
Language-Parametric Techniques for
Language-Specific Editors

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op woensdag 29 januari 2014 om 15 uur door

Maartje de JONGE

doctorandus wiskunde
geboren te Amsterdam



Dit proefschrift is goedgekeurd door de promotoren:

Prof. dr. E. Visser
Prof. dr. A. van Deursen

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. E. Visser Delft University of Technology, promotor
Prof. dr. A. van Deursen Delft University of Technology, promotor
Prof. dr. R. Grimm New York University
Prof. dr. S. Thompson University of Kent
Dr. J. J. Vinju Centrum Wiskunde & Informatica
Prof. dr. ir. H. J. Sips Delft University of Technology
Prof. dr. C. M. Jonker Delft University of Technology

The work in this thesis has been carried out at the Delft University of Technol-
ogy, under the auspices of the research school IPA (Institute for Programming
research and Algorithmics).

Copyright © 2014 Maartje de Jonge

Cover: Breaking Waves – Dominic Alves
(http://www.flickr.com/photos/dominicspics/4036085842)
© 2009 Dominic Alves. Creative Commons BY-SA 2.0.

Printed and bound in The Netherlands by CPI Wöhrmann Print Service.

ISBN 978-94-6203-515-7



Acknowledgments

I owe gratitude to many people that contributed to this dissertation. First and
foremost, my sincere thanks go to my promotor Eelco Visser for his guid-
ance and support, and for the genuine interest he has always shown in my
research. I particularly appreciated the feedback on my papers, even when it
came during the nightly hours just before the deadline. I also want to express
my gratitude to my second promotor Arie van Deursen for his help and feed-
back, and for his optimism and positive encouragement that strengthened my
confidence in bringing my PhD to a positive end.

Many people provided valuable feedback that greatly improved the quality
of my work. First, I want to thank the members of the reading committee,
Robert Grimm, Simon Thompson, Jurgen Vinju, Henk Sips and Catholijne
Jonker, for reviewing my thesis. Next, I want to express my gratitude to the
people that voluntary provided feedback on one or more chapters: Lennart
Kats, Guido Wachsmuth, Bert Meerman and Hugo de Jonge. And finally, I
want to thank the anonymous reviewers of my journal and conference papers
for their critical reading and their useful suggestions.

All the work of this thesis has been done in collaboration with other peo-
ple. I want to thank the co-authors of my publications for their contributions:
Lennart Kats, Emma Söderberg and Eelco Visser. The techniques proposed
in this thesis are implemented as part of the Spoofax language workbench
and the JSGLR parser that it uses. I want to thank Karl Trygve Kalleberg for
implementing JSGLR, and Lennart Kats for his continuous effort on develop-
ing Spoofax which made it into such a valuable platform for research. The
WebDSL and Mobl languages turned out to be valuable for the purpose of
testing and evaluation. I want to thank Zef Hemel for his implementation of
Mobl, and I want to thank him and Danny Groenewegen for their work on
the WebDSL language.

The Software Language Design and Engineering (SLDE) group has been a
great place to do research. I want to thank all my SLDE colleagues for the
teamwork, for providing an inspiring work environment, and for the enjoy-
able conversations at our coffee corner where we discussed many research,
as well as non-research related topics. They are, in alphabetical order: Danny
Groenewegen, Eelco Dolstra, Gabriël Konat, Guido Wachsmuth, Lennart Kats,
Rob Vermaas, Sander van de Burg, Sander Vermolen, Vlad Vergu and Zef He-
mel.

I would also like to thank my best friends Xander Wemmers and Wim
van de Fliert with whom I share a common interest in chess, bridge and
draughts. I wish to thank Xander for his continuous efforts to improve my
chess skills, and the valuable time we spend together in bars and restaurants.
My bridge partnership with Wim has been the most enjoyable partnership I
can imagine, bridge has never been so much fun ever since. I also owe a lot

iii



to Bert Meerman who inspired me to become a programmer. I will always
remember you enlightening the people around you, and especially me, with
your deep insights into programming. Thank you for teaching me, motivating
me, and supporting me throughout all those years.

I thank my family for patiently listening to me and closely following my
progress during my PhD time. I thank my sister, Floortje, for always being
there for me, helping me through all ups and downs and inbetweens. I thank
my parents, Hugo and Lydia, for their confidence in me and for supporting
me in all the choices I made in life.

Finally I want to thank Lennart, the love of my live, for being my support
and inspiration for the past five years. First during our happy time together
as colleagues at the TU Delft, now as my boyfriend with whom I live together
in a nice place in Amsterdam. I look forward to spend my live with you and
our lovely son Vincent.

Maartje de Jonge
December 16, 2013,

Amsterdam

Acknowledgments i



ii



Contents

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Parse Error Recovery . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Refactoring Techniques . . . . . . . . . . . . . . . . . . . 4

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Parse Error Recovery . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Refactoring Techniques . . . . . . . . . . . . . . . . . . . 9

1.3 Background and Context . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Parsers for Different Grammar Classes . . . . . . . . . . 12

1.3.2 Scannerless Parsing . . . . . . . . . . . . . . . . . . . . . 14

1.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Origin of Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . 16

I Error Recovery for Generated Modular Language Envi-
ronments 19

2 Error Recovery for Scannerless Generalized Parsing 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Composite Languages . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Parsing Composite Languages . . . . . . . . . . . . . . . 25

2.2.2 Defining Composite Languages . . . . . . . . . . . . . . 26

2.3 Island Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Permissive Grammars . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Chunk-Based Recovery Rules . . . . . . . . . . . . . . . . 31

2.4.2 Deletion Recovery Rules . . . . . . . . . . . . . . . . . . . 33

2.4.3 Insertion Recovery Rules . . . . . . . . . . . . . . . . . . 35

2.4.4 Combining Different Rule Sets . . . . . . . . . . . . . . . 38

2.4.5 Automatic Derivation . . . . . . . . . . . . . . . . . . . . 38

2.4.6 Customization . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Parsing Permissive Grammars . . . . . . . . . . . . . . . . . . . 42

2.5.1 Backtracking . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.2 Choice Points . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.3 Search Heuristic . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 49

2.6.2 Comparing Different Rule Sets . . . . . . . . . . . . . . . 50

2.6.3 Pathological Cases . . . . . . . . . . . . . . . . . . . . . . 51

2.6.4 Language Independence, Flexibility and Transparency . 51

2.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

iii



2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 An Indentation Based Technique for Locating Parse Errors 57
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Parse Error Recovery . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.1 Correcting and Non-Correcting Techniques . . . . . . . 59

3.2.2 Local, Global and Regional Techniques . . . . . . . . . . 59

3.3 Permissive Grammars and Backtracking . . . . . . . . . . . . . . 60

3.3.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Layout-Sensitive Region Selection . . . . . . . . . . . . . . . . . 62

3.4.1 Nested Structures . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.2 Indentation-based Partitioning . . . . . . . . . . . . . . . 63

3.4.3 Region Selection . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.5 Practical Considerations . . . . . . . . . . . . . . . . . . . 67

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 70

3.5.2 Comparing Different Combinations of Techniques . . . 70

3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Automated Evaluation of Parse Error Recovery Techniques 75
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Understanding Edit Behavior . . . . . . . . . . . . . . . . . . . . 78

4.2.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . 78

4.2.2 Distribution of Syntax Errors . . . . . . . . . . . . . . . . 79

4.2.3 Classification of Syntax Errors . . . . . . . . . . . . . . . 80

4.3 Generation of Syntax Errors . . . . . . . . . . . . . . . . . . . . . 81

4.3.1 Error Generation Rules . . . . . . . . . . . . . . . . . . . 82

4.3.2 Error Seeding Strategies . . . . . . . . . . . . . . . . . . . 84

4.3.3 Predefined Generators . . . . . . . . . . . . . . . . . . . . 84

4.4 Automated Quality Measurement . . . . . . . . . . . . . . . . . 84

4.4.1 Oracle Construction . . . . . . . . . . . . . . . . . . . . . 85

4.4.2 Quality Metrics . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.3 Comparison of Metrics . . . . . . . . . . . . . . . . . . . . 89

4.5 Evaluation of Error Recovery for SGLR . . . . . . . . . . . . . . 92

4.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

iv



5 Integrating Error Recovery in the Spoofax Language Workbench 103
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Overview Recovery Approach . . . . . . . . . . . . . . . . . . . 104

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Integrating Error Recovery in an IDE . . . . . . . . . . . . . . . 107

5.4.1 Guarantees on Recovery Correctness . . . . . . . . . . . 107

5.4.2 Syntactic Error Reporting . . . . . . . . . . . . . . . . . . 108

5.4.3 Syntax Highlighting . . . . . . . . . . . . . . . . . . . . . 109

5.4.4 Content Completion . . . . . . . . . . . . . . . . . . . . . 110

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

II Language-Parametric Refactoring Techniques 115

6 Source Code Reconstruction 117
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Problem Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . 120

6.2.2 Correctness and Preservation Criteria . . . . . . . . . . . 122

6.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 Origin Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.5 Text Reconstruction Algorithm . . . . . . . . . . . . . . . . . . . 126

6.5.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.5.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.5.3 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.6 Correctness and Preservation Proofs . . . . . . . . . . . . . . . . 130

6.6.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.6.2 Layout Preservation . . . . . . . . . . . . . . . . . . . . . 132

6.6.3 Irregularities . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.7 Layout Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.7.1 Comment Heuristics . . . . . . . . . . . . . . . . . . . . . 136

6.8 Syntactic Sugar Preservation . . . . . . . . . . . . . . . . . . . . 138

6.8.1 Adaptations for Sugar Preservation . . . . . . . . . . . . 139

6.9 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.11 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7 Name Binding Preservation 151
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2 The Stratego Transformation Language . . . . . . . . . . . . . . 153

7.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.4 Preserving Name bindings . . . . . . . . . . . . . . . . . . . . . . 156

7.5 Restoring Name Bindings . . . . . . . . . . . . . . . . . . . . . . 159

7.5.1 Name Lookup in Java . . . . . . . . . . . . . . . . . . . . 159

Contents v



7.5.2 Name Analysis . . . . . . . . . . . . . . . . . . . . . . . . 160

7.5.3 Resolving Name References . . . . . . . . . . . . . . . . . 161

7.5.4 Checking Name Bindings . . . . . . . . . . . . . . . . . . 162

7.5.5 Restoring Name Bindings by Creating Qualified Names 163

7.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.6.1 Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.6.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.6.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8 Conclusion 169
8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.2 Research Questions Revisited . . . . . . . . . . . . . . . . . . . . 170

8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Bibliography 177

Samenvatting 193

Curriculum Vitae 197

vi



1
Introduction

Programming languages are artificial languages that allow humans to control
the behavior of machines. The list of programming languages available to-
day is extensive and still growing. The implementation of those languages
requires considerable effort. First, a compiler or interpreter must be imple-
mented to execute programs written in a particular language. Secondly, ac-
companying tool support must be implemented to help programmers writing
programs in that language.

The goal of this dissertation is to develop techniques that simplify the im-
plementation of tool support for new languages. More specifically, we focus
on language-parametric solutions for the implementation of language-specific
editor support. In the first part of this dissertation we investigate generic tech-
niques to recover from syntax errors that occur during interactive editing. In
the second part we look into language-parametric techniques for the imple-
mentation of refactoring tools.

In this introductory chapter, we first introduce the research problems that
are addressed in this dissertation. We then discuss these problems in more de-
tail and outline our main research questions. Finally, we discuss the research
method that we followed to answer these questions.

1.1 P R O B L E M S TAT E M E N T

Full-featured integrated development environments (IDEs) have become crit-
ical to the adoption of new languages. A key factor in the success of these
IDEs is the provision of services specifically tailored to the language. Ser-
vices for code comprehension help programmers to understand and navigate
through the structure of the program, while services for code manipulation
offer support to modify the source code in a controlled manner. Figure 1.1
shows a screenshot of an IDE, providing some examples of code comprehen-
sion services, e.g., syntax highlighting, outline view, hover help and reference
resolving. Examples of code manipulation services are content completion
(Figure 1.1), code formatting, quick fixes and refactorings.

To provide language-specific feedback, editor services operate on a struc-
tured representation of the program constructed by source code analysis tools.
The source code is first syntactically analyzed by the parser which results in
an abstract syntax tree (AST) that represents the grammatical structure of the
source code. The output of the parser is then further analyzed by a seman-
tic analyzer which adds static semantic information to the AST, e.g., name
bindings and types. Figure 1.2 illustrates the process of reconstructing a se-
mantically decorated AST from plain text source code.

1



Figure 1.1 Syntactic and semantic editor services in an IDE.

Figure 1.2 Editor services operate on a structured representation of the source
program that results after syntactic analysis (parsing) and semantic analysis.

1.1.1 Parse Error Recovery

Traditionally, IDEs use hand-tailored parsers, optimized for the language at
hand. However, the use of hand-tailored parsers results in high development
and maintenance costs and reduces flexibility. Parser generators address this
problem by automatically generating a parser from a context-free grammar
definition. Context-free grammars are a much more declarative way of de-
scribing languages than the program code of a parser. Furthermore, parser
generators can be reused for different grammars, and grammars can be reused
for other language tooling as well.

The effectiveness and applicability of parser generators in an IDE is de-
termined by their quality and performance. With performance we mean the
speed at which the generated parsers consume input tokens, i.e., the time
complexity of the parse algorithm. With respect to quality, we distinguish
two important criteria, first, the grammar classes that a parser generator sup-
ports, secondly, the quality of the syntax error recovery that the generated
parsers provide. Below we elaborate on these aspects, describe the challenges
in addressing them together, and formulate our first research problem.

Parser generators are distinguished by the grammar classes they support.
Traditional parser generators such as Yacc (Johnson, 1975) only support cer-
tain subclasses of the context-free grammars, such as LR(k) or LL(k) gram-
mars. The restriction on grammar classes is imposed by the underlying pars-
ing technique. LR(k) parsers can have shift/reduce conflicts, while LL(k)

2



parsers do not support left recursion. LR(k) and LL(k) parsers are also re-
stricted by a maximum of k lookahead, i.e., the number of incoming tokens
that a parser can use to decide how to parse earlier symbols.

A major shortcoming of these parser generators is that they prohibit a natu-
ral expression of the intended syntax, i.e., grammars must be carefully crafted
to encode them in the supported subclass. A second limitation is that these
parser generators do not support modularity of syntax definitions. That is,
when two LR(k) grammars are composed, there is no guarantee that the re-
sulting grammar will be LR(k) again, since only the full class of context-free
grammars is closed under composition (Hopcroft and Ullman, 1979).

Generalized parsers such as generalized LR (GLR) (Tomita, 1988) and gen-
eralized LL (GLL) (Scott and Johnstone, 2010) parse different interpretations
of the input in parallel, thereby effectively implementing unlimited look-
ahead. Both GLR and GLL support the full class of context-free grammars
with strict time complexity guarantees1. Using scannerless parsing (Salomon
and Cormack, 1989, 1995), scannerless GLR (SGLR) (Visser, 1997b) even avoids
scanner-level composition problems such as reserved keywords in one lan-
guage, that may be valid identifiers in another language. The SGLR parsing
algorithm supports the modular syntax definition formalism SDF2 (Heering
et al., 1989a; Visser, 1997c). SDF’s expressiveness allows defining syntax con-
cisely and naturally, SDF’s modularity facilitates reuse of existing grammars
to compose new grammars. SDF and SGLR are successfully applied in the
ASF + SDF Meta-environment (van den Brand et al., 2001) and in the Strate-
go/XT framework (Visser, 2004).

In Section 1.3 we provide some background on grammar classes and dis-
cuss alternative syntactic formalisms that also support grammar composition.
For now, we focus on context-free grammars which provide the theoretical
context in which our research is done.

Error Recovery for SGLR

To provide rapid syntactic and semantic feedback, IDEs interactively parse
programs as they are edited; the parser runs in the background with each key
press or after a small delay passes. As the user edits a program, it is often in a
syntactically invalid state. Parse error recovery techniques are indispensable
for interactive parsing, since they can diagnose and report parse errors, and
can construct ASTs for syntactically invalid programs (Degano and Priami,
1995).

Parse error handling encompasses two concerns: error recovery and error
reporting. Recovery from parse errors allows the parser to continue the analy-
sis of the source code after the detection of a syntax error, thus allowing the
detection of multiple errors in a file. The resulting parse tree, representing the
corrected input, is used by editor services to provide syntactic and semantic
feedback. Error reporting, by itself, has an important role in giving feedback

1Generalized LR (Tomita, 1988) and generalized LL (Scott and Johnstone, 2010) parse LR(1),
respectively LL(1) grammars in linear time and gracefully cope with non-determinism and am-
biguity with a polynomial worst-case time complexity.

Chapter 1. Introduction 3



Figure 1.3 Research Problem 1: How to generate parsers that support the full
class of context-free grammars and automatically provide support for error recov-
ery?

to the user. An error handling technique should accurately report all syntactic
errors without introducing spurious errors. The problem of handling syntax
errors during parsing has been widely studied (Lévy, 1971; Mauney and Fis-
cher, 1988; Pai and Kieburtz, 1980; Barnard and Holt, 1982; Tai, 1978; Fischer
et al., 1980; Degano and Priami, 1995; McKenzie et al., 1995; Corchuelo et al.,
2002).

The scannerless, generalized nature of SGLR makes it possible to parse
composite languages, but also introduces challenges for the diagnosis and
recovery of syntax errors. Parse error recovery for SGLR has been a long-
standing open issue (Bravenboer et al., 2006a, Section 8.3.2), which hindered
the application of this algorithm in interactive environments with services as
illustrated in Figure 1.1. This motivates our first research problem:

Research Problem 1

How to generate parsers that support the full class of context-free grammars
and automatically provide support for error recovery?

In the first part of this dissertation we show how parser generators can both
be general – supporting the full class of context-free grammars – and automat-
ically provide support for error recovery. This addresses the problem stated
above and illustrated in Figure 1.3.

1.1.2 Refactoring Techniques

Refactorings are program transformations that improve the design of a pro-
gram without changing its behavior (Fowler, 2002). Some well known ex-
amples are: Rename, Extract method, Move method and Introduce constant.
Refactoring tools offer support for a set of predefined structural modifica-
tions that are frequently applied by programmers. Refactoring tools auto-
mate source code modifications and report errors and warnings for possible
behavioral changes. The implementation of program modifications and be-
havior preservation conditions is an error-prone and tedious task. We are

4



Figure 1.4 Research Problem 2: How to restore the consistency between the
concrete and abstract representation, after transformation of the abstract syntax
tree?

investigating language generic techniques for the efficient implementation of
refactoring tools.

Source code reconstruction

Refactorings require deep analysis and transformation of the structure of a
program. Therefore, they are most effectively implemented on the abstract
syntax tree that results after parsing and semantic analysis. After the trans-
formation on the abstract syntax tree, the consistency between abstract and
concrete syntax (source text) must be restored while preserving the original
layout of the source code. This is not a trivial task since all layout, i.e., white-
space and comments, is discarded in the AST constructed by the parser. Ab-
stracting over layout simplifies the specification of transformations and analy-
ses, moreover, storing layout in the AST is problematic since it requires a
unique mapping between layout elements and AST terms. We formulate the
following research problem (see also Figure 1.4):

Research Problem 2

How to restore the consistency between the concrete and abstract representation,
after transformation of the abstract syntax tree?

In Chapter 6 we present a language generic algorithm for text reconstruc-
tion that translates AST changes to textual changes. The algorithm uses
heuristics to reconstruct the layout of the affected code fragments.

Behavior preservation

Refactorings are supposed to preserve the behavior of a program. A prereq-
uisite for behavior preservation is the preservation of static semantic invariants
(Opdyke, 1992; Schäfer et al., 2009; Tip et al., 2011), i.e., program properties
that can be determined at compile time such as name bindings, control-flow
and data-flow. Refactoring transformations can accidentally change static se-

Chapter 1. Introduction 5



Figure 1.5 Research Problem 3: How to guarantee preservation of static semantic
invariants for refactoring transformations?

mantic invariants of a program, for example when variable declarations be-
come shadowed by newly introduced names. Users rely on refactoring tools
to warn against accidental changes in the static semantics of the program.
Therefore, refactoring tools must enforce conditions that guarantee preserva-
tion of static semantic invariants. This is not a trivial task, requiring complex
name binding and flow analyses. We investigate the research problem stated
below and illustrated in Figure 1.5.

Research Problem 3

How to guarantee preservation of static semantic invariants for refactoring
transformations?

In Chapter 7 we show how a preservation criterion for static name bind-
ings can be implemented reliably by reusing the name analysis implemented
in a compiler. Application of the presented technique for the implemen-
tation of other preservation criteria such as semantic correctness, data-flow
and control-flow is left as future work. An exploratory study is provided in
(de Jonge and Visser, 2013).

1.2 R E S E A R C H Q U E S T I O N S

In this section we elaborate on the research problems introduced in the pre-
vious section, and formulate the research questions that drive the work pre-
sented in this dissertation. In Chapter 8, we revisit these questions and present
our conclusions.

1.2.1 Parse Error Recovery

Unlike conventional parsing algorithms, scannerless generalized-LR parsing
supports the full set of context-free grammars, which is closed under com-
position, and hence can parse languages composed from separate grammar
modules. To apply this algorithm in an interactive environment, we investi-
gate parse error recovery techniques for scannerless generalized parsers.

6



Error recovery for scannerless generalized parsing The scannerless, generalized
nature of SGLR is essential for parsing composite languages, but also intro-
duces challenges for the diagnosis and recovery of syntax errors. We have
identified two main challenges. First, generalized parsing implies parsing
multiple branches (representing different interpretations of the input) in par-
allel. Syntax errors can only be detected at the point where the last branch
failed, which may not be local to the actual root cause of an error. Second,
scannerless parsing implies that the parser consumes characters instead of
tokens. Common error recovery techniques based on token insertion and
deletion are ineffective when applied to characters, as many insertions or
deletions are required to modify complete keywords, identifiers, or phrases.
Together, these two challenges make it hard to apply traditional error recov-
ery approaches to scannerless generalized parsers. Parse error recovery for
SGLR has been a long-standing open issue (Bravenboer et al., 2006a, Section
8.3.2), which motivates our first research question:

Research Question 1

What techniques are needed to efficiently recover from syntax errors with scan-
nerless, generalized parsers?

Chapter 2 introduces a technique for automatic relaxation of grammars, to
make them more permissive of their inputs. Based on the analysis of the orig-
inal grammar, a set of recovery rules that simulate token insertion or deletion
is automatically derived. To cope with the added complexity of grammars
with recovery rules, the parser implementation is adapted to apply the recov-
ery rules in an on-demand fashion, using a backtracking algorithm.

An indentation based technique for locating parse errors A parser that supports
error recovery typically operates by consuming tokens (or characters) until an
unexpected token is found. At the point of detection of an error, the recovery
mechanism is activated. A key problem for error recovery techniques is the
difference between the point of detection and the actual location of an error
in the source program (Degano and Priami, 1995).

Local recovery techniques try to modify the token stream at the point of de-
tection so that at least one more original token can be parsed (Degano and Pri-
ami, 1995). These techniques work well in some cases, but they risk choosing
a poor repair that leads to further problems as the parser continues (“spurious
errors”). In contrast to local recovery techniques, global techniques examine
the entire program and make a minimum of changes to repair all syntax er-
rors (Aho and Peterson, 1972; Lyon, 1974). While global techniques give an
adequate repair in the majority of cases, they are not efficient. As an improve-
ment over local and global recovery techniques, regional techniques only con-
sider the direct context of an error by identifying the region of code in which
the error resides (Lévy, 1971; Mauney and Fischer, 1988; Pai and Kieburtz,
1980). The erroneous region can be repaired by a correcting recovery tech-
nique, or, as a fall back option, the erroneous region can be discarded. With
the aim to improve the quality and performance of the recovery technique we
implemented for SGLR, we investigated the following research question:

Chapter 1. Introduction 7



Research Question 2

What language generic techniques can be used to detect erroneous regions?

Chapter 3 presents an approach that uses layout information to partition
files and detect erroneous regions. Evaluation of this approach showed that
constraining the search space for recovery rule applications to these regions
improves the quality and performance of our recovery technique for SGLR
(research question 1). Furthermore, discarding erroneous regions as a fallback
recovery helps cope with pathological cases not easily addressed with only
recovery rules and backtracking.

Automated evaluation of parse error recovery techniques To assess the quality
and performance of our error recovery technique, we need to evaluate the
technique against a set of representative test inputs. Evaluations in the liter-
ature often use manually constructed test suites based on assumptions about
which kind of syntax errors are the most common (Horning, 1976; Kats et al.,
2009a; Nilsson-Nyman et al., 2009). The lack of empirical evidence for these
assumptions raises the question how representative the test cases are, and
how well the technique works in general.

To gain insight into the type and distribution of syntax errors that occur
during interactive editing, we performed a statistical analysis on collected edit
data for different languages. The analysis focused on the following research
question:

Research Question 3a

What kinds of syntax errors occur during interactive editing? How are syntax
errors typically distributed over a file?

Section 4.2 summarizes our findings, including a classification of syntax
errors that are common for interactive editing and statistical data on how
syntax errors are typically spread over a file.

To assess how well a recovery technique meets practical standards, we need
to compare the technique with other techniques used in common IDEs. An
objective and automated evaluation method is essential to do benchmark com-
parisons. Unfortunately, objective standards and methods for evaluating error
recovery techniques are currently missing in the research literature. We iden-
tified two challenges: 1) the recovery technique must be evaluated against
a representative set of test inputs, 2) the recovery outputs must be automati-
cally evaluated against a quality metric. We formulated the following research
question:

Research Question 3b

How to obtain test inputs for error recovery techniques that are representative
for practical editing? How to automate quality assessment of the recovered test
outputs?

To address this question, we implemented an evaluation framework that
combines automated generation of test inputs with automated evaluation of

8



the outputs. The framework is described in Chapter 4. We used the frame-
work to perform an extensive evaluation of our recovery technique for SGLR
which is covered in Section 4.5. The evaluation shows that the technique
works for different languages, that the technique is scalable with respect to
performance, and that the recovery quality holds up to practical standards.

Integrating error recovery in the Spoofax language workbench Ultimately, error
recovery provides a speculative interpretation of the intended program, which
may not always be the desired interpretation. As such, it is both unavoidable
and not uncommon that editor services operate on inaccurate or incomplete
information. Experience with modern IDEs shows that this is not a problem in
itself, as programmers are shown both syntactic and semantic errors directly
in the editor. Still, there are a number of editor services that inherently require
some interaction with the recovery strategy. With the aim to improve the
feedback provided by these services, we investigated the following research
question:

Research Question 4

What general techniques can be used to improve the feedback provided by editor
services that interact with the parse error recovery technique?

In Chapter 5 we describe the implementation of our recovery technique in
Spoofax (Kats and Visser, 2010), an integrated environment for the specifi-
cation of languages and accompanying IDE support in Eclipse. The chapter
presents general techniques for the implementation of an IDE based on scan-
nerless, generalized parsing.

1.2.2 Refactoring Techniques

Refactorings are behavior preserving source-to-source transformations with
the objective of improving the design of existing code (Fowler, 2002). The im-
plementation of refactoring tools is challenging, since different concerns must
be handled, e.g., user interaction, the structural transformation, checking be-
havior preservation conditions and modifying the source code while preserv-
ing the original layout. In the second part of this dissertation, we investigate
language-parametric techniques for the implementation of refactorings.

Source code reconstruction Automatic refactorings are most effectively im-
plemented on abstract syntax trees which represent the formal structure of a
program, abstracting from comments and layout. Abstracting from the arbi-
trary layout of the source code simplifies the specification of the refactoring,
moreover, the structural representation of the program is necessary to reliably
perform the analyses needed for correct application.

An intrinsic limitation of transformation techniques based on abstract syn-
tax trees is the loss of layout, i.e., comments and whitespace. This is espe-
cially relevant in the context of refactorings, which produce source code that
is edited by humans. Thus, we need a technique to restore the consistency be-
tween the concrete and abstract representation, while preserving the original

Chapter 1. Introduction 9



layout. The technique must be generically applicable to different languages,
must preserve the originally layout of the unaffected parts and reconstruct
the whitespace and comments at the edges of the affected parts. Finally, the
technique must also correctly handle lexical symbols such as brackets and
separators. This motivates our next research question:

Research Question 5a

What language-parametric techniques can be used to derive the textual trans-
formation from the transformation applied to the abstract syntax tree? How
to migrate comments and adjust the whitespace at the edges of the changed
fragments?

Chapter 6 presents an algorithm for fully automatic source code recon-
struction for source-to-source transformations. The algorithm computes text
patches based on the differences between the abstract syntax tree before and
after the transformation, relying on origin tracking (van Deursen et al., 1993)
as a technique to identify the origins of subtrees. The algorithm preserves
the whitespace and comments of the unaffected parts and uses heuristics to
reconstruct the layout of the affected parts.

Syntactic sugar provides new language constructs that support expression
of functionality that can already be expressed in the base language. These
new syntactic constructs make the language “sweeter” for programmers to
use; things can be expressed more clearly, more concisely, or in an alternative
style that someone may prefer. Desugaring is a step in the transformation
process that transforms an abstract syntax tree into an equivalent tree in the
core syntax. The specification of refactorings is considerably simplified by
desugaring, since the transformation and the semantic analysis only need to
be implemented on the core syntax. However, the syntactic sugar must be
restored in the result of the refactoring, that is, the language constructs used
in the refactored code must be the same as in the original code. Preservation
of syntactic sugar is challenging since the information about the original syn-
tactic constructs is lost in the desugaring stage. We formulated the following
research question:

Research Question 5b

How to extend the text reconstruction algorithm so that it preserves syntactic
sugar for refactorings that take as input a desugared AST?

In Section 6.8 we present an extended version of the text reconstruction
algorithm that restores the original syntactic constructs for transformations
that are applied to desugared abstract syntax trees.

Name binding preservation Refactoring tools must implement behavior preser-
vation conditions for the supported refactoring transformations. The imple-
mentation of behavior preservation conditions is challenging, requiring deep
analysis of the semantic structure of the program. Traditionally, conditions
for behavior preservation are implemented as preconditions that are checked

10



before the transformation (Opdyke, 1992; Roberts, 1999). However, it is ex-
tremely difficult to define a correct set of preconditions that guarantees be-
havior preservation, and this set must be updated each time the language
evolves.

Another way to approach behavior preservation is to focus on the preser-
vation of static semantic invariants (Opdyke, 1992; Ekman et al., 2008; Schäfer
et al., 2009; Tip et al., 2011), i.e., program properties that can be determined
at compile time, such as name bindings, control-flow, and data-flow. (Ekman
et al., 2008) proposes an approach that uses attribute grammars to guarantee the
preservation of several static semantic invariants. Compared to preconditions,
the specification of the invariants more closely follows compiler analyses that
define the static semantics of a language. Refactorings implemented using
this approach proved to be more reliable and required less effort in terms of
lines of code.

Attribute grammars allow for a high-level declarative specification of se-
mantic analysis. However, they offer no specific language features to declar-
atively express AST transformations. An alternative approach is to use term
rewriting for implementing refactorings. Term rewriting makes it easy to
describe syntax tree transformations, but is less declarative with respect to
semantic analysis. The solution described in (Ekman et al., 2008) crucially re-
lies on attribute grammars2 and therefore can not be applied directly to term
rewriting systems. With the aim to implement an invariant-based approach
within the paradigm of term rewriting, we investigated the following research
question:

Research Question 6

Is it possible to guarantee the preservation of static semantic invariants in term
rewriting systems?

Chapter 7 introduces a static semantic invariant for name binding preser-
vation, which is implemented by reusing the name analysis defined in the
compiler front end. We show how the technique can be applied using the
Stratego rewriting language for implementing refactorings on Java, Stratego
itself, and Mobl. The implementation of other preservation criteria such as
semantic correctness, data-flow and control-flow is left as future work. An
exploratory study is provided in (de Jonge and Visser, 2013).

1.3 B A C K G R O U N D A N D C O N T E X T

For our approach to error recovery it is useful to give a bit more background
and context, since we base it on the technique of Scannerless Generalized-LR
(SGLR) parsing. SGLR is a powerful parsing technique that addresses some
of the important problems in parsing: it makes it possible to define languages
naturally and declaratively, and it makes it possible to compose languages.

2More specifically, the approach depends on circular reference attribute grammars (Hedin,
2000), a specialized form of attribute grammars.

Chapter 1. Introduction 11



Still, SGLR is by no means a silver bullet, so to give a bit more background we
also discuss alternative parsing approaches that also tackle these problems.

1.3.1 Parsers for Different Grammar Classes

Parser generators support different classes of grammars. Each grammar class
is a specific subset of all possible grammars, and is usually characterized by
certain restrictions. For example, some parser generators generate parsers
with limited lookahead, limiting the class of supported grammars. Others
lack support for grammars that use left recursion, or that have production
rules with overlapping left-hand sides.

Restrictive grammar classes can make it hard to directly express languages.
They can make it hard to directly map language concepts to grammar rules,
without refactoring them to comply to all restrictions in a class. In other
words, it may not be possible to express the language in a natural way. An-
other limitation of restricted grammar classes is that they can make it hard or
impossible to compose grammars or production rules, as the composed gram-
mar may not comply to the class restrictions. We discuss different grammar
classes and their properties below.

Two of the most well-known grammar classes are LL(k) and LR(k). These
grammar classes were first introduced in the 1960s (Knuth, 1965; Lewis II and
Stearns, 1968) and have since been supported in various popular parser gen-
erators. They are relatively small grammar classes, but using the LL(k) and
LR(k) parsing algorithms it is possible to construct efficient, O(n) parsers. Ex-
pressing languages in LL(k) or LR(k) is not always easy as the grammar classes
enforce various restrictions that manifest themselves in the errors reported
by the parser generator (e.g., a shift/reduce conflict for an LR(k) parser) or
more obvious restrictions such as not supporting left recursion (for an LL(k)
parser). They are also restricted to a lookahead of a maximum of a constant
k symbols. The classes are generally not well-suited for composition, since
there is no guarantee that composing two LR(k) or LL(k) grammars will give
a valid LR(k) or LL(k) grammar again. Schwerdfeger and Van Wyk (2009a)
have shown, however, that it is possible to identify certain grammars that can
be safely composed with these classes.

In (Ford, 2002), Ford introduces packrat parsers which support the associ-
ated grammar class Parsing Expression Grammars (PEGs) (Ford, 2002, 2004).
PEGs do not support the full class of context-free grammars, especially since
they lack support for full left recursion (Ford, 2002; Tratt, 2010). However,
they are also not a strict subset of this class; using syntactic predicates, pars-
ing expression grammars can recognize languages that are not expressible as
context-free grammars. PEG grammars are closed under composition; for ex-
ample, Hirzel and Grimm (2007) show how all of C and all of Java can be
composed using the PEG based Rats! generator. PEGs are implemented us-
ing packrat parsing. Packrat parsers are recursive descent parsers that use
backtracking to attempt alternative productions in a specified order. Packrat

12



parsers ensure linear time performance by memoization of all intermediate
results.

The ANTLR parser generator currently uses the LL(*) parsing strategy
(Parr and Fisher, 2011). LL(*) combines packrat parsing with LL-style parsing
techniques, applying a grammar analysis algorithm to statically avoid back-
tracking in many cases. LL(*) provides the same expressivity as PEGs, and is
therefore also closed under composition. As with PEGs, LL(*) requires pro-
grammers to avoid left recursive grammar rules.

Generalized parsers such as generalized LR (GLR) (Tomita, 1988) and gen-
eralized LL (GLL) (Scott and Johnstone, 2010) parse different interpretations
of the input in parallel, thereby effectively implementing unlimited look-
ahead. Both GLR and GLL support the full class of context-free grammars
which is closed under composition. Generalized LR and generalized LL
parse LR(1) grammars and LL(1) grammars, respectively, in linear time and
cope with non-determinism and ambiguity with a polynomial worst-case time
complexity (McPeak and Necula, 2004). Empirical evaluation (Bravenboer
et al., 2006a) shows that, in practice, parsing with SGLR is linear in the size of
the input.

Ambiguities

Grammars can be ambiguous, which means that they allow multiple interpre-
tations for the same input string. Ambiguities pose a challenge for grammar
writers; in addition to the intended interpretation, an alternate unintended
interpretation may exist that must be filtered out. Ambiguities also pose a
challenge for composition; combining two unambiguous grammars may re-
sult in an ambiguous grammar. Below, we discuss three different approaches
to handle ambiguities, taken by the different parsing techniques.

In traditional parsers, supporting LL(k) and LR(k) grammars, any ambigu-
ities in grammars would be impossible because of the restrictions posed on
the grammar classes. An error or conflict is reported for grammars outside of
these classes, which may indicate an ambiguity but may also be simply some-
thing outside of the grammar class. Because of these restrictions, it is hard to
express languages in LL(k) or LR(k) in a natural way, and, in general, it is not
possible to compose them without adapting the resulting grammar.

PEGs take a very different approach to ambiguity. Ambiguities are always
explicitly or implicitly resolved based on greedy matching and the use of the
ordered choice operator (i.e., /). A composition of two language constructs
will always give precedence to one over the other, which resolves ambiguities
but can also lead to subtle errors.3 It’s possible that the wrong interpretation
is taken unintentionally, but also that a correct interpretation is unreachable
because of greedy matching, resulting in a parse error (Schmitz, 2006; Kats
et al., 2010b).

3A discussion on the PEG mailing list provides some examples of ordering issues taken from
the combined C and Java grammar http://comments.gmane.org/gmane.comp.parsers.
peg.general/1

Chapter 1. Introduction 13

http://comments.gmane.org/gmane.comp.parsers.peg.general/1
http://comments.gmane.org/gmane.comp.parsers.peg.general/1


Finally, generalized parsers such as GLL and GLR handle ambiguities based
on explicit disambiguation. If different interpretations exist for a given input
string, and the language engineer has not indicated which one takes prece-
dence, then all interpretations are returned. In general, it is not possible to
statically determine whether a context-free grammar is ambiguous or not.4 By
returning all interpretations at runtime this approach ensures that ambigui-
ties never go undetected. Any ambiguities found at runtime can be resolved
using runtime disambiguation strategies (e.g. semantic disambiguation), or
by extending the grammar with additional disambiguation rules.5 However,
one can never be sure that all such ambiguities have been found.

1.3.2 Scannerless Parsing

Traditionally, most language processing tools separate a scanning and parsing
stage. Scanners are specified using a set of regular expressions that describe
the tokens of a language, while parsers are specified using a grammar that
describes how tokens can be combined to form a syntactically correct pro-
gram. The separation between scanning and parsing introduces restrictions
on language definitions that complicates composition, e.g., because the scan-
ner recognizes words either as keyword tokens or as identifiers, regardless of
the context. Using scannerless parsing (Salomon and Cormack, 1989, 1995),
these issues can be elegantly addressed. Scannerless implementations exist
for PEGs and packrat parsing (Ford, 2002; Grimm, 2006), as well as for gener-
alized parsing (Visser, 1997b). Another approach is to use context-aware scan-
ning, where the scanner is still a separate entity but is executed on-demand
and uses context information from the parser, as e.g. applied by (Wyk and
Schwerdfeger, 2007; Grönniger et al., 2008). The basis of the work in this thesis
is the scannerless parsing extension for GLR described in (Visser, 1997b).

1.4 A P P R O A C H

The research conducted in this dissertation has a strong base in constructive
research (Crnkovic, 2010). Constructive research takes off from an existing
well understood situation, pointing out a practically and theoretically relevant
problem. The problem is then solved by constructing a new technique that
changes and hopefully improves the status quo. As a last step, the proposed
technique is validated by analysing the new status quo. The validation can be
analytical, i.e., by reasoning about the properties of the technique, as well as
empirical, i.e., by experiments with an implementation of the technique.

4This is an undecidable problem (Cantor, 1962; Ginsburg and Ullian, 1966). There are am-
biguity checker tools, but they either perform an exhaustive search which may not terminate, or
they use approximative methods, at the expense of accuracy. A promising new direction is taken
by Basten et al. (2012), where both approaches are combined.

5This is another area where tools can help, for example Dr. Ambiguity (Basten and
Vinju, 2012) helps language engineers by finding grammar-level explanations of ambiguities and
proposing possible solutions to eliminate them.

14



Engineering research compares to engineering practice in that both dis-
ciplines involve the construction of artifacts that address relevant practical
problems. However, as Hevner et al. (2004) point out, a key difference is
that engineering research provides a clear identification of a contribution to
the archival knowledge base of foundations and methodologies. Once the
research results are codified in the knowledge base, they become applicable
to solve engineering problems that occur in practice. Hevner et al. (2004)
provide a framework for good software engineering research. The core of
the framework consists of seven guidelines that address design as an artifact,
problem relevance, design evaluation, research contributions, research rigor,
design as a search process, and research communication. We tried to follow
these guidelines in our work.

The broader objective of our research is to construct an environment for
developing new languages together with their IDEs. To realize this vision, we
had to invent new techniques that address open questions in the area of lan-
guage and IDE engineering. Examples of such questions are: How to gener-
ate scannerless, generalized parsers with support for syntactic error recovery?
How to derive textual transformations from abstract transformations? How
to reuse the language semantics to implement behavior preservation criteria
for refactorings?

To answer these questions, we followed a constructive approach. We first
obtained an understanding of the identified problem by analyzing existing
solutions described in literature. We then reflected on these solutions, deter-
mining their strengths and weaknesses. As a next step, we proposed a new
solution to the problem that addresses some of the limitations of the existing
solutions. Finally, we validated the proposed solution by a theoretical analy-
sis and by experiments with an implementation. The provided solutions and
validations contribute knowledge about how the investigated problems can
be understood and solved.

For all proposed solutions, we provide an analytical validation of the tech-
nique in the form of a critical discussion. In this discussion, we reason about
properties such as correctness, complexity and applicability; compare the so-
lution with other solutions; and seek similarities with other, well-known ab-
stract structures. An example of the latter is our analysis of the layout preser-
vation problem (Chapter 6), which we discuss within the conceptual frame-
work of bi-directional transformations.

A risk of an analytical evaluation is that it tends to focus on solving an
idealized problem in an idealized world, thereby abstracting over practical
details that may challenge the applicability in a real world setting. To gain
insight into realistic problems and to evaluate the proposed solutions against
realistic criteria, we supported our research contributions by tool implemen-
tations that realize the proposed techniques. We used these implementations
to conduct experiments that measure relevant properties of the techniques in
a real world setting.

To evaluate our error recovery technique, we measured the quality and
performance of the technique against a representative set of test inputs. In

Chapter 1. Introduction 15



addition, we provided a benchmark comparison with the error recovery im-
plemented by the JDT, a state-of-the-art development environment for the Java
language. The experiments are covered in sections 2.6, 3.5 and 4.5. To gain
insight into the quality of our layout preservation algorithm, we applied the
implemented algorithm to a set of code fragments that cover layout patterns
discussed in literature. Again, we use the JDT implementation as a baseline
comparison (Section 6.9). To verify the correctness of the name binding preser-
vation criterion, we applied an automated test strategy that uses an inverse
oracle (Daniel et al., 2007). The experiment is described in Section 7.6.

All implemented techniques are integrated into Spoofax (Kats et al., 2010a),
an open source environment for the development of domain-specific lan-
guages. Spoofax is used by researchers to develop DSLs of a realistic, repre-
sentative scale; notable examples include WebDSL (Groenewegen et al., 2008),
Mobl (Hemel and Visser, 2011) and SugarJ (Erdweg et al., 2011a,b). In addi-
tion, Spoofax has also been used in education, supporting courses on model-
driven software development and compiler construction. From this rich appli-
cation experience we gained valuable feedback that has been a driving force
to improve our solutions. Moreover, the application in practice provides con-
firmatory evidence of the practical applicability of the techniques. The inte-
gration of our techniques in Spoofax is covered in Chapter 5 (error recovery)
and the technical report (de Jonge and Visser, 2013) (refactoring).

1.5 O R I G I N O F C H A P T E R S

All chapters in this dissertation are directly based on peer-reviewed publica-
tions at conferences or in journals on programming languages and software
engineering. Each chapter has distinct core contributions. However, the dif-
ferent chapters also contain some redundancy to ensure that they are self-
contained.

The author of this thesis is the main contributor of all chapters except Chap-
ter 2, being responsible for most of the effort involved in implementing the
approach, performing experiments, and writing the text. Chapter 2, 3, and 5,
and Section 4.5 is joint work with Lennart Kats, Emma Söderberg and Eelco
Visser. Chapter 2 is a revised version of the OOPSLA 2009 paper on error
recovery by Kats et al. (2009a), for which the balance of the work was in favor
of Kats. The contribution of the thesis author for this chapter includes the
implementation of the backtracking algorithm (Section 2.5), and the experi-
mental evaluation with different rule sets (Section 2.6). Chapter 3 is based
on the SLE 2009 paper by de Jonge et al. (2009) for which the balance was in
favor of the thesis author. The material of these chapters is also covered by
the TOPLAS 2012 paper by de Jonge et al. (2012) for which the thesis author
was the main contributor. The TOPLAS paper integrates and updates (Kats
et al., 2009a) and (de Jonge et al., 2009), and contains some additional material
which is covered in Section 4.5 and Chapter 5 of this dissertation.

• Chapter 2 is an updated and revised version of the OOPSLA 2009 pa-
per Providing Rapid Feedback in Generated Modular Language Environments

16



(Kats, de Jonge, Nilsson-Nyman and Visser, 2009a). The content of this
chapter is also covered in de Jonge, Kats, Nilsson-Nyman and Visser
(2012).

• Chapter 3 is an updated and revised version of the SLE 2009 paper
Natural and Flexible Error Recovery for Generated Parsers (de Jonge, Kats,
Nilsson-Nyman and Visser, 2009). The content of this chapter is also
covered in de Jonge, Kats, Nilsson-Nyman and Visser (2012).

• Chapter 4 is an extended version of the ASE 2012 paper Automated
Evaluation of Syntax Error Recovery (de Jonge and Visser, 2012b). Sec-
tion 4.5 contains material from de Jonge, Kats, Nilsson-Nyman and Vis-
ser (2012).

• Chapter 5 incorporates material from the TOPLAS 2012 paper Natural
and Flexible Error Recovery for Generated Modular Language Environments
(de Jonge, Kats, Nilsson-Nyman and Visser, 2012).

• Chapter 6 is an extended version of the SLE 2012 paper An Algorithm for
Layout Preservation in Refactoring Transformations (de Jonge and Visser,
2012a).

• Chapter 7 covers the LDTA 2012 paper A Language Generic Solution for
Name Binding Preservation in Refactorings (de Jonge and Visser, 2012c).

Chapter 1. Introduction 17



18



Part I

Error Recovery for Generated
Modular Language

Environments

19





2
Error Recovery for Scannerless Generalized
Parsing

A B S T R A C T

Integrated development environments (IDEs) increase programmer produc-
tivity, providing rapid, interactive feedback based on the syntax and seman-
tics of a language. Key components for the realization of IDE plugins are the
language’s grammar and generated parser. Unlike conventional parsing algo-
rithms, scannerless generalized LR parsing supports the full set of context-free
grammars, which is closed under composition, and hence can parse language
embeddings and extensions composed from separate grammar modules. To
apply this algorithm in an interactive environment, this chapter introduces
a novel error recovery mechanism, which allows it to be used on files with
syntax errors – common in interactive editing.

2.1 I N T R O D U C T I O N

Integrated Development Environments (IDEs) increase programmer produc-
tivity by combining a rich toolset of generic language development tools with
services tailored for a specific language. These services provide programmers
rapid, interactive feedback based on the syntactic structure and semantics of
the language. High expectations with regard to IDE support place a heavy
burden on the shoulders of developers of new languages.

One burden in particular for textual languages is the development of a
parser. Traditionally, IDEs have often used handtailored parsers. Doing so
introduces high development and maintenance costs and reduces flexibility,
especially with language extensions and combinations in mind. Parser gener-
ators address this problem by automatically generating a parser from a gram-
mar definition. They significantly reduce the development time of the parser
and the turnaround time for changing it as a language design evolves. Thus,
parser generators are essential for the efficient development of language tools.

The effectiveness and applicability of parser generators in an IDE is de-
termined by their quality and performance. With performance we mean the
speed at which the generated parsers consume input tokens, i.e., the time
complexity of the parse algorithm. With respect to quality, we distinguish
two important criteria, first, the grammar classes that a parser generator sup-
ports, secondly, the quality of the syntax error recovery that the generated
parsers provide. In this chapter we show how generated parsers can both be
general – supporting the full class of context-free languages – and automati-
cally provide support for error recovery. Below we elaborate on these aspects,

21



describe the challenges in addressing them together, and give an overview of
our approach.

Composite languages and SGLR Success of a language, in part, depends on
interoperability with other languages and systems. Different languages ad-
dress different concerns. Language composition is a promising approach for
providing integrated support for different concerns. However, compositional
languages, such as language extensions and language embeddings, further
increase the burden for language engineers, as they now have to provide IDE
support for a combination of languages or language elements. Therefore, lan-
guage development tools must offer support for extensions and combinations
of languages. How well a tool can support language composition depends on
the underlying language techniques it uses.

A limitation of most conventional parsers is that they only support certain
subclasses of the context-free grammars, such as LL(k) grammars or LR(k)
grammars, reporting conflicts for grammars outside that grammar class. Such
restrictions on grammar classes make it harder to change grammars – requir-
ing refactoring – and prohibit the composition of grammars as only the full
class of context-free grammars is closed under composition (Hopcroft and
Ullman, 1979). Generalized parsers such as generalized LR support the full
class of context-free grammars with strict time complexity guarantees1. By us-
ing scannerless GLR (SGLR) (Visser, 1997b), even scanner-level composition
problems such as reserved keywords are avoided.

The scannerless generalized LR parsing algorithm (SGLR) (Visser, 1997b)
supports the modular syntax definition formalism SDF (Visser, 1997c). SDF
is closed under composition, e.g., existing grammars can be reused and com-
posed to form new languages. This characteristic benefits the definition of
non-trivial grammars, in particular the definition of grammars that are com-
posed from two or more independently developed grammars. SDF is declar-
ative yet expressive, and has been used to specify non-trivial grammars for
existing languages such as Java, C, and PHP, as well as domain-specific lan-
guages, and embeddings and extensions based on these languages (Braven-
boer and Visser, 2004).

Error recovery The parser for a programming language forms the founda-
tion of all language-specific editor services. The parser performs a syntactic
analysis (parsing) to construct an abstract syntax tree (AST) that represents
the grammatical structure of a program. The AST can be used for syntactic
editor services, such as syntax highlighting, code folding, and outlining. The
AST is further analyzed by a semantic analyzer, allowing for semantic editor
services such as cross-referencing and checking for semantic errors.

To provide the user with rapid syntactic and semantic feedback, programs
are interactively parsed as they are edited. As the user edits a program, it
is often in a syntactically invalid state. Parse error recovery techniques can
diagnose and report parse errors, and can construct a valid AST for syntac-

1Generalized LR (Tomita, 1988) parses LR(1) grammars in linear time and gracefully copes
with non-determinism and ambiguity with a polynomial worst-case time complexity.

22



tically invalid programs (Degano and Priami, 1995). Thus, to successfully
apply a parser in an interactive setting, proper parse error recovery is of vital
importance.

Challenges The scannerless, generalized nature of SGLR is essential for pars-
ing composite languages, but also introduces challenges for implementing er-
ror recovery. We have identified two main challenges. (1) Scannerless parsing:
scannerless parsing implies that there is no separate scanner for tokenization
and that errors cannot be reported in terms of tokens, but only in terms of char-
acters. This results in error messages about a single erroneous character rather
than an unexpected or missing token. Moreover, common error recovery tech-
niques based on token insertion and deletion are ineffective when applied to
characters, as many insertions or deletions are required to modify complete
keywords, identifiers, or phrases. (2) Generalized parsing: A GLR parser pro-
cesses multiple branches (representing different interpretations of the input)
in parallel. Syntax errors can only be detected at the point where the last
branch failed, which may not be local to the actual root cause of an error. This
makes it difficult to properly identify the offending substring or character. To-
gether, these two challenges make it hard to apply traditional error recovery
approaches to scannerless generalized parsers. Parse error recovery for SGLR
has been a long-standing open issue (Bravenboer et al., 2006a, Section 8.3.2),
which hindered the application of this algorithm in interactive environments.

Approach overview This chapter presents a novel approach to error recov-
ery using SGLR. We base our approach on the principles of island grammars
(van Deursen and Kuipers, 1999; Moonen, 2001, 2002) and skeleton grammars
(Klusener and Lämmel, 2003), defining new production rules for a grammar
to make it more permissive of its inputs. These rules either discard substrings
in the input or insert literals (i.e. keywords and braces) as necessary, address-
ing challenge (1). We identified several idioms for defining such recovery
rules. Based on the analysis of an existing grammar, we automatically derive
sets of these recovery rules, which makes the approach applicable in a parser
generator.

