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Propositions

accompanying the dissertation

OPTIMUM DESIGN OF STEERED FIBRE COMPOSITE CYLINDERS WITH
ARBITRARY CROSS-SECTIONS

by

Ali KHANI

1. Circumferential stiffness tailoring increases the buckling capacity of a longitudinally
stiffened circular cylinder under bending by two load redistribution mechanisms;
one global and the other one local.

2. Optimal steering of fibres is more complex than staring at the wall and coming up
with intuitive ideas.

3. Slower functioning of the brain during frequent task switching is partially due to the
multiple pause, restart and refocus steps, which is similar to the extra time required
for cut-restart during fiber placement.

4. Lack of mental and physical stress can lead to health problems.

5. Many problems are solved once they are well defined.

6. “There is only one thing in the long run more expensive than research: no research”.
John F. Kennedy

7. A Persian proverb says “one who has a larger roof has more snow on it”, the same
stands for a thesis, the thicker the thesis is, more typos there are.

8. No matter how much computational power is increased, structural optimisation re-
mains a challenge.

9. A shortcut sometimes takes longer time and more effort.

10. As a foreigner, no matter what you come to study in Netherlands, you have to learn
more about medicine.

11. The odrer of the lerttes in a wrod is not ipmortnat, as lnog as the frist and lsat lerttes
are in the rhigt palce you can raed it.

These propositions are regarded as opposable and defendable, and have been approved as
such by the supervisor prof. dr. Z. Gürdal.



Stellingen

behorende bij het proefschrift

OPTIMUM DESIGN OF STEERED FIBRE COMPOSITE CYLINDERS WITH
ARBITRARY CROSS-SECTIONS

door

Ali KHANI

1. De maximale kinkbelasting van een in de lengte verstevigde cylinder belast door een
buigmoment is te verhogen door de laminaatstijfheid in omtreksrichting te varië-
ren, dit dankzij twee verschillende kracht herverdelingsmechanismen, een globale
krachtherverdeling en lokale krachtherverdeling.

2. Het optimaal sturen van vezelpaden is ingewikkelder dan naar een muur staren en
met intuïtieve ideeën komen.

3. De hersen functies worden langzamer bij het frequent schakelen tussen verschil-
lende taken, dit komt deels door the feit dat je hersenen moeten pauzeren, opnieuw
opstarten en zich heroriënteren. Een vergelijkbaar proces (“cut-restart”) is ook aan-
wezig bij het bepalen van vezelpaden.

4. Een tekort aan mentale of fysieke stress kan tot gezondheidsproblemen leiden.

5. Veel problemen worden opgelost zodra ze goed zijn gedefinieerd.

6. “Het enige wat op lange termijn meer kost dan onderzoek: geen onderzoek” - John F.
Kennedy

7. Een Perzisch gezegde luid: “Iemand met een groter dak heeft meer sneeuw”, hetzelfde
geldt voor een proefschrift, hoe langer het proefschrift, des te meer spelfouten/typefouten
het bevat.

8. Ongeacht de toename in rekenkracht, blijft de optimalisatie van constructies een
groot uitdaging.

9. Een kortere route kan soms meer tijd en moeite kosten.

10. Het maakt niet uit wat je als buitenlander in Nederland komt studeren, je zult meer
over geneeskunde moeten leren.

11. De vlorgode van lerttes in een wrod is neit blinegrajk, als de eretse en de ltsaate lerttes
op de jsiute pltaas satan, is het wrood te leezn.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig
goedgekeurd door de promotor prof. dr. Z. Gürdal.
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PREFACE

In the past few years, my main research interest was design optimisation of com-
posite laminated structures with a focus on steered fibre laminates. During my
PhD, I investigated steered fibre laminate design aspects of cylindrical shells with
arbitrary cross-sections, details of which are documented in this thesis. Being in-
volved in other research and industrial projects, gave me the opportunity to ex-
plore the benefits of using steered fibre laminates in some different applications,
both numerically and experimentally. All in all, my contribution to the field may
seem like a tiny step in the long journey started and continued by the pioneers
of the field and other researchers, to whom I am grateful. In case my tiny step can
help future researchers to move forward, I would be happy. Bob Marley said it best,
“Though the road’s been rocky it sure feels good to me.”

Every moment of my journey is filled in with the memories of people, specially
those whose profound impact requires sincere acknowledgment. My cordial grat-
itude to these people cannot be expressed by words; my promoter, co-promoter,
collaborators, colleagues, friends, my family, devoted parents, brothers and my
lovely wife and her family. I am indebted to all of you since this journey could not
be undertaken and accomplished without your help. Thank you for the support,
discussions, correcting my mistakes, sharing your thoughts, ideas and codes, shar-
ing your moments of happiness and encouragement in the moments of frustration
and sadness. Finally, thank you reader, you have already read one page of my dis-
sertation.

Ali Khani
Delft, December 2013
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1
INTRODUCTION

1.1 INTRODUCTION

Composite materials consist of two or more materials which together produce
desirable properties that cannot be achieved with any of the constituents alone

[1]. The different synthetic composite materials in use today, range from ceramics
composites and construction concretes to fibre-reinforced polymers (FRPs).

Fibre-reinforced composite materials contain high strength and high modulus
fibres e.g. carbon or glass as the main load carrying element and a matrix mate-
rial e.g. a thermoset or thermoplastic polymer as the element which bonds fibres
together. Due to their composition, fibre-reinforced materials have higher specific
strength and stiffness properties than metals, which makes them suitable candi-
dates for light-weight structures. The various types of fibre-reinforced composites
include short fibre composites, woven and laminated composites which consist of
fibre-matrix layers.

Due to the higher stiffness and strength of fibres in the fibre direction, fibre-
reinforced composites, and as such laminated composites, exhibit directional or
anisotropic material properties. This means that a material property at a certain
location will differ depending on the direction in which it is measured. The di-
rectional properties of a fibre-reinforced lamina are symmetric with respect to the
orthogonal planes of symmetry, which are normal to the laminate in the fibre di-
rection and perpendicular to it. Laminates with anisotropic properties, which are
symmetric about some orthogonal planes, are called orthotropic laminates.

3
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1.2 TAILORING OF COMPOSITE LAMINATES

The directional properties of composite materials provide extra design variables
compared to isotropic materials e.g. metals. The directional stiffness proper-

ties of a laminate with a certain number of layers and made of certain materials
can be altered by changing the ply fibre angles or by varying the order of placing
the plies with certain fibre angles in the laminate i.e. the stacking sequence. These
design variables together with the number of layers and the material type, which
can be different for different plies, provide a larger design space than that available
when metals are used.

Composite laminates are traditionally composed of a number of plies consist-
ing of straight fibres set in a matrix. Therefore, directional stiffness properties
are the same everywhere in the laminate. However, due to the recent improve-
ments in the composites manufacturing technology, non-conventional laminates
can be built which have different stiffness properties in different regions or points
of the laminate. Spatial variation of laminate stiffness properties enlarges the de-
sign space compared to the laminates with constant laminate stiffness properties
and hence provides a larger room for structural performance improvements. The
different types of laminates are discussed below.

1.2.1 TYPES OF COMPOSITE LAMINATES
Composite laminates are divided into two categories; constant stiffness and vari-
able stiffness laminates.

Constant stiffness laminates
In conventional laminates, which are made of straight fiber plies, only one set of
stiffness properties exists for the whole laminate. Therefore, these laminates are
called constant stiffness or simply CS laminates (figure 1.1). The design variables
of CS laminates may include the ply fibre angles, order of placement of plies with
certain fibre angles, number of the plies and material type. For a broad review of
the design methods of CS laminates, the interested reader is referred to [2].

Variable stiffness laminates
Stiffness properties of non-conventional laminate will vary from one location in
the laminate to another. Therefore, these laminates are called variable stiffness
or simply VS laminates. Stiffness variation can be achieved by altering the layup
from one location to the other, either by blending different CS laminates located in
different regions of a structure or by steering the fibres in each ply of the laminate
using curvilinear rather than straight paths.

-Blended laminates
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Blended laminates consist of discrete regions with different numbers of straight

fibre layers (figure 1.1). Between the neighboring regions, some of the layers are
dropped and some are common. The neighboring laminates are blended through
the common layers ensuring continuity of the whole laminate. Therefore, the stack-
ing sequences and stiffness properties of blended laminates is altered in different
regions through changing the number of layers and the stacking sequence. The
design space of blended laminates is larger than the design space of the CS lami-
nates and usually larger improvements in structural performance can be expected.
Different design methods for blended laminates are reviewed by Ghiasi et al. [3]
and Van Campen [4].

-Steered fibre laminates
Using automated fiber placement (AFP) machines, it is possible to place fibres

in curvilinear paths in each ply of a laminate. Steered fibre laminates contain layers
with curvilinear fibres instead of straight fibres (figure 1.1). Due to the continuous
fibre angle variation within each steered fibre ply, laminate stiffness will be contin-
uously altered in the laminate. Therefore, the design space includes the stacking
sequence at every spatial location of the laminate. Due to the larger design space
available for steered fibre laminates compared to CS and blended laminates, larger
structural improvements and more complicated structural optimisation problems
can be expected. For extensive reviews on different modeling, analysis and optimi-
sation methods of steered fibre laminates, the interested reader is referred to [3], [5]
and [6].

Constant sti�ness straight �bre laminate Variable sti�ness blended laminate Variable sti�ness steered �bre laminate

FIGURE 1.1: Different levels of complexity in laminate tailoring

1.3 AUTOMATED FIBRE PLACEMENT

Automated fibre placement (AFP) and automated tape laying (ATL) are two com-
puter - controlled composite manufacturing methods which layup a surface

using tows and tapes, respectively. Each tow or tape comprises a bundle of unidi-
rectional fibres. Tows are typically 1/8, 1/4 or 1/2 inch wide, while tapes are wider,
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(a) (b)

FIGURE 1.2: An automated fibre placement machine placing 8 tows each 1/4 inch wide (Coriolis Com-
posites)

typically 3, 6 or 12 inch wide. Usually fibre placement heads are capable of plac-
ing up to 32 tows in one pass. Each band of simultaneously placed tows is called a
course.

Although fibre placement machines are capable of placing different materials
including thermoset and thermoplastic materials or dry fibres, here the material
is assumed to be a thermoset pre-impregnated tow, which is the most commonly
used material for fibre placement. A fibre placement machine is typically com-
posed of a control unit, a robotic arm or a gantry system, a material storage cen-
ter and a fibre placement head (figure 1.2). The fibre placement head is mounted
on the robotic arm or gantry system which is controlled via the control unit and
provides enough degrees of freedom for the head to access every point of the tool
surface. Sometimes in addition to the degrees of freedom due to the robotic arm
or the gantry system, an extra degree of freedom is available via the mandrel ro-
tation. The resin pre-impregnated tows are stored on spools in a storage cham-
ber in which the air temperature, humidity, etc. are controlled. The prepreg tows
are pre-tensioned and guided to the tool surface through some pinching rollers
(figure 1.3). Prior to the tow placement on the tool surface, the tows experience
controlled heating by a heating unit to increase their tackiness to the surface. The
preheated tows are placed on the surface with a compaction roller which helps to
remove the trapped air between the tow and the surface and to adhere the tows
securely to the tool surface. The driving force which moves the tows for the spools
to the surface is the friction between the tow, compaction roller and the tool sur-
face [5].

In AFP, individual supply of tows and their relatively small width, material tack-
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FIGURE 1.3: AFP machine head (Evans [7])

iness and the compaction roller allow the prepreg tows to be placed on complex
surfaces, e.g. double curved, and/or in curved paths. However, it is only possible
to lay wider tapes, which are used in ATL, on flat or simple surfaces and in straight
paths. In AFP and ATL, tows or tapes are not always placed in the perpendicular
direction to the part boundaries and hence jagged or saw-tooth boundaries ap-
pear which should be cut for the final product. Due to the small widths of tows in
AFP, the amount of scrap material at the part boundaries is less than that of ATL
(figure 1.4).

As mentioned before, AFP machines can be used to manufacture laminates
with steered fiber path plies. Typical fibre placed straight and steered fibre lami-
nates are shown in figure 1.5. In general, the steered fibre paths in a ply are not
constrained to be parallel to each other and since the width of each course is con-
stant, some gaps and overlaps appear between every two successive courses (fig-
ure 1.9). Therefore, in addition to the spatial change of fibre angles in the plies
of steered fibre laminates, the laminate thickness and number of layers may also
change from one location to the other. Gaps and overlaps may appear even with
straight fibres placed on some surface geometries. For example in conical surfaces,
the cross-section is reduced from the base to the vertex. Therefore, if the straight
courses are placed adjacent to each other to cover the base, they would overlap on
the smaller cross-sections.
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Part boundary

Placed tows

FIGURE 1.4: Jagged or saw-tooth boundaries (regenerated from Tatting and Gürdal [8])

Another advantage of AFP over ATL is the ability to cut and restart individual
tows using cutters and restart rollers in the machine head (figure 1.3). Therefore,
the course width can be changed in any location by dropping or restarting individ-
ual tows. This course width variation can be used to minimise gaps and overlaps
due to fibre steering or a specific surface geometry. Cutting the tows individually
at the edge of the tool surface, further eliminates the amount of scrap material
(figure 1.4).

In spite of all the above discussed advantages of AFP over ATL, the deposition
rate and manufacturing throughput for AFP is lower than for ATL and hence AFP is
usually used for layup of relatively small surfaces. Therefore, a trade-off is always
made between the advantages of AFP and manufacturing throughput of ATL.

1.3.1 AFP MANUFACTURING LIMITATIONS
The AFP manufacturing method has some limitations which should be considered
by the designer, these include [6]:

• collision of machine head and mould,

• fibre bridging,

• jagged or saw-tooth boundaries,

• deviation of manufactured fibre angles from the designs,

• rate of fibre placement,
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(a) Straight fibre laminate (b) Steered fibre laminate

FIGURE 1.5: Fibre placed laminates (Courtesy of CoDeT engineering)

• minimum length of tows due to cutting,

• gaps and overlaps,

• maximum curvature of steered tows,

Depending on the AFP machine characteristics and the part geometry, colli-
sion of the machine head with the mould and fibre bridging may happen. In ad-
dition, material tackiness and fibre path influence the possibility of fibre bridging.
If the tows are not placed in the perpendicular direction to the part boundaries,
jagged or saw-tooth boundaries appear (figure 1.4). The manufactured steered fi-
bre paths may deviate from the designs due to machine tolerances e.g. when using
dry fibres. Even if the centreline of a steered course is aligned exactly in the di-
rection for which it is designed, the fibre angles at the boundaries of the course
will deviate from that in the centreline. The fibre paths and the course width in-
fluence the amount of this deviation. The rate of the fibre placement depends on
the machine, geometry, material, fibre path and course width. There is a distance
between the cutters and the compaction roller in a fibre placement machine head
which determines the minimum length of the tow between starting the placement
and the cut. As mentioned before gaps and overlaps happen due to the surface
geometry or the steered fibre paths and their amount is influenced by the course
width [6].

By placing the tows in curved paths, the fibres which are located inside each
turn are compressed. A maximum steering curvature exists for each course, which
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depends on the type of the material used and the course width, and steering be-
yond this maximum may cause the tows to wrinkle inside of the turn (figure 1.6)
and reduce the product quality.

Straight tow Slightly curved tow Excessively curved tow

under tension

under compression
wrinkled

FIGURE 1.6: Wrinkling due to increased steering curvature (regenerated from Van Campen [4])

1.4 DESIGN OF FIBRE STEERED LAMINATES

The effect of curvilinear fibre paths in improving the efficiency of composite
structures is investigated by different researchers, for example; Deturk et al.

[9], Yau and Chou [10], and Gunderson and Lute [11] produced curvilinear fibres
around a hole in a composite plate by putting metal pins into the woven fabric or
laminate before curing (figure 1.7). Their research showed improvement in open
hole compressive and tensile strength of curvilinear fibre composite plates com-
pared to traditional straight fibre ones with drilled holes. Jones and Platts [12]
used different internal fibre geometries to compare the strength and stiffness per-
formance of pin-loaded holes in composite plates. Tosh and Kelly [13] used the
strategy of aligning the fibres with principal stress vectors and load paths to in-
crease the strength of a component with an open hole and a pin-loaded hole under
tension.

Although the enlarged design space, due to fibre steering, provides a larger
room for structural performance improvements, the complexity of the optimisa-
tion problem is also increased. Extensive and broad reviews on different mod-
eling, analysis and optimisation methods of steered fibre laminates are available
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FIGURE 1.7: Different fibre orientations around the hole in the test specimen (Deturk et al. [9])

in [3], [5] and [6]. However, here as an introduction to different design methods of
steered fibre laminates, methods of stiffness variation modeling and some exam-
ples are briefly explained.

Two main approaches are used by different researchers to model the laminate
stiffness variation in steered fibre laminates; continuously varying the fibre an-
gles by defining a functional fibre path which is the reference for other fibre paths
covering the whole laminate or assigning different stiffness properties to different
discrete regions, locations or points of a composite structure.

1.4.1 FUNCTIONAL FIBRE PATH DEFINITION
Continuous variation of laminate stiffness properties can be modeled by using
curvilinear fibre paths which are expressed as functions of location in the laminate.
Parameters defining these functions can be used as design variables to optimise
the structural efficiency. Gürdal and Olmedo [14] introduced a fibre path param-
eterisation in which the fibre angle varies linearly in x or y directions of a plate.
This definition of fibre paths was generalised by Tatting and Gürdal [15] through
allowing the linear fibre angle variation to happen in any arbitrary direction in the
plate (figure 1.8). The limited design space, due to the predefined fibre angle vari-
ation scheme, can be enlarged by dividing the fibre angle variation direction into
multiple segments and assigning an independent fibre path function to each seg-
ment. For example Blom et al. [16] and Blom et al. [17] divided the axial direction
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on a conical surface and circumferential direction on a circular cylinder into multi-
ple segments and used a linear fibre angle variation and a constant curvature fibre
path for each segment, respectively.

y

x

x’
y’

A

B

dT
0

T
1

ϕ

FIGURE 1.8: Linear fibre angle variation between fibre angle T0 at point A and T1 at point B placed on
x′ axis (the angle between x′ and x axes is denoted by ϕ) (Tatting and Gürdal [15])

Blom et al. [18] defined geodesic, constant angle and constant curvature fibre
paths for conical surfaces. Examples of other functions used for defining the fi-
bre path along a single direction are the cubic polynomial, parabolic, cubic Bezier
curves and linear combination of b-splines used by Parnas et al. [19], Honda et al.
[20], Parnas et al. [19], and Honda et al. [21], respectively. Nagendra et al. [22] rep-
resented the fibre paths as a linear combination of certain predefined basis fibre
paths and coefficients of different basis fiber paths are used as design variables.
Each basis fiber path is a non-uniform rational b-spline (NURBS) curve which in-
terpolates between certain control points. Honda and Narita [23] used a cubic
polynomial, defined as a function of both coordinates of a surface, for fibre an-
gle distribution. Also Alhajahmad et al. [24] defined a nonlinear function using
Lobatto- Legendre polynomials for spatial distribution of fibre angle in terms of
both coordinates of a surface.

The configuration of the curvilinear fibre paths, required to cover the steered
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FIGURE 1.9: Parallel and shifted methods

fibre ply area, can be constructed from the optimised reference fibre path using ei-
ther of the two methods proposed by Waldhart et al. [25]; shifted or parallel meth-
ods (figure 1.9). In the shifted method, the reference fibre path is shifted in the
perpendicular direction to the direction of fibre angle variation to cover the whole
ply area. In the parallel method, all the fibre paths in a ply are placed parallel to
the reference fibre path.

The functional fibre path definition has the advantage of ensuring the conti-
nuity of fibre paths and implementation of AFP manufacturing constraints in the
curvilinear fibre path definition. The drawback is the limited design space due
to the predefined function and fibre paths which are restrained to be parallel to
or shifted from the original fibre path. Another drawback is that the optimisation
problem for some structural responses is non-convex when formulated in terms of
fibre angles and hence local optima exist. The non-convex optimisation problems
need solution strategies such as genetic algorithm (GA) to find the global optimum.
These algorithms usually need to perform a lot of structural analyses, and become
computationally intractable specially when high fidelity models containing man-
ufacturing details are used.



{{1

14 1. INTRODUCTION

1.4.2 DISCRETE STIFFNESS VARIATION
One of the primary attempts to model the laminate stiffness variation in a steered
fibre laminate was to divide the structure domain into several discrete regions and
assign an independent laminate stiffness to each region (figure 1.10). Optimisa-
tion of the ply angles and stacking sequence at each region independently is in-
vestigated by different researchers such as Katz et al. [26], Hyer and Lee [27], Hyer
and Charette [28] and Haftka and Starnes [29]. One of the disadvantages of assign-
ing independent laminate stiffness properties to different discrete regions of the
structure, is the discontinuity of the optimum stacking sequences between dis-
crete regions.

FIGURE 1.10: Distribution of fibre angles in 18 discrete regions which maximises the buckling load in a
[±45,θ6]s laminate (Hyer and Lee [27])

Independent laminate stiffness properties could be assigned to each node or
element in the finite element model. For example Huang and Haftka [30] per-
formed stiffness tailoring to improve the compressive strength of a plate with a
hole by assigning local fibre angles to each element in the finite element model. Honda
and Narita [23] assigned the fiber angle of each element in the finite element model
of each layer as a design variable to maximise the fundamental frequency (fig-
ure 1.11). The advantage of discrete stiffness modeling strategy is providing a larger
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design space than the functional fibre path definition and therefore larger im-
provements are expected. The drawbacks are the possible fibre discontinuity or
abrupt fibre angle variation between nodes or elements, the dependency of the
number of design variables to the mesh density and the non-convexity of the struc-
tural optimisation problems when formulated in terms of fibre angles.

FIGURE 1.11: Optimal distribution of fibre angles in the layers of a symmetric 8-layered laminate for
maximum fundamental frequency of a fully clamped plate (Honda and Narita [23])

To remedy the local optima problem, Setoodeh et al. [31], Abdalla et al. [32],
and IJsselmuiden et al. [33] built convex approximations of structural stiffness,
fundamental frequency and buckling factor, respectively, in terms of laminate stiff-
ness matrices. Using the developed convex approximations of structural responses,
the original optimisation problem is substituted by an approximate convex sub-
problem which is solved using a successive approximation scheme to find the opti-
mum distribution of laminate stiffness matrices. The laminate stiffness properties
are parameterised in terms of lamination parameters (see subsection 2.5.2) and
laminate stiffness variation is modeled by assigning an independent set of lamina-
tion parameters to discretisation point. Since the laminate stiffness properties can
be expressed as linear functions of lamination parameters and the feasible region
of lamination parameters is convex, a convex optimisation problem is formulated.
Lamination parameters have other properties which make them suitable for lami-
nate stiffness parameterisation (see subsection 2.5.2).

The disadvantage of using lamination parameters as design variables is the
lack of detailed tow, course and ply information which is required for an evalua-
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tion of manufacturing constraints. Therefore, a post-processing step is required
to retrieve the optimum fibre angles from the optimum distribution of lamination
parameters. Pilaka [34], Van Campen et al. [35], Setoodeh et al. [36], Blom et al. [37]
and Nagy et al. [38] developed methods for retrieving the fibre angles, while imple-
menting the manufacturing constraints, and generation of smooth steered fibre
paths. The multi-step optimisation framework introduced in chapter 4 is based on
the aforementioned approach of finding the optimum laminate stiffness distribu-
tion and retrieving the fibre angles from that in a post-processing step.

1.5 LAMINATED CYLINDRICAL SHELLS

Cylindrical shells are one of the widely used structural components in aircrafts
and aerospace vehicles, e.g. fuselage and rocket motor skirt, in containers,

e.g. tanks, reservoirs, pressure vessels, in pipes and tubes, in submarine and ship
structures and etc.. Although a lot of cylindrical shells have circular cross-sections,
some specific applications may dictate using cylindrical shells with non-circular
cross-sections e.g. the non-circular cross-section fuselage used for blended wing-
body aircrafts and non-circular cross-section fuel tanks used in launch vehicles
which are dictated by the specific aerodynamic or geometric requirements [39].
The high specific stiffness and strength properties of composites have motivated
the design and manufacturing of lightweight and efficient fibre reinforced lami-
nated composite thin cylinders. Different design tailoring methods of composite
cylindrical shells are reviewed in subsection 1.5.1.

1.5.1 STIFFNESS TAILORING METHODS
In this subsection, the different tailoring methods for laminated cylindrical shells
with straight fibre, segmented-stiffness, variable thickness and steered fibre lami-
nates are reviewed.

Straight fibre laminated cylinders
Stiffness tailoring methods for straight fibre laminated cylinders are divided into
two groups; the first group uses ply angles and number of plies as design variables
and the second group uses lamination parameters and laminate thickness. Most
of the research on tailoring of straight fibre laminated cylinders fall under the first
group. However, as mentioned before, lamination parameters are used as inter-
mediate design variables in the multi-step optimisation framework developed in
chapter 4. Therefore, in this subsection tailoring methods using ply angles as de-
sign variables are briefly described and more emphasis is on the methods using
lamination parameters.

-Ply angles as design variables
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Some researchers e.g. Tasi [40], ZitzEvancih [41], Tripathy and Rao [42] and Rao

and Shyju [43] found the optimum stacking sequence from a predefined set of
ply angles by choosing number of each ply angle and their order in the laminate.
For example, Rao and Shyju [43] use a meta-heuristic algorithm, which combines
the good features of the popular guided local search algorithms such as simu-
lated annealing (SA) and tabu search (TS), to find the optimum stacking sequence
composed of 0◦, +45◦, −45◦ and 90◦ plies in a hybrid laminate composite cylin-
der made of carbon-epoxy and glass-epoxy under loads including axial thrust and
torque. The optimisation problem is formulated to minimise the weight and cost
subject to constraints on the buckling load factor and strength level factor. Com-
binatorial constraints include ply balancing, ply contiguity e.g. no more than four
plies in the same direction and no more than 45◦ difference between the ply angle
of adjacent layers.

In some investigations e.g. the works by Kobayashi et al. [44], Hu and Wang
[45], Liang and Chen [46], Kim et al. [47], the optimum stacking sequence is se-
lected from a combination of predefined set of ply angles and variable ply angles.
For example, Kobayashi et al. [44] find the optimum laminate including layers with
0, 90, +θ and −θ fiber orientations for maximum buckling load composite cylin-
ders with 2, 3, 4, 6 and 8 layers. The effect of pre-buckling deformation on the
buckling loads was also investigated.

In other studies, stacking sequence is not restricted by containing one or a set
of predefined ply angles and all the ply angle values are selected as design vari-
ables. Examples include the investigations by Hirano [48], Nshanian and Pappas
[49], Min and De Charentenay [50], Sun and Hansen [51], Sun [52], Adali et al.
[53], Zimmermann [54], Xie et al. [55], Walker et al. [56] Walker et al. [57], Smer-
dov [58] and Smerdov [59], Adali et al. [60], Foldager et al. [61], Messager et al.
[62], Walker and Smith [63], Tabakov and Summers [64], Azarafza et al. [65], Lindgaard
et al. [66], Maalawi [67], and Yuan et al. [68]. For example, Sun and Hansen [51]
use a two step optimisation approach to find the optimum laminae fibre orien-
tations to maximise the buckling capacity of a laminated circular cylinder under
axial compression, external pressure, torsion or a combination of these. The two
step approach is implemented using a random search to select an initial guess in
the first step and a systematic search based on Powell’s technique [69]. The func-
tion expressing the buckling load in terms of the ply orientations is not convex
and hence many local maxima exist. The random search in the two step strategy
is intended to separate the largest local maxima for the second step. Adali et al.
[60] found the optimum fibre orientation of each ply which minimises the sen-
sitivity of buckling load with respect to variations in the ply angles in laminated
cylindrical shell of finite length under combined axial compression and external
pressure. Foldager et al. [61] use mathematical programming to find the opti-
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mal layups in unstiffened or stiffened cylinders with fixed weights and under axial
compression.The buckling load is maximised by considering the manufacturing-
induced thermal stresses and the optimum designs are compared to designs in
which the thermal stresses are ignored. Lindgaard et al. [66] use mathematical pro-
gramming, method of moving asymptotes (MMA), to find the optimal fibre angles
which maximise the nonlinear buckling load in an orthotropic thin-walled cylin-
der subjected to axial compression.

-Lamination parameters as design variables
Onoda [70] has found the optimum laminate configuration, formulated in terms

of 12 lamination parameters, for the maximum buckling load of a composite circu-
lar cylindrical shell under axial compression. Using lamination parameters, gives
complete freedom to the ply angle variation through the thickness of a laminate.
The optimal values of lamination parameters are obtained numerically and many
different optimal configurations are obtained which have the same buckling load.
Although it is shown that the optimal lamination parameters should satisfy certain
constraints to assure the existence of a real laminate, Onoda [70] does not enforce
these constraints in the optimisation problem. Instead, Onoda [70] showed that
the optimal lamination parameters satisfy these constraints by making sure that
the corresponding laminate exists. The optimality conditions for laminate con-
figuration is derived in terms of lamination parameters semi-empirically from the
numerical results and the optimum buckling load is found in terms of material
properties. Onoda [70] concludes that one of the optimal laminates is the one with
an infinite number of infinitely thin layers organised such that the shell is quasi-
isotropic in the surface and quasi-homogeneous across the thickness. In addi-
tion, some anisotropic configurations with the same buckling load as the quasi-
isotropic one exist. Fukunag and Vanderplaats [71] use mathematical program-
ming to find the optimum lamination parameters for maximum buckling load de-
sign of cylindrical shells under combined loading. Grenestedt [72] has found the
optimum layup, thickness and radius of a laminated circular cylinder under bend-
ing which minimise the cross-section area subject to constraints on the buckling
load and global bending stiffness. Grenestedt [72] uses two in-plane and two out
of plane lamination parameters as design variables to find the optimum layup
of a circular cylinder under bending using the feasible regions of lamination pa-
rameters determined by Grenestedt and Gudmundson [73] and Fukunag and Van-
derplaats [71]. The optimum lamination parameters are approximated by a real
stacking sequence [±θh1,0h2,90h3,0h4]s and the corresponding fibre angle (θ) and
thicknesses (h1, h2, h3, h4) were found. Diaconu et al. [74] use mathematical pro-
gramming to find the optimum 12 lamination parameters and the corresponding
laminate configurations, including the ply angle and thickness, in laminated long
cylindrical shells under combined axial compression and torsion to maximise the
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buckling load. Matsuzaki and Todoroki [75] use the improved fractal branch and
bound method to find the optimum unsymmetrical balanced stacking sequence
of cylindrical shells under axial compressive load, external lateral pressure and tor-
sional load for maximum buckling load, using 9 lamination parameters as design
variables.

Segmented-stiffness laminated cylinders
Riddick [76] has investigated the pre-buckling, buckling and post-buckling be-
haviour of composite cylinders constructed from two different stacking sequences;
one laminate stacking sequence for the crown and keel and another laminate stack-
ing sequence for the two sides (figure 1.12). This construction is called a segmented-
stiffness cylinder and is considered to represent an aircraft fuselage. To compare
the numerical results with the experimental measurements, small scale segmented-
stiffness cylinders were fabricated on a mandrel by splicing adjacent segments to-
gether to form overlaps.

FIGURE 1.12: Segmented cylinder construction (Riddick [76])

Riddick and Hyer [77] and Hyer and Riddick [78] have investigated the re-
sponse of infinite and finite-length cylinders under end-shortening and internal
pressure, respectively. The characteristic which distinguishes these segmented-
stiffness cylinders from the conventional single-laminate cylinders, are the cir-
cumferential displacements. It is concluded that the feature which is responsible
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for circumferential displacement is the difference in effective laminate Poisson’s
ratios from one segment to the next for cylinders under end-shortening [77] and
the mismatch in the effective extensional moduli of the segments for cylinders un-
der internal pressure [78]. Riddick and Hyer [79] and Riddick and Hyer [80] have
investigated the buckling and post-buckling response of two segmented-stiffness
cylinders referred to as axially stiff and circumferentially stiff configurations under
axial end-shortening. The results show that as the end-shortening is increased to-
ward the buckling value, depending on the level of axial stress resultant supported
by each segment, some segments start to wrinkle while the rest remain unwrin-
kled. The post-buckled cylinders are characterised by large local inward dimples
and sharp outward ridges in the radial direction. Load drops of 20% and 57%
are predicted for end-shortening beyond buckling in the axially and circumferen-
tially stiff cylinders, respectively. Riddick and Hyer [81] have also studied the ef-
fect of imperfections on the buckling and post-buckling of small-scale axially and
circumferentially stiff segmented-stiffness cylinders under end shortening. They
conclude that the measured imperfection have an influence of the response of ax-
ially stiff segmented-stiffness cylinders during transition from the pre-buckling to
post-buckling state, while the imperfections have a relatively small influence on
the buckling and post-buckling behaviour of circumferentially stiff cylinders.

Variable thickness laminated cylinders
Adali et al. [53] use the golden section method to find the optimum fibre angle,

and constant or axially variable laminate thickness of a cylindrical pressure ves-
sel with closed ends under internal pressure, axial force and torque. The objec-
tive function is to maximise the burst pressure or minimise the weight under the
Tsai-Wu failure constraint. Variable thickness shells show about 20% improvement
over the constant thickness shells for low internal pressure values and the differ-
ence is decreased by increasing the pressure. Darlow and Creonte [82] use the
OPT program to find the minimum weight design of a composite drive shaft under
torsional strength, buckling and lateral frequency constraints. The design vari-
ables used include ply thickness and angle and number of layers varying along the
shaft, shaft inner radius and number of mid-span bearings. Dramatic weight sav-
ings are obtained for the shaft with an axially varying layup compared to that with
a uniform layup. Paschero and Hyer [83] have found the optimal circumferen-
tial variation of the wall thickness of homogeneous, isotropic elliptical cylinders to
improve the axial buckling load. A classical equation is used to predict the axial
stress level, which leads to buckling of a geometrically perfect, homogeneous and
isotropic circular cylinder. The critical stress is proportional to the ratio of wall
thickness to radius of curvature. The critical axial stress of an elliptical cylinder
with the same circumference can be predicted using the same equation. In con-



1.5. LAMINATED CYLINDRICAL SHELLS 21

{{1
stant and circumferentially varying thickness elliptical cylinders, the critical stress
values correspond to the locations with maximum radius of curvature or with min-
imum ratio of wall thickness to radius of curvature. The logic behind finding the
optimum thickness variation is to have a constant ratio of wall thickness to radius
of curvature around the cross-section such that all the points of the cross-section
are uniformly stable. The value of this constant ratio is determined such that the
buckling stress, or buckling load or cross-sectional area of the variable thickness
elliptical cylinder are the same as those of the constant thickness circular cylinder
with the same circumference.

Steered fibre laminated cylinders
It has been proven in previous studies that circumferential tailoring can increase
the buckling load of thin cylinders by compensating for the non-uniform sectional
loading such as bending and/or varying radius of curvature in arbitrary cross-
section cylinders. The effect of varying the stiffness of circular cylinders to improve
the buckling load was first studied by Tatting [84]. The general governing equations
are formulated in closed form using energy methods and solved using finite differ-
ence after limiting the stiffness variation to the axial or circumferential direction.
The effect of stiffness variation was investigated using the linear membrane ap-
proximation of the governing equations and stepwise linear angle variations. Ini-
tially an axial stiffness variation for axisymmetric loading was tried and the results
showed little improvement compared to traditional laminates. In a follow-on case,
circumferential tailoring for general load cases was examined. The most signifi-
cant improvements in buckling load is found for cases which involve loads that
vary circumferentially, i.e. bending and shear forces. It is concluded by Tatting [84]
that circumferential stiffness tailoring contributes to buckling load improvement
through load and stiffness redistribution. Wu [85] has designed two cylindrical
shells with an 8 ply tow steered laminate configuration [±45,±θ]s . The ply angle
θ is measured with respect to the cylinder axis and varies continuously from 10◦
on the crown to 45◦ on each side and then back to 10◦ on the keel. The cylinders
resemble an aircraft fuselage and since bending about the cross-section diameter
resulting from aerodynamic and inertial loads is the dominant operational loading
in this case, the layup is oriented along the fuselage length in the crown and keel to
obtain high extensional stiffness to resist the flight bending loads. In addition, the
shell sides provide high shear stiffness to resist the relative deflection of the crown
and keel. One of the cylinders is designed to be manufactured by placing 24 tows
in each fibre placement pass, resulting in many overlaps on the shell laminate and
the other one is designed to be fabricated using the individual tow cut and restart
capability of the fibre placement machine, resulting in a more uniform laminate
thickness. Finite element results show improvements in the buckling moment and
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stiffness of the tow-steered cylinder with overlaps compared to a quasi-isotropic
shell, when a bending moment around the horizontal axis passing two side shells
is applied, however, the buckling moment and stiffness of cylinders without over-
laps are decreased compared to the baseline quasi-isotropic shell. Wu [85] also in-
vestigated the effect of using an angle-ply straight fibre laminate for the crown and
keel and concluded that large improvements in the shell bending stiffness are also
possible for this configuration. In a follow-on study, Wu et al. [86] report on the de-
tailed manufacturing process of the aforementioned cylinders and discuss manu-
facturing issues such as the presence of waves or bumps in the placed tows. Post-
fabrication surface surveys were performed on the inner and outer surfaces of the
cured shells to determine their initial imperfections and thickness variations. The
cured cross-sections of both shells vary along their length, and are generally ellip-
tical with the major axes rotated 90◦ between the shells with and without overlaps.
In a follow-on study, Chauncey Wu et al. [87] performed axial compression tests
on the tow-steered shells to determine their nonlinear and buckling structural re-
sponse experimentally. The test and analysis results generally compare well, with
an average difference of 10% for pre-buckling axial stiffness and buckling load. The
improvements of the shell with overlaps over the uniform thickness shell, when
normalised with respect to the corresponding shell weight, are 28% and 78% in
the pre-buckling stiffness and buckling load, respectively. Although, cylindrical
shells with a uniform stacking sequence has been shown to be highly sensitive to
imperfections, the tow-steered cylinders do not exhibit the same high degree of
sensitivity. Chauncey Wu et al. [87] have performed some preliminary compar-
isons between the linear bifurcation buckling loads and the nonlinear limit point
buckling loads, which show minor differences and hence insensitivity to imperfec-
tions. Chauncey Wu et al. [87] mention that further investigation should be done
to identify the exact reason of insensitivity of tow-steered cylinders to imperfec-
tions, however, they made an assumption that the non-uniform stiffness distri-
bution in the tow-steered cylinders is the cause of insensitivity. Circumferential
tailoring of a circular cylinder to maximise the buckling load under bending was
studied by Blom [5] including the Tsai-Wu strength constraint. A surrogate model
optimiser is applied to find the optimum design using constant curvature fibre
paths within the segments around the circumference (figure 1.13). The thickness
build-ups due to manufacturing using fiber placement are included in the pre-
dictions by Blom [5] and manufacturing and testing are performed for validation.
Her findings show that circumferential tailoring is beneficial for buckling load im-
provement due to internal load redistribution such that the axial force is relieved
in the compression side and concentrated in the tension side, and the buckling
mode shapes are altered.

