair-wise distances of all pairs of sequences in the
data sets and generate t-SNE [19] charts with this matrix to
visualize the data in two dimensions. The t-SNE [19] charts
for both data sets can be found in subsection A.2.

A.1 Distribution of samples for the data sets
The distribution of samples for the UJI-PenCharacters [7, 12]
data set is as follows.

Class W O 2 5 9
Number of instances 44 66 22 22 22

Table 2: The distribution of samples for the UJI-PenCharacters [7, 12] data set.

The distribution of samples for the GesturePebbleZ1 [14] data
set is as follows.

Class 1 2 3 4 5 6
Number of instances 49 45 54 53 52 51

Table 3: The distribution of samples for the GesturePebbleZ1 [14] data set.

A.2 t-SNE charts for the data sets

Figure 4: From the chart is concluded that the UJI-PenCharacters [7, 12] data set is
quite noisy and that the clusters of classes 2, 5 and 9 are sparse and very close to each
other. The sequences for these clusters are scattered across half of the y-axis, which
indicates that some sequences belonging to the same cluster are relatively far away
from each other. This fact makes finding a good representation of the cluster that yields
a relatively low distance to the cluster for all sequences belonging to that cluster quite
a challenge. In conclusion, the UJI-PenCharacters [7, 12] data set is presumably rather
difficult to cluster accurately due to the clusters of the classes 2, 5 and 9.

Figure 5: From the chart is concluded that the GesturePebbleZ1 [14] data set contains
clusters that are a lot denser and does not exhibit any noise. The clusters of classes
2, 4 and 6 are likely easy to cluster since they do not overlap with any other clusters.
The clusters of classes 1 and 5 are intertwined; hence most mistakes are probably made
there. Moreover, part of class 3 is closer to the cluster of class 4 than it is to the rest of
the cluster of class 3, which might be an additional cause of mistakes. In conclusion,
the GesturePebbleZ1 [14] data set is presumably easier to cluster accurately than the
UJI-PenCharacters [7, 12] data set due to clusters being denser and the data set is less
noisy.

B Figures for clarification of some principles
This appendix presents some visuals that can clarify potential
confusion after reading the contents provided in section 1,
section 3 and section 4. The visuals can be found in the sub-
sections below.

B.1 Problem with the online baseline algorithm

Figure 6: The figure shows the consequence of replacing a high-quality prototype with
a low-quality prototype in two dimensions. The incoming sequence would be assigned
to the left cluster if the distance computation included the discarded prototype instead of
the new prototype, but is assigned to the right cluster instead, since the average distance
from the incoming sequence to the right cluster is lower than the average distance from
the incoming sequence to the left cluster with the new prototype that is a lot further
away from the incoming sequence than the discarded prototype.

B.2 Problem with approximating the distance to a
cluster

Figure 7: The distance between the incoming sequence and representative prototype of
the left cluster is lower than the average distance between the sequence and all proto-
types; this causes the sequence to be assigned to the left cluster, which is the wrong
cluster considering the average distance to all prototypes of the right cluster is lower
than the same distance for the left cluster.

B.3 Example of inability to model the centre of
mass of a cluster

Figure 8: A hypothetical situation in which one of the prototypes is of higher value com-
pared to the other prototypes due to very similar sequences being assigned to the cluster
after initialization and improvement of the prototypes. The green sequence should be-
come a high-value prototype, but is instead replaced by the blue sequences in the online
baseline algorithm. The algorithm starts with the green and dark red sequences as initial
prototypes, the order of arrival is yellow, purple and blue.

C Distribution of the research results as
histograms

This appendix presents the distribution of some of the re-
search results as histograms to show that the research results
are not normally distributed and parametric assumptions are
therefore not satisfied. The Wilcoxon signed-rank test and
the Mann-Whitney U test are used instead of the paired sam-
ples t-test and the independent samples t-test for that reason
[13]. The charts are generated from the samples of evaluation
metrics that were generated from running the experimental
variant SeqClu-PV-A on a baseline set of parameters. These
samples are used in statistical tests for all three stages of the
experiment described in section 6 and therefore provide solid
proof that the parametric assumptions are not satisfied in the
research results.