To cope with the added complexity of grammars with recovery rules, we
adapt the parser implementation to apply the recovery rules in an on-demand
fashion, using a backtracking algorithm. This algorithm explores an increas-
ing, backward search space to find a minimal-cost solution for applying the
set of recovery rules. This technique allows us to identify the most likely
origin of an error, addressing challenge (2).

We have incorporated the approach in the Spoofax/IMP IDE plugin gen-
erator (Kats et al., 2009b), to obtain robust editors for composite languages
that can provide feedback to the user in the presence of syntactic errors. We
have evaluated the error recovery approach using a grammar composed from
Stratego and Java.

Contributions The main contribution of this chapter is a language indepen-
dent approach to error recovery for SGLR. The approach is based on grammar
relaxation, i.e., adding new “recovery” productions to make a grammar more

Chapter 2. Error Recovery for Scannerless Generalized Parsing 23



public class Authentication {
public String getPasswordHash(String user) {

SQL stm = <| SELECT password FROM Users
WHERE name = ${user} |>;

return database.query(stm);
}

}

Figure 2.1 An extension of Java with SQL queries.

permissive of its inputs. Furthermore, the approach involves an adaptation
of the SGLR algorithm to efficiently handle the increased complexity of the
grammar.

Outline This chapter starts with a motivating study of composite languages
in Section 2.2. In Section 2.3 we discuss the notion of island grammars and
related techniques, which provide the inspiration for our error recovery ap-
proach. In Section 2.4 we show how the ideas of island grammars can be used
to transform grammars into permissive grammars. Section 2.5 explains the
adaptation of the SGLR algorithm to deal with the combinatorial explosion
introduced by permissive grammars. Finally, in Section 2.6 we evaluate the
approach, comparing different recovery rule sets.

2.2 C O M P O S I T E L A N G U A G E S

Composite languages integrate elements of different language components.
We distinguish two classes of composite languages: language extensions and
embedded languages. Language extensions extend a base language with new,
often domain-specific elements. Language embeddings combine two or more
existing languages, allowing one language to be nested in the other.

Examples of language extensions include the addition of traits (Ducasse
et al., 2006) or aspects (Kiczales et al., 1997) to object-oriented languages,
enhancing their support for adaptation and reuse of code. Other examples
include new versions of a language, introducing new features to an existing
language, such as Java’s enumerations and lambda expressions.

Examples of language embeddings include database query expressions in-
tegrated into an existing, general-purpose language such as Java (Bravenboer
et al., 2010). Such an embedding both increases the expressiveness of the host
language and facilitates static checking of queries. Figure 2.1 illustrates such
an embedding. Using a special quotation construct, an SQL expression is em-
bedded into Java. In turn, the SQL expression includes an anti-quotation of a
Java local variable. By supporting the notion of quotations in the language, a
compiler can distinguish between the static query and the variable, allowing
it to safeguard against injection attacks. In contrast, when using only a ba-
sic Java API for SQL queries constructed using strings, the programmer must
take care to properly filter any values provided by the user.

Language embeddings are sometimes applied in meta-programming for
quotation of their object language (Visser, 2002). Transformation languages

24



webdsl-action-to-java-method:
|[ action x_action(farg*) { stat* } ]| ->
|[ public void x_action(param*) { bstm* } ]|
with param* := <map(action-arg-to-java)> farg*;

bstm* := <statements-to-java> stat*

Figure 2.2 Program transformation using embedded object language syntax.

such as Stratego (Bravenboer et al., 2008) and ASF+SDF (van den Brand et al.,
2002) allow fragments of a language that undergoes transformation to be em-
bedded in the specification of rewrite rules. Figure 2.2 shows a Stratego re-
write rule that rewrites a fragment of code from a domain-specific language
to Java. The rule uses meta-variables (written in italics) to match “action”
constructs and rewrites them to Java methods with a similar signature. SDF
supports meta-variables by reserving identifier names in the context of an
embedded code fragment.

2.2.1 Parsing Composite Languages

A successful approach to effective realization of composite languages is gram-
mar composition. Grammar composition requires a modular, reusable syntax
definition formalism, which allows constituent languages to be defined inde-
pendently, and then composed to form a whole.

A particularly difficult problem in composing language definitions is com-
position at the lexical level. Consider again Figure 2.2. In the embedded Java
language, void is a reserved keyword. For the enclosing Stratego language,
however, this name is a perfectly legal identifier. This difference in lexical syn-
tax is essential for a clean and safe composition of languages. It is undesirable
that the introduction of a new language embedding or extension invalidates
existing, valid programs.

The difficulty in combining languages with a different lexical syntax stems
from the traditional separation between scanning and parsing. The scanner
recognizes words either as keyword tokens or as identifiers, regardless of the
context. In the embedding of Java in Stratego this would imply that void be-
comes a reserved word in Stratego as well. Only using a carefully crafted lex-
ical analysis for the combined language, introducing considerable complexity
in the lexical states to be processed, can these differences be reconciled. Using
scannerless parsing (Salomon and Cormack, 1989, 1995), these issues can be
elegantly addressed (Bravenboer et al., 2006a).

The Scannerless Generalized-LR (SGLR) parsing algorithm (Visser, 1997b) re-
alizes scannerless parsing by incorporating the generalized-LR parsing algo-
rithm (Tomita, 1988). GLR supports the full class of context-free grammars,
which is closed under composition, unlike subsets of the context-free gram-
mars such as LL(k) or LR(k) (Hopcroft and Ullman, 1979). Instead of rejecting
grammars that give rise to shift/reduce and reduce/reduce conflicts in an
LR parse table, the GLR algorithm interprets these conflicts by efficiently try-
ing all possible parses of a string in parallel, thus supporting grammars with

Chapter 2. Error Recovery for Scannerless Generalized Parsing 25



ambiguities, or grammars that require more look-ahead than incorporated in
the parse table. Hence, the composition of independently developed gram-
mars does not produce a grammar that is not supported by the parser, as is
frequently the case with LL or LR based parsers.2

Language composition often results in grammars that contain ambiguities.
Generalized parsing allows declarative disambiguation of ambiguous inter-
pretations, implemented as a post parse filter on the parse tree, or rather
the parse forest. A disadvantage of post parse disambiguation is the costs in
performance, which can be reduced by applying filters at an earlier stage
in the parsing process. Dependent on the particulars of specific disambigua-
tion rules, filters might be implemented during parse table generation, during
parsing, or after parsing.

As an alternative to parsing different interpretations in parallel, backtrack-
ing parsers revisit points of the file that allow multiple interpretations. Back-
track parsing is not generalized parsing since a backtracking parser only ex-
plores one possible interpretation at a time, stopping as soon as a success-
ful parse has been found. In the case of ambiguities, alternative parses are
hidden, which precludes declarative disambiguation. Note that backtracking
parsers can also produce all derivations, but this would require an exponential
amount of time.

Non-determinism in grammars can negatively affect parser performance.
With traditional backtracking parsers, this can lead to exponential execution
time in the worst case scenario. Packrat parsers use a form of backtracking
with memoization to parse in linear time (Ford, 2002); but, as with other back-
tracking parsers, they greedily match the first possible alternative instead of
exploring all branches in an ambiguous grammar (Schmitz, 2006). In contrast,
GLR parsers explore all branches in parallel and run in polynomial time in the
worst case. Furthermore, they have the attractive property that they parse the
subclass of LR(1) grammars in linear time. While scannerless parsing tends
to introduce additional non-determinism, the implementation of parse filters
during parsing rather than as a pure post-parse filter eliminates most of this
overhead (Visser, 1997a).

2.2.2 Defining Composite Languages

The syntax definition formalism SDF (Heering et al., 1989b; Visser, 1997c)
integrates lexical syntax and context-free syntax supported by SGLR as the
parsing algorithm. Undesired ambiguities in SDF2 definitions can be re-
solved using declarative disambiguation filters specified for associativity, prior-
ities, follow restrictions, reject, avoid and prefer productions (van den Brand
et al., 2002). Implicit disambiguation mechanisms such as ‘longest match’
are avoided. Other approaches, including PEGs (Ford, 2002), language in-
heritance in MontiCore (Krahn et al., 2008), and the composite grammars of

2Note that Schwerdfeger and Van Wyk (2009b) have shown that for some LR grammars it
is possible to statically determine whether they compose. They claim that if you accept some
restrictions on the grammars, the composition of the “independently developed grammars” will
not produce conflicts.

26



module Java-SQL
imports

Java
SQL

exports context-free syntax
"<|" Query "|>" → Expr {cons("ToSQL")}
"${" Expr "}" → SqlExpr {cons("FromSQL")}

Figure 2.3 Syntax of Java with embedded SQL queries, adapted from (Bravenboer
et al., 2010). The ‘cons’ annotation defines the name of the constructed AST term.

ANTLR (Parr and Fisher, 2011), implicitly disambiguate grammars by forcing
an ordering on the alternatives of a production — the first (or last) defini-
tion overrides the others. Enforcing explicit disambiguation allows undesired
ambiguities to be detected, and explicitly addressed by a developer. This
characteristic benefits the definition of non-trivial grammars, in particular the
definition of grammars that are composed from two or more independently
developed grammars.

SDF has been used to define various composite languages, often based on
mainstream languages such as C/C++ (Waddington and Yao, 2007), PHP (Bra-
venboer et al., 2007), and Java (Bravenboer and Visser, 2004; Kats et al., 2008).
The example grammar shown in Figure 2.3 extends Java with embedded SQL
queries. It imports both the Java and SQL grammars, adding two new pro-
ductions that integrate the two. In SDF, grammar productions take the form
p1...pn -> s and specify that a sequence of strings matching symbols p1 to
pn matches the symbol s. The productions in this particular grammar spec-
ify a quotation syntax for SQL queries in Java expressions, and vice versa
an anti-quotation syntax for Java expressions inside SQL query expressions.
The productions are annotated with the {cons(name)} annotation, which in-
dicates the constructor name used to label these elements when an abstract
syntax tree is constructed.

2.3 I S L A N D G R A M M A R S

In this section we provide some background on island grammars (van Deur-
sen and Kuipers, 1999; Moonen, 2001, 2002), which served as an inspiration
for our error recovery technique. At the end of this section, we also discuss
the related techniques of skeleton grammars (Klusener and Lämmel, 2003)
and noise-skipping or fuzzy parsing (Lavie and Tomita, 1993; Koppler, 1997).

Island grammars combine grammar production rules for the precise analy-
sis of specific language constructs (the “islands”) with general rules for skip-
ping over the remainder of an input program (“water”). Parsing with an
island grammar results in a partial interpretation of the input, consisting of
lists of chuncks that form the constructs of interest. From this result, valuable
information can be extracted about specific properties of the input program.
Island grammars are commonly applied for reverse engineering of legacy ap-
plications, for which no formal grammar may be available, or for which many
(vendor-specific) dialects exist (Moonen, 2001).

Chapter 2. Error Recovery for Scannerless Generalized Parsing 27



module ExtractCalls
exports

context-free start-symbols
Module

context-free syntax
Chunk* → Module {cons("Module")}
WATER → Chunk {cons("WATER")}
"CALL" Id → Chunk {cons("Call")}

lexical syntax
[\ \t\n] → LAYOUT
~[\ \t\n]+ → WATER {avoid}
[a-zA-Z][a-zA-Z0-9]* → Id

lexical restrictions
WATER -/- [A-Za-z0-9]

Figure 2.4 An island grammar for extracting calls from a legacy application;
adapted from (Moonen, 2001).

Island grammars were originally developed using SDF (van Deursen and
Kuipers, 1999; Moonen, 2001). The integration of lexical and context-free pro-
ductions of SDF allows island grammars to be written in a single, declarative
specification that includes both lexical syntax for the definition of water and
context-free productions for the islands. Figure 2.4 shows an SDF specification
of an island grammar that extracts call statements from COBOL programs.
Any other statements in the program are skipped and parsed as water.

The first context-free production of the grammar shown in Figure 2.4 de-
fines the Module symbol, which is the start symbol of the grammar. A Module

is a sequence of chunks. Each Chunk, in turn, is parsed either as a patch of
WATER or as an island, in the form of a Call construct. The lexical produc-
tions define patterns for layout, water, and identifiers. The layout rule, using
the special LAYOUT symbol, specifies the kind of layout, e.g., whitespace, used
in the language. Layout is ignored by the context-free syntax rules, since
their patterns are automatically interleaved with optional layout. The WATER

symbol is defined as the inverse of the layout pattern, using the ~ negation
operator. Together, they define a language that matches any given character
stream.

The parse tree produced for an island is constrained using disambiguation
filters that are part of the original SDF specification (van den Brand et al.,
2002). First, the lexical restrictions section specifies a restriction for the WATER

symbol. This rule ensures that water is always greedily matched, and never
followed by any other water character. Second, the {avoid} annotation on the
WATER rule specifies a disambiguation filter for these productions, indicating
that the production is to be avoided, e.g., at all times, a non-water Chunk is
to be preferred. When required, more advanced disambiguation filters can be
implemented that, for example, select the tree with the least number of water
productions.

The following example illustrates how programs are parsed using an island
grammar:

CALL CKOPEN USING filetable, status

28



Figure 2.5 The unfiltered abstract syntax tree for a COBOL statement, constructed
using the ExtractCalls grammar.

Given this COBOL fragment, a generalized parser can construct a parse tree —
or rather a parse forest — that includes all valid interpretations of this text. In-
ternally, the parse tree includes the complete character stream, all productions
used, and their annotations. In this chapter, we focus on abstract syntax trees
(derived from the parse trees) where only the {cons(name)} constructor la-
bels appear in the tree. Figure 2.5 shows the complete, ambiguous AST for
our example input program. Note in particular the amb term, which indicates
an ambiguity in the tree: CALL CKOPEN in our example can be parsed either
as a proper Call statement or as WATER. Since the latter has an {avoid} an-
notation in its definition, a disambiguation filter can be applied to resolve the
ambiguity. Normally, these filters are applied automatically during or after
parsing.

Skeleton grammars Similar to island grammars, skeleton grammars Klusener
and Lämmel (2003) are tolerant grammars that skip over certain parts of the
input that are considered irrelevant. Skeleton grammars are different from
island grammars in the sense that they only skip over subtrees. That is, skele-
ton grammars preserve the context-free structure of the baseline grammar
down-to a certain depth in the parse tree; thereby establishing the right syn-
tactic context for the constructs that are considered relevant. For cases where
a baseline grammar is available, i.e., a complete grammar for some dialect
of a legacy language, Klusener and Lämmel (2003) present a semi-automatic
process to derive a skeleton grammar for the selected constructs of interest.

Fuzzy parsing A parser for an island (or skeleton) grammar behaves similar
to one that implements a noise-skipping algorithm (Lavie and Tomita, 1993)
or a fuzzy parsing strategy (Koppler, 1997). That is, it can skip over any form

Chapter 2. Error Recovery for Scannerless Generalized Parsing 29



module Java-15
exports
lexical syntax

[\ \t\12\r\n] → LAYOUT
"\"" StringPart* "\"" → String
"/*" CommentPart* "*/" → Comment
Comment → LAYOUT
...

context-free syntax
"if" "(" Expr ")" Stm → Stm {cons("If")}
"if" "(" Expr ")" Stm "else" Stm → Stm {cons("IfElse"), avoid}
...

Figure 2.6 Part of the standard Java grammar in SDF; adapted from (Bravenboer
et al., 2006a).

of noise in the input file. The main difference is that, using an island grammar,
this logic is entirely encapsulated in the grammar definition itself instead of
the parsing algorithm.

2.4 P E R M I S S I V E G R A M M A R S

As we have observed in the previous section, there are many similarities be-
tween a parser using an island grammar and a noise-skipping parser. In the
former case, the water productions of the grammar are used to “fall back” in
case an input sentence cannot be parsed, in the latter case, the parser algo-
rithm is adapted to do so. While the technique of island grammars is targeted
only towards partial grammar definitions, this observation suggests that the
basic principle behind island grammars may be adapted for use in recovery
for complete, well-defined grammars.

In the remainder of this section, we illustrate how the notion of produc-
tions for defining “water” can be used in regular grammars, and how these
principles can be further applied to achieve alternative forms of recovery from
syntax errors. We are developing this material in an example-driven way in
the sections 2.4.1 to 2.4.3. Then, in Section 2.4.4, we explain how different
forms of recovery can be combined. Finally, in Section 2.4.5 we discuss au-
tomatic derivation of recovery rules from the grammar, while Section 2.4.6
explains how the set of generated recovery rules can be customized by the
language developer.

We focus many of our examples on the familiar Java language. Figure 2.6
shows a part of the SDF definition of the Java language. SDF allows the defi-
nition of concrete and abstract syntax in a single framework. The mapping be-
tween concrete syntax trees (parse trees) and abstract syntax trees is given by
the {cons(name)} annotations. Thus, in the given example, the {cons("If")}
and {cons("IfElse")} annotations specify the name of the constructed ab-
stract syntax terms. Furthermore, the abstract syntax tree does not contain
redundant information such as layout between tokens and literals in a pro-
duction. The {avoid} annotation in the second context-free production is
used to explicitly avoid the “dangling else problem”, a notorious ambiguity
that occurs with nested if/then/else statements. Thus, the {avoid} annota-

30



module Java-15-Permissive-Chunks
imports Java-15
exports
lexical syntax

~[\ \t\12\r\n]+ → WATER {avoid}
lexical restrictions

WATER -/- ~[\ \t\12\r\n]
context-free syntax
WATER → Stm {cons("WATER")}

Figure 2.7 Chunk-based recovery rules
for Java using avoid.

module Java-15-Permissive-Chunks
imports Java-15
exports
lexical syntax
~[\ \t\12\r\n]+ → WATER {recover}

lexical restrictions
WATER -/- ~[\ \t\12\r\n]

context-free syntax
WATER → Stm {cons("WATER")}

Figure 2.8 Chunk-based recovery rules
for Java using recover.

tion states that the interpretation of an IfElse term with a nested If subterm,
must be avoided in favor of the alternate interpretation, i.e., an If term with a
nested IfElse subterm. Indeed, Java can be parsed without the use of SGLR,
but SGLR has been invaluable for extensions and embeddings based on Java
such as those described in (Bravenboer and Visser, 2004; Bravenboer et al.,
2006a).

2.4.1 Chunk-Based Recovery Rules

Island grammars rely on constructing a grammar based on coarse-grained
chunks that can be parsed normally or parsed as water and skipped. This
structure is lacking in normal, complete grammars, which tend to have a
more hierarchical structure. For example, Java programs consist of one or
more classes that each contain methods, which contain statements, etc. Still,
it is possible to impose a more chunk-like structure on existing grammars in a
coarse-grained fashion; for example, in Java, all statements can be considered
as, possibly nested, chunks.

Figure 2.7 extends the standard Java grammar with a coarse-grained chunk
structure at the statement level. In this grammar, each Stm symbol is con-
sidered a “chunk”, which can be parsed as either a regular statement or as
water, effectively skipping over any noise that may exist within method bod-
ies. Water is defined as any non-empty sequence of non-layout characters. To
ensure that water is always greedily matched, a follow restriction is specified
(-/-), expressing that the WATER symbol is never followed by another water
character.

We can extend the grammar of Figure 2.7 to introduce a chunk-like struc-
ture at other levels in the hierarchical structure formed by the grammar, e.g.
at the method level or at the class level, in order to cope with syntax errors in
different places. Doing so leads to a large number of possible interpretations
of syntactically invalid (but also syntactically valid) programs. For example,
any invalid statement that appears in a method could then be parsed as a
“water statement”. Alternatively, the entire method could be parsed as a “wa-
ter method”. A preferred interpretation can be picked based on the seize of
the regions that are parsed as water.

From Avoid to Recover productions As part of the original SDF specifica-
tion, the {avoid} annotation is used to disambiguate parse trees produced

Chapter 2. Error Recovery for Scannerless Generalized Parsing 31



by grammar productions. An example is the “dangling else” disambiguation
shown in Figure 2.6. In Figure 2.7, we use the {avoid} annotation on the
water production to indicate that preference should be given to parsing state-
ments with regular productions. The key insight of permissive grammars is
that this mechanism is sufficient, in principle, to model error recovery.

However, in practice, there are two problems with the use of {avoid} for
declaring error recovery. First, {avoid} is also used in regular disambiguation
of grammars. We want to avoid error recover productions more than ‘normal’
{avoid} productions. Second, {avoid} is implemented as a post-parse filter
on the parse forest produced by the parser. This is fine when ambiguities
are relatively local and few in number. However, noise-skipping water rules
such as those in Figure 2.7 cause massive numbers of ambiguities; each state-
ment can be interpreted as water or as a regular statement, i.e., the parse
forest should represent an exponential number of parse trees. While (S)GLR
is equipped to deal with ambiguities, their construction has a performance
penalty, which is wasteful when there are no errors to recover from.

Thus, we introduced the {recover} annotation in SDF to distinguish be-
tween the two different concerns of recovery and disambiguation (Figure 2.8).
The annotation is similar to {avoid}, in that we are interested in parse trees
with as few uses of {recover} productions as possible. Only in case all re-
maining branches contain recover productions, a preferred interpretation is
selected heuristically by counting all occurrences of the {recover} annota-
tion in the ambiguous branches, and selecting the variant with the lowest
count. Parse trees produced by the original grammar productions are al-
ways preferred over parse trees containing recover productions. Furthermore,
{recover} branches are disambiguated at runtime, and, to avoid overhead
for error-free programs, are only explored when parse errors occur using the
regular productions. The runtime support for parsing and disambiguation
of recover branches is explained in Section 2.5. Throughout this section we
use only the standard, unaltered SDF specification language, adding only the
{recover} annotation.

Limitations of chunk-based rules While the approach we presented so far can
already provide basic syntax error recovery, there are three disadvantages to
the recovery rules as presented here. Firstly, the rules are language-specific
and are best implemented by an expert of a particular language and its SDF
grammar specification. Secondly, the rules are rather coarse-grained in nature;
invalid subexpressions in a statement cause the entire statement to be parsed
as water. Lastly, the additional productions alter the abstract syntax of the
grammar (introducing new WATER terminals), causing the parsed result to be
unusable for tools that depend on the original structure.

Adapting a grammar to include water productions at different hierarchical
levels is a relatively simple yet effective way to selectively skip over “noise”
in an input file. In the remainder of this section, we refine this approach,
identifying idioms for recovery rules.

32



2.4.2 Deletion Recovery Rules

Most programming languages feature comments and insignificant whitespace
that have no impact on the logical structure of a program. They are generally
not considered to be part of the AST. As discussed in Section 2.3, any form of
layout, which may include comments, is implicitly interleaved in the patterns
of concrete syntax productions. Layout and comments interleave the context-
free syntax of a language at a much finer level than the recovery rules we have
discussed so far. Consider for example the Java statement

if (temp.greaterThan(MAX) /*API change pending*/)
fridge.startCooling();

in which a comment appears in the middle of the statement.
The key idea discussed in this section is to declare water tokens that may

occur anywhere that layout may occur. Using this idea, permissive gram-
mars can be defined with noise skipping recovery rules that are language-
independent and more fine grained than the chunk-based recovery rules de-
scribed above. To understand how this can be realized, we need to understand
the way that SDF realizes ‘character-level grammars’.

Intermezzo: layout in SDF In SDF, productions are defined in lexical syntax
or in context-free syntax. Lexical productions are normal context-free gram-
mar productions, i.e., not restricted to regular grammars. The only distinction
between lexical syntax and context-free syntax is the role of layout. The char-
acters of an identifier (lexical syntax) should not be separated by layout, while
layout may occur between the sub-phrases of an if-then-else statement, defined
in context-free syntax.

The implementation of SDF with scannerless parsing entails that individual
characters are the lexical tokens considered by the parser. Therefore, lexical
productions and context-free productions are merged into a single context-
free grammar with characters as terminals. The result is a character-level
grammar that explicitly defines all the places where layout may occur. For
example, the If production is defined in Kernel-SDF (Visser, 1997c), the un-
derlying core language of SDF, as follows3:

syntax
"if" LAYOUT? "(" LAYOUT? Expr LAYOUT? ")" LAYOUT? Stm →
Stm {cons("If")}

Thus, optional layout is interleaved with the regular elements of the construct.
It is not included in the construction of abstract syntax trees from parse trees.
Since writing productions in this explicit form is tedious, SDF produces them
through a grammar transformation, so that, instead of the explicit rule above,
one can write the If production as in Figure 2.6:
context-free syntax
"if" "(" Expr ")" Stm → Stm {cons("If")}

Water as layout We can use the notion of interleaving context-free produc-
tions with optional layout in order to define deletion recovery rules, which form

3We have slightly simplified the notation that is used for non-terminals in Kernel-SDF.

Chapter 2. Error Recovery for Scannerless Generalized Parsing 33



module Java-15-Permissive-Deletions
imports Java-15
exports
lexical syntax

[A-Za-z0-9\_]+ → DELETEWORD {recover}
~[A-Za-z0-9\_\ \t\12\r\n] → DELETESEP {recover}
DELETEWORD → LAYOUT {cons("DELETE")}
DELETESEP → LAYOUT {cons("DELETE")}

lexical restrictions
DELETEWORD -/- [A-Za-z0-9\_]

Figure 2.9 Deletion recovery rules.

a variation of the water recovery rules we have shown so far. Consider Fig-
ure 2.9, which combines elements of the comment definition of Figure 2.6
and the chunk-based recovery rules from Figure 2.8. It introduces additional
productions into the grammar for layout, which interleaves the context-free
syntax patterns. As such, it skips noise on a much finer grained level than our
previous grammar incarnation. To separate patches of deleted characters into
small chunks, each associated with its own significant {recover} annotation,
we distinguish between DELETEWORD and DELETESEP tokens. The production
for the DELETEWORD token allows to skip over identifier strings, while the pro-
duction for the DELETESEP token allows to skip over special characters that are
neither part of identifiers nor whitespace characters. The latter production is
defined as an inverse pattern, using the negation operator (~). This distinction
ensures that large strings, consisting of multiple words and special characters,
are counted towards a higher recovery cost.

As an example input, consider a programmer who is in the process of
introducing a conditional clause to a statement:

if (temp.greaterThan(MAX) // missing )
fridge.startCooling();

Still missing the closing bracket, the standard SGLR parser would report an
error near the missing character, and would stop parsing. Using the adapted
grammar, a parse forest is constructed that considers the different interpre-
tations, taking into account the new deletion recovery rule. Based on the
number of {recover} annotations, the following would be the preferred in-
terpretation:

if (temp.greaterThan)
fridge.startCooling();

In the resulting fragment both the opening ( and the identifier MAX are dis-
carded, giving a total cost of 2 recoveries. The previous, chunk-based incarna-
tion of our grammar would simply discard the entire if clause. While not yet
ideal, the new version maintains a larger part of the input. Since it is based
on the LAYOUT symbol, it also does not introduce new “water” or “deletion”
terms into the AST. For reporting errors, the original parse tree, which does
contain “deletion” terms, can be inspected instead.

The adapted grammar of Figure 2.9 no longer depends on hand-picking
particular symbols at different granularities to introduce deletion recovery

34



module Java-15-Permissive-LiteralInsertions
imports Java-15
exports
lexical syntax
→ ")" {cons("INSERT"), recover}
→ "]" {cons("INSERT"), recover}
→ "}" {cons("INSERT"), recover}
→ ">" {cons("INSERT"), recover}
→ ";" {cons("INSERT"), recover}

Figure 2.10 Insertion recovery rules for literal symbols.

rules. Therefore, it is effectively language-independent, and can be automati-
cally constructed using only the LAYOUT definition of the grammar.

2.4.3 Insertion Recovery Rules

So far, we have focused our efforts on recovery by deletion of erroneous sub-
strings. However, in an interactive environment, most parsing errors may well
be caused by missing substrings instead. Consider again our previous example:

if (temp.greaterThan(MAX) // missing )
fridge.startCooling();

Our use case for this has been that the programmer was still editing the
phrase, and did not yet add the missing closing bracket. Discarding the open-
ing ( and the MAX identifier allowed us to parse most of the statement and the
surrounding file, reporting an error near the missing bracket. Still, a better
recovery would be to insert the missing ).

One way to accommodate for insertion based recovery is by the introduc-
tion of a new rule to the syntax to make the closing bracket optional:

context-free syntax
"if" "(" Expr Stm → Stm {cons("If"), recover}

This strategy, however, is rather specific for a single production, and would
significantly increase the size of the grammar if we applied it to all produc-
tions. A better approach would be to insert the particular literal into the parse
stream.

Literal insertion SDF allows us to simulate literal insertion using separate
productions that virtually insert literal symbols. For example, the lexical syn-
tax section in Figure 2.10 defines a number of basic literal-insertion recovery
rules, each inserting a closing bracket or other literal that ends a production
pattern. This approach builds on the fact that literals such as ")" are in fact
non-terminals that are defined with a production in Kernel-SDF:

syntax
[\41] → ")"

Thus, the character 41, which corresponds to a closing brace in ASCII, re-
duces to the nonterminal “)”. A literal-insertion rule extends the defini-

Chapter 2. Error Recovery for Scannerless Generalized Parsing 35



tion of a literal non-terminal, effectively making it optional by indicating
that they may match the empty string.4 Just as in our previous examples,
{recover} ensures these productions are deferred. The constructor annota-
tion {cons("INSERT")} is used as a labeling mechanism for error reporting
for the inserted literals. As the INSERT constructor is defined in lexical syntax,
it is not used in the resulting AST.

Insertion rules for opening brackets In addition to insertions of closing brack-
ets in the grammar, we can also add rules to insert opening brackets. These
literals start a new scope or context. This is particularly important for com-
posed languages, where a single starting bracket can indicate a transition into
a different sublanguage, such as the |[ and <| brackets of Figure 2.1 and Fig-
ure 2.2. Consider for example a syntax error caused by a missing opening
bracket in the SQL query of the former figure:

SQL stm = // missing <|
SELECT password FROM Users WHERE name = ${user}

|>;

Without an insertion rule for the <| opening bracket, the entire SQL fragment
could only be recognized as (severely syntactically incorrect) Java code. Thus,
it is essential to have insertions for such brackets:

lexical syntax
→ "<|" {cons("INSERT"), recover}

On literals, identifiers, and reserved words Literal-insertion rules can also be
used for literals that are not reserved words. This is an important property
when considering composed languages since, in many cases, some literals in
one sublanguage may not be reserved words in another. As an example, we
discuss the insertion rule for the end literal in the combined Stratego-Java
language.

In Stratego, the literal end is used as the closing token of the if ... then

... else ... end construct. To recover from incomplete if-then-else con-
structs, a good insertion rule is:

lexical syntax
→ "end" {cons("INSERT"), recover}

In Java, the string end is not a reserved word and is a perfectly legal identifier.
In Java, identifiers are defined as follows:5

lexical syntax
[A-Za-z\_\$][A-Za-z0-9\_\$]* → ID

This lexical rule would match a string end. Still, the recovery rule will strictly
be used to insert the literal end, and never an identifier with the name “end”.

4Insertion rules work best for languages that enforce greedy matching on layout and iden-
tifiers, otherwise, these rules introduce a large number of ambiguities that may significantly
decrease the performance during recovery.

5In fact this production is a simplified version of the actual production. Java allows many
other (Unicode) letters and numbers to appear in identifiers.

36



module Java-15-Permissive-LexicalInsertions
imports Java-15
exports
lexical syntax

INSERTSTARTQ StringPart* "\n" → String {cons("INSERTEND")}
"\"" → INSERTSTARTQ {recover}
INSERTSTARTC CommentPart* EOF → Comment {cons("INSERTEND")}
"/*" → INSERTSTARTC {recover}

Figure 2.11 Insertion recovery rules for string and comment closings.

The reason why the parser can make this distinction is that the literal end
itself is defined as an ordinary symbol when normalized to kernel syntax:

syntax
[\101] [\110] [\100] → "end"

The reason that SDF allows this production to be defined in this fashion is
that in the SGLR algorithm, the parser only operates on characters, and the
end literal has no special meaning other than a grouping of character matches.

The literal-insertion recovery rule simply adds an additional derivation for
the "end" symbol, providing the parser with an additional way to parse it,
namely by matching the empty string. As such, the rule does not change
how identifiers (ID) are parsed, namely by matching the pattern at the left
hand side of the production rule for the ID symbol. With a naive recovery
strategy that inserts tokens into the stream, identifiers (e.g., end in Java) could
be inserted in place of keywords. With our approach, these effects are avoided
since the insertion recovery rules only apply when a literal is expected.

Insertion rules for string and comment closings Figure 2.11 specifies recovery
rules for terminating the productions of the String and Comment symbols,
first seen in Figure 2.6. Both rules have a {recover} annotation on their
starting literal. Alternatively, the annotation could be placed on the complete
production:

lexical syntax
"\"" StringPart* "\n" → String {cons("INSERTEND"),recover}

However, the given formulation is beneficial for the runtime behavior of our
adapted parser implementation, ensuring that the annotation is considered
before construction of the starting literal. The recovery rules for string liter-
als and comments match either at the end of a line, or at the end of the file
as appropriate, depending on whether newline characters are allowed in the
original, non-recovering productions. An alternative approach would have
been to add a literal insertion production for the quote and comment termi-
nator literals. However, by only allowing the strings and comments to be
terminated at the ending of lines and the end of file, the number of different
possible interpretations is severely reduced, thus reducing the overall runtime
complexity of the recovery.

Chapter 2. Error Recovery for Scannerless Generalized Parsing 37



Insertion rules for lexical symbols Insertion rules can also be used to insert lex-
ical symbols such as identifiers. However, lexical symbols do have a represen-
tation in the AST, therefore, their insertion requires the introduction of place-
holder terms that represent a missing code construct, for example a NULL()

term. Since placeholder terms alter the abstract syntax of the grammar, their
introduction adds to the complexity of tools that process the AST. However,
for certain use cases such as content completion in an IDE, lexical insertion
can be useful. We revisit the topic in Chapter 5 (Section 5.4) which discusses
the integration of our recovery technique with the IDE services that depend
on it.

2.4.4 Combining Different Rule Sets

The deletion recovery rules of Section 2.4.2 and the insertion rules of Sec-
tion 2.4.3 can be combined to form a unified recovery mechanism that allows
both discarding and insertion of substrings:

module Java-15-Permissive
imports

Java-15-Permissive-Deletions
Java-15-Permissive-LiteralInsertions
Java-15-Permissive-LexicalInsertions

Together, the two strategies maintain a fine balance between discarding and
inserting substrings. Since the recovery strategy assigns additional costs for
each recover rule application, insertion or deletion of a single or a few token
strings will generally be preferred over inserting or discarding multiple token
strings. This ensures that most of the original (or intended) user input is
preserved.

2.4.5 Automatic Derivation

Automatically deriving recovery rules helps to maintain a valid, up-to-date re-
covery rule set as languages evolve and are extended or embedded into other
languages. Particularly, as languages are changed, all recovery rules that are
no longer applicable are automatically removed from the grammar and new
recovery rules are added. Thus, automatic derivation helps to maintain lan-
guage independence by providing a language-parametric approach towards
the introduction of recovery rules.

SDF specifications are fully declarative, which allows automated analysis
and transformation of a grammar specification. We formulate a set of heuris-
tic rules for the generation of recovery rules based on different production
patterns. These rules are applied in a top-down traversal to transform the
original grammar into a permissive grammar. The heuristics in this section fo-
cus on insertion recovery rules, since these are language specific. The deletion
recovery rules are general applicable and added to the transformed grammar
without further analysis. The heuristics discussed in this section are based on
our experience with different grammars.

38



So far, we only focused on a particular kind of literals for insertion into the
grammar, such as brackets, keywords, and string literals. Still, we need not
restrict ourselves to only these particular literals. In principle, any literal in the
grammar is eligible for use in an insertion recovery rule. However, for many
literals, automatic insertion can lead to unintuitive results in the feedback
presented to the user. For example, in the Java language “synchronized” is
an optional modifier at the beginning of a class declaration. We don’t want
the editor to suggest to insert a “synchronized” keyword. In those cases,
discarding some substrings instead may be a safer alternative. The decision
whether to consider particular keywords for insertion may depend on their
semantic meaning and importance (Degano and Priami, 1995). To take this
into account, expert feedback on a grammar is needed.

Since we have aimed at maintaining language independence of the ap-
proach, our main focus is on more generic, structure-based properties of the
grammar. We have identified four different general classes of literals that com-
monly occur in grammars:

• Closing brackets and terminating literals for context-free productions.

• Opening brackets and starting literals for context-free productions.

• Closing literals that terminate lexical productions where no newlines are
allowed (such as most string literals).

• Closing literals that terminate lexical productions where newlines are
allowed (such as block comments).

Each has its own particular kind of insertion rule, and each follows its own
particular definition pattern. We base our generic, language-independent re-
covery technique on these categories.

By grammar analysis, we derive recovery rules for insertions of the cate-
gories mentioned above. With respect to the first and second category, we
only derive rules for opening and closing terminals that appear in a balanced
fashion with another literal (or a number of other literals). Insertions of lit-
erals that are not balanced with another literal can lead to undesired results,
since such constructs do not form a clear nesting structure. Furthermore,
we exclude lexical productions that define strings and comments, for which
we only derive more restrictive insertion rules given by the third and fourth
category.

Insertion rules for the first category, closing bracket and terminating literal
insertions, are added based on the following criteria. First, we only consider
context-free productions. Second, the first and last symbols of the pattern
of such a production must be a literal, e.g., the closing literal appears in a
balanced fashion. Finally, the last literal is not used as the starting literal of
any other production. The main characteristic of the second category is that
it is based on starting literals in context-free productions. We only consider a
literal a starting literal if it only ever appears as the first part of a production
pattern in all rules of the grammar. For the third category, we only con-
sider productions with identical starting and end literals where no newlines

Chapter 2. Error Recovery for Scannerless Generalized Parsing 39



module Java-15
...
context-free syntax
"{" BlockStm* "}" → Block {cons("Block")}
"(" Expr ")" → Expr {bracket}
"while" "(" Expr ")" Stm → Stm {cons("While")}
...
"void" "." "class" → ClassLiteral {cons("Void")}
(Anno | ClassMod)* "class" Id ... → ClassHead {cons("ClassHead")}

Figure 2.12 A selection of context-free productions that appear in the Java gram-
mar.

are allowed in between. Finally, for the fourth category we derive rules for
matching starting and ending literals in LAYOUT productions. Note that we
found that some grammars (notably the Java grammar of (Bravenboer et al.,
2006a)) use kernel syntax for LAYOUT productions to more precisely control
how comments are parsed. Thus, we consider both lexical and kernel syntax
for the comment-terminating rules.

As an example, consider the context-free productions of Figure 2.12. Look-
ing at the first production, and using the heuristic rules above, we can rec-
ognize that } qualifies as a closing literal. Likewise, ) satisfies the conditions
for closing literals we have set. By programmatically analyzing the grammar
in this fashion, we collected the closing literal insertion rules of Figure 2.10

which are a subset of the complete set of closing literal insertion rules for Java.
From the productions of Figure 2.12 we can further derive the { and ( open-
ing literals. In particular, the while keyword is not considered for deriving an
opening literal insertion rule, since it is not used in conjunction with a closing
literal in its defining production.

No set of heuristic rules is perfect. For any kind of heuristic, an example
can be constructed where it fails. We have encountered a number of anom-
alies that arose from our heuristic rules. For example, based on our heuristic
rules, the Java class keyword is recognized as a closing literal6, which fol-
lows from the “void” class literal production of Figure 2.12, and from the fact
that the class keyword is never used as a starting literal of any production.
In practice, we have found that these anomalies are relatively rare and in most
cases harmless.

We evaluated our set of heuristic rules using the Java, Java-SQL, Strat-
ego, Stratego-Java and WebDSL grammars, as outlined in Section 4.5. For
these grammars, a total number of respectively 19 (Java), 43 (Java-SQL), 37
(Stratego), 47 (Stratego-Java) and 32 (WebDSL) insertion rules were gener-
ated, along with a constant number of deletion recovery rules as outlined in
Figure 2.9. The complete set of derived rules is available from (Permissive,
2011).

6Note that for narrative reasons, we did not include an insertion rule for this keyword in
Figure 2.10.

40



2.4.6 Customization

Using automatically derived rules may not always lead to the best possible re-
covery for a particular language. Different language constructs have different
semantic meanings and importance. Different languages also may have differ-
ent points where programmers often make mistakes. Therefore a good error
recovery mechanism is not only language independent, but is also flexible (De-
gano and Priami, 1995). That is, it allows grammar engineers to use their
experience with a language to improve recovery capabilities. Our system,
while remaining within the realm of the standard SDF grammar specification
formalism, delivers both of these properties.

Language engineers can add their own recovery rules using SDF produc-
tions similar to those shown earlier in this section. For example, a common
“rookie” mistake in Stratego-Java is to use [| brackets |] instead of |[ brack-
ets ]|. This may be recovered from by standard deletion and insertion rules.
However, the cost of such a recovery is rather high, since it would involve
two deletions and two insertions. Other alternatives, less close to the original
intention of the programmer, might be preferred by the recovery mechanism.
Based on this observation, a grammar engineer can add substitution recovery
rules to the grammar:

lexical syntax
"[|" → "|[" {recover, cons("INSERT")}
"|]" → "]|" {recover, cons("INSERT")}

These rules substitute any occurrence of badly constructed embedding brack-
ets with the correct alternative, at the cost of only a single recovery. Similarly,
grammar engineers may add recovery rules for specific keywords, operators,
or even placeholder identifiers as they see fit to further improve the result of
the recovery strategy.

Besides composition, SDF also provides a mechanism for subtraction of
languages. The {reject} disambiguation annotation filters all derivations
for a particular set of symbols (van den Brand et al., 2002). Using this fil-
ter, it is possible to disable some of the automatically derived recovery rules.
Consider for example the insertion rule for the class keyword, which arose
as an anomaly from the heuristic rules of the previous subsection. Rather
than directly removing it from the generated grammar, we can disable it by
extending the grammar with a new rule that disables the class insertion rule.
lexical syntax
→ "class" {reject}

It is good practice to separate the generated recovery rules from the cus-
tomized recovery rules. This way, the generated grammar does not have to be
adapted and maintained by hand. A separate grammar module can import
the generated definitions, while adding new, handwritten definitions. SDF
allows modular composition of grammar definitions.

Chapter 2. Error Recovery for Scannerless Generalized Parsing 41



i = f ( x ) + 1 ;
i = f ( x + 1 );
i = f ( x ) ;
i = f ( 1 );
i = ( x ) + 1 ;
i = ( x + 1 );
i = x + 1 ;
i = f ;
i = ( x ) ;
i = x ;
i = 1 ;

f ( x + 1 );
f ( x ) ;
f ( 1 );

;

Figure 2.13 Multiple interpretations of i=f(x)+1; with insertion recovery rules
(underlined) and deletion recovery rules.

2.5 PA R S I N G P E R M I S S I V E G R A M M A R S

When all recovery rules are taken into account, permissive grammars provide
many different interpretations of the same code fragment. As an example,
Figure 2.13 shows many possible interpretations of the string i=f(x)+1;. The
alternative interpretations are obtained by applying recover productions for
inserting parentheses or removing text parts. This small code fragment illus-
trates the explosion in the number of ambiguous interpretations when using a
permissive grammar. The option of inserting opening brackets results in even
more possible interpretations, since bracket pairs can be added around each
expression that occurs in the program text.

Conceptually, the use of grammar productions to specify how to recover
from syntax errors provides an attractive mechanism to parse erroneous frag-
ments. All possible interpretations of the fragment are explored in parallel,
using a generalized parser. Any alternative that does not lead to a valid in-
terpretation is simply discarded, while the remaining branches are filtered by
disambiguation rules applied by a post processor on the created parse forest.
However, from a practical point of view, the extra interpretations created by
recover productions negatively affect time and space requirements. With a
generalized parser, all interpretations are explored in parallel, which signif-
icantly increases the workload for the parser, even if there are no errors to
recover from.

In this section we address the performance problems introduced by the
multiple recover interpretations. We extend the SGLR algorithm with a selec-
tive form of backtracking that is only applied when actually encountering a
parsing error. The performance problems during normal parsing are simply
avoided by ignoring the recover productions. Figure 2.14 empirically illus-
trates the need for a backtracking approach, showing parse times measured
for different permissive grammars with and without backtracking.

42



parsed characters C D DC DC + btr
0 0 0 0 0

10 2 2 12 0

20 2 3 18 0

30 2 7 55 0

40 2 27 92 1

50 3 38 134 1

60 3 59 226 1

70 5 106 870 1

80 21 204 47646 1

Figure 2.14 Parse times in millisecondes for correct prefixes of a Java program.
The numbers show the results for different permissive grammars (D=Deletions,
C=Insert Closings), using the original implementation (C, D, DC), and using the
implementation with support for backtracking (DC + btr).

2.5.1 Backtracking

As it is not practical to consider all recovery interpretations in parallel with
the normal grammar productions, we need a different strategy to efficiently
parse with permissive grammars. As an alternative to parsing different inter-
pretations in parallel, backtracking parsers revisit points of the file that allow
multiple interpretations, i.e., the choice points. Backtrack parsing is not a cor-
rect implementation of generalized parsing, since a backtracking parser only
produces a single possible parse. However, when applied to error recovery,
this is not problematic. For typical cases, parsing only a single interpretation
at a time suffices; ultimately, only one recovery solution is needed.

To minimize the overhead of recovery rules, we introduce a selective form
of backtracking to (S)GLR parsing that is only used for the concern of error
recovery. We ignore all recover productions during normal parsing, and em-
ploy backtracking to apply the recovery rules only once an error is detected.
Backtracking parsers exhibit exponential behavior in the worst case (Johnstone
et al., 2004). For pathological cases with repetitive backtracking, the parser is
aborted, and a secondary, non-correcting, recovery technique is applied.

2.5.2 Choice Points

A parser that supports error recovery typically operates by consuming tokens
(or characters) until an erroneous token is detected. At the point of detec-
tion of an error, the recovery mechanism is activated. A major problem for
error recovery techniques is the difference between the actual location of the
error and the point of detection (Degano and Priami, 1995). Consider for
example the erroneous code fragment in Figure 2.15. The superfluous clos-
ing bracket (underlined) after the foo(); statement is obviously intended as a
closing bracket for the if construct. However, since the if construct misses an

Chapter 2. Error Recovery for Scannerless Generalized Parsing 43



void methodX() {
if (true)

foo();
}
int i = 0;
while (i < 8)

i=bar(i);
}

Figure 2.15 The superfluous closing bracket causes a parse failure at the while

keyword.

opening bracket, the closing bracket is misinterpreted as closing the method
instead of the if construct. At that point, the parser simply continues, inter-
preting the remaining statements as class-body declarations. Consequently,
the parser fails at the reserved while keyword, which can only occur inside
a method body. More precisely, with a scannerless parser, it fails at the unex-
pected space after the characters w-h-i-l-e; the character cannot be shifted
and all branches (interpretations at that point) are discarded.

In order to properly recover from a parse failure, the text that precedes the
point of failure must be reinterpreted using a correcting recovery technique.
Using backtracking, this text is inspected in reverse order, starting at the point
of detection, gradually moving backwards to the start of the input file. Using
a reverse order helps maintain efficiency, since the actual error is most likely
near the failure location.

As generalized LR parsers process different interpretations in parallel, they
use a more complicated stack structure than regular LR parsers. Instead of
a single, linear stack, they use a graph-structured stack (GSS) that efficiently
stores the different interpretation branches, which are discarded as input to-
kens or characters are shifted (Tomita, 1988). All discarded branches must be
restored in case the old state is revisited, which poses a challenge for applying
backtracking.

To make it possible to resume parsing from a previous location, the com-
plete stack structure for that location is stored in a choice point. We found
that it is prohibitive (in terms of performance) to maintain the complete stack
state for each shifted character. To minimize the overhead introduced, we only
selectively record the stack structure. Lines have meaning in the structure of
programs as units of editing. Typically, parse errors are clustered in the line
being edited. We base our heuristic for storing choice points on this intuition.
In the current implementation, we create one backtracking choice point for
each line of the input file.

2.5.3 Search Heuristic

A parse failure indicates that one or more syntax errors reside in the prefix
of the program before the failure location. Since it is unlikely that the parser
can consume many more tokens after a syntax error, these errors are typically
located near the failure location. To recover from multiple errors, multiple
corrections are sometimes required. To recover from syntax errors efficiently,

44



Figure 2.16 Applying error recovery rules with backtracking. The initial point of
failure and the start of the recovery search space is indicated by a triangle. The
entire search space is indicated using dashed lines, where the numbers to the side
indicate the number of recovery rules that can be applied at that line.

we implement a heuristic that expands the search space with respect to the
area that is covered and with respect to the number of corrections (recovery
rule applications) that are made.

Figure 2.16 illustrates how the search heuristic is applied to recover the Java
fragment of Figure 2.15. The algorithm iteratively explores the input stream
in reverse order, starting at the nearest choice point. With each iteration of
the algorithm, different candidate recoveries are explored in parallel for a
restricted area of the file (the dotted lines in Figure 2.16) and for a restricted
number of recovery rule applications (indicated at the right of the dotted
lines in bold). For each following iteration the size of the area increases with
one line, and the branches explored in this area have one more recovery rule
application when compared to the previous iteration.

Figure 2.16a shows the parse failure after the while keyword. The point
of failure is indicated by the triangle. The actual error, at the closing bracket
after the if statement, is underlined. The figure shows the different choice
points that have been stored during parsing using circles in the left margin.

The first iteration of the algorithm (Figure 2.16b) focuses on the line where
the parser failed. The parser is reset to the choice point at the start of the line,
and enters recovery mode. At this point, only candidate recoveries that use
one recover production are considered; alternative interpretations formed by
a second recover production are cut off. Their exploration is postponed until
the next iteration. In this example scenario, the first iteration does not lead to
a valid solution.

For the next iteration, in Figure 2.16c, the search space is expanded with

Chapter 2. Error Recovery for Scannerless Generalized Parsing 45



respect to the size of the inspected area and the number of applied recovery
rules. The new search space consists of the line that precedes the point of de-
tection, plus the error detection line where the recovery candidates with two
corrections are considered, resuming the interpretations that were previously
cut off.

In Figure 2.16d, the search space is again expanded with the preceding line.
This time, a valid recovery is found: the application of a deletion recovery
rule that discards the closing bracket leads to a valid interpretation of the
erroneous code fragment. Once the original line where the error was detected
can be successfully parsed, normal parsing continues.

2.5.4 Algorithm

The implementation of the recovery algorithm requires a number of (relatively
minor) modifications of the SGLR algorithm used for normal parsing. First,
productions marked with the {recover} attribute are ignored during normal
parsing. Second, a choice point is stored at each newline character. Finally,
if all branches are discarded and no accepting state is reached, the Recover

function is called. Once the recovery is successful, normal parsing resumes
with the newly constructed stack structure.

Figure 6.12 shows the recovery algorithm in pseudo code. The Recover

function controls the iterative search process described in Section 2.5.3. The
function starts with some initial configuration (line 2–3), initializing the vari-
able candidates, and selecting the last inserted choice point. The choice
points are then visited in reverse order (line 4–7), until a valid interpretation
(non-empty stack structure) is found (line 7).

For each choice point that is visited, the ParseCandidates function is
called. The ParseCandidates function has a twofold purpose (line 16, 17):
first, it tries to construct a valid interpretation (line 16) by exploring candidate
recover branches; second, it collects new candidate recover branches (line 17)
the exploration of which is postponed until the next iteration. Candidate re-
cover branches are recover interpretations of a prefix of the program that are
not yet fully explored. The ParseCandidates function reparses the fragment
that starts at the choice point location and ends at the accept location (line 19–
27). We heuristically set the ACCEPT_INTERVAL on two more lines and at least
twenty more characters being parsed after the failure location. For each char-
acter of this fragment, previously cut off candidates are merged into the stack
structure (line 23) so that they are included in the parsing (line 24); while
new candidates are collected by applying recover productions on the stack
structure (line 24, 26, 32).

The main idea, implemented in line 23-26 and the ParseCharacter func-
tion (line 29–33), is to postpone the exploration of branches that require mul-
tiple recover productions, thereby implementing the expanding search space
heuristic described in Section 2.5.3.

