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Abstract

In this BSc project we study the convolution-type singular integral opera-
tors and mainly the Riesz transform. In the process of studying the Riesz
transform, we consider the maximal function and the conditions for the Lp-
boundedness of the maximal function. A special case of the Marcinkiewicz
interpolation theorem is treated, which will be used quite often in the further
treatment of the singular integral operators.

After this, a theorem is discussed which says something about the convolution-
type singular integral operators, that is, operators of the form (Tf)(x) =
(K ∗ f)(x) where K is the kernel with a singularity in the origin. In the
beginning there are quite restrictive conditions on the kernel, but these will
be weakened in the process.

After the study of the general singular integral operators, the Riesz transform
is introduced. The Lp-boundedness of the Riesz transform is proven using
previous results.

An estimation for the Laplacian is proven. With this estimation we prove a
characterisation of the Sobolev space W 2,p, which is the end result of this
project.

This project is based upon the �rst three chapters of [1].





Samenvatting

In dit BSc project bestuderen we de convolutie-type singuliere integraalope-
ratoren en met als hoofddoel de Riesztransformatie. In dit proces bekijken
we eerst de maximale functie en de voorwaarden voor de Lp begrensdheid
van deze. Een speciaal geval van de Marcinkiewicz interpolatiestelling wordt
behandeld, deze wordt vaak gebruikt in de verdere behandeling van de stof.

Daarna wordt een stelling behandeld die wat zegt over de convolutie-type sin-
guliere integraaloperator, dat wil zeggen een operator van de vorm (Tf)(x) =
(K ∗ f)(x) waarbij K de kernel is met een singulariteit in de oorsprong. In
het begin worden er nog een aantal strikte eisen gelegd op de kern, maar
deze worden gaandeweg verzwakt.

Na de studie van de algemene singuliere integraaloperatoren wordt de Riesz-
transformatie geïntroduceerd. De Lp begrensdheid van de Riesztransformatie
wordt bewezen gebruik makende van voorgaande resultaten.

Er wordt ook een afschatting voor de Laplaciaan bewezen. Met behulp van
deze afschatting wordt een karakterisering voor de Sobolevruimte W 2,p be-
wezen, wat het eindresultaat van dit project is.

Dit project is gebaseerd op de eerste drie hoofdstukken van [1].
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1
Preliminaries

1.1 Lp spaces and their dual

1.1.1 Lp spaces

1.1 De�nition Let X be a measure space and let µ be a measure on
X. For 0 < p < ∞ we denote the set of all complex-valued µ-measurable
functions such that ∫

|f(x)|p dµ <∞

by Lp(X,µ) (Or Lp if it is clear which measure space is meant). L∞(X,µ)
will denote the set of all complex-valued µ-measurable functions f on X
for which there exists a B > 0 such that µ{x : |f(x)| > B} = 0.
We will consider two functions on Lp to be equal if they are equal µ-a.e.

For 0 < p <∞ we can de�ne a quasi-norm on Lp of a function f ∈ Lp by

‖f‖p =
(∫

X

|f(x)|p dµ
)1/p

(1.1)

and for p =∞ by

‖f‖∞ = inf{B > 0 : µ{x : |f(x)| > B} = 0} (1.2)

Whenever 1 6 p 6 ∞ these quasi-norms are in fact norms and for any
1 6 p 6 ∞, it can be shown that Lp are complete normed vector spaces,
hence Banach spaces. These results are well known, and for a proof we refer
to [2].

The distribution function

1.2 De�nition The distribution function λf of a measurable function f is
the function de�ned on [0,∞) as follows

λf (α) = µ{x : |f(x)| > α}. (1.3)

Note that this is a well-de�ned expression since f is measurable and hence
|f | is too.
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1.3 Proposition For f in Lp(X,µ), 0 < p <∞ we have

‖f‖pp = p

∫ ∞
0

αp−1λf (α) dα. (1.4)

Proof.

p

∫ ∞
0

αp−1λf (α) dα = p

∫ ∞
0

αp−1

∫
X

1{|f |>α} dµ dα

=
∫
X

∫ ∞
0

pαp−11{|f |>α} dα dµ

=
∫
X

∫ |f(x)|

0

pαp−1 dα dµ(x)

=
∫
X

|f(x)|p dµ(x)

= ‖f‖pp

1.1.2 The normed dual of Lp(Rn)

The following theorem is from [2, Theorem 6.16], where a proof can be found.

1.4 Theorem Let 1 6 p < ∞ and let q be the conjugate exponent of p
(i.e. 1/p+ 1/q = 1). And let λ be a bounded linear functional on Lp(Rn).
Then there is a unique g ∈ Lq(Rn), such that

λ(f) =
∫

Rn
f(x)g(x) dx with f ∈ Lp(Rn)

Further we have that,
‖λ‖ = ‖g‖q

In other words, Lq is isometrically isomorphic to the dual space of Lp.

1.2 Inequalities and equalities

1.2.1 Inner regular measures

1.5 De�nition A measure µ on a σ-algebra in X containing all the Borel
sets is said to be inner-regular if the following relation holds for every Borel
set B,

µB = sup{µ(C) : C ⊂ B,C compact}

1.6 Theorem The Lebesgue measure is inner-regular.

Proof. See [2][Theorem 2.14].

1.2.2 A measure inequality

1.7 Theorem Let f, g and h be complex functions de�ned on a common
domain A. Suppose that

|f(x)| 6 |g(x)|+ |h(x)| (1.5)

then
µ {|f | > α} 6 µ

{
|g| > α

2

}
+ µ

{
|h| > α

2

}
(1.6)
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Proof. Note that {|g| + |h| > α} ⊂ {|g| > α/2} ∪ {|h| > α/2} because if
x in {|g| < α/2} and {|h| < α/2} then by DeMorgan, x in {|g|+ |h| < α}.
Taking complement gives the desired result.

1.2.3 Minkowski's inequality for integrals

1.8 Theorem If F (x, y) is a measurable function on the product space
Rn × Rn and if 1 6 p <∞, then(∫

Rn

(∫
Rn
|F (x, y)| dx

)p
dy

)1/p

6
∫

Rn

(∫
Rn
|F (x, y)|p dy

)1/p

dx

1.2.4 An important integral inequality

1.9 Theorem One has for x ∈ Rn and ε > 0 the following∫
ε>|x|

1
|x|a

= ε−a+n

∫
1>|x|

1
|x|a

when a > n,

and ∫
ε6|x|

1
|x|a

= ε−a+n

∫
16|x|

1
|x|a

when a < n,

and the integrals in the RHS are �nite.

Proof. Since the proofs are similar, only the �rst one will be shown.∫
|x|6ε

1
|x|a

dx =
∫
Sn−1

∫ ∞
0

1
ra
rn−1 dr dσ(λ)

Consider the inner integral with the substition u = r
ε ,∫ ∞

ε

rn−1

ra
dr = ε

∫ ∞
1

1
(uε)a+1−n du

= ε−a+n

∫ ∞
1

1
ua+1−n du

So, the equality is valid. Now we will show that this integral is bounded.

ε−a+n

∫ ∞
1

1
ua+1−n du =

[
rn−a

n− a

]∞
1

6 C if a > n

This means that integral is bounded by a constant times ε−a+n.

1.3 The Sobolev spaces W 2,p

For a full discussion of the Sobolev spaces Wm,p see [3].
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1.3.1 Weak derivatives

1.10 De�nition (multi-index) If α = (α1, . . . , αn) is an n-tuple of non-
negative integers, we will call α a multi-index. We denote by xα the mono-
mial xα1

1 · . . . · xαnn , this monomial has degree

|α| =
n∑
j=1

αj

Analogously, if we write Dj = ∂/∂xj , then

Dα = Dα1
1 · · ·Dαn

n

1.11 De�nition Let Ω be an open subset of Rn, and let f : Ω → R and
g : Ω→ R be locally integrable functions on Ω and if α is a multi-index we
say that g is the α-th weak derivative of f if the equality∫

Ω

fDαφdx = (−1)|α|
∫

Ω

gφ dx

holds for all smooth functions φ with compact support (that is φ ∈ C∞0 (Ω))
and for all i = 1, . . . , n.

1.3.2 The Sobolev spaces W 2,p(Rn)

1.12 De�nition We de�ne the Sobolev space W 2,p as follows

W 2,p(Rn) := {f ∈ Lp(Rn) : Dαf ∈ Lp(Rn) for 0 6 |α| 6 2}.

Where the derivates are understood to be the weak derivatives as de�ned
in De�nition 1.11.

1.3.3 The Sobolev norms

1.13 De�nition We will de�ne a functional ‖ · ‖2,p where 1 6 p < ∞ as
follows:

‖f‖2,p =

 ∑
06|α|62

||Dαf‖pp

1/p

(1.7)

for f in W 2,p(Rn).

1.14 Theorem W 2,p(Rn) with the norm given by (1.7) is a Banach space.

Proof. For a proof see [3, Theorem 3.3]

1.4 A special case of the Marcienkiewicz interpolation theorem

First we need a couple of de�nitions. Let T : Lp(Rn) → Lq(Rn) be a
mapping with 1 6 p 6∞, 1 6 q 6∞. Then T is said to be type (p, q) if

‖T (f)‖q 6 A‖f‖q, f ∈ Lp(Rn)

where A is independent of f . T : Lp(Rn) → Lq(Rn) is said to be of weak-
type (p, q) if

µ{x : |Tf(x)| > α} 6

(
A‖f‖p
α

)q
, q <∞
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where A is independent of f and α > 0, f ∈ Lp. If q = ∞ we say f is of
weak-type (p, q) if it is of type (p, q).

