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Preface

First, I would like to apologise to any non-mathematicians reading this. No matter how clearly I
write, anyone without a basic introduction to functional analysis is not going to be able to make
much sense of what I write. This is also going to include most bachelor students. Trust me when
I tell you this is an interesting topic, but there is no way I’m going to be able to explain all the
necessary theory and still be able to get to the point.

Ergodic theory is a relatively well established area of mathematics, but the application of general
functional analysis tools to it is relatively recent. As such, some of the basic definitions presented
here look somewhat different to those found in most books on ergodic theory. The Blum-Hanson
property is studied here in a context that is probably far beyond what original authors expected.

After a brief introduction to Ergodic theory, Chapter 2 covers all the background and definitions
needed to understand the later chapters. Chapter 3 covers the major positive results to date
regarding the Blum-Hanson property. Chapter 4 introduces a new class of operators that are
interesting for the results in the final chapter, the Generalised Shift Operators. Results for this
new class of operators are then used to analyse a number of existing examples in Chapter 5. Here
existing results are extended to cover more spaces and a new counter-example is introduced based
on a suggestion by László Zsidó.

For completeness some referenced results are included in Appendix A. Additionally, for students
who have only completed a basic course in functional analysis, some extra concepts are defined in
Appendix B.

7



8



Chapter 1

An introduction to Ergodic theory

Ergodic theory is a branch of mathematics whose name gives no clue as to what it may be about.
The exact origin of the word ’ergodic’ is not really known, though the common version is that L.
Boltzmann in 1885 used the word ’ergode’ as a special kind of ’monode’. There are however other
versions, as discussed by [Mat88].

Simply put, Ergodic theory is the study of dynamical systems and how they evolve over time.
The canonical example is that of a set of gas particles contained inside a box. Here we know from
experience that eventually the gas will spread throughout the box such that the energy and the
particles are equally distributed. This is the second law of thermodynamics, but that doesn’t really
tell us why. We would like to be able to examine a dynamical system to determine what it will do
in the long run. Hence the interest in formalising the problem mathematically.

The process of formalising is as follows: we start with the state space. In the example above it
would be a set of vectors indicating both the position and the velocity of each gas particle. So if we
have d gas particles, we have a state space of R6d vectors (assuming 3D space). As mathematicians
don’t like being specific when it isn’t necessary, the state space is usually indicated as Ω. The next
step is to describe how the state evolves. Given the current state then using Newton’s laws of
mechanics and other physical laws we can define a function ϕ which takes the current state and
returns the next one. Hence we have

ϕ : Ω→ Ω.

Now, assume we have a starting state ω0 then the next state is ϕ(ω0) followed by ϕ2(ω0). By
repeatedly applying this function we produce a sequence of states

orb+(ω0) := {ϕn(ω0) : n ∈ N0}.

This sequence is called the orbit of ω0. The goal of Ergodic Theory is to say something about
what happens to these states as n→∞.

Now comes the first problem: ϕ is probably not a nice function, which is another way of saying
it is not linear. Not being linear makes it quite hard to work with. Additionally, the given state
space Ω is also quite unwieldy, given that in the real world we would never be able to measure the
state accurately enough anyway. So we change our perspective: instead, we consider an observable

f : Ω→ R.

This could be, for example, the temperature at a given point in the given state. For each point in
the space (R3d is this case) there would be an observable for that point. These observables may
be nonlinear, but they together form a vector space, since any linear combination of observables
is also an observable. We could then look at how the function ϕ affects the set of observables.
Looking at it this way has a huge advantage, since the induced mapping

Tϕ := (f 7→ f ◦ ϕ)

9



The Blum-Hanson Property 1. An introduction to Ergodic theory

is linear. This is nice as now the methods of functional analysis can be applied to the problem, with
success. Instead of looking at the orbit of ϕ we look at the orbit of Tϕ applied to the observable
f . Even from a physical point of view it is clearly much more useful to be able to study how the
temperature and pressure evolves than predicting the location of each individual particle. As a
bonus it is also easier.

One slight snag is that we have a function which gives us the next state, but the real world is
nowhere near that simple. No measuring device is good enough to calculate an instantaneous
pressure or temperature, instead they measure averages over time. So instead of just following the
orbit of Tϕ, we consider the averages over time and how they behave, i.e.

lim
N→∞

1
N

N−1∑
n=0

Tnϕ f(ω0) = lim
N→∞

1
N

N−1∑
n=0

f(ϕn(ω0)) = · · ·?

However, all this is for nought if we still need to determine the initial state ω0. What we would
really like is if the result of the above series was independent of the initial value. This is what
Boltzmann suggested and he had an idea for what it would be, the now well-known phrase “time-
mean equals space-mean”. He suggested there would be some probability measure µ on Ω such
that:

Hypothesis 1.1 (The Ergodic Hypothesis). For each initial state ω0 ∈ Ω and each (reasonable)
observable f : Ω→ R, it is true that “time mean equals space mean”, i.e.,

lim
N→∞

1
N

N−1∑
n=0

f(ϕn(ω0)) =
∫

Ω

f dµ

Going back to a physical interpretation of this, that the system would converge to some kind of
average over all the observables over the state space.

A major step forward was the proof of the Mean Ergodic Theorem by von Neumann, which proved
the following for Hilbert spaces.

Theorem 1.2 (The Mean Ergodic Theorem, von Neumann, 1931). Let (Ω,Σ, µ;ϕ) be such that
µ is ϕ-invariant and consider the induced operator T := Tϕ. Then for each f ∈ L2(Ω,Σ, µ) the
limit

lim
n→∞

1
n

n−1∑
j=0

T jf

exists in the L2-sense and is a fixed point of T .

Proof. [vN32].

Operator-theoretic Ergodic Theory

This is where the mathematicians took off. Once the problem was posed they began a study of
what conditions on Tϕ,Ω and f would guarantee the above result. While being originally based
on a physical problem, it has since developed into a field of mathematics that has some startling
interactions with other fields, such as number theory and group theory. Being operator-theoretic
means that the exact origins of the definitions are irrelevant, only the properties of the spaces we
apply them to. So, here we will be concentrating on the following specific cases:

• Ω will not be considered directly. Instead we will only concern ourselves with the vector space
of measurements, i.e. real-valued functions on Ω. Specifically, we will primarily consider the
standard spaces, `p and Lp with 1 6 p 6∞.

10



Martijn van Oosterhout

• Tϕ (often indicated by just T ) will be a linear operator that will be a contraction in general,
though we will also consider the class of power-bounded operators.

• In the series above we will be looking at both weak and strong convergence, as well as
convergence of sub-sequences.

Continuing the abstraction, the concept of ergodic theory was extended to so called topological
dynamical systems.

Definition 1.3 (TDS). The pair (K;ϕ) is called a topological dynamical system (TDS) if K is a
non-empty compact space and ϕ : K → K is continuous.

A TDS is simply what was described in the introduction but applied to an abstract compact space
K. The extension to measure spaces is captured in the following definition.

Definition 1.4 (MDS). The quadruple (Ω,Σ, µ;ϕ) is called a measure-preserving dynamical sys-
tem (MDS) if (Ω,Σ, µ) is a probability space, ϕ : Ω → Ω is measurable and µ is ϕ-invariant, i.e.
µ(A) = µ(ϕ−1A) for all A ∈ Σ.

However, this is operator-theoretic ergodic theory and hence we do not trouble ourselves with the
precise origins of the terminology. Instead, we see that the induced operator Tϕ is a linear operator
and try to apply the power of functional analysis to it. The ergodic hypothesis is captured in the
following definition.

Definition 1.5 (Mean Ergodic, operator theoretic). An operator T on a Banach space X is called
mean ergodic if

1
N

N∑
n=1

Tnx→ Px

in the norm of X for some operator P ∈ BL(X).

Definition 1.6 (Mean Ergodic Projection). The operator P ∈ BL(X) above, when it exists, is
called the mean ergodic projection of T .

It can be shown that P is the projection onto the fixed space of T along ran(I − T ). On a Hilbert
space this is the orthogonal projection onto Fix(T ). Note that showing mean-ergodicity can be a
task by itself, but fortunately, for many common spaces the results are simple.

Example 1.7. Every power bounded operator on a reflexive Banach space is mean-ergodic.

This is obviously a very large class of operators.

Example 1.8 (Dunford-Schwartz, 1956). Let (Ω,Σ, µ) be a finite measure space. An operator
T ∈ BL(L1(Ω,Σ, µ)) is a Dunford-Schwartz operator (or complete contraction) if

‖T‖1 6 1 ‖T‖∞ 6 1.

If T is a Dunford-Schwartz operator, then T is mean-ergodic.

Proof. [DS56]

Example 1.9. Let a ∈ T (the torus) and let φa be the rotation by a on T. Then the induced
operator Tφa on C(T) is mean-ergodic.

Considering finer classifications of operators we have the following definitions.

11



The Blum-Hanson Property 1. An introduction to Ergodic theory

Definition 1.10 (Strongly mixing, operator theoretic). The operator T on a Banach space X is
called strongly mixing if the sequence (Tn)n converges in the weak operator topology. Specifically,
there exists an operator P ∈ BL(X) such that

〈Tnf, g〉 → 〈Pf, g〉

for all f ∈ X, g ∈ X∗.

Strongly mixing is a very strong condition. Any strongly mixing operator is automatically mean-
ergodic and in fact the operator P is the mean-ergodic projection mentioned earlier. The origin
of this term is that a strongly mixing dynamical system diffuses over time, that if we choose any
part of our space, then over time all the “particles” in there will be distributed equally over the
entire space. Between these two levels there is another form of mixing.

Definition 1.11 (Weakly mixing, operator theoretic). An operator T on a Banach space X is
called weakly mixing if there exists an increasing sequence of positive integers (ni)i of density 1
such that (Tni)i converges weakly. Specifically there exists an operator P ∈ BL(X) such that

〈Tnif, g〉 → 〈Pf, g〉

for all f ∈ X, g ∈ X∗.

The only change is shifting from simple convergence to the convergence of a subsequence of density
1. A small change but one with significant implications. It essentially means that the diffusion is
perfect, except if we examine the measurements at “bad” times, where these “bad” times are of
density 0, i.e. almost never. For a long time it was an open problem to find MDSs that were weakly
mixing but not strongly mixing. These were found by Chacon in [Cha67].

We can summarise the above relationships as follows.

Strongly mixing //Weakly mixing // Mean-ergodic

We are not discussing ergodic theory in general, here we are specifically interested in the following
result.

Theorem 1.12 (Blum-Hanson (1960)). Let (Ω,Σ, µ;ϕ) be an MDS with T := Tϕ its induced
operator on Lp(Ω,Σ, µ), 1 6 p <∞. The MDS is strongly mixing if and only if for every increasing
sequence of positive integers (nk)k and for every f ∈ Lp(Ω,Σ, µ) we have the strong convergence:

lim
n→∞

1
n

n−1∑
j=0

Tnjf =
∫

Ω

f dµ · 1

Proof. See [BH60].

This result opened a new area of research in ergodic theory. The goal of this thesis is to give an
overview of the results in the area, in particular the recent results by Müller and Tomilov [MT07].

12



Chapter 2

Background

2.1 Power-bounded operators

Every bounded linear operator has a norm which gives an upper bound to the growth of the
operator. It is defined as

‖T‖ = sup
‖x‖=1

‖Tx‖.

This is the induced norm or operator norm. If ‖T‖ 6 1 then T is called a contraction. Intuitively
this means that it shrinks the input vector to something smaller.

Definition 2.1. An operator T on a Banach space X is called power bounded if the powers of the
operator are uniformly bounded, that is

sup
n∈N
‖Tn‖ < C

for some constant C.

Obviously every contraction is power-bounded, so the interesting cases involving power-bounded
operators focus on operators whose norms are greater than one.

Definition 2.2. Let T be a power-bounded operator on the Banach space X. Then one can define
a new norm on X as

|||x||| := sup
n>0
‖Tnx‖

for all x ∈ X.

Since we have the bounds ‖x‖ 6 |||x||| 6 C‖x‖ the new norm is equivalent to the old norm (i.e. it
induces the same topology), however with respect to this new norm T is a contraction. It is worth
noting that while the new norm preserves the topology, it does not preserve other properties. For
example, after renorming a Hilbert space is no longer a Hilbert space. In general the properties of
a space are divided into topological properties, which are preserved by the change of norm, and
metric properties, which depend on the precise norm.

Example 2.3. As a simple example, consider the operator T defined on R2 by the matrices

T =
[
cos θ − sin θ
sin θ cos θ

] [
2 0
0 1

2

]
.

This operator first scales the axes and then rotates the space by θ. Intuitively, as the point gets
rotated we would expect it to get pulled in and out but never escape or go to zero, except in the
case where θ is a multiple of π. The actual behaviour is more complicated, depending on the exact
value of θ.

13



The Blum-Hanson Property 2. Background

Lemma 2.4. The operator T as defined above is power-bounded whenever |cos θ| < 4
5 .

Proof. By expansion we have that

T =
[
2 cos θ − 1

2 sin θ
2 sin θ 1

2 cos θ

]
.

The eigenvalues are solutions of the characteristic equation

(2 cos θ − λ)( 1
2 cos θ − λ) + sin2 θ = 1− 5

2λ cos θ + λ2.

So we have
λ = 5

4 cos θ ± 1
2

√
25
4 cos2 θ − 4 = 5

4 cos θ ±
√

25
16 cos2 θ − 1.

We need to examine three cases:

• When |cos θ| < 4
5 then the value under the square root is negative giving a pure imaginary

number, so
|λ|2 = 25

16 cos2 θ − 25
16 cos2 θ + 1 = 1

and T is power-bounded.

• When |cos θ| > 4
5 the value under the square root is positive and for the larger of the two

eigenvalues
|λ|2 = 25

16 cos2 θ + 25
16 cos2 θ − 1 > 1

So we can decompose T as QDQ−1 where D is a diagonal matrix containing the eigenvalues.
Now Tn = QDnQ−1 and as Dn is not bounded, T is not power-bounded.

• When |cos θ| = 4
5 we have the eigenvalue 1 with multiplicity two. Now

T =
[

8
5 − 3

10
6
5

4
10

]
.

As this matrix has a deficient (or defective) eigenspace, it decomposes as

T = Q

[
1 1
0 1

]
Q−1.

Now,

Tn = Q

[
1 n
0 1

]
Q−1

and T is again not power bounded.

As you can see, power-boundedness can be a very subtle property. It is also intimately related to
the spectrum, in particular the spectral radius.

Definition 2.5 (Spectral radius). The spectral radius of an operator T , denoted by ρ(T ), is
defined as

ρ(T ) = sup{|λ| : λ ∈ σ(T )}

where σ(T ) is the spectrum of T .