SeqClu-PV-A with baseline set of parameters

Figure 9: The distribution of the number of distance computations sample generated
from 30 independent runs of the SeqClu-PV-A variant with a baseline set of parameters.
The p-value resulting from the Shapiro-Wilk test [13] used to test if the data is normally
distributed is 0.11.

Figure 10: The distribution of the accuracy sample generated from 30 independent runs
of the SeqClu-PV-A variant with a baseline set of parameters. The p-value resulting
from the Shapiro-Wilk test [13] used to test if the data is normally distributed is 0.79.

Figure 11: The distribution of the macro F1 score sample generated from 30 indepen-
dent runs of the SeqClu-PV-A variant with a baseline set of parameters. The p-value
resulting from the Shapiro-Wilk test [13] used to test if the data is normally distributed
is 0.75.

Figure 12: The distribution of the percentage of correct prototypes sample generated
from 30 independent runs of the SeqClu-PV-A variant with a baseline set of parameters.
The p-value resulting from the Shapiro-Wilk test [13] used to test if the data is normally
distributed is 0.11.

D Experimental results as tables
This appendix presents the results of the experiments de-
scribed in section 6. The section is divided up into three ac-
cording to the three experiments described in section 6 and
shows the results of every experiment in readable tables. A
few abbreviations used in the tables are explained in table 1.

D.1 Performance of experimental variants of
SeqClu-PV

Variant Dist. Acc. F1 Prot. App.↑ App.↓ Buff.↑ Buff.↓
PV-AB 3768 0.83 0.80 0.44 0.059 0.092 0.019 0.004
PV-A 3662 0.78 0.76 0.41 0.018 0.030 - -
PV 5630 0.82 0.80 0.39 - - - -

PV-B 5760 0.86 0.82 0.42 - - 0.078 0.120
BL 5580 0.86 0.82 0.38 - - - -

Variant Dist. Acc. F1 Prot. App.↑ App.↓ Buff.↑ Buff.↓
PV-AB 8842 0.84 0.84 0.41 0.019 0.004 0.086 0.033
PV-A 8449 0.81 0.81 0.39 0.018 0.018 - -
PV 12523 0.82 0.82 0.38 - - - -

PV-B 12714 0.86 0.86 0.40 - - 0.084 0.047
BL 12456 0.80 0.79 0.36 - - - -

Table 4: The upper part contains the results for the UJI-PenCharacters [7, 12] data set,
the lower part contains the results for the GesturePebbleZ1 [14] data set. The meaning
of the abbreviated observed metrics can be found in table 1. The values are averages
of the corresponding metric observed in 30 independent runs of some experiment. The
italic row is the variant to which all other variants present in the table are compared with
the Wilcoxon signed-rank test described in section 6. Bold values indicate that the un-
derlying distributions for the corresponding metric of the two variants are significantly
different. Dashes represent values that could not be determined for the given variant.

D.2 Effect of parameters on the performance of
SeqClu-PV

Variant Dist. Acc. F1 Prot. Buff.↑ Buff.↓
PV-B (5) 5662 0.84 0.81 0.41 0.113 0.205

PV-B (10) 5710 0.84 0.81 0.41 0.076 0.163
PV-B (15) 5760 0.85 0.82 0.42 0.078 0.12
PV-B (30) 5782 0.85 0.81 0.44 0.064 0.085
PV-B (40) 5949 0.84 0.81 0.42 0.080 0.092

Variant Dist. Acc. F1 Prot. App.↑ App.↓
PV-A (0.0) 3225 0.78 0.76 0.41 0.014 0.022
PV-A (0.15) 3483 0.81 0.78 0.40 0.009 0.009
PV-A (0.3) 3506 0.79 0.76 0.41 0.010 0.019
PV-A (0.5) 3662 0.78 0.76 0.41 0.018 0.030
PV-A (0.7) 5615 0.82 0.79 0.39 0.035 0.048