A mapping T from a complex vector space X into the set of all complex-
valued measurable functions Y is said to be sublinear if for all x, y ∈ X and
all α ∈ C we have that

|T (x+ y)| 6 |T (x)|+ |T (y)| and |T (αx)| = |α||T (x)|

Further, if V and W are subspaces of the vector space Z over scalar �eld
C, then we can form a new vector space V + W over C contained in Z by
considering all the vectors v + w where v ∈ V and w ∈W .

1.15 Proposition If T : Lp(Rn) → Lq(Rn) is of type (p, q) where 1 6
p 6∞, 1 6 q 6∞, then T is of weak-type (p, q)

Proof. We can assume that q < ∞ because when q = ∞ both de�nitions
coincide. Now, if T satis�es

‖T (f)‖q 6 A‖f‖q, f ∈ Lp(Rn)

then the goal is to show that it also satis�es

µ{x : |Tf(x)| > α} 6

(
A‖f‖p
α

)q
Note that

αqµ{x : |Tf(x)| > α} 6
∫
|Tf |q dµ = ‖Tf‖qq 6 (A‖f‖p)q

where the �rst inequality follows from Chebyshev's inequality.

Now we can state the following theorem (which is a special case of the
Marcienkiewicz interpolation theorem)

1.16 Theorem Suppose that 1 < r 6∞. If T is a sublinear mapping from
L1(Rn) + Lr(Rn) to the space of all measurable functions on Rn which is
simultaneously of weak-type (1, 1) and weak-type (r, r), then for all p such
that 1 < p < r, T is also of (weak-)type (p, p).

Proof. First we will prove the case where r <∞. Let f ∈ Lp(Rn) and let α
be a positive constant. Set

fα1 (x) =

{
f(x) if |f(x)| > α,

0 if |f(x)| 6 α,

and,

fα2 (x) =

{
f(x) if |f(x)| 6 α,

0 if |f(x)| > α.

Now f(x) = fα1 (x) + fα2 (x). It can be checked as follows that fα1 is an L1

function and fα2 is an Lr function. Since 1 < p we have,∫
|fα1 | dµ =

∫
|fα1 |p|fα1 |1−p dµ 6 α1−p

∫
|f(x)|p dµ <∞

Similarly since p < r,∫
|fα2 |r dµ 6 αr−p

∫
|f(x)|p dµ <∞
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Now, by sublinearity we have that,

|T (f)| 6 |T (fα1 )|+ |T (fα2 )|.

This in turn implies that

{x : |T (f)(x)| > α} ⊂ {x : |T (fα1 )(x)| > α

2
} ∪ {x : |T (fα2 )(x)| > α

2
}

so

λTf (α) = µ{x : |T (f)(x)| > α}

6 µ{x : |T (fα1 )(x)| > α

2
}+ µ{x : |T (fα2 )(x)| > α

2
}

by elementary properties of the measure µ. Therefore, we have by assumption
that

λTf (α) 6
A1

α/2

∫
|fα1 (x)| dµ+

Arr
(α/2)r

∫
|fα2 (x)|r dµ

We can rewrite this using the de�nitions of fα1 and fα2 as

λTf (α) 6
A1

α/2

∫
{|f |>α}

|f(x)| dµ+
Arr

(α/2)r

∫
{|f |6α}

|f |r dµ (1.8)

From Proposition 1.3 we know that for f ∈ Lp(X,µ) and 0 < p <∞ that

‖f‖pp = p

∫ ∞
0

αp−1λf (α) dα.

So, all we need to do is multiply both sides of (1.8) by pαp−1 and integrate
with respect to α.

‖T (f)‖pp 6
∫ ∞

0

pαp−1

(
A1

α/2

∫
{|f |>α}

|f | dµ+
Arr

(α/2)r

∫
{|f |6α}

|f |r dµ

)
dα

We will treat the integrals separately.∫ ∞
0

pαp−1 2A1

α

∫
{|f |>α}

|f | dµ dα = 2A1

∫ ∞
0

pαp−2

∫
{|f |>α}

|f | dµ dα

= 2A1

∫ ∞
0

∫
{|f |>α}

pαp−2|f | dµ dα

= 2A1

∫ ∫ |f(x)|

0

pαp−2|f | dα dµ(x)

=
2pA1

p− 1

∫
|f |p dµ

=
2pA1

p− 1
‖f‖pp

since p > 1. And similarly (assuming p < r)∫ ∞
0

pαp−1 2Arr
αr

∫
{|f |6α}

|f |r dµ dα =
∫

2Arr

∫ ∞
|f(x)|

pαp−1−r|f |r dα dµ(x)

=
∫

2Arr
p|f |p

r − p
dµ

=
2pArr
r − p

‖f‖pp.

Putting things together yields

‖T (f)‖pp 6

(
2pA1

p− 1
+

2pArr
r − p

)
‖f‖pp
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which is the requested inequality.

Now, suppose that r =∞. Write f = fα0 + fα1 for f ∈ Lp(Rn), where

fα0 (x) =

{
f(x) if |f(x)| > δα,

0 if |f(x)| 6 δα,

and,

fα1 (x) =

{
f(x) if |f(x)| 6 δα,

0 if |f(x)| > δα.

Then ‖T (fα1 )‖∞ 6 A∞,1‖fα1 ‖ 6 A∞,1δα = α/2 is we choose δ = 1
2A∞,1

.

So by de�nition {|T (fα1 )| > α/2} has measure zero.

So

λTf (α) 6 λTfα0 (α/2)+ 6 λTfα1 (α/2)

= λTfα0 (α/2)

from the de�nition of λ. Now T is of weak-type (1, 1) and (∞,∞) so

λTfα0 (α/2) 6
2A∞,0‖fα0 ‖1

α
=

2A∞,0
α

∫
|f |>δα

|f | dµ

Now,

‖Tf‖pp = p

∫ ∞
0

αp−1λTf (α) dα

6 p

∫ ∞
0

αp−1λTfα0

(α
2

)
dα

6 p

∫ ∞
0

αp−1 2A∞,0
α

∫
|f |>δα

|f | dµ dα

= 2pA∞,0
∫

Rn
|f |
∫ ∞

0

αp−21{f>δα dα dµ

= 2pA∞,0
∫

Rn
|f |
∫ |f |/δ

0

αp−2 dα dµ

= 2pA∞,0
∫

Rn
|f |
∫ 2A∞,1|f |

0

αp−2 dα dµ

= C‖f‖pp

which proves the case r =∞.

1.5 The maximal function

We de�ne the maximal function Mf of a locally integrable function f by

M(f)(x) = sup
r>0

1
µ(B(x, r))

∫
B(x,r)

|f(y)| dy. (1.9)

Where B(x, r) is the open ball of radius r centered at x.

With these de�nitions given, we can state the following theorem:
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1.17 Theorem Let f : Rn → R be a function.

1. If f ∈ Lp(Rn) for 1 6 p <∞ then the maximal functionMf is �nite
a.e.

2. If f ∈ L1(Rn) then for every α > 0 we have

µ{x : (Mf)(x) > α} 6
An
α
‖f‖1

where An is a constant that only depends on the dimension n. (An =
3n will do)

3. If f ∈ Lp(Rn) for 1 < p 6∞, then we have that Mf ∈ Lp(Rn) and
the inequality

‖Mf‖p 6 Ap,n‖f‖p
where Ap,n depends only on p and the dimension n.

Before we state the proof we need a technical lemma.

1.18 Lemma (of Vitali) Let B = {B1, B2, . . . , BN} be a �nite collection
of open balls in Rn. In this case, there exists a disjoint subcollection of B,
Bi1 , Bi2 , . . . , Bik that satis�es

µ

 N⋃
j=1

Bj

 6 3n
k∑
j=1

µ(Bij )

Proof. We will give a constructive proof.

Step 1: We pick the ball Bi1 in B with maximal radius, and then we delete
from B this ball Bi1 and as well all the balls that intersect with Bi1 .
This way we form a new set B′ from B

Step 2: Pick the ball Bi2 from B′ with the same procedure as in Step 1.
This yields a new collection of balls B′′.

Step N : Continuing the same way as before we get a collection of disjoint
balls Bi1 , Bi2 , . . . , Bik .

Now, let B̂ij denote the ball concentric with Bij but with three times its
radius. Note that if B and B′ are balls that intersect, with the radius of B
smaller of equal to the radius of B′, then B′ is contained in the ball B̂ that
is concentric with B but has three times its radius. Since any ball B in B
intersects a ball Bij and has smaller of equal radius than Bij , we have that

B ⊂ B̂ij . So,

µ

 N⋃
j=1

Bj

 6 µ

 k⋃
j=1

B̂ij

 6
k∑
j=1

m(B̂ij ) = 3d
k∑
j=1

m(Bij )

where the last inequality follows from the fact that the Lebesgue measure of
the dilation of a set in Rn by a factor δ > 0 is equal to the multiplication of
δn by the Lebesgue measure of that set.