It is the spectral radius that reveals the underlying growth pattern. If the spectral radius is strictly
less than one, the powers will converge to zero. If the spectral radius is greater than one the powers
will be unbounded. Only when the spectral radius is exactly one can other behaviours appear.

The relationship with power-bounded operators is via Gelfand’s Formula.

14



2.2. Polynomially-bounded operators Martijn van Oosterhout

Theorem 2.6 (Gelfand’s formula). Let T be an operator on a Banach space X. Then the spectral
radius (ρ(T )) is given by

ρ(T ) = lim
n→∞

‖Tn‖1/n.

Proof. [Gel41]

This shows that any power-bounded operator has a spectral radius of 1, just like a contraction.
There has been much research into the exact relationship between power-bounded operators and
contractions.

2.2 Polynomially-bounded operators

Another class of functions we will consider are the polynomially-bounded operators. Consider the
following definition.

Definition 2.7 (H∞ norm). Define the ‖·‖H∞ norm on the space of complex polynomials as

‖q‖H∞ := sup
z∈C
|z|=1

|q(z)|.

Now we define the set of polynomials

P = {q is a polynomial : ‖q‖H∞ 6 1}

This is the set of all polynomials which are modulus less than one on the unit disc. This definition
only looks at the boundary of the unit-disc, but as q is a polynomial and thus analytic, the
maximum modulus principle applies.

Definition 2.8. The operator T is called polynomially bounded if there exists a constant C such
that

‖q(T )‖ 6 C · ‖q‖H∞

for any polynomial q.

Example 2.9. As an example of an operator that is polynomially bounded, let (λn)n be a sequence
of complex numbers such that |λn| 6 1. Then the multiplication operator M ∈ BL(`p), defined by

Men := λnen,

is polynomially bounded. To see this note q(M)en = q(λn)en where q is a polynomial and that
q(M) is still a multiplication operator. Hence ‖q(M)‖ = supn |q(λn)| 6 ‖q‖H∞ which is bounded
by the definition of the polynomial q.

The classical result in this area is the von Neumann inequality.

Theorem 2.10 (von Neumann inequality, 1951). Let T be a contraction on a Hilbert space. Then
for any polynomial q(z) we have

‖q(T )‖ 6 ‖q‖H∞ .

In particular T is polynomially bounded by 1.

Proof. [vN51]

15



The Blum-Hanson Property 2. Background

In other words, for a fixed contraction T , the polynomial functional calculus map is itself a con-
traction.

The converse, whether all polynomially bounded operators are similar to a contraction, was for a
very long time an open question but was finally laid to rest by G. Pisier in [Pis97]. The answer is
no.

Definition 2.8 is only really useful in Hilbert spaces. This is because on general `p spaces only very
special operators are polynomially-bounded.

Example 2.11. For example, suppose S is the right-shift operator and suppose we have a complex
sequence (an)∞n=0 such that

∑∞
n=0|an| diverges. Then suppose the sequence of polynomials qN (z) =∑N

n=0 anz
n are such that qN (z) ∈ P. Then

‖qN (S)‖`1→`1 > ‖qN (S)e0‖`1→`1 =
N∑
n=0

|an|,

and so the right shift operator is not polynomially bounded on `1. The adjoint (the left shift) gives
a similar example for `∞.

To see that such a sequence exists we need a result from Zygmund and Paley ([MP81]). Consider
the series

f(x) =
∞∑
n=0

cnεneinx

where
∑∞
n=0 c

2
n < ∞ and (εn)n is a Rademacher sequence, i.e. it is a sequence of independent

random variables taking the values±1 with the same probability 1
2 . Then the above series converges

uniformly almost surely if
∞∑
n=2

c2n log(n)1+ε <∞

for any ε > 0. Now use cn = 1
n and find a bounded realisation and set an = εncn and we have the

required sequence of polynomials.

In [Zar05] it is shown that more generally contractions aren’t polynomially bounded in general
Banach spaces.

A suggested extension of the term polynomial boundedness to general `p (even Lp) is known as
Matsaev’s conjecture. Here the requirement is that for any polynomial q(z) and contraction T we
have

‖q(T )‖Lp→Lp 6 ‖q(S)‖`p→`p .

In other words, the shift operator represents the worst case. For p = 2 it can be shown that this is
the von Neumann inequality. For p = 1 and p =∞ it is a simple calculation, Example 2.11 shows
an extreme case. For all other p it is an open question.

The main question with respect to polynomially bounded operators is how they relate to power-
bounded operators, since a polynomially bounded operator is clearly also power-bounded. The
relationships between contractions, power-bounded and polynomially bounded operators can be
described as follows.

Contraction // Polynomially-bounded // Power-bounded

2.3 The Blum-Hanson property

Returning to the primary topic of this thesis, the definition of the Blum-Hanson property is as
follows.

16



2.3. The Blum-Hanson property Martijn van Oosterhout

Definition 2.12 (Blum-Hanson property, sequence). A sequence (xn)∞n=1 in a Banach space X
has the Blum-Hanson property if for each increasing sequence of positive integers (kn)∞n=1 the limit

lim
N→∞

1
N

N∑
n=1

xkn

exists in the norm topology.

An important thing to note is that a sequence can only have the Blum-Hanson property if it is
bounded.

Lemma 2.13. Suppose a sequence (xn)n in a Banach space X has the Blum-Hanson property.
Then it is bounded.

Proof. Suppose the sequence is not bounded. Then we can inductively construct an increasing
sequence of positive integers (kn)n such that

‖xk1‖ > 1 for n = 1

‖xkn
‖ > n2 +

∥∥∥∥∥∥
n−1∑
j=1

xkj

∥∥∥∥∥∥ for n > 1.

Then ∥∥∥∥∥∥ 1
n

n∑
j=1

xkj

∥∥∥∥∥∥ =
1
n

∥∥∥∥∥∥xkn
+
n−1∑
j=1

xkj

∥∥∥∥∥∥
>

1
n

∣∣∣∣∣∣‖xkn
‖ −

∥∥∥∥∥∥
n−1∑
j=1

xkj

∥∥∥∥∥∥
∣∣∣∣∣∣

>
1
n

∣∣∣∣∣∣
n2 +

∥∥∥∥∥∥
n−1∑
j=1

xkj

∥∥∥∥∥∥
−

∥∥∥∥∥∥
n−1∑
j=1

xkj

∥∥∥∥∥∥
∣∣∣∣∣∣

= n

and so the sequence (xn)n does not have the Blum-Hanson property.

If the above limit exists for all subsequences (kn)n then necessarily the limit must be independent
of the subsequence. To see this consider the possibility of two different subsequences converging
to different limits. Then one could construct a third series which does not converge at all, which
is a contradiction.

The application to ergodic theory is whether the orbit of a point under the powers of an operator
has the required property.

Definition 2.14 (Blum-Hanson property, operator). Let X be a Banach space. The operator
T ∈ BL(X) has the Blum-Hanson property if for every increasing sequence of positive integers
(kn)∞n=1 the limit

lim
N→∞

1
N

N∑
n=1

T knx

exists in the norm topology for each x ∈ X.
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The Blum-Hanson Property 2. Background

The limit depends on x. We note:

• If an operator has the Blum-Hanson property for all x ∈ X then as noted above, T must be
a power-bounded operator by application of the principle of uniform boundedness.

• By using the sequence kn = n we have convergence to the mean-ergodic projection, so any
operator with the Blum-Hanson property is mean-ergodic. By the equality of the limits every
subsequence converges to this projection.

The origin of this term, as mentioned earlier, is from the paper by Blum-Hanson [BH60] where it
was proved that the Blum-Hanson property is equivalent to the strong mixing property whenever
T is an operator induced by a measure preserving transformation.

This lead to research into determining for what other classes of operators this equivalence could
be shown. It became apparent that two kinds of equivalences can be shown. The first kind is the
strong kind, where the equivalence is pointwise.

Definition 2.15 (Blum-Hanson equivalence, individual). A mean ergodic operator T ∈ BL(X)
satisfies the individual (or strong) Blum-Hanson equivalence if for each x ∈ X the following are
equivalent.

• Tnx→ Px weakly,

• 1
N

∑N
n=1 T

knx→ Px in norm for all increasing sequences of positive integers (kn)n,

where P ∈ BL(X) is the mean ergodic projection of T .

The second kind is weaker, where the equivalence is only for the operator as a whole.

Definition 2.16 (Blum-Hanson equivalence, operator). A mean ergodic operator T ∈ BL(X)
satisfies the operator (or weak) Blum-Hanson equivalence if the following are equivalent.

• Tn → P in the weak operator topology,

• 1
N

∑N
n=1 T

kn → P in the strong operator topology for all increasing sequences of positive
integers (kn)n,

where P ∈ BL(X) is the mean ergodic projection of T .

Clearly the strong equivalence implies the weak equivalence. The strong equivalence is much more
useful as it does not require any properties of the operator as a whole, it only needs properties of
an individual orbit.

As noted, the operator P in the above definition, if it exists, is simply the mean-ergodic projection
(Definition 1.6) and is thus the projection onto the fixed space of T . Since for any x ∈ Fix(T ) the
above equivalences are trivially true, it is sufficient (that is, without loss of generality) to show
that the equivalences are true for the case where P = 0, i.e. operators with a trivial fixed space.

When proving the Blum-Hanson equivalence, one implication is easy and actually true for all
Banach spaces.

Lemma 2.17. Let X be a Banach space. If the sequence (xn)n ∈ X has the Blum-Hanson property
then the sequence (xn)n converges weakly.

Proof. The Blum-Hanson property gives strong mean convergence along any subsequence, so in
particular 1

N

∑N
n=1 xn → x strongly. Hence if (xn)n is weakly Cauchy then xn → x weakly.

If (xn)n does not converge weakly, then there must exist a y ∈ X∗ such that 〈xn, y〉 does not
converge. This sequence is bounded so we can create two subsequences (rj)j and (sj)j such that
limj→∞〈xrj , y〉 6= limj→∞〈xsj , y〉. Now we can create a new sequence (kj)j taking 1 element from
rj , 2 from sj , 4 from rj , etc. In this sequence 1

N

∑N
n=1〈xkj , y〉 diverges weakly and thus also

strongly. Contradiction.
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Corollary 2.18. Let T be an operator on a Banach space X. If T has the Blum-Hanson property
then (Tn)n converges in the weak operator topology.

In contrast, the other implication is far from easy in the general case. There have been proofs for
various specific spaces, but nothing general. There is however a partial converse.

Theorem 2.19. Let T be an operator on the Banach space X. Then if T is weakly mixing then

1
N

N∑
n=1

T knx

converges in norm for all subsequences (kn)n of positive lower density. If X∗ is separable, the
above holds “if and only if”.

Proof. [Jon71]

Since strongly mixing implies weakly mixing, any counterexample of the Blum-Hanson equivalence
must use sequences of zero lower density.

Generalisations

In recent times there has been research into variations of the above property. They are beyond
the scope of this thesis but brief descriptions are included here for reference.

Different subsequences. Instead of just considering all increasing subsequences of N, one could
look at the convergence requiring only sequences from a particular class. For example:

• the class N+ of all subsets of N having strictly positive lower density;

• the class Nrd of all relatively dense subsets of N.

With this terminology we say that a sequence (xk)k in a Banach space has the Blum-Hanson
property with respect to N if the Cesàro means 1

n

∑n
j=1 xkj

are convergent in the norm topology
for all subsequences belonging toN . Just as in the usual case, it can be shown for each of the classes
above that if the Cesàro means converge then they must converge to the same limit. However, it
is no longer true that the sequence must be bounded. See [Zsi07].

Weak convergence. Instead of looking only at the strong convergence of the averages, we could
look at the weak convergence instead. The first results in this direction were by [JL76] where it
was shown to be related to weak mixing in general and to the convergence along subsequences of
positive lower density. This work has been extended by [Zsi07].

2.4 Similarity

Definition 2.20 (Similarity). Two bounded linear operators S : X → X and T : Y → Y are
called similar if there exists a bounded invertible operator Q : X → Y such that:

T = QSQ−1

The way to think of this is that the operators do the same thing but in different bases. The Jordan
decomposition theorem shows that every finite dimensional matrix is similar to an almost diagonal
matrix. Similarity preserves many properties.
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Lemma 2.21. Let S and T be two similar operators. Then:

1. S is power-bounded if and only if T is power-bounded.

2. S is polynomially bounded if and only if T is polynomially bounded.

3. For any sequence of polynomials (pn)n, pn(S) converges weakly if and only if pn(T ) converges
weakly.

4. For any sequence of polynomials (pn)n, pn(S) converges strongly if and only if pn(T ) con-
verges strongly.

As a direct consequence:

• S is mean ergodic if and only if T is mean ergodic.

• S has the Blum-Hanson property if and only if T has the Blum-Hanson property.

• S is strongly mixing if and only if T is strongly mixing.

Proof. As S and T are similar there exists a Q such that S = QTQ−1. In each case we show the
“if”, the “only if” follows by reversing the roles of S and T .

1. Suppose S is power-bounded. Then

sup
n
‖Tn‖ = sup

n
‖QSnQ−1‖ 6 ‖Q‖‖Q−1‖ sup

n
‖Sn‖

and T is power-bounded.

2. Suppose S is polynomially bounded. Let p(z) be a polynomial, then:

‖p(T )‖ = ‖p(QSQ−1)‖ = ‖Qp(S)Q−1‖ 6 ‖Q‖‖Q−1‖‖p(S)‖

and T is polynomially bounded.

3. Suppose S converges weakly for the sequence polynomials (pn)n to Ŝ. Without loss of gen-
erality we can choose Ŝ to be zero. Choose an ε > 0, x ∈ Y, y ∈ Y ∗ and find M such that
|〈pM (S)Q−1x,Q∗y〉| < ε. Then

|〈pM (T )x, y〉| = |〈QpM (S)Q−1x, y〉| = |〈pM (S)Q−1x,Q∗y〉| 6 ε

and so T converges weakly to zero for the same sequence of polynomials.

4. Suppose S converges strongly for the sequence polynomials (pn)n. Choose an ε > 0 and find
M and N such that ‖pM (S)− pN (S)‖ < ε. Then for any x ∈ Y :

sup
‖x‖=1

‖pM (T )x− pN (T )x‖ = ‖Q(pM (S)− pN (S))Q−1x‖ 6 ‖Q‖‖Q−1‖ε

and T converges strongly for the same sequence of polynomials.

One of the early results on polynomial boundedness relates to similarity.