Variable stiffness design of elliptical cross-section cylinders under axial com-
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FIGURE 1.13: Fibre angle and segment definition (Blom [5])

pression has been studied by Sun and Hyer [88] through circumferentially varying
one ply angle in the considered stacking sequence. The idea of changing the stack-
ing sequence around the circumference is considered to be a suitable approach to
compensate for the effect of varying the radius of curvature around the circumfer-
ence which is the source of the reduction in buckling load in the elliptical cylinder
compared to a circular cylinder with the same circumference. A simple approx-
imate prediction of axial buckling load for simply-supported circular cylinders is
used by Sun and Hyer [88] as the basis for tailoring the stacking sequence of ellip-
tical cylinders. The buckling strain value of circular cylinders with radii changing
from the minimum to maximum radius of curvature of the considered elliptical
cylinder are obtained for stacking sequences with the variable ply angle chang-
ing from 0◦ to 90◦. Looking at the constant buckling strain contours, a different
ply angle can be found for each of the circular cylinders, ranging from minimum
to maximum radius, which results in the same level of buckling strain for all the
circular cylinders. The criterion set out by Sun and Hyer [88] for circumferential
tailoring of the elliptical cylinders is based on finding the ply angles which give the
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highest possible buckling strain value that is the same for all cylinders. Therefore,
the ply angle at each point around the circumference of the elliptical cylinder is
set equal to the ply angle found for the corresponding circular cylinder. Lo and
Hyer [89] have investigated the effect of linear ply angle variations in some or all of
the layers of laminated thin-walled elliptical and circular cylinders on the funda-
mental vibration frequencies. The finite element results show that even for a sig-
nificantly large range of ply angle variation, the fundamental vibration frequency
of elliptical and circular cylinders is not influenced, although the circumferential
wave numbers are altered.

1.6 OVERVIEW OF THIS THESIS AND MOTIVATION

The primary goal of the research reported in this thesis is to establish a compu-
tationally efficient framework for circumferential stiffness tailoring of unstiff-

ened and longitudinally stiffened laminated cylindrical shells with general cross-
sections. This framework is applied on circular and elliptical cross-section cylin-
ders to design optimum straight and steered fibre laminates for maximum buck-
ling capacity with consideration of material failure constraints. By comparing the
performance of optimum straight and steered fibre laminates, superiority of steered
fibre laminates is shown and the mechanisms involved in improvement of the
buckling capacity of steered fibre laminates compared to straight fibre laminates
are investigated .

Some basic background about the geometric definition and the strain - dis-
placement relations of thin general and cylindrical shells and the constitutive re-
lations in the classical lamination theory is presented in chapter 2. Using the in-
formation in chapter 2, a computationally efficient semi-analytical solution is de-
veloped for static and buckling analysis of unstiffened and longitudinally stiffened
cylindrical shells with general cross-sections in chapter 3.

A multi-step optimisation framework, used to find the optimum straight and
steered fibre laminate designs, is introduced in chapter 4. The multi-step optimi-
sation framework is based on the convex conservative separable approximations
of the design drivers, construction of which is also explained in chapter 4.

Application of material strength as a laminate design driver in the multi-step
optimisation framework requires a special treatment which is described in chap-
ter 5. In this chapter, construction of the convex separable approximation of the
failure index, which is introduced as the strength measure, is also explained.

In chapter 6, the effect of circumferential stiffness tailoring is investigated on
the buckling capacity of two cases; a circular cylinder under bending and an el-
liptical cylinder under axial compression. To this end, straight and steered fibre
laminate designs are obtained for maximum buckling capacity with strength con-
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straints using the semi-analytical solution, developed in chapter 3, the multi-step
optimisation framework and the convex conservative approximation of buckling
factor, introduced in chapter 4, and the strength envelope and the convex con-
servative approximation of failure index, explained in chapter 5. To investigate
the effect of laminate thickness variation in addition to fibre steering in the buck-
ling capacity improvement, variable thickness VS laminates with the same weight
as the constant thickness laminates are obtained for maximum buckling capacity.
The mechanisms involved in buckling capacity improvements of the steered fibre
laminates over straight fibre laminates in the aforementioned case studies are also
investigated.

Similar to the unstiffened cylindrical shells investigated in chapter 6, the de-
veloped framework for circumferential stiffness tailoring of cylindrical shells is ap-
plied in chapter 7 for maximum buckling moment design of longitudinally stiff-
ened circular cylinders under bending and the buckling moment improvement
mechanisms are investigated. Finally, some general conclusions about this re-
search on optimum design of fibre steered laminated cylindrical shells with gen-
eral cross-sections and recommendations and thoughts for the future research are
presented in chapter 8.





2
BASIC BACKGROUND

2.1 INTRODUCTION

The structural elements, investigated in this thesis, were thin cylindrical shells
with arbitrary cross-sections i.e. both circular and non circular cross-sections.

A thin shell is a three-dimensional (3-D) body bounded by two curved surfaces
such that their distance is relatively small compared to the other shell dimensions.
The locus of the points placed on the midway between these two surfaces is called
the middle surface of the shell. The static and buckling problems of thin shell
structures can be formulated variationally using the total potential energy. The
kinematic strain-displacement relations and the constitutive relations are the two
necessary elements to formulate the total potential energy.

Different shell theories relate the deformation field of the shell to the defor-
mation of the middle surface. These shell theories are easier to use than the 3-D
theory of elasticity since they reduce the number of degrees of freedom (DOFs)
required for analysis. One of the simplest ways to express shell displacements in
terms of the displacements and rotations of the middle surface is based on Kirch-
hoff’s hypothesis. This hypothesis assumes that the normal lines to the middle
surface remain straight, unstretched and normal to the middle surface after defor-
mation. Therefore, the strains at each point of the shell can be related to the strains
and changes of curvatures of the corresponding point on the middle surface.

Different strain-displacement relations can be formulated depending on the
class of shell deformations. Linear strain-displacement relations can be derived
for thin shells, which undergo small deformations, based on the assumptions of
Love’s first order approximation [90]. Small deformations or infinitesimal strains

27
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and rotations allow us to linearise the strain-displacement relations by neglecting
the higher order terms compared to the first order terms. Different linear strain-
displacement relations can be obtained depending on the derivation method and
the derivation step in which the Love’s assumptions are applied. In the case of
large deformations or finite strains and rotations, the general nonlinear form of the
strain-displacement relations, called the Green-Lagrange strain tensor, is used. In
addition to the above mentioned classes of deformation, there is another class of
deformation; infinitesimal strains and finite rotations. This class of deformation is
useful for formulating the linear or eigenvalue buckling problem of a shell struc-
ture and provides the basis for definition of von Karman strains which neglects the
higher order terms of the strains and retains the higher order terms of rotations in
the nonlinear Green-Lagrange strain tensor.

The strain-displacement relations of general thin shells are expressed in terms
of the first fundamental quantities of the middle surface. These quantities define
some of the intrinsic geometric properties of the surface. Using the specific geo-
metric properties of cylindrical surfaces, the strain-displacement relations of gen-
eral thin shells can be simplified for cylindrical shells.

In addition to unstiffened cylindrical shells, cylindrical shells stiffened with
longitudinal stiffeners were also of interest in this thesis. One of the methods for
modeling the stiffened shells is the smeared stiffness approach. In this approach,
the stiffened shell is mathematically converted to an unstiffened uniform thick-
ness shell with equivalent stiffness properties. In other words, the stiffness prop-
erties of stiffeners are smeared to the shell. The kinematic relations between the
strains, changes of curvatures and change of twist of the stiffeners and the cylindri-
cal shell DOFs are required to model the longitudinally stiffened cylindrical shells
using the smeared stiffness approach.

Classical lamination theory (CLT) formulates the constitutive relations of the
laminated thin shells based on Kirchhoff assumptions. In CLT, it is assumed that
all the isotropic and/or orthotropic layers in the laminate are perfectly bonded to-
gether with an infinitely thin and non-shear-deformable bonding layer. Therefore,
it is assumed that the laminate performs as a single lamina with integrated prop-
erties which are represented by the in-plane, coupling and out of plane stiffness
matrices. These stiffness matrices include information about the material proper-
ties and ply angles. In the most general laminate, the laminate stiffness matrices
can be parameterised using twelve lamination parameters instead of the fibre an-
gles of all layers. Each lamination parameter includes information about the ply
angles of the laminate.

In this chapter, first some geometric background on general thin shells in-
cluding the curvilinear coordinate system and the first quadratic form of the mid-
dle surface and the components of the metric tensor of general shells, which are
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required for definition of the shell strain-displacement relations, is presented in
section 2.2. Some different strain-displacement relations for general thin shells
and the assumptions used in their derivation are explained in section 2.3. In sec-
tion 2.4, the appropriate shell strain-displacement relation for the cylindrical shells
is selected and simplified. Also the kinematic relations between the strains, changes
of curvatures and change of twist of the stiffeners and the cylindrical shell DOFs
are derived for longitudinally stiffened cylindrical shells. In section 2.5, the consti-
tutive relations of the laminates are formulated using the classical lamination the-
ory (CLT). The stiffness matrices and lamination parameters are also introduced
in section 2.5.

2.2 BACKGROUND ON GEOMETRY OF THIN SHELLS

The geometry of a thin shell can be defined by the geometry of the middle sur-
face and a thickness value at each point of the middle surface. The thickness of

the shell is the distance between the top and bottom surfaces measured along the
normal line to the middle surface. At each point of the middle surface, the maxi-
mum and the minimum curvatures of the curves resulted from the intersection of
the middle surface and the planes normal to it, are the principal curvatures. Two
examples of shell structures are flat panels and cylinders, in which both and one of
the two principal curvatures of the middle surface are equal to zero, respectively.

The curvilinear coordinate system and the first fundamental form of a general
surface are defined in subsection 2.2.1. The coefficients of the metric tensor of a
thin shell, which are required for formulating the strain-displacement relations,
are expressed in terms of the first fundamental quantities of the middle surface in
subsection 2.2.2.

2.2.1 MIDDLE SURFACE
The geometry of a general surface can be parameterised by a curvilinear two -
dimensional (2-D) coordinate system. Two sets of curves can be defined on the
surface by keeping either of the two coordinates constant and varying the other
one. The infinitesimal lengths of the curves on the surface, the angle between two
curves, and the area of a region on the surface can be described by the first funda-
mental form of the surface. The quantities describing the first fundamental form
of a surface are the first fundamental quantities and are used in the expressions
for strain-displacement relations. The second fundamental form of the surface
is related to the curvatures of the curves on the surface [90]. The first and sec-
ond fundamental quantities are not functionally independent and are related by
three compatibility differential equations; the Guass characteristic equation and
two Mainardi-Codazzi equations [90]. It has been proved by Bonnet [91] that if
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a set of given fundamental quantities satisfy the three compatibility differential
equations, a unique surface is completely determined except for its location and
orientation in space. In this subsection, first the curvilinear coordinate system of
the middle-surface is introduced and then the first quadratic form of the surface,
which is useful in defining the strain-displacement relations, is described.

Coordinate system
The geometry of an undeformed middle surface of a thin shell can be expressed
using the position or radius vector which is a function of two independent surface
parameters, α and β:

r = r(α,β) (2.1)

These two parameters, α and β, form a 2-D curvilinear coordinate system on the
surface. If the parameter α is kept constant at a value of α0 and the parameter β is
allowed to change in equation 2.1, the resulting equation represents a space curve
placed on the surface represented by equation 2.1. The family of curves which
are found by setting the parameter α to constant values are called β curves and α
curves are defined in an analogous manner as depicted in figure 2.1.

Supposing that the α and β parameters vary on a 2-D definite region, a one
to one correspondence between the points on this definite region and the points
on the surface exist according to equation 2.1. The rate and direction of changes
of the position vector, r, with respect to the variations of α and β parameters are
denoted by two vectors:

r,α = ∂r

∂α
, r,β =

∂r

∂β
(2.2)

where the vectors r,α and r,β are tangents to theα andβ curves. The length of these
vectors are denoted by:

|r,α| = A , |r,β| = B (2.3)

Therefore the unit vectors tangent to the parametric curves are:

iα = r,α

A
, iβ =

r,β

B
(2.4)

The angle between the parametric curves is χ and defined by:

iα.iβ = cos(χ) (2.5)

and the unit vector normal to the surface and orthogonal to unit vectors iα and iβ
is defined as:

in = iα× iβ
sin(χ)

(2.6)

The unit vectors iα, iβ and in are called the basic vectors of the surface.
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FIGURE 2.1: Geometry and coordinate system of the middle surface of a general shell (regenerated
from Leissa [90])

First quadratic form
Suppose that two points (α,β) and (α+dα,β+dβ) are placed close to each other
on the same surface. As shown in figure 2.1, the increment of the position vector
when moving from the first point to the second point is denoted by dr, which can
be expressed in terms of the change of surface parameters, dα and dβ, as:

dr = r,α dα+ r,β dβ (2.7)

From equations 2.3 and 2.4 we know that r,α = A iα and r,β = B iβ and by substitut-
ing these in Eq. 2.7, the square of the differential arc length on the surface between
the two points (α,β) and (α+dα,β+dβ) is expressed as:

d s2 = dr.dr = A2 dα2 +2 A B cos(χ) dα dβ+B 2 dβ2 (2.8)
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The right-hand side of Eq. 2.8 is the first quadratic form of the surface. The intrin-
sic geometry of the surface such as the infinitesimal lengths of the curves on the
surface, the angle between two curves, and the area of a region on the surface are
determined by this form, however, this form is not sufficient to describe a surface
and the second order form which deals with the curvatures of the curves on the
surface is also necessary to define a surface. The coefficients of the first quadratic
forms (A2,2 A B cos(χ),B 2) are called the first fundamental quantities.

2.2.2 THIN SHELL
Having described the locus of points on the middle surface of the shell using equa-
tion 2.1, the position of the points in a shell can be expressed by:

R(α,β, z) = r(α,β)+ z in (2.9)

where z is the coordinate of the corresponding point along in , which is zero on the
middle surface and ranges from −h/2 to h/2 as shown in figure 2.2.

The square of the differential increment of position vector, R, can be expressed
as:

d s2 = dR.dR = (dr+ z d in + in d z).(dr+ z d in + in d z) (2.10)

In an orthogonal curvilinear coordinate system using equations 2.4 and 2.6 for ba-
sic vectors of the surface, and calculating the derivatives of these basic vectors with
respect to the surface parameters,α andβ, then using the chain rule to express d in

and considering equations 2.7 and 2.8, one can obtain:

d s2 = g1 dα2 + g2 dβ2 + g3 d z2 (2.11)

where gi (i = 1,2,3), which are the coefficients of the metric tensor, are defined as:

g1 = [A (1+ z

Rα
)]2 , g2 = [B (1+ z

Rβ
)]2 , g3 = 1 (2.12)

The details of the mathematical manipulations are omitted here for the sake of
brevity (see [90]).

2.3 STRAIN-DISPLACEMENT RELATIONS IN THIN SHELLS

Different strain measures can be defined based on the class of deformations;
infinitesimal strain theory deals with small deformations which result in in-

finitesimal strains and rotations, finite strain theory deals with large deformations
leading to arbitrarily large strains and rotations, and large rotation theory deals
with infinitesimal strains and moderately large rotations. In this section, the lin-
ear and nonlinear von Karman strain-displacement relations, which correspond
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FIGURE 2.2: A shell element (regenerated from Leissa [90])

to the infinitesimal strain theory and large rotation theory respectively, are intro-
duced for general thin shells in subsections 2.3.1 and 2.3.2 respectively. The lin-
ear and nonlinear von Karman strain-displacement relations strain-displacement
relations can be used to formulate the linear static and eigenvalue buckling prob-
lems, respectively.

2.3.1 LINEAR STRAIN-DISPLACEMENT RELATIONS
Small deformations allow us to formulate the strain-displacement relations as lin-
ear expressions. Linear strain-displacement relations of thin shells are formed
based on four assumptions made by Love [90], which are called Love’s first ap-
proximation in the thin shell theory:

1. the shell thickness is small compared with other dimensions of the shell, e.g.
the smallest radius of curvature of the middle surface of the shell.
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2. the strains and displacements are sufficiently small.

3. the transverse normal stress is small in comparison with other normal stresses
and can be neglected.

4. the normals to the undeformed middle surface remain straight and normal
to the deformed middle surface and are not extended.

Love’s first assumption sets out the definition of a thin shell. If the thickness of
the shell is denoted by h, the through-the-thickness coordinate which is measured
along the normal to the middle surface and from the middle surface is denoted by
z and the minimum radius of curvature is denoted by R, then it will be convenient
to neglect higher orders of z/R or h/R at different steps of derivation of the shell
theories. Love’s second assumption allows us to refer all calculations to the orig-
inal configuration of the shell. In addition, the higher-order terms in the strain-
displacement relations can be neglected compared to the first-order terms leading
to linear differential equations. The result of Love’s fourth assumption, which is
also known as Kirchhoff’s hypothesis, is that the transverse shear strains,γαz and
γβz and the transverse normal strain, ez , are equal to zero:

γαz = 0, γβz = 0 (2.13)

and
ez = 0 (2.14)

Different linear stress-displacement relations can be obtained based on the
derivation method used and the derivation step in which the assumptions of the
Love’s first approximation are applied. In the following, two sets of linear stress-
displacemnt relations are introduced. These are derived using two different but
very similar methods.

Equations of Byrne, Flügge, Goldenveizer, Lur’ye and Novozhilov
In the theory of elasticity, the linear strain-displacement relations of a 3-D body
with small deformations can be expressed in orthogonal curvilinear coordinates
as [92], [93]:

ei i = ∂

∂αi
(

Uip
gi

)+ 1

2gi

3∑
k=1

∂gi

∂αk

Ukp
gk

, i = 1,2,3

γi j = ei j +e j i , i , j = 1,2,3 i 6= j (2.15)

where ei i , γi j , Ui , αi and gi are normal strains, shear strains, displacement com-
ponents at an arbitrary point, the orthogonal curvilinear coordinates and the com-
ponents of the metric tensor of the 3-D body, respectively and ei j is expressed
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as [93]:

ei j = 1p
g j

∂Ui

∂α j
− U jp

gi g j

∂
p

g j

∂αi
, i , j = 1,2,3 i 6= j (2.16)

In a shell element, the indices 1, 2 and 3 of the strain components and the the
coordinatesαi (i = 1,2,3) in equations 2.15 and 2.16 are replaced byα, β and z, re-
spectively and the strains with two similar indices are indicated by one of the two
indices, e.g. eαα = eα. The displacement components Ui (i = 1,2,3) are replaced
by U, V and W , respectively, which indicate the displacement components of each
point in the shell in the iα, iβ and in directions, respectively. The coefficients of the
metric tensor, gi (i = 1,2,3), are given by equation 2.12. Using the Gauss char-
acteristic equation and Mainardi-Codazzi relations, the shell strain-displacement
relations can be expressed as [90], [93]:

eα = 1

1+ z/Rα
(

1

A

∂U
∂α

+ V
AB

∂A

∂β
+ W

Rα
) (2.17)

eβ =
1

1+ z/Rβ
(

U
AB

∂B

∂α
+ 1

B

∂V
∂β

+ W
Rβ

) (2.18)

ez = ∂W
∂z

(2.19)

eαβ =
1

1+ z/Rβ
(

1

B

∂U
∂β

− V
AB

∂B

∂α
) (2.20)

eβα = 1

1+ z/Rα
(

1

A

∂V
∂α

− U
AB

∂A

∂β
) (2.21)

eαz = ∂U
∂z

(2.22)

ezα = 1

1+ z/Rα
(

1

A

∂W
∂α

− U
Rα

) (2.23)

eβz =
∂V
∂z

(2.24)

ezβ =
1

1+ z/Rβ
(

1

B

∂W
∂β

− V
Rβ

) (2.25)
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and the shear strains in their compact form are [90]:

γαβ =
A(1+ z/Rα)

B(1+ z/Rβ)

∂

∂β
[

U
A(1+ z/Rα)

]+ B(1+ z/Rβ)

A(1+ z/Rα)

∂

∂α
[

V
B(1+ z/Rβ)

] (2.26)

γαz = 1

A(1+ z/Rα)

∂W
∂α

+ A(1+ z/Rα)
∂

∂z
[

U
A(1+ z/Rα)

] (2.27)

γβz =
1

B(1+ z/Rβ)

∂W
∂β

+B(1+ z/Rβ)
∂

∂z
[

V
B(1+ z/Rβ)

] (2.28)

The displacement components of each point in the shell are related to the dis-
placement components of each point on the middle surface through the Kirch-
hoff’s hypothesis:

U(α,β, z) = u(α,β)+ zθα(α,β) (2.29)

V (α,β, z) = v(α,β)+ zθβ(α,β) (2.30)

W (α,β, z) = w (α,β) (2.31)

where u, v and w are the displacement components of the middle surface in the
iα, iβ and in directions respectively and θα and θβ are rotations of the normal to
the middle surface, in , around the iβ and iα axes, respectively:

θα = ∂U(α,β, z)

∂z
, θβ =

∂V (α,β, z)

∂z
(2.32)

Comparing equations 2.22, 2.24 and 2.32, it can be concluded that:

θα = eαz , θβ = eβz (2.33)

The expressions in equation 2.13, as two consequences of the Kirchhoff’s hypoth-
esis, can be satisfied by substituting the displacement components from equa-
tions 2.29, 2.30 and 2.31 in equations 2.27 and 2.28 provided that:

θα = eαz =−ezα = u
Rα

− 1

A

∂w
∂α

, θβ = eβz =−ezβ =
v

Rβ
− 1

B

∂w
∂β

(2.34)

Therefore, the rotations of the normal to the middle surface of the shell can be
related to the middle surface displacements using equation 2.34. The expression
in equation 2.14, as another consequence of the Kirchhoff’s hypothesis, is satisfied
by substituting the W displacement from equation 2.31 in equation 2.19, since W
is independent of z and is only defined by the middle surface component w .
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Substituting the displacements from equations 2.29, 2.30 and 2.31 in the strain-
displacement relations for eα, eβ andγαβ from equations 2.17, 2.18 and 2.26 yields:

eα = 1

1+ z/Rα
(εα+ zκα) (2.35)

eβ =
1

1+ z/Rβ
(εβ+ zκβ) (2.36)

γαβ =
1

(1+ z/Rα)(1+ z/Rβ)
[(1− z2

RαRβ
)εαβ+ z(1+ z

2Rα
+ z

2Rβ
)καβ] (2.37)

where εα, εβ and εαβ are the normal and shear strains in the middle surface (z = 0),
expressed as:

εα = 1

A

∂u
∂α

+ v
AB

∂A

∂β
+ w

Rα
(2.38)

εβ =
u

AB

∂B

∂α
+ 1

B

∂v
∂β

+ w
Rβ

(2.39)

εαβ =
A

B

∂

∂β
(

u
A

)+ B

A

∂

∂α
(

v
B

) (2.40)

and κα, κβ and καβ are the changes in the curvature and change in twist of the
middle surface, given by:

κα = 1

A

∂θα

∂α
+ θβ

AB

∂A

∂β
(2.41)

κβ =
θα

AB

∂B

∂α
+ 1

B

∂θβ

∂β
(2.42)

καβ =
A

B

∂

∂β
(
θα

A
)+ B

A

∂

∂α
(
θβ

B
)+ 1

Rα
(

1

B

∂u
∂β

− v
AB

∂B

∂α
)+ 1

Rβ
(

1

A

∂v
∂α

− u
AB

∂A

∂β
) (2.43)

These strain-displacement relations are derived by Byrne, Flügge, Goldenveizer,
Lur’ye and Novozhilov. Some other strain-displacement relations can be obtained
from these relations using various simplifications in different stages of the deriva-
tion, which are not presented here (see [90]).

Equations of Sanders
Sanders established an eighth-order shell theory based on the principle of virtual
work expressed in terms of the generalised displacements and forces. The gen-
eralised displacements include the displacement components of the middle sur-
face, u, v and w and the rotations of normal to the middle surface, in , around iα,
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iβ and in directions denoted by θβ, θα and θn , respectively. The generalised forces
associated with these generalised displacements are obtained from a generally ac-
cepted set of equilibrium equations neglecting body forces and moments and sur-
face loads [90].

The strain-displacement relations of Sanders theory are obtained after some
manipulation and considering the assumptions of Love’s first approximation, . These
relations are the same as Flügge relations for εα, εβ, εαβ,κα andκβ in equations 2.38-
2.42 while καβ from Sanders theory is expressed as:

καβ =
A

B

∂

∂β
(
θα

A
)+ B

A

∂

∂α
(
θβ

B
)+ 1

2AB
(

1

Rβ
− 1

Rα
)(
∂Bv
∂α

− ∂Au
∂β

) (2.44)

The total strains at any point in a shell according to the Sanders theory can be
expressed as:

eα = εα+ zκα (2.45)

eβ = εβ+ zκβ (2.46)

γαβ = εαβ+ zκαβ (2.47)

which are the counterparts of equations 2.35, 2.36, 2.37 from the theory of Byrne,
Flügge, Goldenveizer, Lur’ye and Novozhilov.

2.3.2 NONLINEAR VON KARMAN STRAIN-DISPLACEMENT RELATIONS
In finite strain theory, the strain for large deformations is measured using the Green-
Lagrange strain tensor or Lagrangian finite strain tensor. In an orthogonal coordi-
nate system, for any 3-D elastic body, the Green-Lagrange nonlinear strains are
expressed as summation of a linear and a nonlinear part [93]:

eGL
i i = ei i + 1

2

3∑
k=1

(ei k )2, i = 1,2,3

γGL
i j = ei j +e j i +

3∑
k=1

(ei k ek j ), i , j = 1,2,3 i 6= j (2.48)

where ei i and ei j are the linear strains and rotations defined in equations 2.15
and 2.16.

If the deformations are confined to be small, the linear strains and rotations
in equations 2.15 and 2.16 are infinitesimal and hence the higher order terms in
equation 2.48 can be neglected compared to the first order terms. Therefore, the
linear strains are a special case of the Green-Lagrange strains for small deforma-
tions or infinitesimal strains and rotations.
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In addition to the two mentioned classes of deformation, another class of de-
formation exists which is useful for formulating the linear or eigenvalue buckling
problem; infinitesimal strains and finite rotations. In this class of deformation, the
shell strains and rotations are both smaller than unity but the rotations are larger
than the strains i.e. the rotations are moderately large. This order of magnitude is
expressed mathematically as:

O(eα) =O(eβ) =O(eαβ) =O(eβα) <O(eαz ) =O(ezα) =O(eβz ) =O(ezβ) < 1 (2.49)

The von Karman nonlinear strain-displacement relations are defined by neglecting
the second order terms in the nonlinear Green-Lagrange strain-displacement rela-
tions in equation 2.48 which contain strains i.e. product of two strains or product
of a strain and a rotation, however, the second order terms containing the product
of two rotations are retained. Considering these simplifications and the Kirchhoff’s
hypothesis conclusions i.e. ez = 0, eαz = −ezα and eβz = −ezβ, the von Karman
strains for shells are expressed as:

eV K
α = eα+ 1

2
(eαz )2

eV K
β = eβ+

1

2
(eβz )2

γV K
αβ = eαβ+eβα+eαz eβz (2.50)

These equations can be simplified by considering equations 2.15 and 2.33:

eV K
α = eα+ 1

2
(θα)2

eV K
β = eβ+

1

2
(θβ)2

γV K
αβ = γαβ+θαθβ (2.51)

2.4 STRAIN-DISPLACEMENT RELATIONS IN THIN CYLIN-
DRICAL SHELLS

The scope of the research reported in this thesis was limited to the thin cylin-
drical shells with arbitrary cross sections, either unstiffened or longitudinally

stiffened. The strain-displacement equations of general thin shells, introduced in
section 2.3, can be simplified for cylindrical shells considering their specific geom-
etry. The simplified strain-displacement equations can be readily used in chap-
ter 3 to formulate the linear static and buckling problems of the unstiffened thin
cylindrical shells where longitudinally stiffened thin cylindrical shells are modeled
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using the smeared stiffness approach i.e. the stiffened shell is mathematically con-
verted to an unstiffened uniform thickness shell with equivalent stiffness proper-
ties. In the smeared stiffness approach, the kinematic relations between the stiff-
eners and the cylindrical shell DOFs are required to formulate the static and buck-
ling problems of the longitudinally stiffened cylindrical shells.

In this section, the geometry, coordinate system and the first fundamental quan-
tities of the cylindrical surfaces are explained in subsection 2.4.1. In subsection 2.4.2,
the Sanders strain-displacement relations are simplified for cylindrical shells. The
kinematic relations between the stiffeners and the cylindrical shell DOFs in longi-
tudinally stiffened cylindrical shells are explained in subsection 2.4.3.

2.4.1 CYLINDRICAL SURFACES

The geometry of a cylindrical shell can be described in terms of the geometry of its
middle-surface. A generalised cylindrical surface is defined as the surface swept
by a line called a generatrix moving parallel to itself along a general planar curve
called a directrix, as shown in figure 2.3. If the generatrix line is an infinite line, an
infinite cylindrical surface is formed while if a finite length generatrix line is trans-
fered parallel to itself with one end of the line on the directrix curve, a finite length
cylindrical surface is constructed. Such a cylindrical surface, either an infinitely
long or finite is an open ended cylindrical surface since the two ends are open. A
closed cylindrical surface can be formed by cutting the open cylindrical surface
using two parallel planes which are not parallel to the generatrix. If the generatrix
of an open or closed cylinder is perpendicular to the directrix or the end planes
respectively, a straight or right cylinder is traced, otherwise the cylinder is oblique.

In the research reported in this thesis, our interest was limited to cylindrical
middle surfaces with a generatrix line perpendicular to the directrix which is an
arbitrary closed planar curve, i.e. straight cylinders with arbitrary closed cross
sections. The case studies were usually done on open cylindrical surfaces, un-
less it is mentioned that the cylindrical shell was closed with two end caps which
is of interest when studying the effect of internal pressure. Although in practice
an infinitely long cylinder does not exist, Saint-Venant’s solution, and hence the
static and buckling analysis methods, discussed in chapter 3 were developed for
infinitely long cylindrical shells neglecting the boundary effects.

The geometry of the middle surface of a cylindrical shell can be parameterised
using the surface parameters,α andβ, introduced in subsection 2.2.1. In the curvi-
linear coordinate system of the cylindrical surface, the α parameter changes only
in the axial or the generatrix direction while the β parameter varies only in the cir-
cumferential or directrix direction. In other words, on the cylindrical surface the
α curves are the longitudinal straight lines parallel to the cylinder generatrix while
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β curves are the circumferential curves orthogonal to the α curves (χ = π
2 ) as de-

picted in figure 2.3.
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FIGURE 2.3: Geometry and coordinate system of the middle surface of a cylindrical shell

The A and B parameters which define the first fundamental quantities of the
surface are calculated using equations 2.2 and 2.3. For a cylindrical surface and
all other surfaces which are developable to a plane, these parameters are equal to
unity:

A = |r,α| = | ∂r

∂α
| = 1 , B = |r,β| = | ∂r

∂β
| = 1 (2.52)

2.4.2 EQUATIONS OF SANDERS
As described in section 2.3.1, the Sanders strain-displacement equations are simi-
lar to the Byrne, Flügge, Goldenveizer, Lur’ye and Novozhilov equations, presented
in section 2.3.1, except for the change in twist. In Sanders theory, the total strains
at each point of the shell are related to the middle surface strains, changes of cur-
vatures and change in twist through equations 2.45-2.47. These equations are
simpler than the total strain equations from the theory of Byrne, Flügge, Gold-
enveizer, Lur’ye and Novozhilov, equations 2.35-2.37. In addition, equations of the
total strains in the Sanders theory are used in the classical lamination theory (CLT).
Therefore, Sanders equations were selected to express the strain-displacement re-
lations of thin cylindrical shells.
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The Sanders strain-displacement relations, equations 2.38-2.42 and equation 2.44,
can be simplified for thin cylindrical shells considering A = B = 1 and Rα =∞. The
simplified Sanders relations for the normal and shear strains on the middle surface
of cylindrical shells are:

εα = ∂u
∂α

, εβ =
∂v
∂β

+ w
R

, εαβ =
∂u
∂β

+ ∂v
∂α

(2.53)

where R = Rβ. The changes in curvatures and change in twist on the middle sur-
face of cylindrical shells are:

κα = ∂θα

∂α
, κβ =

∂θβ

∂β
, καβ =

∂θα

∂β
+ ∂θβ

∂α
+ 1

2R
(
∂v
∂α

− ∂u
∂β

) (2.54)

where θα and θβ are the rotations of the normal to the middle surface, in , about
the iβ and iα directions and are obtained from:

θα =−∂w
∂α

, θβ =
v
R
− ∂w
∂β

(2.55)

2.4.3 LONGITUDINALLY STIFFENED THIN CYLINDRICAL SHELLS
It will be shown in chapter 3 that in long cylindrical shells under extension, bend-
ing, torsion and internal or external pressure, which were the load cases of interest
in the research reported in this thesis, the state of strain is constant with the axial
location and changes only with the circumferential location. This limited strain
state variation in cylindrical shells allows for design and analysis simplifications;
tailoring of the laminate stiffness properties is limited to the circumferential direc-
tion and to solve the static and buckling problems, computationally efficient semi-
analytical methods have been developed which require only the cross-section of
the cylindrical shell to be discretised. Therefore, although the cylindrical shells can
be stiffened in different patterns, in this thesis the stiffening pattern was limited to
the longitudinal stiffeners which neither violates the circumferential variation of
stiffness nor the conditions of the applicability of the developed semi-analytical
methods.

The longitudinal stiffeners in the shell were assumed to be perfectly bonded
to the cylindrical shell. The smeared stiffness approach will be used in chapter 3
to model the stiffened cylinder as an unstiffened uniform thickness cylinder with
equivalent stiffness properties i.e. the stiffness properties of the stiffeners are smeared
to the cylindrical shell. The equivalent stiffness cylindrical shell can be readily
analysed using the developed semi-analytical static and buckling methods given
in chapter 3. These semi-analytical methods are formulated variationally from the
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total potential energy which is the summation of the total potential energy of the
stiffeners and the cylindrical shell. For smearing the stiffness of stiffeners to the
cylindrical shell, the total potential energy of the stiffeners should be expressed in
terms of the cylindrical shell DOFs and then added to the total potential energy
of the cylindrical shell. Therefore, it is essential to know the kinematic relations
between the stiffeners and cylindrical shell DOFs.

Stiffener-shell kinematic relations

The state of strain in the longitudinal stiffeners of a shell, modeled as beams, under
extension, bending or torsion is constant everywhere and can be expressed using
four parameters, axial strain, two curvatures and twist, which are the axial deriva-
tives of the displacements and rotations of the beam neutral axis. Assuming that
the stiffeners are perfectly bonded to the cylindrical shell, within any cross section
of a stiffened cylindrical shell, the displacements and rotations of any point on
the the cross section of a stiffener can be expressed in terms of the displacements
and rotations of the connection point of the stiffener and shell. In practice, a stiff-
ener is connected to the cylindrical shell at more than one point in each cross sec-
tion. However, in the smeared stiffness approach, the displacements and rotations
of the points on the stiffener cross-section are related to those of one connection
point in the shell. As depicted in figure 2.4, the connection point is assumed to be
placed on the middle surface of the shell and hence, when calculating the offset of
the centroid of the stiffener from the connection point on the shell middle surface,
the shell thickness should be considered in addition to the stiffener dimensions.

In the cross section of the stiffened cylindrical shell, which is depicted in fig-
ure 2.4, the offset of the centroid of the cross section of a stiffener from the connec-
tion point on the middle surface of the cylindrical shell in the iβ and in directions

is shown by βstf and zstf. The three translational DOFs at the centroid of the cross
section of the stiffener, ustf,v stf,w stf, are related to the translational and rotational
DOFs of the middle surface of the cylindrical shell at the connection point, u, v , w ,
θβ, θα, θn , as:

 ustf

v stf

w stf

=
 u

v
w

+
 θβ
θα
θn

×
 0
βstf

zstf

 (2.56)

The rotational DOFs of the centroid of the cross section of the stiffener, θstf
β

,θstf
α ,θstf

n ,

and the rotational DOFs of the connection point on the middle surface of the cylin-
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FIGURE 2.4: The cross-section of a stiffened cylinder, DOFs of the connection point of the shell to the
stiffener and DOFs of the stiffener centroid

drical shell, θβ,θα,θn , are equal: θstf
β

θstf
α

θstf
n

=
 θβ
θα
θn

 (2.57)

where θn is the drilling DOF which is not defined for the shell and hence θstf
n is also

neglected (θstf
n = θn = 0). Therefore, the kinematic expressions relating the DOFs

of the centroid of the cross section of the stiffener and the DOFs of the connection
point on the middle surface of the cylindrical shell are simplified to:

ustf = u + zstfθα , v stf = v − zstfθβ , w stf = w +βstfθβ

θstf
β = θβ , θstf

α = θα (2.58)

Since the stiffeners are modeled as beam elements under extension, bending
and torsion, their deformation can be defined by an axial strain, two changes of
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curvatures and a change in twist of the neutral axis. These four parameters are
defined in terms of the DOFs of the centroid of the cross section of the stiffener and
subsequently in terms of the DOFs of the connection point on the middle surface
of the cylindrical shell using equations 2.58:

εstf
α = ∂ustf

∂α
= ∂u
∂α

+ zstf ∂θα

∂α

κstf
α = ∂θstf

α

∂α
= ∂θα

∂α
(2.59)

κstf
n = ∂θstf

n

∂α
= ∂θn

∂α

τstf =
∂θstf

β

∂α
= ∂θβ

∂α

As mentioned earlier, θstf
n and henceκstf

n are neglected (κstf
n = 0). From equations 2.54

and 2.55 the change in twist of the shell can be stated as:

καβ = 2
∂θβ

∂β
− 1

2R
(
∂u
∂α

+ ∂v
∂α

) (2.60)

Using equations 2.53, 2.54 and 2.60 with equation 2.59, the axial strain, the change
of curvature and the change in twist of the neutral axis of the stiffener can be ex-
pressed in terms of the axial strain, changes of curvature, change in twist and the
displacement v of the connection point on the middle surface of the cylindrical
shell:

εstf
α = εα+ zstfκα

κstf
α = κα (2.61)

τstf = 1

2
καβ+

1

4R
(εα+ ∂v

∂α
)

2.5 CONSTITUTIVE RELATIONS OF LAMINATES

The structural theories which are used for the analysis of laminated compos-
ites are classified into two categories; three-dimensional (3-D) elasticity theory

and two-dimensional (2-D) equivalent single layer (ESL) theories. In the 3-D elas-
ticity theory, each layer is modeled as a 3-D solid. In the ESL theories, the hetero-
geneous laminate is treated as a statically equivalent single layer with integrated
properties. These theories are derived from the 3-D elasticity theory by making
appropriate assumptions for the kinematics of deformation or stress state through
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the thickness of the laminate. These assumptions allow us to express the defor-
mations, strains or stresses of the laminate in terms of those values on the middle
surface and have the advantage of reducing the 3-D problem to a 2-D problem.