After the algorithm completes and finds a non-empty set of stacks for the
parser, it enters an optional disambiguation stage. In case more than one

46



Recover(choicePoints, failureOffset)
1 B Constructs a recovery stack for the parse input after the failure location
2 candidates← {}
3 cp← Last inserted choicepoint
4 do
5 (stacks, candidates)← ParseCandidates(candidates, cp, failureOffset)
6 cp← Preceding choicepoint (or cp if none)
7 until | stacks | > 0
8 return stacks

ParseCandidates(candidates, choicePoint, failureOffset)
9 B Parses in parallel previously collected candidate recover branches,

10 while cutting off and collecting new recover candidates
11 B Input:
12 candidates - Unexplored recover branches created in the previous loop
13 choicePoint - The start configuration for the parser
14 failureOffset - Location were the parser originally failed
15 B Output:
16 stacks - recovered stacks at the accept location
17 newCandidates - new unexplored recover branches
18

19 stacks← choicePoint.stacks
20 offset← choicePoint.offset
21 newCandidates← {}
22 do
23 stacks← stacks∪ { c | c ∈ candidates∧ c.offset = offset}
24 (stacks, recoverStacks)← ParseCharacter(stacks, offset, true)
25 offset = offset+1
26 newCandidates← newCandidatess∪ recoverStacks
27 until offset = (failureOffset+ACCEPT_INTERVAL)
28 return (stacks, newCandidates)

ParseCharacter(stacks, offset, inRecoverMode)
29 B Parses the input character at the given offset.
30 B Output:
31 parseStacks - stacks created by applying normal grammar productions
32 recoverStacks - stacks created by applying recover productions
33 return (parseStacks, recoverStacks)

Figure 2.17 A backtracking algorithm to apply recovery rules.

Chapter 2. Error Recovery for Scannerless Generalized Parsing 47



valid recovery is found, stacks with the lowest recovery costs are preferred.
These costs are calculated as the sum of the cost of all recovery rules applied
to construct the stack. We employ a heuristic that weighs the application of
a deletion recovery rule as twice the cost of the application of an insertion
recovery rule, which accounts for the intuition that it is more common that
a program fragment is incomplete during editing than that a text fragment
was not intended and therefore should be deleted. Ambiguities obtained by
application of a recovery rule annotated with {reject} form a special case.
The reject ambiguity filter removes the stack created by the corresponding
rule from the GSS, thereby effectively disabling the rule.

2.6 E VA L U AT I O N

In their comparative study, Degano and Priami (Degano and Priami, 1995) set
out a number of criteria for good error recovery strategies, which we follow in
the evaluation of our approach. We distinguish between aspects that impact
users, and aspects that are relevant for developers of a language. There are
two main criteria with respect to the end user experience:

• Quality of recovery: The recovered program should be as close as pos-
sible to the program intended by the programmer. Since the AST is used
for syntactic and semantic editor services in the IDE, the quality of the
reconstructed AST is of great importance for the feedback presented to
the user.

• Performance: For interactive usage, the error recovery mechanism must
not disturb the work flow of the user. We measure the recovery time for
syntax errors in a file.

Important criteria for developers of a language or an IDE (plugin) are:

• Language independence: An error recovery algorithm should be inde-
pendent of a particular language, i.e., it should be usable with any given
grammar, without introducing a prohibitive amount of work.

• Flexibility: The approach must be easily customizable to the insights of
language engineers.

• Transparency: It should be clear why a particular recovery is presented.
The language engineer should have insight into how the recovery works
for a given grammar.

This evaluation focuses on selecting the optimal recovery rule set and eval-
uating the strengths and weaknesses of the technique. The results shown in
this section should be considered as preliminary; a more extensive evaluation
is provided in Chapter 4 (Section 4.5), which evaluates the effectiveness of
the permissive grammar technique when applied in combination with other
recovery techniques for SGLR, presented in Chapter 3. In this extensive eval-
uation we apply the combined techniques to multiple languages, compare

48



the approach to the quality standard set by the JDT parser, and measure the
performance on files of different sizes, with and without syntax errors.

In the remainder of this section we describe our experimental setup, exper-
imentally select an effective set of recovery rules, and discuss the quality and
performance results for this set. We will also argue that our approach satisfies
the quality criteria defined for language developers.

2.6.1 Experimental Setup

We focus our evaluation on the Stratego-Java language, which is a complex
language composed from Stratego and Java. We choose the Stratego-Java lan-
guage since composed languages form an important use case for scannerless
generalized parsing. Our extended evaluation in Chapter 4 covers experi-
ments that involve other languages as well.

We follow the evaluation method proposed in Chapter 4. First, we generate
a large set of test inputs from a small set of correct base files. The generated
test inputs are modified versions of the base files, representing typical editing
scenarios as identified in an empirical study on editing behavior. Together
with each test input, an oracle interpretation is automatically generated that
represents the intended interpretation of the test input. In total, we generated
158 test cases from 5 correct base files. The base files are taken from the Dryad
compiler, an open compiler for the Java platform (Kats et al., 2008), and the
WebDSL compiler, a compiler that generates Java code for applications written
in WebDSL (Groenewegen et al., 2008).

To measure the quality of a recovery, we calculate the tree edit distance
(Chawathe et al., 1996) between the recovered interpretation and the intended
interpretation. The scales for the figures we show are calibrated such that
they roughly correspond to the human assesment criteria proposed by Pen-
nello and DeRemer (1978). That is, “no diff” corresponds to the excellent
qualification, a “small diff” (1–25 tree edits) roughly corresponds to the good
qualification, and a “large diff” (26+ tree edits) approximately corresponds to
the poor qualification. Figure 4.14 in Chapter 4, Section 4.4.3 illustrates how
these thresholds were determined by plotting measured diff values against
their corresponding values obtained after human judgement.

To measure the performance, we compute the extra time it takes to recover
from one or more errors (the recovery time), by subtracting the parse time of
the oracle file from the parse time of the erroneous file. For all performance
measures included in this section, an average, collected after three runs, is
used. We set a time limit of 5 seconds to cut off recoveries that take an (al-
most) infinite time to complete. All measuring is done on a “pre-heated” JVM
running on a laptop with an Intel(R) Core(TM) 2 Duo CPU P8600, 2.40GHz
processor, 4 GB Memory.

Chapter 2. Error Recovery for Scannerless Generalized Parsing 49



0 20 40 60 80 100

DCO
DC
CO

C
D

Quality (% of Files)

No diff (0)
Small diff (1–25)
Large diff (26+)
Failed

0 20 40 60 80 100

DCO
DC
CO

C
D

Performance (% of Files)

0–99 ms
100–499 ms
500–999 ms
1000–4999 ms
Failed

Figure 2.18 Quality and performance (recovery times) using a permissive grammar
with different recovery rule sets for Stratego-Java. D - Deletions, C - Insertion of
closing brackets, O - Insertion of opening brackets.

2.6.2 Comparing Different Rule Sets

In this experiment we focus on selecting the most effective recovery rule set
for a permissive grammar with respect to quality and performance. Following
Section 2.4, we evaluate three recovery rule sets in isolation and in combina-
tion – Deletions (D), insertion of Closing brackets (C), and insertion of Open brackets
(O). The rule sets are automatically derived based on the heuristics described
in Section 2.4.5. The results from the experiment are shown in Figure 2.18.
The figure includes results for D, C, CO, DC and DCO for a Stratego-Java
grammar. The remaining combinations, O and DO, are excluded since it is ar-
guably more important to insert closing brackets than to insert open brackets
in an interactive editing scenario.

The results show that the insertion of closing brackets (C) and the applica-
tion of deletion rules (D) both contribute to the quality of a recovery. Com-
bined together (DC) they further improve recovery results. The insertion of
opening brackets (O) slightly improves the recovery quality for insertion-only
grammars, which follows from comparing C to CO. However, when all rules
are combined (DCO), the recovery quality decreases in comparison with the
DC grammar. This slightly unexpected result is partly explained by the fact
that the insertion rules for opening brackets prove to be too costly with respect
to performance, which leads to failures because of exceeding of the time limit
set. A second explanation is that the combined rule set (DCO) allows many

50



creative recoveries that often do not correspond to the human intended recov-
eries. We conclude that DC seems to be the best trade off between Quality
and Performance, providing adequate recoveries in 80% of the cases.

2.6.3 Pathological Cases

When inspecting the results for the DC-grammar (Figure 2.18), we notice that
there are certain pathological cases where the complete recovery rule set takes
too long to find a proper recovery (15.8% failures, given a time limit of 5.0
seconds) or where the recovery leads to objectionable parse times (0.6% in
the interval 1.0 − 5.0 seconds). Furthermore, manual inspection of the large
diff results revealed that in some cases a poor repair was chosen with many
spurieus errors spread out all over the input file.

We speculate that these pathological cases arise from a combination of syn-
tax errors that can only be resolved by a multitude of recovery operations
and/or the presence of particularly liberal productions in the base grammar
that prevent early detection of the error, or spurieus error due to a poor re-
covery. An example of the latter are flat structures such as block comments or
multi-line strings. After the opening of the block comment (/*), the parser ac-
cepts all characters until the block comment is ended (*/) or the end of the file
is reached. As a consequence, a missing block comment ending is typically
detected at a large distance from the error location.

A good error recovery approach maintains a fine balance between response
time and the quality of a recovery. Successful approaches typically combine
multiple strategies, using a secondary strategy if the first does not suffice (De-
gano and Priami, 1995). The secondary strategy should focus purely on per-
formance, not quality of recovery. In order to still recover from pathological
cases, we introduce a fallback recovery strategy in Chapter 3.

2.6.4 Language Independence, Flexibility and Transparency

The permissive grammars we evaluated in this section were automatically
constructed using the heuristic rules described in Section 2.4.5, showing that
the approach works independently of a particular language. Yet by using
derived recovery rules, specified as normal SDF productions, transparency is
maintained.

In Section 2.4.6 we discussed the customizability of derived grammars; ad-
ditional recovery rules can be added and undesired rules can be removed to
improve the recovery quality. Based on the results of a test set as we con-
structed for our evaluation, permissive grammars can be manually tuned in
order to improve the results.

2.7 R E L AT E D W O R K

Recovery techniques for LR parsers The problem of handling syntax errors dur-
ing parsing has been widely studied (Lévy, 1971; Mauney and Fischer, 1988;

Chapter 2. Error Recovery for Scannerless Generalized Parsing 51



Pai and Kieburtz, 1980; Barnard and Holt, 1982; Tai, 1978; Fischer et al., 1980;
Degano and Priami, 1995; McKenzie et al., 1995; Corchuelo et al., 2002). Er-
ror recovery techniques can be divided into correcting and non-correcting tech-
niques. While correcting techniques try to repair syntax errors by diagnosing
their cause, non-correcting techniques in contrast recover from errors by skip-
ping (possible large) fragments of the input. Non-correcting techniques are
mainly used as a fallback mechanism in case the implemented correcting tech-
nique fails.

Correcting recovery methods for LR parsers typically attempt to insert or
delete tokens nearby the location of an error, until parsing can resume (Tai,
1978; McKenzie et al., 1995; Cerecke, 2002). There may be several possible
corrections of an error which means a choice has to be made. One approach
applied by Tai (1978) is to assign a cost (a minimum correction distance) to
each possible correction and then choose the correction with the least cost.

We implemented a correcting recovery technique for scannerless general-
ized LR parsing, based on recovery rules that simulate token insertion or
deletion. To minimize the performance costs of applying recovery rules, we
employ a search heuristic based on backtracking. The search heuristic deter-
mines the order in which recoveries are considered based on the number of
applied corrections and their distance relative to the parse failure location.
The search heuristic is likely to find an (approximately) minimum cost recov-
ery in most cases.

Recovery techniques for composite languages Using SGLR parsing, our ap-
proach can be used to parse composed languages and languages with a com-
plex lexical syntax. In related work, only a study by Valkering (2007), based
on substring parsing (Rekers and Koorn, 1991), offered a partial approach to
error recovery with SGLR parsing. To report syntactic errors, Valkering in-
spects the stack of the parser to determine the possible strings that can occur
at that point. Providing good feedback this way is non-trivial since scanner-
less parsing does not employ tokens; often it is only possible to report a set of
expected characters instead. Furthermore, these error reports are still biased
with respect to the location of errors; because of the scannerless, generalized
nature of the parser, the point of failure rarely is a good indication of the ac-
tual location of a syntactic error. Using substring parsing and artificial reduce
actions, Valkering’s approach could construct a set of partial, often ambigu-
ous, parse trees, whereas our approach constructs a single, well-formed parse
tree.

Lavie and Tomita (1993) developed GLR*, a noise skipping algorithm for
context-free grammars. Based on traditional GLR with a scanner, their parser
determines the maximal subset of all possible interpretations of a file by sys-
tematically skipping selected tokens. The parse result with the fewest skipped
words is then used as the preferred interpretation. In principle, the GLR* al-
gorithm could be adapted to be scannerless, skipping characters rather than
tokens. However, doing so would lead to an explosion in the number of inter-
pretations. In our approach, we restrict these by using backtracking to only
selectively consider the alternative interpretations, and using deletion recov-

52



ery rules that skip over chunks of characters. Furthermore, our approach sup-
ports insertions in addition to discarding noise and provides more extensive
support for reporting errors.

Composed languages are also supported by parsing expression grammars
(PEGs) (Ford, 2002; Grimm, 2006). PEGs lack the declarative disambigua-
tion facilities (Visser, 1997c) that SDF provides for SGLR. Instead, they avoid
ambiguities using greedy matching and enforcing an explicit ordering of pro-
ductions. To our knowledge, no automated form of error recovery has been
defined for PEGs. However, based on the ordering property of PEGS, a
“catch all” clause is sometimes added to a grammar, which is used if no
other production succeeds. Such a clause can skip erroneous content up to
a specific point (such as a newline) but does not offer the flexibility of our
approach. Furthermore, existing work on error recovery using parser com-
binators (Swierstra and Duponcheel, 1996) may be a promising direction for
recovery in PEGs.

IDE support for composite languages We integrated our recovery approach into
Spoofax (Kats et al., 2009b), a language development environment that com-
bines the construction of languages and editor services for these languages.
Using SDF and (J)SGLR7, Spoofax has the distinguishing feature that it of-
fers full support for language embeddings and extensions, composed from
separate grammar modules.

Related projects, also based on SDF and SGLR, respectively SGLL, are the
Meta-Environment (van den Brand et al., 2002, 2007) and the Rascal meta-
programming language (Klint et al., 2009). The Meta-Environment currently
does not employ interactive parsing, and only parses files after a “save” action
from the user. Using the traditional SGLR implementation, it also does not
provide error recovery. Rascal offers a platform for language development,
integrating with Eclipse through the IMP framework (Charles et al., 2007,
2009). SGLL parsers defined with Rascal are used interactively in Eclipse, but
syntax error recovery is not yet supported.

Another language development environment is MontiCore (Krahn et al.,
2007, 2008). Based on ANTLR (Parr and Quong, 1995), it uses traditional
LL(k) parsing. As such, MontiCore offers only limited support for language
composition and modular definition of languages. Combining grammars can
cause conflicts at the context-free or lexical grammar level. For example, any
keyword introduced in one part of the language is automatically recognized
by the scanner as a keyword in another part.

MontiCore supports a restricted form of embedded languages through run-
time switching to a different scanner and parser for certain tokens. Using the
standard error recovery mechanism of ANTLR, it can provide error recovery
for the constituent languages. However, recovery from errors at the edges
of the embedded fragments (such as missing quotation brackets), is more
difficult using this approach. This issue is not addressed in the papers on
MontiCore (Krahn et al., 2007, 2008). In contrast to MontiCore, our approach

7http://strategoxt.org/Stratego/JSGLR/

Chapter 2. Error Recovery for Scannerless Generalized Parsing 53

http://strategoxt.org/Stratego/JSGLR/


is based on scannerless generalized-LR parsing, which supports the full set
of context-free grammars, and allows composition of grammars without any
restrictions.

Tolerant grammars and fuzzy parsing The basic principles of our permis-
sive grammars are based on the water productions used in island gram-
mars (van Deursen and Kuipers, 1999; Moonen, 2001) and skeleton grammars
(Klusener and Lämmel, 2003), also indicated with the collective term tolerant
grammars (Klusener and Lämmel, 2003). Tolerant grammars are partial gram-
mars that contain only a subset of the baseline grammar’s productions, and
are more permissive in nature. They have traditionally been used for different
reverse and re-engineering tasks. Unlike our permissive grammars, tolerant
grammars are not aimed at application in an interactive environment. They
do not support the notion of reporting errors and are limited to skipping con-
tent. Our approach supports recovery rules that insert missing literals and
provides an extensive set of error reporting capabilities. Also, in case of cor-
rect input, parsing with a permissive grammar gives exactly the same result
as parsing with the baseline grammar.

A related technique is fuzzy parsing, as defined and engineered in (Kop-
pler, 1997). As with tolerant grammars, fuzzy parsers aim at constructing a
partial interpretation of the input program by skipping over unparsable frag-
ments. However, they do not implement a purely grammar based approach
since they apply a lexical criterion to switch between context-free and ignore
mode. Beside application to the domain of reverse and re-engineering tasks,
fuzzy parsing is also successfully applied to the domain of IDE development.
In (Bischofberger, 1992; Sametinger and Schiffer, 1995) a C++ program devel-
opment environment is described that employs a fuzzy parser to extract struc-
tural information from program files. By skipping over method and function
bodies, the parser benefits from increased performance and robustness.

2.8 C O N C L U S I O N

Scannerless, generalized parsers support the full set of context-free grammars,
which is closed under composition. With a grammar formalism such as SDF,
they can be used for declarative specification and composition of syntax def-
initions. Error recovery for scannerless, generalized parsers has previously
been identified as an open issue. In this chapter, we presented a flexible,
language-independent recovery technique to resolve this issue.

The three pillars of our work have been to use standard SDF productions
to specify error recovery rules; to automatically generate such error recovery
rules from SDF grammars; and to adapt the SGLR parser to efficiently parse
files without syntax errors and to gracefully cope with errors locally.

We evaluated our approach using Stratego-Java, a non-trivial language
composed from a Stratego and a Java grammar. The results show that, in
the majority of cases, our approach achieves adequate recoveries in an ac-
ceptable time span. A good error recovery strategy maintains a fine balance
between response time and the quality of a recovery. Based on our test set, we

54



have recognized that there are certain pathological cases where the complete
recovery rule set takes too long to find a proper recovery. We address this
issue in the next chapter which presents a secondary recovery technique that
can be used as a fallback strategy to recover from pathological cases.

Chapter 2. Error Recovery for Scannerless Generalized Parsing 55



56



3
An Indentation Based Technique for
Locating Parse Errors

A B S T R A C T

In Chapter 2 we introduced a recovery technique for SGLR based on gram-
mar relaxation. This chapter focuses on two open issues that we identified
for this technique. The first is the quality of corrections, which is sometimes
lacking since a global, linguistic solution is not aware of the structure of the
program expressed by the layout. The second is the performance of the re-
cover algorithm; for some problematic cases an adequate recovery solution
cannot be find in an acceptable timespan. To address these issues, this chap-
ter introduces a regional recovery technique that uses layout to select regions
of code that enclose syntax errors. The selected regions can be analyzed in
detail by a correcting technique, or discarded if no recovery is found within
an acceptable time span.

3.1 I N T R O D U C T I O N

Integrated Development Environments (IDEs) heavily depend on the parser to
determine the grammatical structure of an input program. Given the gram-
mar definition of a language, the parser constructs an abstract syntax tree
(AST) of the program. The AST is then further analyzed by the semantic an-
alyzer which adds static semantic information to the AST. The result of the
analysis is used by editor services to provide feedback about the syntactic
and semantic structure of the program. IDEs parse a file as it is typed in,
making incomplete programs and syntax errors the common case rather than
the exceptional one. Using error recovery, a parser can still construct a partial
abstract syntax tree, allowing the IDE to provide interactive feedback and to
report all syntactic errors that occur in the program.

In Chapter 2 we introduced an approach to error recovery for scanner-
less generalized LR parsing based on grammar relaxation; after analysis of
the original grammar, a set of recovery rules that simulate token insertion
or deletion is automatically derived. The recovery rules are applied in an
on-demand fashion, using a backtracking algorithm. Starting from the parse
failure location, this algorithm explores an increasing, backward search space
to find a (presumable) minimal-cost solution for applying recovery rules. The
backtracking technique allows us to identify the most likely origin of an error,
thus providing recovery suggestions that local recovery methods can not.

An open problem we identified with our approach is that some search
space-based suggestions are too “creative” and not natural, i.e., as a program-

57



mer would suggest them. In some cases it is simply better to ignore a small
part of the input file, rather than to try and fix it using a combination of
insertions and discarded substrings. Another open problem is that for tight
clusters of errors, or for errors that are detected at a large distance of their
actual location, it is not always feasible to provide good suggestions in an
acceptable time span.

To address these problems, the present chapter proposes an approach to
identify the region in which the parse errors are located. By restricting the
search space for applying the recovery rules to this region, it becomes much
less likely that the user is presented with “creative” suggestions that are
nowhere near to the original error. This addresses the first problem. Using a
smaller search space also helps performance, thereby addressing the second
problem. To further help performance, we add a form of “panic mode” (De-
gano and Priami, 1995); if no solution of applying the recovery rules is found
within an acceptable time span, the entire region is skipped and marked as
erroneous. This way, the parser can still continue to report other errors and
construct a partial AST.

We select erroneous regions based on indentation usage. Indentation typi-
cally follows the logical nesting structure of a program, therefore, we can use
indentation to partition files into nested blocks that represent code constructs.
Code constructs such as statements and methods form free standing blocks,
e.g., they can be omitted without influencing the syntactic interpretation of
other blocks. It follows that erroneous free standing blocks can simply be
skipped, providing a coarse recovery that allows the parser to continue. By
subsequently discarding blocks nearby the failure location, we identify the
region that contains syntax errors.

We have implemented a staged recovery approach for SGLR that combines
the regional recovery technique with the permissive grammar technique de-
scribed in Chapter 2. The evaluation shows that the combined approach solves
most of the quality and performance issues that we noticed for the permissive
grammar technique.

Contributions The contribution of this chapter is a regional recovery tech-
nique that uses layout to select regions of code that enclose syntax errors.
The selected regions can be analyzed in detail by a correcting technique, or
discarded if no recovery is found within an acceptable time span. The tech-
nique is language independent and can be implemented for different parsing
formalisms.

Outline We begin this chapter with a background on error recovery in Sec-
tion 3.2. Section 3.3 summarizes permissive grammars and backtracking, and
discusses its limitations. The limitations are addressed in Section 3.4, which
presents region-selection; a layout-sensitive technique to detect discardable,
erroneous regions. Finally, Section 3.5 evaluates the application of both recov-
ery techniques together and in isolation.

58



3.2 PA R S E E R R O R R E C O V E RY

Parse error handling encompasses two concerns: error recovery and error re-
porting. Recovery from parse errors allows the parser to continue the analysis
of the source code after the detection of a syntax error. The resulting parse
tree represents the corrected input, allowing further analysis of the source
code at the semantic level. The quality of the recovered parse tree is decisive
for the quality of the syntactic and semantic editor services that depend on it.

The traditional use case of error recovery has been to report multiple er-
rors in a file, thus reducing the typical “compile-fix, compile-fix” cycle into
“compile-fix-fix”. Error reporting, by itself, has an important role in giving
feedback to the user. An error handling technique should accurately report all
syntactic errors without introducing spurious errors. This requires accurate
diagnosis of errors. A faulty correction may leave the parser in a state that
will cause spurious syntactic errors to be reported later.

3.2.1 Correcting and Non-Correcting Techniques

Recovery techniques can be divided into correcting and non-correcting tech-
niques. Correcting techniques typically attempt to repair the input string by
inserting or deleting tokens until parsing can resume (Tai, 1978; McKenzie
et al., 1995; Cerecke, 2002). Based on the modifications to the input string,
an error message can be reported to the programmer that indicates the exact
location of the error and provides a suggestion for correction. Good error
messages reflect the intention of the programmer. When an error is misdiag-
nosed, the error message issued for it tends to be misleading.

Contrary to correcting techniques, non-correcting techniques do not diag-
nose the cause of an error, but instead try to recover from errors by skipping
parts of the input (Degano and Priami, 1995). Error messages based on non-
correcting recoveries tend to be less precise, reporting only the ignored part
of the text and/or the location of the token or character that caused the parse
failure.

Successful recovery mechanisms often combine more than one technique
(Degano and Priami, 1995). For example, a non-correcting technique such as
panic mode (Degano and Priami, 1995) is often used as a fall back method if
correcting attempts fail. Burke and Fisher (1987) present a recovery approach
based on three phases of recovery. The first phase looks for simple correction
by the insertion or deletion of a single token. If this does not lead to a recovery,
one or more open scopes are closed by inserting scope closing tokens. The last
phase consists of discarding tokens that surround the parse failure location.

3.2.2 Local, Global and Regional Techniques

A parser that supports error recovery typically operates by consuming tokens
(or characters) until an erroneous token is found. At the point of detection of
an error, the recovery mechanism is activated. Simple, local approaches to er-

Chapter 3. An Indentation Based Technique for Locating Parse Errors 59



ror recovery will then attempt to adjust the input at the point where the error
was detected, so that at least one more original symbol can be parsed (Degano
and Priami, 1995). This approach works well in some cases, but in other cases
local techniques choose a poor repair that leads to further problems as the
parser continues (“spurious errors”).

Spurious errors are the result of one of the major problems in error recov-
ery: the difference between the point of detection and the actual location of
an error in the source program (Degano and Priami, 1995). In contrast to lo-
cal methods, global recovery methods examine the entire program and make
a minimum of changes to repair all syntax errors (Aho and Peterson, 1972;
Lyon, 1974). While these methods give an adequate repair in the majority of
cases, they are not efficient.

An alternative approach to local or global recovery is to consider only the
direct context of the error, by identifying the region of code in which the error
resides (Lévy, 1971; Mauney and Fischer, 1988; Pai and Kieburtz, 1980). Using
regions for error recovery has three main advantages. Firstly, they improve
the efficiency of a recover algorithm by reducing the search space for correc-
tions. Secondly, by constraining the recovery suggestions to a particular part
of the file, they avoid suggestions based on spurious errors that are spread
out all over the file. And thirdly, they can be used as a secondary recovery
strategy (Degano and Priami, 1995), i.e., erroneous regions can be discarded
entirely if a detailed analysis of the region does not provide a better recovery
solution.

3.3 P E R M I S S I V E G R A M M A R S A N D B A C K T R A C K I N G

In Chapter 2 we introduced a recovery technique for scannerless generalized
parsing based on the idea to extend grammars with additional ”recover“ pro-
ductions to make them more permissive of their inputs. Recover productions
are written just as any other production, except that they are annotated with
{recover}, meaning that they are only applied when recovery is required.

To recover from missing literals, insertion recovery rules are defined that sim-
ulate token insertion. For example, the production below is used to recover
from a missing } literal. The production specifies that the empty string (hence
the empty left-hand side) can be parsed instead of the closing } literal as a
possible recovery.
→ "}" {recover, cons("INSERT")}

In addition to insertion recovery rules, Chapter 2 also defines deletion recov-
ery rules, which are lexical “catch-all” production rules to discard unparsable
substrings, distinguishing “words” and “separators”. As an example, we
show the production rule below to skip over “words” by parsing them as
layout.

[A-Za-z0-9\_]+ → DELETE_WORD {recover}
DELETE_WORD → LAYOUT {cons("DELETE")}

60



SQL stm = // missing <|
SELECT password
FROM Users
WHERE name = ${user}

|>;

SQL stm;
SELECT password;
FROM Users;
WHERE name = user

;

Figure 3.1 Inserting the missing <| token offers an adequate recovery (left frag-
ment). However, if this insertion is not supported, the entire SQL fragment will be
parsed as severely incorrect Java code (right fragment).

Recover productions allow for a high-level, grammar-oriented technique
of customizing a recovery strategy (Aho and Peterson, 1972; Graham et al.,
1979). Because the language engineer must design them a priori, they have
sometimes been criticized for being language-dependent (Degano and Priami,
1995). We addressed this issue in Section 2.4.5 by introducing a technique to
derive recovery rules from the original grammar.

To cope with the added complexity of grammars with recovery rules, we
adapted the parser implementation to apply the recovery rules in an on-
demand fashion, using a backtracking algorithm (Section 2.5). This algo-
rithm explores an unbounded, backward search space to, heuristically, find
a minimal-cost solution for applying the set of recovery rules.

3.3.1 Limitations

Relying on the increasing search space of permissive grammars and back-
tracking, it is not always feasible to provide good recovery suggestions in an
acceptable time span. Problems can arise when the recovery requires many
combined corrections, or when the distance between the error location and
the detection location is exceptionally large.

The “multiple corrections problem” can occur when multiple errors are
tightly clustered, or when no suitable correction is at hand for a particular
error. In general, a valid parse can be found, but at the risk of a high per-
formance cost, and potentially resulting in a complex network of recovery
suggestions that do not lead to useful feedback for programmers. Figure 3.1
provides an example in wich an entire SQL fragment is parsed as severely
incorrect Java code.

The “distance problem” is seen in practice for block comments and other
flat structures such as (multi-line) strings. In case a block comment is not
properly closed, the error is typically detected only after parsing many more
lines, when the next block comment is closed, or at the end of the file. The
optimal recovery requires backtracking to the user intended block comment
ending. In practice, the algorithm will give priority to an artificial recovery
near the detection location, or the extensive backtracking leads to an unac-
ceptable overhead in time. Figure 3.2 shows an unclosed block comment in
Java as an example.

To address these problems, the next section introduces an approach to iden-
tify the region in which the actual error is situated. The erroneous region is

Chapter 3. An Indentation Based Technique for Locating Parse Errors 61



class X {
int i;
public void foo() {

if (i > 5 /* max ... ) {
bar();

}
}

/*Does bar*/
private void bar() {}

}

class X {
int i;
public void foo() {

if (i > 5 /* max ... ) {
bar();

}
}

/*Does bar*/
) {}}

}

Figure 3.2 The unclosed block comment error /* max ... is only detected at the
private keyword (left fragment). The late detection of the error results in a poor
repair near the failure location (right fragment).

used to constrain the search space used by the backtracking technique for ap-
plying recovery rules. By constraining the recovery suggestions to a particular
part of the file, region selection improves the efficiency as well as the quality of
the recovery, avoiding suggestions that are spread out all over the file.

In some cases it is better to ignore a small part of the input file, rather than
to try and fix it using a combination of insertions and discarded substrings.
As a second application of the regional approach, region skipping is used as a
fallback recovery strategy that discards the erroneous region entirely in case
a detailed analysis of the region does not lead to a satisfactory recovery.

3.4 L AY O U T- S E N S I T I V E R E G I O N S E L E C T I O N

In this section we describe a regional recovery technique that uses layout to
select regions of code that enclose syntax errors. The selected regions can be
analyzed in detail by a correcting technique, or discarded if no correction is
found within an acceptable time span. The technique is language independent
and can be implemented for different parsing formalisms.

3.4.1 Nested Structures

Language constructs such as statements and methods are elements of list
structures. List elements form free standing blocks, in the sense that they can
be omitted without influencing the syntactic interpretation of other blocks. It
follows that erroneous free standing blocks can simply be skipped, providing
a coarse recovery that allows the parser to continue. We conclude that these
blocks form suitable regions for regional error recovery.

Indentation typically follows the logical nesting structure of a program, as
illustrated in Figure 3.3. The relation between constructs can be deduced from
the layout. An indentation shift to the right indicates a parent-child relation,
whereas the same indentation indicates a sibling relation. The region selection
technique inspects the parent and sibling structures near the parse failure
location to detect the erroneous region.

62



class X {
int i;

void method() {
i = 1;
if (true) {

foo();
bar();

}
return;

}
}

Figure 3.3 Indentation closely resembles the hierarchical structure of a program.

Figure 3.4 Parent child relations between lines with consistent layout (left) and
inconsistent layout (mid, right). if(true){ is the parent line of the siblings foo();
and bar(); (left, mid, right), and the inconsistently indented } (right).

Indentation usage is not enforced by the language definition. Proper use
of layout is a convention, being part of good coding practice. We generally
assume that most programmers apply layout conventions, which is reinforced
by the application of automatic formatters. Furthermore we assume that in-
dentation follows the logical nesting structure. However, we should keep in
mind the possibility of inconsistent indentation usage which decreases the
quality of the results. The second assumption we make is that programs con-
tain free standing blocks, i.e., that skipping a region still yields a valid pro-
gram. Most programming languages seem to meet this assumption. If both
assumptions are met, layout-sensitive region selection can improve the qual-
ity and performance of a correcting technique, and offer a fallback recovery
technique in case the correcting technique fails.

3.4.2 Indentation-based Partitioning

We view the source text as a tree-structured collection of lines, whereby
the parent-child relation between lines are determined by indentation shifts.
Thus, given a line l, line p is the parent of l if and only if l is strictly more
indented than p, and line l succeeds line p, and no lines exist between l and
p that have less indentation than l. Lines with the same parent are siblings of
each other. Figure 3.4 illustrates the parent-child relation for some small code
fragments. The line if(true){ in the left fragment is the parent of the sib-
ling lines foo(); and bar();. The mid and right fragment illustrate how the
parent-child relation applies in case of inconsistent indentation; by definition,
child lines are more indented than their parent, however, the sibling lines in
these fragments do not all have the same indent value.

Chapter 3. An Indentation Based Technique for Locating Parse Errors 63



Figure 3.5 Multi-line Java constructs with various indentation patterns. The solid
bars indicate layout regions that correspond to code regions, the hatched bars
indicate layout regions that are in fact unwished artifacts.

A parent-child relation between two lines is a strong indication that the
code constructs associated to these lines are also in parent-child relation. Sim-
ilarly, a sibling relation between two lines indicates that either their asso-
ciated code constructs are siblings as well, or that both lines belong to the
same multi-line construct. Figure 3.5 provides some examples of multi-line
constructs with various indentation patterns. For all constructs in the figure
it holds that a parent-child relation between two lines reflects a parent-child
relation between the code constructs associated to these lines. The shown con-
structs are different with respect to the number of siblings (of the first line)
that are part of the construct. Another type of multi-line constructs are con-
structs that wrap over to the subsequent, more indented line. In that case, a
parent child relation exists between two lines that actually belong to the same
construct. This is an example of a small inconsistency that is not harmful to
the overall approach.

We decompose a code fragment into candidate regions, based on the as-
sumption that parent-child relations between lines reflect parent-child rela-
tions between the associated constructs, e.g., if a line is contained in a region
then its child lines are also contained in that region. Unfortunately, indenta-
tion alone does not provide sufficient information to demarcate regions ex-
actly. The main limitation is the ambiguous interpretation of sibling lines,
which, by assumption, either belong to the same code construct or to sepa-
rate constructs that are siblings. Given a single line, we construct multiple
indentation-based regions: the smallest region consist of the line plus its child
lines, the alternate regions are obtained by subsequently including sibling
lines, including their children.

The bars in Figure 3.5 show the different regions that are constructed for
the first line of the given fragments. Only the regions corresponding to the
solid bars represent actual code constructs or (sub)lists of code constructs. The
other bars are unwanted artifacts that, based on indentation alone, cannot be
distinguished from real regions. Notice that most of these ambiguities could

64



Figure 3.6 A candidate region is validated and successfully discarded.

be solved by using language-specific information, for example about the use
of curly braces in Java; lines that start with a curly brace are most likely to
be part of the region being constructed. An interesting approach would be to
extract this type of information from the grammar so that it can be used in the
region detection heuristic. However, in the current implementation we opted
for a language-independent algorithm.

3.4.3 Region Selection

We follow an iterative process to select an appropriate region that encloses a
syntax error. In each iteration, a different candidate region is considered. This
candidate is then validated and either accepted as erroneous or rejected; in case
of a rejected candidate, another candidate is considered.

The selection of candidate regions faces two challenges: First, the start line
of the erroneous code construct is not known, second, multiple unsuitable re-
gions are constructed because of the ambiguous interpretation of sibling lines.
We adopt a pragmatic approach, subsequently selecting candidate regions for
a different start line location with a different number of sibling lines. We start
with validating small regions near the failure location, then we continue with
validating regions of increased size as well as regions that are located further
away from the failure location. More details are provided in Section 3.4.4 that
describes the region selection algorithm.

A region is validated as erroneous in case discarding of that region solves
the syntax error, e.g., parsing continues after the original failure location. The
region validation criterion should balance the risk of evaluating a syntacti-
cally correct candidate region as erroneous, and the risk of evaluating an
erroneous candidate region as syntactically correct. Both cases lead to large
regions and/or spurious syntax errors, which should be avoided. The under-
lying problem are multiple errors; it is not possible to distinguish a secondary
parse failure from a genuine syntax error that happens to be close-by. We ad-
dress the issue of multiple syntax errors by implementing a heuristic accept
criterion. The criterion considers a candidate region as erroneous if discarding
results in two more lines of code parsed correctly. The criterion is established
after some experimentation and has shown good practical results.

We show example scenarios in Figure 3.6 and 3.7. The underlined text
reveals the syntax errors, the boxed fragments are the selected candidate re-

Chapter 3. An Indentation Based Technique for Locating Parse Errors 65



(a) A candidate region is rejected.

(b) An alternative candidate region is validated and successfully discarded.

Figure 3.7 Iterative search for a valid region.

gions, the triangles indicate the location of the parser, while the circles in the
left marge represent choice points that store the parser configuration at that
location. The choice points are used for backtracking to a previous configu-
ration. Figure 3.6 shows a syntax error and the point of detection, indicated
by a triangle (left). A candidate region is selected based on the alignment of
the void keyword and the closing bracket (middle figure), and validated by
discarding the region. Since the parsing of the remainder of the fragment is
successful (right), the region is accepted as erroneous. Figure 3.7a shows an
example where a candidate region is rejected. Based on the point of detection,
an obvious candidate region is the m2 method (middle), which is discarded
(right). However, the attempt to parse the succeeding construct leads to a pre-
mature parse failure (right), therefore the region is rejected. In Figure 3.7b an
alternative candidate region is selected. This region is validated as erroneous
since discarding solves the parse error.

3.4.4 Algorithm

Figure 3.8 illustrates the region selection procedure applied to a small code
fragment with a parse failure at the marked line. The vertical bars represent
the regions that are subsequently visited by increasing the backtracking dis-
tance (backwardIndex) and the region size (siblingCount). The right most
bar represents the parent region visited in a recursion step. We will now
discuss the implementation of the algorithm in more detail.

Figure 3.9 shows the region selection algorithm in pseudo-code. The func-
tion SelectErroneousRegion takes as input the failure line and returns as
output the erroneous region described by its start line and end line. The

66



Figure 3.8 Candidate regions subsequently tested for the indented code frag-
ment at the left. Candidate regions are selected by backtracking (backwardIndex)
and by extending the number of sibling lines that are contained in the region
(siblingCount). Finally, the parent line is visited in the recursion step.

nested for loops (line 4, 5) implement the iterative search process described in
Section 3.4.3. The iteration starts with the smallest region (siblingCount=0)
that can be constructed for the failure line (backwardIndex=0). In the first
iteration (line 5), regions are selected that start at increasing distance from the
failure location. The second iteration (line 4) increases the size of the selected
regions. The iteration stops in case a selected region is validated as erroneous
(lines 9-11). If no erroneous region is found, the search process continues by
recursively visiting the parent of the failure line (line 14). For performance
reasons, we restrict the maximum size of the visited regions (line 4) and the
maximum number of backtracked lines (line 5). Good practical results were
obtained with a maximum size of 5 sibling lines and 5 backtracking steps.

3.4.5 Practical Considerations

Tabs and spaces A practical concern for parsing techniques that take inden-
tation into account is the mixed use of tabs and spaces. The indentation level
in this case depends on the tab width, i.e., the mapping from tab characters
to space characters which may be configurable in the editor. Currently, our
technique assumes a fixed tab width of 4 space characters. An obvious im-
provement would be to make the tab width configurable and dependent on
the editor setting when used in an interactive environment.

Separators and operators Region selection works for structures that form free
standing blocks in the grammar, e.g., list elements and optional elements such
as the else block in an if-else statement. A practical consideration are sepa-
rators and operators that may reside between language constructs. For exam-
ple, the constructs FAILED and score <= 8 in the Java fragment of Figure 3.10

can only be discarded if the separator (,), respectively the operator (&&) that
connects these constructs with their preceding constructs are discarded as
well. To address this issue, we have extended the region selection schema

Chapter 3. An Indentation Based Technique for Locating Parse Errors 67



SelectErroneousRegion(failureLine)
1 B Input: Line where the parse failure occurs (or a parent of this line)
2 B Output: Region that contains the error
3

4 for siblingCount in 0 to MAX_NUMBER_OF_SIBLING_LINES
5 for backwardIndex in 0 to MAX_BACKWARD_INDEX
6 startLine← GetPrecedingSibLine(failureLine, backwardIndex)
7 siblingLine← GetFollowingSibLine(startLine, siblingCount)
8 endLine← GetLastDescendantLine(siblingLine)
9 if TrySkipRegion(startLine, endLine) then

10 return (startLine, endLine) B erroneous region
11 end
12 end
13 end
14 return SelectErroneousRegion(GetParentLine(failureLine))

TrySkipRegion(startline, endline)
17 B Output: true iff discarding the region startline . . . endline

lets parsing continue after the failure location

GetPrecedingSibLine(line, bwCount)
18 B Output: Sibling line that preceeds line by bwCount siblings

GetFollowingSibLine(line, fwCount)
19 B Output: Sibling line that succeeds line by fwCount siblings

GetLastDescendantLine(line)
20 B Output: Last descendant line of line, or line if no descendants exist

GetParentLine(line)
21 B Output: Parent line of line

Figure 3.9 Algorithm to select a discardable region that contains the syntax error.

with a candidate region consisting of the original region plus the lexical token
at the end of the preceding sibling line.

Multi-line comments and strings The selection procedure can generally select
erroneous regions that are located at a reasonable distance from the failure
location. However, if the distance between the error and the failure location is
too large, the region selection schema fails to locate the error. A particularly
problematic case commonly seen in practice are unclosed flat structures such
as block comments or multi-line strings. Due to the liberal nature of these
structures, a missing closing symbol typically causes parse failures far from

68



public enum Grade {
EXCELLENT ,
PASSED ,

FAILED
}

Grade getGrade(){
...
if(

6 <= score &&

score <= 8
) return Grade.PASSED;
...

}

Figure 3.10 Separators and operators
must be included in the candidate re-
gion of the adjacent construct.

class X {
int i;
public void foo() {

if (i > 5 /* max ... ){

bar();

}
}
...
...
/*Does bar*/
private void bar() {}

}

Figure 3.11 Unclosed block com-
ments are generally detected at a
large distance of the error location,
which makes it challenging to detect
the erroneous region.

the actual location of the error. An example is shown in Figure 3.11 where the
parser fails at the private keyword.

We describe how we address this issue for SGLR, which is a scannerless
generalized LR parser, e.g., it does not employ a separate scanner for tok-
enization. After the opening of the block comment (/*), the parser accepts
all characters until the block comment is ended (*/) or the end of the file is
reached. As a consequence, a missing block comment ending is typically de-
tected at a large distance from the error location. The stack structure of the
parser in these scenarios is characterized by a reduction that involves many
characters starting from the characters that open the flat construct (/*). If this
stack structure is recognized, a candidate region is selected from the start of
the reduction, making it possible to cope with flat multi-line structures such
as block comments for which errors may cause a parse failure far from the
actual error location.

3.5 E VA L U AT I O N

In this section we evaluate the techniques discussed in 3.3 and Section 3.4,
together and in isolation. The evaluation has the objective to select the op-
timal combination of recovery techniques. The results shown in this section
should be considered as preliminary; a more extensive evaluation is provided
in Chapter 4, Section 4.5, which evaluates the effectiveness of the selected
combination of techniques for different scenarios. That is, we apply the com-
bined technique to multiple languages, compare the approach to the quality
standard set by the JDT parser, and measure the performance on files of dif-
ferent sizes, with and without syntax errors.

Chapter 3. An Indentation Based Technique for Locating Parse Errors 69



3.5.1 Experimental Setup

We focus our evaluation on the Stratego-Java language, which is a complex
language composed from Stratego and Java. We choose the Stratego-Java lan-
guage since composed languages form an important use case for scannerless
generalized parsing. Our extended evaluation in Chapter 4 covers experi-
ments that involve other languages as well.

We follow the evaluation method proposed in Chapter 4. First, we generate
a large set of test inputs from a small set of correct base files. The generated
test inputs are modified versions of the base files, representing typical editing
scenarios as identified in an empirical study on editing behavior. Together
with each test input, an oracle interpretation is automatically generated that
represents the intended interpretation of the test input. In total, we generated
158 test cases from 5 correct base files. The base files are taken from the Dryad
compiler, an open compiler for the Java platform (Kats et al., 2008), and the
WebDSL compiler, a compiler that generates Java code for applications written
in WebDSL (Groenewegen et al., 2008).

To measure the quality of a recovery, we calculate the tree edit distance
(Chawathe et al., 1996) between the recovered interpretation and the intended
interpretation. The scales for the figures we show are calibrated such that
they roughly correspond to the human assesment criteria proposed by Pen-
nello and DeRemer (1978). That is, “no diff” corresponds to the excellent
qualification, a “small diff” (1–25 tree edits) roughly corresponds to the good
qualification, and a “large diff” (26+ tree edits) approximately corresponds to
the poor qualification. Figure 4.14 in Chapter 4, Section 4.4.3 illustrates how
these thresholds were determined by plotting measured diff values against
their corresponding values obtained after human judgement.

To measure the performance, we compute the extra time it takes to recover
from one or more errors (the recovery time), by subtracting the parse time of
the oracle file from the parse time of the erroneous file. For all performance
measures included in this section, an average, collected after three runs, is
used. We set a time limit of 5 seconds to cut off recoveries that take an (al-
most) infinite time to complete. All measuring is done on a “pre-heated” JVM
running on a laptop with an Intel(R) Core(TM) 2 Duo CPU P8600, 2.40GHz
processor, 4 GB Memory.

3.5.2 Comparing Different Combinations of Techniques

In this experiment, we focus on selecting the best parser configuration com-
bining the different recovery techniques presented in this chapter: the per-
missive grammars and backtracking approach of Section 2.4 (PG), and the
region selection technique of Section 3.4 (RS), which can be applied as a fall
back recovery technique (RR) by skipping the selected region. We apply the
permissive grammar technique (PG) using the WC recovery rule set that was
selected as the optimal rule set in a previous experiment described in Sec-

70



0 20 40 60 80 100

RS-PG-RR
RS-PG

PG
RS-RR

Quality (% of Files)

No diff (0)
Small diff (1–25)
Large diff (26+)
Failed

0 20 40 60 80 100

RS-PG-RR
RS-PG

PG
RS-RR

Performance (% of Files)

0–99 ms
100–499 ms
500–999 ms
1000–4999 ms
Failed

Figure 3.12 Quality and performance (recovery times) using combinations of tech-
niques for Stratego-Java. RR - Region selection and recovery, PG - Permissive
grammars, RS - Region selection.

tion 2.6.2. We set a time limit of 1 second for applying recovery rules (PG),
when this technique is applied in combination with the fallback strategy (RR).

We first applied the techniques in isolation; regional recovery by skipping
regions (RS-RR), and parsing with permissive grammars (PG). We then evalu-
ate the approaches together; first parsing with permissive grammars applied
to a selected region (RS-PG), then adding region recovery (RR) as a fallback
recovery technique (RS-PG-RR). The results from the experiment are shown
in Figure 3.12.

Figure 3.12 (Performance) shows the performance results for the different
combinations of techniques. The results show that region recovery (RS-RR)
gives good performance in all cases, and that region selection (RS) positively
affects the performance of the permissive grammar technique (RS-PG versus
PG). Since all techniques give reasonable performance, we focus on quality to
find the best combination of techniques.

Considering the Quality part of Figure 3.12 and the results of PG, we see
that it has a relatively large number of failed recoveries (17%), but regardless
of this fact it still leads to reasonable recoveries (small diffs) in the majority
of cases (80%). For regional recovery (RS-RR), the situation is exactly the
opposite. As expected, skipping a whole region in most cases does not lead to
the optimal recovery. However, the skipping technique does provide a robust
mechanism, leading to a successful parse in most cases (97%). Restricting
PG to a selected erroneous region (RS-PG) only has a marginal effect on the

Chapter 3. An Indentation Based Technique for Locating Parse Errors 71



recover quality and performance. However, combining all techniques (RS-PG-
RR), improves the robustness (99%), as well as the precision (85% small or no
diff) compared to both individual techniques.

Based on our evaluation we conclude that the combined approach of RS-
PG-RR is the most effective configuration. We revisit the evaluation of this
combined approach and provide a further discussion in Section 4.5.

3.6 R E L AT E D W O R K

In Chapter 2 we introduced error recovery for SGLR, based on recover produc-
tions that can be automatically derived from a grammar. The present chapter
refines this work, improving the quality and performance of the technique by
constraining the application of recovery rules to coarse-grained regions that
were identified as erroneous. The coarse-grained regions can be discarded as
a fallback recovery in case the application of recovery rules does not lead to
a valid parse. The region detection technique uses indentation to locate parse
errors in the source text.

Error recovery for LR The problem of handling syntax errors during pars-
ing has been widely studied (Lévy, 1971; Mauney and Fischer, 1988; Pai and
Kieburtz, 1980; Barnard and Holt, 1982; Tai, 1978; Fischer et al., 1980; Degano
and Priami, 1995; McKenzie et al., 1995; Corchuelo et al., 2002). We focus on
LR parsing for which there are several different error recovery techniques (De-
gano and Priami, 1995). These techniques can be divided into correcting and
non-correcting techniques.

The most common non-correcting technique is panic mode. On detection
of an error, the input is discarded until a synchronization token is reached.
When a synchronizing token is reached, states are popped from the stack until
the state at the top enables the resumption of the parsing process. Panic mode
does not provide a proper diagnosis of the error and may skip large fragments
of an input. Our layout-sensitive regional recovery algorithm can be used in
a similar fashion, but selects discardable regions based on indentation. The
advantage of our technique is that it is language independent and that it
respects the grammatical structure of the intended program expressed by the
use of indentation.

Successful recovery mechanisms often combine more than one technique
(Degano and Priami, 1995). For example, panic mode is often used as a fall
back method if correction attempts fail. Burke and Fisher (1987) present a
correcting method based on three phases of recovery. The first phase looks
for simple correction by the insertion or deletion of a single token. If this does
not lead to a recovery, one or more open scopes are closed. The last phase
consists of discarding tokens that surround the parse failure location. We
implemented similar phases in our approach, however, in our work we take
indentation into account, for the secondary region skip recovery technique.
In addition, by starting with region selection, the performance as well as the
quality of our correcting technique, i.e., the permissive grammar approach of
Chapter 2, is improved.

72



Regional recovery Regional error recovery methods (Lévy, 1971; Mauney and
Fischer, 1988; Pai and Kieburtz, 1980; Barnard and Holt, 1982) select a region
that encloses the point of detection of an error. Typically, these regions are
selected based on nearby marker tokens (also called fiducial tokens (Pai and
Kieburtz, 1980), or synchronizing symbols (Barnard and Holt, 1982)), which
are language-dependent. In our approach, we assign regions based on lay-
out instead. Layout-sensitive regional recovery requires no language-specific
configuration, which makes the technique effective for a variety of languages.
Similar to the fiducial tokens approach, it depends on the assumption that
languages have recognizable (token or layout) structures that serve for the
identification of regions.

Barnard and Holt (1982) present an hierarchic error repair approach using
phases corresponding to lists of lines. For instance, a phase may be a set
of declarations that must appear together. These phases are similar to our
regions, with the difference that , in our case, the regions are constructed
based on indentation. Both approaches have some kind of local repair within
phases or regions, and may skip parts of the input.

Indentation-based recovery The approach of using layout information for par-
titioning files has been inspired by the technique of bridge parsing (Nilsson-
Nyman et al., 2009). Bridge parsing is a supplementary recovery technique
that uses indentation to insert missing scope closing tokens. In contrast to
our technique, bridge parsing is a correcting technique that is limited to the
recovery of unclosed scope structures.

3.7 C O N C L U S I O N

In Chapter 2 we identified two open issues with our recovery technique for
SGLR based on grammar relaxation. The first is the quality of corrections,
which is sometimes lacking since a global, linguistic solution is not aware
of the structure of the program expressed by the layout. The second is the
performance of the recover algorithm; for some problematic cases an adequate
recovery solution cannot be find in an acceptable timespan.

In this chapter, we addressed both issues by introducing a region selec-
tion technique that can be combined with the permissive grammar technique.
Source code has a hierarchical structure that is reflected in the use of inden-
tation. We have shown that this property can be exploited to partition files
and detect erroneous regions; these regions can be analyzed in detail by a
correcting technique, or discarded as a fallback recovery strategy.

We evaluated our approach by comparing different combinations of tech-
niques. The evaluation shows that constraining the search space for recovery
rule applications to erroneous regions improves the quality and performance
of the permissive grammar approach discussed in Chapter 2. Furthermore,
discarding erroneous regions as a fallback recovery helps to cope with patho-
logical cases not easily addressed with only permissive grammars and back-
tracking.

Chapter 3. An Indentation Based Technique for Locating Parse Errors 73



74



4
Automated Evaluation of Parse Error
Recovery Techniques

A B S T R A C T

Evaluation of parse error recovery techniques is an open problem, since ob-
jective standards and methods to measure the quality of recovery results are
missing. This chapter proposes an automated technique for recovery evalu-
ation that offers a solution for two main problems in this area. First, a rep-
resentative test set is generated by a mutation based fuzzing technique that
applies knowledge about common syntax errors. Secondly, the quality of the
recovery results is automatically measured using an oracle-based evaluation
technique.