Proof of Theorem 1.17. We will �rst prove 2. Let

Eα = {Mf > α}
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then we have for each x ∈ Eα that there exists a open ball Bx centered at
x such that

1
µ(Bx)

∫
Bx

|f(y)| dy > α

by the de�nition of the supremum. Thus, for each x ∈ Eα we have an open
ball Bx such that

µ(Bx) <
1
α

∫
Bx

|f(y)| dy (1.10)

Now, take a compact subset C of Eα, C is now covered by
⋃
x∈Eα Bx,

so, by compactness, we can select a �nite subcover of C, say
⋃N
j=1Bj .

Now, the previous lemma guarantees the existence of a disjoint subcollection
Bi1 , Bi2 , . . . , Bik of open balls with,

µ

 N⋃
j=1

Bj

 6 3n
k∑
j=1

µ(Bij ) (1.11)

Now, Equation (1.10) and (1.11) ensure that

µ(C) 6 µ

 N⋃
j=1

Bj

 6 3n
k∑
j=1

µ(Bij ) 6
3n

α

k∑
j=1

∫
Bij

|f(y)| dy

=
3n

α

∫
Sk
j=1 Bij

|f(y)| dy

6
3n

α

∫
Rn
|f(y)| dy

Taking the supremum of all compact C ⊂ Eα, we obtain the equality as
given in 2 by the inner regularity of the Lebesgue measure.

To prove 3, note that 2 says that Mf is of weak-type (1,1), the next step
in our proof is showing that Mf is also of weak-type (∞,∞) (and hence of
type (∞,∞)). So we must show that

‖Mf‖∞ 6 A∞‖f‖∞

This is true, where A∞ = 1. To show this let ε > 0, then there exists an
M > 0 such that M < ‖f‖∞ + ε where |f(t)| 6 M a.e. thus we have that
|f(t)| < ‖f‖∞ + ε a.e. Consider,

1
µ(B(x, r))

∫
B(x,r)

|f(y)| dy < 1
µ(B(x, r))

∫
B(x,r)

(‖f‖∞+ε) dy = ‖f‖∞+ε

If we now let ε→ 0 we obtain

1
µ(B(x, r))

∫
B(x,r)

|f(y)| dy 6 ‖f‖∞.

Since the bound is independent of r we take can the supremum over all
r > 0, now{

B :

∣∣∣∣∣sup
r>0

1
µ(B(x, r))

∫
B(x,r)

|f(y)| dy

∣∣∣∣∣ 6 B

}
⊃ {B : ‖f‖∞ 6 B} .

And, taking in�mums gives us the result since inf{B : ‖f‖∞ 6 B} = ‖f‖∞.
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If we now show that Mf is sublinear, then we can apply Marcinkiewicz's
interpolation theorem (becauseMf is de�ned on L1

loc
and L1+L∞ ⊂ L1

loc

1).
But this is obvious from the de�nition of Mf and the triangle inequality.

So, 3 follows immediately.

Now we will prove 1 as an easy corollary to 2 and 3. To this end, for p = 1,
consider

{Mf =∞} ⊂ {Mf > α}

for all α. Now, take the limit of α→∞ in µ{x : (Mf)(x) > α} 6 An
α ‖f‖1.

Now if 1 < p <∞, ‖Mf‖p is �nite, which implies that Mf is �nite a.e.

This theorem has an important corollary which we now state

1.19 Corollary (Lebesgue's di�erentiation theorem) If f ∈ L1(Rn),
then

lim
r→0

1
µ(B(x, r))

∫
B(x,r)

f(y) dy = f(x) (1.12)

for almost every x.

Proof. We will show that the set for every α > 0

Eα =

{
x ∈ Rn : lim sup

r→0

∣∣∣∣∣ 1
µ(B(x, r))

∫
B(x,r)

f(y) dy − f(x)

∣∣∣∣∣ > 2α

}

has measure zero. Then there immediately follows that

E =
∞⋃
n=1

E1/n

has measure zero. From this there follows that the limit in (1.12) holds for
every x ∈ Ec. Next we will �x α and use the fact that the continuous
functions of compact support are dense in L1(Rn). So, we can �nd for every
ε > 0 a continuous function g of compact support such that

‖f − g‖1 < ε

If g is continuous then,

lim
r→0

1
µ(B(x, r))

∫
B(x,r)

g(y) dy = g(x)

for all x. To see this, we can �nd for every x and every ε > 0, a δ > 0 such
that |x− y| < δ implies |g(x)− g(y)| < ε. Note that,

g(x)− 1
µ(B(x, r))

∫
B(x,r)

g(y) dy =
1

µ(B(x, r))

∫
B(x,r)

(g(x)− g(y)) dy

So,∣∣∣∣∣g(x)− 1
µ(B(x, r))

∫
B(x,r)

g(y) dy

∣∣∣∣∣ =
1

µ(B(x, r))

∫
B(x,r)

|(g(x)− g(y))| dy

1Let K be a compact set, and let f ∈ L1 + L∞ be written as f1 + f∞, thenZ
K
|f1 + f∞| 6

Z
|f11K |+

Z
|f∞1K |

6 ‖f1‖1‖1K‖∞ + ‖f∞‖∞‖1K‖1 < ∞
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Then we obviously have that the RHS is smaller than ε when r < δ/2. Which
proves this fact. So, we can write

1
µ(B(x, r))

∫
B(x,r)

f(y) dy − f(x) =
1

µ(B(x, r))

∫
B(x,r)

(f(y)− g(y)) dy

+
1

µ(B(x, r))

∫
B(x,r)

g(y) dy − g(x)

+ g(x)− f(x)

Thus,∣∣∣∣∣ 1
µ(B(x, r))

∫
B(x,r)

f(y) dy − f(x)

∣∣∣∣∣ 6
∣∣∣∣∣ 1
µ(B(x, r))

∫
B(x,r)

(f(y)− g(y)) dy

∣∣∣∣∣
+

∣∣∣∣∣ 1
µ(B(x, r))

∫
B(x,r)

g(y) dy − g(x)

∣∣∣∣∣
+ |g(x)− f(x)|

So,

lim sup
r→0

∣∣∣∣∣ 1
µ(B(x, r))

∫
B(x,r)

f(y) dy − f(x)

∣∣∣∣∣
6 lim sup

r→0

1
µ(B(x, r))

∫
B(x,r)

|f(y)− g(y)| dy

+ |g(x)− f(x)|

De�ne

Fα =

{
x ∈ Rn : lim sup

r→0

1
µ(B(x, r))

∫
B(x,r)

|f(y)− g(y)| dy > α

}
and

Gα = {x ∈ Rn : |f(x)− g(x)| > α}
Then we clearly have that Eα ⊂ (Fα∪Gα), because if f1 and f2 are positive,
then f1 + f2 > α if fi > α for at least one fi. Now we have by Chebychev's
inequality that

µ(Gα) 6
1
α
‖f − g‖1 <

ε

α
and due to Theorem 1.17 item 2 we have the weak-type estimate for the
Hardy-Littlewood maximal function

µ(Fα) 6
A

α
‖f − g‖1 <

Aε

α

So, combining these estimates yields

µ(Eα) 6
(A+ 1)ε

α
.

And since ε > 0 is arbitrary, there follows that µ(Eα) = 0.

1.6 Integral of Marcinkiewicz

1.20 De�nition Consider a closed set F . Let δ(x) denote the distance
from x to F . The integral

I(x) =
∫
|y|61

δ(x+ y)
|y|n+1

dy

is called the integral of Marcinkiewicz.



14 Preliminaries

1.21 Theorem

1. When x ∈ F c, then I(x) =∞,

2. For a.e. x ∈ F , I(x) is �nite.

We will prove the theorem using the following lemma.

1.22 Lemma Let F be a closed set. Suppose that F c has �nite measure.
Let

I∗(x) =
∫
δ(x+ y)
|y|n+1

dy

then I∗(x) is �nite for a.e. x ∈ F . Further∫
F

I∗(x) dx 6 cµ(F c) (1.13)

Proof of the lemma. It su�ces to prove (1.13), because if the integral of a
positive function is �nite the integrand is �nite almost everywhere. Because
the integrand is positive we can apply Tonelli's theorem. Formally,∫

F

I∗(x) dx =
∫
F

∫
δ(x+ y)
|y|n+1

dy dx

=
∫
F

∫
δ(y)

|x− y|n+1
dy dx

=
∫
F

∫
F c

δ(y)
|x− y|n+1

dy dx

=
∫
F c
δ(y)

(∫
F

1
|x− y|n+1

dx

)
dy

where the second equality follows from the fact that we integrate of the whole
space. The third equality follows from the fact that δ(y) = 0 for y ∈ F . We
will now consider the inner integral for y ∈ F c,∫

F

1
|x− y|n+1

dx.

The smallest value of |x − y| (as x varies over F ) is δ(y). Thus, we have
that (let z = x− y),∫

F

1
|x− y|n+1

dx =
∫
F−y

1
|z|n+1

dz

6
∫
δ(y)6|z|

1
|z|n+1

dz

6
c

δ(y)

where the �rst ineqality follows from F −y ⊂ {δ(y) 6 |z|} which is clear and
the second inequality follows from Theorem 1.9 (which can be used without
being afraid of circularities). So,

∫
F

I∗(x) dx 6
∫
F c

c

δ(y)
δ(y) dy = cµ(F c).

Which completes the present proof.
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Proof of Theorem 1.21. First we will prove part 1. The complement of F is
an open set. So if x ∈ F c, then δ(x + y) > c > 0 for an neighborhood of
the origin in y and in this case the integral diverges.