The simplest ESL theory is the classical lamination theory (CLT), which is con-
sistent with the assumptions made when deriving of the strain-displacement rela-
tions in section 2.3. In CLT, the strain state in the through-the-thickness direction
is either constant or varies linearly due to Kirchhoff’s assumptions, however, since
the material properties and/or orientation angle of different layers in a laminate
are usually different constant values, the stress state jumps between the adjacent
layers. Therefore, stress resultants and moment resultants are defined by integra-
tion of the stresses and moment of stresses throughout the thickness of laminates.
The constitutive relations in CLT relate the stress resultants and moment resultant
to the strains and curvatures of the middle surface of the laminate through the
stiffness matrices, which includes the integrated information about the stiffness of
all layers.

Many of the structural responses can be expressed in terms of stiffness ma-
trices. The stiffness matrices can be expressed either as trigonometric functions
of the ply angles or linear functions of some lamination parameters. Linear for-
mulation of stiffness matrices in terms of lamination parameters can be useful in
structural optimisation. If lamination parameters are selected as design variables,
their feasible region, i.e. the bounded space in which lamination parameters are
physically meaningful, should be identified and incorporated in the optimisation
formulation as a constraint.

In this section, modeling the laminate stiffness properties using CLT is de-
scribed in subsection 2.5.1. Lamination parameters are introduced in subsection 2.5.2
as a suitable way to parameterise the stiffness properties of the laminate. The fea-
sible region of lamination parameters is explained in subsection 2.5.3.

2.5.1 CLASSICAL LAMINATION THEORY
Classical lamination theory (CLT) assumes that the laminate is comprised of n or-
thotropic and/or isotropic layers which are bonded perfectly together by an in-
finitely thin, non-shear-deformable bonding surface. The CLT is the simplest form
of the equivalent single layer (ESL) laminate theories which treat the heteroge-
neous laminate as a statically equivalent single layer. In CLT the bending of this
equivalent single layer follows the Kirchhoff’s hypothesis i.e. the normals to the
undeformed middle surface remain straight and normal to the deformed middle
surface and are not extended. In addition, in CLT it is assumed that all the layers
are thin compared to the other dimensions of each of the layers in the laminate,
e.g. the in-plane dimensions of a plate or the smallest radius of curvature of the
middle surface of a shell.
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As indicated in equations 2.13 and 2.13, the Kirchhoff’s hypothesis implies that
all the transverse strains, ez ,γαz ,γβz , are zero. Therefore, the transverse shear
stresses, σαz ,σβz , in an orthotropic laminate are zero by definition. Although the
transverse normal stress, σz , is not identically zero, since ez = 0, the normal stress
does not appear in the virtual work expression and hence is neglected. Therefore,
in theory there are plane strain and plane stress states together, however, in prac-
tice a thin or moderately thick shell is in the plane stress state since the thickness
is small compared to the other dimensions. Therefore, in CLT it is assumed:

σz =σαz =σβz = 0 (2.62)

These assumptions are also used in the derivation of the Sanders shell strain - dis-
placement relations in subsection 2.3.1. Therefore, using CLT to formulate the
constitutive relations of the laminates is consistent with Sanders shell strain-displacement
relations.

The linear constitutive relation of the k th orthotropic lamina in the principal
material coordinates of that lamina is: σ1

σ2

τ12

=
 Q11 Q12 0

Q12 Q22 0
0 0 Q66

 e1

e2

γ12

 (2.63)

where Qi j s are the plane stress-reduced stiffness matrices of the k th lamina in
the material coordinate system. Qi j s can be defined in terms of the longitudinal
modulus, E1, transverse modulus, E2, shear modulus, G12 and poison ratio, ν12 as:

Q11 = E1

1−ν12ν21
, Q12 = ν12E1

1−ν12ν21
, Q22 = E2

1−ν12ν21
, Q66 =G12 (2.64)

A laminate is formed by stacking several laminae such that a thickness, tk , and
an orientation with respect to the laminate axes, θk , is assigned to the k th lamina
as shown in figure 2.5.

In plane stresses of the k th lamina in the direction of laminate axes can be
expressed as:  σx

σy

τx y

=
 Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

 ex

ey

γx y

 (2.65)

where Q̄i j s are the plane stress-reduced stiffness matrices of the k th lamina in the
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FIGURE 2.5: Composite laminate consisting n layers with thickness hk , and orientation angle θk for
layer k placed at zk through-the-thickness coordinate measured from the middle surface (regenerated
from Reddy [1])

laminate coordinate system:

Q̄11 =U1 +U2 cos2θk +U3 cos4θk

Q̄12 =U4 −U3 cos4θk

Q̄22 =U1 −U2 cos2θk +U3 cos4θk

Q̄66 =U5 −U3 cos4θk (2.66)

Q̄16 = (U2 cos2θk +2U3 cos4θk )/2

Q̄26 = (U2 cos2θk −2U3 cos4θk )/2

where θk is the orientation angle of the k th layer and Ui s are completely defined
by the material properties of the k th layer and are invariant with respect to the
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orientation of that layer:

U1 = (3Q11 +3Q22 +2Q12 +4Q66)/8

U2 = (Q11 −Q22)/2

U3 = (Q11 +Q22 −2Q12 −4Q66)/8 (2.67)

U4 = (Q11 +Q22 +6Q12 −4Q66)/8

U5 = (Q11 +Q22 −2Q12 +4Q66)/8

The total strains can be expressed in terms of the middle surface strains and cur-
vatures using equation 2.47. Therefore, equation 2.65 for the k th layer, which is
placed at the through-the-thickness coordinate z, is re-expressed as:

 σx

σy

τx y

=
 Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

 εx + zκx

εy + zκy

εx y + zκx y

 (2.68)

where zk−1 < z < zk . Equation 2.68 shows that the in-plane stresses in layer k either
are constant, when the curvatures are zero (κx = κy = κx y = 0), or vary linearly with
the through-the-thickness coordinate z, when the curvatures are not zero. How-
ever, even if all the layers are made of the same material, the discrepancy between
the fibre orientations in the adjacent layers results in jumping of the stress values
at the boundary of the adjacent layers as shown in figure 2.6.

z
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z

e
x
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σ
x

(a) (b) (c)

FIGURE 2.6: Variation of strains and stresses through the laminate thickness (a) Laminate, (b) Vari-
ation of a typical in-plane strain, (c) Variation of the corresponding stress component (regenerated
from Reddy [1])
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Although the spatial distribution of strains in a laminate can be easily expressed
in terms of the middle surface strains and curvatures, there is not a unique equa-
tion for expressing the spatial distribution of stresses in the laminate. Therefore,
the stress-strain relations can be formulated for each individual layer and not for
the entire laminate. The constitutive relations can be expressed for the whole
laminate by using the stress resultant and moment resultant quantities instead of
the stress quantities. Stress resultants are defined by integration of the stresses
throughout the thickness of the laminate:

Nx =
∫ h

2

− h
2

σx d z, Ny =
∫ h

2

− h
2

σy d z, Nx y =
∫ h

2

− h
2

τx y d z, (2.69)

Similarly, moment resultants are obtained by through-the-thickness integration of
the moments of the stresses:

Mx =
∫ h

2

− h
2

σx zd z, My =
∫ h

2

− h
2

σy zd z, Mx y =
∫ h

2

− h
2

τx y zd z, (2.70)

Substituting the stresses of each layer from equation 2.68 in equations 2.69 and 2.70,
the constitutive relations of the laminate are obtained based on CLT: Nx

Ny

Nx y

=
 A11 A12 A16

A12 A22 A26

A16 A26 A66

 εx

εy

εx y

+
 B11 B12 B16

B12 B22 B26

B16 B26 B66

 κx

κy

κx y

 (2.71)

 Mx

My

Mx y

=
 B11 B12 B16

B12 B22 B26

B16 B26 B66

 εx

εy

εx y

+
 D11 D12 D16

D12 D22 D26

D16 D26 D66

 κx

κy

κx y


(2.72)

where:

Ai j =
N∑

k=1
(Q̄i j )k (zk − zk−1)

Bi j = 1

2

N∑
k=1

(Q̄i j )k (z2
k − z2

k−1) (2.73)

Di j = 1

3

N∑
k=1

(Q̄i j )k (z3
k − z3

k−1)

The A matrix is the extensional stiffness matrix, which relates the stress resul-
tants to the middle surface strains of the laminate. The B matrix is the bending-
extension coupling matrix which relates the stress resultants to the curvatures and
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the moment resultants to the middle surface strains of a laminate. The D matrix is
the flexural, bending, stiffness matrix, which relates the moment resultants to the
curvatures of the middle surface of a laminate.

The bending-extension coupling can be useful in certain structural applica-
tions, but usually it is considered undesirable in ordinary applications. Therefore,
the B matrix can be set to zero by symmetric placement of the layers in the lami-
nate about the middle surface. There are other ways to avoid the extension-shear
and bending-twisting coupling through elimination of A16 and A26 terms and D16

and D26 terms, respectively [94].

2.5.2 LAMINATION PARAMETERS

Lamination parameters, introduced by Tsai and Hahn [95] and [96], provide a com-
pact definition of the layup configuration. Lamination parameters are expressed
as non-dimensional through-the-thickness integration of the trigonometric func-
tions of the orientation angles:

(V1A ,V2A ,V3A ,V4A) =
∫ 1

2

− 1
2

( cos2θ(z̄), sin2θ(z̄), cos4θ(z̄), sin4θ(z̄) )d z̄

(V1B ,V2B ,V3B ,V4B ) = 4
∫ 1

2

− 1
2

z̄( cos2θ(z̄), sin2θ(z̄), cos4θ(z̄), sin4θ(z̄) )d z̄ (2.74)

(V1D ,V2D ,V3D ,V4D ) = 12
∫ 1

2

− 1
2

z̄2( cos2θ(z̄), sin2θ(z̄), cos4θ(z̄), sin4θ(z̄) )d z̄

where VA , VB and VD are the in-plane, coupling and out of plane lamination pa-
rameters, z̄ = z/h is the normalized through-the-thickness coordinate and θ(z̄) is
the orientation angle at z̄. The laminate stiffness matrices can be expressed as lin-
ear functions of the lamination parameters as:

A = h(Γ0 +Γ1V1A +Γ2V2A +Γ3V3A +Γ4V4A)

B = h2

4
(Γ0 +Γ1V1B +Γ2V2B +Γ3V3B +Γ4V4B ) (2.75)

D = h3

12
(Γ0 +Γ1V1D +Γ2V2D +Γ3V3D +Γ4V4D )
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where Γi s are completely defined by the material invariants:

Γ0 =
 U1 U4 0

U4 U1 0
0 0 U5

 , Γ1 =
 U2 0 0

0 −U2 0
0 0 0

 , Γ2 =
 0 0 U2/2

0 0 U2/2
U2/2 U2/2 0


Γ3 =

 U3 −U3 0
−U3 U3 0

0 0 −U3

 , Γ4 =
 0 0 U3

0 0 −U3

U3 −U3 0

 (2.76)

where Ui s are the material invariants defined in equation 2.67.

In many structural design problems, the structural response of laminated com-
posites can be fully described in terms of the stiffness matrices. The stiffness ma-
trices cannot be directly used as design variables since their components are re-
lated to each other and cannot be selected arbitrarily. Instead the laminate stiff-
ness matrices can be parameterised in terms of the orientation angles or lamina-
tion parameters. As will be described in subsection 4.4.1, the linear relation of
the stiffness matrices and lamination parameters, equation 2.75, and the convex
feasible region of lamination parameters, described in subsection 2.5.3, motivate
using lamination parameters as design variables in some laminate optimisation
problems instead of the orientation angles. In addition, lamination parameters
are continuous design variables which are suitable for gradient-based optimisa-
tion. They provide the largest possible design space and hence the best concep-
tual design. The stiffness properties of a stacking sequence in the most general
form can be expressed in terms of twelve lamination parameters. The number of
lamination parameters required to describe the stiffness properties of a balanced
symmetric laminate is reduced to four. Therefore, the number of design variables
in the stacking sequence optimisation problem of a laminate with large number of
layers is reduced when using lamination parameters than when using ply angles,
which is very beneficial in terms of the computational cost of optimisation.

2.5.3 FEASIBLE REGION OF LAMINATION PARAMETERS

Lamination parameters cannot be chosen arbitrarily, since they are defined by the
trigonometric expressions in equation 2.74 and are bounded and related. There-
fore, if lamination parameters are selected as design variables, it is necessary to
define the feasible region of lamination parameters, i.e. range of lamination pa-
rameters which correspond to a realistic laminate. If the structural response has
an in-plane nature, the in-plane lamination parameters are sufficient to parame-
terise the in-plane stiffness matrix and hence the in-plane structural response. The
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feasible region for in-plane lamination parameters is defined as [97]:

2V 2
1A(1−V3A)+2V 2

2A(1−V2A)+V 2
3A +V 2

4A −4V1AV2AV4A ≤ 1

V 2
1A +V 2

2A ≤ 1 (2.77)

−1 ≤Vi A ≤ 1 (i = 1, ...,4)

For balanced symmetric laminates, V2A =V4A = 0, and therefore the feasible region
simplifies to:

2V 2
1A −1 ≤V 2

3A (2.78)

−1 ≤Vi A ≤ 1 (i = 1,3)

The same set of inequalities can be obtained for the out of plane lamination pa-
rameters, Vi D . The feasible region defined in equations 2.77 and 2.78 can be used
for the design problems which are either completely dominated by the in-plane
behaviour or completely dominated by the out of plane behaviour.

In practice, the structural responses are functions of both the in-plane and out
of plane stiffness matrices. Therefore, the feasible region of combined in-plane
and out of plane lamination parameters should be defined where solving the corre-
sponding structural problems. So far no general analytical expressions have been
found for the feasible region of combined in-plane and out of plane lamination pa-
rameters. Diaconu et al. [98] approximated the feasible region of any set of lamina-
tion parameters using a variational approach. Bloomfield et al. [99] give a method
that can be used to obtain the analytical expressions for approximating the feasible
region of combined in-plane and out of plane lamination parameters, when the set
of ply angles are predefined and Grenestedt and Gudmundson [73] and Foldager
et al. [100] have proved that the feasible region of any arbitrary set of lamination
parameters is convex. Setoodeh et al. [101] use the convex nature of the feasible
region to find an approximations of the feasible region. The developed numerical
strategy is based on successive convex hull approximations and represent the ap-
proximate feasible region in the form of a set of linear inequalities. These linear
inequalities can be readily included as constraints in any structural optimisation
problem. The approximate feasible region of lamination parameters developed
by Setoodeh et al. [101] is used in this thesis.





3
SEMI-ANALYTICAL STATIC AND

BUCKLING SOLUTIONS OF

CYLINDERS

3.1 INTRODUCTION

Exact analytical solutions of the governing partial differential equations (PDEs)
of some structures are difficult to obtain and then only by using many sim-

plifications or difficult calculations. The need to model the spatial variation of
laminate stiffness in variable stiffness composite structures and the arbitrary ge-
ometry of the cross-section of cylindrical shells, which are of interest in this thesis,
further preclude using analytical solutions for analysis of these structures. There-
fore, approximate semi-analytical or numerical methods have been used to design
variable stiffness structures.

The finite element method, as the most popular numerical method used for
structural analysis, has several advantages; its applicability to a large range of prob-
lems, its robustness and its computational efficiency. In the semi-analytical meth-
ods such as Ritz method, parametric analytical expressions are usually used to pre-
define the structural response and then the parameter defining the analytical ex-
pressions are found using numerical methods. Therefore, if both finite element

Parts of this chapter have been published in Composite Structures 94 (2012) 2851-2860 [102] and Pro-
ceedings of the 8th World Congress on Structural and Multidisciplinary Optimization, June 1-5, 2009,
Lisbon, Portugal: ISSMO [103].
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and semi-analytical methods can be used to analyse a certain structure, less de-
grees of freedom (DOFs) are usually required in the semi-analytical methods. As
the number of DOFs is increased in a structural model, the bandwidth of the stiff-
ness matrix and hence the computational cost of analysis is increased. Therefore,
the semi-analytical methods are usually computationally more efficient than the
finite element method. The effect of computational efficiency becomes more pro-
nounced when the analysis has to be repeated several times, which is the case dur-
ing a design and optimisation process. The semi-analytical methods may not be
as accurate as the finite element method, but they provide the designer with a fun-
damental understanding of the problem and the sensitivity of the structural re-
sponses with respect to the design variables. However, the range of applicability of
semi-analytical methods is limited compared to the finite element method.

The static problem of a cylinder under pointwise tractions on the two end cross
sections and with a traction-free lateral surface is called the Saint-Venant’s prob-
lem. The Saint-Venat’s solution is the solution of the relaxed formulation of the
Saint-Venant’s problem, in which the pointwise traction on the two ends is sub-
stituted by its integrals over the cross sections. In general, these integrals result
in the axial force, transverse shear force (flexure), bending moments and torsion.
It is indicated by Voigt [104] that in the Saint-Venant’s solution of cylinders under
extension, bending, torsion, the state of strain is constant in the axial direction of
the cylinder and varies only in the circumferential direction. The same situation
stands for the state of strain of the cylindrical shell under internal or external pres-
sure, since the pressure distribution is uniform. However, it is shown by Voigt [104]
that in the Saint-Venant’s solution of cylinders under transverse shear force, the
state of strain varies linearly in the axial direction.

According to the Saint-Venant’s solution for cylindrical shells under extension,
bending, torsion, internal or external pressure or any combination thereof, it is
enough to tailor the laminate stiffness properties only in the circumferential di-
rection to find the optimum variable stiffness design. As mentioned in subsec-
tion 1.5.1, it has been also shown by several researchers e.g. Tatting [84], Blom
et al. [17], Sun and Hyer [39], Paschero and Hyer [105] and Paschero and Hyer [106]
that the structural behaviour of cylindrical shells under the aforementioned load
cases is improved by circumferential stiffness tailoring. Circumferential stiffness
tailoring is beneficial for structural optimisation of cylindrical shells by limiting
the number of design variables, and it motivates using a semi-analytical method
for static and buckling analysis of cylindrical shells based on the Saint-Venant’s
solution, in which only the cross-section of the cylinder is discretised and hence
it is computationally more efficient than a full finite element discretisation. The
scope of this thesis is limited to circumferential stiffness tailoring of cylindrical
shells with arbitrary cross-sections under load cases including extension, bending,
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torsion, internal or external pressure or any combination of them.
A semi-analytical finite element (SAFE) method is developed by Dong et al.

[107] for static analysis of the inhomogeneous, anisotropic cylindrical bodies. In
the SAFE method, the static problem of a cylindrical body is formulated by setting
the first variation of the total potential energy to zero and then the Saint-Venant’s
displacement field is used to solve the static problem. The Saint-Venant’s displace-
ment field for the cylindrical body under extension, bending, torsion or any com-
bination thereof, is composed of three parts; the primal and rigid-body displace-
ment fields which are a linear function of axial location, and the warpings which
only vary in the cross-sectional plane. The state of strain obtained from this dis-
placement field is independent of the axial location and changes only in the cross-
section. Therefore, only the cross-section of the cylinder is discretised using finite
elements to find the warpings which are driven by the primal field. The primal field
embodies the elementary hypothesis of bar and beam theories and the rigid-body
field is eliminated before solution. The bending, torsion problem, and four param-
eters, which are the amplitudes of both the primal field and warpings, are found
from the formulated static problem of the cylindrical body under extension. The
solution process is very similar to that used for the traditional Kantorovich-Krylov
method [108] which decouples the displacement field into two components in the
longitudinal and circumferential directions.

In this chapter, the linear static and buckling problems of circumferentially
variable stiffness cylindrical shells are formulated variationally. The classical lam-
inate theory is used to formulate the total potential energy. The strains, changes of
curvatures and rotations are related to the displacements using the Sanders strain-
displacement relations. To formulate the eigenvalue buckling problem, the strains
are generalised by adding the von Karman terms due to moderately large rotations.
The Saint-Venant’s displacement field is used for the static problem, while for the
buckling problem, the displacement field is assumed to be the product of a si-
nusoidal axial displacement field and an unknown circumferential displacement
field.

The primal part of the Saint-Venant’s displacement field of a cylinder under
extension, bending, torsion or any combination of them, which embodies the el-
ementary hypothesis of bar and beam theories, varies linearly with the axial loca-
tion. The primal part can be fully described in terms of four parameters consisting
of the axial strain, two curvatures and a twist on the neutral axis of the cylinder.
The cross-sectional warpings and the rigid-body displacement field are fully de-
scribed by the displacements of the discretisation points on the circumference.
Therefore, it is necessary to discretise the cylindrical shell only in the circumferen-
tial direction to describe fully the Saint-Venant’s displacement field. The state of
strain from this Saint-Venant’s displacement field is independent of the axial loca-
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tion and only changes with the circumferential location. The strains, changes of
curvatures and rotations consist of derivatives of the displacement field with re-
spect to the axial and circumferential locations. In the developed semi-analytical
method, the derivatives with respect to the axial location are expressed in terms
of four parameters consisting of the axial strain, two curvatures and a twist on the
neutral axis of the cylinder, and the derivatives with respect to the circumferential
location are expressed as finite differences of the cross-sectional warpings.

In the buckling problem, the dependency of the total potential energy and
hence the eigenvalue buckling problem on the axial location is eliminated by choos-
ing a certain number of half-waves for the axial displacement. Therefore, the cylin-
drical shell is only discretised in the circumferential direction and finite difference
is used to approximate the derivatives of the displacement field with respect to
the circumferential location. The developed method for static and buckling analy-
sis of variable stiffness cylindrical shells is called a semi-analytical finite difference
(SAFD) method due to using analytical expressions for the displacement fields and
finite difference for approximating the displacement derivatives.

In this chapter, first the SAFE method for static analysis of the inhomogeneous,
anisotropic cylindrical bodies is described in section 3.2. The SAFE method is
based on the Saint-Venant’s solution and is the basis for the SAFD method de-
veloped for static analysis of circumferentially variable stiffness cylindrical shells
in section 3.3. The SAFD method developed for buckling analysis of circumfer-
entially variable stiffness cylindrical shells is described in section 3.4. The SAFD
static and buckling analysis methods are verified in section 3.5 by comparing their
results with those obtained using the commercial finite element code AbaqusTM.
In addition, a parametric study is reported in section 3.5 in which the effect of cir-
cumferential variation of the fibre angle orientation on the structural stiffness of
some different composite cylindrical shells is investigated.

3.2 ST. VENANT ’S PROBLEM OF ANISOTROPIC INHOMO-
GENEOUS CYLINDERS

A semi-analytical finite element (SAFE) method is developed by Dong et al. [107]
based on the Saint-Venant’s solution for static analysis of a finite length cylin-

drical body. The cross-section of this cylindrical body has an arbitrary geometry
and is composed of any number of different linear elastic anisotropic materials.
This SAFE method is used as the foundation for developing a semi-analytical fi-
nite difference (SAFD) method for computationally efficient static analysis of cir-
cumferentially variable stiffness cylindrical shells with arbitrary cross-sections in
section 3.3.
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The inhomogeneous, anisotropic cylindrical body considered was made of ma-
terials which were perfectly bonded providing full intersurface kinematic and trac-
tion continuity (see figure 3.1). Traction were applied to the two ends of the cylin-
der on a pointwise basis and the lateral surface of the cylinder has traction-free.
Application of traction to the two ends resulted in axial force, transverse shear force
(flexure), bending moments and torsion, such that the overall equilibrium of the
cylinder was maintained.

The above problem for the special case of a homogeneous isotropic material
is the well-known Saint-Venant’s problem. Saint-Venant’s solutions are the solu-
tions for the relaxed formulation of Saint-Venant’s problem in which the traction
applied on the two ends in a pointwise basis is replaced by its integrals on the
cross-sections representing the axial force, transverse shear force (flexure), bend-
ing moments and torsion. Saint-Venant’s principle states that the difference be-
tween his solution and any other solutions for equivalent traction states are limited
to the regions close to the ends of cylinder. There are unlimited end traction states
upon integration of which the same force and moment resultants as in the relaxed
formulation are produced, and hence many solutions exist which compete with
the Saint-Venant’s solution. There are certain characteristics which make Saint-
Venant’s solutions different from other solutions. Voigt [104] has shown that for
extension, bending and torsion, the strain and stress fields are independent of ax-
ial coordinate and for flexure, they vary at most linearly along the axis of the cylin-
der. Sternberg and Knowles [109] indicate that the strain energy from the Saint-
Venant’s solution for the case of extension, bending and torsion of a homogeneous
isotropic cylinder is the absolute minimum. They proved that for flexural loading
in the special case of Poisson’s ratio equal or close to zero, the strain energy occu-
pies the minimum state.

In the SAFE method, only the cross section of the cylindrical body is discretised
using two-dimensional finite elements. The displacement field of the cylinder is
expressed as a product of two parts; a displacement field which is only a function
of the axial coordinate and the interpolation functions which are the functions of
the cross-sectional location. Using this form of displacement field, the static prob-
lem of the inhomogeneous, anisotropic cylinder with an arbitrary cross-section is
formulated variationally in the two-dimensional finite element context. To solve
the formulated static problem, the displacement field from the Saint-Venant’s so-
lution is used. Since a finite element method is used in combination with the ana-
lytical Saint-Venant’s solution to formulate and solve the static problem of the in-
homogeneous, anisotropic cylinder, the method is called the semi-analytical finite
element (SAFE) method.

In this section the SAFE method is explained in subsection 3.2.1. The displace-
ment field from the Saint-Venant’s solution is described in subsection 3.2.2. The
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SAFE method for the static problem of the inhomogeneous, anisotropic cylindri-
cal body under axial force, bending moments and torsion is formulated in subsec-
tion 3.2.3.

3.2.1 SEMI-ANALYTICAL FINITE ELEMENT SOLUTION
The static problem formulation is described for a cantilevered cylindrical body of
length L with an arbitrary shaped cross-section composed of any number of per-
fectly bonded linear elastic anisotropic material as depicted in figure 3.1. The open
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FIGURE 3.1: Geometry and coordinate system of the inhomogeneous, anisotropic cylinder (regener-
ated from Dong et al. [107])

volume occupied by the cylinder is denoted by R with the lateral surface defined
by B . The generic cross-section of the cylinder is denoted by cs and the bound-
ary curve of the cross-section is Scs. The cross-sections at the tip and root are
identified by cs1 and cs2, respectively. A right-hand Cartesian coordinate system
(x, y, z) with the origin at some point on the tip cross-section, cs1, is selected as
the reference such that the x y plane is parallel to the cross-sectional planes and
z axis is parallel to the cylinder axis. Stress, strain and displacement states at
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each point of the cylinder are denoted by σ(x, y, z) = [
σx ,σy ,σz ,σy z ,σxz ,σx y

]T ,

ε(x, y, z) = [
εx ,εy ,εz ,εy z ,εxz ,εx y

]T and u(x, y, z) = [
ux ,uy ,uz

]T . The constitutive
equation for a given anisotropic material in the cross-section has the formσ= Cε,
where the symmetric (6×6) matrix C contains the 21 independent elastic moduli
for the most general type of anisotropy.

The applied semi-analytical finite element (SAFE) method is based on discretis-
ing only the cross-sectional area of the cylinder into two-dimensional finite el-
ements. The displacement field on each element is formulated as the product
of the interpolation functions, n(x, y), and the cross-section and nodal variables,
ux ,uy ,uz , which are functions of axial coordinate z. For example, if six-node trian-
gular or eight-node quadrilateral elements are used to discretise the cross-section,
the interpolation functions are complete second-order polynomials. Therefore,
the displacement field can be expressed as:

 ux (x, y, z)
uy (x, y, z)
uz (x, y, z)

=
 n(x, y) 0 0

0 n(x, y) 0
0 0 n(x, y)

 ux (z)
uy (z)
uz (z)

 (3.1)

or

u(x, y, z) = ne (x, y)ue (z) (3.2)

Expressing the displacement field as a product of two parts allows to use a solu-
tion technique introduced by Kantorovich and Krylov [108]. In this method, the
partial differential equations (PDEs) are reduced to ordinary differential equations
(ODEs) by assuming the displacement field to be separable in different directions.
One part of the displacement field is chosen a priori and the other part is deter-
mined based on the nature of the problem. This one step solution process does
not require any iteration, and in terms of accuracy is placed between the exact
and Ritz/Galerkin solution methods. In the extended version of the Kantorovich-
Krylov method [108], an iterative solution between the separable components of
displacement field is performed until convergence.

The differential operators in the strain-displacement relations can be parti-
tioned into two parts according to the dependence of displacement field in equa-
tion 3.2:

ε= Lu = Lx y u+Lz u (3.3)
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where Lx y and Lz are the matrices containing linear differential operators:

Lx y =



∂
∂x 0 0
0 ∂

∂y 0

0 0 0
0 0 ∂

∂y

0 0 ∂
∂x

∂
∂y

∂
∂x 0


Lz =



0 0 0
0 0 0
0 0 ∂

∂z
0 ∂

∂z 0
∂
∂z 0 0
0 0 0

 (3.4)

substituting the displacement field from equation 3.2 in equation 3.4 gives the
strain-displacement equations as:

ε= b1ue +b2ue,z (3.5)

where:

b1 =



n,x 0 0
0 n,y 0
0 0 0
0 0 n,y

0 0 n,x

n,y n, x 0

 b2 =



0 0 0
0 0 0
0 0 n
0 n 0
n 0 0
0 0 0

 (3.6)

The equilibrium equation is derived from the total potential energy using the
variational principle:

δ (
1

2

∫ L

0
(
∫ ∫

cs
εT Cεd xd y) d z −V ) = 0 (3.7)

where V denotes the work done by the external tractions applied on the tip cross-
section cs1. Taking the first variation of V gives the information on boundary trac-
tions, and hence knowing the boundary conditions of the Saint-Venant’s problem
is required for finding the proper expression of V . Summing up the strain energy
for all the elements and taking the first variation, results in the following equilib-
rium equation for the anisotropic cylinder:

K1U,zz +K2U,z −K3U = 0 (3.8)

where U =
[

UT
x ,UT

y ,UT
z

]T
shows the vector of assembled nodal displacement com-

ponents, and the stiffness matrices K1, K2 and K2 are given by:

[ K1 K2 K3 ] =
N∑

n=1

∫ ∫
[ (bT

2 Cb2) (bT
2 Cb1 +bT

1 Cb2) (bT
1 Cb1) ] d x d y (3.9)
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where N is total number of elements in the cross-section. The stiffness matri-
ces K1 and K3 are symmetric while K2 is anti-symmetric. The effect of each of
these stiffness matrices can be determined by their dependence on b1 and b2. The
stiffness matrix K3 is built from b1 and governs the cross-sectional plane strain
and K1 is constructed from b2 and hence controls the behaviour complement to
the cross-sectional plane strain, while K2 relates these two behaviours. The stan-
dard isoparametric finite element method can be used to derive the stiffness ma-
trices. In the Saint-Venant’s relaxed formulation, force and moment resultants
are used instead of tractions on a cross-section. On a generic cross-section cs at
some arbitrary axial coordinate z, the vector of forces and moments is denoted by
FT (z) = [

Px ,Py ,Pz , Mx ,−My , Mz
]

and related to the corresponding stress compo-
nents by: ∫ ∫

cs
hTσd x d y = F(z) (3.10)

where h(x, y) is given by:

h(x, y) =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 y x 0
0 1 0 0 0 x
1 0 0 0 0 −y
0 0 0 0 0 0

 (3.11)

Replacing the pointwise traction at the end cross-sections by their corresponding
force and moment resultants, the work V done by the external forces gets the form:

V = FT (0) a = (P1a1 +P2a2 +P3a3 +M1a4 +M2a5 +M3a6)cs1 (3.12)

where ai are displacement amplitudes from the Saint-Venant’s solution, which are
associated with the deformations corresponding to these force and moment resul-
tants. The root end cs2 is fully restrained.

3.2.2 DISPLACEMENT FIELDS FOR SAINT-VENANT ’S SOLUTION
According to Iesan’s scheme [110], the displacement fields for Saint-Venant’s solu-
tion of extension-bending-torsion problem and flexure problem are constructed
by integrating the rigid-body displacement field once and twice, respectively, with
respect to the axial coordinate of the cylinder. Rigid-body displacement has six
different modes which identically satisfy the equilibrium equation of the cylinder
(equation 3.8) and result in zero strains when substituted into the strain-displacement
equation 3.5. These six rigid-body modes form the basis for the description of the
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rigid-body displacement field and are expressed as six Ri (3M ×1) vectors:

R1 =
[
IT

1 ,0T ,0T ]T
, R2 =

[
0T ,IT

1 ,0T ]T
, R3 =

[
0T ,0T ,IT

1

]T
,

R4 =
[
0T ,0T ,yT ]T

, R5 =
[
0T ,0T ,xT ]T

, R6 =
[−yT ,xT ,0T ]T

(3.13)

where M is the total number of nodes in the finite element model and I1, 0, x and y
are (M×1) vectors with their elements being unity, zero, x and y coordinates of the
M nodes, respectively. The rigid-body displacement is expressed by URB (3M ×1)
vector:

URB =ΦRB aRB = [−zN1 +N2]aRB (3.14)

where aRB = [u0, v0, w0,ω1,ω2,ω3]T is the vector of six translational and rotational
amplitudes and ΦRB is the (3M ×6) matrix denoting the rigid-body displacement
field and:

N1 = [0,0,0,R2,R1,0] , N2 = [R1,R2,R3,R4,R5,R6] (3.15)

Substituting equation 3.14 into the equilibrium equation 3.8 and strain-displacement
equation 3.5 gives:

K3Ri = 0 (i = 1,2,3,6) , K3R4 =−K2R2 , K3R5 =−K2R1

b1ri = 0 (i = 1,2,3,6) , b1r4 = b2r2 , b1r5 = b2r1 (3.16)

where ri s are equivalents of Ri s at element level.

3.2.3 EXTENSION-BENDING-TORSION PROBLEM
The displacement field for Saint-Venant’s solution of extension-bending-torsion
problem of the cylinder can be obtained by integrating the strain-displacement
relations for a strain field independent of z or according to Iesan’s scheme [110] by
integrating the rigid-body displacement with respect to z. The extension-bending-
torsion displacement field can be expressed as:

U(x, y, z) = [ΦI (x, y, z)+ΨI (x, y)]aI +ΦRB (x, y, z)aRB (3.17)

where U =
[

UT
x ,UT

y ,UT
z

]T
is a (3M ×1) vector and denotes the assembled ordered

nodal displacement components, and ΦI and ΨI are the primal field and cross-
sectional warpings which are (3M ×6) matrices [107]:

ΦI =− z2

2
N1 + zN2 (3.18)

and:
ΨI = [ΨI 1,ΨI 2,ΨI 3,ΨI 4,ΨI 5,ΨI 6] (3.19)
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The rigid-body displacements are included in equation 3.17 for completeness. The
primal field in equation 3.18 is derived from the integration of the rigid-body dis-
placement field using Iesan’s scheme [110], ΦI = ∫

ΦRB d z, and it will be shown
that the warpings are driven by the primal field. The amplitudes of primal field
and warpings are denoted by aI which is a (6×1) vector:

aI = [aI 1, aI 2, aI 3, aI 4, aI 5, aI 6]T (3.20)

aI 1 and aI 2 are the amplitudes associated with the longitudinal shear deforma-
tions, aI 3 with extension, where aI 4 and aI 5 with bending and aI 6 with torsion.
The longitudinal shear deformation modes appear in the displacement field of
the extension-bending-torsion problem as a direct result of integrating the most
general form of rigid-body displacement field. These deformation modes produce
shear tractions on the lateral surface of the cylinder, B , which violate the condi-
tion of the Saint-Venant’s problem stating that the lateral surface of the cylinder, B ,
should be traction free, however it will be shown shortly, these two shear deforma-
tion modes and their corresponding amplitudes, aI 1 and aI 2, become uncoupled
from the extension-bending-torsion problem and do not affect the results. Parts of
the primal field with the amplitudes aI 3 to aI 6 represent the kinematic hypothe-
sis governing the elementary structural rod and beam theories for extension, pure
bending and torsion.

