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Abstract

Minimally invasive surgery and interventional techniques have successfully
broadened the field of surgical applications over the last few decades. In
comparison to the old-fashioned surgery techniques, minimally invasive sur-
gery offers benefits to patients such as less invasive treatement, less pain to
patients, better for aesthetic reasons and faster recovery time.

Minimally invasive surgery or sometimes is also called keyhole surgery or
laparoscopic surgery is performed by the help of a small endoscopic camera
and several long, thin, flexible instruments and through a small incision,
these surgical tools are inserted into area of a body that requires treat-
ment. However with the advance of this surgery, it also demands innovative
procedures and instruments that could get the best out of this technique.

At Mechatronics in Medicine (MiM) Laboratory of Imperial College London,
a neurosurgical steerable flexible probe (STING) that is used to access deep
brain lesions through curved trajectories is currently being developed. The
focus of the work is mainly on probe development, low- and high-level control
and trajectory planning.

This thesis is related more to the work on trajectory planning. Some meth-
ods based on Rapidly-exploring Random Tree (RRT) algorithm have been
developed to find a curvilinear path that can safely reach the target while
maneuvering obstacles. However, due to the tendency of soft tissue to dis-
place and deform, building an online control mechanism for the flexible
probe is considered to be necessary to efficiently replan the calculated solu-
tion. Online control also allows physicians to interactively edit the planning
environment in real-time by adding or removing obstacle definitions.

To move further toward online path exploration where performance has been
the main issue of the previous implementations, the main focus of this thesis
will be to investigate some ways to increase efficiency and performance of
the trajectory planning. Some experiments have been thoroughly done to
measure the performance of a well known sampling based path planning
method, Reachability-Guided Rapidly-exploring Random Tree (RG-RRT).

The first step to improve the performance was to migrate from MATLAB
to Python-C++ which yielded 12-13 times performance speedup. Besides
taking a close look at the software implementation details, improving the



algorithm by implementing a waypoint cache [30] and exploiting some par-
allelization techniques have also been considered in this work. The par-
allelization techniques cover multi-core CPU (OR parallel, AND parallel,
OR+AND parallel and Manager-Worker) and GPGPU techiques.

After the software implementation migration, RG-RRT with waypoint cache
was experimentally able to reach 4 times performance speedup, while par-
allelization on multi-core CPU with AND parallel technique has shown the
most significant result by obtaining approximately 5 times performance
speedup. The other parallelization, which was done through the use of an
NVIDIA CUDA-enabled GPU, has successfully obtained 10 times perform-
ance speedup. Despite its higher rate of performance speedup, later it was
shown in Table 5.1 that GPGPU technique suffers the most from inefficiency
due to I/O bottleneck that is caused by device-host memory transfer.
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Imagination is more powerful even than knowledge Albert Einstein
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Chapter 1

Introduction

1.1 A Gentle Introduction to Minimally Invasive
Surgery (MIS)

Minimally invasive surgery has been considered a major revolutionary break-
through in robotic surgery. As the name might already suggest, minimally
invasive surgery is less invasive than the open surgery and thus minimizing
trauma to surrounding tissues, minimize scarring (up to 30%), shorten the
hospital stays (up to 60% than the conventional surgery), much less pain and
discomfort, less medication and eventually less post-surgical complications.
The procedure is done by inserting a long, thin, flexible tube (trocar) with
an attached camera that has a light source (usually endoscope (Fig. 1.1(a))
or laparoscope (Fig. 1.1(b))) at the end through small incisions (around 3/4
inch) in the skin. Images captured from the camera will then be projected
onto monitors in the operating room where the surgeon will get an illumin-
ated and magnified image (up to 100 times magnification) of an area of the
body that needs treatment (pathology) [1]. When the surgeon needs to per-
form further surgical operations such as exploring, removing tissues, other
instruments can then be inserted to the other openings. Being able to have
a very detailed visualization will lead to much higher success rate and faster
surgery time than the conventional surgery.

With all the advantages and the benefits of minimally invasive surgeries, not
all surgeries can be done invasively. Sometimes it can even happen that after
performing a thorough examination to the patient, the surgeon eventually
decides not to perform minimally invasive surgery. This could happen due
to the nature of the wounds such as the removal of cancer tumors that is
more suited to the conventional surgery than minimally invasive surgery,
some anatomy problems that arise just before the surgery takes place, for
patients who have had previous open surgery in the upper or lower abdomen
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parts and for patients who suffer from obesity.

Besides all the benefits of the minimally invasive surgery, there are also some
difficulties in performing the surgery. They are [2]:

• restricted vision

• difficult handling of the instruments

• very restricted mobility

• difficult hand-eye coordination

• no tactile perception

• requires specialists and special training

• requires special instruments

• special instruments can be very expensive

• some procedures may take longer surgery time

There are two common procedures in minimally invasive surgery:

• Laparoscopy, medical procedures within the abdominal or pelvic (lower
belly) cavities

• Hysteroscopy, medical procedures through vagina and cervix to exam-
ine uterus (womb)

The applications of the surgery might differ from one type of procedure to the
others. A procedure like minimally invasive hemorrhoid procedure, can be
performed with no incisions at all such as Hysteroscopy as the trocar can be
inserted through the natural opening in the cervix (neck of the womb) from
the vagina into the uterus and some procedures like minimally invasive colon
surgery requires a slightly larger incision. With the advance of technology,
there is even a procedure that requires only single entry incision point which
is called Single Site Laparoscopy. Nowadays, minimally invasive can be
performed in many human body parts [3] such as:

• Cardiac

• Gastrointestinal

• Gynaecological

• Neurological

• Orthopaedic
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• Otorhinolaryngology

• Respiratory/Thoracic

• Urology

• Vascular

and surgical procedures that can be performed with minimally invasive sur-
gery include:

• Breast biopsy

• Colon resection

• Cardiovascular surgery

• Fundoplication

• Gastric bypass

• Gynecological diagnosis and treatment

• Hemorrhoids

• Hernia repair

• Hysterectomy

• Nephrectomy

• Orthopedics

Although minimally invasive surgery has just been widely accepted as one
of surgical procedures, it is not a new technique. It is in fact has been
applied for more than 30 years. This slow progress is due to the nature of
the procedure that is tightly related to the technology development. It is
becoming more and more common and advanced with the development of
ultrasmall video cameras and harmonic scalpels, which separate tissue by
vibrating at 50.000 cycles per seconds [2]. Even until now, many researchers
are still working to find new, innovative instruments that guarantee medical
safety and efficiency.
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(a) Endoscopic brain surgery or Neuroendoscopy

(b) Laparoscopy

Figure 1.1: Minimally Invasive Surgeries
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1.2 Development on Steerable Percutaneous Ro-
botics

When minimally invasive surgery came to the surface for the first time, many
surgeons tried to apply the technique to many surgical procedures. For
many routine procedures, minimally invasive surgery is very effective, both
for the surgeons and the patients. However to perform more delicate or com-
plex medical procedures, precision became an inevitable issue as handling
of the instruments turned out to be difficult and quite tedious. Comparing
with the old conventional open surgery, minimally invasive surgery suffers
more from this problem due to the small incisions. Robotically-assisted
surgery was then invented to help surgeons in controlling the instruments.
Instead of manually moving the instruments, robotically-assisted surgery
overcomes the restricted mobility problems by performing the normal sur-
gery movements whilst the robotics arms in fact carry out the movement
using end-effectors and manipulators to do the actual surgery on the pa-
tient. Equipped with 3D monitors, the surgeon can perform the surgery
conveniently, while still maintaining the precision, dexterity and control. To
provide very detailed visualizations, due to the high sensitivity, high spa-
tial resolution, excellent soft tissue contrast, and multi-planar volumetric
imaging capabilities, MRI has been used together with 3D image viewer
[4]. Besides MRI, percutaneous image-guided robotic system that employs
ultrasound, CT guidance and X-ray have also been developed to provide
smaller, simpler, more accurate and more cost-effective robotic systems.

Figure 1.2: Image-guided intervention system with integrated planning in-
terface and placement device

Inserting a straight, thick and rigid needle with a symmetric tip under visual
feedback was later proven to yield inconsistent results and requires specialists
or a long training. Moreover, some factors such as significant pressure on the
tissue, errors during the insertion, tissue deformation and needle bending can
degrade the accuracy significantly. When the target accuracy is very poor,
it could harm the healthy and sensitive tissue or even cause haemorrhage
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(bleeding) which can then lead to severe infections thus lengthening the
surgery and recovery time. The bad news is, by having a very long and
intensive training, clinicians will still not be able to guarantee the accuracy
as they do not posses the control over the needle once it is inserted into
the tissue. Due to this poor accuracy, medical dosage becomes inefficiently
given to the target and consequently it could lead to negative side effects to
the sorrounding healthy tissues. For these reasons, needle steering method
using different needle tip shapes and sizes was developed to provide accuracy.
Once the needle is inserted into the skin, the needle is steered towards the
lesions through a combination of lateral and twisting motions.