Let Bm be the ball B(0,m), and let Fm = F ∪Bcm. Then Fm is closed, as
it is a �nite union of closed sets. By DeMorgan its complement has �nite
measure. So, we can apply the lemma to Fm.

To prove the second part, let δm(x) denote the distance of x from Fm, and
let δ have its usual meaning. First observe that δ(x + y) = δm(x + y) if
|y| 6 1 and x ∈ Bm−2 as a �gure shows. Thus the lemma implies that
I(x) < ∞ for a.e. x ∈ Fm ∩ Bm−2. Taking the limit m → ∞ gives us the
desired result.

1.7 Decomposition in cubes of open sets in Rn

1.23 Theorem Let F 6= ∅ be a closed set in Rn. There exist cubes Qk
whose sides are parallel to the axes, with

1. Ω = F c =
∞⋃
k=1

Qk.

2. The interiors of Qk are mutually disjoint.

3. diameter(Qk) 6 d(Qk, F ) 6 4 diameter(Qk) for all k.

Proof. Consider the lattice of points with integer coordinates in Rn. This
lattice gives us a meshM0, which is a collection of cubes, where the vertices
of those cubes are the points in the lattice. So from the mesh M0 we can
get an in�nite chain of meshes Mk = 2−kM0 by bisecting the sides in 2k

parts. So, for each cube in the meshMk we get 2n cubes inMk+1 and the
cubes in the meshMk each have sides of length 2−k so, they have diameter
of
√
n2−k.

Further we have the layers Ωk de�ned by

Ωk = {x : c2−k < d(x, F ) 6 c2−k+1}

where c > 0 is a �xed number which we will determine later on. So, from
this de�nition we see that

Ω =
∞⋃

k=−∞

Ωk

We will now make a choice of cubes, and we will denote the resulting collec-
tion by F0. We de�ne F0 to be equal to

F0 =
⋃
k

{Q ∈Mk : Q ∩ Ωk 6= ∅}

So we have ⋃
Q∈F0

Q = Ω

since we stay away from F in the de�nition of F0. We will now prove that
for the right choice of c we have that

diameter(Q) 6 d(Q,F ) 6 4 diameter(Q) (1.14)

for Q ∈ F0. We will now prove Eq. (1.14). Suppose that Q ∈ Mk, then
diameter(Q) =

√
n2−k. And since Q ∈ F0, there exists x ∈ Q ∩ Ωk, thus

d(Q,F ) 6 d(x, F ) 6 c2−k+1
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and
d(Q,F ) > d(x, F )− diameter(Q) > c2−k −

√
n2−k

So, if we choose c =
√
n, we obtain Eq. (1.14). So, F0 as our collection

of cubes we obtain part 1 and part 3 of the theorem. Now, the only prob-
lem is that the collection of cubes from F0 are not necessarly disjoint (by
disjoint here we mean disjoint interiors), so we will re�ne the collection F0

without disturbing the parts we have already proven. Suppose Q1 ∈ Mk1

and Q2 ∈ Mk2 are two cubes. Then, if Q1 and 2 are not disjoint, one
must be contained in the other, by construction. So, begin with any cube
Q ∈ F0. Consider now the maximal cube in F0 which contains it. So, in
view of Eq. (1.14), for any cube Q′ ∈ F0 which contains Q ∈ F0 we have
diameter(Q′) 6 4 diameter(Q). Further any two cubes Q′ and Q′′ which
contain Q are obviously not disjoint. So, for any cube Q ∈ F0 there is a
maximal unique cube in F′ that contains it. So, as we have seen, these
cubes are disjoint. Now, let F be the collection of maximal cubes of F0, �rst
this collection the conclusions in the theorem are valid.

1.24 Theorem Let f : Rn → R be an integrable function and let α > 0
be a constant. Then there exists a partition of Rn in two sets, F and Ω such
that f(x) 6 α a.e. on F and Ω is the union of cubes Qk whose interiors
are disjoint and so that for each Qk we have

α <
1

µ(Qk)

∫
Qk

f(x) dx 6 2nα. (1.15)

Further we have that

µ(Ω) 6
1
α
‖f‖1

and,
1

µ(Qk)

∫
Qk

f(x) dx 6 2nα

Proof. We will give a constructive proof. First we decompose Rn into a mesh
of equal cubes Q′, with mutually disjoint interiors whose common interior is
so large that

1
µ(Q′)

∫
Q′
f(x) dx 6 α

This can easily be done. Let Q′ be one of the cubes in this mesh. Now, divide
Q′ into 2n congruent new cubes and let Q′′ denote one of these cubes. Then
have two cases,

Case one:
1

µ(Q′′)

∫
Q′′

f(x) dx 6 α.

Case two:
1

µ(Q′′)

∫
Q′′

f(x) dx > α.

In case two, we do not subdivide Q′′ any further and select this cube as
one of the cubes in the statement. We then have inequality (1.15) for Q′′

because

α <
1

µ(Q′′)

∫
Q′′

f(x) dx 6
1

2−nµ(Q′)

∫
Q′
f(x) dx 6 2nα

In the case one, we proceed as before. Next, we claim that f(x) 6 α a.e. in
F = Ωc. Due to Lebesgue's di�erentiation theorem we have for almost every
x ∈ F that,

f(x) = lim
Q

1
µ(Q)

∫
Q

f(y) dy
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where the limit is taken over all cubes Q centered at x and the diameter of
the cube goes to zero. But for each of these cubes case one holds. This ends
the proof. Note that in the Lebesgue di�erentiation theorem we use balls,
but we could as well use cubes, it makes no di�erence in Vitali's covering
lemma.

By Eq. (1.15) we can take as constant 2n in the second estimate, and also

µ(Ω) =
∑
k

µ(Qk) <
1
α

∫
Ω

f(x) dx 6
1
α
‖f‖1.

1.8 Extension of continuous functionals on dense subsets

1.25 Theorem Let X be a normed linear space and let W be a dense
subspace of X. Let Y be a Banach space and let T : W → Y be a bounded
linear operator then there exist a unique extension of T , T1 : X → Y that
preserves operator norm, that is ‖T‖ = ‖T1‖.

Proof. For a proof, see for example [4].

1.9 Fourier analysis

1.9.1 Convolutions

1.26 Theorem (Young's inequality) If f ∈ Lp(Rn) with 1 6 p 6 ∞,
and g ∈ L1(Rn). Then f ∗ g is well de�ned and lives in Lp(Rn). And,

‖f ∗ g‖p 6 ‖f‖p‖g‖1.

Proof. It is easy to see that,

|(f ∗ g)(x)| 6
∫
|f(x− y)||g(y)| dy

Now,(∫
|(f ∗ g)(x)|p dx

)1/p

6

(∫ (∫
|f(x− y)||g(y)| dy

)p
dx

)1/p

=
(∫ (∫

|f(x− y)||g(y)| dy
)p

dx

)1/p

6
∫
|g(y)|

(∫
|f(x− y)|p dx

)1/p

dy

= ‖f‖p‖g‖1

Where the second inequality follows from Minkowski's inequality for integrals
(Theorem 1.8).

1.9.2 Plancherel theorem

1.27 Theorem If f ∈ L1 ∩ L2, then f̂ ∈ L2 (where f̂ is the Fourier

transform of f) and ‖f̂‖2 = ‖f‖2.

Proof. For a proof see [5].
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2
Singular integrals

2.1 Singular integrals: The main theorem

2.1 Theorem Let K ∈ L2(Rn). Suppose the following:

1. The Fourier transform of K is essentially bounded by a constant B.

2. K is of class C1 (C1 is the class of continuous di�erentiable functions)
outside the origin and

|∇K(x)| 6 B

|x|n+1

3. for f in L1 ∩ Lp, set

(Tf)(x) =
∫
K(x− y)f(y) dy (2.1)

(This integral exists because of Young's inequality (Theorem 1.26).)

Then T is bounded in the Lp norm, that is,

‖T (f)‖p 6 Ap‖f‖p for 1 < p <∞

Where Ap only depends on p, B and n, but not on f . So, by Theorem 1.25
we can extend T to all of Lp by continuity because L1 ∩Lp is dense in Lp.

Proof. We will begin the proof1 by showing that L1 ∩Lp is dense in Lp. So
we must show that for every f ∈ Lp there exists a sequence fn ∈ L1 ∩ Lp
such that ‖fn− f‖p → 0 as n→∞. Let fn := f · 1[−n,n], then it is obvious
that fn is in Lp, to show that fn is in L1 we use Hölders inequality (where
q is the conjugated exponent of p),∫

|fn| 6
(∫
|f |p

)1/p

µ([−n, n])1/q <∞

1In this proof we will use C as a general constant, not necessarly the same at all
instances.
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So, since |fn− f |p 6 |f |p and |f |p is integrable, we can use Lebesgue Dom-
inated Convergence Theorem (LDCT) and the result follows immediately.