Substituting the displacement field of equation 3.17 in equilibrium equation,
equation 3.8, and setting the terms multiplied by the amplitude coefficients, aI i ,
to zero, the following relations are obtained for the cross-sectional warpings:

K3ΨI i = K2Ri (i = 1,2,3,6)

K3ΨI 4 = K2R4 −K1R2 (3.21)

K3ΨI 5 = K2R5 −K1R1

It is clear that the cross-sectional warpings, ΨI i , are driven by the components of
the primal field on the right-hand side of equation 3.21. warpings are defined as
the elastic responses due to the cross-elasticity (Poisson) effect and longitudinal
shear warpings due to free torsion. It can be seen from equations 3.16 and 3.21
thatΨI 1 andΨI 2 are related to the rigid-body modes as:

ΨI 1 =−R5 , ΨI 2 =−R4 (3.22)

The stiffness matrix, K3, needs to be inverted for solving equation 3.21, how-
ever, K3 is singular due to the presence of rigid-body motion and cannot be in-
verted before eliminating the rigid-body modes. Therefore, three rigid-body trans-
lations along the three coordinate directions and the rigid-body rotation about the
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z-axis must be suppressed in K3 before its inversion. Finding the nodal warpings
ΨI i from equation 3.21, the displacement field in equation 3.17 is completely de-
fined and can be re-expressed at each point as:

ux (x, y, z) = aI 1z −aI 5
z2

2
−aI 6 y z +

6∑
i=1

aI iΨI i u(x, y)−ω3 y −ω2z +u0

uy (x, y, z) = aI 2z −aI 4
z2

2
+aI 6xz +

6∑
i=1

aI iΨI i v (x, y)+ω3x −ω1z + v0 (3.23)

uz (x, y, z) = (aI 3z +aI 5x +aI 4 y)z +
6∑

i=1
aI iΨI i w (x, y)+ω1 y +ω2x +w0

Substituting the defined displacement field, equation 3.17, in the strain-displacement
relation, equation 3.5, the element strain can be expressed as:

ε= [b2n2 +b1ΨIe ]aI = [h+b1ΨIe ]aI = ε0aI (3.24)

where n2 and ΨIe are the counterparts of N2 and ΨI at element level. The expres-
sion b2n2 in equation 3.24, is replaced by h defined in equation 3.11 considering
the shape function properties in isoparametric finite element:

nodes∑
i=1

ni = 1,
nodes∑

i=1
ni xi = nx = x,

nodes∑
i=1

ni yi = ny = y (3.25)

where nodes is the number of nodes in each element. The first two elements of
the strain vector, ε, are the longitudinal shear strains, εxz and εy z , which are as-
sociated with the aI 1 and aI 2 amplitudes, respectively. Substituting the displace-
ment field from equations 3.17 and 3.22 in equation 3.24, one can see that these
two longitudinal shear strains become identically zero and are not involved in the
extension-bending-torsion problem. Using the anisotropic stress-strain relation,
the element stress can be obtained as:

σ= Cε0aI =σ0aI (3.26)

In the extension-bending-torsion problem, the two first component of the (6×
1) force vector on the end cross-section cs1 are zero:

F = [0,0,P3, M1, M2, M3]T (3.27)

These resultants are found by integrating the stress components (σzz ,σxz ,σy z )
over each element cross-section as indicated in equation 3.10 and summing up
the contributions from N elements of the total cross-section:

N∑
i=1

∫ ∫
cs1

hTσd x d y =
N∑

i=1

[∫ ∫
cs1

hT C [h+b1ΨIe ]d x d y

]
aI = F (3.28)
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which can be also expressed in terms of cross-sectional (independent from z axis)
stiffness relation:

kI
(6×6)

aI
(6×1)

= F
(6×1)

→
 0

(2×2)
0

(2×4)

0
(4×2)

kI bb
(4×4)

 aI a
(2×1)

aI b
(4×1)

=
 0

(2×1)

Fb
(4×1)

 (3.29)

The expanded form of the nontrivial part kI bb is:
kI 33 kI 34 kI 35 kI 36

kI 34 kI 44 kI 45 kI 46

kI 35 kI 45 kI 55 kI 56

kI 36 kI 46 kI 56 kI 66




aI 3

aI 4

aI 5

aI 6

=


P3

M1

−M2

M3

 (3.30)

The matrix kI bb (4×4) is symmetric. All the terms in the first two rows and columns
of the matrix kI (6×6) are equal to zero which shows that the longitudinal shear
components play no role in the extension-bending-torsion problem.

3.3 STATIC ANALYSIS OF CYLINDRICAL SHELLS

The static problems of unstiffened and longitudinally stiffened cylindrical shells
with arbitrary cross-sections are variationally formulated in this section. The

total potential energy of the unstiffened cylindrical shell is formulated using the
Sanders shell strain-displacement equations and assuming the Saint-Venant’s dis-
placement field for the extension-bending-torsion problem.

Similar to the Saint-Venant’s displacement field of the cylindrical body explained
in section 3.2, this displacement field for the cylindrical shell in the extension-
bending-torsion problem is composed of the primal field, warpings and the rigid-
body field. The primal field of the cylindrical shell can be fully expressed by four
parameters, the axial strain, the two bending curvatures and the twist on the neu-
tral axis of the cylinder, obtained from the bar and beam solution of the cylinder.
To capture the displacement field due to the warpings, which is the same for all
the cross-sections, the cross-section is discretised and the displacements at these
discretisation points are used. Therefore, the axial strain, the two bending cur-
vatures, the twist on the neutral axis of the cylinder, and the displacements at all
the discretisation points of the cross-section are chosen as the static DOFs of the
cylindrical shell.

As mentioned in section 3.2, the state of strain for Saint-Venant’s displacement
field in the extension-bending-torsion problem is independent of the longitudinal
direction and varies only in the circumferential direction. The shell strains and
changes of curvatures at each point on the circumference are expressed in terms
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of the chosen DOFs using Sanders shell strain-displacement, the total potential
energy is formulated and the equilibrium equation is found from the total poten-
tial energy using the variational principle. This static analysis method is named
the semi-analytical finite difference (SAFD) method, which is similar to the semi
analytical finite element (SAFE) method described in section 3.2, because the as-
sumed displacement field is found analytically from the Saint-Venant’s solution
and the finite difference is used to express the strain-displacement relations used
in formulating the static problem.

The SAFD method can also be used for static analysis of the longitudinally
stiffened cylinders. Longitudinal stiffeners are modeled as beams attached with
rigid links to the cylindrical shell. This model can be simplified further using the
smeared stiffness approach which finds the unstiffened cylindrical shell with the
equivalent stiffness properties as the longitudinally stiffened cylindrical shell. The
equilibrium equation of the equivalent stiffness cylindrical shell is found varia-
tionally from the total potential energy of the cylindrical shell and stiffeners both
expressed in terms of the shell static DOFs. The total potential energy of the stiff-
eners are expressed in terms of the DOFs of the cylindrical shell using the kine-
matic relations between the axial strain, the two bending curvatures, the twist on
the neutral axis of each stiffener and the DOFs of the shell at the connection point.

In this section, the SAFD method is explained for static analysis of unstiffened
cylindrical shells in subsection 3.3.1. Using the SAFD method for static analysis
of longitudinally stiffened cylindrical shells with the smeared stiffness modeling
approach is explained in subsection 3.3.2.

3.3.1 UNSTIFFENED CYLINDRICAL SHELLS
The static problem is formulated by imposing the condition of being stationary to
the total potential energy of the cylindrical shell. Therefore, the first variation of
total potential energy is set to zero:

δΠ= δ(U −V ) = 0 (3.31)

where U is the elastic strain energy stored in the deformed body and V is the work
done by the applied external forces. The strain energy is composed of membrane
(U m) and bending (U b) parts:

U = U m + U b = 1

2

∫ L

0

∫ Scs

0
(εT N) dβ dα + 1

2

∫ L

0

∫ Scs

0
(κT M) dβ dα (3.32)

where ε and κ are the vectors of local strain and curvature and N and M are the
vectors of local stress and moment resultants or vectors of local sectional force
and moment, respectively. The strain energy in equation 3.32 can be re-expressed
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in terms of the stiffness matrices using the constitutive relations from the classical
lamination theory, equations 2.71 and 2.72, as:

U = U m +U b = 1

2

∫ L

0

∫ Scs

0
(εT Aε) dβ dα+ 1

2

∫ L

0

∫ Scs

0
(κT Dκ) dβ dα (3.33)

where A and D are the extensional and bending stiffness matrices, respectively.
The bending-extension coupling stiffness matrix, B, is zero since it is assumed that
the layers in the laminate are placed symmetrically about the middle surface. L
and Scs are the length and circumference of the cylinder. The work done by the
external forces and moments is:

V = V m +V b =
∫ L

0

∫ Scs

0
(εT Fext) dβ dα+

∫ L

0

∫ Scs

0
(κT Mext) dβ dα (3.34)

where Fext and Mext are the local external force and moment vectors. The semi-
analytical finite difference (SAFD) method for solving the static problem of cylin-
drical shells is developed by expressing the strains and curvatures in the total po-
tential energy in terms of the DOFs which are required for describing the displace-
ment field of the Saint-Venant’s solution. Strains and curvatures are related to
these static DOFs using the Sanders strain-displacement relations.

Displacement fields for Saint-Venant’s solution

The displacement field for Saint-Venant’s solution of an inhomogeneous, anisotropic
cylindrical body is expressed in terms of the Cartesian coordinates in section 3.2.
The displacement components at each point on the middle surface of the cylindri-
cal shell are measured in the axial direction, iα, tangent direction, iβ, and normal
direction to the shell, in , and denoted by u, v , and w , respectively. These displace-
ment components are related to the displacements of the middle surface of the
cylindrical shell measured in the Cartesian coordinates, ux , uy , and uz in the x, y ,
z directions, respectively:

u = uz

v = ux
d x

dβ
+uy

d y

dβ
(3.35)

w = ux (−d y

dβ
)+uy

d x

dβ
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The complete displacement field is composed of the primal displacement field,
ΦI , warpings,ΨI , and the rigid-body,ΦRB , displacements:

u = uΦI +uΨI +uΦRB

v = vΦI +vΨI +vΦRB (3.36)

w = wΦI +wΨI +wΦRB

The primal part of the displacement field of the cylindrical shell in the axial di-
rection, which embodies the kinematic hypothesis of elementary rod and beam
theories, can be expressed in the same form as the expression for uz in equa-
tion 3.23:

uΦI = (aI 3 + y aI 4 +xaI 5)α (3.37)

where aI 3 = εbeam
α , aI 4 = κbeam

x and aI 5 =−κbeam
y . The primal displacement field of

the cylindrical shell in the cross-sectional plane can be related to the twist, τbeam,
obtained from the rod solution of the cylinder under torsion. The amount of rota-
tion of each cross-section around the cylinder axis is φ = τbeamα. As is clear from
figure 3.2, the displacement components in the cross-sectional plane due to this
rotation, φ (in radians), can be expressed in the Cartesian coordinates as:

ux =φy = τbeamαy

uy =−φx = τbeamαx (3.38)

The displacement field in equation 3.38 can be expressed in the iβ and in directions
as v and w displacement components, respectively:

vΦI = ux
d x

dβ
+uy

d y

dβ
= τbeamα(y

d x

dβ
−x

d y

dβ
)

wΦI = ux (−d y

dβ
)+uy

d x

dβ
= τbeamα(−y

d y

dβ
−x

d x

dβ
) (3.39)

Therefore using four parameters, the axial strain, εbeam
α , two curvatures,κbeam

x ,κbeam
y ,

and the twist, τbeam, shown in figure 3.3, are enough to completely describe the
primal displacement field in equations 3.37 and 3.39.

As mentioned in the subsection 3.2.3, warpings are elastic responses due to
cross-elasticity effects, i.e. the Poisson effect, and longitudinal shear warpings due
to free torsion and as it is clear from equation 3.21, the warpings are driven by the
primal displacement field. Among different parts of the displacement field, the
rigid-body (equation 3.14) and primal (equation 3.18) fields are functions of ax-
ial coordinate, while the displacement field due to the warpings (equation 3.19)
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FIGURE 3.2: Displacements in the cross-section plane due to the torsion

is independent of the axial coordinate and is the same for all the cross-sections.
Therefore, the cross-section is discretised into n discretisation points as shown in
figure 3.3 and the warping displacement field is represented by the vector of dis-
placement components of the n discretisation points on the cross-section:

Us
ΨI ,ΦRB

(β) = [u1,v1,w1,u2,v2,w2, ...,un ,vn ,wn]T (3.40)

This displacement vector includes the rigid-body displacement modes which should
be eliminated before solving the equilibrium equation.

The four parameters representing the primal field, εbeam
α , κbeam

x , κbeam
y , and

τbeam, append to the part of the displacement filed due to the warpings and rigid-
body displacements, Us

ΨI ,ΦRB
(β), to form the vector of total static DOFs, Us (3n +

4×1), which is constant with changing the axial position (α) and is only function
of circumferential position (β):

Us (β) =
[

Us
ΨI ,ΦRB

(β)T ,εbeam
α ,κbeam

x ,κbeam
y ,τbeam

]T
(3.41)

The four parameters εbeam
α , κbeam

x , κbeam
y , and τbeam of the cylindrical shell cor-

respond to the four amplitudes of the primal and warping displacement fields of
the cylindrical body, aI 3, aI 4, aI 5, aI 6, respectively. In the SAFE method for the
cylindrical body under extension, bending and torsion, which is described in sub-
section 3.2.3, the warping deformation modes are driven from the primal displace-
ment field using equation 3.21 and then the amplitudes of the primal and warping
displacement fields, aI 3, aI 4, aI 5, aI 6, are found from equation 3.30. In the SAFD
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method the difference is that these four parameters and the warping displacement
fields for the cylindrical shell are all included in the vector of total static DOFs in
equation 3.41 and will be obtained all together by solving the equilibrium equa-
tion.

Semi-analytical finite difference method
The Sanders strain-displacement relations in equations 2.53-2.55 are re-expressed
in matrix form for each point on the middle surface of a cylindrical shell as:



εα
εβ
εαβ
κα
κβ
καβ

=



∂
∂α 0 0
0 ∂

∂β
1
R

∂
∂β

∂
∂α 0

0 0 − ∂2

∂α2

0 1
R

∂
∂β − ∂2

∂β2

− 1
2R

∂
∂β

3
2R

∂
∂α −2 ∂2

∂α∂β


 u

v
w

 (3.42)

It has been proved by Voigt [104] that for the Saint-Venant’s solution of a cylinder
under extension, bending and torsion, the state of strain is independent of the axial
coordinate. The complete displacement field is found by substituting the primal
displacement fields from equations 3.37 and 3.39 and the warpings and rigid body
displacement fields from equation 3.40 in equation 3.36. This displacement field
is substituted in the strain-displacement relations in equation 3.42. Using finite
difference, the strains and changes of curvatures at each point on the cylindrical
shell, which are independent of the axial coordinate, are expressed in terms of the
components of the vector of total static DOFs, Us (3n +4×1):

ε j = Bm
j Us

j , κ j = Bb
j Us

j (3.43)

where ε j andκ j are the strain and curvature vectors at the j th discretisation point
and Us

j as the vector of static DOFs and Bm
j and Bb

j as the strain-displacement

matrices at this point are:

Us
j =

[
u j−1,v j−1,w j−1,u j ,v j ,w j ,u j+1,v j+1,w j+1,εbeam

α ,κbeam
x ,κbeam

y ,τbeam
]T

(3.44)

Bm
j =

 0 0 0 0 0 0 0 0 0 1 y j −x j 0
0 −1

2∆ 0 0 0 1
R j

0 1
2∆ 0 0 0 0 0

−1
2∆ 0 0 0 0 0 1

2∆ 0 0 0 0 0 Bm
j (3,13)


(3.45)
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Bb
j =


0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1

2∆R j−1

−1
∆2 0 0 2

∆2 0 1
2∆R j+1

−1
∆2 0 0 0 0

0 0 0 0 0 0 0 0 0 −1
2R j

−y j
2R j

x j
2R j

Bb
j (3,13)


(3.46)

where

Bm
j (3,13) = y j (x j+1 −x j−1)−x j (y j+1 − y j−1)

2∆

and

Bb
j (3,13) = 2(1+ y j

(y j+1 −2y j + y j−1)

∆2 +x j
(x j+1 −2x j +x j−1)

∆2 )+ 3

2R j
Bm

j (3,13)

and ∆ is the distance between two subsequent discretisation points around the
circumference of the cylinder.

Substituting the finite difference form of the strains and curvatures, equation 3.43,
in the expressions for the total potential energy, equations 3.33 and 3.34, using nu-
merical integration schemes to find the total potential energy and taking its first
variation, the static problem can be formulated as:

Ks Us = Fs (3.47)

where Ks (3n +4×3n +4) is the global tangent stiffness matrix and Fs (3n +4×1)
is the force vector. The solution of equation 3.47 requires the inverse of Ks while
this matrix is singular due to rigid-body motion. Therefore, four rigid-body modes
must be eliminated before inversion.

The global tangent stiffness matrix (Ks ) is composed of membrane (Km) and
bending (Kb) parts and are assembled from the membrane (km

j ) and bending (kb
j )

local stiffness matrices at the j th discretisation point using rectangular midpoint
and trapezoidal integration schemes. Different numerical integration schemes are
used for the membrane and bending part of the strain energy to avoid numerical
issues and are selected based on the degree of derivatives of displacements with
respect to β which is one for in-plane strains and two for curvatures. Therefore,
the tangent stiffness matrix (Ks ) is assembled from the local membrane stiffness
matrix calculated at the midpoint between j and j + 1 (km

j+ 1
2

) and local bending

stiffness matrix at point j (kb
j ):

km
j+ 1

2
= L∆

2
Bm

j+ 1
2

T A j+ 1
2

Bm
j+ 1

2
, kb

j =
L∆

2
Bb

j
T

D j Bb
j (3.48)
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In the extension-bending-torsion problem, the first 3n components of the force
vector, Fs , in equation 3.47 are set to zero and the last four components from the
3n + 1 th to the 3n + 4 th are the values of the axial force, two bending moments
and torsion, respectively.

Although the Saint-Venant’s solution used here is confined to extension-bending-
torsion problem, the derived equilibrium equation is applicable for static analysis
of a cylinder under uniform internal or external pressure. The reason is that the
displacement field of a cylindrical shell under uniform internal or external pres-
sure is constant in the longitudinal direction. Therefore if only uniform pressure is
applied on the cylinder, the values corresponding to the extensional force, bend-
ing moments and torsion in the last four elements of the force vector are set to
zero and uniform pressure can be modeled as a distributed force in the normal di-
rection (in) to the shell (Fs (i ) = PAcs /n where i = 3,6,9, ...,3n). Consequently the
strain, changes of curvature and twist from the beam solution of the cylinder will
be zero.

Subsequently after solving the static problem, the strains and changes of curva-
tures are calculated at the midpoints and discretisation points, respectively. Strains
at the midpoints are interpolated to find the strains at the discretisation points.
Moreover, using the constitutive relations of the classical lamination theory, equa-
tions 2.71 and 2.72, and assuming a symmetric laminate about the middle surface
(B j = 0), the sectional forces and moments at each discretisation point are found:

N j = A jε j , M j = D jκ j (3.49)

In the SAFE method for the cylindrical body, the displacement field of the cross-
sectional warpings is driven by the primal displacement field through equation 3.21
and then the amplitudes of the warpings and the primal displacement field are
found from equation 3.30, however, in the formulated SAFD method for the cylin-
drical shell the warpings and the four parameters defining the primal displace-
ment field, including the axial stain, changes of curvatures and twist on the neutral
axis of the cylinder, form the vector of total static DOFs, Us , and are obtained all
together by solving equation 3.47.

In this thesis, cylindrical shells with simple cross sectional geometries, i.e. el-
liptical and circular cross-sections, are analysed. Therefore, using finite difference
instead of finite element to formulate the problem consisting one dimensional dif-
ferential equations is justified by the ease of implementation and low computa-
tional cost. The accuracy of the SAFD method is verified in section 3.5 by compar-
ing the results of an analysis with those obtained from an analysis of the similar
problem using the commercial finite element code AbaqusTM. Moreover, the SAFD
analysis method can be easily extended to a one dimensional semi-analytical finite
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element (SAFE) method for analysis of cylindrical shells with cross-sections that
have more complex geometries e.g. the airfoil geometry for a wind turbine blade.

3.3.2 LONGITUDINALLY STIFFENED CYLINDRICAL SHELLS

In longitudinally stiffened cylindrical shells, the stiffeners are modeled as beams
attached to the cylindrical shell with rigid links. The SAFD method developed in
section 3.3.1 can also be used for static analysis of longitudinally stiffened cylindri-
cal shell using the smeared stiffness approach. In the smeared stiffness approach,
the unstiffened cylindrical shell which has stiffness properties equivalent to those
of the longitudinally stiffened cylindrical shell is found.

Th equilibrium equation is derived by adding the total potential energy of the
stiffeners to the total potential energy of the cylindrical shell and setting the first
variation of the total potential energy to zero. The strain energy of a beam is formed
from the normal and shear strains:

U stf = L

2

∫
Astf

(
[
εstf

n ,εstf
s

][
E εstf

n

G εstf
s

]
)d A (3.50)

where Astf is the stiffener cross sectional area, E and G are the normal and shear
elastic moduli, which in case of laminated composite stiffeners are obtained from:

E = 1/A−1
11 , G = 1/D−1

66 (3.51)

where A11 and D66 are the components of in-plane and bending stiffness matrices
of the stiffener laminate. εstf

s is the shear strain of the points on the stiffener cross-
section induced by torsion and εstf

n is the normal strain of the points on the stiffener
cross-section induced by extension or compression and bending:

εstf
n = [

1, yl ,−xl
] εstf

α

κstf
α

κstf
n

 , εstf
s = rlτ

stf (3.52)

where rl , xl and yl are the absolute distance and distances in the iβ and in direc-
tions, respectively, measured between the local coordinate system on the centroid
of the stiffener cross-section as depicted in figure 2.4 and the selected point on
the stiffener cross-section. εstf

α , κstf
α , κstf

n and τstf are the longitudinal strain, bend-
ing curvatures and twist of the centroid of the stiffener cross-section. Substituting
equation 3.52 in equation 3.50 the total strain energy of a stiffener can be expressed
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as:

U stf = L

2

∫
Astf


εstf
α

κstf
α

κstf
n

τstf


T 

1 E yl E −xl E 0
yl E y2

l E −xl yl E 0
−xl E −xl yl E x2

l E 0
0 0 0 r 2

l G




εstf
α

κstf
α

κstf
n

τstf

d A =

L

2


εstf
α

κstf
α

κstf
n

τstf


T 

E Astf EQstf
x −EQstf

y 0
EQstf

x E I stf
x −E I stf

x y 0
−EQstf

y −E I stf
x y E I stf

y 0
0 0 0 G J stf




εstf
α

κstf
α

κstf
n

τstf

 (3.53)

where Qstf
x and Qstf

y are the first moments of area of the stiffener cross-section
about iβ and in , respectively. These first moments of area are zero since the lo-
cal coordinate system is placed on the centroid of the stiffener cross-section, as
shown in figure 2.4. I stf

x , I stf
y and I stf

x y are the second moments of area and J stf is the
polar moment of area of the stiffener cross-section.

In the smeared stiffness modeling approach, the equivalent unstiffened cylin-
drical shell is found by expressing the axial strain, change of curvature and twist of
the centroid of the stiffener cross-section in terms of the strains, changes of cur-
vatures and displacements of the cylindrical shell at the connection point using
equation 2.61. The strains and changes of curvature of the cylindrical shell can be
stated in terms of the shell static DOFs using equation 3.43. Therefore, the total
potential energy of the longitudinally stiffened cylindrical shell can be expressed
in terms of the static DOFs, Us , of the cylindrical shell with equivalent stiffness
properties. As stated earlier in section 2.4.3, the change of curvature of the stiff-
ener around the normal vector to the cylindrical shell ,κstf

n , is neglected because
the drilling DOF, θn , and the corresponding change of curvature, κn , are neglected
for the cylindrical shell. Therefore, the axial strain, change of curvature and twist
of the centroid of the cross-section of the stiffener can be related to the vector of
static DOFs of the shell at point j , Us

j (equation 3.44), as:

 εstf
α

κstf
α

τstf

= BstfUs
j (3.54)

where

Bstf =
 0 0 0 0 0 0 0 0 0 1 y j −x j 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 Bstf(3,13)

 (3.55)
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and

Bstf(3,13) = 1+ y j
(y j+1 −2y j + y j−1)

∆2 +x j
(x j+1 −2x j +x j−1)

∆2

+ 7

4R j

y j (x j+1 −x j−1)−x j (y j+1 − y j−1)

2∆

Therefore, the potential energy of a stiffener which is attached with rigid links
to the j th discretisation point on the shell is expressed as:

U stf = L

2
Us

j
T Bstf T

 E Astf EQstf
x 0

EQstf
x E I stf

x 0
0 0 G J stf

BstfUs
j (3.56)

which is added to the strain energy of the shell (equation 3.33). The equilibrium
equation of the longitudinally stiffened cylinder is found by setting the first deriva-
tive of the total potential energy of the cylindrical shell and the stiffeners equal to
zero. The local stiffness matrix from the contribution of the stiffener attached to
the j th discretisation point of the cylindrical shell is:

kstf = L

2
Bstf T

 E Astf EQstf
x 0

EQstf
x E I stf

x 0
0 0 G J stf

Bstf (3.57)

The kstf matrices from all the stiffeners are assembled into the tangent stiffness
matrix of the cylindrical shell, Ks , to build the tangent stiffness matrix of the equiv-
alent stiffness unstiffened shell and the corresponding static problem is formed
and solved as equation 3.47.

3.4 BUCKLING ANALYSIS OF CYLINDRICAL SHELLS

The linear or eigenvalue buckling problem of unstiffened and stiffened gen-
eral cross-section cylindrical shells is formulated variationally from the total

potential energy. The nonlinear von Karman strains, which are defined in equa-
tion 2.51, are used instead of the linear strains to formulate this total potential en-
ergy. As explained in section 2.3.2, in the von Karman theory it is assumed that
the strains and rotations are both small compared to unity, so that the changes of
geometry can be ignored, however, the strains are smaller than the rotations such
that the squares of rotations are comparable with strains. Due to the existence of
relatively large rotations, the in-plane loads are projected in the normal direction
to the shell. Linear buckling can be physically interpreted as the instability of the
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shell caused at a certain increased load level by the significant out of plane defor-
mations due to the projections of the in-plane loads in the normal direction [111].

Sanders strain-displacement relations are used to express the strains, changes
of curvatures and rotations of the shell in terms of the displacement field. The
Kantorovich-Krylov method [108] is used to express the buckling displacement
field (modes) of the cylindrical shell as the product of the axial and cross-sectional
modes. The cross-sectional modes are determined by the three displacement com-
ponents at each of the discretisation points on the cross-section and the axial mode
is expressed as a sinusoidal function with a predetermined number of axial half-
waves. The assumed form for the buckling mode implies that the cross-sectional
modes are the same for all the cross-sections and the wavelength of the sinusoidal
axial mode is constant in the axial direction. This form of the buckling mode is
consistent with the pre-buckling state of strain due to the Saint Venant’s solution
which is independent of the axial location and varies only in the circumferen-
tial direction. The dependency of the buckling problem to the axial direction is
eliminated by selecting the number of axial half-waves. Therefore, it is enough to
find the cross-sectional modes to determine the complete buckling mode shape.
Similar to the static problem, finite difference is used for the derivatives of dis-
placement components with respect to the circumferential direction in the strain-
displacement relations and hence, the solution method is again called semi-analytical
finite difference (SAFD).

The linear buckling problem is formulated by setting the second variation of
total potential energy to zero and using numerical integration schemes to assem-
ble the stiffness matrices. The buckling eigenvalue problem has to be formulated
and solved for different numbers of axial half-waves and the critical buckling mode
is selected as the buckling mode which has the minimum buckling load.

3.4.1 UNSTIFFENED CYLINDRICAL SHELLS

The minimum total potential energy criterion is applied to formulate the eigen-
value buckling problem. As it is clear from equation 3.34, there are no second or-
der terms in the work done by the external forces (V ). Therefore, the condition
for loosing the structural stability is found by setting the second variation of strain
energy to zero:

δ2Π= δ2U = 0 (3.58)

As shown in equation 3.33, the strain energy (U ) is composed of membrane (U m)
and bending (U b) parts. Assuming infinitesimal strains and finite rotations, total
von Karman strains are obtained from equation 2.50. Using equations 2.45- 2.47,
the von Karman strains on the middle surface (z = 0) are expressed in the matrix
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form as:  εV K
α

εV K
β

εV K
αβ

=
 εα

εβ
εαβ

+ 1

2

 θ2
α

θ2
β

2 θα θβ

 (3.59)

Using the von Karman strains in equation 3.59, and keeping in mind that strains
and rotations are both small compared to unity and squares of the rotations are
comparable with the strains, the membrane part of the strain energy is modified
as:

U m = 1

2

∫ L

0

∫ C

0
(εV K T AεV K ) dβ dα= 1

2

∫ L

0

∫ C

0
(εT Aε) dβ dα+ 1

2

∫ L

0

∫ C

0
(θT Nθ) dβ dα

(3.60)

where θ and N are the rotation vector of the normal to the mid-surface and the
matrix of the in plane forces:

θ =
[
θα
θβ

]
=

[
0 0 − ∂

∂α

0 1
R

∂
∂β

] u
v
w

 (3.61)

N =
[

Nα Nαβ

Nαβ Nβ

]
(3.62)

To be able to solve the buckling problem, similar to the Kantorovich-Krylov method
[108], the buckling mode shapes are expressed as the product of cross-sectional
modes and sinusoidal axial modes:

U(α,β) = a(β) e(i mπα/L) (3.63)

where a is the cross-sectional mode shape, i is the imaginary unit and m is the
number of axial half-waves. Assuming a number of axial half waves, the depen-
dency of buckling problem on the axial coordinate (α) is eliminated. The strain-
displacement relations discretised in the circumferential direction for a certain
number of axial half-waves are written in the matrix form:

ε j = Gm
j a j , κ j = Gb

j a j , θ j =Ω j a j (3.64)

where a j as the vector of DOFs and Gm
j , Gb

j and Ω j are the strain-displacement

matrices used to calculate the strain, curvature and rotation vectors at point j and
are defined as:

a j =
[

u j−1,v j−1,w j−1,u j ,v j ,w j ,u j+1,v j+1,w j+1
]T

(3.65)
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Gm
j =

 0 0 0 i K
L 0 0 0 0 0

0 −1
2∆ 0 0 0 1

R j
0 1

2∆ 0
−1
2∆ 0 0 0 i K

L 0 1
2∆ 0 0

 (3.66)

Gb
j =

 0 0 0 0 0 ( K
L )2 0 0 0

0 −1
2∆R j−1

−1
∆2 0 0 2

∆2 0 1
2∆R j+1

−1
∆2

0 0 i K
∆L

−i K
2R j L

3i K
2R j L 0 0 0 −i K

∆L

 (3.67)

Ω j =
[

0 0 0 0 0 −i K
L 0 0 0

0 0 1
2∆ 0 1

R j
0 0 0 −1

2∆

]
(3.68)

Setting the second variation of strain energy equal to zero and using numerical
integration schemes for the strain energy, the buckling eigenvalue problem for a
given number of axial half waves is formulated as:

(Kt −λb Kg ) a = 0 (3.69)

where Kt and Kg are the global material and geometric stiffness matrices, a is the
vector of DOFs representing the cross-sectional mode shape, and λb is the load
multiplier or buckling factor. The buckling modes are normalised such that:

aT Kg a = 1 (3.70)

The material stiffness matrix, Kt , is assembled from the local membrane, km
j , and

bending, kb
j , stiffness matrices. The geometric stiffness matrix, Kg , is assembled

from the local geometric stiffness matrix, kg
j . To avoid numerical issues, different

numerical integration schemes are used for the membrane and bending parts of
the of strain energy; rectangular midpoint for the membrane part and trapezoidal
for the bending part.Therefore, the following local stiffness matrices calculated at
point j and between points j and j +1 are used to assemble the material and geo-
metric matrices, Kt and Kg :

km
j+ 1

2
= L∆

2
Gm

j+ 1
2

T A j+ 1
2

Gm
j+ 1

2
, kb

j =
L∆

2
Gb

j
T

D j Gb
j , (3.71)

kg

j+ 1
2

=−L∆

2
Ωm

j+ 1
2

T N j+ 1
2
Ωm

j+ 1
2

3.4.2 LONGITUDINALLY STIFFENED CYLINDRICAL SHELLS
The smeared stiffness approach, which smears and adds the stiffness of stiffener
to the location of the shell where the stiffener is attached, is used to model the
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stiffened cylindrical shells. The stiffeners are modeled as beams and their strain
energy is added to that of the cylindrical shell. The stiffener strain energy for the
static problem (equation 3.50) is modified by assuming moderately large rotations
of the shell mid-surface and hence adding von Karman nonlinearity:

U stf = L

2

∫
Astf

[
εstf

n + 1

2
(θstf
α )2 εstf

s

][
E (εstf

n + 1
2 (θstf

α )2)
G εstf

s

]
d A (3.72)

Substituting equation 3.52 in equation 3.72, and neglecting the change of curva-
ture of the stiffener around the normal vector to the cylindrical shell, κstf

n , the stiff-
ener strain energy could be re-expressed as:

U stf = L

2

 εstf
α

κstf
α

τstf

T  E Astf EQstf
x 0

EQstf
x E I stf

x 0
0 0 G J stf

 εstf
α

κstf
α

τstf

+ L

2
N stf

n (θstf
α )2 (3.73)

where N stf
n = E εstf

n is the load applied in the normal direction to the stiffener cross-
section. Substituting the displacement field for a pre-defined number of axial half
waves in the form of equation 3.63 in equation 2.61, the stiffener strain, change
of curvature, twist and rotation can be expressed in terms of cross-sectional shell
buckling mode DOFs:  εstf

α

κstf
α

τstf

= Gstfastf e(i mπα/L) (3.74)

θstf
α =Γstfastf e(i mπα/L) (3.75)

where:

Gstf =


0 0 0 i mπ

L 0 zstf m2π2

L2 0 0 0

0 0 0 0 0 m2π2

L2 0 0 0
0 0 i mπ

2∆L 0 i mπ
R j L 0 0 0 − i mπ

2∆L

 (3.76)

Γstf = [
0,0,0,0,0,− i mπ

L ,0,0,0
]

(3.77)

and:

astf = [
u j−1,v j−1,w j−1,u j ,v j ,w j ,u j+1,v j+1,w j+1

]T
(3.78)
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Therefore, the contribution of a stiffener attached with rigid links to the j th dis-
cretisation point on the shell, to the strain energy of the stiffened shell is:

U stf = L

2
(a j )T

(Gstf)T

 E Astf EQstf
x 0

EQstf
x E I stf

x 0
0 0 G J stf

Gstf + (Γstf)T N stf
n Γstf

a j

(3.79)

Taking the second derivative of the strain energy of the stiffener gives rise to the
following material and geometric stiffness matrices which will be assembled at the
discretisation point j to the global material (Km) and geometric (Kg ) stiffness ma-
trices, respectively:

kstf m = L

2
(Gstf)T

 E Astf EQstf
x 0

EQstf
x E I stf

x 0
0 0 G J stf

Gstf (3.80)

kstf g = L

2
(Γstf)T N stf

n Γstf (3.81)

3.5 ANALYSIS VERIFICATION AND PARAMETRIC STUDY

In this section, the semi-analytical finite difference (SAFD) method developed
for static and buckling analysis is verified by comparing the results with those

obtained using the commercial finite element code AbaqusTM. In addition, a para-
metric study is performed to investigate the effect of circumferential variation of
the fibre angle orientation on the structural stiffness of different composite cylin-
drical shells. In this parametric study the structural stiffness is obtained from
the SAFD static analysis and therefore the intuitive observations further verify the
SAFD static analysis. The static analysis is verified in section 3.5.1. Then the effect
of changing the fibre angle on the structural stiffness is studied in section 3.5.2. The
developed SAFD method for buckling analysis of unstiffened and stiffened cylin-
drical shells is verified in section 3.5.3.

3.5.1 STATIC ANALYSIS VERIFICATION
A variable stiffness laminate design for maximum buckling capacity of a circular
cylinder cylinder under bending moment is obtained by Blom et al. [17]. The cir-
cular cylinder has a diameter of 609.6 mm (24 in) and a length of 812.8 mm (32
in). The laminate thickness is 4.39 mm (0.1728 in) including 24 layers made of
AS4/8773 material, the properties of which are given in table 3.1.
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TABLE 3.1: Material properties of AS4/8773 [17]

Longitudinal modulus, E1 [GPa / psi] 129.83 / 18.830e6
Transverse modulus, E2 [GPa / psi] 9.08 / 1.317e6
Shear modulus, G12 [GPa / psi] 5.29 / 7.672e5
Poisson’s ratio, ν12 [-] 0.32

In figure 3.4(a), the distribution of lamination parameters of the optimum vari-
able stiffness design found by Blom et al. [17] is depicted versus the azimuth angle,
starting from the point on the circular cross-section with the maximum axial ten-
sile section force. To verify the SAFD static analysis, the variable stiffness design
in figure 3.4(a) is analysed with SAFD method and in figure 3.4(b), the sectional
force in the axial direction of the circular cylinder obtained from the SAFD method
is compared with the results obtained from the commercial finite element code
AbaqusTM by Blom et al. [17]. Although the boundary conditions and multi-point
constraints used in the finite element model constructed by Blom et al. [17] are
not present in the SAFD method, the axial sectional force distributions from SAFD
method and the commercial finite element code AbaqusTM show good agreement
in figure 3.4(b).
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3.5.2 PARAMETRIC STUDY OF STRUCTURAL STIFFNESS
One of the structural responses which could be chosen as a design driver for vari-
able stiffness design of the cylindrical shell is the structural stiffness. A measure
of the structural stiffness is the inverse of the structural compliance which is de-
fined as the amount of strain energy stored in the structure under loading and can
obtained in terms of the static DOFs, Us :

S =C−1 = (
1

2
Fs T Us )−1 = (

1

2
Us T Ks Us )−1 (3.82)

where S is the measure of structural stiffness and C is the structural compliance.
In this subsection the effect of varying the fibre angle of the composite laminate

layers around the circumference of the cylindrical shell on the structural stiffness
is studied. This parametric study is performed by choosing a bi-symmetric, i.e.
symmetric about the semi-major and semi-minor axes of the elliptical cylinder,
and linear fiber angle variation for the variable stiffness demonstration. The fiber
angles at the end of semi-minor and semi-major axes of ellipse are denoted by T1

and T2 as depicted in figure 3.5 and the fiber angle variation between T1 and T2 is
linear:

θ(β) =β (T2 −T1)/(0.25 Scs) (3.83)

where for each point β is the curvilinear coordinate in the circumferential direc-
tion started from end of the semi-minor axis as shown in figure 3.5 and Scs is the
circumference of the cross-section. The laminate stacking sequence is assumed to
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FIGURE 3.5: Elliptical cross-sections with the same area and different eccentricities

be [±θ]ns , which is balanced symmetric, and assuming the number of layers to be
large, the lamination parameters are easily obtained as:

V1A =V1D = cos2θ V3A =V3D = cos4θ (3.84)
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TABLE 3.2: Material properties

Longitudinal modulus, E1 [GPa / psi] 180.98 / 26.25e6
Transverse modulus, E2 [GPa / psi] 9.79 / 1.42e6
Shear modulus, G12 [GPa / psi] 7.17 / 1.04e6
Poisson’s ratio, ν12 [-] 0.28

The laminate thickness is 4.39 mm (0.1728 in) and the orthotropic material prop-
erties are listed in table 3.2.