To date, there are several needle steering methods that have been developed.
The first one is by using a flexible asymmetric bevel tip needle. This tech-
nique relies on the significant correlations between the needle material elasti-
city, bevel tip angle and the linear and nonlinear tissue elasticity. Under
these assumptions, needle trajectory path could then be envisaged [5]-[8].
The second method is to model the needle steering via Duty-Cycled Spinning
[9]. This method includes the rotational speed and the spinning behaviour
of the needle so that it can follow the curvilinear trajectory path through the
tissue. Another method is based on a concentric combination of precurved
elastic tubes. This method controls tip location and orientation by rotating
and extending the tubes with respect to one another [10]. The last method
is by using a flexible and steerable four-part probe, called STING, that is
currently being developed at the Mechatronics in Medicine Laboratory, Im-
perial College London [11]. The background and the ideas behind STING
will be covered in Chapter 2.

However, it was later discovered that due to errors during insertion, complex
biomechanical interactions between the needle and the tissue and tissue
deformation, manipulating the needle manually by twisting it turned out
to be not a trivial thing to do. Robot-assisted needle steering was then
invented to cope with those problems. This implies that the needle will be
automatically guided to the target as it is inserted into the human tissue. As
it later observed, avoiding obstacles turned out to be hassle as sorrounding
tissues displace and deform when the needle is inserted into or retracted out
of the tissue. Facing this fact, the needle has to be steered away from the
sensitive parts or healthy tissues and planning algorithms that can take the
needle to the intended target safely are required.

1.3 Path Planning for steerable needles

To reach the target safely with a better accuracy in a deformable tissue,
many path planning algorithms have been developed. A path planning al-
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Figure 1.3: (a)The steering mechanism of asymmetric-tip needles [12] is
due to forces between the tissue and needle tip that deflect the needle during
insertion. Subsequent rotation of the needle shaft(from outsise the patient)
reorients the tip so that further insertion deflects the tip in a new direc-
tion. The combination of these two control inputs, along with a flexible
needle shaft, allows the needle to be steered inside the tissue. (b) A steer-
able needle can reach subsurface targets not accessible using conventional
needles, and multiple targets can be reached without fully retracting the
needle. Anatomical obstacles could include bones, vessels, nerves, and other
structures that a needle might damage or not be able to penetrate [13]

gorithm requires both the initial needle and the target locations as well as
the needle orientation as its inputs. It then calculates and creates a feas-
ible and safe path (i.e. path that does not cross any sensitive and healthy
tissues) in the free configuration space from the insertion point to the lesion.

1.4 Motivation and Objectives

Developing path planning algorithms in deformable and soft tissue have been
so far quite challenging due to its uncertainty nature. Many methods have
emerged such as tip-based steering, base manipulation and tissue manipu-
lation to name a few. All of them have the same purpose, how to steer an
asymmetric-tip needle safely from a given initial configuration to a given
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goal configuration while minimizing the tissue damage. The work on this
project is based on a well known sampling based path planning algorithm,
RG-RRT (Reachability-Guided Rapidly-Exploring Random Tree). There
has been some work on replanning with RRTs. However, to replan a path
when infrequent changes occur in the configuration space could take some
time thus becoming inefficient.

At the Mechatronics in Medicine Laboratory of Imperial College London, a
flexible bevel-tip needle for neurosurgery inspired by nature, called STING
(Soft Tissue Intervention and Neurosurgical Guide) has been developed over
the past few years. This flexible steerable probe is modelled as a non holo-
nomic robot and is able to follow a curvilinear path in 2D planar cross-section
of the human brain. This probe imposes mechanical and physcial constraints
such as minimum radius of the curvature that can be achieved by the max-
imum steering offset of the probe, thickness or outer diameter of the probe
and smooth as well as continuous shape of the curvature. The focus of this
project is to improve the efficiency and the performance of RG-RRT for the
flexible probe by switching to a compiled language, exploring another pos-
sibility on the algorithmic side and exploiting the power of parallelization
on RG-RRT. Five different parallelization methods that takes advantage of
a multi-core CPU and an NVidia CUDA-enabled GPU will be explored to
facilate the speedup RG-RRT in dynamic environment.

1.5 Thesis Outline

The organization of this thesis can be described as follows:

• Chapter 2 presents the development on neurosurgical flexible probe,
the ideas behind STING and explores different types of path planning
algorithms in depth

• Chapter 3 presents the discussion on a sampling based path planning
technique, RG-RRT and its variants. The discussion encompasses the
issues, architectural design, implementation and system integration
from software engineering perspective

• Chapter 4 presents the exploration on RG-RRT parallelization. Five
methods will be presented and discussed in depth

• Chapter 5 presents the analysis and the discussion on the overall par-
allelization performance (a thorogh analysis will be given between two
types of parallelization, CPU and GPGPU)

• Chapter 6 concludes the thesis and defines some possible improvements
for future development
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Chapter 2

Background and Literature
Review

2.1 STING: Soft-Tissue Intervention and Neurosur-
gical Guide

Surgical interventions performed by minimally invasive surgery require high
precision, accuracy and safety. Achieving these requirements cannot be done
very easily with any conventional rigid instruments inside brain especially
with smaller nerves and blood vessels compared to the other body parts. To
address the problem of maneuverability, a biologically inspired soft-tissue in-
tervention and neurosurgical guide or STING has been developed to access
deep brain lesions through curved trajectories.

2.1.1 Bio-inspired Programmable Bevel Concept

Nature has inspired the development of a flexible steerable multi-segments
probe, which allows the control of its approach angle by adjusting the steer-
ing offset between probe segment [7]. This mechanism mimics the 10 cm
long ovipositor, or egg-laying organ of Megarhyssa ichneumon, a parasitic
wasp that is commonly found in most of Europe, in the Australasian eco-
zone, in the Near East, in the Nearctic ecozone, in North Africa and in the
Oriental ecozone. Instead of rotating the organ, the ovipositor reciprocally
moves whilst injecting its eggs on larvae living in timber. Injecting eggs
into solid element with this long and hollow organ is possible even without
requiring to have instrinsic muscles due to the jagged surface on its tip and
the reciprocal insertion mechanism. By doing this reciprocal movement,
it will minimize its axial push force thus minimizing the risk of buckling
consequently [14][15].

There are 4 segments in the probe, one is for medical procedures and the
other is an electro-magnetic tracking sensor that is used to track and mon-
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Figure 2.1: A giant wasp Rhyssa persuasoria and cross-section of its ovi-
positor [7]

itor probe location and orientation whilst being pushed through the tissue
(Fig. 2.1). During the insertion, these segments will slide with respect to
each other independently. The steering offset due to the slide, will reorient
the angle of the tip thus controlling the radius of curvature. As a result, the
probe can be easilly controlled to follow the continuous trajectory path [16].

Figure 2.2: Different segments in the probe

2.1.2 Nonholonomic Modeling of Needle Steering

The kinematic model of needle steering can be described as a conventional
unicycle model with a fixed steering angle [17], whereas in STING the radius
of curvature is modeled as a function of steering offset between the inter-
locking segments. In this modeling perspective, STING kinematic model is
comparable to that of a nonholonomic robot model.

2.1.3 Motion control of a Steerable Needle

The feedback control system of the flexible probe starts from the pre-operative
diagnostic images (MRI or CT-based images). This input image together
with the probe physical constraint (the minimum radius of curvature) will
be forwarded to the ‘high level controller’. After finding a safe and feasible
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Figure 2.3: Kinematic model comparison between conventional bicycle and
STING [17]

path from the initial configuration to the target configuration, the ‘low level
controller’ will initiate motion signals to propel the flexible probe following
the curvilinear trajectory. While pushing through the tissue, the electro-
magnetic tracking sensor located at the tip of the probe will send feedback
control to the ‘low level controller’ to provide path following (Fig. 2.4).

Figure 2.4: Probe System Architecture [11]

2.1.4 Risk-based Trajectory Planning

Although path planning algorithms are capable in finding a safe and feasible
path from the initial configuration to the target configuration, to obtain an
optimal path whilst minimizing the risk to the patient, risk-based planning
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Figure 2.5:
Block diagram of the probe steering control Block diagram of the probe
steering control strategy developed for the flexible probe. It includes a
closed-loop trajectory controller, a low-level position controller for the

robot actuators, and measuring blocks for the robot’s state [18]

was introduced. By segmenting parts of the brain based on their risk values,
a compromise path between its length and its risk can be obtained. This
indicates that parts of the brain are not marked only by ’go’ and ’no go’
regions but are also classified according to its risk classification (Fig. 2.6).
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Figure 2.6: Brain Risk Classification
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2.2 Path Planning Algorithms

Motion/path planning algorithms objective is to find a feasible path/motion
from the initial configuration qI [x I , yI , θI ] to the goal configuration qG [xG,
yG, θG] (or one of its goal configurations) w.r.t its contraints. There two
types of constaints, environmental constraints (e.g. obstacles) and mechan-
ical/kinematics constraints of the robot (e.g. minimum radius of curvature,
the smoothness and the continuity of its curvature).

In motion planning, vector space or the configuration of a system that is
defined by a set of coordinates is called the configuration space. In his
book [19], LaValle has defined the configuration space or often shortened
as C space as “a set of possible transformations that could be applied to the
robot”. C space consists of C obs and C free thus C space = C obs ∪ C free. In
motion planning, C obs is the area that will definitely block and prevent
from reaching the target, therefore should be avoided. Whereas C free is the
area where a feasible path should be found starting from the qI to the qG.
Fig. 2.7 depicts the basic motion planning that progress from qI to qG in
C free whilst manuevering obstacles (blocks of C obs) at the same time.