Theorem 2.22. Let T be a power-bounded operator on a Hilbert space H such that the inverse
T−1 is also power-bounded, i.e. ‖Tn‖ 6 C and ‖T−n‖ 6 C for some C for all n ∈ N. Then there
exists a self-adjoint operator Q such that

1
C 6 ‖Q‖ 6 C

and QTQ−1 is a unitary transformation.
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What this theorem proves is that under the stated conditions, the operator is actually similar to
a unitary operator.

Proof. [SN47] Consider two elements f, g ∈ H. Then the sequence (〈Tnf, Tng〉)n is a bounded
sequence and so we can define a linear functional φ(f, g) : H ×H → C as a Banach limit of the
sequence as n→∞. By the properties of the Banach limit we have:

φ(a1f1 + a2f2, b1g1 + b2g2) = a1b1φ(f1, g1) + a1b2φ(f1, g2) + a2b1φ(f2, g1) + a2b2φ(f2, g2)

which makes φ(f, g) a hermitian sesquilinear form, i.e. it is linear in f and antilinear in g. Fur-
thermore the inequalities

〈Tnf, Tnf〉 = ‖Tnf‖2 6 C2‖f‖2

and
‖f‖2 = ‖T−nTnf‖2 6 ‖T−n‖2‖Tnf‖2 = C2〈Tnf, Tnf〉

show that, for all n ∈ N
1
C2
‖f‖2 6 〈Tnf, Tnf〉 6 C2‖f‖2.

This uniformly bounds the terms of the Banach limit, hence

1
C2
‖f‖2 6 φ(f, f) 6 C2‖f‖2.

Using a standard result on bounded hermitian sesquilinear forms (Theorem A.5) there exists a
linear operator A ∈ BL(H) such that φ(f, g) = 〈Af, g〉. Since φ(f, f) ∈ R by another standard
result (Lemma A.6) we have that A is hermitian.

Now, by the shift invariance of the Banach limit we have that

φ(Tf, Tg) = φ(f, g)

from which follows

〈T ∗ATf, g〉 = 〈ATf, Tg〉 = φ(Tf, Tg) = φ(f, g) = 〈Af, g〉

which means that
T ∗AT = A.

Note that since φ(f, f) > 0 we know that A is even positive, so let Q be the positive self-adjoint
square root of A, i.e. Q2 = A. From the above we have

1
C

6 ‖Q‖ 6 C and
1
C

6 ‖Q−1‖ 6 C

Defining U = QTQ−1 we see from

U∗U = Q−1(T ∗QQT )Q−1 = Q−1(QQ)Q−1 = I

that U is isometric. As it admits an inverse U−1 = QT−1Q−1, it is unitary. This completes the
proof.

Corollary 2.23. Let T be a linear operator on a Hilbert space such that T and T−1 are power-
bounded. Then T is polynomially bounded.

Proof. A consequence of the von Neumann inequality applied to the previous theorem.
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The conclusion is that the classes mentioned in the Lemma 2.21 are preserved by similarity. Proving
the Blum-Hanson equivalence is the same as showing that the class of strongly mixing operators
is the same as the class of operators with the Blum-Hanson property.

However, contractions do not remain contractions under similarity. For our purposes this is a small
problem, but easily remedied by considering them as part of a larger class of operators which are
similar to a contraction. The result of Theorem 2.22 is that all power-bounded operators whose
inverse is also power-bounded are actually within the class of operators similar to a contraction.

With what we have so far we can create the following diagram for Hilbert spaces.

Blum-Hanson property

��

Polynomially-bounded

��

Strongly mixing

�� **UUUUUUUUUUUUUUUUUU Similar to a contraction

jjVVVVVVVVVVVVVVVVVV

ttiiiiiiiiiiiiiiiiiii

Weakly mixing

��

Power-bounded

ttiiiiiiiiiiiiiiiiii

Mean-ergodic

Apart from the implications relating to polynomially boundedness, the remainder is true for all
reflexive Banach spaces. The question is: can this diagram be simplified, are any of these classes
the same? And in particular for our purposes, are the Blum-Hanson property and strong mixing
classes the same?

2.5 Similarity to a contraction

By considering the larger class of operators which are similar to a contraction we are left with
the difficulty that showing an operator is similar to a contraction involves actually finding the
similarity. What we would like is some properties of these operators we can use to simplify our
proofs. There are some criteria such as Theorem 2.22 but they are quite special. It is usually simpler
to prove something is not similar to a contraction by showing (for example) it is not polynomially-
bounded, which by von Neumann’s inequality implies it is not similar to a contraction.

One criterion we do have for Hilbert spaces is the following.

Theorem 2.24. Let T be a contraction on a Hilbert space H. Define the space H0(T ) = {x :
Tnx→ 0 weakly}. Then H0(T ) = H0(T ∗).

Proof. [Fog63]

Because similarity is in general not preserved by taking adjoints, we cannot use this directly.
However, we have the following.

Lemma 2.25. Let P be a contraction on a Hilbert space and so T = SPS−1 is similar to a
contraction. Then

H0(T ) ∩H0(T ∗)⊥ = {0}.

Proof. [Fog64] First we have

H0(T ) = {x : SPnS−1x→ 0 weakly} = {x : S−1x ∈ H0(P )} = S(H0(P ))
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and
H0(T ∗)⊥ = [S∗−1(H0(P ∗))]⊥ = {x : S−1x ⊥ H0(P ∗)} = S(H0(P ∗)⊥).

However, from Theorem 2.24 we know H0(P ∗) = H0(P ), so

H0(T ) ∩H0(T ∗)⊥ = {0}

as required.

Similarity to contractions is reasonably well studied for Hilbert spaces, but for Lp spaces or Banach
spaces there are very few results.
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Chapter 3

Positive results for the
Blum-Hanson property

As noted earlier the term “Blum-Hanson property” was introduced during the exploration of the
strong mixing property. The strong mixing property is a strong property and thus it is useful to
have a different way of describing it. However, it is still an area of research under which conditions
the two are in fact related.

The equivalence of the strong-mixing condition and the Blum-Hanson property has been proved
in the cases where T is:

• an isometry induced by a measure preserving transformation on Lp, 1 6 p <∞ [BH60];

• a Hilbert space contraction [JK71];

• a contraction on L1 [AS72];

• a positive contraction on Lp, 1 < p <∞ [AS75, Bel75];

• in a certain class of positive power bounded functions on L1 [Mil80];

• certain power-bounded operators on Hilbert-spaces [Kan79];

• a contraction on `p, 1 6 p <∞ [MT07].

Similarly, there have been counterexamples, where T is:

• an isometry on C(K) where K is a compact Hausdorff space [AHR74];

• a power-bounded operator on `2 [MT07].

What follows is a selection of the positive results that have been found, with annotated proofs to
give an idea of the effort one needs to go to prove the equivalence.

3.1 Blum-Hanson with a measure preserving transforma-
tion

The original Blum-Hanson proof [BH60] was the beginning of a whole area of research. It is the
oldest and (almost) the easiest of all the proofs. It considers the simple case: operators induced by
measure preserving transformations on a probability space. Because of this, all that needs to be
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shown is that it is true in a Hilbert space and the others follow by density arguments. Here only
the L2 case will be shown as this is the most important part of the proof.

The proof by Blum-Hanson uses the following lemma.

Lemma 3.1. Let {Ci,j : i, j > 1} be a bounded double sequence of numbers such that

lim
|i−j|→∞

Ci,j = 0.

Then

lim
n→∞

1
n2

n∑
i,j=1

Ci,j = 0

Proof. Let C = supi,j |Ci,j | and fix ε > 0. Choose M ∈ N such that |Ci,j | < ε for |i − j| > M .
Then for n > M we have

1
n2

n∑
i,j=1

|Ci,j | =
1
n2

∑
|i−j|6M
i,j6n

|Ci,j |+
1
n2

∑
|i−j|>M
i,j6n

|Ci,j |

︸ ︷︷ ︸
<ε

6
(2M + 1)nC

n2
+ ε

We can now choose an N > (2M+1)C
ε and then for n > N

1
n2

n∑
i,j=1

|Ci,j | 6 2ε.

And the result follows.

The heart of the proof of Blum-Hanson is the following theorem. With this it is proved that the
required result holds for simple functions on L2. After this, the result can be extended to the
general case on Lp using standard density arguments.

Note that the theorem here is presented in purely functional analytic terms. The original proof
was done in terms of strongly mixing sets. Here the invertible measure preserving ϕ is left behind
and we only look at the induced operator (which does not need to be invertible).

Theorem 3.2 (Blum-Hanson 1960). Let (Ω,Σ, µ;ϕ) be a strongly mixing MDS with T := Tϕ its
induced operator on L2(Ω,Σ, µ). Then for any increasing sequence of positive integers (kn)n and
any f ∈ L2(Ω,Σ, µ) we have

lim
n→∞

1
n

n∑
i=1

T kif = Pf

strongly in the L2-norm, where P is the weak limit of (Tn)n.

Proof. [BH60] The first thing to note is due to the µ-invariance of T we have:

〈Tmf, Tng〉 =

{
〈Tm−nf, g〉 when m > n

〈f, Tn−mg〉 = 〈Tn−mg, f〉 when m 6 n

Let P be the mean ergodic projection onto Fix(T ), then Tn → P weakly. P is an orthogonal
projection which means that 〈Pf, g〉 = 〈Pf, Pg〉. As P is the projection onto the fixed space and
commutes with T we have

〈Pf, Pg〉 = 〈Pf, TnPg〉 = 〈Pf, PTng〉 = 〈Pf, Tng〉.
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So ∥∥∥∥∥ 1
n

n∑
i=1

T kif − Pf

∥∥∥∥∥
2

2

=

〈
1
n

n∑
i=1

T kif − Pf, 1
n

n∑
j=1

T kjf − Pf

〉

=

〈
1
n

n∑
i=1

T kif,
1
n

n∑
j=1

T kjf

〉
−

〈
1
n

n∑
i=1

T kif, Pf

〉

−

〈
Pf,

1
n

n∑
j=1

T kjf

〉
+ 〈Pf, Pf〉

=
1
n2

〈
n∑
i=1

T kif,

n∑
j=1

T kjf

〉
− 〈Pf, Pf〉

=
1
n2

〈
n∑

i,j=1
i>j

T ki−kjf, f

〉
+

1
n2

〈
n∑

i,j=1
i6j

T kj−kif, f

〉
− 〈Pf, Pf〉

Now we define Ci,j as

Ci,j =

{
〈T ki−kjf, f〉 − 〈Pf, Pf〉 when i > j

〈T kj−kif, f〉 − 〈Pf, Pf〉 when i 6 j

Clearly lim|i−j|→∞ Ci,j = 0 due to the strong mixing of T implying that 〈Tnf, f〉 → 〈Pf, Pf〉.
The conjugation has no effect as the convergence is to a real number. So by Lemma 3.1 we have
that 1

n

∑n
i=1 T

ki → P in the strong operator topology.

Note that this is an example of the individual Blum-Hanson equivalence, i.e. the equivalence holds
for each orbit and does not rely on any of the properties of the operator along other orbits.

This proof by Blum-Hanson was simple but it already showed a fruitful way of looking at the
problem. Namely, splitting the sum over the two sides of an inner product and then using the
weak convergence to show that terms sufficiently far away from the diagonal become small enough.
Then something similar to Lemma 3.1 finishes the job.

3.2 Blum-Hanson for Hilbert space contractions

The first improvement on Blum-Hanson’s result came in [JK71] in 1971. Here it was shown that
all Hilbert space contractions which weakly converge have the Blum-Hanson property. The proof
is similar to that of Blum-Hanson, though actually shorter.

Theorem 3.3 (Jones-Kuftinec 1971). Let T be a Hilbert space contraction. Then for any x ∈ H,
Tnx converges weakly if and only if 1

n

∑n
j=1 T

kjx converges strongly for all strictly increasing
sequences (kj) of positive integers.

Proof. Let x0 := lim 1
n

∑n
j=1 T

jx which always exists since T is mean-ergodic. If Tnx 9 x0 weakly
then apply Lemma 2.17 and there exists a sequence (kj)j such that 1

n

∑n
j=1 T

kjx does not converge
strongly.

Conversely, suppose Tnx→ x0 weakly. Since x0 = Px is a fixed point of T we can assume without
loss of generality x0 = 0. Since T is a contraction inf‖Tnx‖ = lim‖Tnx‖ = α exists. If α = 0 then
we are done, as the Cesàro means of a convergent sequence converge. If α > 0 then we can assume
without loss of generality that α = 1 by considering x/α.
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Fix an ε > 0 and choose an integer M such that ‖TMx‖2 < 1+ε. Because of the weak convergence
to zero of (T kx)k we can choose an integer K such that |〈TMx, TM+kx〉| < ε for all k > K. Then
for m > M and n > K +m we have

2 Re〈Tmx, Tnx〉 = ‖Tmx+ Tnx‖2 − ‖Tmx‖2︸ ︷︷ ︸
>1

−‖Tnx‖2︸ ︷︷ ︸
>1

6 ‖Tm−M (TMx+ Tn−m+Mx)‖2 − 2

6 ‖TMx+ Tn−m+Mx‖2 − 2

6 ‖TMx‖2︸ ︷︷ ︸
<1+ε

+ ‖Tn−m+Mx‖2︸ ︷︷ ︸
<1+ε

+2 Re〈Tmx, Tn−m+Mx〉︸ ︷︷ ︸
<ε

−2

6 4ε

Now consider any increasing sequence of positive integers (kj)∞j=1, then we have∥∥∥∥∥∥ 1
N

N∑
j=1

T kjx

∥∥∥∥∥∥
2

= Re

〈
1
N

N∑
i=1

T kix,
1
N

N∑
j=1

T kjx

〉

=
1
N2

N∑
i,j=1

Re〈T kix, T kjx〉

=
1
N2

N∑
i=1

Re〈T kix, T kix〉+
2
N2

N∑
i<j

Re〈T kix, T kjx〉

=
1
N2

N∑
i=1

‖T kix‖2︸ ︷︷ ︸
6‖x‖2

+
2
N2

N∑
i<M
i<j

Re〈T kix, T kjx〉︸ ︷︷ ︸
6‖x‖2

+
2
N2

N∑
i>M

i<j<K+i

Re〈T kix, T kjx〉︸ ︷︷ ︸
6‖x‖2

+
1
N2

N∑
i>M
j>K+i

2 Re〈T kix, T kjx〉︸ ︷︷ ︸
<4ε

6
‖x‖2

N
+

2(M − 1)N‖x‖2

N2
+

2(K − 1)N‖x‖2

N2
+ 4ε

=
(2M + 2K − 3)

N
‖x‖2 + 4ε

Here we used that ki > i and kj − ki > j − i. Now for N > (2M + 2K − 3)‖x‖2/ε we have that
‖ 1
N

∑N
j=1 T

kjx‖2 6 5ε and so (Tnx)n has the Blum-Hanson property.