As shown in figure 3.5, the cross-sectional areas, Acs, of all the cylinders in the
parametric study are set equal to that of a circular cylinder with radius of 304.8 mm
(12 in) (Acs = π 304.82 mm2 (π 122 in2)). To introduce elliptical cross-sections a
parameter called eccentricity is defined:

e = (1− (
b

a
)2)0.5 (3.85)

where a is the semi-major and b is the semi-minor axis of the elliptical cross-
section which can be found from:

a = (Acs/π)0.5(1−e2)−0.25 b = Acs/(πa) (3.86)

Therefore, a cross-section with eccentricity of e = 0 is circular (a = b) and by in-
creasing the eccentricity it tends to become more elliptical (a > b).

Different parametric studies of structural stiffness are presented in figures 3.6,
and 3.8 for different eccentricities, laminate thicknesses and load cases. The re-
sults are shown as contours of the values of the structural stiffness expressed for
all possible combinations of parametric fibre angles, T1 and T2, each one chang-
ing from 0◦ to 90◦. The stiffness values shown in these figures are normalised with
respect to the stiffness value of the quasi-isotropic (QI) laminate, [±45]ns .

In the first part of the parametric study, the effects of changing the eccentricity
of the cylinder cross-section and varying the laminate thickness values on the max-
imum structural stiffness design and the corresponding parametric fibre angles, T1

and T2, are investigated. In this parametric study, the cylinders are analysed under
combined internal pressure and the axial force induced by the internal pressure
assuming two ends of the cylinder to be closed. The value of the applied inter-
nal pressure (P ) is chosen such that the non-dimensional pressure (Pa2)/(E11 Ae )
is unity, where Ae is the material area of the cross-section such that for a circular
cross-section, Ae = 2aπH = 2bπH , where H is the laminate thickness.
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Under the proposed load case in a circular cross-section (e = 0) cylindrical
shell, only membrane internal forces exist in the circumferential and axial direc-
tions. In a cylinder with an elliptical cross-section, in addition to the membrane
forces a bending internal moment exists in the circumferential direction, which
tends to deform the elliptical cross-section into circular. The effect of this bending
internal moment in the circumferential direction becomes more important com-
pared to the membrane internal forces, as the eccentricity of the cross-section is
increased. Intuitively, one knows that aligning the fibres in the axial direction (0◦)
provides stiffness in the axial direction while fibres aligned in the circumferential
direction make the cylinder stiff in the circumferential direction (90◦). Therefore,
in a maximum stiffness or minimum compliance design if the membrane internal
force in the axial direction is the dominant internal load, the fibres tend to align
in the 0◦ direction and if the membrane internal force in the circumferential di-
rection and/or bending internal moment in the circumferential direction are/is
dominant, the fibres have the tendency to align in the 90◦ direction.

The effect of changing the eccentricity of the cylinder cross-section on the max-
imum stiffness design is shown in figure 3.6. It is clear from these figures that the
design with minimum compliance is placed on the diagonal line of the contour
plot where T1 = T2 which means that the fibre angle and hence the stiffness is con-
stant around the circumference. Therefore, under this load-case and for this fibre
angle variation pattern the variable stiffness design does not show any improve-
ments in the structural stiffness over the corresponding constant stiffness design.
As it is shown in figure 3.6(a), in the circular cylinder for the minimum compliance
design fibers are aligned in 56◦ direction. This fibre angle direction could be inter-
preted as the effect of the existence of both axial and circumferential membrane
internal forces in a circular cylinder under internal pressure and corresponding
axial force. In an elliptical cylinder, increasing the eccentricity of cross-section in-
creases the effect of internal bending moment in the circumferential direction. As
can be seen from figures 3.6(a) and 3.6(b), the optimum fibre angle for the max-
imum stiffness design tends toward 90◦ as the internal circumferential bending
effect becomes more dominant.

Figure 3.7 shows the results of the same parametric study performed on a cylin-
der with an increased thickness laminate. As it is clear from figure 3.7, the opti-
mum fibre angle for maximum stiffness design tends to 90◦ direction as the ec-
centricity is increased which is similar to the trend seen for the cylinder with the
original thickness laminate in figure 3.6. The interesting phenomenon is that, for a
cylinder with an increased thickness laminate, the approach of the optimum fibre
angle toward 90◦ due to increasing the cross-sectional eccentricity happens more
slowly than for the cylinder with the original thickness laminate. As it is depicted
in figure 3.7(b), for an increased thickness laminate the optimum fibre angle be-
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comes almost equal to 90◦ at an eccentricity of 0.8, while for the original thickness
laminate, the eccentricity at which the optimum fibre angle becomes almost 90◦
is 0.4.
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FIGURE 3.6: Normalised stiffness for internal pressure and corresponding axial force for initial thick-
ness (H = H0)
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The membrane stiffness of the laminate is a homogeneous function of order
one of the laminate thickness, while the bending stiffness is a homogeneous func-
tion of order three of the laminate thickness, i.e. if the thickness of the laminate is
multiplied by c, the membrane stiffness is scaled by c while the bending stiffness is
scaled by a factor of c3. In other words, when the laminate thickness is increased,
the bending stiffness is increased by more than the membrane stiffness. Therefore,
although the fibres tend to align in the 90◦ direction when the eccentricities of both
thin and thick laminated elliptical cylindrical shells are increased, this tendency is
less for the thicker laminate than for the original thin laminate.

The second part of the parametric study is implemented on a cylinder under
a combination of bending moment with internal pressure and the resulting axial
force assuming the two ends are closed. The bending moment is applied around
the semi-major axis of a cylinder with a highly elliptical cross-section, e = 0.8.
The total load which is applied consists of a combination of (1 − r ) times non-
dimensional pressure (Pa2)/(E11 Ae ) and (r ) times non-dimensional bending mo-
ment M/(E11 Ae a). In the elliptical cylinder with an eccentricity of 0.8, when only
the internal pressure and its corresponding axial force are applied (r = 0), the effect
of the internal bending moment in the circumferential direction is so dominant
that the fibers are aligned almost in the 90◦ direction in the maximum stiffness
design.

Introducing the external bending moment on this cylinder, the axial internal
membrane force and hence the tendency of the fibres to align in the 0◦ direction is
increased. In figure 3.8 it is shown that as the portion of external bending moment
(r ) is increased, the fiber angle (T2) related to the points at the end of semi-major
axis of the cross-section is remained in the 90◦ direction. This can be interpreted
by the fact that the points at the end of semi-major axis of the cross-section are
placed on the the neutral axis and hence no internal membrane axial force due to
the external bending moment is carried by these points. This is while the largest in-
ternal membrane axial forces due to the external bending is carried by the points at
the end of semi-minor axis of the cross-section and the fiber angle at these points,
T1, tends to 0◦, for pure bending moment (r = 1.0) the fibers are almost aligned in
the 0◦ direction all over the cross-section.

It is worth mentioning that using the bi-symmetric linear fibre angle distribu-
tion limits the design space and the improvements of steered fibre designs over the
straight fibre designs. The maximum possible improvement which steering can
provide over straight fibres can be achieved using the general multi-step optimi-
sation framework presented in chapter 4. In the first step, lamination parameters,
which provide the largest possible design space, are used as the design variables
in the developed optimisation algorithm to achieve the best theoretically possible
optimum designs.
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FIGURE 3.8: Normalised stiffness for an elliptical cylinder (e = 0.8) under a load case combined of
(1− r ) times non-dimensional internal pressure and its corresponding axial force and (r ) times non-
dimensional bending
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3.5.3 BUCKLING ANALYSIS VERIFICATION
The SAFD method for buckling analysis can be evaluated by analysing the base-
line constant stiffness and the variable stiffness designs of a circular cylinder un-
der pure bending as presented by Blom et al. [17]. The baseline constant stiff-
ness in [17] is [±45,02,±45,02,90,±45,90]s and the linear buckling load obtained
from the commercial finite element software AbaqusTM is reported to be 598 kN.m
(5293 in-kips). The value of linear buckling load obtained using the SAFD method
is 602.5 kN.m (5333 in-kips ), with 11 axial half-waves, and hence the difference is
0.8%. The linear buckling load in [17] is reported to be 699.1 kN.m (6188 in-kips
) for the variable stiffness design while this value from the SAFD analysis is 717.2
kN.m (6348 in-kips), with 10 axial half-waves, which is 2.5% higher.

Further verification of the SAFD analysis method is performed by comparing
the buckling capacity of different QI laminated unstiffened an stiffened circular
and elliptical cylinders obtained from the SAFD analysis method with the results
obtained using the commercial finite element software AbaqusTM. In AbaqusTM,
the cylindrical shell is modeled using the 3D conventional 4-node, quadrilateral,
stress/displacement shell element, S4. The number and location of nodes in the
circumferential direction are selected to be the same as the discretisation points in
the SAFD method. To model the circumferential stiffness variation, each longitu-
dinal strip of elements, containing elements in the same circumferential position,
is defined as a set and the average laminate stiffness matrices of the nodes are as-
signed to each element set using the general shell section option. The boundary
conditions and loads or moments are introduced through two dummy nodes, the
6 DOFs of each are related to the 6 DOFs of nodes of one of the two end cross-
sections through kinematic coupling. The stiffeners are modeled with 3D linear
beam elements, B31, placed on the centroid line of the I-beam. The offset be-
tween the I-beam centroid and the shell middle-surface is calculated considering
the shell thickness. The beam elements are connected to the shell using BEAM
multi-point constraint, MPC, which provide a rigid beam between the beam nodes
and shell nodes constraining the displacement and rotation of the first set of nodes
to the displacement and rotation of the second [112].

The selected stiffeners have I cross-sections as shown in figure 3.9, the dimen-
sions of which are listed in table 3.3. The Young’s modulus, E , and shear modulus,
G , of the stiffeners are selected to be 210 GPa and 100 GPa, respectively.

The buckling moment of the unstiffened and stiffened circular cylinders under
bending are obtained from SAFD analysis and compared with the AbaqusTM re-
sults obtained with clamped boundary conditions. The investigated circular cylin-
ders have a length of 812.8 mm (32 in). The laminate is 4.39 mm (0.1728 in) thick
and made of AS4/8773 material, the properties of which are given in table 3.1. In
table 3.4, the buckling moments from SAFD and AbaqusTM for unstiffened and
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FIGURE 3.9: I cross-section of the stiffeners

TABLE 3.3: Geometric properties of 5 different I cross-sections selected for stiffeners [113]

Property No. 1 No. 2 No. 3 No. 4 No. 5

A [mm / in] 19.05 / 0.75 31.75 / 1.25 38.1 / 1.5 63.5 / 2.5 101.6 / 4
B [mm / in] 31.75 / 1.25 34.93 / 1.375 38.1 / 1.5 50.8 / 2.0 101.6 / 4
T [mm / in] 1.6 / 0.063 2.39 / 0.094 3.18 / 0.125 2.39 / 0.094 7.95 / 0.313
R [mm / in] 3.18 / 0.125 3.18 / 0.125 3.18 / 0.125 3.96 / 0.156 6.35 / 0.250
Area [1e3 mm2 / in2] 0.134 / 0.207 0.235 / 0.364 0.504 / 0.781 0.392 / 0.607 2.277 / 3.53
Ixx [1e6 mm4 / in4] 0.0086 / 0.0206 0.0404 / 0.0970 0.1313 / 0.3156 0.2735 / 0.6571 3.919 / 9.415
Iy y [1e6 mm4 / in4] 0.0080 / 0.0193 0.0156 / 0.0375 0.1273 / 0.3058 0.0493 / 0.1184 1.264 3̃.037

stiffened circular cylinders with 3 different radii are compared. Each stiffened
cylinder is stiffened with 8 stiffeners as depicted in figure 3.10(b) and the compari-
son is performed for 3 different stiffener cross-sections. The SAFD analysis is con-
servative in these cases, meaning that the buckling moments from SAFD are larger
than those from AbaqusTM. The percentage of difference, diff, between the buck-
ling loads obtained from the SAFD method and those from AbaqusTM are listed in
table 3.4 and vary between −6.6% to −2.4%

To broaden the verification cases, the circular with the radius of 304.8 mm stiff-
ened with 4 and 16 stiffeners, as depicted in figures 3.10(a) and 3.10(c), are inves-
tigated. Comparison of buckling moment from SAFD and AbaqusTM is again per-
formed for stiffeners with three different I cross-sections as listed in table 3.5. As it
is clear from table 3.5, again the SAFD analysis is conservative and the differences
range from −8% to −2.2%.

The buckling loads of unstiffened and longitudinally stiffened elliptical cylin-
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FIGURE 3.10: Schematic configuration of stiffeners in the investigated circular cylinders, Note: j =
number of discretisation point in the cross-section

TABLE 3.4: Buckling loads of unstiffened and longitudinally stiffened (8 stiffeners) circular cylinders
with different radii and stiffener types obtained from the SAFD and AbaqusTM and their differences
(diff), Note: radii are in mm, buckling loads are in kN.m, and the differences are in percentage (%)

Radius 304.8 609.6 1219.2
Buckling analysis Abaqus SAFD diff Abaqus SAFD diff Abaqus SAFD diff

Unstiffened 592.6 578.5 -2.4 1182.5 1150.1 -2.8 2403.6 2298.3 -4.4
Stiffener No. 1 952.9 924.5 -3 1519.4 1479.2 -2.7 2746.5 2618.2 -4.7
Stiffener No. 3 1933.1 1841.3 -4.8 2448 2370.7 -3.2 3677.4 3502.7 -4.8
Stiffener No. 5 6667.5 6229 -6.6 6924.6 6638.6 -4.2 8111.2 7738.4 -4.6

TABLE 3.5: Buckling loads of longitudinally stiffened circular cylinders (Radius = 304.8 mm) with differ-
ent numbers and types of stiffeners obtained from the SAFD and AbaqusTM and their differences (diff),
Note: buckling loads are in kN.m, and the differences are in percentage (%)

Number of stiffeners 4 16
Buckling analysis Abaqus SAFD diff Abaqus SAFD diff

Stiffener No. 1 887.2 868.1 -2.2 1148.1 1105.1 -3.8
Stiffener No. 3 1663.7 1628 -2.2 2683 2523.4 -6
Stiffener No. 5 5458 5264.7 -3.6 10119 9312.4 -8

ders under axial compression are found using the SAFD method and compared
with the AbaqusTM results for simply-supported boundary conditions. The inves-
tigated elliptical cylinders have a length of 320 mm. The laminate is 1.12 mm thick
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and made of a medium modulus graphite-epoxy fiber-reinforced composite ma-
terial with the material properties listed in table 3.6.

TABLE 3.6: Material properties of a medium modulus graphite-epoxy [39]

Longitudinal modulus, E1 [GPa / psi] 130 / 18.855e6
Transverse modulus, E2 [GPa / psi] 9.70 / 1.407e6
Shear modulus, G12 [GPa / psi] 5 / 7.252e5
Poisson’s ratio, ν12 [-] 0.30

In table 3.7, the buckling loads from SAFD and AbaqusTM for unstiffened and
stiffened elliptical cylinders with 3 different eccentricities are compared. Each
cylinder is stiffened with 8 stiffeners as depicted in figure 3.11(b) and the com-
parison is performed for 3 different stiffener cross-sections. As it is clear from ta-
ble. 3.7, the SAFD method is conservative for the unstiffened elliptical cylinders
while it is not conservative for longitudinally stiffened cylinders. The difference in
the predicted buckling load ranges from −3% to 6.3%.
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FIGURE 3.11: Schematic configuration of stiffeners in the investigated elliptical cylinders, Note: j =
number of discretisation point in the cross-section

The buckling loads of elliptical cylinders under axial compression stiffened
with 4 and 16 stiffeners, as depicted in figures 3.11(a) and 3.11(c), with semi-major
/semi-minor axis of 125/87.5 mm are obtained and compared from the two anal-
ysis methods in table 3.8. As it is shown in table 3.8, the SAFD analysis method is
conservative for the cylinders stiffened with 4 stiffener, while it is not conservative
for the cylinders stiffened with 16 stiffener. The differences between the predicted
buckling loads from the SAFD and AbaqusTM range from −2% to 4%.

In conclusion, the SAFD buckling analysis shows enough accuracy when com-
pared to the AbaqusTM results. The maximum difference is 8% for the largest cir-
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TABLE 3.7: Buckling loads of unstiffened and longitudinally stiffened (8 stiffeners) elliptical cylinders
with different sizes and stiffener types obtained from the SAFD and AbaqusTM and their differences
(diff), Note: semi-minor and semi-major axes are in mm, buckling loads are in kN.m, and the differences
are in percentage (%)

semi-major axis 87.5 125 250
semi-minor axis 62.5 87.5 87.5

Buckling analysis Abaqus SAFD diff Abaqus SAFD diff Abaqus SAFD diff
Unstiffened 156.7 154.1 -1.8 151.6 149.3 -1.6 65 63.1 -3

Stiffener No. 1 2359.8 2422.7 2.6 1463.1 1481.2 1.2 471.8 494.9 4.8
Stiffener No. 2 3931.8 4064.1 3.3 2396.3 2441.7 1.8 746.8 787.6 5.4
Stiffener No. 4 6307.7 6604.5 4.7 3823.1 3928.4 2.7 1166.3 1240.6 6.3

TABLE 3.8: Buckling load of longitudinally stiffened elliptical cylinders, semi-major /semi-minor axis
= 125/87.5 mm, with different numbers and types of stiffeners obtained from the SAFD and AbaqusTM

and their difference (diff), Note: buckling loads are in kN.m, and the differences are in percentage (%)

Number of stiffeners 4 16
Buckling analysis Abaqus SAFD diff Abaqus SAFD diff

Stiffener No. 1 724.6 710.2 -2 2689.2 2747.3 2.1
Stiffener No. 2 1134.5 1112.2 -2 4516.2 4668.5 3.3
Stiffener No. 4 1768.3 1734.3 -2 7342.8 7641.9 4

cular cylinder stiffened with 16 stiffeners that had the largest size among the inves-
tigated stiffeners.





4
MULTI-STEP OPTIMISATION

FRAMEWORK

4.1 INTRODUCTION

Designing laminated composites is a challenge due to the non-convex optimi-
sation problems, large number of design variables and combination of dis-

crete and continuous design variables such as the number of layers and the ply
angles, respectively. To this list should be added implementation of practical de-
sign rules such as the 10% robustness constraint and limitations on the number
of adjacent plies with the same ply angle or the difference on the ply angles of
adjacent layers. The degree of complexity of designing is increased for Variable
Stiffness (VS) laminates since, instead of tailoring one laminate, the stacking se-
quence should be tailored at each spatial location in the laminate. On the top of
these complexities for VS design of laminated composites, comes the necessity for
continuity of the fibres across different design zones or between spatial locations,
constraints on the maximum steering curvature and restrictions on the amount
and distribution of the overlaps and gaps which appear as a result of fibre courses
being placed that are not parallel. Application of the 10% robustness constraint, as
a practical design rule, is more difficult for VS laminates since there may not exist
any layers with fixed traditional orientations, 0◦, ±45◦ or 90◦.

The laminate design drivers generally consist of structural performance re-
quirements, practical design rules, manufacturing constraints and cost. Improving
of structural performance implicitly reduces material and operational cost through
weight minimisation. Also, fibre placement reduces the costs compared to manual
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production due to reductions in the labour costs, waste materials and production
times. AFP production times of VS laminates can be reduced by elaborate design
of steered fibre paths through controlling the amount of steering and the number
of tow cuts and restarts required.

The scope of the laminate optimisation problem in this chapter is limited to
improvement of structural performance while considering the AFP manufacturing
constraint on the maximum steering curvature. A typical laminate optimisation
problem is formulated as:

min
x

f0(x) (4.1)

f j (x) ≤ 0 j = 1,2, ...,m

xL
i ≤ xi ≤ xU

i i = 1,2, ...,n

In the design optimisation problem of composite laminates, f0(x) and f j (x) are
structural responses such as structural stiffness, strength, buckling capacity, nat-
ural frequency, weight, etc. The constraints f j (x) include the manufacturing con-
straint minimum allowable steering radius. The design variables each denoted by
xi , or combined denoted by x, include the geometric definition of steered fibre
paths in a VS design or ply angles in a CS design. One of the elements which can
contribute to stiffness variation in a VS design, is the laminate thickness which may
vary by dropping the plies or by possible overlaps and gaps due to steering. There-
fore, the vector of design variables, x, for a VS laminate may include the spatial
distribution of laminate thickness which is a discrete design variable by nature.

Different strategies used to design steered fibre laminates are briefly explained
in section 1.4 by introduction of two methods to model the stiffness variation of
VS laminates; functional fibre path definition and discrete stiffness variation. The
complex nature of VS laminate design and the advantages and disadvantages of
each design method, discussed in section 1.4, motivates the development of an
optimisation framework for efficient design of VS laminates which utilises the ad-
vantages of different design approaches while dealing with the disadvantages of
each method in a multi-step framework (figure 4.1).

In this chapter, first a multi-step optimisation framework for efficient design
of VS laminates, which is developed in the Aerospace Structures and Computa-
tional Mechanics, ASCM, group of the Aerospace Faculty at TUDelft, is introduced
in section 4.2. The structural approximation methods and the conservative convex
separable approximations of the structural performance measures, which are one
of the main features of the multi-step framework, are described in section 4.3. The
three steps of the multi-step optimisation framework are explained in more detail
in sections 4.4, 4.5 and 4.6
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4.2 MULTI-STEP OPTIMISATION FRAMEWORK

The idea of a multi-step design for VS structures was first introduced by IJssel-
muiden et al. [114]. They used a two-step approach to design a multi-patch

panel for minimum weight and subject to local buckling constraints.

In the first step, the buckling factor of each patch is approximated using a re-
ciprocal approximation in terms of the bending stiffness matrix. The multi-modal
buckling optimisation problem is formulated using the bound formulation pro-
posed by Olhoff [115] and re-expressed using the dual method [116]. The bend-
ing stiffness matrix is a function of lamination parameters and laminate thickness
which are chosen as continuous design variables. A gradient-based optimiser is
used to solve the problem in a successive approximation scheme. In a successive
approximation scheme optimisation algorithm is applied on the first approxima-
tion built based on an initial design, after finding the optimum the approximation
is updated, optimisation is implemented on the updated approximation and this
process is continued until a convergence criterion is achieved.

In the second step, the stacking sequence of each patch is obtained using a
genetic algorithm (GA) which uses the approximation of the buckling load as the
fitness function. In this step, first the Lagrangians of all the panels, formulated at
the optimum continuous design found in the first step, are combined and the GA is
implemented on this global approximation to find the initial stacking sequences.
Then this design is used to construct the local approximations of the buckling fac-
tors of each panel and a GA is used to solve the local optimisation problem for
each panel to prevent buckling constraint violation. Using approximations to eval-
uate the structural response reduces the number of necessary structural analyses
and hence the computational cost of the GA optimisation. Finding the stacking
sequence of each panel individually usually leads to a manufacturing mismatch
between adjacent panel designs which is usually referred to as blending problem.
To resolve this problem, a guide-based GA developed by Adams et al. [117] is used
to ensure the continuity between adjacent patches. This continuity is obtained by
first choosing a thick (guide) laminate for all the panels and then locally eliminat-
ing some of the layers in each panel. Elimination of the outermost or innermost
layers leads to outwardly or inwardly completely blended laminates.

The multi-step design method of IJsselmuiden et al. [114] has three distinct
benefits compared to the previous methods:

1. in the first step, approximation of structural response in terms of lamina-
tion parameters which are continuous design variables with largest possible
design space. This strategy allows us to find the best possible design with
limited number of structural analyses.
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2. in the second step, using the approximation of structural response at the op-
timum continuous design obtained in the first step for finding the best stack-
ing sequence. This method of finding the optimum stacking sequence has
the advantage of using a more realistic measure of structural performance
than the common approach of finding the stacking sequence which has the
least square distance with the optimum continuous design in the lamination
parameters space [118].

3. continuity of the adjacent panels, which is a manufacturing constraint, is
satisfied in the second step.

Based on the idea of multi-step optimisation used by IJsselmuiden et al. [114]
to design a multi-patch panel, a multi-step optimisation framework is developed
in the ASCM group at TUDelft to design steered fibre laminates. The structural
performance and manufacturing design drivers are separated in different steps of
the multi-step design framework and the most suitable optimisation algorithm is
used in each step. The outline of the three steps of the multi-step optimisation
framework is illustrated in figure 4.1 with an example showing the three steps in
VS laminate design for maximum strength of a rectangular panel with large cutouts
under tension.

In the first step of the multi-step optimisation framework, the optimum stiff-
ness matrices of the CS laminate design or the optimum spatial distributions of
the stiffness matrices of the VS laminate design are found. The laminate stiffness
variation in the VS laminate is modeled by assigning different stiffness proper-
ties to different discretisation points of the structure. The design drivers are the
structural performance requirements. The obtained design is called the concep-
tual or theoretical stiffness design since it provides fundamental understanding of
the optimum design and the mechanisms involved in the structural performance
improvement, without knowing the realistic stacking sequence of the laminate.

In the second step of the multi-step optimisation framework, the optimum ply
angles of the CS laminate or the optimum spatial distribution of the fibre angles
in each layer of the VS laminate is retrieved from the conceptual stiffness design
found in the first step without any structural analysis. The manufacturing con-
straints such as the maximum steering curvature of the VS laminate design, which
are parameterised in terms of the fibre angles, can be imposed in this step. The
manufacturable optimum stacking sequence, obtained in the second step, is called
the realistic design in contrary to the conceptual stiffness design, obtained in the
first step. The first and second steps of the multi-step framework take advantage
of the conservative convex separable approximations built for the structural per-
formance measures.
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Step 1: Conceptual sti�ness design (CS or VS)

Design drivers: 
Structural performance requirements (buckling, strength, sti�ness, weight, ...)

Outputs: 
1- Optimum distribution of lamination parameters (laminate sti�ness)

2- Optimum Lagrange multipliers

3- Sensitivities at the optimum design

Optimisation method:
Gradient-based optimisation:

              l applied on the dual problem 

              l applied in a successive approximation scheme using the CCSA* of design drivers

Step 2: Realistic stacking sequence design (CS or VS)

Design drivers: 
1- Conceptual sti�ness design

2- Manufacturing constraint on the !bre steering curvature (only VS)

Outputs: 
Optimum ply angles (CS) or optimum spatial distribution of !bre angles in each ply (VS)

Optimisation method:
1- Genetic algorithm (CS or VS):

               l !tness function : square distance between the conceptual and realistic designs

                                                       in the lamination parameters space

2- Gradient-based optimisation initialised by the GA design (only VS):

               l objective function: Lagrangian in the dual formulation of the approximate 

                                                       subproblem built at the conceptual design using the 

                                                       optimum Lagrange multipliers and sensitivities from step 1

               l constraint: Maximum steering curvature

                 

Step 3: Steered !bre paths (only VS)

Design drivers:
1- Spatial distribution of !bre angles in each layer of the VS laminate

2- Minimum maximum overlap

3- Maximum smoothness of overlaps

Outputs:
1- Steered !bre paths used as the centreline of courses

2- Continuous estimation of thickness distribution

Method:
Streamline analogy 

*  CCSA: conservative convex separable approximation
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FIGURE 4.1: Multi-step optimisation framework
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In the third step of the multi-step optimisation framework, the continuous
steered fibre paths in each layer of the VS laminate are constructed from the dis-
crete spatial distribution of fibre angles obtained in the second step. The continu-
ous steered fibre paths are used as the centrelines of the courses which are placed
using the AFP machine.

Different researchers in the ASCM group at TUDelft have contributed to de-
velop different components of the multi-step framework, these include, but are
not limited to, the works by Setoodeh et al. [119], Setoodeh et al. [101], Abdalla et al.
[120], IJsselmuiden et al. [33], IJsselmuiden et al. [121], Pilaka [34], Van Campen
et al. [35], Setoodeh et al. [36], Blom et al. [37] and Nagy et al. [38]. In this thesis,
construction of the conservative separable approximations is explained in subsec-
tion 4.3.2 based on the general approach presented by IJsselmuiden [6]. The first
step is explained in section 4.4 based on the scheme developed by IJsselmuiden
[6], the second step is described in section 4.5 based on the works by Pilaka [34]
and Van Campen et al. [35] and the third step is introduced in section 4.6 based on
the implementation by Setoodeh et al. [36], Blom et al. [37], Nagy et al. [38] and Pi-
laka [34]. The optimisation results in chapters 6 and 7 are obtained using the im-
plementations by IJsselmuiden [6], Pilaka [34], Van Campen et al. [35] and Nagy
et al. [38].

The main contributions made by the author to the multi-step optimisation
framework are to develop convex separable approximations for the material strength,
which is explained in chapter 4 and to implement a constraint screening strategy in
the first step, as will be described in subsection 4.4.3, to handle optimisation prob-
lems with a huge number of constraints, e.g. buckling optimisation with strength
constraints.

4.3 STRUCTURAL APPROXIMATION METHODS

Structural approximation techniques are extensively applied in structural op-
timisation to reduce the computational cost of optimisation due to repetitive

structural analyses. Barthelemy and Haftka [122] divide the approximation tech-
niques into global, local and mid-range categories according to their range of ap-
plicability in the design space. The global and local approximations are valid for
the whole design space, or a large region of it, and vicinity of the design point, re-
spectively. Mid-range approximations extend the applicability of local approxima-
tion to a larger region of the design space. Barthelemy and Haftka [122] also distin-
guish between function approximation in which an the objective function and/or
constraints are approximated in the form of analytical functions of design vari-
ables and problem approximation in which the original problem is approximated
by another problem which is easier to solve and gives results that have enough ac-
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curacy. These approximation concepts can be combined to make a very efficient
problem formulation.

Global function approximation or surrogate modeling methods such as the re-
sponse surface technique and neural networks have been used for optimisation of
VS cylinders [17]. Surrogate models introduce smoothness and filter out the noise
and irregularities that may be present in the objective and constraint functions.
These models can be used to extract sensitivity information analytically instead
of finite differences, which are useful for gradient-based optimisation. However,
constructing surrogate models usually requires a lot of structural analyses and be-
comes computationally expensive especially with an increasing the number of de-
sign variables.

Local function approximation techniques which have been used for optimi-
sation of VS composite laminates [32], [123] are one of the fundamental features
of the multi-step optimisation framework and will be described in section 4.3.1.
These approximations, such as first order and higher order Taylor series, are valid
only in the vicinity of the design point. To overcome the problem of being valid
only locally, these approximations are used within a successive scheme. In this
successive approximation approach, approximations are constructed for the ob-
jective and constraint functions at an initial design and the optimisation algorithm
is implemented on these approximations instead of the real function values. After
each implementation, the approximations are updated at the new design and this
procedure is repeated until the convergence criterion is met.

There are different global problem approximation methods among which us-
ing a simplified analysis model, or using a coarser mesh in a finite element model
are the simplest. Using simplified models such as a simple plate model of a wing
instead of a full 3-D finite element model is a specific and problem dependent
technique which is not always practical. Therefore, this method cannot be a per-
manent part of the general framework applied for VS design of different structures.
A global problem approximation technique was developed in chapter 3 for effi-
cient static and buckling analysis of cylindrical shells. A finite element or finite
difference analysis problem can be globally approximated by using a coarser mesh
in the model. Although using a coarser mesh reduces the computational cost of
the analysis, the accuracy of the response is usually reduced. In a VS structure the
design variables are associated with nodes or elements in the finite element or fi-
nite difference model and hence by using a coarser mesh the design space will be
limited, leading to sub-optimal designs.

Local problem approximation methods include the methods of reducing the
number of constraints and design variables. Reduction of number of constraints
or constraint screening is very effective in the design of VS laminates when a large
number of constraints are imposed, this will be explained in subsection 4.4.3.
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4.3.1 LOCAL FUNCTION APPROXIMATION
Local function approximations are usually based on a Taylor series expansion of
a function, f , around a design point, x0, and hence are valid only in the vicinity
of design point, x0. These Taylor series expansions are usually limited to first or-

der expansions, only using ∂ f
∂x evaluated at x0, and higher order expansions are

usually avoided due to the higher computational cost associated with calculating
higher order derivatives. If in the first order Taylor series expansion, the function
is expanded directly in terms of the design variables, xi , a linear approximation is
formed [124]:

fL = f (x0)+
n∑

i=1
(
∂ f

∂xi
|0 (xi −x0i ) ) (4.2)

Linear approximations usually do not capture the physical nature of the function
and hence are not accurate even close to the approximation point. Although the
accuracy of the approximation can be improved by increasing the degree of ap-
proximation, the computational cost due to the need to calculate higher order
derivatives will also be increased as well.

Another way of improving the accuracy of the approximation is to expand the
function in terms of some intermediate design variables which have a more linear
relation with the original function. One of the earliest applications of this method
was in the structural optimisation of truss and plane-stress elements. When these
structures are statically determinate, stresses and displacements are linear func-
tions of inverse of truss cross-sections and thickness of the plane-stress element. It
has also been proved that the statically indeterminate structures behave more lin-
early in terms of inverse of cross-section and thickness design variables [125, 126].
When the function is expanded in terms of inverse of the design variable, xi , recip-
rocal approximation is formed [124]:

f I = f (x0)+
n∑

i=1
(
∂ f

∂x−1
i

|0 (x−1
i −x−1

0i ) ) (4.3)

Another type of approximation called conservative approximation [127] is a
hybrid of linear and reciprocal approximations which is more conservative than
either of them. This approximation is expressed as [124]:

fC = f (x0)+
n∑

i=1
δi (

∂ f

∂xi
|0 (xi −x0i ) )+

n∑
i=1

(1−δi )(
∂ f

∂x−1
i

|0 (x−1
i −x−1

0i ) ) (4.4)

where δi is defined as:

δi =
{

1 for ∂ f
∂xi

|0 x0i >= 0,

0 otherwise
(4.5)
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The first and second summations in equation 4.4 represent the linear and recip-
rocal approximations, respectively. Considering equation 4.5, equation 4.4 states
that when the derivative of the function with respect to the design variable, xi , cal-
culated at the design point multiplied by the value of the design variable at the

design point, x0i , is not negative ( ∂ f
∂xi

|0 x0i >= 0), the function is expanded linearly
and otherwise it is expanded reciprocally. In this way, the whole hybrid approxi-
mation which is obtained after summing all the terms is more conservative than
either of the linear and reciprocal approximations, although there is no guarantee
that the hybrid approximation is more conservative than the original function.

All the three mentioned approximations are separable meaning that the ap-
proximation function can be represented as the summation of terms each one
function of a single design variable. Using separable approximations as design
drivers in optimisation problems allows to utilise parallel computing. In addi-
tion, it is shown in section 4.3.3 that the reciprocal approximation is convex if the

sensitivities, ∂ f
∂x−1

i
|0, are positive definite. Therefore, the conservative approxima-

tion, which is expressed as a hybrid of linear and reciprocal approximations, is also
convex. Local approximations have been successfully used in VS laminate design
by [31] for maximum structural stiffness, by [32] for maximum natural frequency
and by IJsselmuiden et al. [33] for maximum buckling load.

4.3.2 CONVEX CONSERVATIVE SEPARABLE APPROXIMATIONS
A general approach is presented by IJsselmuiden [6] to construct a conservative
convex separable approximation (CCSA) for any structural response, based on the
classical lamination theory and in terms of the laminate stiffness matrices. The
constructed approximations are used in the first and second step of the multi-step
optimisation framework by parameterisation of the laminate stiffness in terms of
the lamination parameters and fibre angles, respectively.

The idea is based on the CCSA framework developed by Svanberg [128] to solve
inequality-constrained nonlinear programming problems. Svanberg [128] has shown
that the conservative convex approximations are globally convergent meaning that
finding an optimal solution is guaranteed. These local approximations can be used
within a successive approximation scheme and their convex and conservative na-
ture ensures that a single global optimum is found for each subproblem in the
successive scheme. Separability of these approximations makes them suitable for
optimisation problems with large number of design variables by solving them in a
parallel fashion using state of the art multi-core processors.

The developed approximation can be stated as:

fS (x) = fP (x)+ρ fD (x) (4.6)
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where the first term, fP , is an approximation which has a value and a gradient
which match the value and gradient of the original function at the approxima-
tion point. The second term, fD , which is scaled by ρ is a convexifying term en-
suring the conservativeness and convexity of the approximation as a whole. The
approximation in the CCSA framework of Svanberg [128] should satisfy some re-
quirements:

1. Both fP and fD must be continuous in their values and first order (gradient)
and second order (Hessian) derivatives with respect to the design variables,
x. In addition both fP and fD must be separable.

2. Function value and first order derivatives of the original function, f , must be
equal to those values of the approximation function , fP .

3. The Hessian matrix of the approximation function, fP , must be positive semi-
definite.

4. The Hessian matrix of the convexifying function, fD , must be positive defi-
nite.

The general approach for construction of fP and fD for structural responses in
terms of laminate stiffness matrices is explained in the next two subsections 4.3.3
and 4.3.4.

4.3.3 CONVEX SEPARABLE APPROXIMATION

The first part of the conservative convex separable approximation in equation 4.6,
fP , is a convex separable approximation. In the general approach by IJsselmuiden
[6], this approximation is built as a hybrid of linear and reciprocal approximations
similar to the conservative approximation in equation 4.4. In the conservative ap-
proximation, equation 4.4, either the linear or reciprocal approximation is selected
to be used based on the condition in equation 4.5, which is directly related to the
design variables. However, the convex separable approximation of a general struc-
tural response is built by dividing the response into two parts which are approxi-
mated using the first order Taylor series expansion in terms of stiffness matrices,
one part expanded linearly and another part expanded reciprocally.