Figure 2.7: Basic Motion Planning [19]

2.2.1 Deterministic Path Planning Methods

Deterministic path planning falls under four different categories that will
later be discussed. As the name implies, deterministic path planning behaves
predictably given a particular set of inputs, initial and goal configurations.
Some experiments on this type of algorithm such as Fast Marching and
Gradient based planning algorithms have previously been performed [47]
[48]. However, they gave unsatisfactory results as they do not guarantee
to reach the goal position with curved edges and fail to bound the path’s
curvature.
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2.2.1.1 Potential Field Method

Potential Field method was initially developed for online collission detec-
tion. Similar to machine learning, using this method the robot learns how
to act given an observation of the environment. The robot itself is treated
as a particle whilst the environment is represented as a potential field. This
method is quite intuitive as it behaves exactly as nature. A feasible path
can be found by creating an attractive field into the goal (Fig. 2.8(a)) and
a repulsive field out of the obstacles (Fig. 2.8(b)) across the entire config-
uration space. To lead the robot to the goal while maneuvering obstacles
at the same time, induced combined force by two types of fields (attract-
ive and repulsive fields) that works on the robot has to be computed [20].
This method is very efficient as the motion of the robot is only calculated
at its location at a moment in time and also easy to extend as the nature
of potential field is additive. It has however some main drawbacks such as
local minima trap situations (cyclic behaviour), no passage between closely
spaced obstacles, oscillations in the presence of obstacles and oscillations in
narrow passages [22].

(a) Attractive potential field [20] (b) Repulsive potential field [20]

Figure 2.8: Potential Fields

2.2.1.2 Roadmap Method

Roadmap method is basically a path planning algorithm that works based on
graph model. A feasible path is found by connecting one vertex to another
from the initial vertex to the goal vertex without having to pass through the
obstacles. If there are more than one feasible paths can be found, shortest
path algorithm can then be utilized to find the most optimal path. Some
various types of roadmaps are the visibility graph, the Voronoi diagrams
(retractions), the freeway net, and the silhouette (critical points).
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Figure 2.9: Combined Potential Fields [21]

2.2.1.3 Cell Decompositions

As the name suggests, Cell Decompositions method works by decomposing
the free space from the intial configuration to the goal configuration into
blocks of cells. A connectivity tree can further be determined based on
the adjacency relationships between the cells, where the nodes represent
the cells in the free space and the links between the nodes show that the
corresponding cells are adjacent to each other. Finding a feasible path is
then found by finding the shortest path or sequence of cells that connects the
initial and the goal points [23]. There are two types of Cell Decompositions
that are mostly used in basic motion planning, an exact cell decomposition
and an approximate cell decomposition method.

2.2.1.4 Grid-based method

In two-dimensional planar model, the grid-based path planning method
works by discretizing the configuration space into grid cells that are either
blocked (C obs) or unblocked (C free). A feasible path is then calculated by
finding the shortest distance in the unblocked area from the initial starting
point to the goal point.

2.2.2 Sampling-based Path Planning Methods

Sampling-based path planning is one of two main ways for addressing the
motion planning problem by conducting a search by means of sampling
points in the configuration space. Searching for a feasible path through
sampling scheme is done by means of a collision detection module. In
his book, LaValle [19] describes this collision detection module as a “black
box” from the perspective of the motion planning algorithm. This implies
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(a) Visibility graph [23]

(b) Voronoi diagram [24]

Figure 2.10: Roadmaps

that the collision detection module and the geometric models are loosely
coupled(Fig. 2.11). The sampling-based path planning is considered to be
probabilistically complete. This notion of completeness indicates that the
probability of finding an existing solution converges to one as the number
of search iterations approaches infinity. Therefore as long as a solution is
still unresolvable, the algorithm will keep running until at one moment in
time when it reaches the maximum iteration limit indicating that a solution
cannot be found or when a feasible solution is eventually found.

Among many different types of sampling-based methods, one of the most
widely-used motion planning algorithm was introduced by Kavraki et al.
[51], under the name Probabilistic RoadMaps (PRMs). Not long after the
emergence of PRMs, incremental sampling-based algorithms, such as the
Rapidly-exploring Random Tree (RRT) algorithm [33] have also emerged.

Figure 2.11: The sampling-based motion planning mechanism
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2.2.2.1 PRM

The Probabilistic Roadmap Planner is one of sample-based motion planning
methods that is designed to be a multi-query planner. The algorithm is
suitable for a robot that has high degrees of freedom (dof) and consists of
two phases, the learning phase and the query phase [25].

As it constructs a graph (roadmap) at this phase, the learning phase is often
also called the construction phase. Each time a random configuration of the
robot is sampled, it will further be fed to the collision detection module to
check whether it is located in C obs or in C free. This procedure will run
iteratively until all random configurations are correctly sampled in C free.
After this procedure is done, each of the configurations will be connected to
k nearest neighbors or all neighbors with predetermined maximum distance
using a fast local planner. To guarantee the validity of these edges, the
collision detection module is once again called. For each of the valid edges,
it will be added into the roadmap for later use.

In the second phase, the query phase, the start and goal configurations are
added into the roadmap and a sequence of configurations connecting the
start and goal configurations will be sought by the use of shortest path
algorithm (Fig. 2.12).

Figure 2.12: A simple Illustration of Probabilistic Roadmap Planner with
A* shortest path query
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2.2.2.2 RRT

A Rapidly Exploring Random Tree is a data structure and algorithm that is
built incrementally and is suitable for nonconvex, high-dimensional search
spaces (Fig. 2.13). On his website [26], Kuffner explains that this algorithm
is particulary suited for path planning problems that involve obstacles and
differential constraints (nonholonomic or kinodynamic). The algorithm can
then be described in pseudocode as follows:

Algorithm BuildRRT

Input: Initial configuration q init, number of vertices in RRT K,

incremental distance ∆q

Output: RRT graph G

1. G.init(q init)
2. for k = 1 to K

3. q rand ← RAND CONF()

4. q near ← NEAREST VERTEX(q rand, G )

5. q new ← NEW CONF(q near, ∆q)

6. G.add vertex(q new)
7. G.add edge(q near, q new)
8. return G

Figure 2.13: Motion Planning with RRTs [27]

In each iteration, a new random configuration (qrand) is sampled by call-
ing RAND CONF(). Then in line 4 the algorithm tries to find the nearest
neighbour (qnear) from that newly sampled configuration in the configur-
ation space. In the subsequent line, once a qnear has been found, a new
configuration (qnew) will then be calculated by moving incrementally with
a constant distance, ∆q from qnear toward the direction of qrand. Finally,
if the edge connecting qnear to qnew is valid, the new configuration and the
new edge will then be added into the tree.

2.2.2.3 RRT-Connect

As basic RRT algorithm is more suitable for nonholonomic systems, RRT-
connect subsequently developed to efficiently find a feasible path involving
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holonomic systems with no differential constraints [27]. The principal mech-
anism of this algorithm is growing 2 trees at each end (qI and qG) and sub-
sequently extending each of these trees toward one another until they have
become connected and a solution is found. The algorithm can be described
in pseudocode as follows [28]:

RRT_CONNECT_PLANNER(q init, q goal)
1. Tree a.init(q init);
2. Tree b.init(q goal);
3. for k = 1 to K do

4. q rand ← RANDOM CONFIG();

5. if not (EXTEND(Tree a, q rand)=Trapped ) then

6. if (CONNECT(Tree b, q new)=Reached ) then

7. Return PATH(Tree a, Tree b);
8. SWAP(Tree a, Tree b);
9. Return Failure ;

EXTEND(Tree , q )

10. q near ← NEAREST_NEIGHBOR(q , Tree );

11. if NEW_CONFIG(q , q near, q new) then

12. Tree.add_vertex(q new);
13. Tree.add_edge(q near, q new);
14. if q new = q then

15. Return Reached ;

16. else

17. Return Advanced ;

18. Return Trapped ;

CONNECT(Tree , q )

19. repeat

20. S ← EXTEND(Tree , q );

21. until not (S = Advanced )

22. Return S ;

In the pseudocode above, as indicated in line 1 and 2, the algorithm works by
incrementally building two Rapidly-exploring Random Trees (RRTs) rooted
at the initial and goal configurations (Treea and Treeb). In each iteration,
while one tree is extended incrementally toward a random configuration (line
5), an attempt is made to connect the nearest vertex of the other tree to
the new vertex (line 6). This CONNECT procedure will keep extending the
branch (line 20) as long as adding a new collision-free branch is successful.
The branch extension is directed by NEW CONFIG procedure that makes
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a motion toward q with some fixed incremental distance i.e. qnew. While
extending the branch, three situations can occur: Reached, in which q is
directly added to the RRT because it already contains a vertex between
qnear and qnew; Advanced, in which a new vertex qnew 6= q is added to the
RRT; Trapped, in which the proposed new vertex is rejected because it does
not lie in Cfree. At the end of each iteration, shown in line 8, the roles are
reversed by swapping the two trees. This procedure occurs iteratively until
the maximum iteration count K is reached or when a path connecting both
trees is found (Fig. 2.14(b)).