Note what was done in the last step: splitting the double sum over i and j and considering 4
different cases.

1. i = j.

2. i < min{j,M}.

3. M 6 i < j < K + i.

4. M 6 i and j > K + i.

These areas are depicted in Figure 3.1. Due to symmetry the proof only considers half the possi-
bilities. The important thing to note is that of all these areas, only the last one grows faster than
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Figure 3.1: Division of cases for Theorem 3.3

linear with respect to N , but this is precisely the area that was proved could be made arbitrarily
small. The conclusion is then straightforward.

It is worth noting that the proof of the positive Lp contraction case in [Bel75] actually runs along
similar lines to this one, only there use is made of the identity

‖f‖pp = 〈f,Φ(f)〉

where Φ(f) is the canonical duality mapping, which only works for positive f . Also, use is made
of the following Lp inequality.

Definition 3.4 (Lp inequality). Let 1 < p < ∞. Let f, g ∈ Lp+(Ω,Σ, µ). Then for any 0 < ε < 1
we have, with α = (p− 1) + 1

p−1∫
Ω

Φ(f) · g dµ 6 ε‖f‖pp + ε‖g‖pp +
1
εα

∫
Ω

f · Φ(g) dµ

This inequality is used to work around the fact that the duality mapping is non-linear, but again
it only works for positive functions. Together these make the proof very similar to the Hilbert
space case, except that the result only applies to positive operators. For non-positive operators on
general Lp spaces it is still an unsolved problem.

3.3 Blum-Hanson on L1 contractions

That the Blum-Hanson property is true for all contractions on L1 was proved by M. Akcoglu and
L. Sucheston [AS72]. The proof is much more sophisticated than the two presented so far as we are
no longer on a Hilbert space or even a reflexive space which means we no longer have many of the
useful properties that helped before. A consequence of this is that the Blum-Hanson equivalence
is only proved for the operator as a whole; the operator must converge weakly for all orbits to be
able to show the Blum-Hanson property for any single orbit.

Theorem 3.5 (Blum-Hanson for L1 contractions). Let T be a contraction on L1(Ω,Σ, µ). The
following are equivalent:

1. (Tnf)n converges weakly in L1 for all f ∈ L1(Ω,Σ, µ).
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2. 1
n

∑n
i=1 T

kif converges strongly in L1 for all f ∈ L1(Ω,Σ, µ) and for all increasing sequences
(kn)∞n=1 of positive integers.

First we state that without loss of generality we may assume the measure space is finite. To see
this, note that the convergence of (Tnf)n is determined only by the set

⋃
n{|Tnf | > 0} which is

sigma-finite.

Then consider the sigma-finite space L1(Ω,Σ, µ). Take a strictly positive u ∈ L1(Ω,Σ, µ) and
define a new measure dλ = u−1 · dµ. We now have a new space L1(Ω,Σ, µ) which is finite and an
operator J : L1(Ω,Σ, µ)→ L1(Ω,Σ, λ) between the two spaces defined as

Jf := f · u.

This operator is an invertible isometry.

‖Jf‖L1(Ω,Σ,λ) =
∫

Ω

|Jf |dλ =
∫

Ω

|f |dµ = ‖f‖L1(Ω,Σ,µ)

We also introduce the concept on a linear modulus.

Definition 3.6 (Linear modulus). Let T be an operator on L1. Define the operator T̃ ∈ BL(L1
+)

as
T̃ f := sup

|g|6f
|Tg| f ∈ L1

+, g ∈ L1.

Then the linear modulus (denoted |T |) is a positive linear extension of T̃ to L1 such that

• |Tf | 6 |T ||f | for each f ∈ L1.

• ‖ |T | ‖ 6 ‖T‖

Note that here 6 is used to represent the partial order in the Banach lattice.

The existence of such an extension was proved in [CK64]. The linear modulus has the following
additional properties.

(i) |Tnf | 6 |T |n|f | for each f ∈ L1.

(ii) |aT | = |a||T |

(iii) |T1 + T2| 6 |T1|+ |T2|

(iv) T > 0 implies T = |T |

The linear modulus is not necessarily unique. However, in [CK64] it is shown that that there exists
a linear space of operators (which is dense in the strong operator topology on BL(L1)) where the
linear modulus is unique and can be explicitly calculated.

The relevant properties of the linear modulus which we will use are:

• the linear modulus does not have a greater norm, hence if T is a contraction, so is |T |.

• |T | has the same invariant sets as T .

Definition 3.7 (Invariant set). Let T be a linear operator on L1(Ω,Σ, µ). A set A ⊂ Ω is an
invariant set for T if for all functions f ∈ L1 such that supp(f) ⊆ A we have supp(Tf) ⊆ A.

The first lemma is rather technical. It essentially states that either the orbit of an arbitrary point
goes strongly to zero, or the linear modulus has a fixed point.
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Lemma 3.8. Let T be a contraction on L1(Ω,Σ, µ). Suppose f ∈ L1 and that (Tnf)n converges
weakly in L1 as n→∞. Then either limn→∞‖Tnf‖ = 0 or there exists a non-zero p ∈ L1

+(Ω,Σ, µ)
such that |T |p = p.

Proof. Since T is a contraction, α := limn→∞‖Tnf‖ exists. If α = 0 then the lemma is proved, so
assume α > 0. Now define a positive linear functional π : L∞ → C as

π(h) := Ln→∞

∫
Ω

|Tnf | · hdµ

where L is a Banach limit. This is a bounded linear functional on L∞ and hence a bounded finitely
additive µ-continuous measure. This functional is non-zero because π(1) = α > 0.

We claim that π is a countably additive measure. To see this define the measures

πn(A) :=
∫
A

Tnf dµ A ∈ Σ.

By the weak convergence of (Tnf)n we have that limn→∞ πn(A) exists. Since Tnf ∈ L1 we have
that πn are all µ-continuous measures.

By the Vitali-Hahn-Saks theorem (Theorem A.3) these measures are uniformly µ-continuous.
Hence by Lemma A.4 the measures

|πn|(A) :=
∫
A

|Tnf |dµ A ∈ Σ

are also uniformly µ-continuous, meaning that for Ai ↘ ∅

lim
i→∞

sup
n
|πn|(Ai) = 0.

Since the sup dominates the Banach limit we have

lim
i→∞

π(1Ai
) = lim

i→∞
Ln→∞|πn|(Ai) 6 lim

i→∞
sup
n
|πn|(Ai) = 0,

and hence π is countably additive.

By the Radon-Nikodym theorem any countably additive measure can be identified by a function
in L1. Since the measure is positive there must exist a function p ∈ L1

+ such that π(h) =
∫
p ·hdµ

for all h ∈ L∞. We know p is non-zero because π(1) = α. Now, for all h ∈ L∞ we have (noting
π(h) =

∫
p · hdµ = Ln→∞(

∫
|Tnf | · hdµ))∫
Ω

|T |p · hdµ =
∫

Ω

p · |T |∗ hdµ

= Ln→∞

∫
Ω

|Tnf | · |T |∗hdµ

= Ln→∞

∫
Ω

|T | |Tnf | · hdµ

> Ln→∞

∫
Ω

|Tn+1f | · hdµ

=
∫

Ω

p · hdµ

This implies |T |p > p but since |T | is a contraction, we must have |T |p = p.

The second lemma builds on the first showing that the separation shown in the previous lemma
can actually be used to split the space Ω in two: on one space all orbits go to zero and on the
other space there is a fixed point with a maximal support.
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Lemma 3.9. A contraction T on L1(Ω,Σ, µ) decomposes the space Ω into two disjoint sets F and
G where F ∪G = Ω such that:

1. If f ∈ L1 and (Tnf)n converges weakly then (Tnf)n converges strongly to zero on F , i.e.

lim
n→∞

∫
F

|Tnf | dµ = 0

2. There exists an r ∈ L1
+ such that |T |r = r and the support of r is G.

Proof. Let Q = {q : q ∈ L1
+, |T |q = q}, the set of positive fixed points of |T |.

• If Q is empty then we set r = 0 and G is empty.

• Otherwise consider the set Q̃ = {1supp(q) : q ∈ Q}. This is a ∨-stable set bounded by 1
and so by Theorem A.2 has a supremum q̃ and we can find a sequence (q̃n) ⊂ Q̃ such that
supn q̃n = q̃. Mapping this back to Q gives us a countable sequence in (qn)n ∈ Q.

Without loss of generality we may assume that supn‖qn‖ is uniformly bounded. Now let
r =

∑∞
n=0 qn · 2−n and so |T |r = r and G = supp(r) =

⋃
supp(qn) = supp(q̃).

In any case we have an r ∈ Q such that supp(q) ⊆ supp(r) for all q ∈ Q.

G is an invariant set, i.e. TL1(G,µ) ⊆ L1(G,µ). To see this consider an f ∈ L1
+(G,µ) and let

C > 0. Now let f1 = Cr∧f and f2 = f−f1. Choose an ε > 0 and find a C such that ‖f2‖ < ε. Now
f1 6 Cr and so |T |f1 6 Cr and hence |T |f1 ∈ L1(G,µ). Since ε was arbitrary, |T |f ∈ L1(G,µ)
and so also Tf ∈ L1(G,µ), as |T | and T have the same invariant sets.

Now define a contraction R : L1(F, µ) → L1(F, µ) as R := T |F . Clearly Rn = Tn|F and if Tnf
converges weakly then so does Rnf . Hence by Lemma 3.8 either limn→∞‖Rnf‖ = 0 or there is a
non-zero p ∈ L1

+(F, µ) such that |R|p = p. But supp(p) must be in G and therefore cannot be in
F , so the second case is impossible.

The final lemma actually shows the Blum-Hanson equivalence for Dunford-Schwartz operators,
but only for the operator as a whole, not for individual orbits. Because we know the operator is
bounded in both the L1 and the L∞ norm, we can use the previously proved Hilbert space case
for L2 and density arguments to move to other Lp spaces.

Lemma 3.10. Let (Ω,Σ, µ) be a finite measure space and let T be an operator that is a contraction
in both L1 and L∞. Then the following are equivalent:

1. There exists a number 1 6 p0 < ∞ such that if f ∈ Lp0 then (Tnf)n converges weakly in
Lp0 .

2. For all 1 6 p <∞ and f ∈ Lp then (Tnf)n converges weakly in Lp.

3. For all 1 6 p < ∞ and f ∈ Lp then 1
N

∑N
n=1 T

knf converges strongly in Lp for every
increasing sequence of positive integers (kn)∞n=1.

Proof. (1)→(2): Since the measure space is finite, L∞ is a subset of each Lp, 1 6 p 6 ∞. Fix an
ε > 0 and a 1 6 p 6∞. Let q be the adjoint index. Let f ∈ Lp, g ∈ Lq be arbitrary. Then f ∈ L∞
and g ∈ L∞. As L∞ is also a dense subset of Lp0 we can find an f ′ ∈ Lp0 , g′ ∈ Lq0 such that
‖f − f ′‖p0 < ε and ‖g − g′‖q0 < ε. Now

|〈Tnf, g〉 − 〈Tnf ′, g′〉| 6 |〈Tn(f − f ′), g〉|+ |〈Tnf ′, g − g′〉|
6 ‖Tn‖p0 ‖f − f ′‖p0︸ ︷︷ ︸

<ε

‖g‖q0 + ‖Tn‖p0‖f ′‖p0 ‖g − g′‖q0︸ ︷︷ ︸
<ε

6 ε(‖g‖q0 + ‖f ′‖p0)
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Since we chose the ε, whenever (Tn)n converges weakly in Lp0 , it converges weakly for all Lp, 1 6
p <∞, completing (1)→(2).

(2)→(3): Let p, 1 6 p < ∞ be fixed. Note that it is sufficient to prove the strong convergence of
1
n

∑n
i=1 T

kif for f in a dense subset of Lp. As noted above, because we are on a finite measure
space L∞ is dense in Lp. But if f ∈ L∞ then f ∈ L2. Then the sequence fn = 1

n

∑n
i=1 T

kif
converges strongly in L2 by Theorem 3.3 (Blum-Hanson equivalence for Hilbert spaces). Hence we
have the Cauchy sequence

lim
n,m→∞

‖fn − fm‖2 = 0.

Noting that (for m > n)

‖fn − fm‖∞ 6 ‖fn‖∞ + ‖fm‖∞
6 2‖f‖∞

we have
‖|fn − fm|p−1‖2 6 2‖f‖p−1

∞ ‖1‖2 = 2‖f‖p−1
∞
√
µ(Ω).

Then the Cauchy-Schwartz inequality shows

‖fn − fm‖pp = 〈|fn − fm|, |fn − fm|p−1〉
6 ‖fn − fm‖2 · ‖|fn − fm|p−1‖

6 ‖fn − fm‖2 · 2‖f‖p−1
∞
√
µ(Ω)

so that (fn)n is also a Cauchy sequence in Lp. Hence 1
n

∑n
i=1 T

kif converges strongly in Lp for
each f .

(3)→(1): Apply Lemma 2.17.

Now the completion of the main proof: showing Blum-Hanson equivalence for arbitrary contrac-
tions in L1. The proof proceeds in two steps. First we show that the equivalence applies on G by
using the previous lemma. Finally it is shown that the addition of functions on F do not affect
the result. Note, the equivalence is only for the operator as a whole, not for each orbit.

Proof of Theorem 3.5. (2)→(1): Apply Lemma 2.17.

(1)→(2): Let F ∪ G = Ω be the decomposition as given in Lemma 3.9 and let r ∈ L1
+ be the

function with support G such that |T |r = r. Note r > 0. If r = 0 then G is empty and the result
follows directly from Lemma 3.9. So we may assume that r 6= 0.

Now consider the finite measure λ defined as dλ = r dµ, finite because r is integrable. Then
ϕ ∈ L1(Ω,Σ, λ) if and only if rϕ ∈ L1(Ω,Σ, µ). Define the operator S := 1

rTr. From∫
Ω

|Sϕ|dλ =
∫

Ω

|Trϕ|dµ 6
∫

Ω

|rϕ|dµ =
∫

Ω

|ϕ|dλ

we see that S is a contraction on L1(Ω,Σ, λ). Let f ∈ L∞(Ω,Σ, λ) be an arbitrary bounded
function. Then

|Sf | = 1
r
|T (rf)| 6 1

r
|T |(r|f |) 6

1
r
|T |(r‖f‖∞ · 1) = ‖f‖∞

1
r
|T |r = ‖f‖∞1

So ‖Sf‖∞ 6 ‖f‖∞ and we see that S is also a contraction on L∞(Ω,Σ, λ). Hence S is a Dunford-
Schwartz operator.