We apply the evaluation technique to evaluate the quality and performance
of the recovery approach for SGLR that we presented in Chapter 2 and 3. The
evaluation results show that the approach works for different languages, that
the technique is scalable with respect to performance, and that the recovery
quality is on par with the standard set by the JDT parser.

4.1 I N T R O D U C T I O N

Integrated development environments (IDEs) increase programmer produc-
tivity by combining generic language development tools with services tailored
for a specific language. Language-specific services require as input a struc-
tured representation of the source code in the form of an abstract syntax tree
(AST) constructed by the parser.

To provide rapid syntactic and semantic feedback, IDEs interactively parse
programs as they are edited. The parser runs in the background with each
key press or after a small delay passes. As the user edits a program, it is often
in a syntactically invalid state. Parse error recovery techniques can diagnose
and report parse errors, and can construct ASTs for syntactically invalid pro-
grams (Degano and Priami, 1995). Thus, to successfully apply a parser in an
interactive setting, proper parse error recovery is essential.

Evaluation of error recovery techniques is an open problem in the area of
parsing technology. An objective and automated evaluation method is essen-
tial to do benchmark comparisons between existing techniques, and to detect
regression in recovery quality due to adaptations of the parser implementa-
tion. Currently, objective standards and methods for performing thorough
evaluations are not yet defined. We identified two challenges: first, the re-
covery technique must be evaluated against a representative set of test in-
puts, secondly, the recovery outputs must be automatically evaluated against

75



a quality metric. The aim of this chapter is to provide an automated method
for evaluating error-recovery techniques; and to apply this method to evaluate
the recovery technique described in Chapter 2 and 3.

Test data The first challenge for recovery evaluation is to obtain a represen-
tative test suite. Evaluations in the literature often use manually constructed
test suites based on assumptions about which kind of errors are the most
common (Horning, 1976; Kats et al., 2009a; Nilsson-Nyman et al., 2009). The
lack of empirical evidence for these assumptions raises the question how rep-
resentative the test cases are, and how well the technique works in general.
Furthermore, manually constructed test suites tend to be biased because in
many cases the same assumptions about edit behavior are used in the recov-
ery algorithm as well as in the test set that measures its quality. Many test
inputs need to be constructed to obtain a test set that is statistically signif-
icant. Thus, manual construction of test inputs is a tedious task that easily
introduces a selection bias.

A better option for obtaining representative test data is to construct a test
suite based on collected data, an approach which is taken in (Pennello and
DeRemer, 1978) and (Ripley and Druseikis, 1978). However, collecting em-
pirical data requires administration effort and may be impossible for new
languages that are not used in practice yet. Furthermore, empirical data does
not easily provide insight into what types of syntax errors are evaluated. That
is, the collected syntax errors must be categorized manually to evaluate how
the recovery algorithm performs on different types of syntax errors. A final
problem is automated evaluation of the quality of the parser output, which is
not easily implemented on collected data.

As an alternative to collecting edit scenarios in practice, this chapter inves-
tigates the idea of generating edit scenarios. The core of our technique is a
general framework for iterative generation of syntactically incorrect files. To
ensure that the generated files are realistic program files, the generator uses a
mutation based fuzzing technique that generates a large set of erroneous files
from a small set of correct input files taken from real projects. To ensure that
the generated errors are realistic, the generator implements knowledge about
editing behavior of real users, which was retrieved from an empirical study.
The edit behavior is implemented by error generation rules that specify how to
construct an erroneous fragment from a syntactically correct fragment. The
implicit assumption is that these rules implement edit behavior that is generic
for different languages. The generation framework provides extension points
were compiler testers can hook in custom error generation rules to test the
recovery of syntax errors that are specific for a given language.

Quality measurement The second challenge for recovery evaluation is to pro-
vide a systematic method to measure the quality of the parser output, e.g., the
recovered AST which represents a speculative interpretation of the program.

Human judgement is decisive with respect to the quality of recovery re-
sults. For this reason, Pennello and DeRemer (Pennello and DeRemer, 1978)
introduce human criteria to categorize recovery results. A recovery is rated

76



excellent if it is the one a human reader would make, good if it results in a
reasonable program without spurious or missed errors, and poor if it intro-
duces spurious errors or if excessive token deletion occurs. The Pennello and
DeRemer criteria represent the state of the art evaluation method for syntactic
error recovery applied in, amongst others, (Pennello and DeRemer, 1978; Pai
and Kieburtz, 1980; Degano and Priami, 1995; Corchuelo et al., 2002). Though
human criteria most accurately measure recovery quality, application of these
criteria requires manual inspection of the parse results which makes the eval-
uation subjective and inapplicable in an automated setting. Another disad-
vantage is the lack of precision, only three quality criteria are distinguished.

Oracle-based approaches form an alternative to manual inspection. First,
the intended program is constructed manually. Then, the recovered program
is compared to the intended program using a diff based metric on either the
ASTs or the textual representations obtained after pretty printing. An oracle-
based evaluation method is applied in (de Jonge et al., 2009) and (Nilsson-
Nyman et al., 2009). The former uses textual diffs on pretty-printed ASTs,
while the latter uses tree alignment distance (Jiang et al., 1994) as a metric
of how close a recovered interpretation is to the intended interpretation of a
program.

A problem with these approaches is the limited automation. Differential
oracle approaches allow automated evaluation, but the intended files must
be specified manually which requires considerable effort for large test suites.
Furthermore, the intended recovery may be specified after inspecting the re-
covery suggestion in the editor, which causes a bias towards the technique
implemented in the editor.

To address the concern of automation, we extend the error generator so
that it generates erroneous files together with their oracle interpretations. The
oracle interpretations follow the interpretation of the base file, except for the
affected code structures. For these structures, an oracle generation rule is imple-
mented that specifies how the intended interpretation is constructed from the
original structure and the erroneous syntax elements. By default, the original
structure itself is taken as an oracle interpretation; which works well in case
only literal tokens such as delimiters and operators are modified by the error
generation rule. Compiler testers can overwrite this behavior by specifying a
custom oracle generation rule. Custom oracle rules can handle cases in which
the original structure is not applicable as an oracle interpretation for the erro-
neous fragment; for example because non-literal tokens such as identifiers or
numbers are removed from the original syntax. We demonstrate an oracle rule
that can repair an incomplete syntactic structure by inserting missing syntax
elements, and an oracle rule that can select an appropriate sub construct as a
replacement for the broken original construct.

The remaining problem is to define a suitable metric between recovered
programs and their intended oracle programs. We compared four differen-
tial oracle metrics based on their accuracy and on qualitative aspects such as
applicability and comprehensibility. We concluded that all evaluated metrics
accurately reflect recovery quality. For practical reasons we chose tree-edit

Chapter 4. Automated Evaluation of Parse Error Recovery Techniques 77



distance as the preferred metric that we use in our recovery evaluations.

Application We applied the automated evaluation method to study the qual-
ity and performance of the error recovery technique described in Chapter 2

and 3. The evaluation shows that the technique works for different grammars,
that it has a low performance overhead, and that it provides good or excellent
recovery quality in the majority of cases.

Contributions This chapter provides the following contributions:

• A preliminary statistical study on syntax errors that occur during inter-
active editing.

• A test input generation technique that generates realistic edit scenarios
specified by error generation rules.

• A fully automatic technique to measure the quality of recovery results
for generated edit scenarios.

• A comparison of different metrics for recover quality measurement.

• An extensive evaluation of the recovery technique that we implemented
for SGLR.

We start this chapter with a statistical analysis of syntax error that occur
during interactive editing (Section 4.2). The input generation technique is
discussed in Section 4.3, while automatic quality measurement is the topic of
Section 4.4. Section 4.5 covers the experiments we did to evaluate the quality
and performance of the recovery approach that we implemented for SGLR
parsing.

4.2 U N D E R S TA N D I N G E D I T B E H AV I O R

We did an empirical study to gain insight into edit scenarios that occur during
interactive editing. The final objective was to implement these scenarios in an
error generation tool used for the generation of test inputs for error recovery.
With this objective in mind, we focus on the following research questions:

• How are syntax errors distributed in the file? Do multiple errors occur
in clusters or in isolation? What is the size of the fragments that contain
clustered syntax errors?

• What kinds of errors occur during interactive editing? Can we classify
these errors in general categories?

4.2.1 Experimental Design

For the analysis of syntax errors we examined edit data for three different
languages: Stratego (Bravenboer et al., 2008), a transformation language used
for code generation and program analyses; SDF (Luttik and Visser, 1997),

78



a declarative syntax definition language; and WebDSL (Groenewegen et al.,
2008), a domain-specific language for web development. We chose these lan-
guages since they are considerably different from each other, covering impor-
tant characteristics of respectively transformation, declarative and imperative
languages.

To study edit behavior in Stratego, we collected edit scenarios from two
groups; a group of students that took part in a graduate course on compiler
construction and a group of researchers that work in this field. Contrary to
the researchers, the students had only limited experience with the Stratego
language. In total, we collected 43, 984 Stratego files (program snapshots)
from 22 students and 13, 427 Stratego files from 5 experienced researchers.
To evaluate the impact of familiarity with a language on the syntactic errors
being made, the data was examined from the two groups separately. It turned
out that the unfamiliarity with the language had only a minor effect on the
edit behavior we observed. For WebDSL and SDF we did not have a large
user group, we analysed respectively 936 WebDSL files from 2 programmers
and 103 SDF files from 3 programmers.

The edit data was collected during interactive editing in an Eclipse based
IDE. The support offered by the IDE included main editor services such as
syntax highlighting, content completion, automatic bracket completion, auto-
indent, and syntax error recovery and reporting. The edit scenarios were cre-
ated by copying the file being edited, capturing snapshots between individual
keystrokes applied by the programmer. We filtered structurally equivalent
scenarios that only differ at the character level.

4.2.2 Distribution of Syntax Errors

We did a statistical analysis of the collected edit data to obtain knowledge
about how syntax errors are distributed in a file. To process the large amount
of collected data, we looked for an automated method. In general, it is difficult
to automatically analyze the distribution of syntax errors, since this requires a
technique to locate syntax errors in the source code; which is one of the main
challenges for parse error recovery techniques. To overcome this difficulty,
we locate syntax errors in the source code by identifying edit fragments. Edit
sequences consist of syntactically correct files and syntactically incorrect files
that are interleaved. We presume that all syntax errors are located in the
edit fragments, i.e., the code fragments that are modified in between two
subsequent correct files.

To gain insight into the distribution of errors in a file, we analyzed edit
fragments for the scenarios we collected for Stratego, SDF and WebDSL. To
identify these fragments, we applied a textual diff algorithm on the edit sce-
narios and their preceding correct scenario. We counted the number of edited
fragments per file, and we measured the size of these fragments in terms of
lines of code. The results are discussed below.

Unrelated syntax errors occur when programmers continue editing the next
fragment while the previous edited fragment still contains syntax errors. We

Chapter 4. Automated Evaluation of Parse Error Recovery Techniques 79



0 20 40 60 80 100

Stratego (students)
Stratego (researchers)

WebDSL
SDF

Number of Edit Fragments (% of Files)

0 fragments
1 fragment
2 fragments
3+ fragments

Figure 4.1 Number of edited fragments per file.

0 20 40 60 80 100

Stratego (students)
Stratego (researchers)

WebDSL
SDF

Number of Lines (% of Edit fragments)

1 line
2 lines
3 lines
3+ lines

Figure 4.2 Number of lines per fragment being edited.

analysed the possible occurrence of unrelated errors by counting the number
of edited fragments per file in the collected scenarios. The results in Figure 4.1
show that programmers typically edit code fragments one by one, solving all
syntax errors before editing the next fragment. We conclude that unrelated
errors only occur in a minority of cases.

From the previous discussion we conclude that syntax errors are typically
clustered in relatively small fragments. The logical follow-up question is:
what are the sizes of these fragments? We measured the size of the edited
fragments, Figure 4.2 shows the result. The figure shows that in most cases
the fragments are small, consisting of only one or two lines of code.

4.2.3 Classification of Syntax Errors

We manually inspected erroneous files to gain insight into the kind of errors
that occur in the fragment being edited. We inspected 50 randomly selected
files for each test group (Stratego students, Stratego researchers, SDF and
WebDSL). The results are summarized in Figure 4.3. The categories are ex-
plained below. From Figure 4.3 we conclude that most errors are not language
specific, and that incomplete constructs and random errors are the most fre-
quently occurring syntax errors.

• Incomplete constructs, language constructs that miss one or more symbols
at the suffix, e.g. an incomplete for loop as in for (x = 1; x.

80



Stratego S. Stratego R. SDF WebDSL
Incomplete Construct 24 18 22 28

Random errors 17 22 8 11

Scope errors 0 0 0 1

String Literal 3 3 18 3

Comments 2 4 2 4

Large Region 2 3 0 3

Language-specific 2 0 0 0

Figure 4.3 Classification of edit scenarios for different languages. The numbers
indicate the number of errors that fall in a given category for a given test group.

• Random errors, constructs that contain one or more token errors, e.g.,
missing, incorrect or superfluous symbols.

• Scope errors, constructs with missing or superfluous scope opening or
closing symbols.

• String or comment errors, block comments or string literals that are not
properly closed, e.g., /*...*.

• Large erroneous regions, severely incorrect code fragments that cover mul-
tiple lines.

• Language specific errors, errors that are specific for a particular language.

4.3 G E N E R AT I O N O F S Y N TA X E R R O R S

To test the quality of an error recovery technique, parser developers can man-
ually write erroneous input programs containing different kind of syntax er-
rors. However, to draw a conclusion that is statistically significant, the de-
veloper must extend the test set so that it becomes sufficiently large and di-
versified. Variation points are: the error type, the construct that is broken,
the syntactic context of the broken construct, and the layout of the input file
nearby the syntax error.

It is quite tedious to manually write a large number of invalid input pro-
grams that cover various instances of a specific error type. As an alternative,
our error generation framework allows the tester to write a generator that au-
tomates the creation of test files that contain syntax errors of the given type.
Error generators are composed from error generation rules and error seeding
strategies. The error generation rules specify how to construct an erroneous
fragment from a syntactically correct fragment; the error seeding strategies
control the application of the error generation rules, e.g., they select the code
constructs that will be broken in the generated test files. A generator for files
with multiple errors can be defined by combining generators for single error
files.

Chapter 4. Automated Evaluation of Parse Error Recovery Techniques 81



Figure 4.4 Error generators specify how to generate multiple erroneous files from
a single base file.

Figure 4.4 shows the work flow for test case generation implemented by
the generation framework. First, the parser constructs the AST of the base
file. Then the generator is applied which constructs a large set of ASTs that
represent syntactically erroneous variations of the base program. Finally, the
texts of the test files are reconstructed from these ASTs by a text reconstruction
algorithm that preserves the original layout (de Jonge and Visser, 2012a). Er-
ror generation rules may by accident generate modified code fragments that
are in fact syntactically correct. As a sanity check, all generated files that
are accidentally correct are filtered out by parsing them with error recovery
turned off.

4.3.1 Error Generation Rules

Error generation rules are applied to transform abstract syntax terms into
string fragments that represent syntactically erroneous constructs. The error
generation rules operate on the concrete and abstract syntax elements that are
associated to the abstract term, i.e., its abstract child terms plus the associated
literals and layout tokens. An example is given in Figure 4.5, syntax elements.
Applying modifications to a list of concrete and abstract child elements rather
than a list of tokens or characters offers refined control over the effect of the
rule. For example, error generation rules can specify insert, delete or update
operations on the literals associated to a code construct, without affecting
the literals in its child constructs. If necessary, the abstract child constructs
can be further expanded to their associated syntax elements. As an example,
Figure 4.5 illustrates the application of an error generation rule on an if con-
struct. The given rule removes the closing bracket of the if condition from
the list of syntax elements.

The generation framework predefines a set of primitive generation rules
that form the building blocks for more complex rules. Primitive error genera-
tion rules introduce simple errors by applying insertion, deletion, or replace-
ment operations on the syntax elements associated with a code structure. For
example, the following generation rule drops the last syntax element of a code
construct.

dropLastElement(syntaxElements)
1 if length(syntaxElements) > 0 then
2 syntaxElements← remove element at length(syntaxElements)− 1
3 return syntaxElements

82



Figure 4.5 Error generation rules create erroneous constructs by modifying the
syntax elements of correct constructs.

if(i > 5) {
foo(i);

}
if(i > 5) {

foo(i);

if(i > 5) {
if(i > 5)
if(i > 5
if(i >
if(i > )

if(i
if(i)
if(
if()
if

Figure 4.6 Incomplete construct: prefixes of an if statement.

By composing primitive generation rules, complex clustered errors can be
generated. For example, iterative application of the rule dropLastElement

generates incomplete constructs that miss n symbols at the suffix.

generateIncompletion(syntaxElements, n)
1 for i in 0 to n
2 syntaxElements← dropLastElement(syntaxElements)
3 return syntaxElements

A more advanced example is provided by nested incomplete construct er-
rors. By applying the generateIncompletion rule twice, first to the construct
and then to the last abstract child construct in the resulting list of syntax el-
ements, an incomplete construct is created that resides in an incomplete con-
text, for example “if(i >”. A final example is provided by the (optional)
support for automated bracket completion offered by most commonly used
IDEs. We simulate this edit scenario by generating test cases with added
closing brackets for all unclosed opening brackets in the incomplete prefix of
a construct, for example “if(i > )”. The test cases are generated by com-
posing the generateIncompletion rule with a rule that repairs the bracket
structure. We omit the pseudo code for the last two examples. Figure 4.6
shows prefixes of an if statement that can be constructed from the incomple-
tion rules described in this section.

Chapter 4. Automated Evaluation of Parse Error Recovery Techniques 83



4.3.2 Error Seeding Strategies

In principle, error generation rules could be applied iteratively to all terms in
the abstract syntax tree, generating test files each time that the rule applica-
tion succeeds. However, the resulting explosion of test files increases evalua-
tion time substantially without yielding significant new information about the
quality of the recovery technique. As an alternative to exhaustive application,
we let the tester specify an error seeding strategy that determines to which
terms an error generation rule is applied. Typically, constraints are specified
on the sort and/or the size of the selected terms, and, to put a limit on the
size of the test suite, a maximum is set or a coverage criterion is implemented.
For example, we predefined a coverage criterion that states that all types of
constructs that appear in the abstract syntax tree must occur exactly once in
the list of selected terms.

4.3.3 Predefined Generators

The remaining challenge for test input generation is to implement error gen-
erators that cover common syntax errors. From the preliminary study covered
in Section 4.2 we conclude that most syntax errors are editing related and ge-
neric for different languages. We implemented reusable generators for these
scenarios, i.e., all scenarios in Figure 4.3 except the category of language-
specific errors. In addition, we implemented a generator that generates erro-
neous files containing a combination of errors of the identified scenarios. Only
a few errors were related to error prone constructs in a particular language.
We leave it to an expert of a language to implement custom error generators
for language-specific errors.

4.4 A U T O M AT E D Q U A L I T Y M E A S U R E M E N T

An important problem in automated generation of test inputs is automated
checking of the outputs, also known as the oracle problem. To judge the qual-
ity of a recovery of a test input with a generated error, it is not sufficient to
simply compare it to the original, correct program, as essential information
may have gone missing in the erroneous input. Therefore, an oracle genera-
tion technique is needed to construct the intended recovery for the generated
error file. In addition, a quality metric is needed to measure how closely the
actual recovery follows the intended recovery.

We extend the test case generation framework with a differential oracle
technique that automates quality measurement of recovery outputs. Figure 4.7
shows the work flow for the evaluation framework. The workflow combines
the generation of erroneous test inputs with the generation of oracle ASTs
that represent their optimal recovery. As a final step, the recovered ASTs
for the test inputs are compared to their corresponding oracle AST using a
differential oracle metric. The generation of oracle ASTs forms the topic of

84



Figure 4.7 Workflow for automated evaluation of error recovery techniques.

Section 4.4.1, while various differential oracle metrics are discussed and com-
pared in respectively Section 4.4.2 and Section 4.4.3.

4.4.1 Oracle Construction

The quality of the recovered AST is given by its closeness to the AST that
represents the intended program, also called the oracle AST. We automate the
construction of oracle ASTs for generated error files. First, we assume that
all unaffected code constructs keep their original interpretation. Thus, the
constructed oracle AST follows the base AST except for the affected terms.
Secondly, we try to construct an oracle interpretation for the affected terms,
either by taking the original term as a default oracle interpretation, or by ap-
plying a custom oracle generation rule. Only in case both approaches fail,
we fall back on manual inspection to construct an appropriate oracle inter-
pretation. Below we explain the construction of oracle interpretations in more
detail.

An obvious candidate oracle interpretation for an affected term is the orig-
inal term from which the affected term was created. The original term most
likely provides a suitable recovery for errors that are constructed by deletion,
insertion or replacement of literal tokens such as brackets, semicolons, separa-
tors and operators. For example, the original construct while(true){foo();}
provides the preferred recover interpretation for the generated erroneous con-
struct while(true){foo(); that is created from it by removing the closing
parenthesis (}). We use the original term as a default oracle term in case no
custom oracle rule is specified for a given error generation rule.

Oracle generation rules complement error generation rules by specifying
how an oracle interpretation for the affected term is constructed from the
original term and the erroneous syntax elements (see Figure 4.5). Oracle rules
can handle cases in which the original term is not by definition the preferred
recover interpretation; for example because non-literal tokens such as identi-
fiers or numbers are removed from the original syntax by the error generation
rule. In this case, the recovery technique can not be expected to reproduce
exactly the same syntax as the original file. We discuss two examples.

Chapter 4. Automated Evaluation of Parse Error Recovery Techniques 85



trySelectOracleSubterm(originalTerm, errorElems)
1 subTermCandidate← null
2 for each elem in errorElems
3 if subTermCandidate == null and elem, originalTerm are same sort then
4 subTermCandidate← elem
5 else if not elem is literal token then
6 return null
7 return subTermCandidate

Figure 4.8 Oracle generation rule that selects a (unique) subterm of the same
grammatical sort as the original term.

Figure 4.8 shows an oracle generation rule that can be applied to cre-
ate an oracle interpretation for broken constructs that contain a sub con-
struct of the same grammatical sort. For example, the rule constructs the
numeric (sub)expression Num(2) as an oracle for the broken syntax elements
[Num(2), "+"], given the original expression term Plus(Num(2), Num(4)).
The rule selects the appropriate subterm from the erroneous syntax elements
(line 3, 4), or fails in case such a subterm does not exist or in case at least
one of the (discarded) syntax elements is not a literal token (line 5, 6). In the
latter case, the oracle is rejected because alternate, possibly more appropriate
interpretations may exist.

Figure 4.9 shows an oracle generation rule that can be applied to create
a suitable oracle interpretation for incomplete construct errors. For exam-
ple, given the original term while(true){ foo(); } and the generated in-
complete construct while(true, the rule constructs the oracle interpretation
while(true){}. The rule operates by comparing the original syntax elements,
"while", "(", True(), ")", "{", [FunCall("foo")], "}", with the er-
roneous syntax elements "while", "(", True(). The result is a list of oracle
syntax elements that will be transformed into a proper AST term after text
reconstruction and parsing (Figure 4.7). The constructed oracle syntax ele-
ments consist of all original elements that are preserved in the the erroneous
elements (line 7), plus all literal tokens that are missing (line 10), plus empty
list terms that serve as a default for missing list terms (line 12). The rule fails
in case other syntax elements are missing (line 14). The given rule can be ex-
tended to include support for optional terms and terms for which a suitable
default term exists.

In some exceptional cases, error generation rules may generate errors for
which it is not feasible to determine a suitable recovery using oracle gener-
ation rules. For these cases, manual inspection is required to determine the
intended recovery. We apply manual inspection for all cases in which the
specified oracle generation rule fails. For cases that are known in advance to
be problematic, an oracle generation rule can be specified that always results
in a failure.

86



tryConstructOracleCompletion(originalTerm, errorElems)
1 originalElems← syntax elements of originalTerm
2 i← 0
3 j← 0
4 oracleElems← []
5 while i < length(originalElems)
6 if j < length(errorElems) and originalElems[i] == errorElems[j] then
7 add originalElems[i] to oracleElems at length(oracleElems)
8 j← j+1
9 else if originalElems[i] is literal token then

10 add originalElems[i] to oracleElems at length(oracleElems)
11 else if originalElems[i] is list term then
12 add empty list term to oracleElems at length(oracleElems)
13 else
14 return null
15 i← i+1
16 return oracleElems

Figure 4.9 Oracle generation rule that compensates for deleted literal tokens and
deleted list terms.

The optimal recover interpretation of an erroneous construct can be am-
biguous or questionable. For example, the broken arithmetic expression 1 2

has many reasonable recover interpretations, such as: 1 + 2, 1 * 2, 1, and 2.
Selecting only one of these interpretations as the intended interpretation can
cause a small inaccuracy in the measured quality. A possible solution is to
allow the specification of multiple ambiguous interpretations or the specifica-
tion of a placeholder interpretation that serves as a wildcard. The disadvan-
tage of this approach is that it violates the well-formedness of the oracle AST
which may complicate further processing by differential oracle techniques.
For this reason we do not support placeholder oracle terms or ambiguous
oracle terms in our framework.

4.4.2 Quality Metrics

The remaining problem is to define a suitable metric between recovered pro-
grams and their intended oracle programs. Below we discuss different metrics
schematically shown in Figure 4.10. In addition, we discuss human criteria
introduced by Pennello and DeRemer (Pennello and DeRemer, 1978) as the
state-of-the-art, non-automated, quality metric.

Human criteria Human judgement is decisive with respect to the quality of
recovery results. For this reason, Pennello and DeRemer (Pennello and DeRe-
mer, 1978) introduce human criteria to rate recovery outputs. A recovery is
rated excellent if it is the one a human reader would make, good if it results

Chapter 4. Automated Evaluation of Parse Error Recovery Techniques 87



Figure 4.10 Possible metrics on different program representations.

in a reasonable program without spurious or missed errors, and poor if it in-
troduces spurious errors or if excessive token deletion occurs. Human criteria
represent the state of the art evaluation method for syntactic error recovery,
applied in, amongst others, (Pennello and DeRemer, 1978; Pai and Kieburtz,
1980; Degano and Priami, 1995; Corchuelo et al., 2002).

AST diff A simple AST-based metric can be defined by taking the size of
the textual AST diff. First, the ASTs of both the recovered program and the
intended program are printed to text, formatted so that nested structures ap-
pear on separate lines. Then, the printed ASTs are compared by counting
the number of lines that are different in the recovered AST compared to the
intended AST (the “diff”). The diff size obviously depends on the AST for-
matter and the settings of the textual diff function. For the results in this
section we use the ATerm formatter (van den Brand et al., 2000), and the Unix
diff utility with the settings: “-w, -y, –suppress-common-lines, –width=100”.

Tree distance An alternative AST-based metric is given by the tree edit dis-
tance (Chawathe et al., 1996). Given the edit operations term insertion, term
deletion, term move and label update, and given a cost function defined on
these operations, the tree edit distance is defined as follows. An edit script
between T1 and T2 is a sequence of edit operations that turns T1 into T2. The
cost of an edit script is given as the weighted sum over the edit operations
contained in the script. The tree edit distance between T1 and T2 is defined as
the cost of the minimum-cost edit script. An algorithm to calculate tree edit
distances is described in (Chawathe et al., 1996). The tree edit distances in this
chapter are calculated based on a cost function that assigns cost 1 to each edit
operation.

Token diff A metric can be based on concrete syntax by taking the diff on
the token sequences that represent the recovered, respectively the intended
program. The token diff counts the number of (non-layout) token insertions
and deletions required to turn the recovered token sequence into the intended
token sequence. The token sequences can be obtained via pretty-printing and
tokenization (Figure 4.10).

Textual diff Assumed that we have a human-friendly pretty printer, a con-
crete syntax metric can also be based on the textual representations obtained

88



after pretty printing (Figure 4.10). The textual diff counts the number of lines
that are different between the recovered and intended program text. These
lines typically correspond to reasonably fine-grained constructs such as state-
ments. The size of the textual diff depends on the pretty-print function and
the settings of the textual diff utility. For the results in this section we pretty-
print Java programs using the pp-java function that is part of the java front
end (Bravenboer, 2008) defined in the Stratego/XT framework (Visser, 2004).
Furthermore, we use the Unix diff utility with the settings: “-w, -y, –suppress-
common-lines, –width=100”.

4.4.3 Comparison of Metrics

In this section we compare the different metrics based on their accuracy and
on qualitative criteria such as applicability and comprehensibility.

Correlation and Accuracy

The Pearson product-moment correlation coefficient (Malgady and Krebs,
1986) is widely used to measure the linear dependence between two vari-
ables X and Y. The correlation coefficient ranges from −1 to 1. A correlation
equal to zero indicates that no relationship exists between the variables. A
correlation of +1.00 or −1.00 indicates that the relationship between the vari-
ables is perfectly described by a linear equation; all data points lying on a line
for which Y increases (+1.00), respectively decreases (−1.00), as X increases.
More general, a positive correlation coefficient means that Xi and Yi tend to
be simultaneously greater than, or simultaneously less than, their respective
means; while a negative correlation coefficient means that Xi and Yi tend to
lie on opposite sides of their respective means.

We measured the correlation between the different metrics based on the
Pearson correlation coefficient. For this, we applied the quality metrics to a
set of 150 randomly generated Java test cases that cover the different error
categories identified in Section 4.2. We translated the human criteria into a
numeric scale, i.e., 0 = Excellent, 1 = Good, 2 = Poor. The human criteria re-
sults were obtained after manual inspection by two researchers who assessed
the recovery qualities independently from each other. Both researchers were
familiar with the Pennello and DeRemer criteria. Although the researchers
both reported some corner cases, it turned out that the judgements were ex-
actly the same for the 150 inspected recoveries.

The correlation matrix of Figure 4.11 shows the correlation between the dif-
ferent metrics. The results indicate that there is a strong correlation between
the tree edit distance, ast diff, and token diff metrics. Figure 4.12 illustrates
one of these correlations by plotting the measured values in a scatter diagram.
The area of the plotted circles corresponds to the number of data points for
the given value.

The correlations that involve human criteria and/or the textual diff metric
are somewhat less pronounced. A likely reason is that these metrics have
a lower resolution, i.e., they provide a more coarse grained categorization.

Chapter 4. Automated Evaluation of Parse Error Recovery Techniques 89



tr
ee

di
st

an
ce

as
t

di
ff

to
ke

n
di

ff

te
xt

ua
l

di
ff

hu
m

an
cr

it
er

ia

tree distance 1.00 0.95 0.94 0.54 0.71

ast diff 0.95 1.00 0.94 0.60 0.72

token diff 0.94 0.94 1.00 0.51 0.69

textual diff 0.54 0.60 0.51 1.00 0.76

human criteria 0.71 0.72 0.69 0.76 1.00

Figure 4.11 Correlation matrix for different metrics on recovery quality.

0 20 40 60
0

20

40

60

token diff

as
t

di
ff

Figure 4.12 A scatter diagram that illustrates the correlation between the ast diff
and token diff metrics. The area of the plotted circles corresponds to the number
of data points for the given value.

To test this presumption, we also calculated the correlation coefficients after
calibrating all metrics to a scale no diff, small diff and large diff so that these
categories roughly correspond to the human criteria excellent, good and poor.
The results shown in Figure 4.13 indicate a strong correlation between all
compared calibrated metrics. Figure 4.14 illustrates how the thresholds were
determined by plotting the measured diff values against the corresponding
values that followed from human judgement.

The accuracy of a measurement technique indicates the proximity of mea-
sured values to ‘true values’. A strong correlation between measured values
and true values indicates that the measured values are an accurate predictor
for true values. Since human criteria are decisive with respect to recovery
quality, we use the Pennello and DeRemer criteria to determine the ‘true val-
ues’. From the results in Figure 4.13 for human criteria we conclude that all
metrics have a high prediction accuracy, that is, a high diff is a good predictor
of a poor recovery and the same for the other categories.

Qualitative Criteria

Although human criteria are decisive with respect to recover quality, appli-
cation of these criteria requires manual inspection of the parse results which
makes the evaluation subjective and inapplicable in an automated setting. An-
other disadvantage is the low resolution; only three quality levels are distin-

90



tr
ee

di
st

an
ce

as
t

di
ff

to
ke

n
di

ff

te
xt

ua
l

di
ff

hu
m

an
cr

it
er

ia

tree distance 1.00 0.98 0.96 0.93 0.96

ast diff 0.98 1.00 0.99 0.91 0.97

token diff 0.96 0.99 1.00 0.93 0.98

textual diff 0.93 0.91 0.93 1.00 0.92

human criteria 0.96 0.97 0.98 0.92 1.00

Figure 4.13 Correlation matrix for different metrics on recovery quality. All diff
metrics are calibrated to a scale no diff, small diff and large diff so that these
categories roughly correspond to the human criteria excellent, good and poor.

excellent good poor
0

25

50

75

100

human criteria

tr
ee

di
st

an
ce

Figure 4.14 Scatter diagram used to determine the thresholds for ‘no diff’ and
‘small diff’ for the tree distance metric.

guished. A more refined classification is possible but at the risk of increasing
the workload as well as the subjectivity.

AST-based metrics (AST diff and tree distance) reflect recovery quality in
the sense that they assign a larger penalty to recoveries that for a larger part of
the program provide an inferior interpretation. Empirical evaluation shows a
strong correspondence with human judgement (Figure 4.13). A disadvantage
of AST-based metrics however is that these metrics are not transparant to hu-
mans who are typically more familiar with concrete syntax than with abstract
syntax. A related problem is that AST-based metrics depend on the particular
abstract interpretation defined for a language. That is, a verbose abstract syn-
tax will lead to higher difference scores than a more concise abstract syntax.
The dependence on the abstract interpretation makes it harder to compare
parsers for the same language that construct a different abstract representa-
tion. To avoid systematic errors, the parser outputs must be translated into
the same abstract interpretation; for example via pretty-printing and repars-
ing. Unfortunately, this may require effort in case the recovered ASTs are not
well-formed or in case a pretty-print function is not implemented.

Concrete syntax better reflects human intuition and is independent from
the particular abstract interpretation defined for a language. Empirical eval-
uation shows that metrics based on concrete syntax accurately reflect human

Chapter 4. Automated Evaluation of Parse Error Recovery Techniques 91



judgement (token diff and textual diff in Figure 4.13). The diff metric based
on the token stream has a higher measurement resolution since it can assign
a larger penalty to recoveries for which multiple deviations appear on what
would be a single line of pretty-printed code. An additional advantage is that
the token diff does not depend on the particular layouting that is provided by
the pretty-printer. A possible limitation of metrics based on concrete syntax is
that they require additional compiler tooling in the form of a human-friendly
pretty-printer for textual diffs, and a pretty-printer and tokenizer for token-
based diffs.

From this discussion we conclude that all discussed differential oracle met-
rics are suitable to measure recovery quality. The token-based metric has the
advantage that it is understandable for humans, that it does not depend on
the particular abstract interpretation constructed by the parser, and that it
does not depend on a particular formatting function. However, a practical
disadvantage is that additional language tooling that is needed to construct
token sequences from abstract syntax trees. From the AST-based metrics, the
tree edit distance seems preferable over the AST diff count since it does not
depend on a particular formatter and diff function.

In the next section we evaluate the SGLR recovery approach presented in
Chapter 2 and 3, using the proposed automated evaluation method. Consid-
ering the scale of this study, we use the tree distance metric for comparison,
which has adequate accuracy and is most practical since not all the evaluated
languages have suitable pretty-printers and tokenizers.

4.5 E VA L U AT I O N O F E R R O R R E C O V E RY F O R S G L R

In Chapter 2 and 3 we presented a new, multi-stage recovery approach for
scannerless generalized parsing. The approach combines the following tech-
niques. First a region selection technique is applied to detect the erroneous
region (RS). In the second stage, the selected region is parsed with a permis-
sive grammar, i.e., a grammar that has been extended with automatically gen-
erated recovery rules (PG). In case the permissive grammar technique fails,
the erroneous region is skipped as a fallback recovery strategy (RR). In this
section we evaluate the approach , focusing on the following properties:

• Quality: What is the quality of the recovered AST?

• Performance: What is the difference in parsing time between erroneous
and correct inputs?

• Scalability: Does the approach scale up to large files?

In the remainder of this section we describe our experimental setup, and dis-
cuss the results of experiments that evaluate different aspects of our tech-
nique.

92



4.5.1 Setup

In this section we describe our experimental setup; we explain how we con-
struct a realistic test set, and how we measure recovery quality and perfor-
mance. The experimental setup follows the evaluation method proposed in
the first part of this chapter.

Syntax Error Seeding

The development of representative syntax error benchmarks is a challenging
task, and should be automated in order to minimize the selection bias. Fol-
lowing the approach outlined in Section 4.3, we generate a reasonably large
set of syntactically incorrect files from a smaller set of correct base files. We
seed syntax errors at random locations in the base files, using a set of rules
that cover different types of common editing errors. These rules were estab-
lished after a statistical analysis of collected edit data for different languages,
as described in Section 4.2.

Test Oracle

To measure the quality of a recovery, we compare the AST obtained by pars-
ing the erroneous file against the oracle AST that was constructed a priori
by the test generator. In some cases, the generated error is too complex to be
solved automatically. For these cases we construct the expected recovery man-
ually. For example, for a “for” loop with an Incomplete construct error, such as
for (x = 1; x, we complete the construct with the minimal amount of sym-
bols possible, which results in the expected construct for (x = 1; x; );.

Measuring Quality

We use two methods to measure the quality of the recovery results. First, we
do a manual inspection of the pretty-printed results, following the quality cri-
teria of Pennello and DeRemer (1978). Following these criteria, an excellent re-
covery is one that is exactly the same as the intended program, a good recovery
is one that results in a reasonable program without spurious or missed errors,
and a poor recovery is a recovery that introduces spurious errors or involves
excessive token deletion. The manual assessment of the parse results was
done by two researchers, independently from each other. Both researchers
were familiar with the Pennello and DeRemer criteria as formulated above.

Since human criteria form an evaluation method that is arguably subjective,
as a second method, we also do an automated comparison of the recovered
and intended abstract syntax trees. We follow the tree distance metric dis-
cussed in Section 4.4.2. The advantage of this approach is that it is objective.
Furthermore, since the comparison can be automated, it can be applied to
larger test sets.

The scales for the figures we show are calibrated such that “no diff” cor-
responds to the excellent qualification, a “small diff” (1–25 tree edits) roughly
corresponds to the good qualification, and a “large diff” (26+ tree edits) ap-
proximately corresponds to the poor qualification. After a selection of recovery

Chapter 4. Automated Evaluation of Parse Error Recovery Techniques 93



techniques and recovery rule sets, we show both metrics together in a com-
prehensive benchmark in Section 4.5.2.

Measuring Performance

To compare the performance of the presented recovery technique under dif-
ferent configurations, we measure the additional time spent for error recovery.
That is, we compute the extra time it takes to recover from one or more errors
(the recovery time) by subtracting the parse time of the syntactically correct
oracle file from the parse time of the erroneous file. To evaluate the scalability
of the technique, we compare the parse times for erroneous and correct files
of different sizes in the interval 1, 000–15, 000 LOC.

For all performance measures included in this section, we collected aver-
age parse times constructed from three individual parses per file. All mea-
suring is done on a “pre-heated” JVM running on a laptop with an Intel(R)
Core(TM) 2 Duo CPU P8600, 2.40GHz processor, 4 GB Memory.

Test Sets

To evaluate quality and performance of the suggested recovery techniques we
use a test set of programs written in WebDSL, Stratego-Java, Java-SQL and
Java, based on the following projects:

• YellowGrass: A web-based issue tracker written in the WebDSL lan-
guage.1

• The Dryad compiler: An open compiler for the Java platform (Kats et al.,
2008) written using Stratego-Java.

• The StringBorg project: A tool and grammar suite that defines different
embedded languages (Bravenboer et al., 2010), providing Java-SQL code.

• JSGLR: A Java implementation of the SGLR parser algorithm.2

We selected five representative base files from each project, and generated test
files using the error seeding technique. In total, we generated 176 Stratego-
Java test cases, 190 WebDSL test cases, 195 Java-SQL test cases, and 329 Java
test cases. In addition, for testing of scalability, we constructed a test set
consisting of 28 erroneous Stratego-Java files of increasing size in the interval
of 1, 000–15, 000 LOC.

Parser Configuration

We performed initial experiments to select the best configuration of recov-
ery rule sets and recovery techniques. Section 2.6 covers the comparison of
different automatically generated recovery rule sets composed from: deletion
rules (D), insertion rules for closing symbols (C), and insertion rules for open-
ing symbols (O). The comparison shows that the DC rule set provides the
best results. Section 3.5 covers the comparison of different combinations of

1http://www.yellowgrass.org/.
2http://strategoxt.org/Stratego/JSGLR/.

94

http://www.yellowgrass.org/
http://strategoxt.org/Stratego/JSGLR/


techniques, e.g., region selection (RS), permissive grammars (PG), and region
recovery (RR). The comparison shows that RS-PG-RR provides the optimal
combination. All results in this section are obtained with the DC rule set and
the RS-PG-RR configuration. We set a time limit of 500 milli-seconds for ap-
plying recovery rules (PG), and an overall time limit of 5 seconds to cut off
recoveries that take an (almost) infinite time to complete.

4.5.2 Experiments

In this section we present the results of the experiments we performed to
evaluate different aspects of our technique.

Overall Benchmark

As an overall benchmark, we compare the quality of our techniques to the
parser used by Eclipse’s Java Development Tools (JDT). To ensure that all the
results are obtained in a reasonable time span, we set a recover time limit of
1 second. It should be noted that, while our approach uses fully automati-
cally derived recovery specifications, the JDT parser in contrast, uses special-
ized, handwritten recovery rules and methods. We use the JDT parser with
statement-level recovery enabled, following the guidelines given by Kuhn and
Thomann (2006).

Both Eclipse and our approach apply an additional recovery technique in
the scenario of content completion (see Chapter 5). Both techniques use spe-
cific completion recovery rules that require the completion request (cursor)
location as additional information, also, these rules construct special comple-
tion terms that may not represent valid Java syntax. We did not include these
techniques in this general benchmark section since they specifically target the
use case of content completion and do not work in other scenarios.

Figure 4.15 shows the quality results acquired for the Java test set by ap-
plying the criteria of Pennello and DeRemer (1978) and by using the tree-edit
distance metric. To ensure that the tree-edit distance is calculated on the same
AST format, we translated all SGLR abstract syntax trees into abstract syntax
trees in the JDT format.

The results show that the SGLR recovery, using different steps and gran-
ularity, is in particular successful in avoiding large diffs, thereby providing
more precise recoveries compared to the JDT parser. The JDT parser on the
other hand managed to construct an excellent recovery in 67% of the cases,
which is a bit better than the 62% of the SGLR parser. The SGLR parser
failed to construct an AST in less than 1% of the cases, while the JDT parser
constructed an AST in all cases. However, manual inspection revealed that
in many large diff cases only a very small part of the original file is recon-
structed, for example, only the import lines or the import lines plus the class
declaration whereby all declarations in the body are skipped. We conclude
that our automatically derived recovery technique is at least on par with prac-
tical standards.

Chapter 4. Automated Evaluation of Parse Error Recovery Techniques 95



0 20 40 60 80 100

SGLR

JDT

% of Files

Quality (diffs)

No diff (0)
Small diff (1–25)
Large diff (26+)
Failed

0 20 40 60 80 100

SGLR

JDT

% of Files

Quality (manual assessment)

Excellent
Good
Poor
Failed

Figure 4.15 Recover quality of the SGLR parser compared to the JDT parser.

Cross-language Quality and Performance

In this experiment we test the applicability of our approach to different lan-
guages. For simplicity and to ensure a clear cross-language comparison, we
focus only on syntax errors that do not require manual reconstruction of the
expected result, i.e., random errors, scope errors and string or comment errors. This
allows for a fully automated comparison of erroneous and intended parser
outputs. The results of the experiment are shown in Figure 4.16. The figure
shows good results and performance across the different languages. From
the diagram it follows that the quality of the recoveries varies for the different
test sets. For example, the recoveries obtained for Java-SQL are better than the
ones for Stratego-Java. Differences like these are both hard to explain and pre-
dict, and depend on the characteristics of a particular language, or language
combination, as well as the test programs used.

Performance and Scalability

In this experiment we focus on the performance of our approach. We want to
study the scalability of our recovery technique and the potential performance
drawbacks of adding recovery rules to a grammar, i.e., the effect of increasing
the size of the grammar. We use the Stratego-Java language throughout this
experiment with the RS-PG-RR recovery configuration and the DC grammar.

To test scalability, we constructed a test set consisting of files of different
size in the interval 1, 000 – 15, 000 LOC, obtained by duplicating 500-line frag-
ments from a base file in the Stratego-Java test set. For each test file, the same
number of syntax errors were added, scattered in such a way that clustering
of errors does not occur. We measure parse times as a function of input size,
both for syntactically correct files and for files that contain syntax errors. The

96



0 20 40 60 80 100

WebDSL
Java-SQL

Stratego-Java
Java

Quality (% of Files)

No diff (0)
Small diff (1–25)
Large diff (26+)
Failed

0 20 40 60 80 100

WebDSL
Java-SQL

Stratego-Java
Java

Performance (% of Files)

0–99 ms
100–499 ms
500–999 ms
1000–4999 ms
Failed

Figure 4.16 Quality and performance (recovery times) for different languages.

0 0.25 0.5 0.75 1 1.25 1.5
·104

0

2,000

4,000

6,000

LOC

Pa
rs

e
ti

m
e

(m
s)

5 Errors (RS-PG)
0 Errors (RS-PG)
0 Errors (Standard)

Figure 4.17 Parse times for files of different length with and without errors. The
files are written in the Stratego-Java language and parsed with the RS-PG recovery
configuration.

results, plotted in Figure 4.17, show that parse times increase linearly with the
size of the input, both for correct and for incorrect files. Furthermore, the
extra time required to recover from an error (recovery time) is independent of
the file size, which follows from the fact that both lines in the figure have the
same coefficient.

As an additional experiment we studied the performance drawbacks in the
increased size of a permissive grammar. The extra recover productions added
to a grammar to make it more permissive also increase the size of that gram-
mar, which may negatively affect parse times of syntactically correct inputs.

Chapter 4. Automated Evaluation of Parse Error Recovery Techniques 97



We measured this effect by comparing parse times of the syntactically correct
files in the test set, using the standard grammar and the DC permissive gram-
mar. The results show that the permissive grammar has only a small negative
effect on parse times of syntactically correct files. The effect of modifying
the parser implementation to support backtracking was also measured, but
no performance decrease was found. We consider the small negative perfor-
mance effect on parsing syntactically correct files acceptable since it does not
significantly affect the user experience for files of reasonable size.

4.5.3 Summary

In this section we evaluated the effectiveness of our recovery approach based
on the combined application of region selection, permissive grammars, and
region recovery. The permissive grammar technique was introduced in Chap-
ter 2 and the region selection and region recovery techniques were introduced
in Chapter 3.

To measure the quality of our recovery approach, we did a baseline com-
parison with the Eclipse JDT parser, considered the industry standard for Java
parsing. Our results showed that the recovery quality holds up to the stan-
dard set by the JDT.

We showed that the approach is suitable for different languages. We tested
the approach on Java, on the composite of the declarative query language SQL
and Java in the form of Java-SQL, on the Stratego transformation language
with embedded Java expressions, and on the domain-specific WebDSL lan-
guage. With this variety of languages and language compositions, we showed
that the approach is language independent.

We evaluated the performance of the approach by measuring the time re-
quired to recover from parse errors. The results show that the recovery time
is independent of file size, and that the recovery gives no substantial perfor-
mance overhead in the majority of the cases.

We also measured the overhead time introduced by the approach for pars-
ing correct fragments of code. The results show that the additional recovery
productions of the permissive grammars only give a small overhead compared
to the base grammars, while the overhead of the extended parser infrastruc-
ture is negligible. Finally, we measured parse times as a function of input
sizes. Parse times increase linearly with the size of the input, both for correct
and for incorrect files.

4.6 D I S C U S S I O N

In this chapter we introduced a method for automatic evaluation of parse er-
ror recovery techniques. We applied this method to evaluate the approach
described in Chapter 2 and 3. The automated evaluation method made it
possible to do an extensive evaluation that considers multiple parser configu-
rations and multiple languages. In this section we discuss the validity of our
experimental results.

98



We identify some threats to external validity. External validity refers to the
question whether we can generalize the results obtained in the experiment
to other, similar situations. We base our results on generated syntax errors.
A possible threat to validity is that they do not accurately reflect the syntax
errors experienced “in the wild”. To gain confidence in how representative
the generated syntax errors are, we base them on edit scenarios identified
in an empirical study on editing behavior. This study is based on three dif-
ferent programming languages and covers edit scenarios from multiple pro-
grammers. Still, the study could be improved by including more ‘real world’
languages, and by including multiple editing environments. We leave this as
future work.

We identify some threats to construct validity. Construct validity refers to
whether an experiment measures the desired construct adequately. We study
the quality of parse error recovery, defined as the quality of the recovered
ASTs. To measure the quality of a recovered AST, we calculate the tree-edit
distance between the recovered AST and a predefined oracle AST. We identify
two threats to validity with respect to this quality measurement method. First,
multiple alternative oracle ASTs may exist that represent recoveries that are
as good as the given oracle AST. The effect of this threat should be small:
at worst, this may result in some recoveries being judged as “good” when
they are in fact “excellent”. Second, the tree-edit distance metric may not
accurately reflect the quality of the recovered AST. To gain confidence in our
quality metric, we compared different oracle based metrics and a metric based
on human assessment. The comparison shows a high correlation between all
those metrics.

An important use case of parse error recovery is to support editor services
in an interactive environment. In our evaluation, we have focused on the qual-
ity and performance of error recovery. If the ultimate goal of an error recovery
implementation is to provide the best possible basis for editor services, a final
threat to validity is the assumption that the quality of error recovery indeed
determines the quality of editor services. An additional user study could be
performed to measure the direct effect on editor services.

4.7 R E L AT E D W O R K

Error recovery evaluation Recovery techniques in literature use test sets that
are either manually constructed (de Jonge et al., 2009; Nilsson-Nyman et al.,
2009), or composed from practical data (Pennello and DeRemer, 1978; Ripley
and Druseikis, 1978). According to our knowledge, test generation techniques
have not yet been applied to recovery evaluation.

Human criteria (Pennello and DeRemer, 1978) and differential oracle tech-
niques (de Jonge et al., 2009; Nilsson-Nyman et al., 2009) form the state of the
art methods to measure the quality of recovery results. We accomplished to
apply a differential oracle technique in a full automatic setting.

Analysis of syntax errors To gain insight into syntax errors that are actually
made during editing, we investigated edit behavior by applying a statistical

Chapter 4. Automated Evaluation of Parse Error Recovery Techniques 99



analysis of collected edit data. Previous studies on syntax errors (Litecky and
Davis, 1976; Ripley and Druseikis, 1978) focus on on-demand compilation.
These studies report that most syntax errors consisted of a single missing or
erroneous token. In contrast, we studied syntax errors that occurred during
background compilation as applied in modern IDEs. Comparison of the re-
sults show that syntax errors that occur during background compilation are
more complex and often involve multiple errors clustered in a small fragment.

Fuzzing Fuzzing is a popular method used in software testing. The tech-
nique of fuzzing consists of sending a large number of different inputs to a
program to test its robustness against unpredictable or unvalid data. The in-
puts are normally constructed in one of two fashions, generation or mutation.
Generation approaches produce test data based on a specification of the set of
input data. Alternatively, mutation-based approaches modify valid input data
collected from practical data. The modifications may be random or heuristic
and are possibly guided by stochastic parameters. Mutation and generation-
based fuzzing techniques are compared in (Miller and Peterson, 2007). We use
a mutation based fuzzing technique to generate testcases for syntactic error
recovery.

Compiler testing Previous work on compiler testing (Kossatchev and Posyp-
kin, 2005) primarily focuses on the generation of valid input programs. Based
on a language specification, valid sentences are generated that form positive
test cases for the parser implementation. A parser for a language must not
only accept all valid sentences but also reject all invalid inputs. Only a few pa-
pers address the concern of negative test cases, a generation based approach
is discussed in (Zelenov and Zelenova, 2005). Generation based techniques
are good at constructing small input fragments in a controlled manner. The
problem these techniques address is to meet a suitable coverage criterion by
a (preferable small) set of generated testcases (Harm and Lämmel, 2000; Ze-
lenov and Zelenova, 2005).

In contrast, the evaluation of error recovery techniques exclusively targets
negative test cases. Furthermore, the generated negative test cases must be
realistic error scenarios instead of small input fragments that are ‘likely to re-
veal implementation errors’. Generation-based techniques construct testcases
starting from a formal specification. It hardly seems possible to formally spec-
ify what a realistic input fragment is that contains realistic syntax errors. For
this reason, we consider a mutation based fuzzing technique more appropri-
ate for the generation of error recovery test inputs.