(a) RRT-Connect initial phase [27]

(b) RRT-Connect final phase [27]

Figure 2.14: RRT-Connect
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Chapter 3

Reachability Guided
Rapidly-exploring Random
Tree Algorithms

3.1 Reachability Guided Rapidly-exploring Ran-
dom Tree (RG-RRT)

RRTs in the past decades have been extensively used to solve many mo-
tion planning problems in the presence of differential or non-holonomic con-
straints. When an environment involves complicated kinodynamics con-
straints, RRTs turned out to be inefficient [29]. The obvious phenomenon
of this inefficiency is a very slow progress toward the ultimate goal as it
keeps on searching and extending in any random direction. Reachability
Guided Rapidly-exploring Random Tree has been developed as it was based
on the premise that sampling incurs much less time than the process of
searching collision-free trajectories. It tackles the inefficiency problem by
taking into account local reachability whilst expanding the tree. In other
words, RG-RRT will throw away any randomly-sampled points that may
have little or no effect toward the process of reaching the ultimate goal i.e.
curvature bound constraint. Each time a new random configuration qsample

is sampled, reachability test will be performed to see whether this qsample

is within a reachable region from at least one existing point in the tree. As
this assumption turns out to be not true, the qsample will be discarded and
another new random configuration will be sampled. This procedure will be
performed iteratively until a collision-free trajectory connecting the initial
configuration to the goal configuration is found or the algorithm has reached
a maximum number of searching iterations bounding its execution time.
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Figure 3.1: RG-RRT FlowChart
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Figure 3.2: RandomSampling FlowChart
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Figure 3.3: Growing Tree FlowChart

26



3.2 Extended Reachability Guided Rapidly-exploring
Random Tree (ERG-RRT)

A non modified version of RG-RRT essentially works by expanding the tree
with a combination of random exploration and biased motion toward the goal
configuration. Expanding the tree always starts with an initial configuration.
From this initial configuration, with probability p, it attempts to find the
nearest point in the current tree and extend it toward the qG and with
probability 1 - p, it picks a random configuration [x, y ] from the configuration
space, finds the nearest point and extends the qnear to the qsample. Therefore
the configuration space exploration procedure can be described as follows:

function Explore (goal:state):state
var p;
p = UniformRandom in [0.0 .. 1.0];
if p <= GoalBias then
return goal;
else
return RandomState();

As can be seen above, during the exploration step the RG-RRTs expands
the tree stochastically to any random direction or to its goal configuration.
This procedure is performed iteratively until the goal configuration or the
total number of nodes added into the tree has been reached.
As an extension to this, waypoint cache has been introduced [30] to speedup
the convergence of the tree. Waypoint cache is essentially developed to
limit the stochastic nature of nodes distribution. Instead of picking any new
random configuration in the configuration space, the tree might also consider
any successful configurations from its previous plans. By also taking into
account the history from its previous plans, the tree will have the capability
to “foresee” what might happen in the near future. The procedure in using
waypoint cache can be depicted as follows:

function Explore (goal:state):state
var p;
p = UniformRandom in [0.0 .. 1.0];
i = UniformRandom in [0 .. NumWayPoints-1];
if p <= GoalBias then
return goal;
else if GoalBias < p <= GoalBias+WayPointBias then
return WayPointCache[i];
else
return RandomState();
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By storing the history of its previous plans, it possesses the knowledge of
where a plan might happen again in the near future. Instead of having
only two options to search and explore, now the algorithm may expand the
tree stochastically to any new configuration in the configuration space, to its
ultimate goal configuration or to any previous configuration stored in the
waypoint cache. As can be seen above, with probability p ≤ GoalBias, a
uniform configuration will be chosen; with probability p between the values
of GoalBias and GoalBias+WayPointBias, a random waypoint is chosen;
otherwise the goal configuration is then chosen as before.

Figure 3.4: RG-RRT and RG-RRT with Waypoint cache comparison

3.3 Software Engineering Issues

3.3.1 MATLAB or C++

As we might already know, Computer Science recognizes two big main
streams in programming language, compiled language and interpreted lan-
guage. The true difference between these two streams lies in different con-
ceptions of running applications. In compiled languages, the source code will
be transformed into executable code that is specific to the hardware archi-
tecture (machine type) and software framework (operating system). Thus
parsing and execution occurs in two distinct steps. Yet in interpreted lan-
guage, only one step remains i.e. parsing and execution occur at the same
time. The source code will be ’indirectly’ executed or interpreted line-by-
line by an interpreter at run time. Some advantages that can be drawn
from the interpreted language include its relative ease of programming and
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debugging, less memory consumption, cross-platform compatibility, ease of
deployment and maintenance and JIT’s compilers runtime optimization [31].
Besides its benefits, the different approach of execution will eventually have
a small impact on its performance. It becomes evident as some interpreted
languages incur from poor performance compared to executing executable
code directly targeted on the host CPU. Apart from gaining speed perform-
ance, compiled language also possesses flexibility in distributing stand-alone
executables. There are also some programming languages that possess a hy-
brid approach, half compiled and half interpreted. Like Java and C# for
instance, the source code is pre-compiled into the intermediate code and
executed at run time by its virtual machine i.e. Java VM and Common
Language Runtime.

MATLAB is one of interpreted languages that is widely used in engineering
which has gained its prominence due to its ease of usability and comes with
sophistiated libraries for numerical computing, graphical simulation and
symbolic computing capabilities. MATLAB turns out to be very useful es-
pecially for numerical calculations that involve matrix operations. However
due to its execution approach nature, MATLAB might perform much slower
than a compiled language. This is the point where C++ equipped with its
optimal calculation and high speed floating point computation comes into
play. However it is not a trivial thing to produce visual effects in C++.
There are however some cross-platform application frameworks such as Qt
that could be used to develop application software with a graphical user
interface (GUI) yet it does not provide any morphological tools that can be
applied to image segmentation, non-linear filtering, pattern recognition and
image analysis. Even if it provides these capabilities, linking to a very big
library with small need of capabilities (plotting and image filtering function-
alities) may hurt the application performance as a whole.

To make worth the trade-off and gain benefits from these two types of pro-
gramming languages, interfacing an interpreted language to a compiled lan-
guage seems to be quite promising. As a start-up, the languages that will be
used have to be properly defined, what to use and how it can be used. In this
project, C++ and Python are the languages of my choice. Together with C,
C++ has mainly been used for developing application programs due to its
speed and power. Compared to C, C++ provides more options to interface
with other high level languages such as Python. Basically both MATLAB
and Python are considered as interpreted languages. As in MATLAB, Py-
thon also supports data processing and plotting functionalities through the
use of NumPy, SciPy and Matplotlib packages. While Python is totally free
and a general-purpose language, MATLAB is a proprietary scripting lan-
guage attached to its numerical computing environment that is developed
and maintained by its developer, MathWorks. It is indeed true that most
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scripting languages are much simpler than general-purpose languages but
not to Python. Besides possessing more meaningful syntax, it is also inher-
ently object oriented. As it is inherently object oriented, each of member
variables and methods could be encapsulated from the outside world as much
as other object oriented languages do such as C++, C#, Java etc. In short,
by having C++ and Python both combined, high performance algorithm
with excellent prototyping and plotting functionalities can be guaranteed.
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3.3.2 System Requirements

The neurosurgical flexible probe (STING) is modelled as a nonholonomic
robot and can be steered in two dimensions. System requirements that have
to be considered while developing the path planning are [48]:

• Mechanical constraints: The flexible probe imposes a minimum ra-
dius of curvature rmin constraint on the path. There are also some con-
straints that restrict the flexible probe to change its curvature drastic-
ally, in order to have a continuity and boundedness constraint on the
derivative of the curvature.

• Inputs for the path planner: The set of inputs for the planner are:

– The pre-operative CT/MRI images that will later be converted
into configuration space by considering also thickness of the flex-
ible probe

– The initial or entry configuration (position, orientation)

– The goal configuration

• Outputs for the path planner:

– A curvilinear trajectory path that is bounded by constraints on
the minimum radius of curvature, curvature and its derivative
continuity

– A cost value of the generated path, reflecting its intersection with
different risk areas on the map

3.3.3 System Design

Figure 3.5: RG-RRT Class diagram

While Fig. 3.5 depicts a simple system architecture of RG-RRT, Fig. 3.6
- Fig. 3.9 show the member of ConfigurationSpace class, RGRRT class,
RRTree struct and Node class. ConfigurationSpace class represents the con-
figuration space of the physical system, which in the case of neurosurgery is
the brain. The class has the full knowledge of the configuration map that
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Figure 3.6: ConfigurationSpace class

will be explored by the flexible probe including the ultimate target config-
uration. This class has a composition type of association that is depicted as
a filled diamond and a solid line with the Node class. This relationship im-
poses that the ConfigurationSpace class owns each of Node instances built
in the tree. The algorithmic procedure lies on the RGRRT class. Besides
having the sole responsibility of everything that is related to the algorithm
(i.e. sampling random configurations, checking the reachability of points,
validating edges, building new configurations), RGRRT class also provides
helper functions for building as well as verifying and validating the tree.
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Figure 3.7: RGRRT class

Figure 3.8: RRTree class
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Figure 3.9: Node class
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3.3.4 System Integration

RGRRT algorithm will be implemented in C++ while any visual effects
(e.g. plotting, image processing) will be implemented in Python. To easily
integrate the algorithmic side and the viewer side, the algorithmic side will
be built into a shared library that will then be loaded dynamically by the
application at run time. Loading dynamic link library into Python will be
done using Ctypes. Ctypes is a foreign function library for Python that
provides C compatible data types, and allows calling functions in dynamic-
link libraries (DLLs) or any shared libraries. A snippet of the Python code
can be seen as follows:

import ctypes as ct

dll = ct.cdll.LoadLibrary(’RG-RRT.dll’)

dll.rg_rrt()

Loading RG-RRT dynamic link library can easily be done by invoking Load-
Library() and specifying the name of the shared library as its argument.
After the shared library is successfully loaded, it has full access to all attrib-
utes and functions that reside in the library. Accessing these attributes and
functions from loaded Dlls can be as easy as accessing them as attributes of
Dll objects.