Now, for each h ∈ L∞(Ω,Σ, λ) we have that∫
Ω

Snϕ · hdλ =
∫

Ω

Tnrϕ · hdµ
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so if (Tn)n converges weakly, so does (Sn)n. Since λ is a finite measure, Lemma 3.10 applies and
1
n

∑n
i=1 S

kiϕ converges strongly in L1(G,Σ, λ) for each ϕ ∈ L1(G,Σ, λ). This shows that

r

n

n∑
i=1

Skiϕ =
1
n

n∑
i=1

T kirϕ

is a Cauchy sequence in L1(G,Σ, µ) and hence also in L1(Ω,Σ, µ). Since any f ∈ L1(G,Σ, µ) can
be written as rϕ with ϕ ∈ L1(G,Σ, λ) this proves (1)→(2) for f ∈ L1(G,Σ, µ).

To prove (1)→(2) for general f ∈ L1(Ω,Σ, µ) it is sufficient to show that given an ε > 0 there is
a Cauchy sequence gn ∈ L1(Ω,Σ, µ) such that

lim sup
n→∞

∥∥∥∥∥ 1
n

n∑
i=1

T kif − gn

∥∥∥∥∥ < ε

So choose an f ∈ L1(Ω,Σ, µ) and the above ε > 0 and choose an N such that∫
F

|T kN f |dµ < ε

which is possible because on F the functions go strongly to zero.

Let g := 1GT kN f and gn := 1
n

∑n
i=1 T

kN+i−kN g. Note that all the gn are in G and so they form a
Cauchy sequence in L1(G,Σ, µ). So

gn =
1
n

n∑
i=1

T kN+i−kN (1GT kN f)

=
1
n

n∑
i=1

T kN+i−kN (T kN f − 1FT kN f)

=
1
n

n∑
i=1

T kN+if − 1
n

n∑
i=1

T kN+i−kN (1FT kN f)︸ ︷︷ ︸
‖·‖<ε

Since the first N terms of the sum do not affect the limit this shows that limn→∞
1
n

∑n
i=1 T

kif =
limn→∞ gn which completes the proof of (1)→(2).

As you can see, the proof here is very different from the Hilbert space case. As with all the other
positive results so far, it relies on special inequalities for the space it is operating on.

3.4 Blum-Hanson on `p contractions

The most recent development has been the proof of the individual Blum-Hanson equivalence for
general `p contractions, 1 6 p <∞ by Müller-Tomilov in [MT07]. Although it does require special
properties of the `p spaces, it is actually quite short and fairly straightforward.

Theorem 3.11. (Müller-Tomilov 2007) Let 1 6 p <∞, T ∈ BL(`p) be a contraction and x ∈ `p.
Suppose that the sequence (Tnx)n is weakly convergent and (ni)i is an increasing sequence of
positive integers. Then the limit

lim
N→∞

1
N

N∑
i=1

Tnix

exists in the norm topology.
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Proof. Without loss of generality we may assume Tnx → 0 weakly. For p = 1 the statement is
obvious since for `1 the weak convergence of sequences is the same as convergence in the norm
topology (this is the Schur property, for more details see [Meg98, Chapter 2]).

Let 1 < p <∞ and (ej)j be the standard basis vectors for `p. Let Pr be the canonical projection
onto span{e1, . . . , er}.
Since T is a contraction the limit limn→∞‖Tnx‖ exists. Since the statement is clear if the limit is
zero, without loss of generality we may assume that the limit is equal to 1.

Choose a δ > 0. Find a positive integer t such that t−(1− 1
p ) < δ/2. Now there exists an ε ∈ (0, 1)

such that
((1 + ε)p + 2ps)1/p < 2(s+ 1)1/p − (s+ 1)ε

for s = 1, . . . , t − 1. To see why this is true, note that substituting ε = 0 gives the inequality
1 + 2ps < 2p(s+ 1) which is true for all s ∈ N.

Now, find a k such that ‖T kx‖ < 1+ε. Because the elements of a member of `p eventually become
small we can find an r such that ‖(I−Pr)T kx‖ < ε. Finally, as on a finite dimensional space weak
convergence is equivalent to pointwise convergence we can find a d such that ‖PrT k+jx‖ < ε for
all j > d.

Note this is the point were this proof becomes specific for `p. While it is possible to create a
sequence of compact projections on a general separable Lp space which converge to the identity,
it is not possible to also have the ranges of Pr and I −Pr live on disjoint sets, which we will need
below.

We now use induction over 1 6 s 6 t to show that∥∥∥∥∥
s∑
i=1

Tmix

∥∥∥∥∥ 6 2s1/p

whenever k 6 m1 < m2 < · · · < ms, s 6 t and mi+1 −mi > d for all i.

For s = 1 the statement is obviously true. Now suppose 1 6 s < t and m1, . . . ,ms+1 satisfy the
required conditions. Now∥∥∥∥∥

s+1∑
i=1

Tmix

∥∥∥∥∥ 6

∥∥∥∥∥Tm1−k
s+1∑
i=1

Tmi−m1+kx

∥∥∥∥∥
6

∥∥∥∥∥
s+1∑
i=1

Tmi−m1+kx

∥∥∥∥∥
=

∥∥∥∥∥(Pr + (I − Pr))(T kx+
s+1∑
i=2

Tmi−m1+kx)

∥∥∥∥∥
6

∥∥∥∥∥PrT kx+ (I − Pr)
s+1∑
i=2

Tmi−m1+kx

∥∥∥∥∥+ ‖(I − Pr)T kx‖︸ ︷︷ ︸
<ε

+

∥∥∥∥∥Pr
s+1∑
i=2

Tmi−m1+kx

∥∥∥∥∥︸ ︷︷ ︸
<sε

6

‖PrT kx‖︸ ︷︷ ︸
<1+ε

p
+

∥∥∥∥∥(I − Pr)
s+1∑
i=2

Tmi−m1+kx

∥∥∥∥∥︸ ︷︷ ︸
<2s1/p by induction

p


1
p

+ (s+ 1)ε (3.1)

6 ((1 + ε)p + 2ps)1/p + (s+ 1)ε

6 2(s+ 1)1/p
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proves the statement for s+ 1 and completes the induction.

Note Equation 3.1, where we explicitly require that ‖Prx+ (I −Pr)y‖p 6 ‖Prx‖p + ‖(I −Pr)y‖p.
What we have shown so far is that the growth of the sums of up to t elements of Tmi can be
bounded at O(t1/p) if the sequence is sparse enough.

Now let (ni)i be an arbitrary increasing sequence of positive integers and choose an N > k + dt.
Write N = k + mt + r where 1 6 r 6 t and m > d is a positive integer. Then we can take the
first k + r elements as fixed and divide the remaining elements into m subsequences of length t.
In each of these subsequences the distance between each successive element is greater than d as
nj − ni > j − i, so we can apply the results of the above induction.∥∥∥∥∥

N∑
i=1

Tnix

∥∥∥∥∥ 6

∥∥∥∥∥
k+r∑
i=1

Tnix

∥∥∥∥∥+
m∑
s=1

∥∥∥∥∥
t−1∑
i=0

Tnk+r+s+imx

∥∥∥∥∥
6 (k + r)‖x‖+m · 2t1/p

Using the bounds we have on the subsequences we can bound the Cesàro sums.

1
N

∥∥∥∥∥
N∑
i=1

Tnix

∥∥∥∥∥ 6
(k + r)‖x‖

N
+
m · 2t1/p

N

6
(k + r)‖x‖

N
+
m · 2t1/p

mt

=
(k + r)‖x‖

N
+ 2t1/p−1

We send N →∞ so the initial terms vanish.

lim sup
N→∞

1
N

∥∥∥∥∥
N∑
i=1

Tnix

∥∥∥∥∥ 6 2t1/p−1 < δ.

And since δ > 0 was arbitrary we have

lim
N→∞

1
N

∥∥∥∥∥
N∑
i=1

Tnix

∥∥∥∥∥ = 0.

The proof for `p is interesting in that it does not require very many special properties of the `p, in
fact just the one noted above. The rest of the proof just uses properties of norms which are true
for all Banach spaces and finally proves an individual Blum-Hanson equivalence.

This completes the presentation of the positive results for the Blum-Hanson property. The re-
maining results are examples and counterexamples produced over the years to help determine
what further results may or may not be possible. First however we take a detour to prove some
general results that will help in the analysis of the later examples.
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Chapter 4

Generalised shift operators

Before proceeding to the examples and counterexamples, it is useful to have a general framework
in which to study some of them. Many of the examples given are of a very specific form, which
makes them easy to construct and analyse. This chapter will introduce some useful lemmas which
will make our work in the next chapter much easier.

One of the most often studied operators in operator theory is the shift operator. There are two
basic types, the left shift and the right shift, traditionally indicated by L and R. For this thesis
we will work with a generalisation of these operators.

First we need to introduce something from another branch of mathematics, graph theory. There
graphs are represented by a triplet G = (V,E,w). Here V is the set of vertices, E is the set of
edges (v, v′) and w : E → R is the weight function, which indicates the weight assigned to each
edge. Here we use the convention w(v, v′) = 0 for an edge that does not exist in the graph.

Note that the set of edges E is in fact redundant, since we could define the edges in terms of the
weight function.

E := {(v, v′) : w(v, v′) 6= 0}.

Nevertheless, it is sometimes useful to be able to refer to the set of edges to simplify explanations.

We are particularly interested in directed weighted acyclic graphs.

• directed - each edge has a direction.

• weighted - each edge has a weight.

• acyclic - the graph has no loops

To see how an operator might be defined by a graph, note we can construct a real vector space
using the vertices to represent the basis vectors. Using the weight function we can define a mapping
from a basis vector to a linear combination of basis vectors. Formally:

Tv :=
∑
v′∈V

w(v, v′)v′.

However, this sum is not necessarily well defined if there are infinitely many edges entering or
leaving a node. So we will require the following assumption.

Remark 4.1. For the purposes of this thesis we will assume that there are only a finite number
of edges leaving a cell and a finite number of edges entering a cell.
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With this assumption we can use this graph to define an operator T : c00(V ) → c00(V ). Here we
use c00(V ) to represent the sequences with finitely many non-zero entries. Now the operator T can
be defined on c00(V ) as follows.

Tx :=
∑
v∈V

xv
∑

(v,v′)∈E

w(v, v′)v′

This is useful basis, as c00(V ) is dense in `p(V ), 1 6 p <∞.

Definition 4.2 (Generalised shift operator). A generalised shift operator T : c00(V )→ c00(V ) is
an operator represented by a directed weighted acyclic graph G = (V,E,w) and is defined as the
linear extension of

Tv :=
∑
v′∈V

w(v, v′)v′.

Most compact operators on `p could be represented as a graph, though only rarely as an acyclic
graph. The assumption in Remark 4.1 reduces the scope even more. Nevertheless, this relatively
small class of operators is very interesting class as we shall see.

Example 4.3. Consider the following graph:

v2 2 // v3 // v4

v1

>>||||||||
2 //

  BBBBBBBB v5

>>||||||||

v6

OO

// v7 // · · ·

These diagrams will appear regularly in this thesis, so there are a few conventions (from graph
theory) to pay attention to:

• The boxes will be referred to as cells or nodes and the joins between them as arcs or edges.

• Where no weight is given (as is the case with most arcs) the weight is assumed to be 1.

• Cell v1 is referred to as a source and cell v4 is referred to as a sink.

• The use of (· · · ) indicates a (possibly infinite) number of cells attached in sequence, all with
weight 1. When the number of elements is infinite we may refer to it as an infinite source or
infinite sink, as appropriate.

• Cells v2, v5 and v6 are referred to as the successors of v1.

• Cells v2 and v5 are the predecessors of v3.

For convenience we define two operators 1

• pred : V →P(V )
pred(v′) := {v : (v, v′) ∈ E}

• succ : V →P(V )
succ(v) := {v′ : (v, v′) ∈ E}

which define the predecessors and successors of a node. We can usefully extend these notions to
sets of vertices.

1P(V ) is the power set of V .
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• pred : P(V )→P(V )
pred(W ) :=

⋃
v∈W

pred(v)

• succ : P(V )→P(V )
succ(W ) :=

⋃
v∈W

succ(v)

Remark 4.1 guarantees that pred(v) and succ(v) are finite sets for all v ∈ V . The sets also depend
on the operator T . Where there are multiple operators used, the appropriate one will be indicated
by a subscript, for example predT .

Additionally, the fact that the graph has no cycles means that succn(v) cannot contain v for any
n > 1. This is used often in the proofs in this chapter.

So Example 4.3 now represents the operator T : c00(V )→ c00(V ) defined as:

Tv0 := v1 + 2v4 + v5 Tv1 := 2v2 Tv3 := 0
Tv4 := v3 Tv5 := v4 + v6 Tvn := vn+1 (n = 6 . . .∞)

As we will see the properties of this operator are strongly related to the structure of the graph
and only weakly related to the space on which it operates. Indeed, much of this thesis is studying
the various properties of T and the range of spaces on which it is well defined and how that relates
to the various properties we are interested in.

Lemma 4.4. Under the assumption in Remark 4.1 that only finitely many edges leave any node,
the operator T : c00(V )→ c00(V ) is well defined.

Proof. For any vi ∈ V we know that Tvi has only finitely many non-zero entries since a node in a
graph may have only finitely many edges leaving it. Since an element x ∈ c00(V ) has only finitely
many non-zero elements it follows that Tx ∈ c00(V ) for all x.

It is also worth noting that if all the entries of w(v, v′) are positive, then the resulting operator T
is also positive.

4.1 The adjoint

Something that will be very useful in the exploration of these operators is the adjoint of the
operator T .

Lemma 4.5. For a given graph G = (V,E,w) with its associated operator T : c00(V ) → c00(V ),
there is an adjoint operator T ∗ : c00(V )→ c00(V ) associated with a graph G∗ = (V,E∗, w∗) where
E∗ = {(i, j) : (j, i) ∈ E} and w∗(v, v′) = w(v′, v).

Proof. First we note that from the above definition we have that

predT (v) = succT∗(v) and succT (v) = predT∗(v)

hence the graph satisfies the assumption in Remark 4.1 and so by Lemma 4.4 the operator T ∗ is
a well-defined operator on c00(V ).

Now define a formal inner product:

〈x, y〉 =
∑
v∈V

xvyv, x, y ∈ c00(V )
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Since both x and y have only finitely many non-zero entries, the above sum is well defined. So

〈Tx, y〉 =
∑
v∈V

(Tx)vyv

=
∑
v∈V

 ∑
(v′,v)∈E

xv′w(v′, v)

 yv

=
∑
v∈V

∑
(v,v′)∈E∗

xv′w
∗(v, v′)yv

=
∑
v′∈V

xv′

 ∑
(v,v′)∈E∗

yvw
∗(v, v′)


= 〈x, T ∗y〉

which shows that T ∗ is a adjoint of T .