We proceed in three steps:

1. T is of weak-type (2, 2).

2. T is of weak-type (1, 1).

3. The Lp inequalities.

First step: T is of weak-type (2, 2).
If we take the Fourier transform of Equation (2.1) we obtain

T̂ f(y) = K̂(y)f̂(y)

for f ∈ L1 ∩ L2 because (Tf)(y) is actually the convolution (K ∗ f)(y).
K lives in L2, thus according to Theorem 1.26 (Tf) lives in L2 because
f ∈ L1 ∩ L2. So we have, if we use the Plancherel theorem (Theorem 1.27)
that

‖Tf‖2 = ‖T̂ f‖2 = ‖K̂f̂‖2 6 B‖f̂‖2 = B‖f‖2. (2.2)

Because of Equation (2.2), we can extend T to all of L2 where Equation (2.2)
is still valid by Theorem 1.25. By Proposition 1.15, T is now of weak-type
(2, 2).

Second step: T is of weak-type (1, 1).
We will treat Tf for f ∈ L1(Rn) by decomposing f as f = g + b. Now, we
need to �nd a constant C so that

µ{x : (Tf(x)) > α} 6
C

α
‖f‖1 where f ∈ L1(Rn) (2.3)

To this end, �x α > 0, and for this �xed α and |f(x)| we can apply Theorem
1.24. If we do this, we get disjoint F and Ω so that Rn = F ∪ Ω, and
|f(x)| 6 α for x ∈ F . Further we get that

Ω =
∞⋃
j=1

Qj

where the interiors of the cubes Qj are mutually disjoint. And �nally we get
that

µ(Ω) 6
C

α

∫
|f | dx and

1
µ(Qj)

∫
Qj

|f | dx 6 Cα. (2.4)

So, we set,

g(x) =

{
f(x) for x ∈ F ,

1
µ(Qj)

∫
Qj
f(x) dx for x ∈ intQj ,

(2.5)

which de�nes g(x) almost everywhere since the boundary of Qj has measure
zero. This, together with de�nition f(x) = g(x) + b(x) gives

b(x) = 0 for x ∈ F

(this is clear) and for x ∈ Qj we must have that

b(x) = f(x)− 1
µ(Qj)

∫
Qj

f(x) dx
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So, after integrating with respect to x over Qj there follows immediately
that, ∫

Qj

b(x) dx = 0 for each cube Qj .

From Tf = Tg + Tb it follows that

µ{|Tf | > α} 6 µ
{
|Tg| > α

2

}
+ µ

{
|Tb| > α

2

}
.

So it su�ces to establish inequalities similar to our desired inequality (2.3) for
both terms of the RHS in the equation above. First, note that g ∈ L2(Rn)
since we have by (2.5)

‖g‖22 =
∫
|g(x)|2 dx

=
∫
F

|g(x)|2 dx+
∫

Ω

|g(x)|2 dx

=
∫
F

|f(x)|2 dx+
∫

Ω

|g(x)|2 dx

6
∫
F

α|f(x)| dx+
∫

Ω

|g(x)|2 dx

6
∫
F

α|f(x)| dx+
∫

Ω

|Cα|2 dx

6
∫
F

α|f(x)| dx+ C2α2µ(Ω)

= α

(∫
F

|f(x)| dx+ C2αµ(Ω)
)

6 (C3 + 1)α‖f‖1 <∞

So, we can now apply the result from Step 1.

µ{x : |Tg(x)| > α/2} 6
D

α2
‖g‖22 6

D′α

α2
‖f‖1 =

D′

α
‖f‖1 (2.6)

To estimate Tb, we �rst de�ne bj(x) as,

bj(x) =

{
b(x) x ∈ Qj ,
0 x /∈ Qj .

Then we have that,

b(x) =
∞∑
j=1

bj(x)

and we have that for x ∈ F

(Tb)(x) =
∞∑
j=1

(Tbj)(x) (2.7)

(convergence will be shown below) where

Tbj(x) =
∫
Qj

K(x− y)bj(y) dy (2.8)

We can rewrite Tbj(x) as,

Tbj(x) =
∫
Qj

[K(x− y)−K(x− yj)]bj(y) dy
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where yj is the center of the cube Qj . This is because,∫
Qj

K(x− yj)bj(y) dy = K(x− yj)
∫
Qj

bj(y) dy = 0

Since

|∇K| 6 B

|x|n+1

there follows that for y ∈ Qj ,

|K(x− y)−K(x− yj)| 6 C
diameter(Qj)
|x− ȳj |n+1

(2.9)

where ȳj is a point on the line segment connecting yj and y. This can be
easily seen since,

|K(x− y)−K(x− yj)| =
∣∣∣∣∫ 1

0

d

dt
K(x− ty − (1− t)yj) dt

∣∣∣∣
=
∣∣∣∣∫ 1

0

∇K(x− ty − (1− t)yj) · (y − yj) dt
∣∣∣∣

6
∫ 1

0

∣∣∇K(x− ty − (1− t)yj) · (y − yj)
∣∣ dt

6
∫ 1

0

C diameter(Qj)
|x− (ty + (1− t)yj)|n+1

dt

for x ∈ F = (
⋃
j Qj)

c, and if ȳj is the point on the line connecting y and

yj where the denumerator is minimal we obtain (2.9). From Theorem 1.23
we know that the diameter of Qj is comparable to its distance from F . This
means that if x is a point in F , then the set of distances {|x− y| : y ∈ Qj}
are all comparable with each other. Hence,

|Tbj(x)| 6 C diameter(Qj)
∫
Qj

|b(y)|
|x− y|n+1

dy

But we have that |b(y)| 6 |f(x)|+ |g(x)| so,∫
Qj

|b(y)| dµ 6
∫
Qj

|f(y)| dµ+
∫
Qj

|g(y)| dµ

6
∫
Qj

|f(y)| dµ+
∫
Qj

1
µ(Qj)

∫
Qj

|f(y)| dµ

6
∫
Qj

|f(y)| dµ+ Cα

∫
Qj

dµ

Where the second inequality follows from (2.5) and the last one from (2.4).
So now there follows that∫

Qj

|b(y)| dy 6 (1 + C)αµ(Qj),

further we have that if we de�ne δ(x) := d(x, F ), we can note that δ(x) >
1
2 diameter(Qj) by Theorem 1.23. So if we integrate this, we obtain

diameter(Qj)µ(Qj) 6 C

∫
Qj

δ(y) dy.

From this and the fact that |x − y| are comparable, that is there exists
c1, c2 > 0 such that for all y0 ∈ Qj

c1|x− y| 6 |x− y0| 6 c2|x− y|
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there follows that for x ∈ F

|Tbj(x)| 6 Cα

∫
Qj

δ(y)
|x− y|n+1

dy

because

C diameter(Qj)
∫
Qj

|b(y)|
|x− y|n+1

dy 6 C ′ diameter(Qj)
∫
Qj

|b(y)|
|x− y0|n+1

dy

6 αC ′′
diameter(Qj)
|x− y0|n+1

6 Cα

∫
Qj

δ(y)
|x− y|n+1

dy.

So, now we can sum of all j to obtain (for x ∈ F ) the convergence of the
sum (2.8) and

|Tb(x)| 6 Cα

∫
Rn

δ(y)
|x− y|n+1

dy.

From Lemma 1.22 and Eq. (2.4) we see that∫
F

|Tb(x)| dx 6 Cαµ(Ω) 6 C‖f‖1

From Chebyshev's inequality there now follows that

µ{x ∈ F : |Tb(x)| > α/2} 6
2C
α
‖f‖1

But Eq. (2.4) tells us that µ(Ω) = µ(F c) 6 C
α ‖f‖1, but, when we take the

measure of {x ∈ F c : |Tb(x)| > α/2} we obtain a value smaller than µ(Ω).
So, we obtain

µ{x : |Tb(x)| > α/2} 6
C

α
‖f‖1 (2.10)

When we combine this with Eq. (2.6) we obtain

µ{x : |Tf(x)| > α/2} 6
C

α
‖f‖1.

That is, T is of weak-type (1, 1).

Third and �nal step: The Lp inequalities.

1. For p = 2 see the �rst step.

2. For 1 < p < 2 we will use the Marcienkiewicz interpolation theorem
(Theorem 1.16). To this end we must show that T is sublinear (it
is linear, so certainly sublinear) and note that T is well-de�ned on
L1(Rn)+L2(Rn) because of the linearity of T and the fact that Tf is
de�ned for both f ∈ L1 (by Young's inequality) and f ∈ L2 (by Step
1). Thus the interpolation theorem shows that

‖T (f)‖p 6 A‖f‖p for 1 < p < 2 and f ∈ Lp

3. For 2 < p < ∞ we will use the duality between Lp and Lq where
q is the conjugate exponent of p: Now we claim that if φ is locally
integrable and if

sup
∣∣∣∣∫ ψ(x)φ(x) dx

∣∣∣∣ = A <∞
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where the supremum is taken over all continuous ψ with compact
support and ‖ψ‖q 6 1, 1 < q < 2. In this case φ ∈ Lp and ‖ψ‖p = A.
For a proof of this fact see [2].

Now take f ∈ L1∩Lp, (2 < p <∞) and let ψ be of the type described
above, then

I =
∫∫

K(x− y)f(y)φ(x) dx dy

converges absolutely since,∫∫
|K(x− y)f(y)φ(x)| dx dy =

∫∫
|K(x− y)f(y)φ(x)| dy dx

=
∫
|φ(x)|

∫
|K(x− y)||f(y)| dy dx

=
∫

(|K| ∗ |f |)(x)|φ(x)| dx

=
∫

suppφ

(|K| ∗ |f |)(x)|φ(x)| dx

(|K| ∗ |f |)(x) is in L2 by Theorem 1.26, and by Cauchy-Schwartz
(|K| ∗ |f |)(x) is then in L1(suppφ). So by Tonelli-Fubini, the order of
integration can be switched. Now, the theorem is valid for 1 < q < 2,
so by Step 2 we have that∫

K(x− y)ψ(x) dx

belongs to Lq and is bounded in Lq norm by Aq‖ψ‖q = Aq.