To support matrix and vector operations in C++, Armadillo C++ linear
algebra library is considered to use for this project. One of primary reasons
to use this library is due to its seamless integration with C++ and syntax
similarity to MATLAB. Hence many integer, floating point and complex
numbers are supported, as well as many math functions. Armadillo supports
optimal and high-speed computations due to its integration with LAPACK
and multi-threaded MKL or ACML libraries.
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(a) Two matrices addition [32] (b) Four matrices addition [32]

(c) Four matrices multiplication [32] (d) Submatrix manipulation [32]

(e) Multi-operation expression [32]

Figure 3.10: C++ matrix libraries speed comparison
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3.4 Parallelization

RG-RRT has gained its popularity among any other planning algorithms
particulary for solving single-query motion planning problems. RG-RRT
could solve a wide range of motion planning problems including holonomic,
non-holonomic, kinodynamic, or kinematic closure constraints [33] - [35].
As it becomes more and more popular, the urge to optimize the algorithm
has also become apparent. There are some advance improvements that have
been developed to increase its efficiency and speed up the path explora-
tion such as by adapting tuning of the sampling domain [37], increasing
the efficiency of the nearest neighbour [38] or implementing gap reduction
techniques [36]. With the advance of computing technology, the emergence
of multi-core processors and the evolution of highly parallel, multithreaded,
manycore processor with very high memory bandwidth, some parallelization
techniques have been explored in recent times. Some of these parallelization
techniques will be covered in the proceeding chapters.
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Chapter 4

Parallel RG-RRT

4.1 Introduction to Parallel Computing

The very first microprocessor created was designed for the US Navy F14A
“TomCat” fighter jet from 1968 - 1970. Microprocessors were not commer-
cially available on the market until 1971 when Intel Corporation released
Intel 4004, a 4-bit central processing unit (CPU). With instruction set of
46 instructions and the maximum clock speed of 740 kHz, Intel 4004 was
built into Busicom 141-PF printing calculator. By incorporating a micro-
pressor, this calculator was capable in doing some fairly simple calculations.
However, with the advance of computing technology and the increase of
device complexity, the demands of having more and more processing power
and bandwidth were inevitable. To incorporate many capabilities onto a
chip, integrating more and more number of transistors on a chip are re-
quired. These course of events have been widely known as the Moore’s
Law. Gordon Moore, Intel co-founder has predicted nearly 40 years ago
that transistor density on integrated circuits doubles about every two years,
as can be seen in Fig. 4.1. Through the years, his prediction has proven
to be valid and in 2012, a home personal computer or PC might have an
equivalent processing and computing power of 2000’s medium scale movie
industry render-farm. In short, microprocessors have now become smaller,
denser and more powerful.

Most of today’s high-performance microprocessors employ out-of-order exe-
cution, on-chip chaching, prefetching microarchitecture techniques to reduce
memory latency at the cost of integrating more transistors on a chip. Besides
integrating more transistors, chip manufacturers also seek some novel ways
to increase clock rates (Fig. 4.2) and to exploit instruction-level parallelism.
Unfortunately everything does not come for free. Later it was found out that
that by increasing the clock rates, it will also significantly increase the power
consumptions. As the power consumptions increase, CPU’s were hitting the
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power wall and high-frequency micro-architectures are not very suitable for
many of the low-power design techniques that had been invented to deal
with the power issue. Facing this fact, chip manufacturers have turned their
focus more on the instructions per clock cycle, the other metric that de-
termines the CPU performance. To effectively increase the instructions per
clock cycle, they try to improve the efficiency of the logic architecture that
is rearranging the flow of data in a CPU so that more work can be done
without increasing the clock rate.

To increase the CPU performance even further, parallel computing turned
out to be necessary. The parallelization can be achieved by taking full bene-
fits of having more transistors on a single die. Apart from the performance
boost, having more cores will also reduce energy dissipation. Execution time
and cost can be described as follows:

Execution time = (total work)/(aggregate speed)

* Serial execution time(Ts) = Ws/V(M)

* Parallel execution time(Tp) = Wp/((pV(M/p))

Cost = (number of processors)x(execution time)

* Serial cost = Cs = Ts = Ws/V(M)

* Parallel cost = Cp = pTp = Wp/((pV(M/p))

Power = (C x V x V x F)/4 Performance = Cores x F
Capacitance Voltage Frequency

By integrating more transistors onto a chip, it will increase the capacitance
which eventually can increase the performance, whereas by adding more
cores into the die it may reach the same performance yet merely 1

4 power
required. Due to these facts, there was massive transition from single core
to multi core processors done by semiconductor chip manufacturers. Fol-
lowing the hardware transition, more and more multithreaded applications
are created in order to utilize the computing power of multi core processors.

To be able to create an effective and efficient parallel algorithm, some factors
have to be considered. They are:

• Load balance: Work distribution among multiple processors or any
other computing resources. By maximizing the load balance, it will
minimize the response time, maximize the throughput and avoid the
overload.

• Concurrency : Ability to work on computations or calculations simul-
taneously
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• Overhead : Excess or additional need of resources (i.e. time, band-
width, energy) that are required during the execution
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Figure 4.1: The exponential growth with transistor count doubling every
two years hence conforming to the Moore’s Law [40]
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Figure 4.2: The increase of clock rates [41]
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Figure 4.3: Current semiconductor technology trend [41]
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4.2 CPU Parallelization

In good old days where everything is done serially, a problem is divided into
series of small problems where these small problems will then be executed
by the CPU as a discrete series of instructions one at a time. An illustration
of this process of execution can be seen in Fig. 4.4(a) where a big chunk
of “problem” is broken down into series of instructions from t1 until tN.
The CPU will first take t1 to be processed. Once the first execution has
been completed, the CPU will then process t2 and sequentially taking down
tNth until the whole series of instructions execution is completed. Different
from its counterpart, parallel computing relies on its computing power re-
sources to execute series of instructions simultaneously. As it is illustrated
in Fig. 4.4(b), a big chunk of problem is divided into small yet independent
problems that can be executed concurrently. These independent problems
will then be broken down into series of instructions that later be fed into
different CPUs. Among different CPUs, each part of these instructions can
be executed simultaneously. By executing instructions simultaneously, com-
putational problem can be processed more effectively.

In this section of the report, we are going to discuss some CPU paralleliz-
ation techniques on RG-RRT algorithm. Some early work has been done
previously on implementing CPU parallel versions of the RRT algorithm,
such as [42], [44], [49] and [50]. However, all these implementations focus
on a distributed memory model rather than on a shared memory model of
parallel computation. Eventhough a distributed memory model offers high
scalability, yet computing clusters are expensive and specialized. On the
other hand, a shared memory programs are usually shorter and easier to
understand as it does not have to involve message passing communication
system thus giving more transparent process-to-process communication.

As it has been covered in 3.3.2, (STING) imposes some mechanical con-
straints that must not be violated in order to function properly, thus the
focus of this work is not only finding the best solution to improve the per-
formance of the RG-RRT algorithm but also improving the performance of
the flexible probe with its inherent constraints.

4.2.1 OpenMP Programming Model

OpenMP is an Application Programming Interface specifically designed for
multi-threaded applications developed in shared memory architecture [43].
OpenMP library supports parallel programming in C/C++ and Fortran on
all architectures, including Unix and Windows NT platforms. As OpenMP
programs are multi-threaded applications, parallelism is done exclusively
through the use of threads. A thread is a lightweight process that can be
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(a) Serial Computing [39]

(b) Parallel Computing [39]

Figure 4.4: Two basic types of computation

scheduled by an operating system. The life of a thread strongly depends on a
process. In other words of saying, threads are even located within resources
of processes. When a process “goes out of scope”, the corresponding thread
belongs to that process will cease to exist.

The openmp specification defines a set of pragmas. These pragmas are
compiler directives that specify how to process the block of code that follows
the directive. The omp pragma that is most common to find is the #pragma
omp parallel. This pragma denotes a parallel region. Meaning to say that
the block of code that follows this pragma will be executed parallely. Besides
this parallel pragma, there are many other omp pragmas such as #pragma
omp section, #pragma omp master, #pragma omp barrier, #pragma omp
single, #pragma omp critical to name a few.