Papers on compiler testing generally consider the parser as a language rec-
ognizer that outputs true in case a sequence of characters belongs to a given
formal language and false otherwise. Other features of the parser imple-
mentation such as the constructed abstract syntax tree and the reported error
messages are ignored. In contrast, we focus on the quality of the constructed
AST which we evaluate using an oracle based technique.

(Regehr et al., 2012) presents an approach to automate test case reduction
for C programs. That is, given a program that triggers a bug in the C com-

100



piler, an automated test case reducer searches for ever-smaller inputs that still
trigger the same bug. The most successful reduction strategy that the au-
thors present applies a generic fixpoint computation that invokes pluggable,
compiler-like transformations that implement reduction operations. Though
the paper focuses on a different problem in automated compiler testing, the
provided solution is similar to our solution in the sense that it applies plug-
gable transformations to modify a given input program.

4.8 C O N C L U S I O N

Automated evaluation of parse error recovery techniques has been an open
problem in the area of compiler testing. In this chapter we introduced a
method for fully automated recovery evaluation; the method combines a
mutation-based fuzzing technique that generates realistic test inputs, with an
oracle-based evaluation technique that measures the quality of the outputs.

We applied the evaluation method to evaluate the recovery approach that
we implemented for SGLR. Based on an extensive evaluation, we conclude
that the SGLR recovery approach has a low performance overhead and pro-
vides good or excellent recovery solutions in the majority of cases. Compar-
ison with the JDT parser shows that the recover quality holds up to practical
standards.

Automated evaluation makes it feasible to do a benchmark comparison
between different techniques. As future work we intend to extend the bench-
mark comparison with different parsers used in common IDEs. Further-
more, we plan to extend the empirical foundation of our recovery evaluation
method.

Chapter 4. Automated Evaluation of Parse Error Recovery Techniques 101



102



5
Integrating Error Recovery in the Spoofax
Language Workbench

A B S T R A C T

Spoofax is a development environment for textual languages that combines
the construction of languages and editor services. Using SDF and (J)SGLR,
Spoofax has the distinguishing feature that it supports language embeddings
and extensions composed from separate grammar modules. Parse error recov-
ery is essential for interactive editing. In Chapter 2 and 3 we presented three
parse error recovery techniques, that we combined in a multi-staged recovery
approach for SGLR. The present chapter describes the integration of this ap-
proach in Spoofax and presents general techniques for the implementation of
an IDE based on scannerless generalized parsing.

5.1 I N T R O D U C T I O N

While IDEs for languages have been constructed and used for several decades,
only recently did they become significantly more sophisticated and indis-
pensable for the productivity of software developers. In early 2001, IntelliJ
IDEA (Saunders et al., 2006) revolutionized the IDE landscape, setting a new
standard for highly interactive and language-specific IDE support for textual
languages. Since then, providing good IDE support for new languages has
become mandatory, posing a significant challenge for language engineers.

To lower the threshold of creating new languages and developing IDEs
for these languages, language workbenches have been developed that combine
the construction of languages and language-specific editors. Language work-
benches improve the productivity of language engineers by providing spe-
cialized languages, frameworks, and language engineering tools. Examples
of language workbenches for textual languages include EMFText (Heiden-
reich et al., 2009), MontiCore (Krahn et al., 2008; Grönniger et al., 2008),
TCS (Jouault et al., 2006), Xtext (Efftinge and Voelter, 2006), ASF+SDF Meta-
Environment (Klint, 1993; van den Brand et al., 2001), Rascal (van der Storm,
2011; Klint et al., 2009), and Spoofax (Kats and Visser, 2010).

The central artifact that language engineers define in a language workbench
is the grammar of a language, which is used to generate a parser. The parser
constructs an abstract representation of the source program that provides a
basis for all interactive editor services. Traditionally, IDEs used handwritten
parsers or only did a lexical analysis of source code for syntax highlighting
in real-time. By using a generated parser that runs in the background every
time the source code changes, modern IDEs have access to more accurate and

103



more up-to-date information, but they also crucially depend on the parser’s
performance and its support for error recovery.

Scannerless generalized parsers support the full class of context-free gram-
mars, thereby allowing a natural expression of the intended syntax and of-
fering support for language extension and composition (Visser, 1997b). In
Chapter 2 and 3 we presented a language-independent recovery approach
for scannerless generalized parsing. The approach combines a layout sensi-
tive technique to select erroneous regions and a recovery technique based on
grammar relaxation with automatically generated recovery rules. Evaluation
of the approach (Section 4.5) showed that it has a low performance overhead
and provides good or excellent recovery quality in the majority of cases. In the
present chapter we describe the integration of the approach in Spoofax (Kats
and Visser, 2010), an environment for developing languages and accompany-
ing IDE support.

Ultimately, error recovery provides a speculative interpretation of the in-
tended program, which may not always be the desired interpretation. As
such, it is both unavoidable and not uncommon that editor services operate
on inaccurate or incomplete information due to imperfectly recovered syntax
errors. Experience with modern IDEs (e.g. Eclipse, Visual Studio) shows that
this is not a problem in itself, as programmers are shown both syntactic and
semantic errors directly in the editor. In the worst case, the provided feedback
may be not optimal. Still, there are a number of editor services that inherently
require some interaction with the recovery strategy. In this chapter we present
general techniques for the implementation of editor services that interact with
the parse error recovery technique.

Where other editor services should behave robustly in case of incomplete or
syntactically incorrect programs, the content completion service is almost ex-
clusively targeted towards incomplete programs. Essential for the completion
service is the interpretation of the syntactic structure near the cursor location,
i.e., the location where the completion is requested. In the current chapter we
develop an additional recovery technique to interpret the local context of the
completion request location.

Outline We first give an overview of the recovery techniques that we de-
veloped for SGLR (Section 5.2). Then, in Section 5.3, we describe the imple-
mentation of these techniques in the Spoofax language workbench. Next, in
Section 5.4, we present general techniques to handle the interaction of error
recovery with editor services. Finally, in Section 5.5 we evaluate the additional
recovery technique that we developed to improve the provision of semantic
content completion suggestions.

5.2 O V E RV I E W R E C O V E RY A P P R O A C H

This section gives an overview of the multi-stage recovery approach we im-
plemented for SGLR. We summarize the individual techniques presented in
Chapter 2 and 3, and describe their integration.

104



Figure 5.1 Overview integrated recovery approach implemented in JSGLR.

Permissive grammars and backtracking In Chapter 2 we introduced permissive
grammars (Section 2.4), a recovery technique for scannerless generalized LR
parsing based on grammar relaxation; after analysis of the original grammar,
a set of recovery rules that simulate token insertion or deletion is automati-
cally derived. The recovery rules are applied in an on-demand fashion, using
a backtracking algorithm (Section 2.5). Starting from the parse failure loca-
tion, this algorithm explores an increasing, backward search space to find a
(presumable) minimal-cost solution for applying recovery rules.

Region selection Region selection, introduced in Section 3.4, is a regional re-
covery technique that uses layout to select regions of code that enclose syntax
errors. The selected regions can be analyzed in detail by a correcting tech-
nique, or discarded if no recovery is found within an acceptable time span.

Integration of techniques We combine the different techniques in a multi-stage
recovery approach, illustrated in Figure 5.1. Region selection is applied first
to detect the erroneous region. In case region selection fails, the whole file
is selected as erroneous region. In the second stage, the permissive gram-
mar technique is applied, where backtracking is restricted to the erroneous
region. In case the permissive grammar technique fails, the erroneous region
is skipped as a fallback recovery strategy.

5.3 I M P L E M E N TAT I O N

We implemented our approach in Spoofax (Kats and Visser, 2010), which is
a language development environment that combines the construction of lan-
guages and editor services. Using SDF (Heering et al., 1989b; Visser, 1995) and
(J)SGLR1, Spoofax has the distinguishing feature that it supports language
embeddings and extensions composed from separate grammar modules. In
this section we give an overview of the general system and we discuss the
adaptations we made for error recovery.

Figure 5.2 gives a general overview of the tool chain that handles parsing
in Spoofax with integrated support for error recovery. Given a grammar def-
inition in SDF, the make-permissive tool generates a permissive version of this
grammar, for which a parse table is constructed by sdf2table. This parse table

1Java implementation of the SGLR parsing algorithm. http://strategoxt.org/
Stratego/JSGLR/

Chapter 5. Integrating Error Recovery in the Spoofax Language Workbench 105

http://strategoxt.org/Stratego/JSGLR/
http://strategoxt.org/Stratego/JSGLR/


Figure 5.2 Overview tool chain. Make-permissive generates a permissive version
of the original grammar, for which a parse table is constructed by sdf2tbl. The
(permissive) parse table is used by JSGLR to construct a parse tree for a (possible
erroneous) input file, which is then disambiguated and imploded into an AST.

is used by the JSGLR parser, which constructs a parse tree for a (possible erro-
neous) input file. The parse tree is first disambiguated by applying post-parse
filters, and then imploded into an bastract syntax tree.

The make-permissive tool was added to the tool chain specifically for the
concern of error recovery. The tool implements a grammar-to-grammar trans-
formation, applying the heuristic rules described in Section 2.4.5 to generate
recovery rules. The tool is implemented in Aster (Kats et al., 2009c), a lan-
guage for decorated attribute grammars that extends the Stratego transforma-
tion language.

We adapted the JSGLR parser implementation so that it can efficiently parse
correct and incorrect syntax fragments using the productions defined by the
permissive grammar. For this reason, we implemented a selective form of
backtracking specificly for recover productions. In addition, we implemented
region selection as an additional recovery technique. All mentioned tech-
niques are implemented in Java and integrated in the JSGLR implementation.
To summarize, we made the following adaptations to the Java based JSGLR
parser:

• ignore grammar productions labeled with the recover annotation, unless
the parser is in recovery mode (permissive grammars).

• the backtracking algorithm of Section 2.5.4, to efficiently apply recover
productions when the parser is in recovery mode (permissive grammars).

106



• a runtime disambiguation filter that selects the branch with the lowest
number of recover productions, preferring insertion productions over
deletion productions (permissive grammars).

• the region selection algorithm of Section 3.4.4, to select erroneous, dis-
cardable regions (region selection).

• some code to integrate the different recovery techniques, as described in
Section 5.2.

5.4 I N T E G R AT I N G E R R O R R E C O V E RY I N A N I D E

A key goal of parse error recovery is its application in IDEs. Modern IDEs
heavily rely on parsers to produce abstract syntax trees that form the basis
for editor services such as the outline view, content completion, and refactor-
ing. Users expect these services even when the program has syntactic errors,
which is very common when source code is edited interactively. Using error
recovery, the parser can construct an AST for a syntactically incorrect input
program.

Ultimately, a recovered AST represents a speculative interpretation of the
intended program, which may not always be the desired interpretation. Ex-
perience with modern IDEs (e.g. Eclipse, Visual Studio) shows that for most
services it is not a problem to operate on inaccurate or incomplete informa-
tion; in the worst case, the provided feedback is not optimal. For services
that involve complex program modifications such as refactorings, errors and
warnings can be presented to the user who can then decide whether or not to
continue. In this section, we describe the role of error recovery in different ed-
itor services and show general techniques for using error recovery with these
services.

5.4.1 Guarantees on Recovery Correctness

While a recovery technique ultimately provides a speculative interpretation
of a syntactically incorrect input program, our approach does guarantee well-
formedness of ASTs. That is, it will only produce ASTs that conform to
the abstract structure imposed by the production rules of the original (non-
permissive) grammar. This property is maintained for all our recovery tech-
niques. With respect to permissive grammars (Section 2.4), the automati-
cally derived recovery rules are chosen so that they do not violate the well-
formedness property. That is, deletion and literal insertion recovery rules
do not contribute AST terms since they produce respectively layout and lit-
eral symbols which are not part of the AST; insertion recovery rules for lexical
productions only contribute lexical terms that correspond to the recovered lex-
icals. Region recovery (Section 3.4) does not compromise the well-formedness
property of the parse result since it only modifies the input string by skipping
over a text fragment.

Chapter 5. Integrating Error Recovery in the Spoofax Language Workbench 107



Figure 5.3 An editor for Stratego with embedded quotations of Java code.

The property of well-formedness of trees significantly simplifies the im-
plementation and specification of editor services, since they do not require
any special logic to handle artificial recovery constructs with missing terms
or special constructors introduced by the recovery technique. This approach
also ensures separation of concerns: error recovery is purely performed by the
parser, while editor services take as input a well-formed AST that represents
a complete and correct program. Still, there are a number of editor services
that inherently require some interaction with the recovery strategy, which we
discuss next.

5.4.2 Syntactic Error Reporting

The traditional use case of error recovery has been to report multiple errors
in a file. Syntax errors are reported to users by means of an error location and
an error message. In traditional compilers, the error location was reported as
a line/column offset, while modern IDEs use the location for the placement
of error markers in the editor. Figure 5.3 shows a screenshot of an editor for
Stratego with embedded Java. The shown code fragment contains two syntax
errors which are marked inline with a red squiggle. The error message pops
up when the cursor hovers over the error marker.

We reconstruct the information required for error reporting from the con-
structed parse tree, e.g., before it is imploded into an AST. Application of a re-
covery rule (permissive grammars) is recorded in the parse tree in the form of
a deletion/insertion term that stores information about the deleted/inserted
substring. To detect discarded regions (region recovery), we compare the se-
quence of parsed characters extracted from the parse tree, with the sequence
of characters that forms the original input.

We report syntax errors using generic error messages that depend on the
type of recovery. For deletion rules and for discarded regions, we use “[string]
not expected”, for insertion rules and inserted scope closings we use “ex-
pected: [string]”, and for insertion rules that terminate a construct we use
“construct not terminated”. The location at which the errors are reported is
determined by the location at which a recovery rule is applied, rather than by
the location of the parse failure. For region recoveries, where no recovery rule

108



is applied, the start and end location of the region, plus the original failure
location is reported instead.

Compared to hand-written parsers, which are commonly used in inter-
active editing, our error reports tend to be of a more generic nature. For
example, for an unterminated string, our editor gives a generic message “con-
struct not terminated” instead of a language-specific message “string literal
not terminated”. For custom recovery rules it makes sense to allow language
developers to define a custom error message which can be specified as an ad-
ditional grammar annotation. After parsing, the annotation can be read from
the parsetree and reported to the user. Custom error messages are not yet
supported in Spoofax.

5.4.3 Syntax Highlighting

Syntax highlighting has traditionally been based on a purely lexical analysis
of programs. The most basic approach is to use regular expressions to recog-
nize reserved words and other constructs and assign them a particular color.
Unfortunately, for language engineers the maintenance of regular expressions
for highlighting can be tedious and error prone. A more flexible approach is
to use the grammar of a language; a scanner recognizes tokens in a stream,
which are used to assign colors.

More recent implementations of syntax highlighting do a full context-free
syntax analysis. By inspecting the parse tree constructed by a (scannerless)
parser, these implementations can distinguish between keywords in different
sublanguages. Some editors also use the semantics of a language for syntax
highlighting. For example, they may assign Java field accesses a different color
than local variable accesses. In both cases the syntax highligthing mechanism
requires a full syntax analysis provided by the parser.

Scannerless syntax highlighting When using a scannerless parser such as
SGLR, a scanner-based approach to syntax highlighting is not an option; files
must be fully parsed instead. This makes it important that a proper parse
tree is available at all times, even in case of syntactic errors. To illustrate this,
consider the following incomplete Java statement:

Tree t = new

Using a scanner, the word new can be recognized as one of the reserved key-
words and can be highlighted as such. In the context of scannerless parsing, a
well-formed parse tree must be constructed for the keyword to be highlighted.
For fragments with syntax errors such as this one, that may not be possible,
resulting in no highlighting for the new keyword.

Fallback syntax highlighting Syntax highlighting is equally or even more im-
portant for syntactically incorrect fragments than for syntactically correct frag-
ments, as it indicates how the editor interprets the fragment as a programmer
is editing it. In the context of scannerless parsing, the syntax highlighting of
a fragment depends on the interpretation of that fragment constructed by the

Chapter 5. Integrating Error Recovery in the Spoofax Language Workbench 109



parser. As a consequence, syntax highligthing cannot be provided for erro-
neous fragments for which the parser failed to construct an interpretation.

To address this issue, we implemented a fallback syntax highlighting mech-
anism. The fallback syntax highlighting uses a lexical analysis for those frag-
ments where the full context-free parser is unable to interpret the words to be
highlighted. This analysis is performed by a rudimentary tokenizer that rec-
ognizes separate words to distinguish them for colorization. Simple coloring
rules can then be applied to highlight, for example, all the reserved keywords,
comments and string literals.

A limitation of the approach is that with a tokenizer it cannot distinguish
between keywords in different sublanguages, making the approach only vi-
able as a fall-back option. We use the fallback syntax highlighting for dis-
carded regions and in case the combined recovery technique fails, e.g., no
AST is constructed for the erroneous program.

5.4.4 Content Completion

Content completion, sometimes called content assist, is an editor service that
provides completion proposals based on the syntactic and semantic context
of the expression that is being edited. Where other editor services should
behave robustly in case of incomplete or syntactically incorrect programs, the
content completion service is almost exclusively targeted towards incomplete
programs. Content completion suggestions must be provided regardless of
the syntactic state of a program, e.g., an incomplete expression ‘blog.’ does
not conform to the syntax, but for content completion it must still have an
abstract representation.

Completion recovery rules In case content completion is applied to an incom-
plete construct, the syntactic context of that construct must be recovered. This
is especially challenging for language constructs with many elements, such
as the “for each” statement in the Java language. Even if only part of such a
statement is entered by a user, it is important for the content completion serv-
ice that there is an abstract representation for it. Based on the recovery rules
of Section 2.4 this is not always the case. Deletion recovery rules interpret the
incomplete expression as layout. As a consequence, the syntactic context is
lost. Insertion recovery rules can recover some incomplete expressions, but
they only insert missing terminal symbols.

To address this limitation, we introduce specific recovery rules for content
completion that specify what abstract representation to use for incomplete
syntactic constructs. Figure 5.4 shows examples of these rules. The first rule
is a normal production rule for the Java “for each” construct. The second
rule indicates how to recover this construct if the Stm non-terminal is omitted,
while the third rule handles the case where both non-terminals are omitted.
The completion recovery rules use the {ast(p)} annotation of SDF to specify
a pattern p as the abstract syntax to construct. Furthermore, a placeholder
pattern NULL() is used in place of the abstract representation of an omitted
non-terminal.

110



context-free syntax

"for" "(" FormalParam ":" Expr ")" Stm →
Stm {cons("ForEach")}

"for" "(" FormalParam ":" Expr ")"? →
Stm {ast("ForEach(<1>, <2>, NULL())"), completion}

"for" "(" FormalParam ":"? ")"? →
Stm {ast("ForEach(<1>, NULL(), NULL())"), completion}

Figure 5.4 Java ForEach production and its derived completion rules.

context-free syntax

"for" "(" FormalParam ":" Expr ")"? →
Stm {ast("ForEach(<1>, <2>, Block([]))"), completion}

Figure 5.5 Java ForEach completion rule with placeholder pattern that matches
the signature of the original production.

The completion recovery rules are automatically derived by analyzing the
original productions in the grammar, creating variations of existing rules with
omitted non-terminals and terminals marked as optional patterns. For best
results, we generate rules that use placeholder patterns that reflect the sig-
nature of the original production and therefore preserve the well-formedness
property. For example, in the second rule of Figure 5.4, the pattern Block([])

can be used instead of the NULL() placeholder, which results in the recovery
rule shown in Figure 5.5. Sensible placeholder patterns are constructed by re-
cursively analyzing the production rules for the omitted non-terminals. In the
given example, the production rule "{" Stm* "}" -> Stm {cons("Block")}

provides the pattern Block([]) as a placeholder for the Stm non-terminal,
using the empty list [] as the basic default for list productions.

Runtime support Completion recovery rules are only applied in case content
completion suggestions are requested by the user. We implemented a slightly
different runtime support for this scenario. In the case of a content comple-
tion request, an incomplete construct is likely to occur at the cursor location.
We use this information to control the application of completion rules. That
is, instead of backtracking after a parse failure, we apply completion recov-
ery rules if they interpret a character sequence that overlaps with the cursor
location. This approach adequately completes constructs at the cursor loca-
tion and minimizes the overhead of completion rules in normal parsing and
other recovery scenarios. It also ensures that the completion recovery rules
have precedence over the normal deletion and insertion recovery rules for the
content completion scenario.

A second difference with the normal recovery scenario is the handling of
ambiguous recover interpretations. As an example, we consider the incom-
plete Java assignment i = a whereby the completion is requested at the “a”
character. The assignment can be completed as i = a; or, alternatively, as
i = a();. By applying automatically derived completion rules, the parser

Chapter 5. Integrating Error Recovery in the Spoofax Language Workbench 111



lexical syntax

→ "@#$" {completion_start}

context-free syntax

"@#$" "for" "(" FormalParam ":" Expr ")"? →
Stm {ast("ForEach(<1>, <2>, Block([]))"), completion}

Figure 5.6 A completion rule optimized for performance. The completion_start

production is only applied in the nearby left context of the cursor location and thus
prevents the construction of extra branches at other locations.

constructs two alternative interpretations: Assign(Var("i"),Var("a")) and
Assign(Var("i"),FunCall("a",[])). Since the intention of the program-
mer is unclear at this point, both interpretations must be preserved in the
parser output and provided to the completion service. Based on these in-
terpretations, the completion service constructs a list with names of visible
declarations that start with an “a” and represent either variabele names (for
Var("a")) or function names (for FunCall("a",[])).

For normal editing scenarios, the completion rules can also be applied as
an additional recovery mechanism that is effective at the cursor location. In
that case, completion rules that compromise the well-formedness of the AST
must be excluded. In addition, alternative completion interpretations must be
disambiguated, either at runtime, or by applying a post-parse filter.

Performance optimization The additional completion productions potentially
increase parse times for the normal parsing scenario; first by increasing the
size of the grammar, secondly by creating extra stack branches that are dis-
carded only after the completion annotation is considered. Practical experi-
mentation showed that in particular the extra stack branches cause inaccept-
able performance overhead for the normal parsing scenario.

To prevent the construction of extra branches that will eventually be dis-
carded, we introduced a slightly different formulation of completion rules.
The adapted formulation introduces a completion_start rule that produces
an artificial literal which is required as the start literal for all completion rules.
The application of the completion_start rule is restricted to the nearby left
context of the cursor location, which prevents the construction of completion
branches at other locations. Good practical results were obtained with an
offset of 50 characters to the left of the cursor location. As an example, Fig-
ure 5.6 shows the completion_start rule and the adapted formulation of the
ForEach rule of Figure 5.5.

5.5 E VA L U AT I O N

Parse error recovery is essential to provide editor services on erroneous in-
put. Especially challenging is the content completion service, which almost
exclusively targets incomplete programs. In Section 5.4.4 we discussed the
strengths and limitations of our current approach with respect to content

112



0 20 40 60 80 100

Completion
DC

Context Preservation (% of Files)

Context
No context

0 20 40 60 80 100

Completion
DC

Performance (% of Files)

0–100 ms
100–500 ms
500–1000 ms
1000–4999 ms
Failed

Figure 5.7 Context preservation and performance (recovery times) of the Stratego-
Java grammar extended with insertion and deletion recovery rules (DC), and ex-
tended with completion rules (Completion).

completion. To overcome the limitations, we introduced a technique to au-
tomatically derive special completion rules that are applied near the cursor
location. In this section we evaluate how well the current approach (deletion
and insertion rules) serve the purpose of content completion, and how the
completion rules improve on this.

We evaluated completion recovery on a set of 314 generated test programs
that simulate the scenario of a programmer triggering the content completion
service. Accurate completion suggestions require that the syntactic context,
the term where completion is requested, is available in the recovered tree. To
evaluate the applicability with respect to content completion, we distinguish
between recoveries that preserve the syntactic context required for content
completion and those that do not.

Figure 5.7 shows the results for our recovery technique with and without
the use of completion recovery. Using the original approach (with the DC
rule set, i.e., insertion and deletion rules), the syntactic context was preserved
in 77 percent of the cases, which shows that the recovery approach is useful
for content completion, but is prone to unsatisfactory recoveries in certain
cases. Furthermore, as shown by the performance diagram, recovering large
incomplete constructs can be inefficient since it requires many deletion and
insertion rule applications.

Both problems are addressed by the completion recovery technique, which
is specifically designed to recover syntax errors that occur at the cursor lo-
cation and involve incomplete language constructs. Figure 5.7 shows the re-
sults for the completion recovery strategy of Section 5.4.4, using a permissive
grammar with the DC rule set plus completion rules. Using this strategy, the
syntactic context is preserved in all cases, without noticeable time overhead.
The low recovery times are a consequence of the (adapted) runtime support

Chapter 5. Integrating Error Recovery in the Spoofax Language Workbench 113



that exploits the fact that the incomplete construct is located at the cursor
location.

A disadvantage of the completion rules is that they significantly increase
the size of the grammar, which can negatively affect the parsing performance
for syntactically correct inputs. We compared parse times of syntactically
correct inputs for the DC/Completion grammar with parse times for the DC
grammar, and measured an overhead factor of 1.2. Given that completion
rules are highly effective and essential for the content completion functional-
ity, this overhead seems acceptable.

5.6 C O N C L U S I O N

The SGLR parsing algorithm implements scannerless, generalized parsing
which is essential for parsing composite languages. In Chapter 2 and 3 we pre-
sented three different language independent techniques for syntax error re-
covery, that we combined in a multi-staged recovery approach for SGLR. The
present chapter described the integration of this approach in Spoofax (Kats
and Visser, 2010), an environment for developing languages and accompany-
ing IDE support.

Error recovery is crucial for interactive editing, since it allows editor ser-
vices to provide feedback on syntactically incorrect programs. The editor
services operate on the recovered AST which provides a speculative inter-
pretation of the intended program. By ensuring that the recovered AST is
well-formed, separation of concerns can be achieved. Error recovery is purely
performed by the parser, while the editor services take as input a well-formed
AST that represents a syntactically correct program.

Editor services should behave robustly in case the recovery technique fails
to construct an interpretation for (a part of) the input program. We developed
techniques to provide the programmer with as much feedback as possible. In-
stead of scannerless highlighting, which requires a parse tree, fall-back syntax
highlighting based on a lexical analysis is used to highlight the keywords in
the source text. Furthermore, the user is presented with feedback of errors
up to the point of where the parser fails, in addition, the failure location is
reported to the user.

While other editor services should behave robustly in the presence of syn-
tax errors, the content completion service almost exclusively targets towards
incomplete programs. Essential for this service is the interpretation of the
syntactic structure near the completion request location. In this chapter we
developed an additional technique to recover the local context of the com-
pletion request location. Evaluation of this technique showed that it indeed
improves the recovery in the content completion scenario.

114



Part II

Language-Parametric
Refactoring Techniques

115





6
Source Code Reconstruction

A B S T R A C T

Transformations and semantic analysis for source-to-source transformations
such as refactorings are most effectively implemented using an abstract rep-
resentation of the source code. An intrinsic limitation of transformation tech-
niques based on abstract syntax trees is the loss of layout, i.e., whitespace and
comments. This is especially relevant in the context of refactorings, which
produce source code for human consumption. In this chapter, we present an
algorithm for fully automatic source code reconstruction for source-to-source
transformations. The algorithm preserves the layout of the unaffected parts
and reconstructs the layout of the affected parts, using a set of clearly defined
heuristic rules to handle comments.

Syntactic sugar enriches a programming language with syntactic constructs
that express functionality that can already be expressed in the core syntax.
The new syntactic constructs make the language "sweeter" for programmers
to use. However, the additional constructs complicate the implementation of
transformations and analyses. Therefore, transformations and analyses are
sometimes preceded by a desugaring transformation that maps sugared con-
structs into equivalent constructs in the core syntax. Desugaring considerably
simplifies the implementation of refactorings, however, the sugared constructs
must be restored in the source code that results after the refactoring. At the
end of this chapter, we present an extended version of the text reconstruction
algorithm that preserves the original syntactic constructs.

6.1 I N T R O D U C T I O N

The successful development of new languages is currently hindered by the
high cost of tool building. Developers are accustomed to the integrated de-
velopment environments (IDEs) that exist for general purpose languages, and
expect the same services for new languages. For the development of domain-
specific languages (DSLs) this requirement is a particular problem, since these
languages are often developed with fewer resources than general purpose lan-
guages.

Language workbenches aim at reducing that effort by facilitating efficient
development of IDE support for software languages (Fowler, 2005). Examples
of language workbenches include EMFText (Heidenreich et al., 2009), Monti-
Core (Krahn et al., 2008; Grönniger et al., 2008), TCS (Jouault et al., 2006),
Xtext (Efftinge and Voelter, 2006), ASF+SDF Meta-Environment (Klint, 1993;
van den Brand et al., 2001), IMP (Charles et al., 2007, 2009), Rascal (van der
Storm, 2011; Klint et al., 2009), and Spoofax (Kats and Visser, 2010). The

117



Spoofax language workbench generates a complete implementation of an ed-
itor plugin with common syntactic services based on the syntax definition
of a language in SDF (Visser, 1997c). Services that require semantic analysis
and/or transformation are implemented in the Stratego transformation lan-
guage (Bravenboer et al., 2008). We are extending Spoofax with a framework
for the implementation of refactorings.

Refactorings are transformations applied to the source code of a program.
Source code has a formal linguistic structure (de Vanter, 2001) defined by the
programming language in which it is written, which includes identifiers, key-
words, and lexical tokens. Whitespace and comments form the documentary
structure (de Vanter, 2001) of the program that is not formally part of the lin-
guistic structure, but determines the visual appearance of the code, which is
essential for readability. A fundamental problem for refactoring tools is the
informal connection between linguistic and documentary structure.

Refactorings transform the formal structure of a program and are speci-
fied on the abstract syntax tree (AST) representation of the source code, also
used in the compiler for the language. Compilers translate source code from
a high-level programming language to a lower level language (e.g., assembly
language or machine code), which is intended for consumption by machines.
In the context of compilation, the layout of the output is irrelevant. Thus, com-
piler architectures typically abstract over layout. Comments and whitespace
are discarded during parsing and are not stored in the AST.

In the case of refactoring, the result of the transformation is intended for
human consumption. Contrary to computers, humans consider comments
and layout important for readability. Comments explain the purpose of code
fragments in natural language, while indentation visualizes the hierarchical
structure of the program and new lines helps to clarify the connections be-
tween code blocks. A refactoring tool that loses all comments and changes
the original appearance of the source code completely is not useful in prac-
tice.

The loss of comments and layout is an intrinsic problem of transforma-
tion techniques when they are applied to refactorings. To address the concern
of layout preservation, these techniques use layout-sensitive pretty-printing to
construct the textual representation (Kitlei et al., 2009; Kort and Lämmel, 2003;
Li et al., 2006; Lohmann and Riedewald, 2003; van den Brand and Vinju, 2000;
de Jonge, 2002). Layout is stored in the syntax tree, either in the form of spe-
cial layout terms or in the form of tree annotations. After the transformation,
the new source code is reconstructed entirely by pretty-printing (unparsing)
of the transformed tree. This approach is promising because it uses language-
independent techniques. However, preservation of layout is still problematic.
Known limitations are imperfections in the whitespace surrounding the af-
fected parts (indentation and inter-token layout), and the handling of com-
ments, which may end up at the wrong locations. The cause of these limi-
tations lies in the orthogonality of the linguistic and documentary structure;
projecting documentary structure onto linguistic structure loses crucial infor-
mation (de Vanter, 2001).

118



A related problem with transformation techniques is the preservation of
syntactic sugar. Syntactic sugar enriches a language with constructs express-
ing functionality that can already be expressed in the base language. These
new syntactic constructs make the language "sweeter" for programmers to
use. Desugaring is a step in the transformation process that transforms a syn-
tax tree into an equivalent tree in the core syntax. The specification of refac-
torings is considerably simplified by desugaring, since the transformation and
the semantic analysis only need to be implemented on the core syntax. How-
ever, the syntactic sugar must be restored in the result of the refactoring; the
language constructs used in the refactored code must be the same as in the
original code.

In this chapter, we address the limitations of AST-based approaches to
source code reconstruction with an approach based on automated text patch-
ing. A text patch is an incremental modification of the original text, which can
consist of a deletion, insertion or replacement of a text fragment at a given lo-
cation. The patches are computed automatically by comparing the terms in
the transformed tree, with their originating term in the original or desugared
tree. The changes in the abstract terms are translated to text patches. The text
patching algorithm uses origin tracking as a technique to relate transformed
terms to original terms, and original terms to text positions (van Deursen
et al., 1993).

Automated text patching offers more flexibility regarding layout handling
compared to the pretty-print approach. We specify a layout adjustment strat-
egy that corrects the whitespace at the beginning and end of the changed
parts, and migrates comments so that they remain associated with the lin-
guistic structures to which they refer. The layout adjustment strategy uses
explicit, separately specified layout handling rules that are language indepen-
dent and based on a local style analysis.

The chapter provides the following contributions:

• A text reconstruction algorithm that preserves the layout and syntactic
sugar of the original source text.

• A formal analysis of the layout preservation problem, including correct-
ness and preservation proofs for the reconstruction algorithm.

• A set of clearly defined heuristic rules to determine the connection of
layout with the linguistic structure.

We start with an example and a formalization of the problem of layout preser-
vation in Section 6.2. Section 6.3 outlines our approach. Origin tracking is
introduced in Section 6.4. Section 6.5 explains the basic reconstruction al-
gorithm, for which we prove correctness and preservation properties in Sec-
tion 6.6. The algorithm is refined with layout adjustment and comment heuris-
tics in Section 6.7. Preservation of syntactic sugar is the topic of Section 6.8.
Finally, in Section 6.9 we evaluate our approach on a set of examples, while
in Section 6.10 we discuss limitations with the current implementation of our
approach.

Chapter 6. Source Code Reconstruction 119



entity User {
name : String

//account info

pwd : String //6ch

user : String
expire : Date

}

/*Blog info*/
entity Blog { ... }

Figure 6.1 Concrete syntax before
the refactoring.

entity User {
name : String
account : Account
expire : Date

}

entity Account {
//account info
pwd : String //6ch
user : String

}

/*Blog info*/
entity Blog { ... }

Figure 6.2 Concrete syntax after the
refactoring.

[EntityNoSuper(
"User"

, [PropNoAnno("name", "String")
,PropNoAnno("pwd", "String")
,PropNoAnno("user", "String")
,PropNoAnno("expire","Date")])

,EntityNoSuper("Blog", [...])]

Figure 6.3 Abstract syntax tree be-
fore the refactoring.

[EntityNoSuper(
"User"

, [PropNoAnno("name", "String")
,PropNoAnno("account","Account")
,PropNoAnno("expire", "Date")])

,EntityNoSuper(
"Account"

, [PropNoAnno("pwd", "String")
,PropNoAnno("user", "String")])

,EntityNoSuper("Blog", [...])]

Figure 6.4 Abstract syntax tree after
the refactoring.

6.2 P R O B L E M A N A LY S I S

In this section we discuss the layout preservation problem for refactoring
transformations. First, we illustrate the layout preservation problem with an
example refactoring for WebDSL, a domain-specific language for web applica-
tions (Visser, 2007). Next, we provide a more formal analysis of the problem.

6.2.1 Motivating Example

Program fragments have a concrete representation (Figure 6.1) and an abstract
representation (Figure 6.3) constructed by the parser in the form of an abstract
syntax tree. The concrete syntax representation is used by humans to edit
the program; comments and whitespace are essential for readability. The
abstract syntax representation is used by language tools. Abstract syntax trees
represent the formal structure of the program, abstracting from comments and
whitespace.

Automatic refactorings are typically defined as transformations on abstract
syntax trees. The structural representation of the program is necessary to reli-
ably perform the analyses and transformations needed for correct application.
Moreover, abstracting from the arbitrary layout of the source code simplifies
the specification of the refactoring. As an example, Figure 6.4 shows the re-
sult of applying the Extract entity refactoring transformation on the abstract

120



entity User : {
name : String ()
pwd : String () //6ch
user : String ()
expire : Date ()

}

/*Blog info*/
entity Blog : { ... }

Figure 6.5 Concrete syntax fragment
after desugaring.

[Entity(
"User"

, None()
, [ Property("name", "String", [])
, Property("pwd", "String", [])
, Property("user", "String", [])
, Property("expire", "Date", [])
])

,Entity("Blog", None(), [...])]

Figure 6.6 Abstract syntax tree after
desugaring.

syntax tree of Figure 6.3.
After the abstract transformation, the consistency between concrete and

abstract syntax must be restored while preserving the original layout. The
required source code modifications are non trivial. First, the result must be a
correct textual representation of the transformed program. Second, the layout
of the unaffected program fragments must be preserved, while the layout of
the affected fragments must adopt the formatting style used in the rest of the
program. Finally, comments must be migrated so that they keep attached to
their related program fragments.

As an illustration, Figure 6.2 shows the textual result after applying the
Extract entity refactoring on the program fragment shown in Figure 6.1. A
new entity (Account) is created from the selected properties, and inserted
after the User entity. The selected properties are replaced by a new property
that refers to the extracted entity. The layout of the affected constructs is
adjusted to conform to the style used locally, in the adjacent constructs. In
particular, indentation and a separating empty line are added to the inserted
entity fragment. Comments remain attached to the code constructs to which
they refer. Thus, the comments in the selected region are moved together
with the selected properties. Furthermore, the comment /*Blog Info*/ still
precedes the Blog entity.

Sugar Preservation

Syntactic sugar provides new language constructs that express functionality
that can already be expressed in the core language. The EntityNoSuper and
PropNoAnno constructs of Figure 6.1 and 6.3 are in fact syntactic sugar for
other, more fundamental, constructs that are part of the WebDSL core lan-
guage. Figure 6.5 and 6.6 show the “sugar-free” versions of the example frag-
ment in concrete, respectively abstract syntax. The source code fragments in
Figure 6.1 and Figure 6.5 express the same functionality, however, the desug-
ared version (Figure 6.5) is more verbose and therefore less attractive for hu-
mans to read and write.

At the other hand, sugared constructs complicate the specification of trans-
formations and analysis, since all syntactic synonym constructs must be taken
into account. For this reason, transformations and analysis are sometimes
preceded by a desugaring step. Desugaring is an AST transformation that
transforms “sugared” constructs in the enriched syntax into equivalent con-

Chapter 6. Source Code Reconstruction 121



Figure 6.7 Unparsing. Figure 6.8 Text reconstruction.

structs in the core syntax. The implementation of refactorings is considerably
simplified by desugaring, since the transformation and the semantic analysis
only need to be implemented on the core syntax. However, this introduces
an additional problem to layout preservation; all sugared constructs must be
restored in the source code that results after the refactoring.

6.2.2 Correctness and Preservation Criteria

The refactoring transformation applied to the AST results in a modified ab-
stract syntax tree. The AST modifications must be propagated to the concrete
source text in order to restore the consistency between the concrete and ab-
stract representation. Figure 6.7 illustrates the idea. S and T denote the con-
crete and the abstract representation of the program, the Parse function maps
the concrete representation into the abstract representation, while Transform

applies the transformation to the abstract syntax tree. To construct the textual
representation of the transformed AST, an Unparse function must be imple-
mented that maps abstract terms to strings.

The Parse function is surjective, so for each well-formed abstract syntax
term t, there exists at least one string that forms a textual representation of t.
An Unparse function can be defined that constructs such a string (van den
Brand and Visser, 1996). The Parse function in general is not injective; strings
with the same linguistic structure but different layout are mapped to the same
abstract structure, that is ∃s : Unparse(Parse(s)) , s. It follows that layout
preservation cannot be achieved by a function that only takes the abstract
syntax as input, without having access to the original source text.

In the context of refactoring, it is required that the layout of the origi-
nal text is preserved. A text reconstruction function that maps the abstract
syntax tree to a concrete representation must take the original text into ac-
count to preserve the layout (Figure 6.8). The text reconstruction function
ConstructTexts in Figure 6.8 has information about the mapping from terms
in T∗ to text fragments in S. The access to this information is implemented in
the form of a function OriginTerm and a function OriginText which maps
respectively transformed terms to original terms, and original terms to con-
crete text fragments. These functions are in fact functional parameters of the
text reconstruction function. For brevity we use the subscript s to express
the dependency on origin information. The mapping from terms to origin
fragments is explained in more detail in Section 6.4.

122



We define the following two criteria for the text reconstruction function:
Correctness. Parse(ConstructTexts(Transform(Parse(s)))) =
Transform(Parse(s))
Preservation. ConstructTexts(Parse(s)) = s
The correctness criterion states that text reconstruction followed by parsing is
the identity function on the AST after transformation. The preservation cri-
terion states that parsing followed by text reconstruction returns the original
source text for unaffected constructs. Preservation as defined above only cov-
ers the identity transformation on terms. Section 6.6.2 gives a more precise
criterion that defines preservation in the context of (non-trivial) transforma-
tions. Section 6.7 discusses layout adjustment and comment migration as
additional requirements for text reconstruction.

Refactoring transformations are preferable implemented on desugared ab-
stract syntax trees, since in that case the transformation and the semantic
analysis only needs to be implemented on the core syntax. However, the syn-
tactic sugar must be restored in the source code that results after the refactor-
ing. Preservation of syntactic sugar is problematic since essential information
about the original syntactic variant is lost after desugaring. We define the fol-
lowing refined versions of the correctness and preservation criteria that apply
to desugared trees:
Correctness. Parse(ConstructTexts(Transform(Desugar(Parse(s))))) =
Transform(Desugar(Parse(s)))
Preservation. ConstructTexts(Desugar(Parse(s))) = s

The layout preservation problem falls in the wider category of view update
problems. Foster et al. (2007) define a semantic framework for the view update
problem in the context of tree structured data. They introduce lenses, which
are bi-directional tree transformations. In one direction (Get), lenses map a
concrete tree onto an abstract tree, in the other direction (Putback), they map
a modified abstract tree, together with the original concrete tree onto a corre-
spondingly modified concrete tree. A lens is well-behaved if and only if the
Get and Putback functions obey the following laws: Get(Putback(t, s)) =
t and Putback(Get(s), s) = s. These laws resemble our correctness and
preservation criterion. That is, the bi-directional transformation Parse and
ConstructTexts behaves like a lens. Instead of taking the original input
as a parameter, the ConstructTexts function has access to refined informa-
tion about how abstract terms map to concrete terms; this allows it to fullfill
preservation conditions that are a bit stronger than what is typically required
by a lens.

6.2.3 Summary

We identified the following aspects that are important for the problem of
layout preservation in refactoring transformations:

• Correctness: the reconstructed source code must correctly represent the
result of the refactoring transformation.

Chapter 6. Source Code Reconstruction 123



• Layout preservation: the layout of the unaffected code fragments must
be preserved in the reconstructed source code.

• Formatting of new elements: new elements must be formatted in accor-
dance with the formatting style used in the rest of the program.

• Whitespace adjustment: the spacing (indentation and separating new-
lines) of the affected fragments must be adjusted so that it conforms to
the spacing conventions used in the original program.

• Comment migration: comments must be migrated so that they keep
attached to their related code constructs.

• Sugar preservation: the refactored program must preserve the syntactic
variations used in the original program.

In the coming section we discuss how we address these aspects in our ap-
proach.

6.3 A P P R O A C H

Given a refactoring transformation applied to the abstract syntax tree of a
program, in this section we outline our approach to reconstruct the source text
of the resulting program while preserving the layout of the original program.

To access information about the layout used in the original program, we use
origin tracking as a technique to access original terms and their corresponding
text fragments from the resulting terms in the AST after transformation. The
technique of tracking origin information is described in Section 6.4.

Given a transformed abstract syntax tree with origin information attached
to its terms, we reconstruct the source text by a recursive algorithm. The
algorithm reconstructs the text of unaffected terms from their original text
fragments, applying changes in the subterms as text patches. Newly inserted
terms that lack a suitable origin term are reconstructed by pretty-printing,
whereby text fragments of sub terms are reconstructed from their origin frag-
ments (if any exists). The algorithm is described in Section 6.5, while Sec-
tion 6.6 proves the correctness of the algorithm and its capability to preserve
the layout of unaffected code constructs.

An additional requirement for layout preservation is the correct treatment
of spacing and comments at the edges of affected code constructs. We extend
the text reconstruction algorithm with a method to adjust the spacing of af-
fected code constructs based on information retrieved from a local analysis
of the layout style in the original source text. In addition, we formulate a
set of heuristic rules that guide the treatment of comments so that they keep
attached to the code fragments they refer to. Whitespace adjustment is dis-
cussed in Section 6.7, while Section 6.7.1 presents our set of heuristic rules.

In case the refactoring transformation is preceded by a desugaring transfor-
mation, layout preservation techniques face the additional challenge to restore
the original syntactic variation of desugared constructs. We extend the text

124



Figure 6.9 Internal representation. Figure 6.10 Origin tracking.

reconstruction algorithm so that it is also applicable to transformations on
desugared ASTs. The main idea is to compare terms in the resulting AST
with their origin terms in the desugared AST instead of their origin terms
in the AST that results after parsing. Section 6.8 discusses the adaptions we
made to meet the requirement of sugar preservation.

6.4 O R I G I N T R A C K I N G

The text reconstruction algorithm proposed in this chapter requires an in-
frastructure for preserving origin information. This section describes origin
tracking as a technique to relate terms in the transformed tree to terms in the
original tree, and terms in the original tree to fragments in the source code.

Figure 6.9 illustrates the internal representation of the source code. The
program structure is represented by an abstract syntax tree (AST). Each term
in the AST keeps a reference to its leftmost and rightmost token in the token
stream, which in turn keep a reference to their start and end offset in the
character stream. Epsilon productions are represented by a token for which
the start- and end- offset are equal. This architecture makes it possible to
locate abstract terms in the source text and retrieve the corresponding text
fragment. The layout structure surrounding the text fragment is accessible
via the token stream, which contains layout and comment tokens.

When the AST is transformed during refactoring, location information is
automatically propagated through origin tracking (Figure 6.10, dashed line ar-
rows). Origin tracking is a general technique which relates subterms in the
resulting tree back to their originating term in the original tree. The rewrite
engine takes care of propagating origin information, such that terms in the
new tree point to the term from which they originate. Origin tracking is in-
troduced by Van Deursen et al. in (van Deursen et al., 1993), and implemented
in Spoofax (Kats et al., 2010a).

For the purpose of syntactic sugar preservation, we extended the origin
tracking technique to also track desugared origin terms. After the desugaring
stage, all terms in the desugared tree are marked as desugared origins and
tracked during the subsequent transformation steps. As a result, terms in the

Chapter 6. Source Code Reconstruction 125



transformed tree can access their originating term in the original tree, as well
as their originating term in the desugared tree.

We implemented a library for retrieving origin information. The library
exposes the original term constructed by the parser, the desugared version of
the original term, the associated source code fragment, and details about sur-
rounding layout such as indentation, separating whitespace and surrounding
comments.

6.5 T E X T R E C O N S T R U C T I O N A L G O R I T H M

In this section we describe our basic reconstruction algorithm which recon-
structs the text of unmodified code structures from the original source text,
falling back on pretty-printing for newly inserted code structures.

6.5.1 Notation

Terms We introduce a formal notation for terms in concrete and abstract syn-
tax, which stresses the correspondence between both representations. Given
a grammar G which we assume to be non-ambiguous. Let SG be the set of
strings that represent concrete syntax (sub)terms, and let TG be the set of well-
formed abstract syntax (sub)terms. We use the following notation for term
structures: (t, [t0 ... tk]) ∈ TG denotes a term t ∈ TG with direct subterms
[t0 ... tk] ∈ TG. Equivalently, (s, [s0 ... sk]) ∈ SG means a string s ∈ SG with
substrings [s0 ... sk] ∈ SG, so that each si parses to an abstract term ti ∈ TG,
and s parses to a term (t, [t0 ... tk]) ∈ TG. Terms are characterized by their
signature, consisting of the constructor name and the number of direct sub-
terms. When the signature of a term is important, the relevant information is
added in superscript, e.g., x(N, k) or (xN , [x0 ... xk]). Finally, for list terms1 the
notation [x0 ... xk] is used as a short notation for (x[], [x0 ... xk]), leaving out
the list constructor term.

Operations We define the following operations on SG and TG, using the sub-
scripts S and T to specify on which term representation the operation applies.
Given a term (x, [x0 ... xk]) with subterm xi, then R(xi, xnew)(x) replaces the
subterm xi with a new term xnew in the term x. In case x is a list, additional
operations are defined for deletion and insertion. D(xi)(x) defines the dele-
tion of the subterm xi, while IB(xi, xnew)(x) and IA(xi, xnew)(x) define the
insertion of xnew before (IB) or after (IA) the element xi. Remark: we assume
here that we have a notion of term identity. In our case, the term identity
in the tree that results after parsing is given by the origin relation. That is,
two terms are equal if and only if they are structurally equivalent and they
are associated to the same source code fragment defined by its start and end
offset.

1In SDF2 list terms are defined in the grammar as TRM*, respectively TRM+ for non-empty
lists. {TRM “,”}* denotes a list of TRMs separated by a comma.

126



entity Account {
//account info
pwd : String //6c
user : String

}

Account //account info
pwd : String //6c
user : String

pwd : String

pwd String

user : String

user String

Figure 6.11 Reconstruction example.

Functions The following functions are defined for elements in SG or TG.
Prs : SG → TG the parse function that maps concrete terms onto their corre-
sponding abstract terms, OrTxt : TG → SG the function that returns the origin
source fragment of a parsed term, PP : TG → SG a pretty-print function that
constructs a string representation for elements in TG, and OrTrm : TG → TG
the function that returns the origin term of a term in the transformed tree.

6.5.2 Algorithm

We define an algorithm that reconstructs the source code after the refactoring
transformation. The reconstruction algorithm implements a postorder traver-
sal of the transformed abstract syntax tree, constructing the text fragment of
the visited term from the text fragments of its subterms that were already
constructed in the traversal. Figure 6.11 illustrates the reconstruction of the
account entity. The substrings printed in bold are constructed by traversing
the subterms, while the surrounding characters are either retrieved from the
origin fragment, or constructed by pretty printing.

Figure 6.12 shows the algorithm in pseudo code. ConstructTexts(term)
takes an abstract syntax term as input and constructs a string representation
for this term. Three cases are distinguished; reconstruction for constructor
terms (l. 1-5), reconstruction for lists (l. 6-11), and pretty printing in case the
origin term is missing, i.e., when a term is newly created in the transformation
(l. 12-14). We discuss those cases.

If an origin term with the same signature exists (l. 2-3), the text fragment is
reconstructed from the original text fragment, corrected for possible changes
in the subterms. The function RS(s′i, si) : String → String subsequently re-
places the substrings that represent original subterms with substrings for the
new subterms constructed by a recursive call to ConstructTexts (l. 5). The
(relative) offset is used to locate the text fragment associated to the original

Chapter 6. Source Code Reconstruction 127



ConstructTexts(term) B Abbreviated as CT
1 if
2 (tN , [t0 ... tk])← term
3 (t′N , [t′0 ... t′k])← OrTrm(term)
4 then B Term with origin info
5 return RS(OrTxt(t′0), CT(t0)) ◦ · · · ◦ RS(OrTxt(t′k), CT(tk))

◦ OrTxt(OrTrm(term))
6 elseif
7 [t0 ... tk]← term
8 [t′0 ... t′j]← OrTrm(term)

9 then B List term with origin info
10 [Mod0 ... Modz]← ListChanges(OrTrm(term), term)
11 return Mod0 ◦ · · · ◦Modz(OrTxt(OrTrm(term)))
12 else B New constructed term
13 (tN , [t0, ...tk])← term
14 return PP ◦ RT(t0, CT(t0)) ◦ · · · ◦ RT(tk, CT(tk))(term)

ListChanges(oldLst, newLst)
15 lcs← LCS(oldLst, newLst)
16 diffs← []
17 for each (oldEl, newEl) ∈ lcs do
18 diffs← RS(OrTxt(oldEl), CT(newEl)) :: diffs
19 for each oldEl ∈ oldLst : (oldEl, _) < lcs do
20 diffs← DS(OrTxt(oldEl)) :: diffs
21 unmatched← []
22 for each newEl ∈ newLst do
23 if (_, newEl) < lcs then
24 unmatched← unmatched ::: [newEl]
25 if (oldEl, newEl) ∈ lcs and unmatched , [] then
26 diffs← IBS(OrTxt(oldEl), CT(unmatched)) :: diffs
27 unmatched← []
28 if unmatched , [] then
29 diffs← IAS(OrTxt(oldLst), CT(unmatched)) :: diffs
30 return diffs

LCS(oldLst, newLst)
31 B Constructs a longest common subsequence based on origin matching.