Simply put, the adjoint is the operator associated with the same graph, but with the arrows in
the opposite direction and the same weights.

4.2 The norm

We now have an operator T defined on the algebra c00(V ) but the question arises: does T also
define a bounded operator on `p?

Theorem 4.6. Any graph G = (V,E,w) which meets the conditions

sup
j∈V

∑
i∈V
|w(i, j)| 6 M sup

i∈V

∑
j∈V
|w(i, j)| 6 M

defines a bounded operator from T : `p(V )→ `p(V ) for all 1 6 p 6∞ and ‖T‖p 6 M .

Proof. Consider the 1-norm:

‖T‖1→1 = sup
‖x‖1=1

∑
j

∣∣∣∣∣∑
i

xiw(i, j)

∣∣∣∣∣ 6 sup
‖x‖1=1

∑
j

∑
i

|xi| |w(i, j)|

= sup
‖x‖1=1

∑
i

|xi|
∑
j

|w(i, j)| = sup
i

∑
j

|w(i, j)|

6 M

Now, consider the ∞-norm:

‖T‖∞→∞ = sup
‖x‖∞=1

sup
j

∣∣∣∣∣∑
i

xiw(i, j)

∣∣∣∣∣ 6 sup
‖x‖∞=1

sup
j

∑
i

|xi| |w(i, j)|

= sup
j

∑
i

|w(i, j)| 6 M

Now by Riesz-Thorin we see that T defines a bounded operator from T : `p(V ) → `p(V ) for all
1 6 p 6∞.

Translating the result back to the original graph, the maximum absolute row sum is merely the
maximum absolute sum of the weights leaving a cell. The maximum absolute column sum is the
maximum absolute sum of the weights entering a cell. In particular:

40



4.2. The norm Martijn van Oosterhout

Corollary 4.7.
‖T‖1 = sup

v∈V

∑
v′∈succ(v)

|w(v, v′)| = sup
v∈V
‖Tv‖1

and
‖T‖∞ = sup

v′∈V

∑
v∈pred(v)

|w(v, v′)| = sup
v∈V
‖Tv‖∞.

So for Example 4.3 we can clearly see that ‖T‖1 = 4 (determined by e0) and ‖T‖∞ = 3 (determined
by e2 and e4).

Corollary 4.8. For a graph G = (V,E,w) with associated operator T we have:

‖T‖1 = ‖T ∗‖∞ and ‖T‖∞ = ‖T ∗‖1

Proof. The adjoint swaps the roles of pred(v) and succ(v). The result follows.

These are useful theorems, which will be used regularly during the rest of this thesis. In some
cases we would like to be able to determine the exact norm, rather than just determining that it
is bounded. For that we can use the following lemma.

Lemma 4.9. For any graph G = (V,E,w) with associated operator T : c00(V ) → c00(V ) we can
partition V minimally in two separate ways into the sets {Ik}k, {Jk}k, Ik, Jk ⊆ V such that: 2⊔

Ik =
⊔
Jk = V

succ I0 = pred J0 = ∅

succ Ik = Jk, pred Jk = Ik, ∀k > 0

The partition is minimal in the sense that it is not possible to make a finer partition satisfying
these properties. Let PIk

be the projection onto the space c00(Ik). Then

T =
⊕
k

(TPIk
) and T ∗ =

⊕
k

(T ∗PJk
)

Proof. Consider the relation between two elements of V defined as

a ∼ b⇐⇒ succ (a) ∩ succ (b) 6= ∅ or succ (a) = succ (b) = ∅,

that is to say a and b are related if they share a successor or both have no successors. This relation
is reflexive and symmetric. The transitive closure of this relation defines a partition of V which is
the minimal partition meeting the necessary requirements ([Wec92]). Let {Ik}k be this partition,
where I0 is the part where succ(I0) = ∅. For all {Ik}k>0 we have that pred(succ(Ik)) = Ik.

By using the equivalence

a ≈ b⇐⇒ pred (a) ∩ pred (b) 6= ∅ or pred (a) = pred (b) = ∅,

we obtain similarly a partition {Jk}k.

To show that the {Ik}k>0 and {Jk}k>0 can be mapped one-to-one, consider two elements a, b ∈ Ik
such that a ∼ b. Then the set C = succ(a) ∩ succ(b) is non-empty. Choose a c′ ∈ C. Now for each
a′ ∈ succ(a) and b′ ∈ succ(b) we have that a′ ≈ c′ ≈ b′. Hence succ(Ik) is transitively closed under
≈ and hence must be a subset of some Jk. Similarly the pred(Jk) can be mapped onto some subset
of Ik and hence there is a one-to-one mapping between the {Ik}k>0 and {Jk}k>0.

It remains to show that these sets can be used to split the operator T into disjoint operators. But
this is clear, as Tc00(Ik) = c00(Jk) by definition and the spaces c00(Jk) are disjoint.

2
F

is the exclusive (or disjoint) union
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The Blum-Hanson Property 4. Generalised shift operators

Once the operator is partitioned this way we can see that c00(I0) is the kernel of T , the set of sinks
and c00(J0) the kernel of T ∗, the set of sources. For the adjoint operator the {Ik}k and {Jk}k are
simply swapped.

Using the above we can split the original operator into the direct sum of simpler operators. To see
how this works, here is what we get when this process is applied to the Example 4.3.

I2 J2

v1 v1 2 // v2

v0

99ssssss
2 //

%%KKKKKK v4 v4

99ssssss
I0 J0

v5

99ssssss

%%KKKKKK v5 v2 // v3 v3 v0

I1 v6 v6 // v7

J1 I3 J3
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Plus infinitely more trivial cases for {vn}∞n=7. Here you can clearly see that the original operator
T has been split into a number of simpler operators. All the sources are in J0 and all the sinks in
I0, as consistent with their definition.

Now we can prove the following theorem.

Lemma 4.10. Given a decomposition as described in Lemma 4.9 the norm can be calculated as:

‖T‖p = sup
k
‖TPIk

‖p

Proof. Since T maps the Ik into the Jk which are all disjoint, the result is straightforward.

The above proof provides the necessary information to calculate the 2-norm of an operator exactly,
not just an upper bound because the decomposition produces operators which are simpler, often
finite dimensional operators where the 2-norm is easy to calculate.

We now have easy criteria to determine if a particular operator T determined by a graph is bounded
in the given space, just by looking at the graph. We will see that we can prove similar criteria for
the other types of boundedness.

4.3 Power-boundedness

The first thing to note is that if T is a generalised shift operator, then Tn is also one. From the
point of view of the graph it just means you take n steps instead of 1. The most important lesson
from Corollary 4.7 is that to determine the `1 norm or the `∞ norm we only need to look at
individual basis vectors. In particular we have:

Lemma 4.11. For a graph G = (V,E,w) with associated operator T we have

sup
n∈N
‖Tn‖1 = sup

v∈V
sup
n∈N
‖Tnv‖1

sup
n∈N
‖Tn‖∞ = sup

v∈V
sup
n∈N
‖T ∗nv‖1
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Proof. The first directly follows from the application of Corollary 4.7 to the graph associated with
the operator Tn. The second follows with the application of Corollary 4.8.

However, it is usually less work than that.

Lemma 4.12. Consider a graph G = (V,E,w) with associated operator T . Suppose T is positive
(w > 0). Let |||·||| be the power-bounded norm from Definition 2.2 generated by T . Define the sets
K1,K2,K3 ⊆ V as:

K1 := {v ∈ V : ∃v′ ∈ V, 0 < |w(v′, v)| < 1}

K2 := {v ∈ V : pred(v) = ∅}

and let K3 ⊆ V be a set such that ⋃
n∈N

succn(K3) = V.

Then
sup
n
‖Tn‖1 = sup

v∈K1∪K2∪K3

|||v|||1

Here we have that:

• K1 is the set of nodes where a predecessor node has a weight less than one.

• K2 is the set of sources.

• K3 is not a fixed set of nodes like K1 and K2. This set may be chosen at will and constitutes
a representative subset of V for the purposes of this lemma. Clearly you would like to choose
this set to be as small as possible.

Proof. Suppose it is not true. Let m ∈ V be a vertex not in K1 ∪K2 ∪K3. Consider the set of
predecessors of m. This set cannot be empty because m /∈ K2. For each v′ ∈ pred(m) we have

Tv′ =
∑
v∈V

w(v′, v)v > w(v′,m)m

in the order of `p because w(v′, v) > 0. Since T is positive it is order preserving so we have

Tn+1v′ = Tn
∑
v∈V

w(v′, v)v > w(v′,m)Tnm

and finally by the monotonicity of the norm we have

‖Tn+1v′‖ > ‖Tn
∑
v∈V

w(v′, v)v‖ > |w(v′,m)|‖Tnm‖.

We know |w(v′,m)| > 1 because m /∈ K1, so |||v′||| > |||m|||.
So far we have shown that either m ∈ K1 ∪K2 or all the predecessors of m have a greater than or
equal power-bounded norm. Hence we can define the function S : P(V )→P(V ) as

S(W ) := W ∪ {v : v ∈ succ(W ), v /∈ K1 ∪K2}

so that for any W ⊆ V
sup
v∈W
|||v||| = sup

v∈S(W )

|||v|||.

Note that
W ∪ succ(W ) ⊆ S(W ) ∪K1 ∪K2
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and hence if (K1 ∪K2) ⊆W then

(W ∪ succ(W )) ⊆ S(W ).

Hence for an n ∈ N with W = K1 ∪K2 ∪K3 we have

n⋃
j=0

succj(W ) ⊆ Sn(W ).

By the assumption on K3 the left-hand side approaches V as n→∞ and so

sup
v∈K1∪K2∪K3

|||v||| = sup
v∈Sj(K1∪K2∪K3)

|||v||| = sup
v∈V
|||v|||.

4.4 Examples

The above lemma is exceptionally useful as for most of the operators we will consider the above
sets are simple or even empty. To make the uses of the above lemma clearer, here follow some
examples.

Example 4.13. Consider the following operator T on the space V = {ej}+∞j=−∞.

Tej =

{
ej+1 j 6= 0
1
4ej+1 j = 0

· · · // e−1 // e0
1
4
// e1 //· · ·

This is a somewhat trivial example but it shows some important principles. In accordance with
Lemma 4.12 we determine the three sets.

K1 = {e1}
K2 = ∅
K3 = {ek : k < −1}

Definition of the first two is clear, but the third seems odd. The requirement is that it contains
enough elements such that for all x ∈ V there exists an n such that x ∈ succn(K3). If K3 were a
finite set then we would be able to find a n such that en is not in succn(K3). So K3 is defined to
contain all the basis vectors in the infinite source.

However, the presence of an infinite number of elements does not pose any difficulty. This is
because the original operator T restricted to K3 is a partial isometry. To put it in functional
analytic terms, for any j < −2

sup
n
‖Tnej‖ = max{ sup

n6−j−2
‖ej+n‖︸ ︷︷ ︸

=1

, sup
n
‖Tne−1‖}.

So even though there are an infinite number of elements, the supremum of the power-bounded
norm for the elements of K3 is simply the maximum of 1 and the power-bounded norm of any
element of the set. Thus for the purposes of calculation it is sufficient to take one element as a
representative for the whole set and the same norm will apply to all of them. Hence

|||T |||1 = max{1, |||e−1|||, |||e0|||} = 1.
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Now we consider the power-bounded norm in `∞ by considering the operator T ∗. As shown earlier,
the adjoint simply reverses the direction of the arrows. Note that there is a self-similarity between
T and T ∗ by the mapping

ej 7→ e1−j

and hence |||T |||∞ = |||T ∗|||1 = |||T |||1 = 1. The use of similarity to simplify calculations is common.

Finally the Riesz-Thorin theorem proves that |||T |||p 6 1 for 1 < p <∞.

Example 4.14. Consider the following operator T on the space V = {ej}+∞j=0 ∪ {fj}
+∞
j=0.

Tej = ej+1 +

{
fj j = 2 or j = 4
0 otherwise

Tfj = fj−1 (j = 0 . . .∞)

e0 // e1 // e2 //

��

e3 // e4 //

��

e5 //· · ·

f0 f1
oo f2

oo f3
oo f4

oo f5
oo · · ·oo

In accordance with Lemma 4.12 we determine the three sets.

K1 = ∅
K2 = {e0}
K3 = {e0} ∪ {fk : k > 5}

As in the previous example we see that

sup
n
‖Tn‖1 = max{|||e0|||1, |||f5|||1}.

Clearly |||f5|||1 = 1. To calculate |||e0|||1 we need to examine carefully what happens to the powers
of T .

T 2e0 = e2

T 3e0 = e3 + f2

T 4e0 = e4 + f1

T 5e0 = e5 + f0 + f4

T 6e0 = e6 + f3

T 7e0 = e7 + f2

What is happening is that there is always precisely one element of the {ej}j present and a varying
number of the {fj}j which appear and disappear depending on the value of n. Using δ notation
we can describe this succinctly.

‖Tne0‖ = 1 + δ36n65 + δ56n69

In general, if there is a link between ej and fj then we get the term

δj+16n62j+1.

The examples in the next chapter make extensive use of this construction. Continuing with our
current example gives us

|||e0|||1 6 3
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which means
sup
n
‖Tn‖1 6 3.

Since T is similar to T ∗ we also have

sup
n
‖Tn‖∞ 6 3

and so
sup
n
‖Tn‖p 6 3

for all 1 6 p 6∞ by Riesz-Thorin.

4.5 Weak convergence

For the operators we have created above we also wish to know whether they have weakly converging
powers, that is, whether they are strongly mixing. What is important here is a form of recurrence.
Consider any two elements x, y ∈ V and consider the set

Rx,y := {n ∈ N : y ∈ succn(x)}.

What this is referring to is if we start at the vertex x and then for each n check if the vertex y is
n steps away. What we wish to know is if for each pair (x, y) this set is finite. If so, we have the
following.

Lemma 4.15. Consider a graph G = (V,E,w) with associated operator T . Suppose that T is
power-bounded by M and that Rx,y is a finite set for each x, y ∈ V . Then the sequence (Tn)n is
weakly convergent to zero in all `p for 1 < p <∞.

Proof. From the assumption we know that for any two basis vectors v, v′ there exists an N such
that

〈Tnv, v′〉 = 0 ∀n > N.