As OpenMP is a parallel programming model specifically designed for Shared
Memory Architecture, keeping shared data integrity is unquestionably im-
portant. OpenMP therefore provides some Synchronization Constructs.
They are:

• Barrier Construct : defines a waiting/pending mechanism at a specific
point in the code for all threads before proceeding further

• Ordered Construct : defines a sequential order of execution within a
parallel loop

46



• Critical Construct : defines a critical section with the intention of
ensuring only one thread has an access to the same shared data at a
given moment in time.

• Atomic Construct : defines a one thread-execution section similar to
Critical construct. In contrast to the others, this construct only applies
to a single assignment statement instead of a block of code

• Locks : defines a lock mechanism for a particular block of code. Similar
to Critical and Atomic constructs but with greater flexibility

• Master Construct : defines a block of code that is executed only by
the master thread

Thread-based parallelism seems to be relatively easy compared to any other
parallelism methods. However, there are some caveats that have to be con-
sidered :

• Cost of starting a thread or process

• Cost of communicating shared data

• Cost of synchronizing

• Extra computation cost

4.2.2 OR Parallel RG-RRT

As we have covered so far, the exploration of RG-RRT has stochastic nature.
At one moment in time, the route could be different with other time. OR
Parallel exploits the stochastic nature of RG-RRT[42]. In multicore system,
when each core is responsible in expanding a random tree, each of them is
very likely to produce different results. One of them will find a solution
earlier than the rest. As soon as a solution is found, a global variable
stopCondition indicating that the quest should be stopped will immediately
be set to true. A snippet of OR Parallel algorithm can be described as
follows:
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OR Parallel RG-RRT

Input : Initial configuration q init, the configuration space C

Output : tree

1. tree ← initTree(q init)
2. Q Rand[] ← sampleRandomConfigurations(C)

3. i ← 0

4. while not stopCondition and nodeSize ≤ MaxNodes

5. q rand ← Q Rand[i]
6. q near ← findNearestNeighbor(tree, q rand)
7. q new ←extend(q near, q rand)
8. if valid(q near, q rand)
9. stopCondition ← true

10. i++

As indicated in line 2 after the tree initialization takes place, sampleR-
andomConfigurations procedure generates all random configurations before
even starts expanding the tree. This is done to make the RG-RRT gains full
benefits from parallelism. The space exploration in fact begins in line 4 when
entering the while loop. However before entering the while loop, it should
first verify that the number of nodes added in the tree (nodeSize) is still less
than the maximum number of nodes (MaxNodes) allowed. After the verific-
ation, instead of generating a random number, line 5 shows that a random
number q rand is taken out from previously generated Q Rand array. Sim-
ilar to the basic RRT, finding a nearest neighbor, finding a new configuration
(q new), and validating the connecting edge between q near and q rand will
be subsequently done. Once a solution is found, the corresponding thread
will set stopCondition to true indicating the other independent processes
to stop expanding its own trees and discard the results. Eventhough OR
Parallel RG-RRT can perform better than running the algorithm serially,
its implementation is only limited by the performance of a single processor
[42]. The faster execution times cannot be slower than running it in a single
processor and it is almost impossible to have all processes finish exactly at
the same time hence it is an effective method to avoid long time execution.

1. #pragma omp parallel num_threads(8) default(shared)
2. firstprivate(space) private(tree)

As it was previously discussed in section 4.2.1, openmp defines a set of
pragmas to specify how to process a block of code that follows the directive.
This means, before entering the planner procedure one must first specify
how to act upon a block of code by specifying an omp pragma. In the code
snippet above, it uses #pragma omp parallel to indicate that 8 threads will
be executed simultaneously with all variables shared by default. The clause
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private is used to indicate that each thread owns its own copy of the variable
listed (i.e. tree) whereas firstprivate adds an additional functionality that
the variable (i.e. space) will retain its original value of initialization existing
before entering the parallel construct (line 1).

Figure 4.5: OR Parallel RG-RRT

4.2.3 AND Parallel RG-RRT

Different from OR Parallel where each core/process tries to expand its tree
in its own way, in AND Parallel implementation, each process cooperatively
and collaboratively builds the tree until a solution is found. Due to each
process contribution, the tree will grow faster than running it only in one
process. However, this method cannot guarantee the short execution times
as sometimes the growth of the tree is not correctly directed toward the
exterior or even trapped in local minima. A code snippet below indicates
that 8 threads will be run simultaneously and collaboratively to build the
tree and the clause shared indicates that there is only one copy of data
shared among different processes.

#pragma omp parallel num_threads(8) default(shared)

This method also possesses an Achilles heel when not wisely used. As the
tree and the configuration space are now shared, proper synchronization
must be carefully considered to keep the integrity of the data especially
when more than one process has access to the same resource. Code snippet
below illustrates the use of Critical construct in RG-RRT. Here Critical
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construct is exclusively used for a block of code starting from the new node
addition until the goal verification. This synchronization block is required
as the configuration space, the tree and stopCondition are shared among
different threads.

#pragma omp critical
{
if(!stopCondition)
{
// add the new node into the space
p_space.addNode(qnew);

// test if the new point is in the goal region
if(p_space.getTargetSet().at(0) == qsample(0) &&
p_space.getTargetSet().at(1) == qsample(1))
{
p_tree.m_done = stopCondition = true;
}
}
}

Figure 4.6: AND Parallel RG-RRT

4.2.4 AND-OR Parallel RG-RRT

In OR Parallel, the minimum execution time cannot be improved as its per-
formance is only limited by the performance of a single processor. However it
does minimize the maximum execution times as the faster execution times
cannot be slower than running it in a single processor. In AND parallel,
due to processors collaboration, the solution will be found faster than run-
ning it only in a single processor. However care has to be taken as proper
synchronization must take place to avoid conflicts. Combining these two
methods, might yield in minimizing the maximum execution times yet gain-
ing performance speed-up. In my implementation, as I am using a quad-core
processor with Hyper-threading (thus 8 threads available in total), I have
divided them into two separate groups, 4 threads running for each group.
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AND Parallel is run within each group, and OR Parallel is run between
these two separate groups. Thus processes in the same group will collabor-
atively expand the tree and as soon as a group finds a solution, it will notify
the other group to stop searching for a solution.

4.2.5 Manager-Worker RG-RRT

In Manager-Worker implementation, a classical approach to perform a func-
tional decomposition has been taken. Similar to [44], in this functional de-
composition, tasks are divided based on the ones that require knowledge of
the tree and those that do not require to know the existence of the tree. In
Fig. 4.7, it can clearly be observed that the tasks of the Manager involve
initializing the tree, sampling random configurations, verifying the random
configurations reachability from the flexible probe and finding nearest neigh-
bours. What the Workers do are generating new configurations and ensuring
the validity of the edge connecting qnear to qrand. When the edge is valid,
then it is the Manager task to add the new node into the tree.

Code snippet below describes briefly how the algorithm is carried out. There
are three global lists (i.e. qnodeData, qrandData, qnearData) used as means
of communication between the Manager and the Workers. As previous al-
gorithms, stopCondition indicates whether a solution has been found. When
it has not found a solution, the Manager checks whether qnodeData list is
not empty. If it is not, it means there are some qnodes waiting to be inserted
into the tree. Then it samples a new random configuration, finds the nearest
neighbour and adds both of the variables into its corresponding lists, to be
further processed by the Workers. Any idle workers will check whether there
are any qrand’s and qnear’s to be processed. If there are any, a worker will
initiate to fetch the data from the lists and calculate its corresponding qnode.
Once the validity of the qnode is guaranteed, it adds the newly constructed
qnode into the list, to be further inserted into the tree by the Manager.
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while(!stopCondition)
{
if processID = Master then
{

while(qnodeData is !empty)
{

#pragma omp critical(qnodeData)
{//get qnode from the list}
if(!stopCondition)
{//add qnode into the space}

}

qrand = samplingRandomConfiguration()
qnear = nearestNeighbour()

//add qrand and qnear into the list
}

else then
{

if(qrandData is !empty and qnearData is !empty)
{

#pragma omp critical(qrandData)
{//get qrand from the list}
#pragma omp critical(qnearData)
{//get qnear from the list}
empty = false

}

if(!empty)
{

qnode = solveConfiguration()
if(valid)
{
#pragma omp critical(qnodeData)
{//add qnode into the list}

}
}

}
}
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Figure 4.7: Manager-Worker Parallel RG-RRT
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Figure 4.8: Manager-Worker Logic Diagram RG-RRT
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4.3 GPU Parallelization

Graphical Processing Units (GPUs) have been studied in recent years by
many researchers to be able to surpass the high-speed performance of multi-
core processors. Researchers believe that this is possible due to the number
of transistors and less caches and flow control that a GPU does have com-
pared to a CPU (Fig. 4.9(a)). GPUs also possess higher memory bandwidth
than CPUs which leads to very short memory access times (Fig. 4.9(b)). Be-
sides these facts, the GPU also supports much more data-parallel program-
ming computations with high speed of arithmetic calculations compared to
the CPU. In other words of saying, the GPU is more suited to parallelism
than the CPU.