Let K̃(x) = K(−x), then K̃ obviously satis�es the same conditions
as K. Then write T̃ f(x) for K̃ ∗ f(x), now Hölders inequality gives us
that

|I| =
∣∣∣∣∫ (Tf)ψ dx

∣∣∣∣
=
∣∣∣∣∫ fT̃ψ dx

∣∣∣∣
6
∫
|f(T̃ψ)| dx

6 ‖f‖p‖T̃ψ‖q
6 Aq‖f‖p‖ψ‖q = Aq‖f‖p

Now taking the supremum of all the ψ as indicated above gives us that

‖Tf‖p 6 Aq‖f‖p

for 2 < p <∞ completing the proof of the theorem.

2.2 Singular integrals: extensions and variants of the preceding

2.2 Corollary The results of Theorem 2.1 hold with the second condition
replaced by ∫

|x|>2|y|
|K(x− y)−K(x)| dx 6 B′

for 0 < |y|, and with the bound B′ replacing the bound B, indepedent of y.
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Proof. First we will show that this condition is implied by the �older� condi-
tion.

|K(x− y)−K(x)| =
∣∣∣∣∫ 1

0

d

dt
K(x− ty) dt

∣∣∣∣
=
∣∣∣∣∫ 1

0

∇K(x− ty) · y dt
∣∣∣∣

6
∫ 1

0

|∇K(x− ty) · y| dt

6
∫ 1

0

B|y|
|x− ty|n+1

dt if |x| 6= |ty| for all 0 6 t 6 1

Note that |x| 6= |ty| is certainly satis�ed (with 0 6 t 6 1) if |x| > 2|y|. First
note that if |x| > 2|y| and 0 6 t 6 1, then |x− ty| > |x|− |ty| > |x|− |y| >
1
2 |x|. So,∫

|x|>2|y|
|K(x− y)−K(x)| dx 6

∫
|x|>2|y|

∫ 1

0

B|y|
|x− ty|n+1

dt dx

=
∫ 1

0

∫
|x|>2|y|

B|y|
|x− ty|n+1

dx dt

6
∫ 1

0

∫
|x|>2|y|

B|y|
|x|n+1

dx dt

6
∫ 1

0

∫
|x|>1

B

|x|n+1
dx dt

6
∫ 1

0

C ′B dt

= C ′B

where we have use Theorem 1.9 to simplify the integral in the third step. The
rest of the argument is as in the proof of Theorem 2.1 except that the second
step (the proof of the weak-type (1, 1) inequality) is di�erent. Consider for
each cube Qj the cube Q∗j with the same center yj but which is expanded
2
√
n times. Then we have

1. Qj ⊂ Q∗j . If Ω∗ =
⋃
j Q
∗
j then we have Ω ⊂ Ω∗, and µ(Ω∗) 6

(2
√
n)nµ(Ω). And if F ∗ = (Ω∗)c then F ∗ ⊂ F .

2. If x /∈ Q∗j then we have that |x− yj | > diameter(Qj) and 2|y− yj | 6
diameter(Qj) for all y ∈ Qj . So, for y ∈ Qj we have |x − yj | >
2|y − yj |.

As before

Tbj(x) =
∫
Qj

[K(x− y)−K(x− yj)]bj(y) dy.

So

|Tbj(x)| 6
∫
Qj

|K(x− y)−K(x− yj)||bj(y)| dy.

As before we can sum over all j∑
j

|Tbj(x)| 6
∑
j

∫
Qj

|K(x− y)−K(x− yj)||bj(y)| dy.
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From this there follows that (writing F ∗ = (
⋃
j Q
∗
j )
c =

⋂
j(Q

∗
j )
c)∫

F∗
|Tb(x)| dx 6

∑
j

∫
x∈F∗

∫
Qj

|K(x− y)−K(x− yj)||bj(y)| dy dx

6
∑
j

∫
x∈(Q∗j )c

∫
Qj

|K(x− y)−K(x− yj)||bj(y)| dy dx

6
∑
j

∫
x/∈Q∗j

∫
Qj

|K(x− y)−K(x− yj)||bj(y)| dy dx

Because the integrand is positive we can switch the order of integration by
Tonelli's theorem. So if we substitute x′ = x− yj and y′ = y − yj , then we
have that if y ∈ Qj that∫
x/∈Q∗j

|K(x−y)−K(x−yj)| dx 6
∫
|x′|>2|y′|

|K(x′−y′)−K(x′)| dx′ 6 B′

where the bound is given by the hypothesis. So∫
F∗
|Tb(x)| dx 6 B′

∑
j

∫
Qj

|b(y)| dy (2.11)

The RHS is bounded by C‖f‖1 as derived in the proof of the preceding
theorem. This takes us back to Eq. (2.10) and then rest of the proof is the
same as in the proof of the preceding theorem.

Now, we want to remove the restrictive conditions on K, especially the
condition that K ∈ L2. In the process we will improve the bound on |∇K|
too.

2.3 Theorem Suppose the kernel K(x) satis�es the following conditions,

1. |K(x)| 6 B/|x|n for 0 < |x|.

2. ∫
|x|>2|y|

|K(x− y)−K(x)| dx 6 B

for 0 < |y| and,

3. ∫
R1<|x|<R2

K(x) dx = 0 (2.12)

for 0 < R1 < R2 <∞

And for f ∈ Lp(Rn) where 1 < p <∞ let (for ε > 0)

Tε(f)(x) =
∫
|y|>ε

f(x− y)K(y) dy. (2.13)

Then we have the bound

‖Tε(f)‖p 6 Ap‖f‖p (2.14)

where Ap is independent of f and ε. Further, we have for each f ∈ Lp(Rn)
that,

lim
ε→0

Tε(f) = T (f)

exists in the Lp-norm. The operator T so de�ned also satis�es

‖T (f)‖p 6 Ap‖f‖p
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We will use the following lemma to prove Theorem 2.3

2.4 Lemma Suppose K satis�es the conditions of the above theorem with
bound B. Let

Kε(x) =

{
K(x) if |x| > ε

0 if |x| < ε.

Then we have that Kε ∈ L2(Rn). For the Fourier transform of Kε we have
the following estimate

sup
y
|K̂ε(y)| 6 CB, ε > 0 (2.15)

where C only depends on n.

Proof. Kε obviously lives in L2 since∫
|Kε(x)|2 dx =

∫
|x|>ε

|K(x)|2 dx

6
∫
|x|>ε

B2

|x|2n
dx

And this integral is �nite (since n > 1) by Theorem 1.9.

We will prove the estimate (2.15) �rst for the special case ε = 1. First we
will prove that Kε(x) satis�es the same conditions as K(x) except that the
bound B must be replaced by CB. First note that

|Kε(x)| 6 |K(x)| 6 B

|x|n+1
.

And ∫
R1<|x|<R2

Kε(x) dx = 0 for all 0 < R1 < R2

this is clear from the same integral equality for K(x), since it is valid for all
0 < R1 < R2. And �nally, consider the four cases

1. |x− y| < ε, |x| < ε;

2. |x− y| < ε, |x| > ε;

3. |x− y| > ε, |x| < ε;

4. |x− y| > ε, |x| > ε.

In the �rst case the integral from condition 2 is bounded by 0, in the second
and third case by CB and in the last case by B. We will show the second

case, the third case is similar. Since |x| > 2|y|, |x| > ε and |x − y| < ε we
have that |x|/2 6 |x| − |y| 6 |x− y| < ε so ε < |x| < 2ε, So,∫

|x|>2|y|
|Kε(x− y)−Kε(x)| dx 6

∫
ε<|x|<2ε

|Kε(x)| dx 6 CB

Now,

K̂1(y) = lim
R→∞

∫
|x|6R

e2πix·yK1(x) dx

=
∫
|x|61/|y|

e2πix·yK1(x) dx+ lim
R→∞

∫
1/|y|6x6R

e2πix·yK1(x) dx

:= I1 + lim
R→∞

I2
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But, ∫
|x|61/|y|

e2πix·yK1(x) dx =
∫
|x|61/|y|

[
e2πix·y − 1

]
K1(x) dx

because of the cancellation equation (2.12). Thus,

|I1| 6
∫
|x|61/|y|

∣∣[e2πix·y − 1
]
K1(x)

∣∣ dx
=
∫
|x|61/|y|

∣∣[e2πix·y − 1
]∣∣ |K1(x)| dx

= |y|
∫
|x|61/|y|

|x|
∣∣[e2πix·y − 1

]∣∣
|x||y|︸ ︷︷ ︸

6C

|K1(x)| dx

6 C|y|
∫
|x|61/|y|

|x||K1(x)| dx

6 BC|y|
∫
|x|61/|y|

1
|x|n−1

dx

= BC
|y|
|y|

∫
|x|61

1
|x|n−1

dx

6 BC ′

where the last equality and inequality follows from Theorem 1.9.