The result is a list of tuples (oldEl, newEl) with oldEl = OrTrm(newEl).

Figure 6.12 Pseudo code reconstruction algorithm.

128



subterm (OrTxt(t′i)), this detail is left out of the pseudo code.
Text reconstruction for list terms (l. 6-11) implements the same idea, except

that the changes in the subterms may include insertions and deletions. The
textual modifications are calculated by a differencing function (ListChanges)
and subsequently applied to the original list fragment (l. 11). The function
ListChanges matches elements of the new list with their origin term in the
original list (LCS, l. 15); the matched elements are returned as replacements
(l. 18), the unmatched elements of the old list form the deletions (l. 20), while
the insertions consist of the unmatched elements in the new list (l. 26, l. 29). It
is crucial that the elements of the new list are correctly matched with related
elements from the old list, since they automatically adopt the surrounding
layout at the position of the old term, which may contain explanatory com-
ments.

New terms are reconstructed by pretty-printing (l. 12, l. 14). To preserve the
layout of subterms associated with an origin fragment, the pretty print func-
tion is applied after replacing the subterms with their textual representation,
constructed recursively by a call to ConstructTexts (l. 14).

6.5.3 Optimizations

The algorithm shown in Figure 6.12 represents a simplified version of the
actual algorithm that we implemented for text reconstruction. The algorithm
discussed so far illustrates the reconstruction idea and allows reasoning about
correctness and preservation properties. However, it also puts some limita-
tions with respect to robustness and applicability. First, the algorithm is not
robust in case origin information is accidentally lost during the transforma-
tion. That is, terms that are not associated to an origin term are pretty-printed,
even if the structure has not changed at that point in the program. Secondly,
the algorithm requires that all origin terms are associated to a source frag-
ment. This is the case for origin terms that result after parsing, but not neces-
sarily for desugared origin terms which result after a desugaring transforma-
tion. Desugared origin terms are used for sugar preservation as discussed in
Section 6.8.

To overcome these limitations, we implemented a slightly different version
of the algorithm that only replaces fragments associated to terms that have
actually been changed during the transformation. That is, given a new term
with an associated origin term plus origin fragment, text reconstruction pro-
ceeds as follows. First, the new term is structurally compared to the original
term to detect all (top) changes in the descendant terms. Next, all changes
in the descendant terms are translated to textual changes and bubbled up as
changes on the origin fragment of the new term. Finally, these changes are
applied to the fragment under construction. Figure 6.13 shows the function
that collects the textual changes by traversing the subterms. Nested changes
are handled via a recursive call to ConstructTexts (l. 12). The collected tex-
tual changes are applied to the original fragment in Figure 6.12, line 5 and
line 18.

Chapter 6. Source Code Reconstruction 129



SubtermChanges(oldTerm, newTerm)

1 if
2 (tN , [t0 ... tk])← newTerm
3 (t′N , [t′0 ... t′k])← oldTerm
4 then B Terms with same signature
5 return

⋃
0≤i≤k SubtermChanges(t′i, ti)

6 elseif
7 [t0 ... tk]← newTerm
8 [t′0 ... t′j]← oldTerm
9 then B List terms

10 return ListChanges(oldTerm, newTerm)
11 else B Term Change
12 return [RS(OrTxt(oldTerm), CT(newTerm))]

Figure 6.13 Function that collects textual changes along a frontier of the new term.

This implementation is more robust since lost origin relations only have
a negative affect on the result if they occur at terms that are moved during
the transformation. Furthermore, changes on (desugared) origin terms that
are not associated to a source fragment can be propagated as changes on the
parent terms. This makes the algorithm applicable for sugar preservation
(Section 6.8).

6.6 C O R R E C T N E S S A N D P R E S E RVAT I O N P R O O F S

In this section we prove correctness and preservation properties for the text
reconstruction algorithm shown in Figure 6.12. We start by formulating the
assumptions, definitions and lemmas that are used in the correctness proof.

The text reconstruction algorithm translates the transformation in the ab-
stract representation to the corresponding transformation in the concrete rep-
resentation. This translation essentially exploits an assumed homomorphic
relation between abstract and concrete terms. We state this homomorphic re-
lation as an assumption. Exceptions to this assumption can occur in practice,
for example because of priority and associativity filters, and because of follow
restrictions defined in the grammar. The applicability of the homomorphism
assumption and techniques to overcome exceptional cases are discussed later
in this section.

Assumption 1. Let Prs : SG → TG the parse function as defined in Section 6.5.1.
Prs is a homomorphism on tree structures.

Definition. Given the functions Prs : SG → TG, OrTxt : TG → SG, PP : TG →
SG, OrTrm : TG → TG as defined in Section 6.5.1. The following properties hold:

D 1. OrTrm(Prs(s)) = Prs(s)

130



D 2. OrTxt(Prs(s)) = s

D 3. Prs(OrTxt(OrTrm(t))) = OrTrm(t)

D 4. Prs(PP(t)) = t

D 5. PP(s) = s f or all string constants s

Proof. This follows directly from the definition of the functions. �

Lemma. Let Prs : SG → TG the parse function, and assume Prs : SG → TG is a
homomorphism on tree structures. Then the following equations hold:

L 1. Prs ◦ RS(s′i, si)(s) = RT(Prs(s′i), Prs(si)) ◦ Prs(s)

L 2. Prs ◦DS(s′i)(s) = DT(Prs(s′i)) ◦ Prs(s)

L 3. Prs ◦ IBS(s′i, si)(s) = IBT(Prs(s′i), Prs(si)) ◦ Prs(s)

L 4. Prs ◦ IAS(s′i, si)(s) = IAT(Prs(s′i), Prs(si)) ◦ Prs(s)

Proof. This follows from the assumption that Prs is a homomorphism on tree
structures. �

6.6.1 Correctness

We prove correctness of ConstructTexts : TG → SG (Figure 6.12, abbreviated
as CT), assuming that Prs : SG → TG is a homomorphism on tree structures.

Theorem (Correctness). ∀t ∈ TG Prs(CT(t)) = t

The proof is by induction on tree structures. We distinguish two cases for
the leaf terms, dependent on whether an origin term exists with the same
signature.

Base case (a). Let t = (tN , []) a leaf term with origin term (tN , []).
Prs(CT(t)) =line 5 Prs(OrTxt(OrTrm(t))) =D 3 OrTrm(t) = (tN , []) �

Base case (b). Let (t, []) a leaf term for which no origin term exists.
Prs(CT(t)) =line 14 Prs(PP(t)) =D 4 t �

IH. Prs(CT(ti)) = ti holds for all subterms t0 to tk of a term (t, [t0 ... tk]).

We now proof the induction step Prs(CT(t)) = t.

Induction step (a). Assuming the induction hypothesis, we first prove a prop-
erty of text modification operations as applied in the lines 5 and 11.

p 1. Given a concrete syntax term s with a direct subterm OrTxt(t′i). The following
holds for modification operations Mod ∈ R, D, IB, IA.
Prs ◦ModS(OrTxt(t′i), CT(ti))(s) =L 1,L 2,L 3,L 4

ModT(Prs ◦OrTxt(t′i), Prs ◦CT(ti)) ◦ Prs(s) =D 3,IH

ModT(t′i, ti) ◦ Prs(s)

Chapter 6. Source Code Reconstruction 131



We prove the induction step for constructor terms (tN) with origin information
below, the proof for list terms follows the same logic. Let t = (tN , [t0 ... tk]) a
term with origin term t′ = (t′N , [t′0 ... t′k]).
Prs ◦CT(t) =line 5

Prs ◦ RS(OrTxt(t′0), CT(t0))... ◦ RS(OrTxt(t′k), CT(tk)) ◦OrTxt(t′) =p 1

RT(t′0, t0) ◦ ... ◦ RT(t′k, tk) ◦ Prs ◦OrTxt(t′) = D 3
RT(t′0, t0) ◦ ... ◦ RT(t′k, tk)(t′N , [t′0 ... t′k]) = (tN , [t0 ... tk]) = t �

Induction step (b). First, we prove a property for the pretty-print function (PP).

p 2. Prs ◦ PP ◦ RT(t′i, ti)(t) =D 4

RT(t′i, ti)(t) =D 4

RT(Prs ◦ PP(t′i), Prs ◦ PP(ti)) ◦ Prs ◦ PP(t) =L 1

Prs ◦ RS(PP(t′i), PP(ti)) ◦ PP(t)

We now prove the induction step for constructor terms (tN) that lack origin
information. Let (t, [t0 ... tk]) a term for which no origin term exists.
Prs ◦CT(t) =line 14

Prs ◦ PP ◦ RT(t0, CT(t0)) ◦ ... ◦ RT(tk, CT(tk))(t) =p 2

Prs ◦ RS(PP(t0), PP ◦CT(t0)) ◦ ... ◦ RS(PP(tk), PP ◦CT(tk)) ◦ PP(t) =L 1,D 5

RT(Prs ◦ PP(t0), Prs ◦ CT(t0)) ◦ ... ◦ RT(Prs ◦ PP(tk), Prs ◦ CT(tk)) ◦ Prs ◦
PP(t) =D 4,IH RT(t0, t0) ◦ ... ◦ RT(tk, tk)(t) =D 4 t �

6.6.2 Layout Preservation

Abstract syntax terms in general have multiple textual representations. These
representations differ in the use of layout between the linguistic elements. In
addition, small differences may occur in the linguistic elements; typically the
use of braces is optional in some cases. We introduce the notion of format-
ting that covers these differences. Then we prove that the text reconstruction
algorithm preserves formatting for terms that are not changed in the transfor-
mation, although they may have changes in their subterms or they may have
been moved to another position in the abstract syntax tree.

Definition. Given (s, [s0 ... sk]) ∈ SG. The formatting of s is defined as the list
consisting of the substring contained in s and preceding s0, the substrings that appear
between the subterms s0 ... sk, plus the substring contained in s and succeeding sk.

Theorem (Layout Preservation). Let t ∈ TG with origin term OrTrm(t) ∈ TG.
If t and OrTrm(t) are constructor terms with the same signature, then CT(t) and
OrTxt(OrTrm(t)) have the same formatting. If t and OrTrm(t) are list terms,
then the formatting is preserved for sublists for which no child terms are deleted or
inserted during the transformation.

Proof. Let (tN , [t0 ... tk]) a term with origin term (t′N , [t′0 ... t′k]), then CT(t) =
RS(OrTxt(t′0), CT(t0)) ◦ ... ◦ RS(OrTxt(t′k), CT(tk)) ◦OrTxt(OrTrm(t)).
Since RS only affects the substrings that represent the child terms, the for-
matting of the parent string is left intact. For list terms: Let t = [t0 ... tk] a

132



list with origin term OrTrm(t) = [t0 ... tl ], then CT(t) = Modt′0
◦ ... ◦Modt′l

◦
OrTxt(OrTrm(t)) Modt′i

∈ {RS, DS, IBS, IAS}. By definition, the modifica-
tion functions replace, delete or insert substrings representing child terms.
The formatting is preserved for sublists that are not affected by deletions or
insertions. �

6.6.3 Irregularities

The correctness proof depends on the assumption that parsing is a homo-
morphism on tree structures. Inspection of grammars for different languages
(Mobl (Hemel and Visser, 2011), Stratego (Visser, 2004), SDF (Heering et al.,
1989b; Visser, 1997c) and Java) showed that this requirement is met in general,
except for some common exceptions. Tree structures in the concrete syntax
representation can be ambiguous, in which case the parse result is determined
by disambiguation rules. Disambiguation rules can invalidate the homomor-
phic nature of the parse function. Below we discuss priority and associativity
rules, follow restrictions, and preference rules. In addition, we discuss the
practical problem of inserting and removing list elements together with a sep-
arator or whitespace token. We propose language generic solutions for most
of the identified problems. Furthermore, we implemented a hook that allows
developers to provide custom text reconstruction strategies for other irregular
cases that may occur in a particular grammar.

Priority and associativity Priority and associativity rules are used to disam-
biguate expression syntax. For instance, the expression 2 ∗ 3 + 4 is parsed as
(tPlus, [(tMult, [2, 3]), 4]), while the alternate parse, (tMult, [2, (tPlus, [3, 4])]) is
rejected because of a priority rule that gives higher priority to the tMult pro-
duction. In case the latter interpretation is in fact the intended interpretation,
the programmer can use brackets, i.e., 2 ∗ (3 + 4).

Priority and associativity rules invalidate the homomorphic nature of the
parse function. That is, bottom up text reconstruction fails to produce the
correct code fragment for (tMult, [2, (tPlus, [3, 4])]) in case (tPlus, [3, 4]) is
reconstructed as “3 + 4” instead of “(3 + 4)”. This can happen for example in
case (tPlus, [3, 4]) is the result of an Inline refactoring.

We implemented a language generic solution to handle this situation. The
implementation is based on the optimized version of the text reconstruction
algorithm as described in Section 6.5.3. First, the text reconstruction algo-
rithm takes as an additional parameter a strategy for adding parentheses
terms, (tBrackets, [expr]), at the necessary places in the tree. We then apply
this strategy to terms of the transformed tree, as well as to their origin terms.
We distinguish two cases for expression terms that are “parenthesized” in
the transformed tree. In case a bracket term in the transformed tree is com-
pared to a bracket term in the original tree, then these tBrackets terms cancel
each other out. This situation only happens in case the origin text already
contains brackets. In other cases, the bracket term is pretty printed as “(” +
ConstructTexts(expr) + “)”. The strategy for parentheses insertion is auto-

Chapter 6. Source Code Reconstruction 133



matically derived from the syntax definition (van den Brand and Visser, 1996;
de Jonge, 2000).

Follow restrictions Follow restrictions are used to implement longest match,
and to enforce some layout separation between keywords and identifiers.
As an example, we look at a rule condition in the Stratego language. The
string where foo is parsed as the rule condition (tWhere, [(tSCall , [” f oo”])]).
The leaf nodes of the parse tree are the keyword literal "where", the lay-
out string " ", and the identifier "foo". Without any lexical disambigua-
tion, the scannerless parser also parses the string wherefoo as the given rule
condition. This time the optional layout between where and foo is left out.
Typically, languages forbid the occurrence of an identifier immediately after
a keyword. For this reason a follow restriction is added to the grammar,
e.g., "where" -/- [a-zA-Z0-9\-\_]. The follow restriction indicates that
the "where" literal may not directly be followed by a character in the range
[a-zA-Z0-9\-\_].

Follow restrictions may invalidate the homomorphic nature of the parse
function. As a consequence, ConstructTexts may generate a parse error or a
construct that was not intended. We illustrate the problem with a transforma-
tion on Stratego rule conditions. The rule condition string where<foo> m is
parsed as the abstract term (tWhere, [(tBA, [(tSCall , [” f oo”]), tVar, [”m”])]]). Now
suppose that this term is transformed into the term (tWhere, [(tSCall , [” f oo”])]).
The text reconstruction algorithm applies the abstract term change as a textual
change that replaces the sub string <foo> m with the string foo on the parent
fragment where<foo> m. The result is the string wherefoo. However, this is
not a valid rule condition because of the follow restriction on the "where"

keyword. A pragmatic solution that will work in most cases is to insert some
additional layout, e.g., a single whitespace character, in case a replacement on
the concrete syntax places two keyword or identifier tokens immediately after
each other.

Preference rules A third categorie of syntactic disambiguation methods is
given by preference attributes, i.e., avoid and prefer. Preference attributes
are used to select a default interpretation among several alternative interpreta-
tions. As an example, we look at the notorious “dangling else” construction.
The input sentence if 0 then if 1 then foo else bar can be parsed as
the abstract term (tI f , [0, (tI f Else, [1, ” f oo”, ”bar”])]), or alternatively, as the
term (tI f Else, [0, (tI f , [1, ” f oo”]), ”bar”]). We can select the first interpreta-
tion by adding a prefer attribute on the production rule for the tI f term, or
vice-versa, we can select the second interpretation by adding a prefer attri-
bute on the production rule for the tI f Else term.

The ConstructTexts function may reconstruct a text fragment with a syn-
tactic ambiguity that is solved by a preference rule. The correctness crite-
rion is violated in case the preference rule selects the interpretation that does
not correspond with the reconstructed abstract term. We illustrate this prob-
lem for the “dangling else” example discussed above. Suppose that the term
(tI f , [0, (tI f Else, [1, ” f oo”, ”bar”])]) is obtained after an Inline refactoring that

134



puts the (tI f Else, [1, ” f oo”, ”bar”]) statement into the body of the (tI f , [0, ...])
statement. Text reconstruction for this term results in the text fragment (we ig-
nore the arbitrary layout) if 0 then if 1 then foo else bar. It depends
on the specified preference rule whether or not the resulting fragment cor-
rectly represents the reconstructed term.

A generic solution can not be implemented for correctness issues due to
ambiguities that are resolved by preference rules. For some languages, the
transformation should simply be rejected because the transformed abstract
syntax tree does not have a textual representation, i.e., the abstract tree is
not syntactically well-formed. For other languages, the correct interpretation
may be enforced by adding a pair of brackets around the inner construct. We
leave it to the refactoring implementor to implement a custom solution for
this situation. Correctness issues due to preference rules do not seem to occur
frequently in real world grammars. For example, the discussed “dangling
else” issue only occurs in case the tI f Else production is preferred over the
tI f production; while in the inspected Java grammar, the prefer attribute is
placed on the tI f production.

Separators Another exception with respect to the homomorphism property
concerns separation between list elements. When a list element is inserted (or
deleted), it must be inserted (deleted) including some separating whitespace
plus a possible separator. Whether a separator is required or not is deter-
mined by the list sort. We implemented the following solution. List elements
are inserted (and deleted) including their separation with the next (or pre-
ceding) element. When a list element is inserted, the separation is retrieved
from the original source text in case the origin list has two or more elements,
otherwise it is looked up in the pretty-print table.

6.7 L AY O U T A D J U S T M E N T

The algorithm shown in Figure 6.12 preserves the layout of the unaffected
regions, but fails to manage spacing and comments at the frontier between
the changed parts and the unchanged parts. Figure 6.14 shows the result
of applying the algorithm to the refactoring described in Section 6.2.1 (Fig-
ure 6.1 and 6.2). Comments end up at the wrong location (//account info,
/*Blog info*/), the whitespace separation around the account property and
the Account entity is not in accordance with the separation in the original text,
and the indentation of the Account entity is disorderly.

The algorithm in Figure 6.12 translates AST-changes to modifications on
code structures, but ignores the layout that surrounds these structures. To
overcome this shortcoming, we refine the implementation of the algorithm so
that whitespace and comments are migrated together with their associated
code structures. Layout migration is implemented by using a layout-sensitive
version of the OriginText and OriginOffset functions used to access the
original text.

To correct the whitespace of reconstructed fragments, language generic lay-
out adjustment functions are implemented that adopt the spacing of the sur-

Chapter 6. Source Code Reconstruction 135



entity User {
name : String
//account info

account : Account expire : Date
}

/*Blog info*/
entity Account {
password : String //6 chars

username : String
}entity Blog { ... }

Figure 6.14 Layout deviation without
adjustment.

IBadjusted(told, tnew)

1 text← ConstructTexts(tnew)
2 text← RemoveIndent(text)
3 text← AddIndent(

text,
OriginIndent(told))

4 text← ConcatStrings([
text,
Separation(told) ])

5 offset← OffsetWithLO(told)
6 return IBS(offset, text)

Figure 6.15 Layout adjustment func-
tion.

rounding code for the inserted fragments. In particular, an inserted construct
is indented and separated according to the layout of the adjacent constructs.
Figure 6.15 shows the layout adjustment steps for IBS. First, the text is recon-
structed with its associated comments (l. 1). Then, the existing indentation is
removed, leaving the nesting indentation intact (l. 2). Subsequently, the start
indentation at the insert location is retrieved from the adjacent term (told)
and appended to all lines (l. 3). Finally, separation is added to separate the
construct from its successor (l. 4). The separation is retrieved by inspecting
the layout surrounding told or by consulting the pretty-print table in case the
original list has less than two elements.

6.7.1 Comment Heuristics

Comment migration requires a proper interpretation of how comments attach
to the linguistic structure, which is problematic because of the informal nature
of comments. The use of comments differs, depending on style conventions
for a particular language and the personal preference of the programmer.
de Vanter (2001) gives a detailed analysis.

Figure 6.16 illustrates the use of comments with different style conven-
tions used in combination. Fragment #1 is a block comment that explains the
purpose of the accompanying method. The comment resides in front of its
structural referent. This is also the case for the comments in #2a,b,c. How-
ever, these comments do not attach to a single structure element, but instead
relate to a group of statements. The blank lines that surround these grouped
statements are essential in understanding the scope of the comments. Con-
trary to the previous examples, the line comment in #3 points backwards to
the preceding statement. #6 provides an example of a comment in the con-
text of list elements separated by a comma. In this case, the location of the
comma determines whether the comment points forward or backward. The

136



/**
* Processes income data and displays statistics #1
*/
public static void displayStatistics(Scanner input) {

//Initialize variables #2a
int count = 0; // Number of values #3a
double total = 0; // Sum of all incomes #3b

//Process input values until EOF #2b
System.out.println("Enter income values");
while (input.hasNextDouble()) {

double income = input.nextDouble();
//System.out.println("processing: " + income); #4
if(income>=0){

count++; // Keep track of count
total += income; // and total income #5

}
}

//Display statistics #2c
double average = calcAverage(count, /*sum*/ total); #6
System.out.println("Number of values = " + count);
System.out.println("Average = " + average);

}

Figure 6.16 Different comment styles in a Java source code fragment.

commented-out println statement in #4 does not have a structural referent.
It can best be seen as lying between the surrounding code elements. Finally,
#5 illustrates a single comment that is spread over two lines. A human reader
will recognize it as a single comment, although it is structurally split in two
separate parts. In this case, the vertical alignment hints at the fact that both
parts belong together.

Figure 6.16 makes clear why attaching comments to AST terms is prob-
lematic. The connection of comments with abstract terms only becomes clear
when taking into account the full documentary structure, including newlines,
indentation and separator tokens. Comments can point forward, as well as
backward and, purely based on analysis of the tree structure, it is impossi-
ble to decide which one is the case. Even more problematic are #2 and #4;
both comment lines lack an explicit referent in terms of a single AST term.
The former refers to a sublist, while the latter falls between the surrounding
terms.

Text reconstruction allows for a more flexible approach towards the in-
terpretation of comments. Instead of a fixed mapping between comments
and abstract terms, heuristic rules are defined that interpret the documentary
structure around the moved AST terms. Comment heuristics are defined as
layout patterns using newlines, indentation, and separators as building blocks
(Figure 6.17). If a pattern applies to a given term (or group of terms), the term
(group) is considered as the structural referent of the comment(s) that take
part in the pattern. The binding heuristics have the following effect on the
textual transformation; if a term (group) is (re)moved, all adjacent comments
that bind to the term(s) are (re)moved as well. Adjacent comments that do
not bind, stay at their original position in the source code. Comments that lie
inside the region of the migrated term(s) automatically migrate jointly.

Chapter 6. Source Code Reconstruction 137



Preceding(1):
<newline OR lower-indent><newline>
<comments><newline>
<terms><newline>
<newline OR lower-indent>

Preceding(2):
<separator><comments><term>

Succeeding(1):
<term><comments><newline>

Succeeding(2):
<term><comments><separator>

Succeeding(3):
<term><separator><comments><newline>

{

/*..*/

int i

int j
}

int i, /*..*/ int j

int i /*..*/
int j

int i /*..*/ , int j

int i, /*..*/
int j

Figure 6.17 Comment patterns.

The patterns in Figure 6.17 handle the majority of comment styles correctly.
The comment styles in Figure 6.16 are recognized by the patterns, with the ex-
ception of vertical alignment (#5), which is not detected. Preceding(1) binds
#1 to the displayStatistics method, and #2a,b,c to the statement groups
they refer to. #3 is interpreted by Succeeding(1). None of the patterns ap-
plies to #4, which indeed neither binds to the preceding nor to the succeeding
construct. The comment in #6 is associated with the succeeding construct by
application of Preceding(2). Finally, #5 is interpreted as two separate com-
ments associated to their preceding statement, but not recognized as a single
comment spread over two lines.

Heuristic rules will never handle all cases correctly; ultimately, it requires
understanding of the natural language to decide the meaning of a comment
and how it relates to the program structure. While our experience so far sug-
gests that the comment heuristics are adequate, further experience with other
languages, other refactorings, and other code bases is needed to determine
whether these rules are sufficient.

6.8 S Y N TA C T I C S U G A R P R E S E RVAT I O N

Syntactic sugar provides new language constructs that support expression
of functionality that can already be expressed in the base language. These
new syntactic constructs make the language "sweeter" for programmers to
use: things can be expressed more clearly, more concisely, or in an alternative
style that someone may prefer. For instance, if ... then can be used in
stead of if ... then ... else in case the else branch is empty. Another
example is given by for loops, which can be systematically replaced with
while loops.

Desugaring is a step in the transformation process that transforms a syntax
tree into an equivalent tree in the core syntax. Desugaring is typically im-

138



plemented by a top-down traversal which repeatedly applies normalization
rules to terms in the tree. These rules can be simple local rules, but some-
times more complex rules are applied that require context information. The
desugaring ensures that later stages of the transformation only need to deal
with one syntactic variant.

The specification of refactorings is considerably simplified by desugaring,
since the transformation and the semantic analyses only need to be imple-
mented on the core syntax. However, the syntactic sugar must be restored in
the result of the refactoring. The language constructs used in the refactored
code should be the same as in the original code, otherwise, programmers
will argue that the sources were alienated which violates the requirement
of preservation. Preservation of syntactic sugar is problematic in pure AST
based approaches, since it requires access to the original syntax.

In our approach, access to the original syntax is provided by origin track-
ing. The remaining challenge is to distinct between term modifications made
in the desugaring transformation and modifications that form the actual refac-
toring transformation. The former must be ignored, while the latter must be
applied as textual modifications on the source text. We adjust the layout
preservation algorithm so that it preserves syntactic sugar. We discuss the
adaptations we made, starting from the algorithm of Figure 6.12 with the
improvements discussed in Section 6.5.3 and shown in Figure 6.13.

6.8.1 Adaptations for Sugar Preservation

To identify the term changes caused by the refactoring transformation, we
compare the reconstructed terms to their desugared origin term instead of
their base origin term. The found term changes are translated into textual
changes by accessing the original text fragments via the base origin terms.
This ensures that 1) the same syntactic variation is used in the comparison,
and 2) the original text fragment with the original syntactic variation is used
as a template for the newly constructed fragment.

The proposed solution for sugar preservation discussed so far depends on
two assumptions: 1) (Desugared) origin terms are uniquely associated to a
corresponding textfragment 2) The nesting and ordering relation of (desug-
ared) origin terms reflects the nesting and ordering relation of their associated
text fragments. These assumptions are met for base origin terms but not nec-
essarily for desugared origin terms. Below we discuss the adaptations we
made to implement support for desugarings that violate one of the assump-
tions mentioned above.

Missing origin terms A common category of desugarings is given by local-
to-local transformations that map a specialized construct into a more generic
core construct. These type of desugarings introduce new terms, typically
empty lists or placeholder constructors, that miss a corresponding origin rep-
resentation. A problem occurs when a newly introduced term is changed
during the refactoring transformation; because of the missing origin informa-
tion the term change cannot be translated into a textual change. To address

Chapter 6. Source Code Reconstruction 139



this problem, we propagate the change as a change of the parent term, which
is then reconstructed by pretty-printing. This solution fulfills the correctness
and layout preservation conditions; the parent term cannot be reconstructed
from the original text since it cannot be “resugared” into the original syntactic
variation.

We illustrate the situation by an example based on the desugaring dis-
cussed in Section 6.2.1. Suppose that we have a PropertyNoAnno(name,

type) term that is desugared into a Property(name, type, []) term, and
then transformed into the term Property(name, type, [NotNullAnno()]).
Text patching of the term change [] to [NotNullAnno()] fails because the
[] term cannot be located in the source text. Therefore, we propagate this
change as a change of the parent terms. Then, the old, desugared parent
term Property(name, type, []) is located in the source text via its origin
term PropertyNoAnno(name, type); and the corresponding text fragment is
replaced by the pretty-print result of the new parent term Property(name,

type, [NotNullAnno()]).

Duplicated origin terms A second category of local-to-local desugarings that
require special attention are desugarings that produce multiple terms from
the same origin term. A problem occurs in case the subsequent transforma-
tion affects the duplicated terms in different ways, leading to conflicting term
changes. The problem is solved by propagating the conflicting changes as a
change on the common ancestor term. The ancestor term is then reconstructed
by pretty-printing. Again, pretty-printing of the ancestor term is required be-
cause it cannot be resugared into its original syntactic variation.

We found an example of such a desugaring in the Stratego compiler; the
desugaring transforms a lambda rule (\w -> ...\) into a scoped rule ({w:(w
-> ...)}), thereby duplicating the variables at the left hand side. Suppose
that the subsequent transformation transforms the desugared origin term into
the new term {v:(w -> ...)}. Comparison of the new term with its desug-
ared origin term results in the conflicting term changes: w => v and w =>

w, the latter representing the identity term change. We solve the conflict by
propagating a textual change for the common ancestor term. That is, the
pretty-printed construct {v:(w -> ...)}} replaces the original text fragment
\w -> ...\ which is accessed via its desugared and base origin term.

Changed ordering and nesting relations Local-to-global and global-to-local
desugarings affect the ordering and nesting relations between terms in the
abstract syntax tree. The text reconstruction algorithm offers only limited
support for these kind of desugaring transformations. Problems may occur
when dislocated terms take part in a term change caused by the refactoring
transformation. For example, the replacement of a term c1 with a term c2 in
an ancestor term p can only be translated into a textual replacement in case
the text fragment associated to p is an ancestor of the text fragment associated
to c1. Furthermore, the intended location of a newly inserted term becomes
unclear in case the term is inserted between two list elements that originate
from two different locations in the original program. Because of these prob-

140



lems, complex non-local desugarings should be avoided, or, when possible,
undone in a resugaring step applied just before text reconstruction. To diag-
nose and report ordering and nesting problems to the language developer, an
ordering and nesting check algorithm can be implemented.

6.9 E VA L U AT I O N

We implemented the text reconstruction algorithm in Spoofax (Kats and Vis-
ser, 2010), the sources of the library are available on-line (Spoofax, 2011). We
successfully applied the algorithm to Renaming, Extract and Inline refactor-
ings defined in the Mobl (Hemel and Visser, 2011) and Stratego (Bravenboer
et al., 2008) editor. In both cases, the refactorings were specified on the ab-
stract syntax tree that results after desugaring. In addition, we applied the al-
gorithm to the Java restructurings mentioned in this section. For future work
we will implement more refactorings and we will experiment with different
languages and layout conventions.

It is impossible for automatic tools to handle all layout correctly. After all,
textual comments are written for human beings. Ultimately, comments can
only be related to the code by understanding natural language. Therefore,
instead of trying to prove that our tool handles layout correctly, we show that
our approach meets practical standards for refactoring tools. We compare the
layout handling of our technique with the refactoring support in Eclipse Java
Development Tools (JDT), which is widely used in practice.

Van De Vanter (de Vanter, 2001) points out the importance of the documen-
tary structure for the comprehensibility and maintainability of source code.
The paper gives a detailed analysis of the documentary structure consisting of
indentation, line breaks, extra spaces and comments. The paper sketches the
prerequisites for a better layout handling by transformation tools. We use the
examples and requirements pointed out by Van De Vanter to provide a quali-
tative evaluation of our approach. We constructed a test set consisting of Java
fragments with different layout styles. This set includes test cases for inden-
tation and separating whitespace, as well as test cases for different comment
styles, covering all comment styles discussed by Van De Vanter (de Vanter,
2001) and illustrated in Figure 6.17.

The results are summarized in Table 6.1; + means that the layout is accu-
rately handled, -/+ indicates some minor issues, while - is used in case more
serious defects were found. A minor issue is reported when the layout is ac-
ceptable but does not precisely follows the style used in the rest of the code, a
serious defect is reported in case the layout is untidy or when comments are
lost.

The results show that our approach handles layout adequately in most
cases. Different comment styles are supported (1-15), and the adjustment of
whitespace gives acceptable results (16-19). 17 and 19 show that variations
in code style only led to some minor issues. For example in 17, the indent
of the new inserted method correctly follows the indentation of the adjacent
methods, but the indentation in the body follows the style defined in the

Chapter 6. Source Code Reconstruction 141



Cat. Description E CT
1 P1 Inline on method preceded by block comment + +
2 Inline on method preceded by a commented-out

method
- +

3 Move method preceded by multiple comments + +
4 Convert-to-field on the first statement of a group pre-

ceded by a comment
- +

5 Convert-to-field on statement below commented-out
line

- +

6 P2 Change method signature + +

7 S1 Extract method, last stm ends with line comments + +
8 Extract method, preceding stm ends with line com-

ments
+ +

9 Convert-to-field, decl with succeeding line com-
ments

- +

10 S2 Change method signature + +

11 S3 Change method signature -/+ -/+

12 Inside Extract method with comments in body + +
13 Inline method with comments in body + +

14 Selection Extract method, preceding comments in selection + +
15 Extract method, preceding comments outside selec-

tion
+ +

16 Indent Extract method, code style follows standards + +
17 Extract method, code style deviates from standards - -/+

18 Sep. ws Extract method, code style follows standards + +
19 Extract method, code style deviates from standards -/+ +

20 Extract method, mixed code styles + -/+

21 Format Extract method, standard code style + +
22 Extract method, code style deviates from standard -/+ -/+

23 V. align Renaming so that v. alignment of “=” is spoiled - -
24 Renaming so that v. alignment of comments is

spoiled
- -

E : Eclipse Helios (3.6.2)

CT: Text Construction

Table 6.1 Layout preservation results for the Eclipse based Java IDE and the text
reconstruction algorithm.

pretty-print definition. Mixed code styles (20) can lead to inferior results,
the reason is that the style of a surrounding construct with a deviating code
style may be adopted. Vertical alignment (23, 24) is not restored. A possible
improvement is to restore vertical alignment in a separate phase, using a post
processor.

Eclipse does not implement the same refined heuristic patterns as our tech-
nique, which explains the deviating results in 2, 4, and 5. In those three

142



cases, the comments were incorrectly associated with the moved code struc-
tures and, consequently, did not remain at their original location. In all three
cases the comment did not show up in the modified source code. In 9, the
comment was not migrated to the new inserted field, although it was (cor-
rectly) associated to the selected variable declaration. The reason is that the
relation between the inserted field and the deleted local variable is not set. In
our implementation, the origin tracking mechanism keeps track of this rela-
tion. Eclipse uses editor settings to adjust the whitespace surrounding new
inserted fragments, which works well under the condition that the file being
edited adopts these settings.

We implemented a general solution for layout preservation with the objec-
tive to support the implementation of refactorings for new (domain-specific)
languages. Using our approach, the layout preservation is not a concern for
the refactoring programmer but it is automatically provided by the recon-
struction algorithm. The evaluation indicates that our generic approach is on
par with practical standards.

6.10 D I S C U S S I O N

In this section we will discuss some limitations that we found while exper-
imenting with the implementation of our approach in the Spoofax language
workbench. Some of these limitations are implementation issues, while other
limitations are more intrinsic to the approach. We will also sketch possible
solutions to the identified issues.

A problem seen in practice is that origin information is not always properly
propagated during rewriting. This is for most part a limitation of the current
implementation, however, in some cases origins of terms can only be deter-
mined heuristically. As a consequence, fragments may be reconstructed by
pretty printing instead of from their origin fragment which leads to inferior
results. To handle this problem, we improved the robustness of the recon-
struction algorithm. First, as discussed in Section 6.5.3, we only apply text
patching for subterms that are actually changed, which limits the number of
fragments that need to be reconstructed. Secondly, we implemented a heuris-
tic to detect the origin of a term based on the origin relations of its sub terms.
Finally, we allow the refactoring implementor to set (or remove) the origin of
a term programmatically. We leave it as future implementation work to im-
prove the origin tracking technique itself. A possible solution to the problem
of loosing origin information can be found in Kort and Lämmel (2003), which
suggests a lightweight notation to make origin relations explicit in the rewrite
rules.

A second issue related to origin tracking is the selection of the origin
term in case of multiple, equivalent alternatives. It is not always possible
to attribute a unique origin to a term. For example, consider the following
rewrite rule Plus(x, x) -> Mult(2, x). The origin of x in the resulting
term Mult(2, x) could be either one of the x terms of the original term
Plus(x, x). The actually selected origin term in this case depends on the

Chapter 6. Source Code Reconstruction 143



compiler of the rule. For example, in the Stratego compiler the left x would
win since the compiler first binds x and then matches against x. Another
more sophisticated example is seen with an Extract method refactoring that
also replaces code clones of the selected statements with a method call. In this
case, the user selection in the editor determines the origin of the statements
in the extracted method body, ignoring the alternatives offered by the code
clones. In both examples, the formatting of the actually selected origin term
is preserved in the resulting program fragment, while the formatting of the
equivalent alternatives is ignored. In practice, the effect of arbitrary origin se-
lection seems marginal, since typically all possible alternatives give acceptable
results.

Programmers are not always consequent in the formatting of code con-
structs, which may depend on their specific context. For example, line wrap-
ping could be applied to a particular code construct to prevent long lines of
code. A construct with a slightly deviating style might be refactored in such a
way that the reason for applying this style no longer holds after the refactor-
ing. Since code fragments are always constructed from their original fragment
(if any exists), this situation leads to possible inferior results. We consider this
a trade-off of our approach: we favor preservation of the existing formatting
above applying a default formatting convention.

Our current approach applies a predefined pretty-print function to format
newly inserted code constructs. Since programmers may prefer different for-
matting conventions, the formatting defined by the pretty-print function may
differ from the formatting style preferred by the programmer, and it may be
inconsistent with the conventions used in the rest of the program. To over-
come this limitation, users should be able to configure the formatting that is
applied by the pretty-print function. This functionality is not yet supported
in our current implementation.

The correctness of the text reconstruction algorithm depends on the homo-
morphism assumption discussed in Section 6.6.3. This assumption must be
met by the grammar defined for the language. When the algorithm is applied
to desugared abstract syntax trees, additional assumptions must be met by
the specified desugaring transformation; that is, only local-to-local desugar-
ings are fully supported (Section 6.8). When these assumptions are violated,
text reconstruction may fail or may lead to syntactically invalid code. Refac-
toring implementors that are aware of these limitations can customize the
reconstruction algorithm by overriding the reconstruction of particular terms
with their own reconstruction strategy.

6.11 R E L AT E D W O R K

We implemented an algorithm for layout and syntactic sugar preservation in
refactoring transformations. Instead of trying to construct the entire source
code from the transformed AST, the algorithm applies text patches to the orig-
inal source text. The text patches are calculated from changes in the abstract
structure, using origin tracking to relate terms in the transformed AST with

144



their originating term and code fragment. We extended the origin tracking
mechanism to also track desugared origin terms, which made it possible to
preserve syntactic sugar.

A main challenge is the treatment of spacing and comments at the edges
between the changed and the unchanged code constructs. We specified layout
adjustment functions that correct the whitespace of reconstructed fragments,
so that the spacing of the surrounding code is adopted. Comments are mi-
grated according to their intent. We define heuristic patterns for comment
binding that interpret the documentary structure near the constructs. The
comment patterns are flexible in the sense that they do not assume a one-to-
one relation between comments and abstract terms. The heuristic rules are
language generic and cover layout styles commonly seen in practice.

AST based approaches Various attempts have been made to address the con-
cern of layout preservation by adding layout information to the AST. The lay-
out information is used after a refactoring transformation to reconstruct the
modified source code from the transformed AST. In (Li et al., 2006) comments
are stored as AST annotations, while the RefactorErl tool (Kitlei et al., 2009)
stores layout information in an external data structure. (Lohmann and Riede-
wald, 2003) describes an approach that introduces additional layout branches
to the abstract tree; the authors propose an automated migration of the trans-
formation rules to take care of these layout branches.

All approaches based on extended ASTs succeed, to a certain extent, in pre-
serving the original layout. In most approaches, layout is preserved for the
unaffected parts, but the reconstruction of the affected parts has limitations.
The implicit assumption is that the documentary structure can be mapped
satisfactorily onto abstract syntax trees. However, the mapping of layout el-
ements to abstract terms has intrinsic limitations. Attaching comments to
preceding (or succeeding) terms is a simplification that fails in cases when a
comment is not associated with a single AST term, as is shown in examples
provided by de Vanter (de Vanter, 2001). Another shortcoming is related to
indentation and whitespace separation at the beginning and end of changed
parts. Migrating whitespace is not sufficient since the indentation at the new
position may differ from the indentation at the old position, due to a different
nesting level. Furthermore, newly constructed structures should be inserted
with indentation and separating whitespace. A final limitation is the lack
of support for the preservation of syntactic sugar, which gets lost in case a
refactoring transformation is preceded by a desugaring transformation.

ASF + SDF As an alternative to using some abstract representation, rewrit-
ing techniques can also be implemented on concrete syntax trees. The rewrit-
ing technique that is used in the original ASF+SDF Meta-Environment (Klint,
1993) uses rewrite rules in concrete syntax that operate on structured terms in
concrete syntax. Layout is efficiently ignored by discarding all layout nodes
from the syntax trees of both the rewrite rules and the term.

To address the concern of layout preservation, van den Brand and Vinju
(2000) propose to use full parse trees instead of parse trees that are stripped

Chapter 6. Source Code Reconstruction 145



from layout. The rewrite engine is adapted to deal with the extra layout
branches. That is, term equality and matching are implemented modulo lay-
out nodes (i.e. any two layout nodes always match independent of their con-
tent), while newly constructed terms use the layout of the right hand side of
the rewrite rules. This method succeeds in preserving the layout of sub terms
that are not rewritten, while for sub terms that are rewritten the original lay-
out is lost permanently. The method does not provide the ability to utilize
layout nodes explicitly.

To address these limitations, Vinju (2005, Chapter 8) presents a method to
propagate layout selectively with help of layout variables. The layout vari-
ables allow the programmer to consume and analyze the original layout, and
to propagate it or produce new layout in the constructed terms. The static se-
mantic of ASF+SDF guarantees that the transformations are syntactically save,
i.e., they can not introduce syntax errors. In principle, layout preserving trans-
formations can be implemented using this technique to rewrite the layout of
terms. However, a strong limitation for our use case is that the refactoring im-
plementor must explicitly implement the layout handling in the rewrite rules,
which involves complicated strategies for layout adjustment and comment
migration.

An interesting direction could be to automate implicit propagation of lay-
out nodes from the left-hand side to the right-hand side of rewrite rules. This
requires a technique to determine the origins of constructed sub terms at the
right hand side of the rule. If the constructed sub term has the same signature
as its origin term, then the original formatting can be applied. Furthermore,
indentation correction, comment migration and bracket insertion must be im-
plemented to ensure maximal layout preservation and correctness. Preser-
vation of syntactic sugar can not be achieved using this technique, since all
information about the original constructs is permanently lost in the desugar-
ing transformations.

Parse tree annotations Kort and Lämmel (2003) present a general technique
to handle crosscutting concerns in rewriting. This technique relies on tree an-
notations to store relevant information. Separation of concerns is achieved by
implementing progression methods that define generically how annotations are
propagated from the input to the output of a rewrite step based on sharing
relations between input and output sub terms. The paper gives several ex-
amples of concerns that could be implemented using this technique; among
these examples are layout preservation and syntactic sugar preservation. The
paper does not go into details about how these preservation concerns are
implemented best.

As for the concern of layout preservation, there are different ways to group
layout in term annotations, but, as explained in this chapter, projecting layout
onto terms involves the risk of loosing crucial information. A possible ap-
proach is to work with concrete syntax trees and only annotate the leaf nodes,
i.e., tokens, capturing the layout preceding a token as its annotation. This ap-
proach at least ensures that no layout information is lost for terms that are not
(yet) rewritten. The remaining problem is to implement a progression method

146



that fulfills the requirements identified in Section 6.2.3. Although this seems
possible in principle, a condition is that the implementation of progression
methods allows access to the layout structure of surrounding terms, which is
required for indentation correction and comment migration.

HaRe HaRe (Li and Thompson, 2006; Li et al., 2005) is a refactoring tool for
Haskell that preserves layout. The program is internally represented by the
abstract syntax tree and the token stream, which are linked by source location
information. Layout preservation is performed explicitly in the transforma-
tion steps, which process the token stream and the AST in parallel. After the
transformation, the source code is extracted from the modified token stream.

Haskell programs can be written in layout-sensitive style, which means
that the interpretation of a syntax phrase may depend on its layout. For
this reason, it is essential for the refactoring tool not to violate the layout
rules when transforming the program. HaRe implements a layout adjustment
algorithm to keep the layout correct. The algorithm ensures that the meaning
of the code fragments is not changed, which does not necessarily mean that
the code is as much as possible like the original one in appearance. HaRe
uses heuristic rules to move/remove comments together with the associated
program structures. These heuristics include rules for comments that precede
a program structure and end-of-line comments that follow after a structure.

Similar to our approach, HaRe uses the token stream to apply layout analy-
sis and to extract source code fragments. The main difference is that HaRe
modifies the token stream during the transformation, while we reconstruct
the source code afterwards, using origin-tracking to access the original source
code. By using an extended version of the origin tracking technique, we also
preserve syntactic sugar for refactoring transformations that are preceded by
a desugaring transformation. The requirement to change the AST and token
stream in parallel makes it harder to implement new transformations and
requires an extension of the rewrite machinery specific for source-to-source
transformations. We clearly separate layout handling from rewriting, which
enables us to use the existing compiler infrastructure for refactoring transfor-
mations.

Eclipse The Java Developer Toolkit (JDT) used in Eclipse offers an infrastruc-
ture for implementing refactorings (Eclipse documentation, 2010). Refactoring
transformations are specified with replace, insert and remove operations on
AST terms, which are used afterwards to calculate the corresponding textual
changes. Common to our approach, the replace, insert and remove oper-
ations on terms are translated to textual modifications of the source code.
However, instead of being restricted to the replace, delete and insert opera-
tions on terms, we compute the primitive AST modifications by applying a
tree differencing algorithm to the transformed abstract syntax tree. As a re-
sult, the transformation and text reconstruction are clearly separated. Thanks
to this separation of concerns, we can specify refactorings in a specialized
transformation language (Stratego).

Chapter 6. Source Code Reconstruction 147



The master thesis (Stocker, 2010) describes the refactoring framework im-
plemented for the Scala IDE, also paying attention to the problem of text
reconstruction. As with our approach, the textual changes that follow from
the abstract transformation are reconstructed after the transformation. The
work does not mention how they trace back terms in the transformed AST to
terms in the original or desugared AST as we do with origin tracking.

Text patching The LS/2000 system (Dean et al., 2001; Malton et al., 2001) is a
design-recovery and transformation system, implemented in TXL. LS/2000 is
successfully applied for "year 2000" remediation of legacy COBOL, PL/I, and
RPG applications. The system implements an approach based on automated
text patching. The differences between the original code and the transformed
code are calculated with a standard differencing algorithm, operating on the
token stream. The deviating text regions are merged back into the original
text.

The token based differencing successfully captured changes that were rel-
atively small. For millennium bug renovations, typical changes were the local
insertion of a few lines of code. When the changes are large, or involve code
movement, standard differencing algorithms do not work well (Malton et al.,
2001). We implemented a tree differencing algorithm that reconstructs moved
code fragments by using origin tracking, furthermore, fragments with nested
changes are reconstructed by recursion on subtrees.

Lenses Foster et al. (2007) implement a generic framework for synchro-
nizing tree-structured data. Their approach to the view update problem is
based on compoundable bi-directional transformations, called lenses. In the
Get direction, the abstract view is created from the concrete view, project-
ing away some information; in the Putback direction, the modified abstract
view is mapped to a concrete representation, restoring the projected elements
from the original concrete representation. The lens laws, which resemble our
preservation and correctness criteria, impose some constraints on the behavior
of the lens. Given a certain Get function, in general, many different Putback

functions can be defined. The real problem is to define a Putback function
that does what is required for a given situation. We define ConstructTexts
as a Putback function for parsing, and prove that it fulfills the correctness
and (maximal) layout preservation criteria.

Our approach is based on origin tracking as a mechanism to relate ab-
stract terms with their corresponding concrete representation. Origin tracking
makes it possible to locate moved subtrees in the original text. Furthermore,
lists are compared using the origin relation to match corresponding elements.
In contrast, lenses use the concrete representation as an input parameter to
the Putback function. As a consequence, details are lost about how subterms
relate to text fragments. This seems especially problematic in case terms have
nested changes, or when they are moved to another location in the tree. We
defined heuristic rules for comment binding and layout adjustment functions
to correct the spacing surrounding the changed parts. Layout adjustment and
comment migration might be hard to express in the lenses framework. Foster

148



et al. (2007) mention the expressiveness of their approach as an open question.
Layout preservation seems a challenging problem in this respect.

6.12 C O N C L U S I O N

Refactorings are source-to-source transformations that help programmers to
improve the structure of their code. With the popularity and ubiquity of
IDEs for mainstream general purpose languages, software developers come
to expect rich editor support including refactorings also for domain-specific
software languages. Since the effort that can be spent on IDEs for DSLs is often
significantly smaller than the effort that is spent on IDEs for languages such
as Java, this requires tool support for the high-level definition of refactorings
for new (domain-specific) software languages.

An important requirement for the acceptability of refactorings for daily use
is their faithful preservation of the layout of programs. Precisely this aspect,
as trivial as it often seems compared to the actual refactoring transformation,
has confounded meta-tool developers. The result is typically that the defini-
tions of refactorings are contaminated with code for layout preservation. The
lack of a generic solution for layout preservation has held back widespread
development of refactoring tools for domain-specific languages.

In this chapter, we have presented an approach to layout preservation that
separates the layout preservation concern from the structural definition of
refactorings. The approach allows the refactoring developer to concentrate on
the structural transformation, leaving source code reconstruction to a generic
algorithm. The algorithm computes text patches based on the differences be-
tween the old and the new abstract syntax tree, relying on origin tracking to
identify the origins of subtrees. The algorithm applies layout conventions for
indentation and blank lines from the old code to newly created pieces of code;
heuristic rules are defined for comment migration. The algorithm also sup-
ports preservation of syntactic sugar, in case the refactoring transformation is
preceded by a desugaring stage that maps sugared constructs in an enriched
syntax into equivalent constructs in the more restricted core syntax.

Chapter 6. Source Code Reconstruction 149



150



7
Name Binding Preservation

A B S T R A C T

The implementation of refactorings for new languages requires considerable
effort for language developers. Part of this effort is in name binding preser-
vation, i.e., making sure that variable names bind to the same declaration
before and after the transformation. We show how this effort can be reduced
by using language parametric techniques. We present a language-parametric
technique to detect name binding violations, and, as a refinement, a technique
to restore name bindings by introducing qualified names. Both techniques
are implemented within the paradigm of strategic term rewriting. The tech-
niques offer an efficient and reliable solution by reusing the name analysis
implemented in the compiler front end; the semantics of the language is im-
plemented only once, with the compiler being the single source of truth. We
evaluate our approach by applying the preservation techniques in Rename
refactorings implemented for two domain-specific languages and a subset of
the Java language.

7.1 I N T R O D U C T I O N

Full-featured integrated development environments (IDEs) are essential for
developers to be productive in a language. A key factor in the success of these
IDEs is the provision of services specifically tailored to the language The im-
plementation of language-specific editor services requires considerable effort
from the language engineer, involving syntactic and semantic analyses simi-
lar to those found in the compiler front end. For many current programming
languages, IDEs have been developed separately from a compiler or inter-
preter of the language. A problem with separate development of IDEs and
language compilers/interpreters is that there tends to be significant overlap
between them. For a complex IDE that supports deeply integrated semantic
editor services, either an existing compiler should be integrated into the IDE,
or the language syntax and semantics should be re-implemented leading to
undesirable redundancy.

Language workbenches (Fowler, 2005, 2011) address this problem by en-
abling developers to create new languages together with high-quality IDE
support. Language workbenches make language engineering more efficient
by a) providing an integrated environment for the development of both lan-
guages and their IDEs and b) providing meta-languages and frameworks for
performing language engineering tasks, and providing IDE support for these
meta-tools. Some prominent examples of language workbenches for textual
editors include: EMFText (Heidenreich et al., 2009), TCS (Jouault et al., 2006),

151



Xtext (Efftinge and Voelter, 2006), MontiCore (Krahn et al., 2008) and Spoofax
(Kats et al., 2010a). We are extending Spoofax with a framework for the im-
plementation of refactorings.

Refactorings are transformations that improve the internal structure of a
program while preserving its behavior. Users rely on refactoring tools to
warn them against possible changes in the behavior of the program. The
implementation of behavior preservation conditions is challenging, requiring
deep analysis of the semantic structure of the program. Even with specialized
compiler techniques such as rewriting languages and attribute grammars, im-
plementing conditions for behavior preservation is a tough task that requires
global understanding of the semantics of the language for which the refactor-
ing is developed.