Variant Dist. Acc. F1 Prot. App.↑ App.↓
PV-A (0.5) 3883 0.80 0.77 0.41 0.02 0.029
PV-A (1.0) 3791 0.79 0.76 0.41 0.019 0.021
PV-A (2.0) 3662 0.78 0.76 0.41 0.018 0.030
PV-A (3.0) 3537 0.80 0.77 0.42 0.013 0.019
PV-A (5.0) 3563 0.76 0.75 0.39 0.017 0.028

Table 5: All table parts contain results for the UJI-PenCharacters [7, 12] data set. The
upper part varies in the parameter that defines the buffer size. The middle part varies in
the parameter that determines the minimum representativeness. The lower part varies
in the parameter that determines the importance of the representativeness respective to
the weight of prototypes. The values for these parameters are contained in the variant
name. The meaning of the abbreviated observed metrics can be found in table 1. The
values are averages of the corresponding metric observed in 30 independent runs of
some experiment. The italic row is the variant to which all other variants present in
the table are compared with the Mann-Whitney U test described in section 6. Bold
values indicate that the underlying distributions for the corresponding metric of the two
variants are significantly different.

Variant Dist. Acc. F1 Prot. Buff.↑ Buff.↓
PV-B (5) 12573 0.84 0.84 0.40 0.096 0.069

PV-B (10) 12641 0.85 0.85 0.41 0.082 0.065
PV-B (15) 12714 0.86 0.86 0.40 0.084 0.048
PV-B (30) 12944 0.86 0.86 0.41 0.075 0.032
PV-B (40) 13123 0.87 0.87 0.40 0.08 0.025

Variant Dist. Acc. F1 Prot. App.↑ App.↓
PV-A (0.0) 7408 0.81 0.81 0.39 0.010 0.02

PV-A (0.15) 7408 0.80 0.80 0.40 0.010 0.004
PV-A (0.3) 7439 0.81 0.81 0.39 0.010 0.006
PV-A (0.5) 8450 0.81 0.81 0.39 0.018 0.018
PV-A (0.7) 12527 0.81 0.81 0.39 0.088 0.054

Variant Dist. Acc. F1 Prot. App.↑ App.↓
PV-A (0.5) 9496 0.82 0.82 0.36 0.029 0.026
PV-A (1.0) 9427 0.81 0.81 0.38 0.029 0.020
PV-A (2.0) 8450 0.81 0.81 0.39 0.018 0.018
PV-A (3.0) 8062 0.81 0.80 0.39 0.020 0.019
PV-A (5.0) 7501 0.79 0.79 0.4 0.010 0.016

Table 6: All table parts contain results for the GesturePebbleZ1 [14] data set. The
upper part varies in the parameter that defines the buffer size. The middle part varies
in the parameter that defines the minimum representativeness. The lower part varies
in the parameter that determines the importance of the representativeness respective to
the weight of prototypes. The values for these parameters are contained in the variant
name. The meaning of the abbreviated observed metrics can be found in table 1. The
values are averages of the corresponding metric observed in 30 independent runs of
some experiment. The italic row is the variant to which all other variants present in
the table are compared with the Mann-Whitney U test described in section 6. Bold
values indicate that the underlying distributions for the corresponding metric of the two
variants are significantly different.

D.3 Effect of number of (representative)
prototypes on the performance of SeqClu-PV

Variant Dist. Acc. F1 App.↑ App.↓
PV-A (16/6) 5600 0.76 0.77 0.001 0.052
PV-A (12/6) 5304 0.77 0.76 0.009 0.016
PV-A (12/3) 4176 0.78 0.77 0.012 0.023
PV-A (8/6) 4840 0.80 0.77 0.012 0.012
PV-A (8/3) 3662 0.78 0.76 0.018 0.030

Variant Dist. Acc. F1 App.↑ App.↓
PV-A (16/6) 12967 0.90 0.90 0.013 0.001
PV-A (12/6) 12019 0.88 0.88 0.014 0.000
PV-A (12/3) 10276 0.87 0.86 0.043 0.005
PV-A (8/6) 10699 0.81 0.81 0.014 0.004
PV-A (8/3) 8450 0.81 0.81 0.018 0.018

Table 7: The upper part contains the results for the UJI-PenCharacters [7, 12] data set,
the lower part contains the results for the GesturePebbleZ1 [14] data set. The variants
differ in the number of (representative) prototypes. The values for these parameters
are included in the variant name. The first value is the total number of prototypes,
and the second value is the number of representative prototypes. The meaning of the
abbreviated observed metrics can be found in table 1. The values are averages of the
corresponding metric observed in 30 independent runs of some experiment. The italic
row is the variant to which all other variants present in the table are compared with
the Mann Whitney U described in section 6. Bold values indicate that the underlying
distributions for the corresponding metric of the two variants are significantly different.