There has been some earlier work done by J. Bialkowski et al. in parallelizing
RRT in the GPU [52]. However, the focus of the work was only to massively
parallelize collision-checking procedure, a procedure that is considered to be
the most computationally expensive procedure in the sampling-based motion
planning algorithms. As the nature of the algorithm is stochastic, there is a
high possibility that many sampling numbers are required to be generated.
By also parallelizing the generation of random numbers, we could get the
most benefit out of GPGPU parallelism.
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(a) Floating-Point Operations per Second[45]

(b) Memory Bandwidth[45]

Figure 4.9: CPU vs. GPU
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4.3.1 NVidia CUDA

NVidia CUDA is a parallel computing and programming model invented by
NVIDIA in 2006 that supports data and task parallelism on a GPU. CUDA
supports a few extensions of high-level programming languages, applica-
tion programming interfaces such C, C++, FORTRAN, DirectCompute,
OpenCL, OpenACC.

4.3.2 CUDA Programming Model

The smallest process in CUDA is done via threads. In fact, CUDA exploits
GPU parallelism using threads. CUDA Programmers are able to execute
portions of code in GPU by running kernel functions. A kernel is essen-
tially a function callable from the host (as we refer to the CPU and the
system memory) and executed on the device (as we refer to the GPU and
its memory). Once a programmer runs a kernel from the host, the kernel
will then be simultaneously run by threads assigned to that specific kernel.

CUDA allows programmers to divide a problem into smaller sub-problems
that can further be solved simultaneously by blocks of threads. Within each
of these sub-problems, independent sub-sub-problems can then be solved
parallely by all threads belonging to that specific block. Fig. 4.10 depicts
the inner structure within a kernel function. Grid in CUDA is organized as a
two dimensional array of blocks and within each block, thread blocks are or-
ganized into a one-dimensional, two-dimensional, or even three-dimensional
array.

4.3.3 CUDA Memory Hierarchy

The largest volume of memory available in a GPU is called global memory.
Although it has the biggest capacity than any other types of memory residing
in a GPU, it is however the slowest type of memory next to local memory.
Besides having a smaller capacity, another difference between these two
types of memory is the accessibility. Global memory can be accessed by
both the host and the device however local memory is only attached to a
thread. This implies that each thread owns a copy of its local memory and
it is not shared among any other threads.

There are two types of memory in CUDA that provide high-speed memory
access. They are registers and shared memory. Registers are automatic
variables that reside within a kernel function. The memory size of registers
are very limited and overuse of them will degrade the performance as com-
pilers might allocate these variables in the local memory. As in the case of
the local memory, despite its high-speed memory access, registers are local
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to threads. To share data among threads residing in the same block, shared
memory is therefore commonly used as shown in Fig. 4.11.

Figure 4.10: Grid of Thread Blocks[45]

Figure 4.11: Memory Hierarchy[45]
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4.3.4 RG-RRT on CUDA

In this project, we will focus more on two small procedures that make up the
whole RG-RRT algorithm namely, randomSampling and checkObstacle.
These two procedures were chosen as they both with a bit of tweaking can
be massively parallelized. In this chapter I will highlight some portions of
the code that need to be adjusted in order to achieve massively parallelizable
RG-RRT.

4.3.4.1 Parallel Random Sampling

Generating random configurations can be done much quicker when it entails
parallelism. In the non-parallelized version of RG-RRT, a random config-
uration is sampled each time the search tree is expanded incrementally. A
code snippet can be seen as follows:

//assigning a random value as the x-coordinate
new_point(0) = (col-1)*unifRand();
//assigning a random value as the y-coordinate
new_point(1) = (row-1)*unifRand();

while(!isValid(space.getMap(), new_point))
{
new_point(0) = (col-1)*unifRand();
new_point(1) = (row-1)*unifRand();
}

However by implementing this routine as above, there will be no space for
the algorithm to exploit parallelism. To be able to massively parallelizing the
randomSampling(), all random configurations will have to be generated
at once. By generating them at once, one thread is exclusively responsible
in running unifRand() until a pair of valid points is successfully found. As
it has been discussed in the preceding chapter, a kernel function has to be
written in order to run code in the device from the host.

// generate random numbers
generate_kernel<<nBlocks, nThreads>>(arg1, arg2, ...)

The kernel description above indicates that the kernel will be called nBlocks
∗ nThreads times simulatenously. All sampled random points will then
be stored in the global memory so that the host can later access them.
The kernel structure will be similar to the non-parallelized version of the
algorithm, only that now it will be massively parallelized.
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__global__ void
setup_kernel(arg1, arg2, ...)
{
// thread’s id
const unsigned int tid = threadIdx.x +
blockIdx.x * blockDim.x;
if(tid < len)
{
// each thread gets same seed,
// a different seq number, no offset
curand_init(..);
}
}

__global__ void
generate_kernel(arg1, arg2, ...)
{
// thread’s id
const unsigned int tid = threadIdx.x +
blockIdx.x * blockDim.x;
if(tid < len)
{
// copy state to register for efficiency
curandState localState = state[tid];

float p = curand_uniform(&localState);
const float RRT_GoalBias = 0.1;

if(p <= RRT_GoalBias)
{

// expanding the tree toward goal configurations
}
else
{
// expanding the tree to a random configuraton
}

// copy state back to global memory
state[tid] = localstate;
}
}
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Generating random number uniformly in the device can be done as easy
as in the host with curand uniform(). This function returns a sequence
of pseudorandom floats uniformlny distributed between 0.0 and 1.0 [46].
Prior calling curand uniform(), the quasirandom number generator state
has to be initialized. The initialization is done by calling curand init().
The only shortcoming of generating random number in the device lies on
curand init(). Calls to this function are much slower than generating the
random number itself that will eventually degrade the system performance.
Different seeds for each thread and a constant sequence number of 0 can be
used to tackle the performance issue. Another trick that I have done is to
initialize only some of random generator states and call them iteratively as
follows:

unsigned int multiple = 300;
unsigned int nseeds = len/multiple;

// declare a pointer to curandState
curandStateXORWOW_t * devStates;

// initialization of the random generator
setup_kernel<<<nBlocks, nThreads>>>(devStates, 0
, nseeds);

for(int i=0; i<multiple; ++i)
{
// generate random numbers
generate_kernel<<<nBlocks, nThreads>>>(xy_d+nseeds*i
, nseeds, devStates, ...)

}
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4.3.4.2 Parallel Collision Detection

Collision detection in the non-parallelized version of RG-RRT is done by
iteratively checking pixel by pixel until it encounters an obstacle.

while i < noElems and valid
{

if it exceeds the image dimension then
valid = false

else if it encounters an obstacle then
valid = false

++i
}

To have them parallelized, each thread will be responsible in verifying one
pixel. For instance if there are 3000 pixels to be verified, then 3000 threads
will also be created. However to make them optimally efficient, not only
one arc line will be verified at a time but a few of them. A care has to
be taken in determining the number of arc lines as when it becomes too
many, it will hamper the tree progression. I found that 11 arc lines would
be a reasonable amount as I experienced computation inefficiency when it
is below 8 and sluggish tree progression when it is above 11. These 11 arc
lines are then combined into one long arc line that will be verified in the
kernel function.

Figure 4.12: Collision Detection
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__global__ void
checkEdge_kernel(arg1, arg2, ...)
{
// thread’s id
const unsigned int tid = threadIdx.x +
blockIdx.x * blockDim.x;
if(tid < len)
{
// store to registers x and y
float x = xy[tid].x;
float y = xy[tid].y;
x = ceil(x);
y = ceil(y);

if(y>=nrows || y<0 || x<0 || x>=ncols)
{
invalids[tid] = 1;
}
if(tex2D(tex, x+0.5f, y+0.5f) == 0)
{
invalids[tid] = 1;
}
}
}
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Chapter 5

Results and Discussion

5.1 MATLAB vs. C++

Figure 5.1: RG-RRT in MATLAB

Figure 5.2: RG-RRT in C++ and Python

Fig. 5.1 and Fig. 5.2 are provided to show the performance difference between
two distinct implementations. It clearly shows that the hybrid approach (i.e.
compiled and interpreted language) between C++ and Python indicates
better performance than running the application in MATLAB. To have a
fair comparison, the corresponding paths have also been deterministically
selected. We could expect the RG-RRT implementation in C++ and Python
runs 12 - 13 times faster than its MATLAB implementation.
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5.2 RG-RRT vs. Extended RG-RRT

Figure 5.3: The performance with(red) and without(blue) waypoints

Fig. 5.3 clearly shows how RG-RRT with waypoint cache might perform
compared to the original RG-RRT. As the algorithm always starts from
having only an initial configuration, both of the first images naturally will
show only difference that is caused by its stochastic nature. Both of them
attempted to explore the tree stochastically without having any guidance.
Starting from the second image, RG-RRT with waypoint cache shows quite
a significant difference comparing the basic RG-RRT as it receives “hints”
from the first iteration solution. However this will not always be the case.
If the first iteration fails the converge, neither performs well as waypoints
cannot help by offering “hints” from previous solutions.