Traditionally, conditions for behavior preservation are implemented as pre-
conditions that are checked before the transformation (Opdyke, 1992; Roberts,
1999). This approach has some clear weaknesses. It is extremely difficult to
derive a correct set of preconditions that guarantees behavior preservation
without excluding refactorings that in fact could be carried out. Moreover, ad-
ditional preconditions have to be implemented in case the language evolves.
Finally, preconditions are not easily shared among different refactorings, nor
do they transfer to different languages. Current refactoring implementations
rarely guarantee behavior preservation. Rather, refactorings are tried on ex-
amples and validated ‘in the field’, which may result in subtle errors triggered
by corner cases not foreseen by the developer. Even mature refactoring frame-
works used in current IDEs contain bugs as a result of insufficient precondi-
tions (Schäfer et al., 2008; Soares, 2010).

The limitations of preconditions are addressed in (Ekman et al., 2008). The
authors propose an invariant-based approach which is implemented in Jast-
Add (Ekman and Hedin, 2007), an attribute grammar system that extends Java
with support for circular reference attribute grammars (RAGs) (Hedin, 2000).
Invariants for name binding, control-flow and data-flow are implemented as
complementary analysis functions that are checked after the transformation.
Compared to refactoring frameworks used in existing IDEs, Java refactorings
implemented in JastAdd proved to be more reliable and required less effort
in terms of lines of code. The success of this approach can be explained by
the fact that, compared to preconditions, the specification of the invariants
more closely follows compiler analysis that define the static semantics of a
language.

Attribute grammars allow for a high-level declarative specification of se-
mantic analysis, however, they offer no specific language features to declar-
atively express AST transformations. An alternative approach is to use term
rewriting for implementing refactorings. Term rewriting is used in systems
such as Maude (Garrido and Meseguer, 2006), Tom (Balland et al., 2007), Stra-
funski (Lämmel, 2002) and Stratego (Bravenboer et al., 2008). Term rewriting
makes it easy to describe syntax tree transformations, but is less declarative
with respect to semantic analysis. Rewriting systems typically view syntax
trees as terms without a concept of term identity; AST terms are character-

152



ized only by their subtrees, and not by their position within the whole tree.
Reference attributes crucially rely on term identity, and hence have no direct
equivalent in a term-based representation of syntax trees.

In this chapter we implement an invariant-based approach to behavior
preservation within the paradigm of term rewriting. The chapter focuses on
preservation of name bindings. All refactorings that introduce new names
into a scope have to guard against accidental changes of existing name bind-
ings, which change the semantic behavior of the program. We implement a
preservation criterion for statically known name bindings that is generic ap-
plicable to different languages and different refactorings. The preservation
criterion takes as arguments a language-specific name analysis and a refactor-
ing specific transformation.

A limitation of the preservation criterion is that it rejects refactorings that
could in fact be carried out after applying some small modifications. Many
languages offer the possibility to access variables defined in a namespace via
qualified names. A notable example is Java; a field that is shadowed by a
local variable can still be accessed using a qualifier such as this or super.
As a refinement to the preservation criterion, we show that name analysis can
be implemented as a reusable traversal strategy that can be applied to restore
name bindings by creating qualified names, thereby enabling refactorings that
would otherwise be rejected.

The described techniques for name binding preservation and name bind-
ing restoring form the main contribution of the chapter. Both techniques use
strategic term rewriting and are implemented in the Stratego rewriting lan-
guage (Bravenboer et al., 2008). By reusing the name analysis implemented in
the compiler front end, the techniques adhere to the “Single Source of Truth”
also called “Don’t Repeat Yourself” principle (Hunt and Thomas, 2000), with
the compiler being the single authoritative representation of semantic behav-
ior.

To see how our approach works in practice, we used the techniques to im-
plement rename refactorings for Stratego (Bravenboer et al., 2008), Mobl (He-
mel and Visser, 2011), and a subset of the Java language. Our experience
shows that the effort it takes to implement name binding preservation is sig-
nificantly reduced by using language-parametric techniques. Furthermore,
manual and automated testing demonstrated that the implemented rename
refactorings indeed preserve the original binding structure.

7.2 T H E S T R AT E G O T R A N S F O R M AT I O N L A N G U A G E

This section gives a short introduction into the Stratego transformation lan-
guage, which is used to implement the techniques described in this chapter.
A more complete overview of the Stratego language is given in (Visser, 2004).

Stratego (Visser et al., 1998; Visser, 2004) is a language for the specification
of program transformations and analyses, based on the paradigm of term
rewriting with programmable traversal strategies. Stratego uses conditional

Chapter 7. Name Binding Preservation 153



rewrite rules to define basic transformations on terms. These rules adhere to
the following schema:

r : p1 → p2 where c

The rule r applies to a term when its left-hand side p1 matches the term, and
the (optional) condition c succeeds. The result is the instantiation of p2 with
the variable bindings found during pattern matching in p1 and c. The rule is
said to fail when either the subject term does not match the left-hand side or
when the condition fails.

Rules are basic strategies that perform the transformation specified by the
rule or fail. Strategies can be parameterized with strategy and term argu-
ments, e.g., r(s1 ... sm|t1 ... tn). Furthermore, strategies can be over-
loaded. That is, when invoking a rule with a given signature, all rules with
that signature are tried in some unspecified order until one succeeds.

Strategies can be combined into more complex strategies by means of strat-
egy operators. Sequential operators combine strategies that apply to the root
of a term, examples are: identity (id), failure (fail), sequential composi-
tion (s1 ; s2), choice (s1 + s2), guarded choice (s1 < s2 + s3), negation
(not(s)), and recursive closure (rec x(s)). Term traversal operators, e.g.,
all(s), one(s), and some(s), express strategy application to the direct sub-
terms of a term.

Combining these operators allows the generic definition of a wide range of
term traversals. For example, bottomup(s) = all(bottomup(s)); s gener-
ically defines a post-order traversal. The Stratego standard library provides a
collection of such strategies for general use.

7.3 M O T I VAT I O N

Refactorings are behavior preserving source-to-source transformations with
the objective of improving the design of existing code (Fowler, 2002). Al-
though it is possible to refactor manually, tool support reduces evolution
costs by automating error-prone and tedious tasks. In particular, behavior
preservation conditions are automatically checked; in case the transformation
changes the semantic behavior of the program, the refactoring is rejected and
the problem is reported to the user.

Name bindings associate identifiers with program entities such as vari-
ables, methods and types. Name bindings form a semantic concern that
should be preserved by refactorings. Intuitively, all name accesses in a pro-
gram should bind to the same declarations before and after the transforma-
tion. That is, declarations should not accidentally become shadowed by dec-
larations introduced by the refactoring transformation. The problem of main-
taining existing name bindings occurs in many refactorings, with renaming
being the obvious example. Automatically renaming an identifier requires
binding information to determine which names must be renamed. Further-
more, behavior preservation requires that conflicting and accidentally shad-
owed declarations are detected.

154



class Person {
int age;
void setAge(int s)
{

age = s;
}

}

class Person {
int age;
void setAge(int age)
{
age = age;

}
}

class Person {
int age;
void setAge(int age)
{
this.age = age;

}
}

Figure 7.1 Renaming s to age, incorrectly and correctly applied to code fragment.

Shadowing occurs when the same identifier is used for different entities in
nested lexical scopes. Shadowing poses a challenge for binding preservation
in refactorings, Figure 7.1 illustrates variable shadowing. The age variable
in the body of the setAge method refers to the age field of the surrounding
class. After renaming s to age (Figure 7.1, mid), the age field is shadowed
by the method parameter age, declared in an inner scope. As a consequence,
the binding of the age variable has changed. As a minimal requirement,
refactoring tools are expected to detect name binding violations to guarantee
the save application of the refactoring.

A namespace is a scope that groups related identifiers, and allows the dis-
ambiguation of homonym identifiers residing in different namespaces. In
many programming languages, identifiers that appear in namespaces have a
short local name and a long qualified name. By using the qualified name, an
identifier can still be accessed in an inner scope, even though a program entity
with the same name is declared within that inner scope. Figure 7.1 (right) pro-
vides an example. By adding a name qualifier (this) to the age variable, the
original name bindings are restored so that the refactoring can still be carried
out. Thus, the policy to reject all refactorings with name binding violations is
in fact too restrictive, preventing refactorings that only require a small modifi-
cation to be applied correctly. Therefore, a wished feature for refactoring tools
is that they are able to restore violated name bindings by creating qualified
names.

Name binding analysis is implemented by the compiler of a language, in-
volving complex semantic rules for namespaces, scoping and visibility. Name
binding preservation conditions in refactoring frameworks must implement
the same semantic rules. This can hardly be guaranteed with an ad hoc,
precondition based approach. Indeed, existing refactoring implementations
based on preconditions contain bugs because of (new) language features that
are not (yet) supported (Schäfer et al., 2008). A more reliable solution can be
realized when the criterion for name binding preservation is directly based
on the name analysis implemented in the compiler. This way, the seman-
tics assumed by the refactoring tool is guaranteed to be consistent with the
semantics implemented in the compiler, even when the language evolves.

We implement a name binding preservation criterion that reuses the ex-
isting name analysis defined in the compiler front end. As a refinement, we
present an approach for restoring name bindings by introducing qualified
names. The name binding preservation criterion is discussed in Section 7.4,

Chapter 7. Name Binding Preservation 155



ClassDec(
"Person"{"n0"}

, [ FieldDec("int", "age"{"n1"})
, MethodDec(

Void(), "setAge"{"n2"}, [Param("int", "age"{"n3"})]
, [Assign(QA(This(), "age"{"n1"}), Var("age"{"n3"}))]

)])

Figure 7.2 Name annotations make bindings explicit. The reference names ‘n1’
and ‘n3’ distinguish the parameter ‘age’ from the field ‘age’.

int age{n1};
void setAge(

int s{n3}){
age{n1} = s{n3};

}

int age{o1};
void setAge(

int age{o3}){
age{o3} = age{o3};

}

int age{p1};
void setAge(

int age{p3}){
this.age{p1} = age{p3};

}

Figure 7.3 Name binding pattern [n1, n3, n1, n3] in the left fragment, has
binding violations in the mid fragment [o1, o3, o3, o3], and is preserved in the
right fragment [p1, p3, p1, p3].

while Section 7.5 discusses restoration of name bindings. Section 7.6 reports
on our experience with applying these techniques to different languages.

7.4 P R E S E RV I N G N A M E B I N D I N G S

Refactorings must preserve the name binding structure of a program, implic-
itly defined by the name analysis implemented in the compiler. To make the
binding structure explicit, we use the technique of explicit renaming imple-
mented in Stratego by means of term annotations. The result of the name
analysis is an abstract syntax tree in which all identifiers are annotated with
a globally unique reference name. That is, two identifiers are annotated with
the same reference name if and only if they bind to the same declaration.
Figure 7.2 shows the analyzed abstract syntax tree of the Java fragment of
Figure 7.1 (right) in the ATerm format (van den Brand et al., 2000). The names
in the AST are annotated with unique reference names. The reference names
‘n1’ and ‘n3’ distinguish the parameter ‘age’ from the field ‘age’. This infor-
mation can be used for example in a rename refactoring to determine which
identifiers must be renamed.

We use name annotations to implement name binding preservation as a
post condition on the transformed tree. The preservation condition compares
the original annotations, which are preserved during the transformation and
represent the original bindings, with new annotations, obtained by reanalyz-
ing the transformed tree. Preservation is realized if and only if the original
name annotations are equal to the new name annotations, modulo renaming.
The criterion does not make any assumptions about the reference names that
are generated for the declarations, except that they are unique. In particular,
existing reference names may change after reanalysis.

Figure 7.3 illustrates the preservation condition for our running example.

156



class A { void foo{n1}(){ } }

class B extends A { }

class C extends B { void foo{n2}(){ }}

class D extends B { void bar(){ foo{n1}(); }}

Figure 7.4 Pull-Up: before transformation.

class A { void foo{n1}(){ } }

class B extends A { void foo{n2}(){ } }

class C extends B { }

class D extends B { void bar(){ foo{n1}(); }}

Figure 7.5 Pull-Up: after transformation.

class A { void foo{n8}(){ } }

class B extends A { void foo{n9}(){ } }

class C extends B { }

class D extends B { void bar(){ foo{n9}(); }}

Figure 7.6 Pull-Up: after reanalysis.

For convenience, the reference annotations are placed on the concrete syntax
instead of the abstract syntax, furthermore, only the relevant name annota-
tions are shown. The left and right code fragments are equivalent modulo re-
naming, that is, the name annotations follow the same pattern ([a,b,a,b]). In
contrast, the name annotations in the mid fragment follow a different pattern
([a,b,b,b]), which means that the fragment has a different binding structure.

The preservation criterion also applies to refactorings that change the AST
structure and/or introduce new elements, as long as the name annotations in
the transformed AST represent the intended binding structure. This condition
can easily be fulfilled. The name annotations of elements in the original AST
are preserved during the transformation and express the intended binding of
these elements in the transformed AST; new elements can be inserted together
with a name annotation that denotes their intended binding. For example, to
express the intended binding structure for the Extract method refactoring, a
new name annotation must be placed on the extracted method definition as
well as on its inserted call site.

Figure 7.4 illustrates the preservation criterion applied to a transformation
that changes the structure of the AST. The figure shows an incorrect Pull-Up
method refactoring which moves a method defined in a subclass to its su-
perclass. In the given example, the Pull-Up method transformation violates
existing name bindings; the foo method inserted in the B class shadows the
foo method defined in its superclass A, which affects the method binding in

Chapter 7. Name Binding Preservation 157



apply-refactoring(analyze, transform):
ast → (ast-reanalyzed, violation-errors)
where

ast-transformed := <analyze; transform> ast;
ast-reanalyzed := <analyze> ast-transformed;
violation-errors := <namebinding-violation-errors>

(ast-transformed, ast-reanalyzed)

namebinding-violation-errors:
(ast-transformed, ast-reanalyzed) → violation-errors
where

old-nb := <collect-all(is-name)> ast-transformed;
new-nb := <collect-all(is-name)> ast-reanalyzed;
violations := <zip; (binding-violations <+ ?[])> (old-nb, new-nb)
violation-errors := <map(to-namebinding-error)> violations

binding-violations:
[(x,y)|tl] → <conc> (hd-violations, <binding-violations <+ ?[]> tl’)
where

hd-violations := <filter(is-binding-violation(|x,y))> tl;
tl’ := <filter(not(?(_,y) <+ ?(x,_)))> tl

is-binding-violation(|x,y) =
(?(_,y) <+ ?(x,_)); not(?(x,y))

is-name = is-string; has-anno

to-namebinding-error:
(t, _) → (t, $[Name collision with name ’[t]’])

Figure 7.7 Collecting binding violation errors by comparing name annotationsa.

aIn the Stratego language, the syntax <r> is used for rule application; s1; s2 represents the
sequential operator, first apply s1, then apply s2 to the resulting term; s1 <+ s2 is Stratego syntax
for guarded left choice, first apply s1 and, only if it fails, apply s2 to the original term.

D, a subclass of B. The binding violation is detected by comparing the annota-
tions that represent the original bindings collected from the transformed tree
(Figure 7.5), with the annotations that result after reanalysis of this tree (Fig-
ure 7.6). A binding violation is detected because the original names cannot
be mapped uniquely to the new names, that is: [n1, n2, n1] and [p1, p2,

p2] give a conflict for n1 that maps to p1 at the first list position and to p2 at
the third position in the list.

Figure 7.7 shows the Stratego implementation of the name binding preser-
vation technique. The rewrite rule apply-refactoring implements the name
binding violation detection, taking a language-specific name analysis strategy
and a refactoring specific transformation rule as arguments. The refactoring
application returns the tree that results after applying the transformation, plus
a (possible empty) list of name binding violation errors. The name binding
violations are collected by comparing the name annotations that express the
original bindings (old-nb) with the name annotations that express the actual,
reanalyzed bindings (new-nb), in the order in which they occur in the trans-
formed tree. All name tuples that break the implicit mapping between old and
new names are returned as binding violations by the binding-violations

rule.
Names are collected by applying the is-name rule, which succeeds only

158



class A { int a; }
class B extends A { int b; }
class C extends B {

int c;
class D extends E {

int d; int x;
void foo() {

int i;
i = <name> ; }}}

class E { int e; int x;}

Figure 7.8 Name lookup in Java proceeds in an outward-upward motion.

for terms that are annotated strings. To improve performance, the is-name

pattern can be implemented refactoring specific to enforce that only the en-
dangered names are checked. In that case, the is-name rule must be given
as an additional parameter to the apply-refactoring rule and passed to the
namebinding-violation-errors rule. For convenience, we did not include
this optimization possibility in Figure 7.7.

7.5 R E S T O R I N G N A M E B I N D I N G S

In the previous section we implemented a generic name binding preservation
criterion that is parameterized with an existing name analysis strategy. In
this section we propose an alternate approach. Instead of passing the name
analysis as a parameter to the preservation criterion, we pass the preservation
criterion as a parameter to the name analysis. The advantage of this approach
is that we can extend the preservation criterion with a repair rule that cre-
ates qualified names for accesses to variable declarations that have become
shadowed.

The remainder of this section is organized as follows. Section 7.5.1 illus-
trates name lookup for a subset of the Java language. Section 7.5.2 discusses
how name analysis can be implemented as a reusable traversal strategy; which
can be applied to a) resolve name bindings for variable accesses (Section 7.5.3),
b) detect name binding violations (Section 7.5.4), and c) restore name bindings
by creating qualified names (Section 7.5.5).

7.5.1 Name Lookup in Java

As a leading example, we implement our approach for a subset of Java that
models some essential features of the Java language with respect to resolving
name bindings. Supported features are: class inheritance and class nesting,
local variable, field and method declarations, and variable access by simple or
qualified names. Most other Java features are excluded.

Figure 7.8 shows a small Java fragment which features class inheritance,
class nesting and variable declarations. To illustrate name lookup in Java,
we show how name bindings are resolved for variable accesses at the <name>

location. The binding is looked up in the set of visible declarations, starting
at the most local scope and proceeding in an “outwards-upwards” motion. In

Chapter 7. Name Binding Preservation 159



//Class body declarations
Reference: (A{c0}, Vars(), a) → a{v0}
Reference: (B{c1}, Vars(), b) → b{v1}
Reference: (C{c2}, Vars(), c) → c{v2}
Reference: (D{c3}, Vars(), d) → d{v3}
Reference: (D{c3}, Vars(), x) → x{v4}
Reference: (D{c3}, Methods(), foo) → foo{m0}
Reference: (E{c4}, Vars(), e) → e{v5}
Reference: (E{c4}, Vars(), x) → x{v6}
Reference: (F{c5}, Vars(), f) → f{v7}

//Local scope declarations
Reference: (Local(),Vars(),i) → i{v8}

//Class inheritance relations
Super: B{c1} → A{c0}
Super: C{c2} → B{c1}
Super: D{c3} → E{c4}

//Class nesting relations
Outer: D{c3} → C{c2}

//Enclosing Class
CurrentClass: _ → D{c3}

Figure 7.9 Dynamic rules that store context sensitive information for the <name>

location of the fragment in Figure 7.8.

the given example, the declared variables are looked up in the following order:
local declarations (i), fields declared in the enclosing class (d and x), fields
declared in the super class (e and x), the outer class (c), and the super classes
of the outer class (b and a). The field x in the super class E is not accessible
by its simple name x, since it is shadowed by the field x in the enclosing class
D. However, the shadowed field can still be accessed by its qualified name,
super.x. Qualifiers force the lookup to start at a specific namespace, thereby
skipping over the names declared in nested or inner scopes.

7.5.2 Name Analysis

Name lookup requires context sensitive information such as the set of visible
declarations, nesting and inheritance relations between namespaces, and type
information. Based on the paradigm of strategic rewriting, name analysis
is implemented in Stratego as a custom traversal strategy that takes care of
propagating the required contextual information to the access terms. That is,
the name analysis creates unique reference names at declaration sites which
are stored as contextual information. This information is later used to look
up the reference name at access sites. Since we treat name analysis as a black
box, we do not provide implementation details. Example implementations
of name analysis in Stratego are given in (Hemel et al., 2008) and (Kats and
Visser, 2010).

The propagated contextual information is stored as (scoped) dynamic re-
write rules (Bravenboer et al., 2006b), the Stratego equivalent of symbol tables.
Unlike standard rewrite rules, dynamic rules are created at run-time, and
propagate information available at their creation contexts. As an example,

160



annotate-names:
ast → <analyze-names(annotate-name)> ast

annotate-name:
Var(name) → Var(name{ref-name})
where

ref-name := <lookup> (Local(), name{})

annotate-name:
QA(qualifier, name) → QA(qualifier, name{ref-name})
where

ref-name := <lookup> (<get-type> qualifier, name{})

get-type : This() → <CurrentClass> // this
get-type : Super() → <CurrentClass; Super> // super
get-type : QThis(ctype) → ctype // C.this
get-type : QSuper(ctype) → <Super> ctype // C.super
get-type : CastRef(ctype, t) → ctype // ((A)t)

lookup:
(ns, name) → ref-name
where

<while-not(
while-not(

// looks up reference for name
// in namespace (Local() or classname)
ref-name := <Reference> (<id>, name),
ns-up

),
ns-out

)> ns

// lookup rules for the name of the
// super class, current class and outer class
ns-up : cl → <Super> cl
ns-out: Local() → <CurrentClass>
ns-out: cl → <Outer> cl

Figure 7.10 annotate-names sets reference annotations at variable accesses.
The reference is looked up in an outward-upward motion.

Figure 7.9 shows dynamic rules that contain the required contextual informa-
tion for the <name> location in the fragment of Figure 7.8.

7.5.3 Resolving Name References

As a complement of the name analysis traversal, a name lookup rule is im-
plemented in the compiler front end. The name lookup rule is applied at the
access terms to calculate the reference name from the propagated contextual
information. Adhering to the Stratego paradigm of reusable traversal strate-
gies, we assume that the lookup rule is passed as a parameter to the name
analysis traversal.

Figure 7.10 shows the Stratego code for name lookup in our Java sublan-
guage. The given annotate-name rule calls the lookup rule to set a looked up
reference name as an annotation to the access term. Lookup starts respectively
at the local namespace for simple names (Var(name)), or at the namespace
associated to the qualifier for qualified names (QA(qualifier, name)). The
lookup logic is implemented in the lookup rule; which progresses outwards

Chapter 7. Name Binding Preservation 161



collect-binding-violations:
ast → violations
where

<analyse-names(store-binding-violation)> ast;
violations := <bagof-BindingViolation>

store-binding-violation:
access → access
where

<is-binding-violation> access;
rules(BindingViolation:+ access)

is-binding-violation:
access → access
where

new-annotated-access := <annotate-name> access;
<not(equal)> (access, new-annotated-access)

Figure 7.11 Binding violations are collected by comparing the old- and newly ana-
lyzed binding annotations during a name analysis traversal.

lexically (ns-out), taking a detour upwards the inheritance hierarchy (ns-up).
When the processed namespace contains a declaration with the given name,
the Reference rule applies successfully and the reference name is returned.
Otherwise, name lookup proceeds with the next, more global namespace set
by ns-up or ns-out.

7.5.4 Checking Name Bindings

Name analysis makes the binding structure of an abstract syntax tree explicit
in the form of name annotations at declaration and access sites. The annota-
tions are preserved during transformation and represent the original binding
structure in the transformed tree. Name binding preservation requires that
the original binding structure corresponds to the actual binding structure of
this tree. In Section 7.4 we showed how name binding violations can be de-
tected after reanalysis of the transformed tree by constructing a mapping be-
tween original and actual binding annotations. As an alternative, this section
shows how name binding violations can be detected during reanalysis of the
transformed tree.

Figure 7.11, collect-binding-violations, implements a strategy that
collects binding violations by comparing the name bindings that hold before
and after the transformation. The bindings that held before the transforma-
tion are stored in the tree as annotations, the bindings that hold after the
transformation are looked up during the re-applied name analysis. To allow
the comparison of old and new bindings, we assume that declarations keep
their original reference name when revisited. The comparison of old and new
bindings is implemented by the is-binding-violation rule (Figure 7.11),
which succeeds if original and newly looked up reference annotations are dif-
ferent. In case a binding violation is detected, a binding violation error is
stored (BindingViolation) which will later be reported to the user.

162



restore-name-bindings:
ast → <analyze-names(restore-binding)> ast

restore-binding:
access → qualified-access
where

qualified-access := <
create-qualified-access <+
rules(BindingViolation:+ access)

> access

create-qualified-access:
access → qualified-access
where

qualified-access :=
<while-not(

while-not(
where(not(is-binding-violation)),
cast-up

),
cast-out

)> access

//cast-up and cast-out qualified names
cast-up: QA(qualifier, name) →

QA(<cast-up-qualifier> qualifier, name)
cast-out: QA(qualifier, name) →

QA(<cast-out-qualifier> qualifier, name)
cast-out: Var(name) → QA(This(), name)

//cast-up and cast-out qualifiers
cast-up-qualifier: This() → Super()
cast-up-qualifier:

Super() → CastRef(<get-type; ns-up> Super(), This())
cast-up-qualifier:

CastRef(c, v) → CastRef(<ns-up> c, v)
cast-up-qualifier: QThis(c) → QSuper(c)
cast-up-qualifier:

qs@QSuper(t) → CastRef(<get-type; ns-up>qs, QThis(t))
cast-out-qualifier:

This() → QThis(<get-type; ns-out> This())
cast-out-qualifier:

QThis(t) → QThis(<get-type; ns-out> t)

Figure 7.12 Restoring violated name bindings by creating qualified names.

7.5.5 Restoring Name Bindings by Creating Qualified Names

A name binding violation occurs when the original reference of an access
term is shadowed by a new name declared in an inner scope. The name
binding can be restored by introducing a qualified name that forces the lookup
in a more general namespace. The construction of an appropriate qualified
name requires contextual information which is propagated during the name
analysis traversal. As an example, we discuss name binding repair for the
Java sublanguage.

The code fragment in Figure 7.12 implements name binding repair for the
Java sublanguage. The create-qualified-access rule restores the name
bindings of violated access terms. The rule repeatedly creates qualified names
that enforce lookup in a more general namespace, until a qualified name is
constructed that preserves the original binding. The preservation is checked

Chapter 7. Name Binding Preservation 163



by applying the is-binding-violation rule discussed before. As with the
name lookup strategy (Figure 7.10), the “outwards upwards” motion is fol-
lowed. The cast-up and cast-out rules implement the construction of a
new qualified name that targets the next, more general namespace.

7.6 E VA L U AT I O N

We evaluated the name binding preservation techniques by implementing re-
name refactorings for different languages, namely Mobl (Hemel and Visser,
2011), Stratego (Visser, 2004) and the subset of Java discussed in this chap-
ter. In the case of Mobl and Stratego, we applied the preservation criterion of
Section 7.4, reusing the name analysis defined in the existing compilers, (He-
mel, 2010) and (Kats, 2008) respectively. For the Java subset we implemented
the compiler from scratch. We applied the preservation technique discussed
in Section 7.5.5 which offers support for restoring name bindings by creat-
ing qualified names. In this section we report on our experience, focussing
on coverage (Section 7.6.1), correctness (Section 7.6.2) and performance (Sec-
tion 7.6.3).

7.6.1 Coverage

To see how well our techniques cover different language features, we imple-
mented rename refactorings for the Java, Mobl and Stratego compilers. The
implementations show that the preservation condition is applicable to lan-
guages with statically known name bindings. The technique is not applicable
to dynamic languages for which the name bindings are not statically known.
To realize name binding preservation for Java we had to cope with method
overriding and hence dynamic dispatch. Changes introduced in the method
names of sub types may affect dynamic name bindings without changing
static name bindings. We implemented an additional semantic condition that
checks if a refactoring changes the overriding structure of the program in
which case a warning is reported.

7.6.2 Correctness

To evaluate the correctness of our approach, we manually tested rename refac-
torings on existing projects in Mobl and Stratego. In addition, we imple-
mented test suites that cover critical cases for Mobl, Stratego and the Java
sublanguage. All test inputs were statically correct programs. The test results
confirm the correctness of the preservation criterion. Finally, we implemented
an automated test strategy that uses an inverse oracle (Daniel et al., 2007) to
test whether the name bindings are preserved. First, a list of potential harmful
names is created by collecting all names that appear in the program. Then, re-
name refactorings are applied to all names in the program with the new name
randomly chosen from the set of potential harmful names. The renaming is
only applied in case no binding violations are detected. As a last step, re-

164



name refactorings are applied that revert the names of all declarations to their
original name. The inverse oracle states that the resulting tree is equal to the
original tree modulo annotations. We successfully applied this automated test
strategy to evaluate the correctness of the preservation criterion of Section 7.4
on the Stratego compiler front end written in Stratego. During the application
of the test strategy, 484 renamings were applied, while 196 renamings were
rejected because of binding violations.

7.6.3 Performance

The final important question to evaluate is if the preservation technique is
practical with respect to performance. The overall performance of the preser-
vation criterion depends on the performance of the following steps; first the
possible affected ASTs before the refactoring are analyzed, then the same ASTs
after the refactoring are analyzed, next the binding annotations of the endan-
gered names are collected, and finally the binding patterns of the collected
annotations are compared. Name analysis is the most expensive step since it
requires a multi-stage traversal over the relevant ASTs. The performance of
name analysis is discussed in (Konat, 2012).

To experiment with the performance, we applied a number of renamings
on the source code of the Mobl compiler, which consists of about 8000 lines of
Stratego code. The response times for individual refactorings largely depend
on the number and size of the ASTs that are possibly affected, i.e. ASTs that
contain terms equal to either the selected reference name or to the new name
provided by the user. We selected the relevant ASTs by inspecting cached
ASTs. Unfortunately, the cached ASTs could not be used for the refactoring
since they missed the origin information required for the source code recon-
struction algorithm discussed in Chapter 6. We therefore had to reparse and
reanalyze the ASTs before applying the refactoring transformation. Still, our
experience showed that the approach scales to this size of projects. We did
not yet do performance tests on larger programs.

7.7 R E L AT E D W O R K

This chapter presents two language-parametric techniques to name binding
preservation. The techniques are defined within the paradigm of strategic
term rewriting and are implemented in Stratego. First, we describe a preser-
vation criterion which reuses an existing name analysis defined in the com-
piler of the language to check whether the original binding structure still
holds for the program after transformation. Secondly, we show that name
analysis can be defined as a reusable traversal strategy that is applied to set
binding annotations, to check bindings and to restore bindings by creating
qualified names. These techniques offer an efficient and reliable solution; effi-
cient because the refactoring developer does not have to implement complex
conditions for name binding preservation, reliable because the semantics of

Chapter 7. Name Binding Preservation 165



the language is implemented only once, with the compiler being the single
source of truth.

Precondition approaches Behavior preservation of refactorings has been a pri-
mary concern in refactoring research. Opdyke (Opdyke, 1992) and Roberts
(Roberts, 1999) propose a precondition based approach. Preconditions specify
which conditions a program has to meet for the refactoring to be correct. Lim-
itations of a precondition based approach are pointed out in (Schäfer et al.,
2008). Complex scope nesting rules common in current languages make it
hard to define sufficient preconditions, furthermore, additional preconditions
have to be implemented in case the language evolves. A second limitation is
that preconditions are often too strong, preventing refactorings that could in
fact be carried out with only some small modifications. The mentioned paper
gives examples where widely used refactoring tools (Eclipse1, NetBeans2, and
IntelliJ3) admitted unsound rename refactorings where names did not bind to
the correct declarations after the renaming.

JastAdd JastAdd (Ekman and Hedin, 2007) implements an approach based
on reference attribute grammars (Hedin, 2000) that allow to express name
analysis in a concise and modular manner. The JastAdd approach to name
binding preservation (Schäfer et al., 2008) is based on the idea of inverted
lookup functions. The inverted lookup functions compute names for variable
accesses that bind to a given declaration. The access computation can be tai-
lored to create qualified names, allowing the refactoring to proceed where
otherwise a conflict would occur. After a refactoring transformation is per-
formed, all endangered accesses are updated so that they resolve to the same
declaration as before. If the updating fails, the refactoring is rejected and all
changes are undone. The inverted lookup functions closely follow the lookup
functions that specify the name analysis, as noticed in the paper, the size of
the access computation code compares to the size of the lookup code. The
correspondence between lookup and access computation helps to avoid many
pitfalls overseen in precondition based approaches and to adjust the access
computation when new language features are introduced.

JunGL JunGL (Verbaere et al., 2006) is a domain-specific language for im-
plementing refactorings. The refactorings manipulate a graph representation
of the program with user-defined edges for static semantic properties such as
name binding and control-flow. The semantic analyses required for refactor-
ings are expressed by path queries, which are also applied to create qualified
access names for field declarations that are shadowed by the renamed vari-
able.

EMFText EMFText (Heidenreich et al., 2009) is an Eclipse plugin that sup-
ports the definition of a syntax for textual languages described by an Ecore
metamodel. EMFText offers a generic refactoring framework based on role
models (Reimann et al., 2010). Transformation steps and generic precondi-

1http://www.http://eclipse.org/.
2http://www.http://netbeans.org/.
3http://www.jetbrains.com/idea/.

166

http://www.http://eclipse.org/
http://www.http://netbeans.org/
http://www.jetbrains.com/idea/


tions are defined generically in a meta-metamodel that contains structural
commonalities of object-oriented models (e.g., classes, methods, attributes
and parameters). Generic refactorings are adapted to a target meta model,
by defining a role mapping between the elements in the meta model and
the elements of the meta-meta model. The generic refactoring framework
provides extension points to add additional constraints that enforce behavior
preservation of the refactoring.

Formal specification Garrido and Meseguer (2006) present a formal approach
to the specification and mechanised verification of refactorings. Refactorings
are specified formally, with conditional rewrite rules in the form of executable
Maude equations. The refactoring specifications extend the equational seman-
tics of the language at hand. Starting from a formal specification of the Java
semantics, the paper provides detailed correctness proofs for behavior preser-
vation of two Java refactorings. According to the authors, the approach can
be used in conjunction with any language for which an equational semantics
has been provided. (Sultana and Thompson, 2008) describes the formal verifi-
cation of refactorings for untyped and typed lambda-calculi. The focus of this
paper is more on studying the method rather than aiming for a more complex
object language. The proposed method may be applied to study more realistic
languages.

Refactoring tools for functional languages Li and Thompson (2008) present
HaRe, a refactoring framework for Haskell. The HaRe framework makes use
of the static analysis provided by the Haskell compiler front end Programat-
ica (Hallgren et al., 2004). Transformations and analysis are implemented
using Strafunski (Lämmel and Visser, 2003), a library for functional strategic
programming in Haskell. Instead of an invariant-based approach, behavior
preservation is implemented with help of side conditions and possible com-
pensation strategies in case the conditions are violated.

Lammel (Lämmel, 2002) sketches the idea of a generic refactoring frame-
work that could be instantiated for a variety of languages. The implementa-
tion is based on functional strategic programming in Haskell (Lämmel and
Visser, 2003), and includes generic transformations and analysis functions as
building blocks. The generic functions are parameterized with the language-
specific ingredients. The intention of the paper is to investigate the idea of
a generic refactoring framework, but its applicability does not seem to go
beyond a proof of concept.

7.8 C O N C L U S I O N

The implementation of refactorings for new languages requires considerable
effort from language developers. We aim at reducing that effort by using
language-parametric techniques. An important requirement for the correct
application of refactorings is the preservation of static name bindings. In this
chapter we presented a technique to detect violated name bindings, and a
technique to restore violated name bindings by introducing qualified names.

Chapter 7. Name Binding Preservation 167



Both techniques reuse the name analysis defined in the compiler front end.
The techniques are implemented within the paradigm of strategic term rewrit-
ing. We successfully applied the techniques to implement Rename refactor-
ings for different languages, which resulted in reliable implementations that
required only a small effort in terms of lines of code.

168



8
Conclusion

In this dissertation we studied research problems in the area of language and
IDE engineering. In the first part of this dissertation we investigated generic
techniques to recover from syntax errors that occur during interactive editing.
In the second part we looked into language-parametric techniques for the
implementation of refactoring tools.

We proposed a novel error recovery approach for scannerless generalized
parsing. The approach combines a correcting technique based on automati-
cally derived recovery productions with a non-correcting technique that uses
indentation to select erroneous regions. To evaluate our recovery approach,
we implemented an automated evaluation technique that combines automated
generation of erroneous test inputs with automated assessment of the recov-
ered outputs. An extensive evaluation showed that our automated recovery
approach performs on par with the hand-crafted parser of the Eclipse JDT
in terms of recovery quality. Scannerless generalized parsing is essential for
parsing composite languages. Error recovery makes it possible to apply this
algorithm in an interactive environment. We implemented our recovery ap-
proach in the JSGLR parser generator that is used in the Spoofax language
workbench.

We investigated language-parametric techniques for the implementation of
refactoring support. First, we proposed a generic text reconstruction algo-
rithm that preserves the layout of the original source text. The algorithm
also preserves syntactic sugar in case the refactoring is applied to a desug-
ared abstract syntax tree. Secondly, we proposed a technique that reuses the
name analysis implemented in the compiler to detect name binding violations
caused by the refactoring transformation. We integrated these techniques in a
refactoring framework for the Spoofax language workbench.

In the remainder of this chapter we give a summary of the core contri-
butions of this dissertation, revisit the research questions posed in the intro-
ductory chapter, and provide recommendations for further research in the
domain of error recovery and refactoring techniques.

8.1 C O N T R I B U T I O N S

Each chapter in this thesis lists distinct contributions. We summarize the core
contributions below:

Parse error recovery

• A novel approach to error recovery for SGLR based on automated gram-
mar relaxation (Chapter 2).

169



• A secondary recovery technique that uses layout to select erroneous re-
gions. The selected regions can be repaired by a correcting technique or
discarded as a fall back recovery (Chapter 3).

• An automated technique to evaluate the quality of parse error recovery
techniques (Chapter 4).

• General techniques for the implementation of editor services that inter-
act with the parse error recovery technique (Chapter 5).

Refactoring techniques

• A text reconstruction algorithm that preserves the layout and syntactic
variation used in the original source text (Chapter 6).

• A language-parametric technique to guarantee name binding preserva-
tion for refactoring transformations. (Chapter 7).

8.2 R E S E A R C H Q U E S T I O N S R E V I S I T E D

Research Question 1

What techniques are needed to efficiently recover from syntax errors with scan-
nerless, generalized parsers?

A grammar is a finite set of production rules that describe how symbols can
be combined to form sentences in a language. A parser for a grammar applies
the production rules to construct a derivation for syntactically valid strings.
Strings that are syntactically invalid cannot be derived by applying produc-
tion rules.

In Chapter 2 we showed how grammars can be extended with additional
recover productions that are automatically derived from the grammar. These
productions take the form of insertion recovery rules which derive a missing
input symbol from the empty string, and deletion recovery rules, which discard
an erroneous substring by interpreting it as layout. The recover productions
make the original grammar more permissive of its inputs, allowing the parser
to construct a derivation for strings that are syntactically invalid with respect
to the original grammar.

The extended grammars are not only permissive, but also highly ambigu-
ous. Generalized parsers support ambiguous grammars by parsing multiple
interpretations in parallel. To cope with the added complexity of grammars
with recovery rules, we adapted the parser to apply the recovery rules in an
on-demand fashion, using a backtracking algorithm. Evaluation of the tech-
nique (Section 2.6) showed that permissive grammars can be efficiently parsed
and in most cases provide good or excellent recovery results according to the
quality criteria of Pennello and DeRemer (1978).

170



Research Question 2

What language generic techniques can be used to detect erroneous regions?

A parser that supports error recovery typically operates by consuming tokens
(or characters) until an unexpected token is found. At the point of detection
of an error, the recovery mechanism is activated. A major problem for error
recovery techniques is the difference between the point of detection and the
actual location of an error in the source program.

In Chapter 3 we introduced a technique that uses indentation to partition
files and identify erroneous regions. The region selection technique improves
the quality and performance of the permissive grammar technique. First,
by constraining the application of recovery rules to an erroneous region, sec-
ondly, by offering region discarding as a fall back recovery solution in case the
permissive grammar technique fails. The benefits of using region detection in
combination with the permissive grammar technique were demonstrated by
practical experiments (Section 3.5).

Research Question 3a

What kinds of syntax errors occur during interactive editing? How are syntax
errors typically distributed over a file?

To gain insight into the type and distribution of syntax errors that occur
during interactive editing, we performed a statistical analysis on collected
edit data for different languages. From this analysis we conclude that syntax
errors are typically clustered in one or two lines of code that cover the con-
struct being edited. We also provided a classification of syntax errors that are
common for interactive editing. The results are discussed in Section 4.2.

Research Question 3b

How to obtain test inputs for error recovery techniques that are representative
for practical editing? How to automate quality assessment of the recovered test
outputs?

To obtain representative test inputs for error recovery evaluation, we im-
plemented a mutation based fuzzing technique that seeds syntax errors at
random locations in an input file. The syntax errors are implemented by error
generation rules that specify how to construct an erroneous fragment from a
syntactically correct fragment. We predefined a set of error generation rules
that cover common syntax errors that are generic for different languages. The
set can be extended by compiler testers to test the recovery of syntax errors
that are specific for a given language. The error generation technique is dis-
cussed in Section 4.3.

To allow automated quality assessment, the error generation rules are com-
plemented with an oracle generation rule that specifies how to construct the
intended recovery for the erroneous fragment. The remaining problem is to
define a suitable metric between recovered programs and their oracle pro-
grams. We compared four differential oracle metrics based on their accuracy

Chapter 8. Conclusion 171



and on qualitative aspects such as applicability and comprehensibility. We
concluded that all evaluated metrics accurately reflect recovery quality. The
token based diff metric was considered the preferred metric, since it reflects
human intuition and is independent from a particular abstract interpretation
defined for a language. For practical reasons we chose tree-edit distance as
the metric that we used in our evaluations. Automated quality assessment of
recovery outputs is discussed in Section 4.4.

Research Question 4

What general techniques can be used to improve the feedback provided by editor
services that interact with the parse error recovery technique?

Error recovery is crucial for interactive editing, since it allows editor ser-
vices to provide feedback on syntactically incorrect programs. The editor
services operate on the recovered AST which provides a speculative inter-
pretation of the intended program. By ensuring that the recovered AST is
well-formed, separation of concerns can be achieved. Error recovery is purely
performed by the parser, while the editor services take as input a well-formed
AST that represents a syntactically correct program.

Editor services should behave robustly in case the recovery technique fails
to construct an interpretation for (a part of) the input program. In Section 5.4
we developed techniques to provide the programmer with as much feedback
as possible. Instead of scannerless highlighting, which requires a parse tree,
fall-back syntax highlighting based on a lexical analysis is used to highlight
the keywords in source fragments that miss a recovery interpretation. Fur-
thermore, the user is presented with feedback of errors up to the point of
where the parser fails, in addition, the failure location is reported to the user.

While other editor services should behave robustly in the presence of syn-
tax errors, the content completion service almost exclusively targets towards
incomplete programs. Essential for this service is the interpretation of the
syntactic structure near the completion request location. In Section 5.4.4 we
propose special completion recovery rules that compensate for missing charac-
ters at the suffix of an incomplete construct. The completion recovery rules
are only applied near the cursor location. Furthermore, ambiguous comple-
tion interpretations are deliberately not resolved since all possible comple-
tion interpretations must be taken into account when providing completion
suggestions. Evaluation of the completion recovery technique (Section 5.5)
showed that it indeed improves the recovery in the content completion sce-
nario.

Research Question 5a

What language-parametric techniques can be used to derive the textual trans-
formation from the transformation applied to the abstract syntax tree? How
to migrate comments and adjust the whitespace at the edges of the changed
fragments?

In Chapter 6 we described a text reconstruction algorithm that calculates
textual changes from changes in the abstract structure. The algorithm uses an

172



origin tracking technique to relate terms in the transformed AST to terms in
the original AST, and terms in the original AST to text fragments. To correct
the whitespace around the changed fragments, layout conventions about in-
dentation and separating new lines are copied from the original source text.
Comments are migrated together with their associated code constructs, which
are identified by applying a set of clearly defined heuristic rules.

Research Question 5b

How to extend the text reconstruction algorithm so that it preserves syntactic
sugar for refactorings that take as input a desugared AST?

Refactoring transformations may be preceded by a desugaring transforma-
tion that maps constructs in an enriched syntax onto equivalent constructs in
the core syntax. To support this scenario, we extended the text reconstruction
algorithm so that it also preserves the original syntactic variation of desug-
ared constructs. Section 6.8 describes the adaptations we made. First, we
compare the transformed terms to their desugared origin term instead of their
base origin term; this ensures that the same syntactic variation is used in the
comparison, while the detected changes are applied to the original text frag-
ment with the original syntactic variation. Secondly, we made the algorithm
robust against desugared terms that miss a one-to-one correspondence with
original terms. That is, term changes with missing or conflicting origin rela-
tions are applied as a term change on an ancestor term that can be translated
consistently into a textual change.

Research Question 6

Is it possible to guarantee the preservation of static semantic invariants in term
rewriting systems?

In Section 7.4 we proposed a preservation criterion for statically known
name bindings. The criterion assumes an existing name analysis that anno-
tates identifier terms with a unique reference name. Name binding viola-
tions are detected by comparing the intended binding structure with the ac-
tual binding structure, both set as annotations on the transformed term. The
intended binding structure is constructed by applying the name analysis fol-
lowed by the refactoring transformation; while the actual binding structure is
constructed by first applying the transformation and then applying the name
analysis.

Many languages offer the possibility to access variables defined in a name-
space via qualified names. A limitation of the preservation criterion is that it
rejects refactorings that could be carried out by introducing qualified names
for violated name bindings. As a refinement to the preservation criterion,
we showed in Section 7.5 that name analysis can be implemented as a reus-
able traversal strategy that can be applied to set name binding annotations,
to detect name binding violations, and to restore name bindings by creating
qualified names.

Chapter 8. Conclusion 173



8.3 F U T U R E W O R K

Error recovery We developed a language-independent error recovery tech-
nique for scannerless generalized parsing. Generalized parsers support the
full set of context-free grammars. However, many languages in practice are
not context-free. An important class of such languages is layout-sensitive lan-
guages, in which the interpretation of a code fragment depends on its layout.
Examples of layout sensitive languages are Python, Haskell and F#.

Recent work by (Erdweg et al., 2012) introduces an extension of scannerless
generalized parsing to parse layout sensitive languages. Layout constraints
are declared as annotations on the productions of a context-free grammar.
The extended SGLR parser enforces these constraints at parse time when pos-
sible, while the remaining constraints are validated by a post processor on the
generated parse forest.

The combination of layout sensitive parsing and error recovery is yet to be
explored. We foresee the following adaptations. First, the recovery frame-
work must be extended to recover from layout errors which may be detected
at parse time or at disambiguation time. Secondly, the runtime recovery dis-
ambiguation filter must be extended to keep ambiguities that will be dis-
ambiguated by the (runtime or post-parse) layout filter. Extending the error
recovery mechanism to offer full support for layout sensitive languages is left
for future work.

We argued that our correcting recovery technique for SGLR (Chapter 2) can
best be applied in combination with a region selection technique. In Chap-
ter 3 we proposed a technique that uses indentation to detect discardable
erroneous regions. A promising alternative for parsing in an IDE is to use the
parse history to detect regions of code with possible syntax errors (Wagner
and Graham, 1997). The affected, possibly erroneous regions can be calcu-
lated by comparing the current input with the latest correct input. Beside
the application for syntax error recovery, these regions could also be used
for incremental parsing which has the potential to significantly reduce the re-
sponse time during interactive editing. Region detection based on the parser
history and incremental parsing in combination with syntax error recovery
are interesting directions for future work.

Refactoring techniques As a result of our research on refactoring techniques,
we implemented a refactoring framework for the Spoofax language work-
bench that incorporates the layout preservation and name binding preserva-
tion techniques. In addition, the framework introduces a small specification
language to declaratively define a refactoring including its user interaction
aspects. The framework is described in (de Jonge and Visser, 2013). The ob-
jective of the framework is to factor out all language generic aspects of the
refactoring workflow into generic framework components, and to implement
refactorings that are generically applicable to different languages. Practical
experience with the framework is required to answer the question how gener-
ically applicable the framework components are, and how well they cover
different types of programming languages.

174



The Spoofax refactoring framework focuses on the implementation of pre-
defined refactorings for end users of a language. An interesting direction
for future work is support for the implementation of refactorings for and by
language developers. Given the fact that language development in Spoofax in-
volves multiple DSLs, this requires an integrated approach to cross-language
analysis and refactoring (Strein et al., 2006). Furthermore, the IDE support
for refactorings must implement an open structure that allows the application
of user-defined transformations that may target different languages (Li and
Thompson, 2012).

Chapter 8. Conclusion 175



176



Bibliography

Aho, A. and Peterson, T. G. (1972). A minimum distance error-correcting
parser for context-free languages. SIAM Journal on Computing, 1:305. (Cited
on pages 7, 60, and 61.)

Balland, E., Brauner, P., Kopetz, R., Moreau, P.-E., and Reilles, A. (2007). Tom:
Piggybacking rewriting on java. In RTA’07, pages 36–47. (Cited on page 152.)

Barnard, D. T. and Holt, R. C. (1982). Hierarchic syntax error repair for
LR grammars. International Journal of Computer and Information Sciences,
11(4):231–258. (Cited on pages 4, 52, 72, and 73.)

Basten, H., Klint, P., and Vinju, J. (2012). Ambiguity detection: Scaling to
scannerless. In Sloane, A. and Aßmann, U., editors, Software Language En-
gineering, volume 6940 of Lecture Notes in Computer Science, pages 303–323.
Springer Berlin Heidelberg. (Cited on page 14.)

Basten, H. and Vinju, J. (2012). Parse forest diagnostics with dr. ambiguity.
In Sloane, A. and Aßmann, U., editors, Software Language Engineering, vol-
ume 6940 of Lecture Notes in Computer Science, pages 283–302. Springer Berlin
Heidelberg. (Cited on page 14.)

Bischofberger, W. R. (1992). Sniff - a pragmatic approach to a c++ program-
ming environment. In In USENIX C++ Conference, pages 67–82. (Cited on
page 54.)

van den Brand, M., van Deursen, A., Heering, J., de Jong, H., de Jonge, M.,
Kuipers, T., Klint, P., Moonen, L., Olivier, P., Scheerder, J., Vinju, J., Visser, E.,
and Visser, J. (2001). The Asf+Sdf Meta-environment: A component-based
language development environment. In Wilhelm, R., editor, Proceedings of the
10th International Conference on Compiler Construction, volume 2027 of Lecture
Notes in Computer Science, pages 365–370. Springer. (Cited on pages 3, 103,
and 117.)

van den Brand, M. G. J., Bruntink, M., Economopoulos, G. R., de Jong, H. A.,
Klint, P., Kooiker, T., van der Storm, T., and Vinju, J. J. (2007). Using the
Meta-Environment for maintenance and renovation. In Proceedings of the 11th
European Conference on The European Conference on Software Maintenance and
Reengineering (CSMR’07), pages 331–332. IEEE. (Cited on page 53.)

van den Brand, M. G. J., de Jong, H. A., Klint, P., and Olivier, P. A. (2000). Ef-
ficient annotated terms. Software – Practice & Experience, 30(3):259–291. (Cited
on pages 88 and 156.)

van den Brand, M. G. J., Heering, J., Klint, P., and Olivier, P. A. (2002). Com-
piling language definitions: the ASF+SDF compiler. ACM Transactions on Pro-
gramming Languages and Systems, 24(4):334–368. (Cited on pages 25 and 53.)

177



Bravenboer, M. (2008). Transforming java with stratego. http:
//releases.strategoxt.org/strategoxt-manual/unstable/
manual/chunk-part/java-in-stratego.html. (Cited on page 89.)

Bravenboer, M., Dolstra, E., and Visser, E. (2007). Preventing injection attacks
with syntax embeddings. In GPCE, pages 3–12. (Cited on page 27.)

Bravenboer, M., Dolstra, E., and Visser, E. (2010). Preventing injection attacks
with syntax embeddings. Science of Computer Programming, 75(7):473–495.
(Cited on pages 24, 27, and 94.)

Bravenboer, M., Kalleberg, K. T., Vermaas, R., and Visser, E. (2008). Strate-
go/XT 0.17. A language and toolset for program transformation. Science of
Computer Programming, 72(1-2):52–70. (Cited on pages 25, 78, 118, 141, 152,
and 153.)

Bravenboer, M., Tanter, E., and Visser, E. (2006a). Declarative, formal, and ex-
tensible syntax definition for AspectJ. A case for scannerless generalized-LR
parsing. In Cook, W. R., editor, Proceedings of the 21th ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2006), volume 41 of SIGPLAN Notices, pages 209–228, Portland,
Oregon, USA. ACM. (Cited on pages 4, 7, 13, 23, 25, 30, 31, and 40.)