E Experimental results as charts
This appendix presents the results of the experiments de-
scribed in section 6. The section is divided up into three ac-
cording to the three experiments described in section 6 and
shows the results of every experiment in readable charts. A
few abbreviations used in the charts are explained in table 1.

E.1 Performance of experimental variants of
SeqClu-PV

Figure 13: The upper part contains the results for the UJI-PenCharacters [7, 12] data set,
the lower part contains the results for the GesturePebbleZ1 [14] data set. The meaning
of the abbreviated observed metrics can be found in table 1. The values are averages
of the corresponding metric observed in 30 independent runs of some experiment. The
italic variant is the variant to which all other variants present in the figure are compared
with the Wilcoxon signed-rank test described in section 6, the results of which can be
found in appendix D.

E.2 Effect of parameters on performance of
SeqClu-PV

Figure 14: All charts contain results for the UJI-PenCharacters [7, 12] data set. The
upper chart varies in the parameter that defines the buffer size. The middle chart varies
in the parameter that defines the minimum representativeness. The lower chart varies
in the parameter that defines the importance of the representativeness respective to the
weight of prototypes. The values for these parameters are contained in the variant name.
The meaning of the abbreviated observed metrics can be found in table 1. The values
are averages of the corresponding metric observed in 30 independent runs of some ex-
periment. The italic variant is the variant to which all other variants present in the figure
are compared with the Mann Whitney U test described in section 6, the results of which
can be found in appendix D.

Figure 15: All charts contain results for the GesturePebbleZ1 [14] data set. The upper
chart varies in the parameter that defines the buffer size. The middle chart varies in the
parameter that defines the minimum representativeness. The lower chart varies in the
parameter that defines the importance of the representativeness respective to the weight
of prototypes. The values for these parameters are contained in the variant name. The
meaning of the abbreviated observed metrics can be found in table 1. The values are
averages of the corresponding metric observed in 30 independent runs of some experi-
ment. The italic variant is the variant to which all other variants present in the figure are
compared with the Mann Whitney U test described in section 6, the results of which can
be found in appendix D.

E.3 Effect of number of (representative)
prototypes on the performance of SeqClu-PV

Figure 16: The upper chart contains the results for the UJI-PenCharacters [7, 12] data
set, the lower chart contains the results for the GesturePebbleZ1 [14] data set. The vari-
ants differ in the number of (representative) prototypes. The values for these parameters
are contained in the variant name. The first value is the total number of prototypes,
and the second value is the number of representative prototypes. The meaning of the
abbreviated observed metrics can be found in table 1. The values are averages of the
corresponding metric observed in 30 independent runs of some experiment. The italic
variant is the variant to which all other variants present in the figure are compared with
the Mann Whitney U test described in section 6, the results of which can be found in
appendix D.

	Introduction
	The clustering problem
	Approximating the distance to a cluster
	Buffering prototype candidates
	Voting for prototypes
	Experimental setup
	Experimental results and discussion
	Responsible research
	Conclusion
	Future work
	More information about the data sets
	Distribution of samples for the data sets
	t-SNE charts for the data sets

	Figures for clarification of some principles
	Problem with the online baseline algorithm
	Problem with approximating the distance to a cluster
	Example of inability to model the centre of mass of a cluster

	Distribution of the research results as histograms
	Experimental results as tables
	Performance of experimental variants of SeqClu-PV
	Effect of parameters on the performance of SeqClu-PV
	Effect of number of (representative) prototypes on the performance of SeqClu-PV

	Experimental results as charts
	Performance of experimental variants of SeqClu-PV
	Effect of parameters on performance of SeqClu-PV
	Effect of number of (representative) prototypes on the performance of SeqClu-PV