To estimate I2 take z = y/(2|y|2), then e2πiy·z = −1, thus

I2 =
∫

1/|y|6|x−z|6R
e−2πi(x−z)·yK1(x− z) dx

= −
∫

1/|y|6|x−z|6R
e−2πix·yK1(x− z) dx

= −
∫

1/|y|6|x|6R
e−2πix·yK1(x− z) dx

+

(∫
1/|y|6|x|6R

e−2πix·yK1(x− z) dx

−
∫

1/|y|6|x−z|6R
e−2πix·yK1(x− z) dx

)
.

Thus, we have

I2 =
1
2

∫
1/|y|6|x|6R

e−2πix·y[K1(x)−K1(x− z)] dx

+
1
2

(∫
1/|y|6|x|6R

e−2πix·yK1(x− z) dx

−
∫

1/|y|6|x−z|6R
e−2πix·yK1(x− z) dx

)
.

|z| = 1
2|y| , thus we have that∣∣∣∣∣12

∫
1/|y|6|x|6R

e−2πix·y[K1(x)−K1(x− z)] dx

∣∣∣∣∣
6
∫
|x|>2|z|

|K1(x)−K1(x− z)| dx 6 CB
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On the other hand, let E be the symmetric di�erence of the sets {x : 1
|y| <

|x| 6 R} and {x : 1
|y| < |x− z| 6 R}, then∣∣∣∣∣
(∫

1/|y|6|x|6R
e−2πix·yK1(x− z) dx

−
∫

1/|y|6|x−z|6R
e−2πix·yK1(x− z) dx

)∣∣∣∣∣
6
∫
E

|K1(x− z)| dx.

By using that |z| 6 1
2|y| , it follows that

E ⊂
{
x :

1
2|y|

6 |x| 6 2
|y|

}
∪
{
x :

R

2
6 |x| 6 2R

}
.

for R su�ciently large (R > 1
2|y| ). Thus by the condition |K(x)| 6 B/|x|n

for 0 < |x| and Theorem 1.9. this implies that∣∣∣∣∣
(∫

1/|y|6|x|6R
e−2πix·yK1(x− z) dx

−
∫

1/|y|6|x−z|6R
e−2πix·yK1(x− z) dx

)∣∣∣∣∣
6
∫

1
|y|6|x|6

2
|y|

|K1(x− z)| dx+
∫
R
2 6|x|62R

|K1(x− z)| dx

6 CB

Summing all the above yields supy |K̂1(y)| 6 CB.

So, the present theorem is proven for K1. To pass to the general case Kε

we introduce the dilation operator τε, that is (τεf)(x) = f(εx). Note that,
now let K be given and de�ne K ′(x) = εnK(εx), then we know that K ′

satis�es the hypothesis of the lemma with the same bound B. Now, let

K ′1(x) =

{
K ′(x) if |x| > 1,
0 if |x| < 1,

then we have found that,

|K̂ ′1(y)| 6 CB.

Further we can easily show that the Fourier transform of ε−nK ′1(xε ) is

K̂ ′1(εx) by elementary properties of the Fourier transform, see for exam-

ple [6, Proposition 1.2, Ch. 5]. K̂ ′1(εx) this is obviously bounded by CB.
But ε−nK ′1(xε ) = Kε(x) proving the lemma.

Proof of Theorem 2.3. K satis�es hypotheses 1, 2 and 3 from Theorem 2.3.
Then Kε satis�es the same conditions with bounds not greater than CB
where C depends only on the dimension n. This was pointed out in the
lemma. As we have pointed out in the previous lemma Kε ∈ L2(Rn), ε > 0.
Now we can apply Corollary 2.2 to Kε since

(Tεf)(x) =
∫
Kε(x− y)f(y) dy =

∫
|y|>ε

K(y)f(x− y) dy

then the corollary gives us

‖Tε(f)‖p 6 Ap‖f‖p.



30 Singular integrals

We will now prove that limε→0 Tε(f) = T (f) exists in the Lp norm. Suppose
that f1 is a function from C1

c , then

Tε(f1)(x) =
∫
|y|>ε

K(y)f1(x− y) dy

=
∫
|y|>1

K(y)f1(x− y) dy +
∫

1>|y|>ε
K(y)[f1(x− y)− f(x)] dy

where the second integral follows from the condition∫
1>|y|>ε

K(y) dy = 0.

Now, f1 is an L1 function, since the continuous compacted supported func-
tions are bounded, say by some constant M2, thus∫

|f1| dµ 6
∫

supp f

|M | dµ = M · µ(supp f)

So, by Theorem 1.26 we know that the �rst integral lives in Lp (since K1 ∈
L2(Rn)). Because f1 which has compact support has a continuous derivative
we can say that the derivative of f1 is bounded because the derivative is
continuous by assumption. So let A denote the bound of the derivative of
f1. Then

|f1(x− y)− f1(x)| 6 A|y|.

But we clearly have that the second integral is supported in as �xed compact
set since the integrand is zero for large |x|. Together with the bound, we have
that the second integral converges uniformly in x as ε → 0. Now we note
that the second integral converges in the Lp norm as ε → 0. Suppose that
fε(x) which is compactly supported in a �xed set K converges uniformly in
x as ε→ 0 to f(x), then∫

K

|fε − f | 6
∫
K

‖f − fε‖∞ = ‖f − fε‖∞µ(K) <∞

so after taking the 1/p-th power of both sides, we obtain the desired assertion.

An arbitrary f ∈ Lp can be written as f = f1+f2 where f1 is continuous and
has compact support with one continuous derivative, and where f2 is small,
that is, ‖f2‖p 6 δ for some chosen δ > 0 because the C1 functions with
compact support are dense in Lp. So we have that ‖Tε(f2)‖p 6 Ap‖f2‖p.
First we will show that the limiting operator T exists. First we will show that
for f ∈ C∞c (Rn) and for any y 6= 0 we have∫

|f(x− y)− f(x)|p dx 6 C|y|p

So,

f(x− y)− f(x) =
∫ 1

0

d

dt
f(x− ty) dt

=
∫ 1

0

∇f(x− ty) · −y dt

=
∫ |y|

0

∇f(x− t′y′) · −y′ dt′

2Because the compactly supported functions are zero outside a compact set (hence
bounded outside that set) and bounded in the compact set because a continuous function
on a compact set is compact, and thus in the Rn case bounded.
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where y′ = y/|y|. Thus

(∫
|f(x− y)− f(x)|p dx

)1/p

=

(∫ ∣∣∣∣∣
∫ |y|

0

∇f(x− t′y′) · −y′ dt′
∣∣∣∣∣
p

dx

)1/p

6
∫ |y|

0

(∫
|∇f(x− t′y′) · −y′|p dx

)1/p

dt′

6 |y|
n∑
j=1

∥∥∥∥ ∂f∂xj
∥∥∥∥
p

.

So, for 0 < η < ε then we have

‖Tηf − Tεf‖p 6
∫
η<|y|6ε

|K(y)|
(∫
|f(x− y)− f(x)|p dx

)1/p

dy

6 C

∫
η<|y|6ε

|y||K(y)|

6 CBε→ 0 as η, ε→ 0

So, for every function f ∈ C∞c , {Tεf} is a Cauchy sequence in Lp(Rn) so
the limits Tf ∈ Lp exists and Tεf → Tf in the Lp-norm

Now, the limiting operator T satis�es ‖Tf‖p 6 Ap‖f‖p because we have for
every δ > 0 (‖Tεf − Tf‖p < δ for ε small enough),

‖Tf‖p = ‖(T + Tε − Tε)f‖p 6 ‖Tεf‖+ ‖Tεf − Tf‖p 6 ‖Tεf‖+ δ

2.3 Singular integral operators which commute with dilations

2.3.1 Lp limit

2.5 De�nition A function K : Rn → C is said to be homogeneous of
degree k if K(εx) = εkK(x) for ε > 0 and x ∈ Rn.
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2.6 Theorem Let Ω be homogeneous of degree 0. Suppose that Ω is
bounded and suppose that Ω satis�es the condition∫

Sn−1
Ω dσ = 0

where Sn−1 is the unit sphere and dσ the induced Euclidean measure on
Sn−1. Further suppose that if

sup
|x−x′|6δ,|x|=|x′|=1

|Ω(x)− Ω(x′)| = ω(δ)

then ∫ 1

0

ω(δ)
δ

dδ <∞.

For 1 < p <∞, f ∈ Lp(Rn) and ε > 0 let

Tε(f)(x) =
∫
ε6|y|

Ω(y)
|y|n

f(x− y) dy

Then,

1. There exists a bound Ap which is independent of f and ε such that

‖Tε(f)‖p 6 Ap‖f‖p;

2. lim
ε→0

Tε(f) = T (f) exists in the Lp norm and

‖T (f)‖p 6 Ap‖f‖p;

Proof. For item 1 and 2 we merely need to show that

K(x) =
Ω(x)
|x|n

satis�es the condition∫
|x|>2|y|

|K(x− y)−K(x)| dx 6 B

by Theorem 2.3. So,

K(x− y)−K(x) =
Ω(x− y)− Ω(x)
|x− y|n

+ Ω(x)
(

1
|x− y|n

− 1
|x|n

)
:= I1 + I2.