I ran 3000 iterations to get a clear idea of how ERG-RRT might yield a
better result compared to its counterpart, RG-RRT. As shown in Fig. 5.4,
the first 5 iterations does not indicate the superiority of ERG-RRT. This
may happen as both algorithms are stochastic or it can also be caused by
adding extra code for storing and retrieving the waypoint cache. In the first
100 iterations, the original RG-RRT still outperforms the extended version,
however this time the performance difference is no longer huge. In the
500 iterations, the efficiency of getting “hints” from the previous plans has
increased that the ERG-RRT now outperforms the RG-RRT. The situation
has not changed much in the 1000 iterations until in the 3000 iterations
where there is a huge gap between the RG-RRT and the ERG-RRT.
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Figure 5.4: 25th percentile, mean, 75th percentile of RG-RRT and ERG-
RRT among different iterations
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5.3 Comparison and Analysis of GPGPU and Par-
allel Computing on Multi-Core CPU

5.3.1 Experiment Settings

System settings used in comparing the performance of the CPU implemet-
ation with the GPU implementation of RG-RRT algorithm are as follows:

1. CPU: Intel Core i7-2630QM, 2.0GHz

2. Memory: 6GB

3. GPU: NVIDIA GeForce GT 540M, CUDA version is 2.1

4. System: Windows 7 Premium

Application settings used to effectively explore the configuration space are
as follows:

1. Input: 1530 x 1530 pixels pre-operative image

2. Number of random numbers: 100.000

5.3.2 Sampling Performance Comparison

In this section, some statistics on sampling performance are given. The
statistics start from a small amount of samples and then gradually increas-
ing to a big amount of samples. Generating 10 samples (Fig. 5.5(a)) seems
very inefficient and ineffective compared with its parallelized versions. The
inefficiency running in many threads parallely with only small number of
iterations originate from the cost of creating threads and the work-sharing
between these threads. In addition to CUDA, another cost also comes from
the data copy and transfer between the host and the device. However in the
first graph the cost of data copy and transfer is relatively small compared
to its high speed processing power that CUDA possesses. This explains why
CUDA is still faster than CPU parallel at this point. When performing 100
samples generation, the parallelized versions still take more time than its
serialized version, but now CUDA performs a bit worse than CPU paral-
lel. This small jump is caused by data copy and transfer that take more
time than before. Generating 1000 samples indicates that parallelized ver-
sions perform now much better than running it serially. However still at
this phase, CUDA performs a little bit slower that its counter part, CPU
parallel. This small difference becomes even less (slightly at the same level)
when we increase the number of samples to 10000. When it reaches 100000
samples, the difference between methods now becomes obvious as it is now
very expensive to generate samples serially and CUDA has shown quite a
significant speedup compared with the other two methods.
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(a) Average execution times (b) Average, Max, Min execution times

Figure 5.5: 10 Samples Comparison

(a) Average execution times (b) Average, Max, Min execution times

Figure 5.6: 100 Samples Comparison

5.3.2.1 Overall Performance Comparison

Experimental results in Table 5.1 and visually represented in Fig. 5.10 were
performed with the configured experiment settings above and an input brain
image with dimension of 1530 x 1530 px. The graph clearly shows that all
parallel methods outperform its serial computation.

The first method, OR parallel, as expected has obtained a slightly better
result than the original version with only 1.31 times speedup gain. This
result is fairly comprehensible as OR parallel will not improve the minimum
execution time but in fact it merely helps reducing the maximum time. AND
parallel to some extent managed to break the gap even further by obtaining
the ratio up to approximately 5 times more than its original version. This
result can be explained as in AND parallel, threads work collaboratively
with the others to find one single solution. The only main consideration of
this method is the time for (explicit or implicit) synchronizations between all
the threads. Synchronizations are required as it shares its resources among
all threads. Thus data integrity and coherence must be really taken care of.

OR+AND parallel method in the graph performs comparably fast with AND
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(a) Average execution times (b) Average, Max, Min execution times

Figure 5.7: 1000 Samples Comparison

(a) Average execution times (b) Average, Max, Min execution times

Figure 5.8: 10000 Samples Comparison

parallel hence we cannot decide which one is faster than the other one.
Manager-Worker method performs quite poorly compared to AND-based
techniques due to idle time it suffers when the Manager or the Worker has
to go through waiting time for data to be processed. The idle time has been
primarily a bottleneck in this method especially when there is an unbalanced
workload among different processes.

Table 5.1: Average execution times for different RG-RRT methods with
100.000 samples

Serial OR AND OR+AND Manager-Worker CUDA

Avg Time (s) 0.1605 0.1226 0.0323 0.0347 0.0636 0.01764
Speedup N/A 1.31 4.97 4.63 2.52 9.10
Improvement N/A 0.2361 0.7988 0.7838 0.6037 0.8901
Efficiency N/A 0.1636 0.6211 0.5782 0.3154 0.0091
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(a) Average execution times (b) Average, Max, Min execution times

Figure 5.9: 100000 Samples Comparison

5.3.3 Discussion

In this section of the report, some experiment results have been given both
on the CPU and the GPU parallelization techniques. The evaluation of
the parallel execution performance is measured with respect to speedup,
performance improvement and efficiency with reference to both sequential
and parallel processing time [53].

Speedup measurement indicates how much a parallel algorithm is faster
than a corresponding sequential algorithm. The calculation is done based
on equation:

Speedup =
sequential(time)/parallel(time)

The performance improvement however depicts relative improvement of the
parallel system over the sequential process. The calculation is done based
on equation:

Performance Improvement =
(sequential(time) - parallel(time))/sequential(time)

The last evaluation measurement is its efficiency. It is used to indicate how
well-utilized the processors are in solving the problem, compared to how
much effort is wasted in communication and synchronization. The equation
for calculating efficiency is:

Efficiency =
sequential(time) / (no-procs x parallel(time))
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Figure 5.10: Average execution times for different RG-RRT methods

Based on results shown in Table 5.1, massively parallelizing random numbers
generation and collision-checking in CUDA enabled-GPUs has proven to
give the most significant speedup and performance improvement compared
to the other CPU parallel techniques. However, in terms of efficiency, AND
parallel performs much better than the GPGPU technique. In fact, all CPU
parallelization techniques perform with much greater efficiency than running
it in the GPU. This great loss in efficiency is due to the I/O bottleneck
that involves device-host memory transfer as it was covered in the previous
chapter.

I/O problem has always been a bottleneck in GPGPU technique. The prob-
lem becomes more obvious when handling small data size. As we could ob-
serve in Fig. 5.5(a) - 5.9(a), the GPGPU technique performance is gradually
rising with the increase of sample size. Similar to the sample size, the big-
ger the image size, the more efficient the collision-checking will take place
as more data will then have to be processed in the GPU. From this obser-
vation, I can conclude that when only dealing with small data size ( size
≤ 100.000), it is more advisable to use CPU parallel rather than GPGPU
technique. This is done to avoid the device-host memory transfer overhead
that might beat the performance gain. However when data size is bigger
than 100.000, parallel computation in the GPUs might give better results as
the bottleneck will be relatively small compared to the performance gain.
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Chapter 6

Conclusions and Future
Work

6.1 Conclusions

Performance issue of RG-RRT path planning of the neurosurgical flexible
probe has been the main focus in this thesis. It mainly covers the imple-
mentation consideration of the algorithm until the parallelism exploitation
both in CPU and in GPU. The RG-RRT tree exploration was done entirely
in C++ and the image related issues ranging from displaying until processing
the input image has been thoroughly done in Python. Implementation in
C++ and Python has proven to be faster and much more efficient than
running it in MATLAB. The perfomance speedup that it has successfully
gained is around 12 - 13 faster than its MATLAB version. This signific-
ant performance gain was later brought even futher by implementing some
parallelization techniques both in CPU and in GPU.

In total there were 5 parallelization techniques covered in this graduation
project, 4 methods were done in CPU multi-core architecture and 1 method
was done in CUDA-enabled GPU. Those 4 methods that were performed
in CPU were OR parallel, AND parallel, OR+AND parallel and Manager-
Worker. Among these 4 methods, AND parallel has shown the most signi-
ficant result that could run up to 5 times faster than the original C++ and
Python version. Based on some further experiments, results have indicated
that when the algorithm was run in CUDA-enabled GPU, it could even reach
up to 10 times faster than its original version. Thus by implementing the
RG-RRT in C++ and then parallelizing it with CUDA, it could reach ap-
proximately 120 times faster than the original MATLAB version. It brings
us finally to a conclusion that RG-RRT is a parallelizable algorithm and can
be applied for massive parallelism implementation in the GPU despite its
low efficiency compared to the CPU parallelization techniques.
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6.2 Future Work

Although the primary goal of this project which was increasing the RG-
RRT path planning efficiency has been successfully accomplished yet there
are still many rooms of improvement. Currently steering the flexible proble
is only limited to the 2D CT/MRI brain images, allowing it to explore in the
3D configuration space would be very useful because 3D view can be very
detailed as it stores more information than 2D thus providing much more ac-
curacy. In the current implementation, the focus is merely the rapid explor-
ation of RG-RRT and not finding the most optimal path over a roadmap.
Hence an exploration to other algorithms that guarantee path optimality
such as RRT* and RRM could further be done for the use of neurosugical
flexible probe. Last but not least, increasing the efficiency and effectiveness
of the algorithm can be considered as the first step toward real-time RG-
RRT planning. Some algorithms that provide fast yet accurate replanning
could also be explored.
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