Bravenboer, M., van Dam, A., Olmos, K., and Visser, E. (2006b). Program
transformation with scoped dynamic rewrite rules. Fundamenta Informaticae,
69(1–2):123–178. (Cited on page 160.)

Bravenboer, M. and Visser, E. (2004). Concrete syntax for objects: domain-
specific language embedding and assimilation without restrictions. In Vlis-
sides, J. M. and Schmidt, D. C., editors, Proceedings of the 19th annual ACM
SIGPLAN conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2004), volume 39 of SIGPLAN Notices, pages 365–383.
ACM. (Cited on pages 22, 27, and 31.)

Burke, M. G. and Fisher, G. A. (1987). A practical method for LR and LL
syntactic error diagnosis and recovery. ACM Transactions on Programming
Languages and Systems, 9(2):164–197. (Cited on pages 59 and 72.)

Cantor, D. G. (1962). On the ambiguity problem of backus systems. JACM,
9(4):477–479. (Cited on page 14.)

Cerecke, C. (2002). Repairing syntax errors in lr-based parsers. In Oud-
shoorn, M. J., editor, ACSC, volume 4 of CRPIT, pages 17–22. Australian
Computer Society. (Cited on pages 52 and 59.)

Charles, P., Fuhrer, R. M., Sutton, Jr., S. M., Duesterwald, E., and Vinju, J.
(2009). Accelerating the creation of customized, language-specific IDEs in
Eclipse. In Proceedings of the 24th ACM SIGPLAN conference on Object oriented
programming systems languages and applications (OOPSLA 2009), volume 44 of
SIGPLAN Notices, pages 191–206. ACM. (Cited on pages 53 and 117.)

178

http://releases.strategoxt.org/strategoxt-manual/unstable/manual/chunk-part/java-in-stratego.html
http://releases.strategoxt.org/strategoxt-manual/unstable/manual/chunk-part/java-in-stratego.html
http://releases.strategoxt.org/strategoxt-manual/unstable/manual/chunk-part/java-in-stratego.html


Charles, P., Fuhrer, R. M., and Sutton, Jr., S. M. (2007). IMP: a meta-tooling
platform for creating language-specific IDEs in Eclipse. In Proceedings of the
twenty-second IEEE/ACM international conference on Automated software engi-
neering (ASE 2007), pages 485–488. ACM. (Cited on pages 53 and 117.)

Chawathe, S. S., Rajaraman, A., Garcia-Molina, H., and Widom, J. (1996).
Change detection in hierarchically structured information. SIGMOD Rec.,
25:493–504. (Cited on pages 49, 70, and 88.)

Corchuelo, R., Pérez, J. A., Cortés, A. R., and Toro, M. (2002). Repairing
syntax errors in LR parsers. ACM Trans. Program. Lang. Syst., 24(6):698–710.
(Cited on pages 4, 52, 72, 77, and 88.)

Crnkovic, G. (2010). Constructive Research and Info-Computational Knowl-
edge Generation. Model-Based Reasoning in Science and Technology, pages 359–
380. (Cited on page 14.)

Daniel, B., Dig, D., Garcia, K., and Marinov, D. (2007). Automated testing
of refactoring engines. In Crnkovic, I. and Bertolino, A., editors, Proceedings
of the 6th joint meeting of the European Software Engineering Conference and the
Int. Symposium on Foundations of Software Engineering (ESEC/FSE 2007), pages
185–194. ACM. (Cited on pages 16 and 164.)

de Jonge, M. (2000). A pretty-printer for every occasion. In Ferguson, I., Gray,
J., and Scott, L., editors, The International Symposium on Constructing Software
Engineering Tools (CoSET2000), pages 68–77. University of Wollongong, Aus-
tralia. (Cited on page 134.)

de Jonge, M. (2002). Pretty-printing for software reengineering. In ICSM ’02:
Proceedings of the International Conference on Software Maintenance (ICSM’02),
page 550, Washington, DC, USA. IEEE Computer Society. (Cited on
page 118.)

de Jonge, M., Kats, L. C. L., Visser, E., and Söderberg, E. (2012). Natural and
flexible error recovery for generated modular language environments. ACM
Trans. Program. Lang. Syst., 34(4):15:1–15:50. (Cited on pages 16 and 17.)

de Jonge, M., Nilsson-Nyman, E., Kats, L. C. L., and Visser, E. (2009). Natu-
ral and flexible error recovery for generated parsers. In van den Brand, M.,
Gasevic, D., and Gray, J., editors, Proceedings of the Second International Con-
ference on Software Language Engineering (SLE 2009), volume 5969 of Lecture
Notes in Computer Science, pages 204–223. Springer. (Cited on pages 16, 17,
77, and 99.)

de Jonge, M. and Visser, E. (2012a). An algorithm for layout preservation in
refactoring transformations. In Aßmann, U. and Sloane, T., editors, Software
Language Engineering, Fourth International Conference, SLE 2011, Braga, Portu-
gal, July, 2011, Revised Selected Papers. Springer. (Cited on pages 17 and 82.)

Bibliography 179



de Jonge, M. and Visser, E. (2012b). Automated evaluation of syntax error
recovery. In Proceedings of the 27th IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2012, pages 322–325, New York, NY, USA.
ACM. (Cited on page 17.)

de Jonge, M. and Visser, E. (2012c). A language generic solution for name
binding preservation in refactorings. In Andova, S. and Sloane, T., editors,
Workshop on Language Descriptions, Tools, and Applications, Proceedings. (Cited
on page 17.)

de Jonge, M. and Visser, E. (2013). Implementing refactorings in the spoofax
language workbench. Technical Report TUD-SERG-2013-008, Software Engi-
neering Research Group, Delft University of Technology. (Cited on pages 6,
11, 16, and 174.)

de Vanter, M. L. V. (2001). Preserving the documentary structure of source
code in language-based transformation tools. In 1st IEEE International Work-
shop on Source Code Analysis and Manipulation (SCAM 2001), 10 November 2001,
Florence, Italy, pages 133–143. IEEE Computer Society. (Cited on pages 118,
136, 141, and 145.)

Dean, T. R., Cordy, J. R., Schneider, K. A., and Malton, A. J. (2001). Us-
ing design recovery techniques to transform legacy systems. In ICSM
’01: Proceedings of the IEEE International Conference on Software Maintenance
(ICSM’01), page 622, Washington, DC, USA. IEEE Computer Society. (Cited
on page 148.)

Degano, P. and Priami, C. (1995). Comparison of syntactic error handling in
LR parsers. Software – Practice & Experience, 25(6):657–679. (Cited on pages 3,
4, 7, 23, 39, 41, 43, 48, 51, 52, 58, 59, 60, 61, 72, 75, 77, and 88.)

van Deursen, A., Klint, P., and Tip, F. (1993). Origin tracking. Journal of
Symbolic Computation, 15(5/6):523–545. (Cited on pages 10, 119, and 125.)

van Deursen, A. and Kuipers, T. (1999). Building documentation generators.
In IEEE International Conference on Software Maintenance (ICSM 1999), page 40.
IEEE. (Cited on pages 23, 27, 28, and 54.)

Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., and Black, A. P. (2006).
Traits: A mechanism for fine-grained reuse. ACM Transactions on Program-
ming Languages and Systems, 28(2):331–388. (Cited on page 24.)

Eclipse documentation (2010). Eclipse documentation: Astrewrite.
http://help.eclipse.org/helios/index.jsp?topic=/org.
eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/
dom/rewrite/ASTRewrite.html. Eclipse JDT 3.6. (Cited on page 147.)

Efftinge, S. and Voelter, M. (2006). oAW xText: a framework for textual DSLs.
In Workshop on Modeling Symposium at Eclipse Summit. (Cited on pages 103,
117, and 152.)

180

http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/rewrite/ASTRewrite.html
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/rewrite/ASTRewrite.html
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/rewrite/ASTRewrite.html


Ekman, T. and Hedin, G. (2007). The jastadd extensible java compiler. In
Gabriel, R. P., Bacon, D. F., Lopes, C. V., and Jr., G. L. S., editors, Proceedings
of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA, pages 1–18. ACM. (Cited on
pages 152 and 166.)

Ekman, T., Schäfer, M., and Verbaere, M. (2008). Refactoring is not (yet)
about transformation. In Proceedings of the 2nd Workshop on Refactoring Tools,
WRT ’08, pages 5:1–5:4, New York. ACM. (Cited on pages 11 and 152.)

Erdweg, S., Kats, L. C. L., Rendel, T., Kästner, C., Ostermann, K., and Visser,
E. (2011a). Growing a language environment with editor libraries. In Denney,
E. and Schultz, U. P., editors, Proceedings of the 7th International Conference on
Generative Programming and Component Engineering (GPCE 2011). ACM. (Cited
on page 16.)

Erdweg, S., Rendel, T., Kästner, C., and Ostermann, K. (2011b). SugarJ:
Library-based syntactic language extensibility. In Fisher, K. S., editor, Pro-
ceedings of the 26th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA 2011), SIGPLAN
Notices, Portland, Oregon, USA. ACM. (Cited on page 16.)

Erdweg, S., Rendel, T., Kästner, C., and Ostermann, K. (2012). Layout-
sensitive generalized parsing. In SLE, pages 244–263. (Cited on page 174.)

Fischer, C. N., Milton, D. R., and Quiring, S. B. (1980). Efficient LL(1) error
correction and recovery using only insertions. Acta Inf., 13:141–154. (Cited
on pages 4, 52, and 72.)

Ford, B. (2002). Packrat parsing: simple, powerful, lazy, linear time. Func-
tional pearl. In Proceedings of the seventh ACM SIGPLAN international con-
ference on Functional programming (ICFP 2002), pages 36–47, New York, NY,
USA. ACM. (Cited on pages 12, 14, 26, and 53.)

Ford, B. (2004). Parsing expression grammars: a recognition-based syntactic
foundation. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 2004), pages 111–122, New York,
NY, USA. ACM. (Cited on page 12.)

Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C., and Schmitt, A.
(2007). Combinators for bidirectional tree transformations: A linguistic ap-
proach to the view-update problem. ACM Trans. Program. Lang. Syst., 29(3).
(Cited on pages 123 and 148.)

Fowler, M. (2002). Refactoring: Improving the design of existing code. vol-
ume 2418 of Lecture Notes in Computer Science, page 256. Springer. (Cited on
pages 4, 9, and 154.)

Fowler, M. (2005). Language workbenches: The killer-app for do-
main specific languages? http://martinfowler.com/articles/
languageWorkbench.html. (Cited on pages 117 and 151.)

Bibliography 181

http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html


Fowler, M. (2011). Domain-Specific Languages. Addison Wesley. (Cited on
page 151.)

Garrido, A. and Meseguer, J. (2006). Formal specification and verification
of java refactorings. Source Code Analysis and Manipulation, IEEE International
Workshop. (Cited on pages 152 and 167.)

Ginsburg, S. and Ullian, J. (1966). Ambiguity in context free languages. J.
ACM, 13(1):62–89. (Cited on page 14.)

Graham, S. L., Haley, C. B., and Joy, W. N. (1979). Practical LR error recovery.
In SIGPLAN ’79: Symposium on Compiler Construction, pages 168–175. ACM.
(Cited on page 61.)

Grimm, R. (2006). Better extensibility through modular syntax. In PLDI,
pages 38–51. (Cited on pages 14 and 53.)

Groenewegen, D. M., Hemel, Z., Kats, L. C. L., and Visser, E. (2008). Web-
DSL: A domain-specific language for dynamic web applications. In Mielke,
N. and Zimmermann, O., editors, Companion to the 23rd ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2008), pages 779–780, New York, NY, USA. ACM. (poster). (Cited
on pages 16, 49, 70, and 79.)

Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., and Völkel, S. (2008).
Monticore: a framework for the development of textual domain specific lan-
guages. In Schäfer, W., Dwyer, M. B., and Gruhn, V., editors, Software En-
gineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008, Companion Volume,
pages 925–926. ACM. (Cited on pages 14, 103, and 117.)

Hallgren, T., Hook, J., Jones, M. P., and Kieburtz, R. B. (2004). An overview
of the programatica toolset. In High Confidence Software and Systems Confer-
ence, HCSS04, http://www.cse.ogi.edu/ hallgren/ Programatica/HCSS04. (Cited on
page 167.)

Harm, J. and Lämmel, R. (2000). Two-dimensional approximation coverage.
Informatica (Slovenia), 24(3). (Cited on page 100.)

Hedin, G. (2000). Reference attributed grammars. Informatica (Slovenia),
24(3):301–317. (Cited on pages 11, 152, and 166.)

Heering, J., Hendriks, P. R. H., Klint, P., and Rekers, J. (1989a). The syntax
definition formalism sdf - reference manual. SIGPLAN, 24(11):43–75. (Cited
on page 3.)

Heering, J., Hendriks, P. R. H., Klint, P., and Rekers, J. (1989b). The syntax
definition formalism SDF – reference manual. SIGPLAN Notices, 24(11):43–
75. (Cited on pages 26, 105, and 133.)

182



Heidenreich, F., Johannes, J., Karol, S., Seifert, M., and Wende, C. (2009). Der-
ivation and refinement of textual syntax for models. In Paige, R. F., Hartman,
A., and Rensink, A., editors, Proceedings of Model Driven Architecture - Foun-
dations and Applications, 5th European Conference (ECMDA-FA 2009), volume
5562 of Lecture Notes in Computer Science, pages 114–129. Springer. (Cited on
pages 103, 117, 151, and 166.)

Hemel, Z. (2010). Mobl compiler. https://github.com/eelcovisser/
mobl. (Cited on page 164.)

Hemel, Z., Kats, L. C. L., and Visser, E. (2008). Code generation by model
transformation. In ICMT, pages 183–198. (Cited on page 160.)

Hemel, Z. and Visser, E. (2011). Declaratively programming the mobile web
with mobl. In Fisher, K. S., editor, Proceedings of the 26th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA 2011), SIGPLAN Notices, Portland, Oregon, USA. ACM.
(Cited on pages 16, 133, 141, 153, and 164.)

Hevner, A. R., March, S. T., Park, J., Ram, S., and Ram, S. (2004). Design
science in information systems research. MIS Quarterly. (Cited on page 15.)

Hirzel, M. and Grimm, R. (2007). Jeannie: granting Java Native Interface
developers their wishes. In Proceedings of the 22nd annual ACM SIGPLAN
conference on Object-oriented programming systems and applications (OOPSLA
2007), volume 42 of SIGPLAN Notices, pages 19–38, New York, NY, USA.
ACM. (Cited on page 12.)

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Automata Theory,
Languages and Computation. Addison Wesley. (Cited on pages 3, 22, and 25.)

Horning, J. J. (1976). Structuring compiler development. In Bauer, F. L.
and Eickel, J., editors, Compiler Construction, An Advanced Course, 2nd ed, vol-
ume 21 of Lecture Notes in Computer Science, pages 498–513. Springer. (Cited
on pages 8 and 76.)

Hunt, A. and Thomas, D. (2000). The Pragmatic Programmer. Addison Wesley.
(Cited on page 153.)

Jiang, T., Wang, L., and Zhang, K. (1994). Alignment of trees - an alternative
to tree edit. In CPM ’94: Proceedings of the 5th Annual Symposium on Com-
binatorial Pattern Matching, volume 807 of LNCS, pages 75–86, London, UK.
Springer-Verlag. (Cited on page 77.)

Johnson, S. C. (1975). YACC—yet another compiler-compiler. Technical Re-
port CS-32, AT & T Bell Laboratories. (Cited on page 2.)

Johnstone, A., Scott, E., and Economopoulos, G. (2004). Generalised parsing:
Some costs. Lecture Notes in Computer Science, 2985:89–103. (Cited on page 43.)

Bibliography 183

https://github.com/eelcovisser/mobl
https://github.com/eelcovisser/mobl


Jouault, F., Bézivin, J., and Kurtev, I. (2006). TCS: a DSL for the specification
of textual concrete syntaxes in model engineering. In Proceedings of the 5th
international conference on Generative and Component Engineering (GPCE 2006),
pages 249–254. ACM. (Cited on pages 103, 117, and 151.)

Kats, L. C. (2008). Stratego IDE. https://svn.strategoxt.org/
repos/StrategoXT/spoofax-imp/trunk/org.strategoxt.imp.
editors.stratego. (Cited on page 164.)

Kats, L. C. L., Bravenboer, M., and Visser, E. (2008). Mixing source and byte-
code. A case for compilation by normalization. In Kiczales, G., editor, Pro-
ceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2008), volume 43 of SIGPLAN
Notices, pages 91–108, New York, NY, USA. ACM. (Cited on pages 27, 49, 70,
and 94.)

Kats, L. C. L., de Jonge, M., Nilsson-Nyman, E., and Visser, E. (2009a).
Providing rapid feedback in generated modular language environments.
Adding error recovery to scannerless generalized-LR parsing. In Leavens,
G. T., editor, Proceedings of the 24th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA 2009),
volume 44 of SIGPLAN Notices, pages 445–464, New York, NY, USA. ACM.
(Cited on pages 8, 16, 17, and 76.)

Kats, L. C. L., Kalleberg, K. T., and Visser, E. (2009b). Domain-specific lan-
guages for composable editor plugins. In Proceedings of the Ninth Interna-
tional Workshop on Language Descriptions, Tools, and Applications (LDTA 2009),
volume 253 of Electronic Notes in Theoretical Computer Science, pages 149–163.
Elsevier. (Cited on pages 23 and 53.)

Kats, L. C. L., Kalleberg, K. T., and Visser, E. (2010a). Domain-specific lan-
guages for composable editor plugins. Electronic Notes in Theoretical Computer
Science, 253(7):149–163. (Cited on pages 16, 125, and 152.)

Kats, L. C. L., Sloane, A. M., and Visser, E. (2009c). Decorated attribute gram-
mars: Attribute evaluation meets strategic programming. In de Moor, O. and
Schwartzbach, M. I., editors, Proceedings of the 18th International Conference on
Compiler Construction (CC 2009), volume 5501 of Lecture Notes in Computer
Science, pages 142–157. Springer. (Cited on page 106.)

Kats, L. C. L. and Visser, E. (2010). The Spoofax language workbench: rules
for declarative specification of languages and IDEs. In Cook, W. R., Clarke,
S., and Rinard, M. C., editors, Proceedings of the 25th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2010, pages 444–463, Reno/Tahoe, Nevada. ACM. (Cited on
pages 9, 103, 104, 105, 114, 117, 141, and 160.)

Kats, L. C. L., Visser, E., and Wachsmuth, G. (2010b). Pure and declarative
syntax definition: paradise lost and regained. In Proceedings of the ACM

184

https://svn.strategoxt.org/repos/StrategoXT/spoofax-imp/trunk/org.strategoxt.imp.editors.stratego
https://svn.strategoxt.org/repos/StrategoXT/spoofax-imp/trunk/org.strategoxt.imp.editors.stratego
https://svn.strategoxt.org/repos/StrategoXT/spoofax-imp/trunk/org.strategoxt.imp.editors.stratego


international conference on Object oriented programming systems languages and
applications (OOPSLA 2010), volume 45 of SIGPLAN Notices, pages 918–932,
New York, NY, USA. ACM. (Cited on page 13.)

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier,
J.-M., and Irwin, J. (1997). Aspect-oriented programming. In Akşit, M. and
Matsuoka, S., editors, Proceedings of the European Conference on Object-Oriented
Programming (ECOOP’07), volume 1241 of LNCS, pages 220–242. Springer.
(Cited on page 24.)

Kitlei, R., Lövei, L., Nagy, T., Horváth, Z., and Kozsik, T. (2009). Layout
preserving parser for refactoring in Erlang. Acta Electrotechnica et Informatica,
9(3):54–63. (Cited on pages 118 and 145.)

Klint, P. (1993). A meta-environment for generating programming environ-
ments. ACM Transactions on Software Engineering and Methodology, 2(2):176–
201. (Cited on pages 103, 117, and 145.)

Klint, P., van der Storm, T., and Vinju, J. (2009). Rascal: a domain specific
language for source code analysis and manipulation. In Proceedings of the
Ninth International Working Conference on Source Code Analysis and Manipula-
tion (SCAM 2009), pages 168–177. (Cited on pages 53, 103, and 117.)

Klusener, S. and Lämmel, R. (2003). Deriving tolerant grammars from a
base-line grammar. In International Conference on Software Maintenance (ICSM
2003), pages 179–189. IEEE. (Cited on pages 23, 27, 29, and 54.)

Knuth, D. E. (1965). On the translation of languages from left to right. Infor-
mation and control, 8(6):607–639. (Cited on page 12.)

Konat, G. (2012). Language-Parametric Incremental and Parallel Name Resolution.
PhD thesis, Technical University Delft. (Cited on page 165.)

Koppler, R. (1997). A systematic approach to fuzzy parsing. Softw. Pract.
Exper., 27(6):637–649. (Cited on pages 27, 29, and 54.)

Kort, J. and Lämmel, R. (2003). Parse-tree annotations meet re-engineering
concerns. In Source Code Analysis and Manipulation, 2003. Proceedings. Third
IEEE International Workshop on. (Cited on pages 118, 143, and 146.)

Kossatchev, A. and Posypkin, M. (2005). Survey of compiler testing methods.
Programming and Computer Software, 31(1):10–19. (Cited on page 100.)

Krahn, H., Rumpe, B., and Völkel, S. (2007). Efficient editor generation for
compositional DSLs in Eclipse. In Proceedings of the 7th OOPSLA Workshop on
Domain-Specific Modeling, technical report TR-38, pages 218–228. University
of Jyväskylä. (Cited on page 53.)

Krahn, H., Rumpe, B., and Völkel, S. (2008). Monticore: Modular devel-
opment of textual domain specific languages. In Paige, R. F. and Meyer,

Bibliography 185



B., editors, Objects, Components, Models and Patterns, TOOLS EUROPE 2008,
volume 11 of Lecture Notes in Business Information Processing, pages 297–315.
Springer. (Cited on pages 26, 53, 103, 117, and 152.)

Kuhn, T. and Thomann, O. (2006). Eclipse corner: Abstract syntax tree.
http://eclipse.org/articles/article.php?file=Article-
JavaCodeManipulation_AST/index.html. (Cited on page 95.)

Lämmel, R. (2002). Towards generic refactoring. Workshop on Rule-Based
Programming, cs.PL/0203001. informal publication. (Cited on pages 152

and 167.)

Lämmel, R. and Visser, J. (2003). A strafunski application letter. In Proceed-
ings of the 5th International Symposium on Practical Aspects of Declarative Lan-
guages, PADL ’03, pages 357–375, London, UK, UK. Springer-Verlag. (Cited
on page 167.)

Lavie, A. and Tomita, M. (1993). GLR* – an efficient noise skipping pars-
ing algorithm for context free grammars. In Proceedings of the Third Interna-
tional Workshop on Parsing Technologies, pages 123–134. (Cited on pages 27,
29, and 52.)

Lévy, J.-P. (1971). Automatic Correction of Syntax Errors in Programming Lan-
guages. PhD thesis, Cornell University, Ithaca, NY, USA. (Cited on pages 4,
7, 51, 60, 72, and 73.)

Lewis II, P. M. and Stearns, R. E. (1968). Syntax-directed transduction. Journal
of the ACM, 15(3):465–488. (Cited on page 12.)

Li, H. and Thompson, S. (2006). A comparative study of refactoring Haskell
and Erlang programs. In Penta, M. D. and Moonen, L., editors, Sixth IEEE
International Workshop on Source Code Analysis and Manipulation (SCAM 2006),
pages 197–206. IEEE. (Cited on page 147.)

Li, H. and Thompson, S. (2012). Let’s make refactoring tools user-extensible!
In Proceedings of the Fifth Workshop on Refactoring Tools, WRT ’12, pages 32–39,
New York, NY, USA. ACM. (Cited on page 175.)

Li, H., Thompson, S., L?vei, L., Horv?th, Z., Kozsik, T., V?g, A., and Nagy,
T. (2006). Refactoring erlang programs. In The Proceedings of 12th Interna-
tional Erlang/OTP User Conference, Stockholm, Sweden. (Cited on pages 118

and 145.)

Li, H., Thompson, S., and Reinke, C. (2005). The Haskell Refactorer: HaRe,
and its API. In Boyland, J. and Hedin, G., editors, Proceedings of the 5th
workshop on Language Descriptions, Tools and Applications (LDTA 2005). (Cited
on page 147.)

Li, H. and Thompson, S. J. (2008). Tool support for refactoring functional
programs. In Glück, R. and de Moor, O., editors, Proceedings of the 2008

186

http://eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html
http://eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html


ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based Program
Manipulation, PEPM 2008, San Francisco, California, USA, January 7-8, 2008,
pages 199–203. ACM. (Cited on page 167.)

Litecky, C. R. and Davis, G. B. (1976). A study of errors, error-proneness, and
error diagnosis in cobol. Commun. ACM, 19:33–38. (Cited on page 100.)

Lohmann, W. and Riedewald, G. (2003). Towards automatical migration of
transformation rules after grammar extension. In CSMR ’03: Proceedings
of the Seventh European Conference on Software Maintenance and Reengineering,
page 30, Washington, DC, USA. IEEE Computer Society. (Cited on pages 118

and 145.)

Luttik, B. and Visser, E. (1997). Specification of rewriting strategies. In Sell-
ink, M. P. A., editor, 2nd International Workshop on the Theory and Practice of
Algebraic Specifications (ASF+SDF 1997), Electronic Workshops in Computing,
Berlin. Springer-Verlag. (Cited on page 78.)

Lyon, G. (1974). Syntax-directed least-errors analysis for context-free lan-
guages: a practical approach. Commun. ACM, 17(1):3–14. (Cited on pages 7

and 60.)

Malgady, R. G. and Krebs, D. E. (1986). Understanding correlation coeffi-
cients and regression. Physical Therapy, 66:110–120. (Cited on page 89.)

Malton, A., Schneider, K. A., Cordy, J. R., Dean, T. R., Cousineau, D., and
Reynolds, J. (2001). Processing software source text in automated design
recovery and transformation. In In Proc. International Workshop on Program
Comprehension (IWPC’01, pages 127–134. IEEE Press. (Cited on page 148.)

Mauney, J. and Fischer, C. N. (1988). Determining the extent of lookahead
in syntactic error repair. ACM Transactions on Programming Languages and
Systems, 10(3):456–469. (Cited on pages 4, 7, 51, 60, 72, and 73.)

McKenzie, B. J., Yeatman, C., and Vere, L. D. (1995). Error repair in shift-
reduce parsers. ACM Trans. Program. Lang. Syst., 17(4):672–689. (Cited on
pages 4, 52, 59, and 72.)

McPeak, S. and Necula, G. C. (2004). Elkhound: A fast, practical GLR parser
generator. In CC, pages 73–88. (Cited on page 13.)

Miller, C. and Peterson, Z. N. J. (2007). Analysis of mutation and generation-
based fuzzing. Technical report, Independent Security Evaluators. (Cited on
page 100.)

Moonen, L. (2001). Generating robust parsers using island grammars. In Pro-
ceedings of the Working Conference on Reverse Engineering (WCRE 2001), pages
13–22. IEEE. (Cited on pages 23, 27, 28, and 54.)

Bibliography 187



Moonen, L. (2002). Lightweight impact analysis using island grammars. In
Proceedings of the 10th IEEE International Workshop of Program Comprehension,
pages 219–228. IEEE. (Cited on pages 23 and 27.)

Nilsson-Nyman, E., Ekman, T., and Hedin, G. (2009). Practical scope recov-
ery using bridge parsing. In Gasevic, D., Lämmel, R., and Wyk, E. V., editors,
Proceedings of the First International Conference on Software Language Engineering
(SLE 2008), volume 5452 of Lecture Notes in Computer Science, pages 95–113.
(Cited on pages 8, 73, 76, 77, and 99.)

Opdyke, W. F. (1992). Refactoring Object-Oriented Frameworks. PhD thesis,
University of Illinois. (Cited on pages 5, 11, 152, and 166.)

Pai, A. B. and Kieburtz, R. B. (1980). Global context recovery: A new strat-
egy for syntactic error recovery by table-drive parsers. ACM Transactions on
Programming Languages and Systems, 2(1):18–41. (Cited on pages 4, 7, 52, 60,
72, 73, 77, and 88.)

Parr, T. and Fisher, K. (2011). LL(*): the foundation of the ANTLR parser
generator. In Proceedings of the 32nd ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’11, pages 425–436, New York, NY,
USA. ACM. (Cited on pages 13 and 27.)

Parr, T. and Quong, R. (1995). ANTLR: A predicated-LL(k) parser generator.
Software: Practice and Experience, 25(7):789–810. (Cited on page 53.)

Pennello, T. J. and DeRemer, F. (1978). A forward move algorithm for LR
error recovery. In Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages (POPL 1978), pages 241–254, New York,
NY, USA. ACM. (Cited on pages 49, 70, 76, 77, 87, 88, 93, 95, 99, and 170.)

Permissive (2011). The permissive grammars project. http:
//strategoxt.org/Stratego/PermissiveGrammars. (Cited on
page 40.)

Regehr, J., Chen, Y., Cuoq, P., Eide, E., Ellison, C., and Yang, X. (2012). Test-
case reduction for c compiler bugs. In Proceedings of the 33rd ACM SIG-
PLAN conference on Programming Language Design and Implementation, PLDI
’12, pages 335–346, New York, NY, USA. ACM. (Cited on page 100.)

Reimann, J., Seifert, M., and Aßmann, U. (2010). Role-based generic model
refactoring. In Petriu, D., Rouquette, N., and Øystein Haugen, editors, Model
Driven Engineering Languages and Systems, 13th International Conference, MOD-
ELS 2010, Lecture Notes in Computer Science. Springer. (Cited on page 166.)

Rekers, J. and Koorn, J. W. C. (1991). Substring parsing for arbitrary context-
free grammars. SIGPLAN Notices, 26(5):59–66. (Cited on page 52.)

Ripley, G. D. and Druseikis, F. C. (1978). A statistical analysis of syntax errors.
Computer Languages, Systems & Structures, 3(4):227–240. (Cited on pages 76,
99, and 100.)

188

http://strategoxt.org/Stratego/PermissiveGrammars
http://strategoxt.org/Stratego/PermissiveGrammars


Roberts, D. B. (1999). Practical analysis for refactoring. Technical report,
Champaign, IL, USA. (Cited on pages 11, 152, and 166.)

Salomon, D. J. and Cormack, G. V. (1989). Scannerless NSLR(1) parsing of
programming languages. SIGPLAN Notices, 24(7):170–178. (Cited on pages 3,
14, and 25.)

Salomon, D. J. and Cormack, G. V. (1995). The disambiguation and scan-
nerless parsing of complete character-level grammars for programming lan-
guages. Technical report, TR 95/06, Dept. of Comp. Sci., University of Man-
itoba, Winnipeg, Canada. (Cited on pages 3, 14, and 25.)

Sametinger, J. and Schiffer, S. (1995). Design and implementation aspects of
an experimental c++ programming environment. In Software - Practice and
Experience. 25 (2) : 111 - 128, pages 11112–8. (Cited on page 54.)

Saunders, S., Fields, D. K., and Belayev, E. (2006). IntelliJ IDEA in Action.
Manning. (Cited on page 103.)

Schäfer, M., Ekman, T., and de Moor, O. (2008). Sound and extensible renam-
ing for java. In Harris, G. E., editor, Proceedings of the 23rd Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications, OOPSLA, pages 277–294. ACM. (Cited on pages 152, 155, and 166.)

Schäfer, M., Verbaere, M., Ekman, T., and Moor, O. (2009). Stepping stones
over the refactoring rubicon. In Proceedings of the 23rd European Conference on
ECOOP 2009 — Object-Oriented Programming, Genoa, pages 369–393, Berlin,
Heidelberg. Springer-Verlag. (Cited on pages 5 and 11.)

Schmitz, S. (2006). Modular syntax demands verification. Technical Report
I3S/RR-2006-32-FR, Laboratoire I3S, Université de Nice-Sophia Antipolis,
France. (Cited on pages 13 and 26.)

Schwerdfeger, A. and Van Wyk, E. (2009a). Verifiable composition of de-
terministic grammars. In Proc. of ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). ACM. (Cited on page 12.)

Schwerdfeger, A. C. and Van Wyk, E. R. (2009b). Verifiable composition of
deterministic grammars. SIGPLAN Not., 44(6):199–210. (Cited on page 26.)

Scott, E. and Johnstone, A. (2010). Gll parsing. Electr. Notes Theor. Comput.
Sci., 253(7):177–189. (Cited on pages 3 and 13.)

Soares, G. L. (2010). Making program refactoring safer. In Kramer, J., Bishop,
J., Devanbu, P. T., and Uchitel, S., editors, Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 2, ICSE 2010, pages
521–522. ACM. (Cited on page 152.)

Spoofax (2011). The Spoofax project. http://www.spoofax.org/. (Cited
on page 141.)

Bibliography 189

http://www.spoofax.org/


Stocker, M. (2010). Scala Refactoring. PhD thesis, University of Applied Sci-
ences Rapperswil. (Cited on page 148.)

Strein, D., Kratz, H., and Lowe, W. (2006). Cross-language program analy-
sis and refactoring. In Proceedings of the Sixth IEEE International Workshop on
Source Code Analysis and Manipulation, SCAM ’06, pages 207–216, Washing-
ton, DC, USA. IEEE Computer Society. (Cited on page 175.)

Sultana, N. and Thompson, S. (2008). Mechanical verification of refactorings.
In Proceedings of the 2008 ACM SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation, PEPM ’08, pages 51–60, New York, NY,
USA. ACM. (Cited on page 167.)

Swierstra, S. D. and Duponcheel, L. (1996). Deterministic, error-correcting
combinator parsers. In Advanced Functional Programming, Second International
School–Tutorial Text, pages 184–207, London, UK. Springer-Verlag. (Cited on
page 53.)

Tai, K.-C. (1978). Syntactic error correction in programming languages. IEEE
Trans. Software Eng., 4(5):414–425. (Cited on pages 4, 52, 59, and 72.)

Tip, F., Fuhrer, R. M., Kieżun, A., Ernst, M. D., Balaban, I., and Sutter, B. D.
(2011). Refactoring using type constraints. ACM Trans. Program. Lang. Syst.,
33(3):9:1–9:47. (Cited on pages 5 and 11.)

Tomita, M. (1988). Efficient parsing for natural language: A fast algorithm
for practical systems. Computational Linguistics, 14(2). (Cited on pages 3, 13,
22, 25, and 44.)

Tratt, L. (2010). Direct left-recursive parsing expression grammars. Technical
Report EIS-10-01, School of Engineering and Information Sciences, Middle-
sex University. (Cited on page 12.)

Valkering, R. (2007). Syntax error handling in scannerless generalized LR
parsers. Master’s thesis, University of Amsterdam. (Cited on page 52.)

van den Brand, M., Scheerder, J., Vinju, J. J., and Visser, E. (2002). Dis-
ambiguation filters for scannerless generalized LR parsers. In CC, pages
143–158. (Cited on pages 26, 28, and 41.)

van den Brand, M. and Vinju, J. (2000). Rewriting with layout. In Kirchner,
C. and Dershowitz, N., editors, Proceedings of RULE. (Cited on pages 118

and 145.)

van den Brand, M. and Visser, E. (1996). Generation of formatters for context-
free languages. ACM Transactions on Software Engineering Methodology, 5(1):1–
41. (Cited on pages 122 and 134.)

van der Storm, T. (2011). The Rascal Language Workbench. Rapport de
recherche. (Cited on pages 103 and 117.)

190



Verbaere, M., Payement, A., and de Moor, O. (2006). Scripting refactorings
with jungl. In Tarr, P. L. and Cook, W. R., editors, Companion to the 21th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2006, pages 651–652. ACM. (Cited on
page 166.)

Vinju, J. (2005). Analysis and Transformation of Source Code by Parsing and
Rewriting. PhD thesis, UvA. (Cited on page 146.)

Visser, E. (1995). A family of syntax definition formalisms. In van den Brand,
M. G. J. et al., editors, ASF+SDF 1995. A Workshop on Generating Tools from
Algebraic Specifications, pages 89–126. Technical Report P9504, Programming
Research Group, University of Amsterdam. (Cited on page 105.)

Visser, E. (1997a). A case study in optimizing parsing schemata by dis-
ambiguation filters. In International Workshop on Parsing Technologies (IWPT
1997), pages 210–224, Boston, USA. Massachusetts Institute of Technology.
(Cited on page 26.)

Visser, E. (1997b). Scannerless generalized-LR parsing. Technical Report
P9707, Programming Research Group, University of Amsterdam. (Cited on
pages 3, 14, 22, 25, and 104.)

Visser, E. (1997c). Syntax Definition for Language Prototyping. PhD thesis,
University of Amsterdam. (Cited on pages 3, 22, 26, 33, 53, 118, and 133.)

Visser, E. (2002). Meta-programming with concrete object syntax. In Batory,
D. S., Consel, C., and Taha, W., editors, Proceedings of the International Con-
ference on Generative Programming and Component Engineering (GPCE 2002),
volume 2487 of Lecture Notes in Computer Science, pages 299–315. Springer.
(Cited on page 24.)

Visser, E. (2004). Program transformation with Stratego/XT: Rules, strategies,
tools, and systems in StrategoXT-0.9. In Lengauer, C. et al., editors, Domain-
Specific Program Generation, volume 3016 of Lecture Notes in Computer Science,
pages 216–238. Spinger-Verlag. (Cited on pages 3, 89, 133, 153, and 164.)

Visser, E. (2007). WebDSL: A case study in domain-specific language engi-
neering. In GTTSE, pages 291–373. (Cited on page 120.)

Visser, E., Benaissa, Z.-E.-A., and Tolmach, A. P. (1998). Building program op-
timizers with rewriting strategies. In Felleisen, M., Hudak, P., and Queinnec,
C., editors, Functional programming, pages 13–26. ACM. (Cited on page 153.)

Waddington, D. and Yao, B. (2007). High-fidelity C/C++ code transforma-
tion. Science of Computer Programming, 68(2):64–78. (Cited on page 27.)

Wagner, T. A. and Graham, S. L. (1997). History-sensitive error recovery. In
IEEE TRANSACTIONS ON SOFTWARE ENGINEEERING, volume XX. (Cited
on page 174.)

Bibliography 191



Wyk, E. V. and Schwerdfeger, A. (2007). Context-aware scanning for parsing
extensible languages. In Consel, C. and Lawall, J. L., editors, Generative Pro-
gramming and Component Engineering, 6th International Conference, GPCE 2007,
pages 63–72, Salzburg, Austria. ACM. (Cited on page 14.)

Zelenov, S. V. and Zelenova, S. A. (2005). Generation of positive and negative
tests for parsers. Programming and Computer Software, 31(6):310–320. (Cited
on page 100.)

192



Samenvatting

TA A L PA R A M E T R I S C H E T E C H N I E K E N V O O R
TA A L S P E C I F I E K E E D I T O R S

– Maartje de Jonge –

Programmeertalen zijn kunstmatige talen die het mogelijk maken om machi-
nes aan te sturen. Broncode van computerprogramma’s is in één of meer van
deze talen geschreven. Er bestaan veel verschillende programmeertalen en er
komen nog altijd meer talen bij. De implementatie van programmeertalen ver-
eist veel werk. Ten eerste moet een compiler of interpreter geïmplementeerd
worden om programma’s in een taal te kunnen uitvoeren op een machine.
Ten tweede is het voor het succes van een taal belangrijk om een editor te
implementeren die taalspecifieke ondersteuning biedt voor het bewerken van
broncode.

Een vereiste voor taalspecifieke editors is het rapporteren van syntactische
en semantische fouten in de broncode. Daarnaast bieden deze editors functio-
naliteit om de structuur van een programma beter te kunnen begrijpen, functi-
onaliteit om te navigeren door deze structuur, en functionaliteit om de struc-
tuur te veranderen door middel van voorgeprogrammeerde standaardbewer-
kingen op de broncode.

Dit proefschrift beschrijft technieken die het implementeren van taalspe-
cifieke editor functionaliteit eenvoudiger maken. Het eerste deel van dit
proefschrift presenteert een techniek voor het diagnosticeren en corrigeren
van syntaxfouten die typisch zijn voor het interactief bewerken van bron-
code. Het tweede deel beschrijft technieken voor het implementeren van
semi-automatische code modificaties die bedoeld zijn om de kwaliteit van
broncode te verbeteren.

Correctietechnieken voor syntaxfouten.
Het ondersteunen van taalspecifieke functionaliteit in editors vereist een

taalspecifieke analyse van de broncode. Aan de basis van deze analyse staat
de parser. De parser vervult twee taken: 1) het controleren of de broncode
syntactisch correct is en 2) het construeren van een gestructureerde represen-
tatie van de broncode, ook wel de syntaxisboom genoemd. De syntaxisboom
vormt de basis voor verdere analyses en bewerkingen op de broncode, zoals
welke uitgevoerd worden door de taalspecifieke editor functies.

Traditioneel worden parsers voor ontwikkelomgevingen handmatig geïm-
plementeerd. Dit maakt het mogelijk om de parser te optimaliseren, maar
daar staat tegenover dat het implementeren en onderhouden van de parser
zeer arbeidsintensief kan zijn. Een modernere aanpak is om de parser te ge-
nereren met behulp van een parsergenerator. Parsergenerators genereren een
complete parser voor een taal op basis van een context-vrije grammatica die
de syntactische structuur van de taal beschrijft.

193



Accurate terugkoppeling tijdens het bewerken van broncode vereist een
interactieve parser die een actuele syntaxisboom bouwt, telkens wanneer de
broncode verandert. Een probleem bij interactief parseren is dat de broncode
vaak syntactisch incorrect is: de programmeur is dan immers bezig met het
bewerken van de code. Om syntactische fouten te kunnen diagnosticeren
en repareren maken parsers gebruik van correctietechnieken. Een correctie-
techniek voor syntaxfouten maakt het mogelijk om 1) alle aanwezige syntax-
fouten te vinden en te rapporteren en om 2) een syntaxisboom te construeren
voor de gecorrigeerde code. De geconstrueerde syntaxisboom maakt het mo-
gelijk om ook voor incorrecte programma’s accurate editor ondersteuning te
bieden.

In de eerste helft van dit proefschrift presenteren we een nieuwe techniek
om syntactische fouten correctie te realiseren voor gegenereerde parsers. De
techniek is specifiek gericht op SGLR (Scannerless-Generalized LR) parsers,
een parseertechniek die de volledige klasse van context-vrije grammatica’s
ondersteunt en het daarmee mogelijk maakt om verschillende talen modulair
samen te stellen tot nieuwe, gecombineerde talen.

In Hoofdstuk 2 presenteren we een techniek om context-vrije grammatica’s
uit te breiden met automatisch gegenereerde correctieregels. Deze correctie-
regels simuleren het invoegen van een missend symbool, of het verwijderen
van een misplaatst symbool of woord in de broncode. Om deze regels op
een efficiënte manier te kunnen toepassen hebben we de parseertechniek uit-
gebreid met een heuristiek die verschillende combinaties van correctieregels
uitprobeert in de buurt van de locatie waar een syntaxfout gedetecteerd is.
De heuristiek is zo gekozen dat het resulterende, gecorrigeerde programma
zo veel mogelijk de bestaande code volgt.

In sommige situaties leidt de bovengenoemde techniek niet binnen een
acceptabele tijdspanne tot een bruikbare correctie. Daarom presenteren we
in Hoofdstuk 3 een tweede techniek die toegepast kan worden als de eerste
techniek faalt. Deze techniek parseert incorrecte broncode door de code con-
structen met syntaxfouten te negeren. Code constructen worden gedetecteerd
door te kijken naar de gebruikte indentatie. Deze correctietechniek kan in
bijna iedere situatie succesvol toegepast worden, maar resulteert in minder
nauwkeurige fout correcties en diagnoses.

We hebben een extensieve evaluatie studie gedaan naar verschillende as-
pecten van onze correctietechniek. Deze studie toonde aan dat onze automa-
tische techniek toepasbaar is op verschillende talen en dat de kwaliteit van
onze correcties vergelijkbaar is met de kwaliteit van de correcties in de veel
gebruikte Java editor in de Eclipse ontwikkelomgeving. In tegenstelling tot
de Java editor in Eclipse is onze correctietechniek volledig automatisch gege-
nereerd.

De uitgebreidheid van de studie vereiste een automatische evaluatiemet-
hode die we presenteren in Hoofdstuk 4. De evaluatiemethode combineert het
automatisch genereren van testinvoerprogramma’s met het automatische be-
oordelen van de gecorrigeerde uitvoerprogramma’s. De invoerprogramma’s
worden gegenereerd door representatieve syntaxfouten te injecteren in cor-

194



recte broncode. De gecorrigeerde uitvoerprogramma’s worden beoordeeld
door de geselecteerde correcties te vergelijken met de optimale correcties voor
de geïnjecteerde syntaxfouten. Hierbij hanteren we een metriek op boom-
structuren om een uiteindelijke kwaliteitsscore te kunnen vaststellen.

In Hoofdstuk 5 onderzoeken we de praktische toepasbaarheid van de bo-
venstaande technieken. Het hoofdstuk beschrijft de implementatie van de
techniek in een bestaande parsergenerator. Het hoofdstuk beschrijft ook hoe
de techniek geïntegreerd kan worden met verschillende editorfuncties die di-
rect afhankelijk zijn van de foutcorrectietechniek. Tot slot beschrijft het hoofd-
stuk een uitbreiding op de techniek die de foutcorrectie in de buurt van de
cursor locatie verbetert. Deze uitbreiding is specifiek bedoeld om de editor
functie te verbeteren die het automatisch aanvullen van code constructen en
variabele namen ondersteunt.

Refactoring technieken.
De onderhoudbaarheid van computerprogramma’s wordt bepaald door de

structurele kwaliteit van de broncode. Refactorings zijn bewerkingen die toe-
gepast worden op broncode met als doel om de kwaliteit van de code te verbe-
teren, zonder daarbij het gedrag van het programma te veranderen. Voorbeel-
den van refactorings zijn: het hernoemen van een variabele, het groeperen
van opdrachten (statements) in een aparte functie en het generaliseren van
een functie door het toevoegen van een extra parameter.

Refactorings kunnen handmatig uitgevoerd worden door de programmeur,
maar dit vereist werk en brengt een risico op fouten met zich mee. Moderne
editors bieden de mogelijkheid om veelvoorkomende refactorings automa-
tisch op de broncode toe te passen. De programmeur kiest een voorgedefi-
nieerde refactoring uit een lijst en verstrekt eventuele aanvullende informatie
in een dialoogvenster. Vervolgens wordt er een voorbeeldweergave getoond
van de broncode veranderingen en worden eventuele fouten gerapporteerd.
Indien de programmeur de refactoring accepteert, worden de getoonde ver-
anderingen automatisch toegepast op de broncode.

Refactorings zijn specifiek voor een bepaalde taal. Het implementeren van
refactorings voor nieuwe talen is moeilijk en arbeidsintensief. Refactoring
implementaties moeten niet alleen de bedoelde structurele bewerking specifi-
ceren, maar ook: de interactie met de gebruiker afhandelen, controleren of er
geen fouten geïntroduceerd worden en de layout van de veranderde fragmen-
ten corrigeren zodat deze overeenkomt met de layout die gehanteerd wordt
in de rest van het programma. In de tweede helft van deze thesis presenteren
we taalparametrische technieken voor het implementeren van refactorings.

Refactorings vereisen een complexe analyse en structurele modificatie op
de structuur van broncode. Deze worden typisch geïmplementeerd op een ab-
stracte syntaxisboom die de broncode representeert. Abstracte syntaxisbomen
maken de programmastructuur expliciet en abstraheren over de specifieke la-
yout van broncode. Echter, het eindresultaat van een refactoring is een mo-
dificatie op de concrete broncode, inclusief layout. Hoofdstuk 6 presenteert
een algoritme om structurele veranderingen op de abstracte boomstructuur te
vertalen naar tekstuele veranderingen op de concrete broncode. Vervolgens

Samenvatting 195



wordt dit algoritme uitgebreid met een methode om de layout van gemodifi-
ceerde fragmenten aan te passen aan de layout van omringende fragmenten
en met een heuristische methode voor het migreren van commentaar.

Refactorings mogen geen onverwachte effecten hebben die ervoor zorgen
dat het resulterende programma ongeldig is of ander gedrag vertoont dan
het oorspronkelijke programma. Een voorbeeld van een dergelijke situatie is
wanneer een refactoring een nieuwe variabelenaam introduceert die conflic-
teert met een bestaande variabelenaam. In dat geval kan de naambinding van
de bestaande variabele of de naambinding van de nieuw geïntroduceerde va-
riabele overschreven worden. Hoofdstuk 7 presenteert een techniek om naam-
bindingen te controleren en, waar mogelijk, te herstellen. De techniek maakt
gebruik van de naambinding analyse die geïmplemnteerd is in de compiler
voor de taal en is daarmee generiek toepasbaar op verschillende talen.

196



Curriculum Vitae

Maartje de Jonge

08 november 1979
Geboren te Amsterdam

1992–1997
Gymnasium diploma
Barlaeus Gymnasium te Amsterdam

1997–2004
M.A. in Philosophy
Utrecht University
Department of Philosophy

1997–2005
M.Sc. in Mathematics
Utrecht University
Department of Mathematics

2005–2006
Teacher in Mathematics
Hogeschool Utrecht

2004–2008
Software Developer
Operator Group Delft

2009–2013
Ph.D. in Computer Science
Delft University of Technology
Department of Software Technology

2013
Software Developer
NIPO Software

197


	Language-Parametric Techniques for Language-Specific Editors
	Acknowledgments
	Contents
	Introduction
	Problem Statement
	Parse Error Recovery
	Refactoring Techniques

	Research Questions
	Parse Error Recovery
	Refactoring Techniques

	Background and Context
	Parsers for Different Grammar Classes
	Scannerless Parsing

	Approach
	Origin of Chapters

	I Error Recovery for Generated Modular Language Environments
	Error Recovery for Scannerless Generalized Parsing
	Introduction
	Composite Languages
	Parsing Composite Languages
	Defining Composite Languages

	Island Grammars
	Permissive Grammars
	Chunk-Based Recovery Rules
	Deletion Recovery Rules
	Insertion Recovery Rules
	Combining Different Rule Sets
	Automatic Derivation
	Customization

	Parsing Permissive Grammars
	Backtracking
	Choice Points
	Search Heuristic
	Algorithm

	Evaluation
	Experimental Setup
	Comparing Different Rule Sets
	Pathological Cases
	Language Independence, Flexibility and Transparency

	Related Work
	Conclusion

	An Indentation Based Technique for Locating Parse Errors
	Introduction
	Parse Error Recovery
	Correcting and Non-Correcting Techniques
	Local, Global and Regional Techniques

	Permissive Grammars and Backtracking
	Limitations

	Layout-Sensitive Region Selection
	Nested Structures
	Indentation-based Partitioning
	Region Selection
	Algorithm
	Practical Considerations

	Evaluation
	Experimental Setup
	Comparing Different Combinations of Techniques

	Related Work
	Conclusion

	Automated Evaluation of Parse Error Recovery Techniques
	Introduction
	Understanding Edit Behavior
	Experimental Design
	Distribution of Syntax Errors
	Classification of Syntax Errors

	Generation of Syntax Errors
	Error Generation Rules
	Error Seeding Strategies
	Predefined Generators

	Automated Quality Measurement
	Oracle Construction
	Quality Metrics
	Comparison of Metrics

	Evaluation of Error Recovery for SGLR
	Setup
	Experiments
	Summary

	Discussion
	Related Work
	Conclusion

	Integrating Error Recovery in the Spoofax Language Workbench
	Introduction
	Overview Recovery Approach
	Implementation
	Integrating Error Recovery in an IDE
	Guarantees on Recovery Correctness
	Syntactic Error Reporting
	Syntax Highlighting
	Content Completion

	Evaluation
	Conclusion


	II Language-Parametric Refactoring Techniques
	Source Code Reconstruction
	Introduction
	Problem Analysis
	Motivating Example
	Correctness and Preservation Criteria
	Summary

	Approach
	Origin Tracking
	Text Reconstruction Algorithm
	Notation
	Algorithm
	Optimizations

	Correctness and Preservation Proofs
	Correctness
	Layout Preservation
	Irregularities

	Layout Adjustment
	Comment Heuristics

	Syntactic Sugar Preservation
	Adaptations for Sugar Preservation

	Evaluation
	Discussion
	Related Work
	Conclusion

	Name Binding Preservation
	Introduction
	The Stratego Transformation Language
	Motivation
	Preserving Name bindings
	Restoring Name Bindings
	Name Lookup in Java
	Name Analysis
	Resolving Name References
	Checking Name Bindings
	Restoring Name Bindings by Creating Qualified Names

	Evaluation
	Coverage
	Correctness
	Performance

	Related Work
	Conclusion


	Conclusion
	Contributions
	Research Questions Revisited
	Future Work

	Bibliography
	Samenvatting
	Curriculum Vitae