The convex separable approximation of a structural response, f , in the most
general case, when it is a function of both in-plane and out of plane laminate stiff-
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ness, takes the form:

fP = f (A0,D0)+
n∑

j=1
(
∂ f̂

∂A−1
j

|0 : (A−1
j −A−1

0 j )+ ∂ f̂

∂D−1
j

|0 : (D−1
j −D−1

0 j )+

∂ f̌

∂A j
|0 : (A j −A0 j )+ ∂ f̌

∂D j
|0 : (D j −D0 j )) (4.7)

where f̂ and f̌ are the parts of the response expanded reciprocally and linearly,
respectively. Subscript 0 indicates the design around which the Taylor series is
expanded and at which the sensitivities are calculated. subscript j indicates the
number of the discretisation point with respect to the stiffness matrices or the in-
verse of stiffness matrices in that region, the sensitivities of the response are cal-
culated. The : operator is the matrix inner product or generalisation of the dot
product to the matrix space, which represents the summation of products of the
corresponding elements of two matrices and can also be calculated as the trace of
the matrix product. Part of the approximation which contains the design variables
and on which the optimisation algorithm is implemented, can be separated from
the constant part, f0, of the approximation and the approximation in equation 4.7
can be re-expressed as:

fP = f0 +
n∑

j=1
(Φm

j |0 : A−1
j +Φb

j |0 : D−1
j +Ψm

j |0 : A j +Ψb
j |0 : D j ) (4.8)

where Φ and Ψ are the sensitivities of f̂ with respect to inverse of stiffness matrix
and f̌ with respect to stiffness, respectively. The superscripts m and b denote the
sensitivities with respect to the in-plane and out of plane compliance or stiffness,
respectively. All the constant terms are collected in f0.

As mentioned earlier, the approximation in equation 4.8 should satisfy the con-
ditions in section 4.3.2. It can be easily identified that this approximation is sep-
arable (condition 1). The first order and second order derivatives with respect to
the in-plane stiffness of the j th discretisation point are:

∂ fP

∂A j
=−A−1

j Φ
m
j A−1

j +Ψm
j (4.9)

∂2 fP

∂A2
j

= A
− 3

2
j Φm

j A
− 3

2
j (4.10)

Similar expressions can be derived for derivatives with respect to out of plane stiff-

ness, ∂ fP
∂D j

and ∂2 fP

∂D2
j

. The approximation function, fP , and its first and second order
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derivatives are continuous with respect to stiffness matrices or other stiffness re-
lated design variables such as lamination parameters or ply angles (condition 1).
According to equation 4.10, the second order derivative is positive semi-definite if
and only if the sensitivity with respect to inverse of in-plane stiffness matrix, Φm

j ,

is positive semi-definite (condition 3). In a similar way, it can be proved that the
condition for the second order derivative with respect to the out of plane stiffness

( ∂
2 fP

∂D2
j

) to be positive semi-definite is that the sensitivity with respect to inverse of

out of plane stiffness matrix (Φb
j ) should be positive semi-definite. Therefore, if the

sensitivities of the response function with respect to inverse of stiffness matrices,
Φm

j and Φb
j , are positive semi-definite, the developed function approximation, fP

in equation 4.8, is convex. Condition 3 can be guaranteed by separating the part
of response function which has a positive semi-definite sensitivity with respect to
inverse of stiffness matrices from the rest.

Separation of the response function into two parts may be done based on an
insight into the physical nature of the structural responses, e.g. the structural stiff-
ness and buckling factor. However, the convexity of the approximation of some
structural responses, e.g. strength, cannot be always guaranteed when solely de-
veloped based on the physics of the response. Therefore, an alternative method
based on a numerical algorithm, developed in subsection 5.5.1, can be used when
proper separation of response parts based on investigating the physics of the re-
sponse is not possible. This numerical algorithm can be used alone or in conjunc-
tion with the physical insight method as used for building the convex separable
approximation of strength in section 5.5.

After separation of the response function into two parts, the part with positive
semi-definite sensitivities with respect to inverse of stiffness matrices is expanded
reciprocally and the rest is expanded linearly with respect to stiffness matrices to
build a convex approximation. The details for construction of convex separable
approximations for structural stiffness and buckling factor are explained in the
next two subsections but discussion of the details for strength approximation are
postponed to chapter 5 where the conservative Tsai-Wu failure envelop is intro-
duced.

Convex approximation of structural stiffness
A structural stiffness maximisation problem can be substituted by minimisation of
structural compliance, which is a homogeneous function of order one in terms of
inverse of stiffness matrices. Choosing the the structural compliance to approxi-
mate and minimise, has the advantage that the sensitivities of the structural com-
pliance with respect to inverse of stiffness matrices are always positive definite.
Therefore, splitting the structural compliance into two parts is not necessary and
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it is enough to expand the compliance, as a whole, only in terms of inverse of stiff-
ness matrices to have a convex approximation:

C ≈CP =C0 +
n∑

j=1

∂C

∂A−1
j

|0 : (A−1
j −A−1

j 0 )+ ∂C

∂D−1
j

|0 : (D−1
j −D−1

j 0 ) (4.11)

where j (= 1,2, ...,n) is the number of discretisation points with different stiffness
properties and 0 is the design at which the sensitivities are calculated and around
which the approximation is built. The details of sensitivity analysis are explained
in [6].

Convex approximation of buckling load
Close inspection of buckling eigenvalue problem, equation 3.69, shows that the
buckling load, λb , is a homogeneous function of order one with respect to the in-
plane and out of plane stiffness matrices. This is because by scaling the in-plane
and out of plane stiffness matrices, the displacements and strains are scaled in-
versely, as shown in equations 3.47 and 3.43, however, the sectional forces and
moments will remain unchanged, as it is clear from equation 3.49. Therefore, the
material stiffness matrix is scaled similarly while the geometric stiffness matrix is
not changed.

In order to build a convex approximation, instead of the buckling factor, the
inverse of buckling factor is approximated which is a homogeneous function of
the inverse of stiffness matrices. Therefore, the eigenvalue buckling problem in
equation 3.69 is rephrased as:

(Kg − rb Kt ) a = 0 (4.12)

where rb is inverse of buckling factor and the buckling modes are normalised such
that:

aT Kt a = 1 (4.13)

The separation scheme for the inverse of buckling factor, required for construc-
tion of a convex separable approximation, becomes clear by inspecting the sensi-
tivities of the inverse of buckling factor with respect to in-plane or out of plane
stiffness stiffness matrix of an arbitrary point of the laminate, for example for in-
plane stiffness matrix:

∂rb

∂A
= rb aT (

∂Kt

∂A
− rb

∂Kg

∂A
)a (4.14)

Variation of the stiffness matrices of an individual point affects inverse of the buck-
ling factor, rb , through changing the material stiffness matrix, Kt , and changing the
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geometric stiffness matrix, Kg . Change of the material stiffness matrix, Kt , is a lo-
cal effect of the variation of the stiffness matrices at a single point, since only the
local material stiffness matrix of that point or the element connected to that point
is changed. However, change of the geometric stiffness matrix, Kg , is a global effect
of the variation of the stiffness matrices at a single point, since the displacement
field and hence the load distribution is changed all over the laminate. Sensitivity
analysis of inverse of buckling factor is explained in [6].

It is shown in [6] that the part of sensitivities coming from the material stiffness
matrix with respect to the inverse of stiffness matrices of a single point is always
positive definite. Therefore, the convex separable approximation of the inverse of
buckling load, rb , is formed by expanding the part of the inverse of buckling load
which changes due to the local effect, r̂b , reciprocally and the part which changes
due to the global effect, řb , linearly and is expressed as:

rb ≈ rbP = rb0 +
n∑

j=1

∂r̂b

∂A−1
j

|0 : (A−1
j −A−1

j 0 )+ ∂r̂b

∂D−1
j

|0 : (D−1
j −D−1

j 0 )+

∂řb

∂A j
|0 : (A j −A j 0)+ ∂řb

∂D j
|0 : (D j −D j 0) (4.15)

where j (= 1,2, ...,n) is the number of point with distinct stiffness matrices and 0
is the design point at which the sensitivities are calculated and around which the
approximation is built.

The material and geometric stiffness matrices are homogeneous functions of
order one and zero with respect to in-plane and out of plane stiffness matrices.
Therefore, part of the inverse of buckling load indicated by r̂b is homogeneous of
order one with respect to inverse of stiffness matrices, r̂b(cA−1,cD−1) = cr̂b(A−1,D−1),
while the part indicated by řb is homogeneous of order zero with respect to inverse
of stiffness matrices, r̂b(cA−1,cD−1) = r̂b(A−1,D−1) . Therefore, Euler’s homoge-
neous function theorem implies that at any approximation point:

n∑
j=1

(
∂řb

∂A−1
j

: A−1
j + ∂řb

∂D−1
j

: D−1
j ) = 0 (4.16)

and:
n∑

j=1
(
∂r̂b

∂A−1
j

: A−1
j + ∂r̂b

∂D−1
j

: D−1
j ) = rb (4.17)

Since the stiffness matrices A and D are always positive definite, equation 4.16 im-

plies that the sensitivities ∂řb

∂A−1
j

and ∂řb

∂D−1
j

and hence ∂řb
∂A j

and ∂řb
∂D j

are not always

positive definite. This lack of definiteness does not make problem in building a
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convex approximation, since these terms are expanded linearly in equation 4.15.

This is while, the sensitivities ∂r̂b

∂A−1
j

and ∂r̂b

∂D−1
j

are always positive definite as shown

in IJsselmuiden [6], which guarantees the whole approximation to be convex.

4.3.4 ENFORCING STRICT CONSERVATIVENESS
The convex separable approximation in equation 4.8 may lack strict convexity or
conservativeness. If the part of the response expanded reciprocally in terms of
stiffness matrices is zero, the approximation is linear and not convex. Even a con-
vex approximation is not strictly conservative if the value of the approximation is
not larger than the value of the exact function in the optimisation problem in equa-
tion 4.1. Solving an optimisation problem in a successive approximation strategy
based on the approximations which are not strictly convex and conservative may
lead to some convergence problems. To avoid these problems and ensure strict
convexity and the conservativeness of the approximation, the second term of the
approximation in equation 4.6 is added. In this subsection, construction of the
convexifying term, fD , and its scaling factor, ρ, is explained.

IJsselmuiden [6] suggests using the following expression in terms of the stiff-
ness matrices for fD :

fD =
n∑

j=1
w j (A0 j : A−1

j +D0 j : D−1
j +A−1

0 j : A j +D−1
0 j : D j −4I : I) (4.18)

where I is the identity matrix of dimension (3×3). The expression in equation 4.18
is a summation of local terms each one evaluated at the discretisation point j and
scaled by a factor w j . The scaling factor, w j , is meant to include the true con-
tribution of the stiffness of each discretisation point in fD and hence in a 1D or
2D structure, w j is defined as the ratio of the length or area corresponding to a
discretisation point, L j or A j , to the total area or length:

w j =
A j∑n

j=1 A j
or w j =

L j∑n
j=1 L j

(4.19)

The last term in equation 4.18 ensures that the value of the convex term, fD , is zero
at the approximation point. Therefore, as the problem is converged to an optimum
solution in the successive approximation scheme of the first step of the multi-step
optimisation framework, the contribution of fD in the total approximation func-
tion, fS in equation 4.6, tends to zero. The expression developed for fD satisfies the
conditions in section 4.3.2. It is clear from equation 4.18 that fD ,which is separa-
ble, its gradient and Hessian with respect to the stiffness matrices or other design
variables are continuous (condition 1). The Hessian of fD is positive definite since
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both stiffness and compliance matrices are positive definite (condition 4). The
expression for fD , equation 4.18, has the same form as the expression for fP , equa-
tion 4.8, and hence after calculating fS from equation 4.6 and deleting the constant
part, the final approximation, on which the optimisation is implemented, obtains
the form:

fS =
n∑

j=1
(Φ̆m

j |0 : A−1
j + Φ̆b

j |0 : D−1
j + Ψ̆m

j |0 : A j + Ψ̆b
j |0 : D j ) (4.20)

where
Φ̆m

j |0 =Φm
j |0 +ρw j A0 j (4.21)

The same expressions stand for other sensitivities in equation 4.20.
The amount of convexity and conservativeness, imposed by fD , is scaled by ρ

which is called the damping factor. If the approximation function, fS , is over con-
servative, due to the large difference between the values of the approximation and
actual functions value, a lot of iterations are required in the successive approxima-
tion scheme in the first step of the multi-step optimisation framework to converge
to an optimum solution. If the amount of convexity added to fP through the scaled
fD is not enough, the total approximation function, fS , may loose its strict convex-
ity, again leading to excessive number of iterations to converge. Therefore, the ef-
ficiency of the optimisation routine is largely influenced by the selection of damp-
ing factor. IJsselmuiden [6] has developed an adaptive damping strategy through
which the damping factor is initialised and dynamically changed during the suc-
cessive approximation scheme. The interested reader is referred to [6] for details
of the adaptive damping scheme.

4.4 STEP ONE: CONCEPTUAL STIFFNESS DESIGN

In the first step of the multi-step optimisation framework, implemented by IJssel-
muiden [6], the optimisation problem, which is formulated based on the struc-

tural performance requirements, is solved in a successive approximation scheme.
In the successive approximation scheme, the original optimisation problem is sub-
stituted by an approximate subproblem, which is built using the convex conserva-
tive separable approximations of the structural responses. The approximate sub-
problem is built at an initial design and solved to find the optimum stiffness ma-
trices or their optimum spatial distribution, then the approximate subproblem
are updated at the new design, the optimisation algorithm is applied to solve the
new subproblem and this process is repeated until a convergence criterion is met.
Successive approximation scheme reduces the number of structural analyses, re-
quired for optimisation, and the related computational costs.
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Solution of the convex and separable approximate subproblem, using the dual
method by Fleury and Schmit [116], is described in subsection 4.4.1. Since the de-
sign drivers in this thesis, e.g. buckling capacity and material strength, are multi-
modal responses, subsection 4.4.2 is devoted to the solution method for multi-
modal problems based on the bound formulation by Olhoff [115]. In subsection 4.4.3,
implementation of the constraint screening strategy is described, as the contribu-
tion of the author to the first step.

4.4.1 APPROXIMATE SUBPROBLEM
In the successive approximation scheme, the original optimisation problem, equa-
tion 4.1, is substituted by an approximate subproblem, which is built using the
convex conservative separable approximations of the structural responses:

min
x

f̃0(x) (4.22)

f̃ j (x) ≤ 0 j = 1,2, ...,m

xL
i ≤ xi ≤ xU

i i = 1,2, ...,n

where f̃0 and f̃ j are the conservative convex separable approximations (equation 4.6)
of the structural responses, f0 and f j , in equation 4.1. Due to the convexity and
separability of the approximate subproblem, it can be solved efficiently using the
dual method by Fleury and Schmit [116].

The Lagrangian of the primal convex approximate subproblem, equation 4.22,
is formulated as:

L(µ,x) = f̃0(x)+
m∑

j=1
µ j f̃ j (x) (4.23)

where µ j is the non-negative scalar known as the Lagrange multiplier or the dual
design variable, which is associated with the j th constraint, f̃ j (x), and x is the vec-
tor of all primal design variables. The corresponding dual problem is formulated
as:

max
µ

LC (µ) subject to µ j ≥ 0 ( j = 1,2, ...,m) (4.24)

where LC is the complementary Lagrangian or the Falk’s dual obtained from:

LC = min
x

L(x(µ)) (4.25)

The dual variables, µ, are fixed when solving the minimisation problem in equa-
tion 4.25. Therefore, the search for the optimal primal and dual variables is sep-
arated in the dual formulation. In general, the solution of the dual problem is a
lower bound to the solution of the primal minimisation problem and in convex
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problems, if enough regularity conditions for constraints are satisfied, solutions of
the dual and primal problems are the same.

Separability of the approximations, used to build the approximate subprob-
lem, allows us to find the optimal primal design variables at different discretisation
points independently and hence the search for the primal variables is called the lo-
cal optimisation. On the other hand, the dual variables affect the optimal values
of all of the primal variables as depicted in equation 4.25 and hence the search for
the dual variables is called the global optimisation.

Local optimisation
In the formulated dual problem, the Lagrangian, equation 4.23, is formed using the
conservative convex separable approximation of the structural responses, equa-
tion 4.20, which for the j th structural response, f̃ j ( j = 0,1, ...,m), is expressed as:

f̃ j =
n∑

i=1
(Φ̆m

i , j |0 : A−1
i + Φ̆b

i , j |0 : D−1
i + Ψ̆m

i , j |0 : Ai + Ψ̆b
i , j |0 : Di ) (4.26)

The approximation is expressed in terms of the laminate stiffness matrices of n
discretisation points of the structure with different stiffness properties. However,
the laminate stiffness matrices cannot be used directly as the primal design vari-
ables, since their elements are related to each other and cannot be chosen freely.
Although laminate stiffness matrices in the convex conservative separable approx-
imations can be parameterised in terms of the ply angles of the stacking sequence,
the developed approximation will no longer be convex, resulting in a lot of local
optima. Laminate stiffness matrices can be expressed as linear functions of lami-
nation parameters, hence the convexity of the approximation, when expressed in
terms of lamination parameters, is preserved. Other benefits of using lamination
parameters as the primal design variables in the first step of the multi-step frame-
work are mentioned in subsection 2.5.2.

If the thickness of a VS laminate is allowed to vary, laminate thickness can be
used as a continuous design variable in addition to the lamination parameters in
the gradient-based optimisation of the first step of the multi-step optimisation
framework. Although the laminate thickness is a discrete variable, assigning a con-
tinuous variable to the laminate thickness allows us to study the effect of thickness
on the optimum design. For the structural performance measures which are ex-
plicit functions of the laminate thickness, and not through the stiffness matrices,
e.g. weight or failure index in bending problems as formulated in equation 5.44,
the conservative convex separable approximation is modified as:

f̃ j =
n∑

i=1
(Φ̆m

i , j |0 : A−1
i + Φ̆b

i , j |0 : D−1
i + Ψ̆m

i , j |0 : Ai + Ψ̆b
i , j |0 : Di + ᾰi , j |0 hi ) (4.27)
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where ᾰi , j is the derivative of the terms in f j which are explicitly dependent on the
laminate thickness.

Due to the separability of the conservative convex separable approximation,
equation 4.27, the optimisation problem in equation 4.25 can be stated as n local
optimisation problems which can be solved in parallel using the multi-core pro-
cessors. Each local optimisation problem is formulated as:

min
Vi ,hi

(Φ̆m
i |0 : A−1

i + Φ̆b
i |0 : D−1

i + Ψ̆m
i |0 : Ai + Ψ̆b

i |0 : Di + ᾰi hi ) (4.28)

where Φ̆m
i , Φ̆b

i , Ψ̆m
i , Ψ̆b

i and ᾰi are the combined sensitivities defined as:

Φ̆m
i =

m∑
j=1

µ j Φ̆
m
i , j , Φ̆b

i =
m∑

j=1
µ j Φ̆

b
i , j , Ψ̆m

i =
m∑

j=1
µ j Ψ̆

m
i , j , Ψ̆b

i =
m∑

j=1
µ j Ψ̆

b
i , j ,

ᾰi =
m∑

j=1
µ jαi , j (4.29)

The local optimisation problem in equation 4.28 is parameterised in terms of the
lamination parameters and the laminate thickness using equation 2.75. The first
and second derivatives of the stiffness matrices in equation 4.28 with respect to
the lamination parameters and laminate thickness can be obtained analytically
using the chain rule. Therefore, the local optimisation problems can be solved
efficiently using a gradient-based optimisation method e.g. sequential quadratic
programming (SQP) is used in the implementation by IJsselmuiden [6]. The local
optimisation problem, equation 4.28, is constrained with the feasible region of the
lamination parameters explained in subsection 2.5.3 and possibly the upper and
lower bounds on the laminate thickness.

Global optimisation
The optimal dual variables or Lagrange multipliers are obtained by solving the
optimisation problem formulated in equation 4.24. The derivative of the com-
plementary Lagrangian, LC , with respect to the dual variables, µ j ( j = 0,1, ...,m),
is calculated analytically and the global optimisation problem can be solved effi-
ciently using a gradient-based optimisation method such as sequential quadratic
programming (SQP). IJsselmuiden [6] used an internal point method in his imple-
mentation to better deal with the large number of constraints. The global optimi-
sation problem is only constrained to have non-negative Lagrange multipliers.

4.4.2 MULTI-MODAL AND MIN-MAX OPTIMIZATION
Some structural responses, e.g. buckling and vibration, have a multi-modal na-
ture. Structural failure is determined by the critical mode which is associated with
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the lowest buckling load or vibration frequency. Therefore, in structural optimi-
sation, the response due to the critical mode should be optimised. However, the
critical mode is a function of the structural design which is changed during the op-
timisation and if the optimisation problem is formulated to optimise the response
due to the initial critical mode, the initial critical mode may no longer be critical
when the design is altered during the optimisation. Therefore, considering only
the critical mode of the initial design and neglecting multiple modes or consider-
ing an insufficient number of modes in the optimisation problem, may lead to the
solution convergence problems [129], [130].

Material failure index is another structural response which must be treated
similar to the multi-modal structural responses if used as the objective function in
the optimisation formulation. The location of the critical point in a structure may
change as the design is altered during the optimisation and hence convergence
problems may happen if only the critical point of the initial structure is considered
in the strength optimisation problem.

The buckling and vibration optimisation problems by considering a cluster of
critical modes or the strength optimisation problem by considering the failure in-
dices at all the discretisation points of the structure are min-max problem, i.e. the
critical mode or failure index is minimised. The multi-modal or min-max prob-
lems are formulated as:

min
x

max( fk (x)) (4.30)

where fk (k = 1,2, ..., q) are the cluster of considered critical responses i.e. inverse
of buckling load or frequency or the failure index. This problem can be solved
using the bound formulation by Olhoff [115]:

minβ subject to β≥ fk (x) (4.31)

in which β is an auxiliary parameter which is set to be the upper bound of the
responses from the considered critical modes, fk (k = 1,2, ..., q). The problem in
equation 4.31 can be subsequently solved using the dual method presented in sec-
tion 4.4.1. The Lagrangian is formulated as:

L(µ,x) =β+
q∑

k=1
µk ( f̃k (x)−β) (4.32)

The dual optimisation problem is formulated similar to equation 4.24:

max
µ

LC (µ) subject to µ j ≥ 0 ( j = 1,2, ...,m) (4.33)
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and by solving equation 4.25 for the complementary Lagrangian, LC , two condi-
tions are obtained:

LC = min
x

q∑
k=1

µk f̃k (x) and
q∑

k=1
µk = 1 (4.34)

The second condition imposes another constraint on the non-negative Lagrange
multipliers corresponding to the multiple modes, µk (k = 1,2, ..., q), such that their
summation is equal to unity. This additional constraint is implemented in the
global optimisation.

Constrained multi-modal optimisation
In general, optimisation of multi-modal structural responses is subject to the con-
straints on other structural responses, e.g. the buckling load maximisation with
respect to strength constraints. The corresponding convex approximate subprob-
lem is formulated as:

min
x

max( f̃k (x)) k = 1,2, ..., q (4.35)

f̃ j (x) ≤ 0 j = 1,2, ...,m

xL
i ≤ xi ≤ xU

i i = 1,2, ...,n

where f̃k is the k th mode in a multi-modal structural response, e.g. inverse of
buckling load, and f̃ j s are m constraints, e.g. the failure indices at m locations in
the laminate. The corresponding Lagrangian is formulated as:

L(µ,x) =β+
q∑

k=1
µk ( f̃k (x)−β)+

m∑
j=1

µ j f̃ j (x) (4.36)

Resulting in the following global optimisation problem:

max
µ

LC (µ) (4.37)

subject to

µ j ≥ 0 ( j = 1,2, ...,m), µk ≥ 0, and
q∑

k=1
µk = 1 (k = 1,2, ..., q)

and the following local optimisation problem:

LC = min
x

(
q∑

k=1
µk f̃k (x)+

m∑
j=1

µ j f̃ j (x)) (4.38)
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In the adaptive damping strategy developed by IJsselmuiden [6], the damping
factors are updated in each iteration based on their value at the previous iteration,
however, in a multi-modal problem different modes may cross during the optimi-
sation process. Therefore each damping factor is assigned to the right mode using
a mode tracking method, e.g. the cross-orthogonality check by Eldred et al. [131].

4.4.3 CONSTRAINT SCREENING

Some of the structural optimisation problems include a large number of constraints,
e.g. maximisation of the structural stiffness or buckling load of a structure sub-
jected to the constraint of keeping the failure indices at all the nodes of the corre-
sponding finite element model bellow a certain threshold. The solution of the op-
timisation problem becomes computationally expensive if all the constraints are
considered. This computational cost arises from solving the optimisation prob-
lem with a large number of responses and the sensitivity analysis required for each
constraint.

In the constraint screening or active set strategy [132], the number of con-
straints is reduced and only the set of constraints which are active, or likely to
become active, are selected to be imposed in the optimisation problem. This set
of constraints could be selected from a certain number of the most critical con-
straints or the constraints which have values larger than a certain threshold. It
is assumed that the critical constraints are selected from the constraints of the
same response type. The advantage of the constraint screening strategy is that
the selected constraints represent the nature of the original problem while limit-
ing the size of the optimisation problem. The disadvantage is that the optimisa-
tion problem may take longer to converge or may not converge if the number of
selected constraints are not enough, such that the active constraints move inside
and outside this set in different iterations, or if the number of selected constraints
is less than the number of active constraints. Regionalisation [133] can increase the
chance of fast convergence by selecting a few critical constraints in each region of
the structure.

The author has implemented the constraint screening strategy, through selec-
tion of the critical constraints which are larger than a certain threshold, in the first
step implementation by IJsselmuiden [6]. The selected set of constraints and the
number of selected constraints may change in different iterations of the succes-
sive approximation scheme. In the adaptive damping strategy, developed by IJs-
selmuiden [6], the damping factors are updated in each iteration based on their
value at the previous iteration. However, if new constraints appear in an iteration
due to the constraint screening, the corresponding damping factors are initialised
based on the initialisation scheme developed by IJsselmuiden [6].
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4.5 STEP TWO: REALISTIC STACKING SEQUENCE DESIGN

Different objective functions can be used to retrieve the realistic stacking se-
quence design from the conceptual stiffness design, for example, Setoodeh

et al. [36] minimised the square distance between the realistic and theoretical de-
signs in the lamination parameters space, Pilaka [34] found the optimum realis-
tic stacking sequence by minimisation of the approximate subproblem built at the
theoretical design and Van Campen et al. [35] used a combination of the two above
mentioned strategies. The fibre angle retrieval process developed by Van Campen
et al. [35], first finds the stacking sequence at each point of the structure which best
matches the optimum theoretical design obtained from the first step of multi-step
optimisation framework. The best stacking sequence is obtained using a genetic
algorithm (GA) by finding the least square in the lamination parameters space or
by minimising the convex conservative separable approximation of structural re-
sponses which is found at the optimum theoretical design. The obtained fibre an-
gle distribution is used as an initialisation in the cellular automata (CA) framework
coupled with a gradient-based optimiser to find the optimal spatial distribution of
fibre angles including the local steering curvature constraints. In this thesis, the
realistic CS and the initial realistic VS laminate designs are retrieved from the cor-
responding theoretical designs in a least square sense in the lamination parame-
ters space using a GA implemented by Van Campen et al. [35]. The final realistic
VS laminate design is obtained using a gradient-based optimisation implemented
by Pilaka [34] which minimises the approximate subproblem, built at the theoreti-
cal design, subject to the constraints on the steering curvature. The gradient-based
optimisation is initialised by the initial realistic VS laminate design obtained from
GA.

The definition of steering curvature, which is used as a constraint in the gradient-
based optimisation, is presented in subsection 4.5.1. The gradient-based optimi-
sation by Pilaka [34] and its initialisation using GA, developed by Van Campen et al.
[35], are described in subsections 4.5.2 and 4.5.3.

4.5.1 STEERING CURVATURE

Local steering curvature
The steering curvature in a discrete fibre angle distribution is defined as the rate of
change of fibre angle which is mathematically expressed as the norm of the gradi-
ent of fibre angle [34]:

κ= ‖∇θ‖ (4.39)

The intuitive way to consider the steering curvature constraint in the optimisation
problem is to impose it locally to guarantee that the steering curvature at any point
of a steered fibre layer will not exceed the critical curvature.
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Assuming a finite element model with linear shape functions, the steering cur-
vature of each element, κe , is expressed in terms of the vector of nodal fibre angles
at each element, θe , using a stiffness-like matrix,Ke , obtained from the Laplacian
matrix of the grid [34]:

κ2
e =

1

2
θT

e Keθe (4.40)

The number of local steering curvature constraints is equal to the number of
elements in a finite element model which may reach hundreds of thousands. The
complexity of the optimisation problem is increased by increasing the number of
constraints. The large number of constraints precludes using usual gradient-based
optimisation techniques and requires using parallelised local optimisation frame-
works such as CA used by Van Campen et al. [35]. The local nature of CA makes it
a suitable approach to handle large number of local constraints.

Average steering curvature
One can argue that the steering curvature is related to the smooth fibre paths
which are constructed in the third step of the multi-step optimisation framework.
The smooth fibre paths are constructed from the spatial distribution of fibre an-
gles using streamline analogy and hence have a global nature. The global nature of
smooth fibre paths and the computational cost of including a lot of local steering
curvature constraints in the optimisation problem motivate using only an average
steering curvature, κ, per ply [34]:

κ2 = 1

2
θT K θ (4.41)

where θ is the vector of all nodal fibre angles in a layer and K is the stiffness-like
matrix assembled from the matrices at element level, Ke .

4.5.2 GRADIENT-BASED OPTIMISATION
In the second step of the multi-step framework developed by Pilaka [34], the La-
grangian of the approximate subproblem built at the optimum conceptual design,
L∗, and the average steering curvature of p plies, gl (l = 1,2, ..., p), are used as the
objective function and constraints and the spatial distribution of fibre angles, θ,
are the design variables. The corresponding optimisation problem is formulated
as:

min
θ

L∗(θ) (4.42)

gl (θ) ≤ 0 l = 1,2, ..., p
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In the constrained multi-modal optimisation problem, L∗(θ), is obtained from
equation 4.38:

L∗(θ) =
q∑

k=1
µ∗

k f̃ ∗
k (θ)+

m∑
j=1

µ∗
j f̃ ∗

j (θ) (4.43)

where µ∗
k and µ∗

j are the optimum Lagrange multipliers found from the first step

of the multi-step framework and for f̃ ∗
j (θ) and f̃ ∗

k (θ) are built based on the sensi-

tivities of the theoretical design obtained in the first step. For example:

f̃ ∗
j (θ) =

n∑
i=1

(Φm
i , j |∗ : A−1

i (θ)+Φb
i , j |∗ : D−1

i (θ)+Ψm
i , j |∗ : Ai (θ)+Ψb

i , j |∗ : Di (θ)) (4.44)

where Φm
i , j |∗, Φb

i , j |∗, Ψm
i , j |∗, and Ψb

i , j |∗ are the sensitivities of the conceptual stiff-

ness design with respect to the laminate stiffness matrices. If the maximum allow-
able average steering curvature is denoted by κmax , the constraint on the average
steering curvature per ply can be formulated as:

gl (θ) = 1

2
θT K̂ θ−1 ≤ 0 l = 1,2, ..., p (4.45)

where K̂ = K
κ2

max
.

The optimisation problem in equation 4.42 is reformulated as a quadratically
constrained quadratic programming (QCQP) optimisation problem by expanding
the Lagrangian and the constraints on the average steering curvature per layer as
quadratic Taylor series in terms of the nodal fibre angles.

The quadratic Taylor series expansion of the convex conservative separable ap-
proximations, f̃ ∗

j (θ) and f̃ ∗
k (θ), used to build the Lagrangian in equation 4.43, in

terms of the nodal fibre angles is in the form of:

f̃ ∗(θ) ≈ f̃ ∗(θ0)+
n∑

i=1
( JT

0i (θi −θ0i )+ 1

2
(θi −θ0i )T HT

0i (θi −θ0i ) ) (4.46)

where θ and θ0 are (p ×n) matrices of current and initial spatial distribution of
fibre angles in p layers at n nodes, θi and θ0i are (p × 1) vectors of current and
initial nodal fibre angles in p layers at node i , and J0i (p×1) and H0i (p×p) are the
gradient vector and Hessian matrix of f̃ ∗ with respect to θi computed at the initial
initial spatial distribution of fibre angles, θ0:

J0i = ∂ f̃ ∗

∂θi
|0, H0i = ∂2 f̃ ∗

∂θ2
i

|0 (4.47)



{{4

122 4. MULTI-STEP OPTIMISATION FRAMEWORK

Detailed derivation of the gradient vector and Hessian matrix can be found in [34].
The iterative Tikhonov regularisation technique is used to ensure that H0i is pos-
itive semi-definite and hence the approximation in equation 4.46 is convex [34].
After assembling the nodal gradient, J0i , and Hessian, H0i , matrices, equation 4.46
is reconstructed as:

f̃ ∗(θ) ≈ f̃ ∗(θ0)+ JT
0 (θ−θ0)+ 1

2
(θ−θ0)T HT

0 (θ−θ0) (4.48)

where J0 (p×n) and H0 (p×p×n) are the gradient and Hessian matrices of f̃ ∗ with
respect to θ computed at the initial spatial distribution of fibre angles, θ0. The
constraint on the average steering curvature of layer l , equation 4.45, can be also
formulated as a quadratic Taylor series in terms of the nodal fibre angles:

gl (θl ) ≈ gl (θ0l )+bT
0l (θl −θ0l )+ 1

2
(θl −θ0l )T K̂T

0l (θl −θ0l )−1 ≤ 0 (4.49)

where gl is the average steering curvature constraint in layer l , θl and θ0l are (n×1)
vectors of current and initial spatial distribution of fibre angles at n nodes in layer
l , b0l (n ×1) and K̂0l (n ×n) are the gradient vector and Hessian matrix of gl with
respect to θl computed at the initial spatial distribution of fibre angles, θ0, and:

bl = K̂l θl (4.50)

Using equations 4.48 and 4.49 for quadratic approximation of the objective and
constraint functions, the optimisation problem in equation 4.42 is formulated as a
quadratically constrained quadratic programming (QCQP) problem. This QCQP
problem is solved using the dual method with a gradient-based optimiser and
since the quadratic approximations are convex and continuously differentiable,
the solution of the primal and dual problems are identical. Pilaka [34] used the
built in functions fmincon and pcg to solve the dual problem. After finding the
optimum fibre angle distribution, the gradients and Hessians are updated and the
QCQP problem is formulated at the new fibre angle distribution and solved again.
This iterative process is continued until the primary objective function in equa-
tion 4.43 is converged.

Imposing the average steering curvature as a constraint in the second step
provides a computationally efficient means for restraining the amount of steer-
ing. However, it does not guarantee that the local steering curvatures, which are
realised as the measure for manufacturability of the steered fibre paths, do not
exceed the maximum allowable steering curvature in the fibre placement. On
the other hand, the actual local steering curvatures are dependent on the actual
steered fibre paths, which are constructed in the third step of the multi-step frame-
work, rather than the norm of gradient of the fibre angle in equation 4.39. Previous
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studies [34] have shown that using the average steering curvature as a constraint
per ply in the second step and the streamline method in the third step is an ef-
fective strategy in finding the smooth fibre paths with controlled amount of fibre
steering.

The same fibre angle retrieval procedure is applicable when the local steering
curvatures are constrained instead of the average steering curvature. However, the
number of constraints in step two are increased from one average steering curva-
ture per layer to a lot of local steering curvatures at each discretisation point in
each layer and hence solving the optimisation problem becomes computationally
more expensive.

Layers with fixed ply angles
Some practical considerations in design of composite laminates may dictate using
some straight fibre layers with fixed fibre angles, e.g. placing [±45] sublaminates
on the outermost top and bottom surfaces of the laminate. The straight fibre plies
in the outermost [±45] sub-laminates cover the possible gaps and overlaps of the
steered tows and improve the damage tolerance of the laminate.

In the laminates which possess layers with fixed ply angles, the fibre angle dis-
tribution is retrieved from the solution of the QCQP problem formulated by set-
ting the rows, which correspond to the layer(s) with fixed ply angle(s), in the gra-
dients (J0, b0l ) and the rows and columns, which correspond to the layer(s) with
fixed ply angle(s), in the Hessians (H0, K̂0l ) to zero.

4.5.3 INITIALISATION OF RETRIEVAL PROCEDURE
The convex conservative separable approximation, equation 4.44, which is used
to build the primary objective function, equation 4.43, is a local approximation.
This approximation is constructed based on the sensitivity data of the conceptual
stiffness design and this sensitivity data is not updated during the second step op-
timisation. Therefore, the proposed fibre retrieval procedure is a local search and
the optimum fibre angle distribution obtained from solving the QCQP problem is
dependent on the initial fibre angle distribution.

Solving the QCQP problem with the gradient-based optimisers will usually re-
sult in local optima unless the local search starts from a design which is adequately
close to the global optimum. The local search, formulated in subsection 4.5.2, can
perform effectively when used as an additional search in evolutionary techniques.
An initial fibre angle distribution can be found by using the evolutionary tech-
niques, e.g. GA. The objective function which is minimised in the evolutionary
techniques can be the square distance between the realistic and conceptual de-
signs in the lamination parameters as in [4] or in the stiffness matrices space. The
Lagrangian of the approximate subproblem built using the convex conservative
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separable approximation of structural responses of the theoretical stiffness design
can be also selected as the objective function.

4.6 STEP THREE: STEERED FIBRE PATHS

The realistic fibre angle distribution in the second step needs to be further pro-
cessed in the third step to obtain the realistic location of course centre-lines to

be fed into the fibre placement machine. In the third step of the multi-step optimi-
sation framework, smooth fibre paths are constructed from the spatial distribution
of fibre angles based on the streamline, fluid flow, analogy.

In a primary attempt, Setoodeh et al. [36] proposed a method based on the
streamline analogy to construct the continuous fibre paths from the discrete distri-
bution of fibre angles in each layer of a rectangular panel. In this method, the spa-
tial distribution of the fibre angles is modeled as a potential flow with unit velocity
vectors and the corresponding stream function distribution is obtained. Subse-
quently, streamlines are plotted by connecting the points which have the same
stream function values. The continuous steered fibre paths are used as the cen-
trelines of the courses which are placed using the AFP machine. If the width of
the steered courses is constant along the fibre paths, some gaps and overlaps are
developed between the adjacent courses. The individual cut and restart capability
of the AFP machine can be used to achieve a realistic VS laminate with a constant
thickness which is consistent with the corresponding theoretical constant thick-
ness laminate.