When |x| > 2|y| with 0 6 θ 6 1, we have that

|x− θy| 6 |x|+ |y| 6 3
2
|x|

and

|x− y| > ||x| − |y|| > |x| − |y| > 1
2
|x|

So, �rst de�ne f(x) = |x|n for x ∈ Rn − {0}, then the mean value theorem
tells us that there exists θ ∈ [0, 1] such that

|f(x)− f(x− y)| 6 |∇f(x− θy)||y|

Now we will determine ∇f(x), note that

∂f

∂xi
=
xin|x|n

|x|2
= nxi|x|n−2
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So, |∇f(z)| is equal to

|∇f(z)| =

√√√√ n∑
i=1

z2
i n

2|z|2n−4 = n|z|n−1

Finally, we get the requested inequality if we substitute z = x− θy.

∣∣∣∣ 1
|x− y|n

− 1
|x|n

∣∣∣∣ =
∣∣∣∣ |x|n − |x− y|n|x− y|n|x|n

∣∣∣∣
6 C ′′

|y||x− θy|n−1

|x− y|n|x|n

6 C ′
|y||x|n−1

|x− y|n|x|n

6 C
|y||x|n−1

|x|n|x|n

6 C
|y|
|x|n+1

.

and on the other hand, when |x| > 2|y|∣∣∣∣ x− y|x− y|
− x

|x|

∣∣∣∣ 6 C
|y|
|x|
.

because we can take without loss of generality that |x| = 1 since we can divide
both x and y by |x|. Then rotate both vectors until x = (1, 0, 0, . . . , 0), now
rotate around the x-axis until y is of the form y = (a, b, 0, . . . , 0). Then a
geometric argument shows that requested inequality.

Therefore it follows that∫
|x|>2|y|

|K(x− y)−K(x)| dx 6
∫
|x|>2|y|

|I1| dx+
∫
|x|>2|y|

|I2| dx

6
∫
|x|>2|y|

1
|x− y|n

∣∣∣∣Ω( x− y
|x− y|

)
−Ω

(
x

|x|

)∣∣∣∣ dx
+ C‖Ω‖∞|y|

∫
|x|>2|y|

1
|x|n+1

dx

6 C

∫
|x|>2|y|

1
|x|n+1

ω

(
2
|y|
|x|

)
dx+ C ′‖Ω‖∞

= C

∫ ∞
2|y|

∫
Sn−1

1
r
ω

(
2
|y|
r

)
dσ(x′) dr + C ′‖Ω‖∞

6 C

∫ 1

0

ω(δ)
δ

dδ + C ′‖Ω‖∞

6 B
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3
Riesz transforms and a bound for the

Laplacian

3.1 Riesz transforms

3.1 De�nition De�ne for f ∈ Lp(Rn), 1 6 p < ∞ (where y =
(y1, y2, . . . , yn))

Rj(f)(x) = lim
ε→0

cn

∫
ε6|y|

yj
|y|n+1

f(x− y) dy for j = 1, . . . , n.

Where

cn =
Γ
(
n+1

2

)
π
n+1

2

.

Those transforms are called the n Riesz transforms.

Thus Rj is completely de�ned by the kernel Kj(x) = Ωj(x)|x|−n where
Ωj(x) = cnxj |x|−1. But, it is not totally clear if this integral exists in the
�rst place, but this will be shown, together with the Lp boundedness of the
Riesz transform in the following theorem.

3.2 Theorem The limit in the de�nition of the Riesz transforms exists and
the Riesz transforms are Lp bounded for 1 < p <∞, that is ‖Rj(f)(x)|p 6
Ap‖f‖p

Proof. When we show that Ωj(x) = cn
xj
|x| satis�es the hypotheses of Theo-

rem ??. It is clear that Ωj is homogeneous of degree 0 i.e. Ωj(εx) = Ωj(x).
Now, ∫

Sn−1

xj
|x|

dσ(x) = 0

is obviously true since |x| = 1 on the unit sphere. So clearly ω(δ) = δ, so∫ 1

0

1 dδ = 1 <∞

Which completes the present proof.
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3.3 Theorem If f ∈ Cc(Rn) then for j = 1, . . . , n we have

(R̂jf)(x) = i
xj
|x|
f̂(x).

where f̂ denotes the Fourier transform of f

3.2 A bound for the Laplacian

3.4 Theorem Suppose f ∈ C2 and suppose that f has compact support.
Let ∆f denote the Laplacian of f . Then we have the bound∥∥∥∥ ∂2f

∂xj∂xk

∥∥∥∥
p

6 Ap‖∆f‖p 1 < p <∞ (3.1)

Proof. This follows from the Lp boundedness of the Riesz transforms (The-
orem 3.2) and the identity

∂2f

∂xj∂xk
= −RjRk∆f (3.2)

Before we prove (3.2) we show how this implies (3.1)∥∥∥∥ ∂2f

∂xj∂xk

∥∥∥∥
p

= ‖ −RjRk∆f‖p

= ‖RjRk∆f‖p
6 Bp‖Rk∆f‖p
6 BpCp‖∆f‖p
= Ap‖∆f‖p.

Now we'll prove (3.2), it is a well know fact that,

∂̂f

∂xj
= −2πixj f̂(x)

Thus,

∂̂2f

∂xj∂xk
= −2πixk

∂̂f

∂xj

= −4π2xjxkf̂(x)

= −
(
ixj
|x|

)(
ixk
|x|

)
(−4π|x|2)f̂(x)

= −
(
ixj
|x|

)(
ixk
|x|

)
∆̂f(x)

= −(RjRk∆f)b
Taking the inverse Fourier transform of this equation yields (3.2). This com-
pletes the proof.



4
The domain of the Laplacian in Lp(Rn)

4.1 The domain of the Laplacian in Lp(Rn)

We can now formulate our main result.

4.1 Theorem

W 2,p(Rn) = {f ∈ Lp(Rn) : ∆f ∈ Lp}

Proof. De�ne ‖|f‖| = ‖f‖p + ‖∆f‖p, this is clearly a norm. Now, assume
that ‖|.‖| is equivalent to ‖.‖W 2,p for f ∈ C2

c , that is there exist C1, C2 such
that

C1‖|f‖| 6 ‖f‖W 2,p 6 C2‖|f‖| for f ∈ C2
c (4.1)

De�ne D(∆) = {f ∈ Lp(Rn) : ∆f ∈ Lp} where the derivative is weak
derivative. It is clear that W 2,p ⊂ D(∆), since W 2,p is just more restrictive
subset of Lp than D(∆).

Now we will prove that we have an Lp bound on our �rst order partial
derivatives in terms Lp-bound on the second order partial derivatives. To
this end let f be a function from C2

c (R), then let K be the support of a
chosen f ∈ C2

c , then de�ne t = inf K and t+ d = supK, then

f(t+ h) =
∫ h

0

f ′(t+ r) dr

then

|f(t+ h)|p =

∣∣∣∣∣
∫ h

0

f ′(t+ r) dr

∣∣∣∣∣
p

6

(∫ h

0

|f ′(t+ r)|

)p
6 ‖f ′‖pp‖1[t,t+h]‖q
= hp/q‖f ′‖pp.
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So,

‖f‖pp =
∫ d

0

|f(t+ h)|p dh

6
∫ d

0

(∫ h

0

hp/q|f ′(t+ r)|p dr

)
dh

=
∫ d

0

∫ d

r

hp/q|f ′(t+ r)|p dh dr

6 C

∫ d

0

|f ′(t+ r)|p dr

= C‖f ′‖pp.

For the case that f : Rn → R we �x the other variables and apply the same
result.

Now, consider the space (D(∆), ‖|.‖|) and consider a function f from this
space, then since C2

c is dense in this space, we can pick (fn) ⊂ C2
c that

converges to f in the ‖|.‖| norm. So in particular fn → f in the Lp norm. Since
(fn) converges, the (fn) form a Cauchy sequence in ‖|.‖|, by the equivalence
of the norms (Eq. 4.1) this is a Cauchy sequence in W 2,p too. So, since
W 2,p is a Banach space, the fn converge to a function f̃ in the W 2,p-norm,
so in particular in Lp. That f = f̃ now follows from the fact that Lp is a
Hausdor� space, so the limit is unique. So we can take the limit n→∞ in

C1‖|fn‖| 6 ‖fn‖W 2,p 6 C2‖|fn‖| for fn ∈ C2
c

to obtain the same inequality for functions f ∈ W 2,p. So, now we have
by Theorem 3.4 a bound on the second-order mixed derivatives and by a
previous remark on the �rst partial derivatives too (where the bound is still
valid for the same reason). So if f ∈ D(∆), then f ∈W 2,p(Rn).

Finally, we need to prove the equivalence of the norms. Now, C1 = 1 because
we just remove some terms, since

‖f‖2,pW =
∑

06|α|62

‖Dαf‖p.

So,
‖f‖p + ‖∆‖p 6 ‖f‖W 2,p .

C2 exists by Poincaré's inequality. A question that might arise is `what do
the derivatives become in the limit?', as we will see these become the weak
derivatives, so then the proof is complete. De�ne Tij = ∂2

∂xi∂xj
, and let g

be a test function (g ∈ C∞c (Rn), and let fn be the sequence of continuous
functions from C2

c that converge to f ∈ Lp in the Lp-norm (by density),
then ∫

Tij(f)g dµ =
∫

lim
n

∂2fn
∂xi∂xj

g dµ

= lim
n

∫
∂2fn
∂xi∂xj

g dµ

= lim
n

∫
fn

∂2g

∂xi∂xj
dµ

=
∫
f

∂2g

∂xi∂xj
dµ

So Tijf is the weak mixed order derivative of f .
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