Fix a p and choose an arbitrary x ∈ `p, y ∈ `q where q is the adjoint index. Now choose an ε > 0
and find two elements x′, y′ ∈ c00(V ) such that

‖x− x′‖p 6 ε and ‖y − y′‖q 6 ε

which can be done because sequences with finitely many non-zero elements are dense in `p and `q.
Now since x′ and y′ have finitely many non-zero entries there exists an N such that 〈Tnx′, y′〉 = 0
for all n > N . So for these n

〈Tnx, y〉 = 〈Tnx, y − y′〉+ 〈Tn(x− x′), y′〉+ 〈Tnx′, y′〉
6 M‖x‖pε+M‖y′‖qε
= Mε(‖x‖p + ‖y′‖q)

so (Tn)n is weakly convergent.

Note that `1 and `∞ are excluded as c00(V ) is not dense in `∞. For `1 weak convergence is the
same as norm convergence.
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Chapter 5

Examples and counterexamples

Since actual proofs of the Blum-Hanson equivalence have been somewhat slow in coming, a lot of
work has been focused on finding examples and counterexamples, operators with specific combi-
nations of properties. In this way a clearer understanding is reached as to what may or may not
be possible.

5.1 Foguel’s counterexample

In [SN47] Sz. Nagy showed that every power-bounded operator with a power-bounded inverse
is similar to a contraction (see Theorem 2.22). Twelve years later ([SN59]) it was shown that
every compact power-bounded operator is similar to a contraction. It was conjectured that every
power-bounded operator is similar to a contraction.

This was quickly shown to be incorrect. [Fog64] introduced a class of operators which were shown
to be power-bounded but not similar to a contraction. It proved a useful idea since later Lebow in
[Leb68] showed these operators were also not polynomially bounded. In [Pis97] a very similar class
of operators was introduced which were shown to be polynomially bounded but also not similar
to a contraction.

Definition 5.1 (Foguel’s counterexample 1964). Define the Hilbert space H with the basis vectors
{en}∞n=0, {fn}∞n=0. Let (rj)j be a sequence of increasing natural numbers with Hadamard gaps, i.e.
rj+1/rj > q > 1. Define the operator T : H → H as

Te0 = 0
Tei = ei−1

Tfi = fi+1 i /∈ {rj}
Tfi = fi+1 + ei i ∈ {rj}

Here is the graph representation using the sequence rj = 3j , which is the version introduced by
Halmos [Hal64] and what most people referred to later on.

e0 e1oo e2oo e3oo · · ·oo e9oo · · ·oo

f0
// f1

// f2
// f3

//

OO

· · · // f9
//

OO

· · ·
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We, however, will consider the operator T mapping c00 → c00 and its unique extensions to `p, 1 6
p 6 ∞. Additionally we will be considering cases where (rj) is a general increasing sequence of
positive integers. This operator is clearly a generalised shift operator as described in the previous
chapter. As such it is a bounded operator. Foguel proved it power-bounded but it is instructive to
examine exactly why it is. By application of Theorem 4.6 we see that ‖T‖p 6 2 for all 1 6 p 6∞.

Lemma 5.2. Foguel’s operator T , with (rj) a sequence with Hadamard gaps, is power-bounded on
`p, 1 6 p 6∞.

Proof. Determining the sets for Lemma 4.12 we have that K1 = K3 = {f0} and K2 = ∅. Note
also there is a self-similarity between T and T ∗ (as in Example 4.13). So

sup
n
‖Tn‖∞ = sup

n
‖T ∗n‖1 = sup

n
‖Tn‖1 = |||f0|||1

Since T is a positive operator the 1-norm of Tn(f0) is simply the sum of the basis vectors. Hence

‖Tnf0‖1 = 1 + card{k ∈ {rj} : k < n < 2k + 2}

where card is the number of elements in the set. By the definition of (rj)j this is uniformly
bounded.

The way to view the above formula is to see the initial vector travel to the right along the sequence
of fj occasionally setting one of the ej . These ej travel to the left and are eventually annihilated.
The further one proceeds the longer the values in the ej persist, so the sequence must become
“sparse” if the norm is to be bounded. We prove the result for all `p instead of just Hilbert spaces
as Foguel and Halmos did.

Lemma 5.3. Foguel’s operator T based on the sequence (rk)k is power-bounded in `p if there exists
an M such that

sup
k∈N

card{k ∈ {rj} : k < n < 2k + 2} < M

Proof. This follows directly from the calculation of the norm above:

‖Tnf0‖∞ = ‖Tnf0‖1 = 1 + card{k ∈ {rj} : k < n < 2k + 2} 6 1 +M.

By Riesz-Thorin T is power-bounded for all `p.

We now have an explicit calculation for the norm and we know that for sequences with Hadamard
gaps the norm is bounded. However, there are non-Hadamard sequences which also lead to a
power-bounded operator. Similarly there are sequences of zero upper density which lead to a
non-power-bounded operator.

Example 5.4. Consider the sequence

rj = dj1+εe

for some ε > 0. Then we have

d(rj) = lim sup
j→∞

j

rj
6 lim sup

j→∞
j−ε = 0.

However, for any n ∈ N

card{k ∈ {rj} : k < n < 2k + 2} = card{k ∈ {rj} : n2 + 1 < k < n}
= card{k = dj1+εe : j ∈ N, n2 + 1 < k < n}
= card{j1+ε ∈ (k − 1, k] : j ∈ N, n2 + 1 < k < n}
= card{j1+ε ∈ (n2 , n− 1] : j ∈ N}
= card{(1 + ε) ln(j) ∈ (ln(n2 ), ln(n− 1)] : j ∈ N}
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The interval on the right-hand side remains approximately the same size (ln 2), while the ln(j)
come closer together as j →∞, making the count unbounded. In any case, the result in Lemma 5.3
is stronger than Foguel’s proof, which required Hadamard gaps.

The other property of interest for this operator is that it is not similar to a contraction.

Lemma 5.5. Foguel’s operator T on a Hilbert space using any sequence (rj)j is not similar to a
contraction.

Proof. Recall from Theorem 2.24 the definition H0(T ) = {x : Tnx→ 0 weakly}.

As Te0 = 0, clearly e0 ∈ H0(T ) .

Now, T 2rj+1f0 = e0 + f2rj+1 and so T 2rj+1f0 → e0 weakly. Consider an element z ∈ H0(T ∗).
Then

〈e0, z〉 = lim
j→∞
〈T 2rj+1f0, z〉

= lim
j→∞
〈f0, T

∗2rj+1z〉

= 0

and so e0 ∈ H0(T ∗)⊥.

Hence by Lemma 2.25 T is not similar to a contraction.

So we see that similarity to a contraction is independent of whether the operator is power-bounded
or not, but this proof only covers Hilbert spaces. As noted earlier, similarity to a contraction is
not a well studied area for general `p spaces.

Finally we show that the Blum-Hanson property is in fact not dependent on the sequence (rj) but
is intrinsic to the structure of the operator.

Theorem 5.6. Let T be Foguel’s operator with any sequence (rj)j. Then T does not have the
Blum-Hanson property.

Proof. Consider again the sequence (〈Tnf0, e0〉)n. This sequence will be 1 whenever n = 2rj+1 for
some j and 0 otherwise. In particular it will be zero for all even n. So (Tn)n does not converge in
the weak operator topology. Applying Lemma 2.17 shows that T does not have the Blum-Hanson
property.

This makes Foguel’s operator an example of a power-bounded operator which is not similar to a
contraction and which also does not have the Blum-Hanson property. As (Tn)n does not converge
in the weak operator topology, it is not counterexample to the Blum-Hanson equivalence, but
it laid the groundwork for the following counterexample. It was however the first example of a
power-bounded operator which is not polynomially bounded.

Theorem 5.7. Let T be Foguel’s operator on `2 with any sequence (rj)j with Hadamard gaps.
Then T is not polynomially bounded.

Proof. [Leb68]
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5.2 Müller-Tomilov’s example

In [MT07] Müller-Tomilov introduced an operator that in many ways was an extension of the
operator defined by Foguel. The goal was to make an operator that was weakly convergent to
zero while still being power-bounded and still not possessing the Blum-Hanson property, thus
making it a counterexample for the Blum-Hanson equivalence for power-bounded operators on
`p, 1 6 p <∞. The definition is as follows.

Definition 5.8 (Müller-Tomilov’s example 2007). Let H be the Hilbert space with an orthonormal
basis formed by the vectors {ei}(i > 0) and {fi,j}(i > 0, j ∈ Z). Define the function r : N→ N by
r(k) = blog2 kc+ 1, so r(k) = s whenever 2r−1 6 k < 2r(k > 1, s > 1). Then define T ∈ B(H) by:

Tfi,j = fi,j−1 i > 1, j 6= 0
Tfi,0 = 4−ifi,−1 i > 1
Tej = ej+1 (j /∈ 3k : k = 1, 2, . . .)
Te3k = e3k+1 + fr(k),3k (k = 1, 2, . . .)

Note the use of the 3k as in Foguel’s operator; it plays much the same role here. The r(k) also
serves a specific purpose, as will be seen later. The associated graph is as follows:

e0 // e3 //

��

e9 //

��

e27 //

��

e81 //

��

· · ·

· · · f0,−1
oo f0,01oo f0,3

oo · · ·oo

· · · f1,−1
oo f1,0

1
4
oo f1,3

oo f1,9
oo f1,27

oo · · ·oo

· · · f0,−1
oo f2,0

1
16
oo f2,3

oo f2,9
oo f2,27

oo f2,81
oo · · ·oo

There are a number of features of this operator not present in Foguel’s operator. Firstly, there are
no sinks, which means that values are not annihilated as in Foguel’s operator. Instead the sequences
of f are carefully scaled so they stay away from zero but do not cause any other problems. These
sequences do not materially affect the properties we are interested in here.

Secondly, the arcs coming from the (ej)j are at intervals of 3k similar to Foguel’s operator, but
instead of all linking to one chain they link to a sequence to chains of (fj,k)k. To each of the (fj,k)k
there is never an infinite number of links to a single chain of fj (unbounded yes, but not infinitely
many). The importance of this will become clear later on.

Stepping away from just Hilbert spaces, considering the above operator on c00 with its unique
extensions to `p we note that this is clearly a generalised shift operator.

Lemma 5.9. The Müller-Tomilov operator T is power-bounded on all `p, 1 6 p 6∞.

Proof. Applying the definitions from Lemma 4.12 to T we consider the sets

K1 = {fn,−1 : n = 1, 2, . . .}
K2 = {e0}

K3 = {e0} ∪ {fn,k : k > 32k

}
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Now because T restricted to each subspace {fn,k}k∈Z is almost an isometry we have (as in Exam-
ple 4.13)

sup
v∈K1

|||v|||1 = 1

sup
v∈K2

|||v|||1 = |||e0|||1

sup
v∈K3

|||v|||1 = max{1, |||e0|||}1

hence we only need to explicitly calculate |||e0|||. As the operator is positive we can simply sum the
elements.

‖Tne0‖1 = 1 +
∑
i∈N

δ{3i<n62·3i}︸ ︷︷ ︸
61

+
∑
i∈N

4−r(i) δ{2·3i<n}︸ ︷︷ ︸
61

6 2 +
∞∑
s=1

4−s · card{k ∈ N : r(s) = k}

6 2 +
∞∑
s=1

4−s2s 6 5
2

Hence
sup
n
‖Tn‖1 = sup

v∈K1∪K2∪K3

|||v||| 6 5
2 .

Similarly supn‖Tn‖∞ = supn‖T ∗n‖1. Hence we need to consider the sets

K1 = {fn,0 : n = 1, 2, . . .}
K2 = ∅
K3 = {ek : k > 1} ∪ {fn,k : k < −1}

Similar to above (as in Example 4.13)

sup
v∈K3

|||v|||∞ 6 sup
v∈K1∪{e1}

|||v|||∞

hence we only need to calculate explicitly for K1, as |||e1|||∞ = 1. Note how if we restrict the
operator to {ej}j ∪ {fi,j}j>0 we get an operator that is similar to itself and so

|||fi,0|||∞ = |||e0|||1
6 5

2

Hence
sup
n
‖T‖∞ = sup

v∈K1∪K2∪K3

|||v||| 6 5
2

and by Riesz-Thorin T is power-bounded on all `p, 1 6 p 6∞.

Lemma 5.10. The Müller-Tomilov operator T has weakly convergent powers, i.e. (〈Tnf, g〉)n
converges for all f ∈ `p, g ∈ `q, 1 < p <∞.
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Proof. We want to use Lemma 4.15. We need to consider a number of possibilities:

card{Rx,y} 6


1 x ∈ {ek}k, y ∈ {ek}k
0 x ∈ {fi,k}k, y ∈ {ek}k
2i x ∈ {ek}k, y ∈ {fi,k}k
0 x ∈ {fi,k}k, y ∈ {fi,k}k

Since in all cases Rx,y is finite, (Tn)n converges weakly in `p, 1 < p <∞.

Lemma 5.11. The Müller-Tomilov operator T does not have the Blum-Hanson property.

Proof. Consider the sequence (kn)n defined by kn = 2 · 3n + 1. Then

T kne0 = ekn
+ fr(n),0 +

n−1∑
j=1

4−r(j)fr(j),2·3j−2·3kn

And thus for each s ∈ N:

1
2s − 1

∥∥∥∥∥
2s−1∑
n=1

T kne0

∥∥∥∥∥ >
1

2s − 1

∣∣∣∣∣
2s−1∑
n=1

〈T kne0, fs,0〉

∣∣∣∣∣ =
2s−1

2s − 1
>

1
2

Hence the sequence 1
N ‖
∑N
n=1 T

kne0‖ does not converge to zero as N → ∞. Since the sequence
1
N

∑N
n=1 T

kne0 does converge weakly to zero it does not converge strongly in the norm topology.

Summarising the effects of the construction on the properties.

• Power-boundedness is primarily dependent on the 3k, but as in Foguel’s operator, any
Hadamard sequence will do.

• Not having the Blum-Hanson property is controlled by r(k) growing slow enough. The log-
arithm to any base would be sufficient, whereas linear growth would not have worked.

• Weak-convergence (strong-mixing) is inherent to the structure itself, as long as r(k) is not
constant, in which case it reduces to Foguel’s operator.

Whether this operator is polynomially bounded or not has not yet been determined.

5.3 A new example

One of effects of studying these generalised shift operators is that after a while you can create new
operators with specified characteristics. So, when László Zsidó asked the following

Is there for every ε > 0 a Müller-Tomilov type counterexample with supn‖Tn‖ < 1 + ε
or is there some λ > 1 such that the strong mixing property implies the Blum-Hanson
property for the orbits of any linear operator T on a Hilbert space with supn‖Tn‖ < λ?

it was clear to me that you could make a operator above with an arbitrarily small ε. After under-
standing how the power-boundedness of the Müller-Tomilov operator is calculated (Lemma 5.9) I
quickly came up with the following.