The proposed method by Setoodeh et al. [36] is also able to estimate the thick-
ness distribution when the individual tow cut and restart is not implemented. In
this method, the smeared continuous thickness distribution is obtained based on
the relative distance between the streamlines which are plotted at stream function
values increased with a fixed step. The continuous thickness distribution, neglects
the discrete nature of the ply thickness, and is correct only when the number of
fibre courses tend to infinity and the course width is infinitely small. However, it
provides a measure of thickness distribution to evaluate manufacturability of the
corresponding steered fibre laminate using the cut and restart capability of the AFP
machine.

In a follow-on study, Blom et al. [37] showed that the solution of the potential
flow and the resulting thickness distribution is not unique and is dependent on the
the inflow boundary conditions and locations where the courses are started. Blom
et al. [37] found the optimised inflow boundary conditions and start locations of
steered fibre paths which minimise the maximum thickness or maximise the sur-
face smoothness in each ply of a rectangular panel or a cylindrical surface. Blom
et al. [37] compared the estimated continuous thickness distribution with the ac-
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tual discrete thickness distribution resulted from the fibre placement.
Later, Nagy et al. [38] implemented the streamline analogy approach to find the

steered fibre paths on the shells with arbitrary surfaces and Pilaka [34] developed
an algorithm to maximise the thickness smoothness of the steered fibre paths on
the arbitrary surface. In this thesis, implementations of Nagy et al. [38] and Pilaka
[34] are used to construct the steered fibre paths.





5
STRENGTH EVALUATION AND

APPROXIMATION

5.1 INTRODUCTION

Strength or material failure is evaluated using a function of the actual and limit
stresses or strains, which is determined empirically from coupon test data. Based

on the data fitting method and material type, different failure criteria are devel-
oped. Some of the most frequently used failure criteria for composite laminates
include the maximum strain, the maximum stress, Tsai-Hill and Tsai-Wu.

In certain geometric and loading conditions, large normal and shear stresses
in the normal direction to the interface of layers are generated. These stresses may
trigger laminate delamination, since the strength of the matrix material, which
joins adjacent layers, is substantially smaller than the in-plane strength of layers.
Laminate delamination, even if restricted to small and localised areas, can affect
the integrity of the laminate and degrade the in-plane loading capacity, however,
since calculation of delamination stresses is complicated and expensive, here only
calculation of in-plane stresses and their corresponding failure modes are consid-
ered for the sake of simplicity.

In a general laminate, the laminate strains and the material strength may change
in different layers depending on the laminate loading conditions and materials.
Even in a laminate with constant through the thickness laminate strains and a
unique material, the stresses usually change in different layers due to the differ-

Parts of this chapter have been published in Composites Part B: Engineering 42 (2011) 546-552 [134].
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ent ply angles. Therefore, usually one or a few layers reach their limiting strength
earlier than the other layers. Failure prediction based on the failure of the first ply
is referred to as first ply failure. After first ply failure is happened, the un-failed lay-
ers of the laminate may be able to carry at least a portion of the first ply failure load
in a stable condition. As the applied load is increased, the failure progresses from
one layer to the next layer, this is usually called progressive failure. In this chap-
ter, only first ply failure in considered, progressive failure analysis falls beyond the
scope of the research reported here.

The strength measure of each ply in a laminate can be expressed as a function
of the ply stress or strain values in the material directions, e.g. fibre direction and
normal direction to that, and material strength properties. Ply stresses and strains
in the material directions are functions of the ply angles and therefore the failure
envelope depends on the ply angle. Lamination parameters, which were used as
continuous design variables in the first step of the multi-step optimisation frame-
work described in section 4.4, do not provide a priori knowledge about the orien-
tations of the plies. Therefore, using lamination parameters as design variables in
strength optimisation problems is precluded, considering the dependency of the
failure envelope on the ply angle. To remedy this problem, Gürdal et al. [135] pro-
posed to incorporate lamination parameters in strength optimisation problems
only for a predetermined set of ply orientations. They use Miki’s graphical tech-
nique in the feasible domain of lamination parameters to maximise the strength of
a laminate with a predetermined set of ply orientations subject to in-plane load-
ing. As another example, Kogiso et al. [136] use lamination parameters for relia-
bility based optimisation of a composite laminate consisting of a predetermined
set of ply orientations under in-plane loading considering Tsai-Wu first ply failure
criterion. The disadvantage of this approach is that the design space is limited by
restricting the ply angles to a predefined set.

IJsselmuiden et al. [121] presented a method to facilitate using lamination pa-
rameters as design variables for strength optimisation of composite laminates with-
out restricting the ply angles to a predefined set of angles. This approach, which
is through mapping the Tsai-Wu failure criterion in the laminate strain space, was
first implemented by Nakayasu and Maekawa [137] to evaluate the stochastic be-
havior of a composite laminate with any lamination angle under a multi-axial stress
or strain condition. The failure criterion is expressed as a function of the laminate
strains and the ply angles. Therefore, a unique failure surface can be drawn for
each ply orientation in the laminate strain space. Two different equations are ob-
tained analytically for surfaces which are tangent to the failure surfaces of all ply
orientations. The first envelope is a second order function in terms of laminate
strains and the second envelope is a fourth order one, which is comprised of two
second order intersecting envelopes. The envelope, which encompasses the com-
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mon safe region of the failure surfaces of all ply orientations, is safe regardless of
ply orientation. Depending on the material properties, the second or the fourth
order envelope is the conservative failure envelope.

The developed failure envelopes can be expressed as elliptical equations in
terms of principal strains. Therefore, the fourth order failure envelope is expressed
as two intersecting ellipses. The advantage of this formulation for the fourth order
envelope is that two different constraints, corresponding to each of the two smooth
failure ellipses, are used in the optimisation process. Therefore, the possible con-
vergence problems due to the non-smooth fourth order envelope are eliminated.

The failure index, which is defined as the inverse of safety factor, is used for
strength evaluation. A failure index is approximated as a first order Taylor series in
terms of the strains to reduce the cost of repetitive strength evaluation during opti-
misation. Furthermore, a convex approximation in terms of the stiffness matrices
can be constructed for the failure index expression. Therefore, a convex conserva-
tive separable approximation is built which can be used in the multi-step optimi-
sation framework developed in chapter 4.

In this chapter, the conservative failure envelope developed by IJsselmuiden
et al. [121] is explained in section 5.2. The elliptical equations of the conserva-
tive failure envelope in terms of the principal strains is presented in section 5.3.
The safety factor and failure index are defined in section 5.4 as strength measures.
Construction of the convex approximation of the failure index, which is suited to
be used in the multi-step optimisation framework developed in chapter 4, is de-
scribed in section 5.5. Finally, the new failure envelope formulation and failure
index approximation are verified in section 5.6 by comparing the strength optimi-
sation results for single-point constant stiffness laminates with the results from [6].

5.2 CONSERVATIVE TSAI-WU FAILURE ENVELOPE

Tsai-Wu failure criterion is a widely used failure theory for composite materials
which have different strengths in tension and compression. In material co-

ordinates, the Tsai-Wu failure criterion for each ply takes the form of a quadratic
function of in-plane stresses [138]:

F11σ
2
1 +F22σ

2
2 +F66τ

2
12 +F1σ1 +F2σ2 +2F12σ1σ2 = 1 (5.1)

where Fi and Fi j (i = 1,2 and j = 1,2,6) are defined as:

F11 = 1

X t Xc
, F22 = 1

Yt Yc
, F66 = −1

2
p

X t Xc Yt Yc
, (5.2)

F1 = 1

X t
− 1

Xc
, F2 = 1

Yt
− 1

Yc
, F12 = 1

S2 ,
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It is also possible to express the Tsai-Wu failure criterion in terms of the in-
plane strains in the material coordinates:

G11e2
1 +G22e2

2 +G66e2
12 +G1e1 +G2e2 +2G12e1e2 = 1 (5.3)

Gi and Gi j (i , j = 1,2,6) coefficients are obtained by substituting the material stresses
in equation 5.1 with the material strains using the stress-strain relation, equa-
tion 2.63. This stress-strain relation for each lamina in the laminate is repeated
here for convenience: σ1

σ2

τ12

=
 Q11 Q12 0

Q21 Q22 0
0 0 Q66

 e1

e2

γ12

 (5.4)

where Qi j (i , j = 1,2,6) are the components of the reduced stiffness matrix defined
in equation 2.64. Therefore, Gi and Gi j (i , j = 1,2,6) coefficients can be expressed
as [121]:

G11 =Q2
11F11 +Q2

12F22 +2F12Q11Q12 (5.5)

G22 =Q2
12F11 +Q2

22F22 +2F12Q12Q22

G12 =Q11Q12F11 +Q12Q22F22 +F12Q2
12 +F12Q11Q22

G66 = 4Q2
66F66

G1 =Q11F1 +Q12F2

G2 =Q12F1 +Q22F2

The material strains can be expressed in terms of the laminate strains and ply
angles:  e1

e2

γ12

=
 c2 s2 2cs

s2 c2 −2cs
−cs cs c2 − s2

 ex

ey

γx y

 (5.6)

where c = cosθ and s = sinθ, and θ is the ply angle measured from the laminate
axis, x. By substituting the material strains from equation 5.6 in the Tsai-Wu fail-
ure criterion in equation 5.3, the failure surface can be expressed as a function of
laminate strains and ply angles:

F (ex ,ey ,γx y ,c, s) = 0 (5.7)

The dependency of the failure surface on the ply angle precludes the use of lami-
nation parameters as design variables in strength optimisation problems. This is
because lamination parameters do not provide a priori knowledge about the ply
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angles. This problem is remedied by using a conservative failure envelope pro-
posed by IJsselmuiden et al. [121]. The conservative failure envelope is based on
the Tsai-Wu failure criterion but is independent from the ply angle. It is clear from
equation 5.7 that for each ply angle, a unique Tsai-Wu failure surface can be plotted
in the laminate strain space. The conservative failure envelope, proposed by IJs-
selmuiden et al. [121], embodies the safe region common between different failure
surfaces for different ply angles. The equation of this failure envelope is obtained
by finding the geometric surface which is tangent to the family of failure surfaces
for all ply angles:

dF

dθ
= 0 (5.8)

As it is clear from equation 5.7, F is a function of c and s, and hence using the chain
rule the equation of the conservative envelope, equation 5.8, can be re-expressed
as:

dF

dθ
= c

∂F

∂s
− s

∂F

∂c
= 0 (5.9)

Both F and dF
dθ are functions of c and s, and c and s are dependent through the

trigonometric relation:

s2 + c2 −1 = 0 (5.10)

The equation of the conservative failure envelope is obtained by eliminating c and
s from equation 5.9 using Dixon’s resultant [139] and equations 5.7, 5.8 and 5.10.
This leads to the following two equations, each representing an envelope tangent
to all the failure surfaces in the strain space for all ply angles [121]:

4u2
6 I 2

2 +4u6u1I 2
2 +4(1+u2I1 +u3I 2

1 )(u1 −u6)+ (u4 +u5I1)2 = 0 (5.11)

u2
1 I 4

2 − I 2
2 (u4 +u5I1)2 −2u1I 2

2 (1−u2I1 −u3I 2
1 )+ (1−u2I1 −u3I 2

1 )2 = 0 (5.12)

where I1 is the volumetric strain invariant and I2 is the maximum shear strain
given by:

I1 = ex +ey , I2 =
√

(
ex −ey

2
)

2
+γ2

x y (5.13)
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The terms ui , (i = 1...6) are defined in terms of the Gi j coefficients (equation 5.3):

u1 =G11 +G22 −2G12

u2 = (G1 +G2)/2

u3 = (G11 +G22 −2G12)/4 (5.14)

u4 =G1 −G2

u5 =G11 −G22

u6 =G66

(5.15)

The first equation, equation 5.11, is a quadratic function of strains and represents
a single smooth second-order envelope in the laminate strain space. The second
equation, equation 5.12, is a quartic function of strains, which represents two in-
tersecting quadratic envelopes in the laminate strain space. In other words, the
fourth-order equation, equation 5.12, is factorable into two second-order equa-
tions which form a self-intersecting non-smooth envelope. The envelopes from
the two equations, equations 5.11 and 5.12, do not intersect each other but may
become tangent as shown in figure 5.1.

The safe region in the laminate strain space is the area common between all
the failure surfaces for all ply angles. Therefore, one of the two equations, equa-
tions 5.11 and 5.12, which describe the inner envelope is used as the conservative
envelope. The two equations, equations 5.11 and 5.12, are functions of material
properties, since ui are functions of Gi j coefficients (equation 5.14), which are
functions of the components of the reduced stiffness matrix Qi j and Fi and Fi j

coefficients (equation 5.5), which are functions of the material properties (equa-
tions 2.64 and 5.2). Therefore, the fact that which of the second-order and the
fourth-order envelopes is the inner envelope, is determined by the material prop-
erties.

In figure 5.1, Tsai-Wu failure surfaces of different ply angles and the second-
order and fourth-order envelopes, which are tangent to these failure surfaces, are
plotted in the laminate strain space for a few materials. The inner envelope, which
is selected as the conservative failure envelope, is determined with a red dotted
line. The investigated materials include Carbon-PEEK (AS4), Carbon-Epoxy (IM6)
and Boron-Epoxy (B5.6). The properties of these materials are listed in table 5.1
and the stiffness ratio E1/E2 ranges from approximately 9 to 17 in these materi-
als. In figure 5.1, γx y is set to zero and the failure envelopes are plotted in the
principal strain space (e I and e I I are the principal strains), however, similar fail-
ure envelopes can be generated for a range of γx y values. Figure 5.1 shows that for
each material, one of the two equations 5.11 and 5.12, accurately describes the in-
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TABLE 5.1: Material properties [6]

Property AS4 IM6 B5.6

Longitudinal modulus, E1 [GPa] 142 177 201
Transverse modulus, E2 [GPa] 10.3 10.8 21.7
Shear modulus, G12 [GPa] 7.2 7.6 5.4
Poisson’s ratio, ν12 [-] 0.27 0.27 0.17
Longitudinal tensile strength, Xt [MPa] 2280 2860 1380
Longitudinal compressive strength, Xc [MPa] 1440 1875 1600
Transverse tensile strength, Yt [MPa] 57 49 56.6
Transverse compressive strength, Yc [MPa] 228 246 125
Shear strength, S [MPa] 71 83 62.6

ner envelope. As it is clear from figure 5.1, the conservative failure envelopes are
convex in the strain space, as their boundaries are constructed from the convex
Tsai-Wu failure surfaces for different ply angles.

In the following section, a simpler derivation of the conservative failure enve-
lope than that provided by IJsselmuiden et al. [121] is shown. The case of the self
intersecting envelope is shown to resolve into two quadratic functions. Thus, it is
shown that the conservative approximation of the Tsai-Wu failure criterion is rep-
resented by one or two ellipses in principle strain space.

5.3 ELLIPTICAL FORMULATION OF THE CONSERVATIVE EN-
VELOPE

The Tsai-Wu failure criterion in strain space, equation 5.3, can be re-expressed
in terms of three strain invariants:

I1 = e I +e I I

I2 = e2
I +e2

I I (5.16)

I4 = e I n2
1 +e I I n2

2

where e I and e I I are the principal strains, n1 = cosγ and n2 = sinγ, and γ is the
ply angle measured from the principal strain axis. Since Tsai-Wu criterion is a
quadratic function of strains (equation 5.3), the expression can be formed as:

f = 1

2
u1I 2

1 +u2I1I4 + 1

2
u3I 2

4 +u4I2 +u5I1 +u6I4 (5.17)

where ui (i = 1,2, ...,6) are material invariants. These coefficients can be found
by re-writing equation 5.17 in terms of the material strains and comparing it with
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FIGURE 5.1: Conservative failure envelopes plotted in the principal strain space for different materials
(regenerated from IJsselmuiden et al. [121])

equation 5.3. For this purpose, the strain invariants in equation 5.16 can be ex-



5.3. ELLIPTICAL FORMULATION OF THE CONSERVATIVE ENVELOPE 135

{{5

pressed in terms of laminate strains:

I1 = ex +ey

I2 = e2
x +e2

y +2γ2
x y (5.18)

I4 = ex c2 +ey s2 +2γx y cs

where c = cosθ and s = sinθ, and θ is the ply angle measured from the laminate
axis. Therefore, if material strains are used, c = 1 and s = 0, and strain invariants
are simplified as:

I1 = e1 +e2

I2 = e2
1 +e2

2 +2e2
12 (5.19)

I4 = e1

The strain invariants in equation 5.19 are substituted in equation 5.17 and the re-
sulting equation is compared with equation 5.3 to find the ui (i = 1,2, ...,6) coeffi-
cients as:

u1 =G22 −G66/2

u2 =G66/2

u3 = 2G12 −2G22 +G66 (5.20)

u4 =G11 −2G12 −G66

u5 =G2

u6 =G1 −G2

As is clear from equations 5.17 and 5.18, Tsai-Wu failure criterion, f , is a func-
tion of the ply angle, θ. The conservative failure envelope is formulated by setting
the Tsai-Wu failure criterion for the most critical ply angle to 1:

max
θ

f = 1 (5.21)

Note that only the invariant I4 is function of θ. Thus maximisation with respect
to θ can be replaced by maximisation with respect to I4. The values of I4 are not
arbitrary, e I I ≤ I4 ≤ e I . Thus, the conservative failure envelope is defined by:

max
I4

f = 1, e I I ≤ I4 ≤ e I . (5.22)

The failure criterion is a quadratic function of I4. Thus, two distinct cases exist:
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• u3 < 0: In this case the failure criterion is concave in I4 and the maximum in
equation 5.17 is easily retrieved by setting the derivative with respect to I4 to
zero. The maximum is obtained at:

I4 = −(u2I1 +u6)

u3
(5.23)

The failure envelope in this case takes the form:

fmax = 1

2
(u1 −

u2
2

u3
)I 2

1 + (u5 − u2u6

u3
)I1 +u4I2 −

u2
6

2u3
(5.24)

• u3 ≥ 0: In this case the maximum is obtained at either end of the interval
e I I ≤ I4 ≤ e I . This leads to two possible equations for the failure envelope
depending on whether the maximum is attained at one end or the other.

In either case, the final form of the Tsai-Wu strain envelope takes an elliptical form
in terms of principal strains:

Ci j ei e j +Ci ei +C0 = 0, i = I , I I , (5.25)

The coefficients of Tsai-Wu expressed as an ellipse equation in terms of the princi-
pal strains (equation 5.25) for the materials with the critical second order envelope
are:

C0 =−(1/4)u2
6/u4 −1,

C I =−(1/2)u3u6/u4 +u5,

C I I =−(1/2)u3u6/u4 +u5, (5.26)

C I I =−(1/4)u2
3/u4 +u2 +u1,

C I I I = u1 − (1/4)u2
3/u4,

C I I I I =−(1/4)u2
3/u4 +u2 +u1

For materials with the fourth order envelope as the critical envelope, these coeffi-
cients for each of the two branches of the envelope are:

C0(1) =C0(2) =−1,

C I (1) =C I I (2) = u5,

C I I (1) =C I (2) = u6 +u5,r (5.27)

C I I (1) =C I I I I (2) = u2 +u1,

C I I I (1) =C I I I (2) = (1/2)u3 +u1,

C I I I I (1) =C I I (2) = u2 +u1 +u3 +u4,
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In this section, the conservative Tsai-Wu failure envelopes are expressed us-
ing equation 5.25 which is simpler than equations 5.11 and 5.12. The equations
of the failure surface, equations 5.11, 5.12 and 5.25, are obtained by setting the
value of failure criterion to one. This value is set to one at the right hand side of
equations 5.1 and 5.3. Therefore, negative values of the left hand side of equa-
tion 5.11, 5.12 and 5.25 mean that the specimen is safe and positive values mean
that the specimen has failed.

5.4 STRENGTH CONSTRAINT FORMULATION

Maximum strength design of composite laminates is sometimes performed
by minimisation of the failure index defined as the left hand side of equa-

tion 5.25 or equations 5.11 and 5.12. However, Groenwold and Haftka [140] showed
that for inhomogeneous failure criteria such as Tsai-Wu criterion in contrast to the
homogeneous failure criteria such as Tsai-Hill criterion, the optimum laminate ob-
tained from minimisation of the value of the failure criterion is dependent on the
actual value of the applied load. To remedy this problem for inhomogeneous fail-
ure criteria, Groenwold and Haftka [140] introduced the factor of safety, λ, and
proposed to directly maximise λ for strength optimisation. The factor of safety, λ,
is defined as the factor multiplying the actual strains such that the scaled strains
satisfy the failure envelope. The factor of safety is defined in terms of the lengths
of the vectors shown in figure5.1(a) as:

λ= b

a
(5.28)

where a is the distance between the origin and an arbitrary point P in the strain
space, and b is the length of the vector which starts from the origin, passes through
point P and reaches point P∗ on the envelope boundary, as shown in figure 5.1(a).
The feasible region, where no failure occurs, is defined by the condition:

λ(e) ≥ 1 (5.29)

Groenwold and Haftka [140] show that if the failure criterion is homogeneous,
e.g. Tsai-Hill, all the terms are multiplied by the safety factor uniformly. There-
fore, maximisation of the safety factor is equivalent to minimisation of the value
of the failure index, however, if the failure criterion is inhomogeneous, e.g. Tsai-
Wu, the linear terms have a more important role in the failure criterion expression
for small safety factors compared to larger safety factors. Therefore, for inhomo-
geneous failure criteria, the optimum design depends on the value of the safety
factor and hence the applied load. Therefore, selection of the failure index as the
objective function in the strength optimisation problems with an inhomogeneous
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failure criterion, may result in a laminate which does not have the maximum safety
factor.

The failure index is redefined by IJsselmuiden et al. [121] as:

rs = 1

λ2 (5.30)

The rationale behind the definition in equation 5.30 is that in contrast to λ the fail-
ure index rs is differentiable with respect to the strain and bounded at zero strains.
The feasible region is defined by the condition:

rs (e) ≤ 1 (5.31)

The failure index rs as defined by IJsselmuiden et al. [121] is a homogeneous func-
tion of second order with respect to strain. To expand the strength constraint using
the hybrid approximation (see section 5.5), it is desirable that the strength con-
straint is defined as a homogeneous function of order one in strains. To achieve
this we depart from the definition given in [121] (equation 5.30) and define the
failure index as:

rs = 1

λ
(5.32)

This definition sacrifices the differentiability at zero strains. This is tolerable given
that the strength constraint would not be active at zero strains and may be removed
from the optimisation formulation at stress free points. The equation of the fail-
ure index is given by substituting e I and e I I in equation 5.25 with e I /rs and e I I /rs

values on the failure envelope, respectively. After simplification:

Ci j ei e j + rs Ci ei + r 2
s C0 = 0, i , j = I , I I , (5.33)

equation 5.33 can be re-expressed as:

a2 +a1rs +a0r 2
s = 0 (5.34)

where:

a2 =C I I e2
I +C I I I I e2

I I +2 C I C I I e I e I I , a1 =C I e I +C I I e I I , a0 =C0 (5.35)

Solving for rs in the second order elliptical envelope or either of the two ellipti-
cal branches of the fourth order envelope yields two roots and the largest root is
selected as the failure index.

Repetitive evaluation of the failure index is required in strength optimisation.
Therefore, it is advantageous to use an approximation of the failure index to reduce
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the computational costs. For this purpose, the failure index is expanded as a linear
function of strains around the approximation point, e(k), as:

rs (e) ≈ rs (e)(k) +g(k)T
(e−e(k)) (5.36)

Using Euler’s theorem of homogeneous functions, gT e = rs , the approximation is
simplified to:

rs (e) ≈ eT g(k) (5.37)

where

g(k) = ∂rs

∂e
|e=ek (5.38)

and g can be found analytically using the chain rule:

g = ∂rs

∂eq
=

I I∑
p=I

∂rs

∂ep

∂ep

∂eq
(5.39)

where eq = ex ,ey ,γx y and

∂rs

∂ep
=

∑2
n=0

∂an
∂ep

r 2−n
s∑2

n=0(2−n)anr 1−n
s

(5.40)

As it is clear from equations 2.45-2.47, according to the Sanders theory, the total
strain, e, at each point of a shell structure can be expressed in terms of the middle
surface strains (ε(z = 0)), and the changes of curvatures (κ) as following:

e(z) = ε(z = 0)+ zκ (5.41)

where z ∈ [−h
2 ,+h

2 ] is the through the thickness coordinate measured from the
middle surface. Therefore, the failure index, rs , is also a function of the through the
thickness coordinate, z. For strength optimisation purpose, it would be beneficial
to eliminate the dependency of rs on z, by considering the point with maximum
failure index through the thickness to be safe. Therefore, the strength constraint in
equation 5.31 is re-written as [6]:

max
z

(rs ) ≤ 1 (5.42)

As mentioned in section 5.2, the failure index, rs , is a convex function of the
total strains, e, and as it is clear from equation 5.41, the strains are linear functions
of the through the thickness coordinate, z. It is concluded from the properties
of convex functions that rs is a unimodal function of z with a unique minimum.
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Therefore, the maximum failure index will happen at one of the extreme points of
the thickness coordinate, z = −h

2 or z = +h
2 [6]. It is well-known that in practice,

depending on the ply angles, the critical failure index does not always happen at
one of the outermost plies., however, when using the conservative Tsai-Wu failure
envelope, it is assumed that all the possible ply angles could exist at each ply lo-
cation through the thickness and therefore, one of the outermost plies is critical.
Therefore, corresponding to each failure envelope and each point on the middle
surface, for out of plane problems two strength constraints calculated at the upper
and bottom surfaces (r±

s = rs (z = ±h
2 )) are considered, while for in-plane prob-

lems only one strength constraint is enough. For materials in which the fourth-
order envelope is critical, the strength constraints for both of the two intersecting
second-order envelopes are considered in the optimisation problem.

The advantage of using the failure envelope defined by IJsselmuiden et al. [121]
in strength optimisation problems is that this failure envelope is not a function of
the ply angle and hence lamination parameters can be used as design variables.
The drawback is that this failure envelope may be excessively conservative in some
cases. In the failure envelope developed by IJsselmuiden et al. [121], it is assumed
that every possible ply angle is present in each ply of the laminate. The critical
boundary of this failure envelope is formed from the Tsai-Wu failure surface of dif-
ferent ply angles. Therefore, if some of these ply angles do not exist, the failure en-
velope is conservative. IJsselmuiden et al. [121] show that in some cases the failure
envelope is excessively conservative, e.g. unidirectional laminates under uniaxial
loading and bending dominated laminates.

In the unidirectional laminates, the fibres in all the plies are aligned in a single
direction, e.g. 0◦. Among different ply angles, intuitively 0◦ plies have the mini-
mum failure index under uniaxial loading applied in the 0◦ direction. In contrast,
the critical boundary of the conservative failure envelope is formed from the fail-
ure surface of the ply angle which has the maximum failure index. This means that
the predicted failure index from the conservative failure envelope is significantly
overestimated for 0◦ plies under uniaxial loading. Therefore, if uniaxial loading is
applied on a unidirectional laminate, in which all the plies are 0◦ plies, the failure
envelope is excessively conservative.

In bending dominated laminates, the state of strain changes significantly in
the thickness direction. As stated earlier, the actual stacking sequence of the plies
is not considered in the conservative failure envelope, however, different stacking
sequences of a set of fibre angles, which have the same in-plane stiffness proper-
ties, have different Tsai-Wu failure indices. This is because the total strain is not
constant in the thickness direction and changes for different plies. Therefore, the
amount of conservativeness of the failure envelope is different for different stack-
ing sequences of a set of fibre angles and may be excessive for some of them.
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5.5 CONVEX APPROXIMATION OF FAILURE INDEX

Construction of the conservative convex separable approximations of the struc-
tural responses in the form of equation 4.6 is explained in section 4. These

approximations are used in the optimisation framework developed in section 4
to design variable stiffness (VS) composite laminates. The approximations in the
form of equation 4.6 consist of two parts; a convex separable part, fP , and a part
for ensuring the strict conservativeness, fD . To construct the first part, fP , part
of the structural response is expanded linearly in terms of the stiffness matrices
and another part is expanded reciprocally. This separation is performed based on
the physical nature of the structural performance and/or a numerical algorithm
such that the constructed fP is convex. Construction of the convex separable ap-
proximation, fP , is explained for the structural stiffness and the buckling load in
subsection 4.3.3. However, construction of the convex separable approximation
for the failure index is postponed to this section, since evaluation of the failure in-
dex requires introduction of the conservative failure envelope and definition of the
failure index.

Using the equations of the total strains from the Sanders theory, equations 2.45-
2.47, and the constitutive relations from the classical lamination theory (CLT), equa-
tions 2.71 and 2.72, for a symmetric laminate (the bending-extension coupling
stiffness matrix, B, is zero), the local total strains are given by:

e = A−1 N+ zD−1 M (5.43)

Therefore, by substituting equation 5.43 in equation 5.37, the failure index can be
locally approximated in the form:

rs = (NT A−1 + zMT D−1) g (5.44)

where g = g(k) and equation 5.44 partly may be approximated as:

rs =Φm : A−1 +Φb : D−1 (5.45)

where (:) is matrix contraction (trace of the multiplication), andΦm andΦb are the
symmetric matrices, related to the in plane and out of plane parts, defined by:

2Φm = N gT +g NT , 2Φb = z(M gT +g MT ) (5.46)

The approximation in equation 5.45 is local in the sense that it assumes constant
stress resultants. Accounting for changes in the stress resultants will be consid-
ered in subsection 5.5.2. In general, Φm and Φb are not positive semi-definite. As
explained in section 4.3.3, positive semi-definite Φm and Φb are needed to guar-
antee the convexity of the local approximation. The convexification procedure is
described in the next subsection.
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5.5.1 LOCAL CONVEX APPROXIMATION
In this subsection, we force convexity of the local approximation (equation 5.45).
The approach is demonstrated for the in plane part of the local approximation and
the same procedure applies to the out of plane part. The superscript m is also
omitted fromΦm andΨm for the sake of avoiding confusion from using more than
one superscript. The convexification is done by splitting the matrix Φ into two
parts; a positive semi-definite partΦ+ and a non-definite partΦ−. Thus:

rs =Φ+ : A−1 +Φ− : A−1 (5.47)

The non-definite part is expanded in a Taylor series in A around the approximation
point, A(k), to get:

rs = Φ+ : A−1 + Ψ− : A +2Φ− : A(k)−1
(5.48)

to maintain the homogeneity of the approximation, we require:

Φ− : A(k)−1 = 0 (5.49)

Introducing the Cholesky decomposition, A(k) = L LT , we may write the above con-
dition as:

trace(Φ̂−) = 0 (5.50)

where Φ̂− = L−1Φ−L−T . In general we would like to minimize the non-definite part.
This guarantees that ifΦ is positive definite then the non-definite part is zero. Thus
we define the splitting uniquely by the condition:

min ||Φ̂−||2 subject to trace(Φ̂−) = 0 and eigs(Φ̂− Φ̂−) ≥ 0

where Φ̂= L−1ΦL−T .
The solution of this optimisation problem is carried out using spectral decom-

position as follows. Let Φ̂= TT diag(d) T where T is unitary, d is a vector containing
the eigenvalues and diag(d) is the square matrix with the diagonal components
equal to the d components. Let us further represent Φ̂− as Φ̂− = TT diag(d−) T,
then we get:

mind−T d− subject to 1T d− = 0 and di −d−
i ≥ 0

where 1 is a vector containing all ones. This is a standard quadratic optimisation
problem which allows us to find d−, hence Φ̂− and finallyΦ−. The final form of the
local approximation is:

rs =Φ+ : A−1 +Ψ : A (5.51)

whereΨ=−A−1Φ−A−1. In the following the + superscript is removed without am-
biguity since only the convex form in equation 5.51 is used.
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5.5.2 HYBRID APPROXIMATION
We derive a hybrid approximation [124] in the form of equation 4.8 for the failure
index at each discretisation point (point in a finite difference model or node in a
finite element model) as a function of in-plane and out of plane stiffness matrices
at the discretisation points, or regions:

rs ≈ rs0 +
n∑

j=1
Φm

j : A−1
j +Φb

j : D−1
j +Ψm

j : A j +Ψb
j : D j (5.52)

The reciprocal terms account for the reciprocal parts of local approximation 5.51.
The linear terms account for the linear terms of the local approximations, and the
sensitivity of stress resultants N and M to stiffness changes. The sensitivity anal-
ysis was carried out using the adjoint method, the details of which are shown in
Appendix A.

5.6 VERIFICATION OF STRENGTH FORMULATION

The strength approximation, equation 5.37, developed by IJsselmuiden [6] is
used to find the maximum strength design of a single-point laminate. This ap-

proximation is verified by plotting and comparing the optimisation convergence
path and failure index contours in the lamination parameters space. In a single-
point laminate, a single set of strains and stress resultants exist all over the lam-
inate. The case study is performed for three different materials and different in-
plane load configurations. The applied load is a combination of axial and shear
loads expressed in general form as: Nx

Ny

Nx y

=
1−w

0
w

N0 (5.53)

where w ∈ [0,1]. w = 0 represents pure axial tension or compression, depending
on the sign of N0, and w = 1 represents pure shear. Load values of N0 = ±150 e6

N/m are selected for analysis under axial tension and compression. These load val-
ues, if applied on a laminate with all unit dimensions, provide a reasonable range
for rs value. Using the stress resultants in equation 5.53, the strains are obtained
analytically from the laminate constitutive relations based on CLT in equation 2.71.
The selected laminate is balanced symmetric and the the load case is in-plane,
therefore, only two in-plane lamination parameters, V1A and V3A , are used as the
design variables

In this chapter, the conservative Tsai-Wu failure envelopes were reformulated
in an elliptical form in terms of principal strains. Also, the convex separable ap-
proximation of the failure index in terms of laminate stiffness was formulated. This
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approximation is well suited to be used in the multi-step optimisation framework
for optimum design of constant stiffness (CS) and variable stiffness (VS) laminates
as shown in [134]. Using the failure envelopes reformulated in this chapter for eval-
uation of rs values of the single-point laminates with optimum lamination param-
eters obtained by IJsselmuiden [6] results in exactly the same rs values as reported
by IJsselmuiden [6]. For further verification, the single-point laminates, made of
the same materials and under the same load cases as the ones applied in [6], were
deigned in the first step of the multi-step optimisation framework developed in
chapter 4 and using the new strength formulation and approximation developed
in this chapter. Since the load distribution is unchanged in a single-point laminate,
only the local part of the approximation in equation 5.52 was used.

Tables 5.2 and 5.3 show the optimum lamination parameters and rs values of
various materials, which are obtained using the strength formulation presented
in this chapter, under combined tension/shear and compression/shear load cases
with w = 0.5 and a range of combined tension/shear load cases with w = 0.0,0.2,...,1.0,
respectively. The percentage of differences between the obtained values in these
tables with those obtained by IJsselmuiden [6] are calculated and depicted in paren-
theses in front of each value. Although the optimum lamination parameters in
these tables have up to 4.3% difference with those obtained by IJsselmuiden [6],
this difference is not visible in the rs values. The rs values are all identical with
those found by IJsselmuiden [6] and only the rs value for Carbon-PEEK (AS4) and
w = 0.8 is 0.2% larger than the corresponding value from [6] which is negligible.
This 0.2% difference could be partly due to different optimisation formulations
and partly due to rounding errors.

TABLE 5.2: Optimum lamination parameters and rs values and the percentage difference with those
reported in [6] for various materials and combined loading with w = 0.5

Load case Materials V1A V3A rs

Tension/Shear
AS4 0.444 ( 0.0%) -0.352 (-0.3%) 0.394 (0.0%)
IM6 0.558 ( 0.0%) -0.293 ( 0.0%) 0.339 (0.0%)
B5.6 0.599 (-0.3%) -0.250 ( 0.8%) 0.510 (0.0%)

Compression/Shear
AS4 0.152 (-1.9%) -0.357 (0.0%) 0.353 (0.0%)
IM6 0.024 ( 4.3%) -0.322 (0.0%) 0.279 (0.0%)
B5.6 -0.066 (-1.2%) -0.266 (0.0%) 0.412 (0.0%)
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TABLE 5.3: Optimum lamination parameters and rs values and the percentage difference with those
reported in [6] for various materials and a range of tension/shear load cases w = 0.0, 0.2,..., 1.0

Materials w V1A V3A rs

AS4

0.0 1.0000 (0.0%) 1.0000 (0.0%) 0.1964 (0.0%)
0.2 0.6926 (0.1%) 0.3055 (0.3%) 0.3072 (0.0%)
0.4 0.5116 (0.0%) -0.1632 (0.0%) 0.3718 (0.0%)
0.6 0.3824 (0.3%) -0.5306 (-0.2%) 0.4106 (0.0%)
0.8 0.2322 (-3.7%) -0.8565 (-3.1%) 0.4268 (0.2%)
1.0 0.0000 (0.0%) -1.0000 (0.0%) 0.4550 (0.0%)

IM6

0.0 0.9860 (0.1%) 0.9495 ( 1%) 0.2052 (0.0%)
0.2 0.7961 (0.0%) 0.3237 (0.0%) 0.2722 (0.0%)
0.4 0.6270 (0.2%) -0.1126 (-0.9%) 0.3215 (0.0%)
0.6 0.4930 (-0.2%) -0.4635 (0.2%) 0.3511 (0.0%)
0.8 0.3090 (0.7%) -0.8090 (-0.2%) 0.3637 (0.0%)
1.0 0.0000 (0.0%) -1.0000 (0.0%) 0.3816 (0.0%)

B5.6

0.0 1.0000 (0.0%) 1.0000 (0.0%) 0.2847 (0.0%)
0.2 0.7933 (-0.1%) 0.2612 (0.0%) 0.4118 (0.0%)
0.4 0.6682 (-0.3%) -0.0932 (1%) 0.4846 (0.0%)
0.6 0.5337 (-0.2%) -0.3979 (0.3%) 0.5291 (0.0%)
0.8 0.3692 (-3.7%) -0.7117 (-0.7%) 0.5464 (0.0%)
1.0 0.0000 (0.0%) -1.0000 (0.0%) 0.5435 (0.0%)





6
OPTIMISATION RESULTS FOR

UNSTIFFENED CYLINDERS

6.1 INTRODUCTION

In this chapter, circumferential laminate stiffness tailoring of two cylindrical shells,
namely a circular cylinder under bending and an elliptical cylinder under axial

compression, is performed for maximum buckling capacity. In the circular cylin-
der under bending and the elliptical cylinder under axial compression, the axial
section force and the shell curvature vary around the circumference, respectively.
If the maximum buckling capacity designs are material failure critical, meaning
that material failure happens before buckling, strength is used as another design
driver in addition to the buckling capacity to make sure that material failure does
not happen before buckling.