Example 5.12. Let H be the Hilbert space with an orthonormal basis formed by the vector
{ei}(i > 0) and {fi,j}(i > 0, j > 0). Define the function r : N → N by r(k) = blog2 kc + 1, so
r(k) = s whenever 2r−1 6 k < 2r(k > 1, s > 1). Choose an ε > 0. Then define T ∈ B(H) by:
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Tfi,j = fi,j−1 i > 1, j 6= 0
Tej = ej+1 (j /∈ 3k : k = 1, 2, . . .)
Te3k = e3k+1 + εfr(k),3k (k = 1, 2, . . .)

The graph formulation is as follows.

e0 // e3 //
ε��

e9 //

ε

��

e27 //

ε

��

e81 //

ε

��

· · ·

f0,0 f0,3
oo · · ·oo

f1,0 f1,3
oo f1,9

oo f1,27
oo · · ·oo

f2,0 f2,3
oo f2,9

oo f2,27
oo f2,81

oo · · ·oo

As you can see this operator is very similar to the previous one. The differences are:

• The lack of infinite sinks on the left hand side. As noted earlier, these are not relevant to
the properties of the operator we are interested in.

• The down arrows are scaled by the ε chosen in the definition.

Now to show that this operator has the required properties. The proofs are essentially simplified
versions of those for the Müller-Tomilov operator.

Lemma 5.13. The operator T is power-bounded by 1 + ε on all `p, 1 6 p 6∞.

Proof. Applying the definitions from Lemma 4.12 to T we consider the sets

K1 = ∅
K2 = {e0}

K3 = {e0} ∪ {fn,k : k > 32k

}

Now because T restricted to each subspace {fn,k}k∈Z is an isometry we have (as in Example 4.13)

sup
v∈K2

|||v|||1 = |||e0|||1

sup
v∈K3

|||v|||1 = max{1, |||e0|||}1

hence we only need to explicitly calculate |||e0|||. As the operator is positive we can simply sum the
elements.

‖Tne0‖1 = 1 + ε
∑
i∈N

δ{3i<n62·3i}︸ ︷︷ ︸
61

6 1 + ε

Hence
sup
n
‖Tn‖1 = sup

v∈K1∪K2∪K3

|||v||| 6 1 + ε.
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Similarly supn‖Tn‖∞ = supn‖T ∗n‖1. Hence we need to consider the sets

K1 = ∅
K2 = ∅
K3 = {ek : k > 1} ∪ {fn,0 : n ∈ N}

Similar to above (as in Example 4.13)

sup
v∈K3

|||v|||∞ = max{1, sup
v∈{fn,0:n∈N}

|||v|||∞}

hence we only need to calculate explicitly for {fn,0 : n ∈ N}, as |||e1|||∞ = 1. Note how if we restrict
the operator to {ej}j ∪ {fi,j}j we get an operator that is similar to itself and so

|||fi,0|||∞ = |||e0|||1
6 1 + ε

Hence
sup
n
‖T‖∞ = sup

v∈K1∪K2∪K3

|||v||| 6 1 + ε

and so by Riesz-Thorin T is power-bounded by 1 + ε on all `p, 1 6 p 6∞.

Lemma 5.14. The operator T has weakly convergent powers, i.e. (〈Tnf, g〉)n converges for all
f ∈ `p, g ∈ `q, 1 < p <∞.

Proof. This proof is precisely the same as in the Müller-Tomilov case, see Lemma 5.10.

Lemma 5.15. The operator T does not have the Blum-Hanson property.

This proof is practically identical to Lemma 5.11, just with an ε thrown in.

Proof. Consider the sequence (kn)n defined by kn = 2 · 3n + 1. Then

T kne0 = ekn
+ εfr(n),0

And thus for each s ∈ N:

1
2s − 1

∥∥∥∥∥
2s−1∑
n=1

T kne0

∥∥∥∥∥ >
1

2s − 1

∣∣∣∣∣
2s−1∑
n=1

〈T kne0, fs,0〉

∣∣∣∣∣ = ε
2s−1

2s − 1
>
ε

2

Hence the sequence 1
N ‖
∑N
n=1 T

kne0‖ does not converge to zero as N → ∞. Since the sequence
1
N

∑N
n=1 T

kne0 does converge weakly to zero it does not converge strongly in the norm topology.

The above shows that the question by László was easily answered and in fact in an even more
general form than he wanted: we have shown the requested operators exist in all `p, 1 < p < ∞,
not just Hilbert spaces.
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5.4 The C(K) counterexample

The first counterexample to the idea that all contractions on a Banach space would have the
Blum-Hanson equivalence was given in [AHR74].

Example 5.16 (C(K) counterexample). Let K := [0, 1) be the unit interval with the circle
topology; this is clearly a compact space. Now we define the Banach space X := C(K2), the
continuous functions on the torus. Define two functions φ, α : K → K as

φ(x) :=

{
3
2x 0 6 x < 1

2
1
2 + 1

2x
1
2 6 x < 1

α(x) :=


− A

ln x 0 6 x 6 1
4

4A(
1
2−x)

ln 4
1
4 < x 6 1

2

0 1
2 < x < 1

.

Here A is a positive constant such that α( 1
4 ) < 1

4 , for example A = 1
3 . See Figure 5.1 for a

visualisation of these functions.

(a) φ(x) (b) α(x)

Figure 5.1: Graphs of functions for C(K) counterexample.

By definition these functions are both continuous. Using these two functions we can define our
transition function τ : X → X as

τ(x, y) := (φ(x) + α(y), φ(y))

and so it is also continuous. Note that the first term is modulo 1 as we are on the torus. So now
we define our operator T : X → X as the operator induced by τ , i.e.

(Tf)(x) := f(τ(x)).

Note that T is an contraction on C(K2).

Lemma 5.17. The operator T is strongly mixing, i.e. (Tnf)n converges weakly to 1 · f(0, 0) .

Proof. Given that T is a contraction and hence Tn is a contraction, it is sufficient to show that
((Tnf)(x))n converges pointwise. Hence it is sufficient to show that τ(x)→ (0, 0) for all x ∈ K.
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Let the starting point be (x, y) and let (xn, yn) be the n-th point in the orbit. So (x0, y0) = (x, y).
Note that φ(x) > x so the sequence (yn)n is a monotonically increasing sequence converging to 1,
which equals 0 on the torus. Find an N such that yn > 1

2 for all n > N . Because α(yn) = 0 for all
n > N the (xn)n>N also form a monotonically increasing sequence.

Hence (xn, yn)→ (0, 0) and (Tn)n converges weakly.

Lemma 5.18. The operator T does not have the Blum-Hanson property.

Proof. What we need to do is demonstrate that there exists an f ∈ C(K2) and a sequence of
positive integers (mi)i such that

1
N

N∑
i=1

Tmif

does not converge in the norm of C(K2).

Choose an integer M ∈ N. Consider the point x = (0, 1
4 ·

2
3

M ) so that φM (y0) = 1
4 . Now consider

the sequence
δn = xn − xn−1 = (φ(xn−1)− xn−1) + α(yn−1).

This sequence is the amount the xn changes after each iteration. So

xn =
n∑
i=1

δn mod 1.

Define a function r : K2 → N0 as

r(x) := card{xn : 1
8 < xn <

7
8}

which is the number of times the orbit of x is in the given strip. Note that for n 6 M we have
that 0 < δn <

1
2 so if

∑n
i=1 δn > N for some integer N we see that r(x) > N . By calculation

M∑
n=1

δn >
M−1∑
n=0

α(yn)

=
M−1∑
n=0

A

ln 4 + (M − n) ln 3
2

=
M∑
n=1

A

ln 4 + n ln 3
2

which can be made arbitrarily large by choosing an sufficiently large M . Hence we can define a
sequence (tn)n ∈ K2 such that r(tn) > n.

To complete the counterexample choose any positive continuous function f ∈ C(K2) such that
f(0, 0) = 0 and f(x, y) > 1 for all 1

8 < x < 7
8 and y ∈ K. By Lemma 5.17 we have that Tnf → 0

weakly.

Now construct an increasing sequence of positive integers (mi)∞i=0 and a sequence of points (xr)∞r=1

recursively as follows. Let m0 = 0. If the first 2k elements are fixed, let xk = tm2k−1+2k . We know
that r(xk) > m2k−1 + 2k so we can fill in the next 2k elements with indexes such that mi remains
an ascending sequence and the orbit of xk falls inside the strip (( 1

8 ,
7
8 ), [0, 1)).

Now for each k we have that the orbit of xk is such that f(τmi(x)) > 1 for more than half the
sequence (mi)2r−1

i=0 and so for all k∥∥∥∥∥∥ 1
2k

2k∑
i=0

(Tmif)(xk)

∥∥∥∥∥∥ =

∥∥∥∥∥∥ 1
2k

2k∑
i=0

f(τmi(xk))

∥∥∥∥∥∥ > 1
2
.
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So along this sequence (mi)i the sums do not converge uniformly to zero and hence T does not
have the Blum-Hanson property.
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Chapter 6

Conclusion

The conclusion is that while the Blum-Hanson equivalence is possible amongst contractions, al-
though the case for general Lp is not yet done, the Müller-Tomilov operator means that for
power-bounded operators on general Lp, 1 < p < ∞ it is impossible to have the Blum-Hanson
equivalence. Since every power-bounded operator can be used to define an equivalent norm such
that the operator is a contraction, this makes contractions on Lp spaces very special. As shown,
contractions under the sup-norm on C(K) also do not have the required property. The deciding
factor is clearly not the topology and is instead a metric property. However, precisely what it is
about Lp spaces that allows it to work is as yet unknown.

The remaining hole to be filled is general (non-positive) Lp contractions, either a proof or a
counterexample. However, not a lot of progress seems to have been made in this area; they are
amongst the most difficult spaces to analyse.
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Appendix A

External theorems

This appendix collects a number of the unusual or lesser known theorems referred to in the text.

Banach lattices

Definition A.1 (∨-stable). A set F is called ∨-stable if for any f, g ∈ F we have that

f ∨ g = sup{f, g} ∈ F

Theorem A.2. Let (Ω,Σ, µ) be a measure space. Let F ⊆ L1
+(Ω,Σ, µ) be a uniformly bounded

∨-stable set. Then f := supF exists in the Banach lattice L1(Ω; R) and there exists an increasing
sequence (fn)n ∈ F such that supn fn = f and ‖f − fn‖ → 0. In particular f ∈ F if F is closed.

Proof. [MN91]

Weak compactness of L1

Theorem A.3 (Vitali-Hahn-Saks). Suppose (λn)n is a sequence of µ-continuous signed measures
on a σ-algebra Σ such that

λ(A) := lim
n→∞

λn(A)

exists in R for each A ∈ Σ. Then the measures (λn)n are uniformly µ-continuous and λ is a signed
measure on Σ.

Proof. [Car05, Corollary 13.7] and [DS58]

This result is related to the more general result that certain subsets of L1 are weakly compact.
More information on this can be found in [Car05, Chapter 13].

Lemma A.4. If the sequence of countably additive measures (λn)n is uniformly µ-continuous,
then the sequence (|λn|)n is uniformly µ-continuous.

Proof. Fix ε > 0. Then there exists a δ > 0 such that

µ(A) < δ =⇒ λn(A) < ε

for all n. Now, using the identity

|λn|(A) 6 4 sup
B⊆A
|λn(B)|

we see that |λn|(A) < 4ε and so the sequence (|λn|)n is uniformly µ-continuous.
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The Blum-Hanson Property A. External theorems

Hilbert space results

Theorem A.5. ([Con90, Theorem 2.2]) If φ : H ×H → C is a bounded sesquilinear form with
bound M , then there exist unique operators A,B ∈ BL(H) such that

φ(f, g) = 〈Af, g〉 = 〈f,Bg〉

for all f, g ∈ H and ‖A‖ 6 M, ‖B‖ 6 M .

Lemma A.6. ([Con90, Proposition 2.12]) If H is a complex Hilbert space and A ∈ BL(H), then
A is hermitian if and only if 〈Ah, h〉 ∈ R for all h ∈ H.

64



Appendix B

Notes for functional analysis
students

To make this thesis a little more readable for people who have only had a basic course in functional
analysis, here is the explanation of some terms.

Hausdorff space A Hausdorff space (also known a separated or T2 space) is a space where
any two points can be separated by open sets. Almost all spaces discussed in analysis are
Hausdorff. In particular any metric space is Hausdorff.

Weak convergence A sequence (xn)n in a Banach space X is said to be weakly convergent if
〈xn, y〉 converges for each y ∈ X∗. For example, the sequence of basis vectors for an `p space,
1 < p <∞ is weakly convergent.

A sequence of operators (Tn)n on a Banach space X is said to be weakly convergent to
P ∈ BL(X) if

〈Tnx, y〉 → 〈Px, y〉

for all x ∈ X, y ∈ X∗. For example, the powers of the right-shift operator on `p, 1 < p <∞
are weakly convergent, even though it is an isometry.

Strong convergence implies weak convergence, but not vice-versa. More information can be
found in [Con90, Chapter 4].

Density For a subset of the positive integers (ni)i ⊆ N we define the upper density as

d(ni) = lim sup
i→∞

card{nj : nj < i}
i

and the lower density as

d(ni) = lim inf
i→∞

card{nj : nj < i}
i

.

If these two values are the same then we just say density.

For example, the even numbers have density 1
2 , the primes have density 0 and N has density

1.

Banach limits A Banach limit is a generalisation of ordinary limits. Define the bounded linear
functional L : c→ C as

L(x) := lim
n→∞

xn.

This is a bounded linear functional that maps sequences to their limit. This functional may
be linearly extended to a functional L : `∞ → C to give a generalised limit for all bounded
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The Blum-Hanson Property B. Notes for functional analysis students

sequences. For a glimpse of how this might work, consider how Cesàro means and Abel means
are extensions of L, but neither exist for all bounded sequences.

Note the extension is not uniquely defined, so we always speak of a Banach limit. The
properties you can use are

• L is shift invariant.

• L is positive.

• L maps the constant sequence (1)n to 1.

• L is a bounded linear functional.

More information about Banach limits can be found in [Con90, Section 3.7].

Banach Lattice A Banach lattice is, among many other things, a Banach space which is also a
partially ordered set (X,6) such that

x ∨ y := sup{x, y} and x ∧ y := inf{x, y}

exist for all x, y ∈ X. Similarly we can talk about the supremum or infimum of a set, if
they exist. A lattice is called complete is every non-empty subset has a supremum and an
infimum. A subset D ⊆ X of a lattice is called ∨-stable (∧-stable) if a, b ∈ D implies a∨b ∈ D
(a ∧ b ∈ D).

For a more complete description see [Sch74].
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