In the developed framework for circumferential stiffness tailoring of general
cross-section cylinders, the semi-analytical solutions for static and buckling anal-
ysis of cylindrical shells with arbitrary cross-sections, developed in chapter 3, are
used to evaluate the strains and buckling capacity. The strength is measured using
the conservative Tsai-Wu failure envelope in the strain space developed by IJssel-
muiden et al. [121] which was further reformulated in chapter 5. The conservative
convex separable approximations of the buckling factor and failure index are built
as described in chapters 4 and 5, respectively. These approximations are used in
the multi-step optimisation framework, described in chapter 4, to find the opti-

Parts of this chapter have been published in Composite Structures 94 (2012) 2851-2860 [102].

147



{{6

148 6. OPTIMISATION RESULTS FOR UNSTIFFENED CYLINDERS

mum constant stiffness, CS, and circumferentially variable stiffness, VS, laminate
designs.

Two types of VS laminates are obtained; constant thickness VS laminates and
variable thickness VS laminates. In the constant thickness VS laminates, the lami-
nate stiffness variation is only due to the fibre steering, however, in variable thick-
ness VS laminates, the circumferential laminate stiffness tailoring is due to fibre
steering and laminate thickness variation.

Theoretical and realistic CS and constant thickness VS laminate designs are
obtained and compared to investigate the effect of fibre steering on the buckling
capacity. However, only the theoretical variable thickness VS laminate designs are
obtained, due to the current limitation of the second step of the multi-step optimi-
sation framework to constant thickness laminates. The theoretical variable thick-
ness VS laminate designs are compared with the theoretical constant thickness VS
laminate designs to investigate the effect of laminate thickness variation on buck-
ling capacity improvement. The stiffness and load redistribution mechanisms due
to circumferential laminate stiffness tailoring, which are responsible for structural
performance improvement, are discussed for constant and variable thickness lam-
inates. The laminate designs for the circular cylinder under bending and elliptical
cylinder under axial compression are discussed in sections 6.2 and 6.3.

6.2 CIRCULAR CYLINDER UNDER BENDING

Circumferential laminate stiffness tailoring of a cylindrical shell with a circular
cross-section under bending is investigated by Blom et al. [17] using the func-

tional fibre path definition (section 1.4) to model the stiffness variation. In this sec-
tion, circumferential stiffness tailoring of the same circular cylinder is performed
using the developed framework for circumferential tailoring of general cross-section
cylinders. The circular cylinder has a diameter of 609.6 mm (24 in) and a length of
812.8 mm (32 in). The laminate thickness is 4.39 mm (0.1728 in) including 24 layers
made of AS4/8773 material, the properties of which are given in table 6.1.

The theoretical CS and constant thickness VS laminate designs of the circu-
lar cylinder under bending, for maximum buckling moment with consideration of
strength constraints, are investigated in subsection 6.2.1. The theoretical variable
thickness laminate designs with the same weight as the constant thickness lam-
inates are studied in subsection 6.2.2. The realistic CS and constant thickness VS
laminate designs are retrieved from the selected theoretical CS and constant thick-
ness VS laminate designs in subsection 6.2.3.
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TABLE 6.1: Material properties of AS4/8773 [17]

Longitudinal modulus, E1 [GPa / psi] 129.83 / 18.830e6
Transverse modulus, E2 [GPa / psi] 9.08 / 1.317e6
Shear modulus, G12 [GPa / psi] 5.29 / 7.672e5
Poisson’s ratio, ν12 [-] 0.32
Longitudinal tensile strength, Xt [MPa / psi] 2067.74 / 2.999e5
Longitudinal compressive strength, Xc [MPa / psi] 1158.32 / 1.680e5
Transverse tensile strength, Yt [MPa / psi] 132.72 / 1.925e4
Transverse compressive strength, Yc [MPa / psi] 199.81 / 2.898e4
Shear strength, S [MPa / psi] 116.38 / 1.688e4

6.2.1 THEORETICAL CONSTANT THICKNESS LAMINATE
The primary goal of circumferential stiffness tailoring of the circular cylinder un-
der bending, is to maximise the buckling moment. In subsection 4.3.3, the convex
separable approximation is built for the inverse of buckling factor instead of the
buckling factor. Therefore, the buckling moment maximisation problem is substi-
tuted by minimisation of the critical inverse of buckling factor. This multi-modal
or min-max optimisation problem is expressed as:

min
V

max(rbk
) (6.1)

where rbk
(for k = 1,2, ..., q) is the value of inverse of buckling factor for mode num-

ber k and V is the vector of lamination parameters at all discretisation points. This
min-max problem is reformulated using the bound formulation and dual method,
as described in subsection 4.4.2, and the corresponding global optimisation, equa-
tion 4.24, and local optimisation, equation 4.34, problems are solved in a succes-
sive approximation scheme to find the theoretical constant thickness laminate de-
sign.

If the maximum buckling moment design is material failure critical, the max-
imised buckling moment cannot be reached because the material failure happens
before buckling. Therefore, consideration of strength as another design driver in
the optimisation problem is essential to find a buckling critical design. One way
of consideration of strength as a design driver, is to add a constraint on the failure
index to the minimisation problem of inverse of buckling factor in equation 6.1.
This constrained multi-modal optimisation problem is formulated as:

min
V

max(rbk
) subject to rs j ≤ d (6.2)

where rs j (for j = 1,2, ...,n) is the failure index of the j th discretisation point and d
is the maximum allowable value of the failure index. This is a multi-modal con-
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strained optimisation problem, equation 4.35, with a non-zero right-hand side
constraint and the corresponding global and local optimisation problems for find-
ing the theoretical constant thickness laminate design are formulated similar to
equations 4.37 and 4.38. By changing the value of d , strength constraints can be
relaxed or restrained and different designs can be obtained. The ratio of the buck-
ling moment to the failure moment of a design, which is defined as the safety fac-
tor, can be only calculated after optimisation. The appropriate buckling critical
design can be selected from the Pareto front showing the buckling moment versus
the material failure moment of different designs.

The maximum strength design is chosen as the initial point of the Pareto front
and the corresponding optimisation problem, which is a min-max problem, is for-
mulated as:

min
V

max(rs j ) (6.3)

The second point on the Pareto front is found by solving the optimisation problem
in equation 6.2, initialised from the maximum strength design, and with d slightly
greater than the maximum failure index in the maximum strength design. Other
points on the Pareto front are found by solving the constrained optimisation prob-
lem in equation 6.2, initialised from the previous point on the Pareto front, and by
relaxing the constraint on the failure index, d , step by step. Using this strategy, the
constrained optimisation problem in equation 6.2 is always started from a feasible
design and the points on the Pareto front are found until the improvement in the
buckling moment between two consecutive points is less than a certain value. In
order to check if any further improvement in the buckling moment is possible, the
end point on the Pareto front is the maximum buckling moment design obtained
from solving equation 6.1.

Each theoretical constant thickness laminate design on the Pareto front is found
by solving the global and local optimisation problems in the first step of the multi-
step optimisation problem using the successive approximation strategy described
in subsection 4.4. In the first step of the multi-step optimisation framework, only
two in-plane lamination parameters, V1A and V3A , and two out of plane lamination
parameters, V1D and V3D , are used as design variables to find the theoretical bal-
anced symmetric laminate designs. The multi-modality of the buckling moment
maximisation of the considered circular cylinder under bending is 60 buckling
modes. The critical conservative Tsai-Wu failure envelope for the material prop-
erties listed in table 6.1 is the fourth order envelope (see section 5.2), which can be
expressed as two intersecting elliptical envelopes (see section 5.3) resulting in two
failure indices at each discretisation point in the cross-section. In addition, in the
bending problems, two failure indices are considered for each discretisation point
in the cross-section; one for the top and one for the bottom surface (section 5.4).
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FIGURE 6.1: Pareto fronts of buckling moment versus failure moment for theoretical constant stiff-
ness and variable stiffness constant thickness laminate designs of the circular cylinder under bending,
Note: Mb−l i n = linear buckling moment from the semi-analytical finite difference (SAFD), M f = fail-
ure moment from SAFD and conservative Tsai-Wu failure envelope, QItheo = theoretical quasi-isotropic
laminate, C Stheo = theoretical constant stiffness laminates, V Stheo = theoretical variable stiffness lami-
nates, bu = maximum buckling capacity design, bust = selected design for maximum buckling capacity
with strength constraints, and st = maximum strength design

Therefore, four failure indices exist at each discretisation point in the cross-section
of the considered circular cylinder. The large number of strength constraints in
equation 6.2 is handled in a constraint screening strategy which considers only a
small set of constraints, within the 5% most critical constraints, and updates this
set in each design iteration of the successive approximation strategy.

The Pareto fronts showing the buckling moment versus the failure moment of
theoretical CS and VS designs for the circular cylinder under bending are plotted
in figure 6.1. To construct the Pareto front in figure 6.1, the failure moment of
the maximum strength design is chosen as the design moment and the value of
d is increased in steps of 0.25, starting from d = 1.25. At d = 1, the failure index
is constrained to be equal or less than the failure index of the maximum strength
design and hence the design for d = 1 is the maximum strength design.

As it is clear from figure 6.1, theoretical CS and VS laminate designs for maxi-
mum buckling moment, C S −butheo and V S −butheo , for the considered circular
cylinder under bending are placed above the diagonal line and hence are material
failure critical. Among the buckling critical designs on each Pareto front, which



{{6

152 6. OPTIMISATION RESULTS FOR UNSTIFFENED CYLINDERS

TABLE 6.2: Linear and non-linear buckling moments and failure moments of theoretical quasi-
isotropic, QItheo , selected theoretical constant stiffness, C S −busttheo , and selected theoretical vari-
able stiffness constant thickness, V S−busttheo , laminate designs for maximum buckling moment with
strength constraints in the circular cylinder under bending, Note: Mb−l i n = linear buckling moment
from the semi-analytical finite difference (SAFD) and AbaqusTM, Mb−nonli n = nonlinear buckling mo-
ment from AbaqusTM, M f = failure moment from SAFD and conservative Tsai-Wu failure envelope and
Imp = improvements of V S −busttheo over C S −busttheo calculated as (M(V S)−M(C S))/M(C S)

Design QItheo C S −busttheo V S −busttheo Imp(%)
Mb−l i n (SAFD) [kN.m] 601 622 799 28.5
Mb−l i n (AbaqusTM) [kN.m] 592 630 808 28.2
Mb−nonli n (AbaqusTM) [kN.m] 565 584 749 28.3
M f (SAFD) [kN.m] 581 744 902 21.1

are placed below the diagonal line, the maximum buckling moment design with
an acceptable safety factor is selected for retrieving the realistic design. The se-
lected theoretical designs, C S −busttheo and V S −busttheo , have safety factors of
1.19 and 1.12 based on the semi-analytical finite difference (SAFD) results which
correspond to d = 2 and d = 1.75, respectively.

The buckling and failure moments of the theoretical quasi-isotropic, QItheo ,
selected theoretical CS, C S −busttheo , and selected theoretical VS, V S −busttheo ,
laminate designs and the improvements of V S −busttheo over C S −busttheo de-
sign, Imp, are shown in table 6.2. The linear buckling moments from the SAFD are
compared with the linear and nonlinear buckling moments computed from the
commercial finite element code AbaqusTM using clamped boundary conditions
similar to Blom et al. [17]. The linear buckling moments from SAFD are in good
agreement with those obtained from AbaqusTM with less than 2% difference. The
amount of improvement in the linear buckling moment of the V S −busttheo over
the C S −busttheo laminate design is 28.2% based on the AbaqusTM results.

To obtain the nonlinear buckling moment, first a nonlinear static analysis is
performed on the cylindrical shell under a bending moment which is less than but
close to the linear buckling moment. Then a linear buckling analysis is performed
on the deformed shape of the cylindrical shell which is obtained from the nonlin-
ear static analysis. Nonlinear buckling moment is the sum of the static bending
moment and the linear buckling moment. The nonlinear buckling moments are
maximum 8% lower than the linear buckling moments from AbaqusTM. This can
be interpreted as no significant loss of stiffness happens in the prebuckling regime.
Based on the AbaqusTM results, the amount of improvement in the nonlinear buck-
ling moment of the V S −busttheo over the C S −busttheo laminate design is 28.3%
which is very similar to the improvement in the linear buckling moment.
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The lamination parameters for three theoretical CS laminate designs, the max-
imum strength design, C S − sttheo , the selected maximum buckling moment de-
sign with strength constraints, C S−busttheo , and the maximum buckling moment
design, C S −butheo , are:

C S − sttheo : [V1A ,V3A ,V1D ,V3D ] = [0.94,1.00,0.84,1.00]

C S −busttheo : [V1A ,V3A ,V1D ,V3D ] = [0.14,0.23,0.34,−0.48]

C S −butheo : [V1A ,V3A ,V1D ,V3D ] = [−0.04,0.10,0.24,−0.51]

The lamination parameter distributions for three theoretical VS laminate de-
signs; the maximum strength design, V S − sttheo , the selected maximum buckling
moment design with strength constraints, V S−busttheo , and the maximum buck-
ling moment design, V S −butheo , are shown in figure 6.2.

Improvement mechanisms
The mechanisms of buckling moment improvement due to circumferential stiff-
ness tailoring, are investigated by inspecting the axial strain and sectional force
distributions around the circumference and the critical buckling mode shapes of
theoretical laminate designs, QItheo , C S −busttheo and V S −busttheo of the cir-
cular cylinder under bending. The axial strain and sectional force distributions at
the cross-section, which is placed in the middle of two end cross-sections, are ob-
tained from AbaqusTM and plotted in figure 6.3 versus the normalised distance in
the circumferential direction from the point with the maximum axial tension.

As it is clear from figure 6.3(a), the axial strain distribution of all the three theo-
retical laminate designs has a sinusoidal pattern since the two end cross-sections
of the cylinder remain planar. In the QItheo and C S −busttheo laminate designs,
zero axial strains happen at 0.25 and 0.75 of the normalised circumferential dis-
tance while this is not the case for the V S − busttheo laminate design. In other
words, the neutral axis in the cross-section of the QItheo and C S −busttheo lam-
inate designs is coincident with the diameter of the circular cross-section about
which the bending moment is applied, while the neutral axis in the cross-section
of the V S −busttheo laminate design is shifted toward the tension side.

As depicted in figure 6.3(b), due to uniform stiffness distribution of the QItheo

and C S − busttheo designs, the axial section force distribution is sinusoidal and
zero axial section forces happen at 0.25 and 0.75 of the normalised circumferential
distance. The axial section force distribution is the same for the QItheo and C S −
busttheo designs, while as shown in figure 6.3(a), the magnitudes of the maximum
axial compressive and tensile strains for C S−busttheo design are less than those for
the QItheo design. Therefore, the C S −busttheo design is stiffer than QItheo in the
axial direction. The buckling moment improvement of the C S−busttheo laminate
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FIGURE 6.2: Distribution of lamination parameters in theoretical variable stiffness constant thickness
laminate for the maximum strength design, V S − sttheo , the selected design for maximum buckling
moment with strength constraints, V S −busttheo , and the maximum buckling moment design, V S −
butheo , of the circular cylinder under bending, Note: circumferential distance starts from the point with
the maximum axial tension
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FIGURE 6.3: Axial strain and axial section force of theoretical quasi-isotropic, QItheo , selected theo-
retical constant stiffness, C S −busttheo , and selected theoretical variable stiffness constant thickness,
V S −busttheo , laminate designs for maximum buckling moment with strength constraints in the cir-
cular cylinder under bending based on AbaqusTM results, Note: circumferential distance starts from the
point with the maximum axial tension
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design with respect to the QItheo laminate design is merely due to the change of
laminate stiffness.

The axial section force of the V S − busttheo laminate design is calculated at
the same bending moment as the C S −busttheo laminate designs. The axial sec-
tion force distribution of the V S −busttheo laminate design is not sinusoidal and
is almost uniform on the compression side. The magnitude of maximum axial
compressive section force for the V S − busttheo laminate design is less than the
C S −busttheo laminate designs, while the maximum axial tensile section force for
the V S−busttheo laminate design is larger than the C S−busttheo laminate designs.
Therefore, the buckling moment of the V S−busttheo laminate design is improved
with respect to the C S −busttheo laminate design due to the lower magnitude of
the maximum axial compressive section force in the V S −busttheo laminate de-
sign. This load redistribution mechanism, which increases the buckling moment,
is due to the circumferential stiffness tailoring that reduces the local stiffness in
the compression side of the cross-section and stiffens the tension side in the axial
direction. Therefore, the axial section load is released in the compression side and
transferred to the tension side.

Although the buckling modes are very close, numerically critical linear buck-
ling mode shapes for the QItheo , C S−busttheo and V S−busttheo laminate designs
of the circular cylinder are shown in figure 6.4. In the C S −busttheo and especially
V S −busttheo laminate designs, the buckling modes expand to a larger area in the
compression side of the cross-section, which means that the material is used more
efficiently.

6.2.2 THEORETICAL VARIABLE THICKNESS LAMINATE
The buckling moment maximisation problem for finding the theoretical variable
thickness VS laminate design is formulated as:

min
V,H

max(rbk
)

subject to (6.4)

1

n

n∑
j=1

H j ≤ HC T and Hmi n ≤ H j ≤ Hmax

This problem is formulated similar to the buckling moment maximisation prob-
lem for finding the theoretical constant thickness laminate design, equation 6.1,
with an additional design variable and two additional constraints. The additional
design variable, H, is the vector of laminate thickness at the discretisation points.
The additional constraints restrain the average laminate thickness, and hence the
weight, of the variable thickness laminate to be equal or less than the laminate
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(a) QItheo (b) C S −busttheo (c) V S −busttheo

FIGURE 6.4: Critical buckling modes of theoretical quasi-isotropic, QItheo , selected theoretical con-
stant stiffness, C S − busttheo , and selected theoretical variable stiffness constant thickness, V S −
busttheo , laminate designs for maximum buckling moment with strength constraints in the circular
cylinder under bending from AbaqusTM

thickness of the constant thickness laminate, HC T , and set the lower and upper
bounds of the varying laminate thickness to Hmi n and Hmax , respectively. The
optimisation problems for maximum buckling moment with strength constraints
and maximum strength of variable thickness laminate designs are formulated sim-
ilar to equations 6.2 and 6.3 for constant thickness laminate designs and by adding
the constraints on the laminate thickness in equation 6.4.

The theoretical variable thickness laminate designs are obtained by solving
the formulated global and local optimisation problems, as described in subsec-
tion 4.4.2, in the first step of the multi-step optimisation framework. Similar to the
constant thickness VS laminate, the variable thickness VS laminate are balanced
symmetric since only four lamination parameters are considered as the design
variable in the first step of the multi-step optimisation framework. Multi-modality
of the buckling moment maximisation problem is 60 and the constraint screen-
ing strategy is used for solving the buckling moment maximisation problem with
strength constraints. The circular cylinder with the baseline constant thickness VS
laminate has 24 layers and the circular cylinder with the variable thickness VS lam-
inate is obtained for two cases; in the first case the laminate thickness is bounded
between 16 and 32 layers and in the second case is bounded between 20 and 28
layers.

Pareto fronts showing the buckling moment versus failure moment of the the-
oretical variable thickness VS laminates are obtained using the same strategy de-
scribed in subsection 6.2.1 for constant thickness laminates. These Pareto fronts
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FIGURE 6.5: Pareto fronts of buckling moment versus failure moment for theoretical variable stiffness
constant thickness and variable stiffness variable thickness laminate designs of the circular cylinder un-
der bending, Note: Mb−l i n = linear buckling moment from the semi-analytical finite difference (SAFD)
and M f = failure moment from SAFD and conservative Tsai-Wu failure envelope, V Stheo = theoretical
variable stiffness constant thickness laminates, V SV Ttheo = theoretical variable stiffness variable thick-
ness laminates, bu = maximum buckling capacity design, bust = selected design for maximum buckling
capacity with strength constraints, st = maximum strength design

are shown in figure 6.5 and compared with the Pareto fronts of the theoretical con-
stant thickness VS laminates.

As it is clear from figure 6.5, the theoretical variable thickness VS laminate de-
signs for maximum buckling moment, V SV T −butheo , are above the diagonal line
and material failure critical. Among the buckling critical theoretical variable thick-
ness VS laminate designs, which are placed below the diagonal line, the designs
with the maximum buckling moments are selected. The selected theoretical vari-
able thickness VS designs, V SV T −busttheo , with 16 to 32 layers and 20 to 28 layers
have safety factors of 1.08 and 1.20, respectively, and both correspond to d = 1.5
when the bending moment of the maximum strength design is selected as the de-
sign moment.

In tables 6.3 and 6.4, the linear buckling and failure moments of the V SV T −
busttheo designs are listed and compared with those of the V S −busttheo designs
and the amount of improvements are shown. The linear buckling moments from
the SAFD solution and AbaqusTM are in good agreement with less than 2% differ-
ence. The amounts of improvement in the linear buckling moments of the V SV T−
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TABLE 6.3: Linear and non-linear buckling moments and failure moment of the selected variable stiff-
ness constant thickness, V S −busttheo , and the selected variable thickness (20 ≤ No. of layers ≤ 28)
variable stiffness, V SV T −busttheo , laminate designs for maximum buckling moment with strength
constraints in the circular cylinder under bending, Note: Mb−l i n = linear buckling moment from the
semi-analytical finite difference (SAFD) and AbaqusTM, Mb−nonli n = nonlinear buckling moment from
AbaqusTM, M f = failure moment from SAFD and conservative Tsai-Wu failure envelope and Imp = im-
provements of V SV T −busttheo over V S −busttheo calculated as (M(V SV T )−M(V S))/M(V S)

Design V S −busttheo V SV T −busttheo Imp(%)
Mb−l i n (SAFD) [kN.m] 799 918 14.8
Mb−l i n (AbaqusTM) [kN.m] 808 934 15.5
Mb−nonli n (AbaqusTM) [kN.m] 749 881 17.7
M f (SAFD) [kN.m] 902 1193 30

TABLE 6.4: Linear and non-linear buckling moments and failure moment of the selected variable stiff-
ness constant thickness, V S −busttheo , and the selected variable thickness (16 ≤ No. of layers ≤ 32)
variable stiffness, V SV T −busttheo , laminate designs for maximum buckling moment with strength
constraints in the circular cylinder under bending, Note: Mb−l i n = linear buckling moment from the
semi-analytical finite difference (SAFD) and AbaqusTM, Mb−nonli n = nonlinear buckling moment from
AbaqusTM, M f = failure moment from SAFD and conservative Tsai-Wu failure envelope and Imp = im-
provements of V SV T −busttheo over V S −busttheo calculated as (M(V SV T )−M(V S))/M(V S)

Design V S −busttheo V SV T −busttheo Imp(%)
Mb−l i n (SAFD) [kN.m] 799 1156 44.7
Mb−l i n (AbaqusTM) [kN.m] 808 1176 45.4
Mb−nonli n (AbaqusTM) [kN.m] 749 1097 46.5
M f (SAFD) [kN.m] 902 1344 49.1

busttheo laminates with 20 to 28 layers and 16 to 32 layers over the V S −busttheo

laminate are 15.5% and 45.4%, respectively, based on the AbaqusTM results. The
nonlinear buckling moments are dropped up to 9% with respect to the linear buck-
ling moments, which shows that the stiffness is not decreased significantly before
the buckling. The amounts of improvement in the nonlinear buckling moments
of the V SV T −busttheo laminates with 20 to 28 layers and 16 to 32 layers over the
V S −busttheo laminate are 17.7% and 46.5%, respectively, based on the AbaqusTM

results.

The distributions of lamination parameters and laminate thickness in the the-
oretical variable thickness VS laminate designs for the maximum strength design,
V SV T − sttheo , selected design, V SV T − busttheo , and the maximum buckling,
V SV T −butheo , designs of the circular cylinders, with laminate thickness bounded
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FIGURE 6.6: Distribution of laminate thickness in theoretical variable thickness (16 ≤ No. of layers
≤ 32) variable stiffness laminate designs for maximum strength, V SV T−sttheo , for maximum buckling
moment with strength constraints, V SV T −busttheo , and for maximum buckling moment, V SV T −
butheo , of the circular cylinder under bending

between 16 and 32 layers, are shown in figures 6.7 and 6.6. The laminate thickness
distribution in figure 6.6 is such that the maximum laminate thickness is assigned
to the cross-sectional areas with the maximum compression and tension and other
areas in the cross-section have the minimum laminate thickness. The area with the
maximum laminate thickness in the compression side is larger than this area in the
tension side. The distributions of lamination parameters of the variable thickness
VS laminates in figures 6.7 show similarities to the distributions of lamination pa-
rameters of the constant thickness VS laminates in figure 6.2.

Improvement mechanisms
The distribution of axial strain and sectional force around the circumference of the
V SV T −busttheo laminates are plotted in figures 6.8 and compared with those of
the V S −busttheo laminates to investigate the effect of laminate thickness varia-
tion. The distributions are based on the AbaqusTM results and plotted versus the
normalised circumferential distance from the point with the maximum axial ten-
sion in the cross-section of the circular cylinder.

The axial strain distributions of the theoretical VS designs are sinusoidal as de-
picted in figure 6.8(a). The neutral axis of the V SV T −busttheo laminate with 20
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FIGURE 6.7: Distribution of lamination parameters in theoretical variable thickness (16 ≤ No. of layers
≤ 32) variable stiffness laminate designs for the maximum strength, V SV T − sttheo , for maximum
buckling moment with strength constraints, V SV T −busttheo , and for maximum buckling moment,
V SV T −butheo , of the circular cylinder under bending
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FIGURE 6.8: Axial strain and axial section force of theoretical variable stiffness constant thickness, V S−
busttheo , and theoretical variable stiffness variable thickness, V SV T −busttheo , laminate designs for
maximum buckling moment with strength constraints in the circular cylinder under bending based on
AbaqusTM results, Note: circumferential distance starts from the point with the maximum axial tension
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to 28 layers is coincident with the diameter of the cross-section about which the
bending moment is applied, however, the neutral axis in the cross-section of the
V S−busttheo and V SV T −busttheo laminate design with 16 to 32 layers is shifted
towards the tension and compression sides, respectively.

Figure 6.8(b) shows that the distributions of the axial section force in the V SV T−
busttheo laminate designs have almost the same pattern as the V S−busttheo lam-
inate design. However, the magnitudes of the maximum axial section forces in
the tension and compression sides of the V SV T − busttheo laminates are larger
and slightly larger than the V S − busttheo laminate, respectively. These differ-
ences happen in the cross-sectional areas with the maximum laminate thickness
and are larger for the V SV T − busttheo laminate with 16 to 32 layers than the
V SV T −busttheo laminate with 20 to 28.

The in-plane and out of plane stiffness matrices are proportional to the first
and third power of the laminate thickness. Although the in-plane stiffness matrix
is increased by increasing the laminate thickness in the compression side, the ax-
ial section load is not considerably changed since the magnitude of the maximum
axial strain in the compression side is reduced in the V SV T −busttheo laminates.
However, the out of plane stiffness in the buckling critical areas is increased with
the third power of the laminate thickness and hence the buckling moment is in-
creased. Since the maximum axial strain in the tension side is almost the same in
the V S − busttheo and V SV T − busttheo laminates, the axial section load in the
tension side is increased in the areas with the maximum thickness laminate in
V SV T −busttheo . The numerically critical buckling modes of the V SV T −busttheo

laminates are shown in figure 6.9.

6.2.3 REALISTIC CONSTANT THICKNESS LAMINATE

The realistic CS and constant thickness VS laminate designs include the stacking
sequence of the straight and steered fibre laminates, respectively, which are re-
trieved from the selected theoretical CS and constant thickness VS laminate de-
signs in the second step of the multi-step optimisation framework. For the circular
cylinder, the stacking sequence of the straight and steered fibre laminates are re-
trieved for a 24 layer balanced symmetric laminate; [±θ1,±θ2,±θ3,±θ4,±θ5,±θ6]s .

The realistic CS laminate design, C S −bustr eal , is retrieved from the selected
theoretical CS laminate design, C S −busttheo , using a genetic algorithm (GA) by
minimising the squares distance between the theoretical and realistic lamination
parameters in the lamination parameters space. The stacking sequence of the re-
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(a) V SV T − busttheo
(20 ≤ No. of layers ≤ 28)

(b) V SV T − busttheo
(16 ≤ No. of layers ≤ 32)

FIGURE 6.9: Critical buckling modes of theoretical variable stiffness variable thickness, V SV T −
busttheo , laminate designs for maximum buckling moment with strength constraints in the circular
cylinder under bending from AbaqusTM

trieved realistic CS laminate design, C S −bustr eal , is:

C S −bustr eal (circular cylinder) :[±θ1,±θ2,±θ3,±θ4,±θ5,±θ6]s =
[±42.3,±40.2,±18.6,02,±81.2,±83.7]s

(6.5)

The realistic VS laminate design, V S −bustr eal , is retrieved from the selected
theoretical VS laminate design, V S − busttheo , in the second step of the multi-
step optimisation framework. The optimum fibre angle distribution of the real-
istic VS laminate design, V S−bustr eal , is obtained from the optimisation problem
in equation 4.42 which minimises of the convex conservative separable approx-
imation of the complementary Lagrangian, built at the theoretical design, V S −
busttheo , subject to a constraint on the average steering curvature. The optimisa-
tion problem in equation 4.42 is solved using a gradient-based optimiser which is
initialised with a fibre angle distribution obtained from GA.

Tightening the constraint on the average steering curvature, limits the rate of
change of fibre angles and hence the amount of buckling moment improvement
due to fibre steering. By increasing the allowable average steering curvature, the
improvement in the buckling moment of the retrieved realistic laminates is in-
creased. However, even for a large average steering curvature, the buckling mo-
ment of the realistic laminate designs is less than the theoretical designs. This
is mainly due to the limited number of layers which are supposed to provide the



6.2. CIRCULAR CYLINDER UNDER BENDING 165

{{6

theoretical optimum stiffness distribution. Here, the realistic VS laminate design,
V S−bustr eal , of the circular cylinder under bending is retrieved at an enough large
average steering curvature of κ = 161.42 m−1 (4.1 in−1), such that increasing the
average steering curvature beyond that does not improve the buckling moment of
the retrieved realistic design.

The distribution of lamination parameters for the theoretical, GA obtained and
realistic laminate designs are depicted in figure 6.10. It is clear from figure 6.10 that
the distribution of lamination parameters obtained from GA, has a zigzag pattern,
while the distribution of lamination parameters in the realistic laminate is smooth
due to the application of an average steering curvature constraint. It is also visible
that the distribution of lamination parameters in the realistic laminate is some-
what similar to the theoretical laminate. Although the out of plane lamination pa-
rameters, V2D and V4D , are zero in the theoretical balanced symmetric laminate,
V2D and V4D have small non-zero values in the realistic balanced symmetric lami-
nate due to the limited number of layers. The difference in the distribution of other
four lamination parameters, V1A , V3A , V1D , and V3D , in the theoretical and realistic
laminates is also interpreted as a result of limited number of layers.

The buckling and failure moment for the C S−bustr eal and V S−bustr eal lam-
inate designs and the improvements of V S −bustr eal over the C S −bustr eal lam-
inate designs are shown in table 6.5. The difference between the buckling mo-
ments calculated from SAFD and AbaqusTM is less than 2%. The safety factors of
the C S −bustr eal and V S −bustr eal laminate designs, based on the SAFD results,
are 1.03 and 1.12, respectively. The percentage of variation of the buckling and
failure moments of the realistic designs with respect to the theoretical designs, in
table 6.2, are shown inside the parentheses. The linear and nonlinear buckling
moments of the realistic laminate designs are up to 5% less than the theoretical
laminate designs based on AbaqusTM results. This reduction is interpreted as a re-
sult of limited number of layers in the C S −bustr eal and V S −bustr eal laminate
designs, considering the fact that the V S −bustr eal laminate is retrieved at a large
average steering curvature of κ= 161.42 m−1 (4.1 in−1), beyond which the buckling
moment is not improved. Improvements in the linear and non-linear buckling mo-
ments of the V S −bustr eal over the C S −bustr eal laminate design are 29.6% and
23.9% based on AbaqusTM results. The nonlinear buckling moments are dropped
up to 9% with respect to the linear buckling moments.

The linear buckling and failure moments of the best VS laminate design in [17]
are reported as 699.12 kN.m (6188 in-kips) and 700.25 kN.m (6198 in-kips), respec-
tively, providing a safety factor of 1.001. The linear buckling and failure moments
of the V S − bustr eal laminate design in table 6.5 are 766.80 kN.m (6787 in-kips)
and 862.49 kN.m (7634 in-kips) from the SAFD analysis and lead to a safety factor of
1.124, which is about 12% higher. The linear buckling moment of the V S−bustr eal
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FIGURE 6.10: Distribution of lamination parameters in the theoretical variable stiffness constant thick-
ness laminate, V S −busttheo , laminate design obtained from GA and realistic variable stiffness con-
stant thickness laminate, V S −bustr eal , of the circular cylinder under bending
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TABLE 6.5: Linear and non-linear buckling moments and failure moment of realistic constant stiffness,
C S −bustr eal , and realistic variable stiffness constant thickness, V S −bustr eal , laminate designs for
maximum buckling moment with strength constraints in the circular cylinder under bending, Note:
Mb−l i n = linear buckling moment from SAFD and AbaqusTM), Mb−nonli n = nonlinear buckling mo-
ment from AbaqusTM, M f = failure moment from SAFD and conservative Tsai-Wu failure envelope, Imp
= improvements of V S −bustr eal over C S −bustr eal calculated from (M(V S)−M(C S))/M(C S) and the
values inside parenthesis show the percentage of drop with respect to the corresponding values of the
theoretical designs in table 6.2

Design C S −bustr eal V S −bustr eal Imp(%)
Mb−l i n (SAFD) [kN.m] 607 (-2 %) 767 (-4 %) 26.2
Mb−l i n (AbaqusTM) [kN.m] 602 (-5 %) 780 (-4 %) 29.6
Mb−nonli n (AbaqusTM) [kN.m] 577 (-1 %) 716 (-5 %) 23.9
M f (SAFD) [kN.m] 623 (-19 %) 862 (-5 %) 38.4

laminate design from AbaqusTM analysis is 780.24 kN.m (6906 in-kips) in table 6.5
which is 11.6% higher than the corresponding value of the design presented in [17].
The maximum allowable deflection value of 1.58e−6 m (6.22e−5 in) under 0.11298
kN.m (1 in-kips) bending moment, is considered to be a constraint in [17]. This
displacement value for the V S−bustr eal design in table 6.5 is 1.37e−9 m (5.38e−8
in), which satisfies the constraint. The superior performance of the V S −bustr eal

design in table 6.5 with respect to the VS laminate design in [17] is due to the lim-
ited design space dictated from using the functional fibre path definition, using a
laminate with fixed ply angle layers, [±45,±θ1,0,90,±θ3,0,90,±θ5]s , application of
10% robustness constraint and different steering curvature in [17].

The steered fibre paths are obtained from the fibre angle distributions using the
streamline analogy in the third step of the multi-step optimisation framework. The
retrieved fibre paths for realistic designs are shown in figure 6.11 on the expanded
surface of the circular cylinder.

The distributions of the axial strain and sectional force in the realistic lami-
nate designs are plotted in figures 6.12 and 6.13 based on AbaqusTM results. These
distributions are very similar and close to the distributions of the axial strain and
sectional force in the theoretical laminate designs and hence the buckling mo-
ment improvement mechanisms in the realistic laminates are the same as those
described for the theoretical laminates in subsection 6.2.1.

The numerically critical buckling mode shapes of the C S −bustr eal and V S −
bustr eal laminate designs are depicted in figure 6.14. These buckling modes are
expanded to a large area in the compression side and show some twisting defor-
mation due to the bending-twisting coupling. The bending-twisting coupling is
due to the existence of small non-zero values of V2D and V4D lamination parame-



{{6

168 6. OPTIMISATION RESULTS FOR UNSTIFFENED CYLINDERS

0

1/8

2/8

3/8

4/8

5/8

6/8

7/8

1

Normalised axial distance [-]

N
o

rm
a

li
se

d
 c

ir
c

u
m

fe
re

n
ti

a
l 

d
is

ta
n

c
e

 [
−

]

0 1/4 2/4 3/4 1

(a) ±θ1

0 1/4 2/4 3/4 1
0

1/8

2/8

3/8

4/8

5/8

6/8

7/8

1

Normalised axial distance [-]

N
o

rm
a

li
se

d
 c

ir
c

u
m

fe
re

n
ti

a
l 

d
is

ta
n

c
e

 [
−

]

(b) ±θ2

0 1/4 2/4 3/4 1
0

1/8

2/8

3/8

4/8

5/8

6/8

7/8

1

Normalised axial distance [-]

N
o

rm
a

li
se

d
 c

ir
c

u
m

fe
re

n
ti

a
l 

d
ir

e
c

ti
o

n
 [

−
]

(c) ±θ3

0 1/4 2/4 3/4 1
0

1/8

2/8

3/8

4/8

5/8

6/8

7/8

1

Normalised axial distance [-]

N
o

rm
a

li
se

d
 c

ir
c

u
m

fe
re

n
ti

a
l 

d
is

ta
n

c
e

 [
−

]

(d) ±θ4

0 1/4 2/4 3/4 1
0

1/8

2/8

3/8

4/8

5/8

6/8

7/8

1

Normalised axial distance [-]

N
o

rm
a

li
se

d
 c

ir
c

u
m

fe
re

n
ti

a
l 

d
is

ta
n

c
e

 [
−

]

(e) ±θ5

0 1/4 2/4 3/4 1
0

1/8

2/8

3/8

4/8

5/8

6/8

7/8

1

Normalised axial distance [-]

N
o

rm
a

li
se

d
 c

ir
c

u
m

fe
re

n
ti

a
l 

d
is

ta
n

c
e

 [
−

]

(f) ±θ6

FIGURE 6.11: Optimum steered fibre paths of the realistic variable stiffness constant thickness design,
V S −bustr eal , with a 24 ply balanced symmetric laminate, [±θ1,±θ2,±θ3,±θ4,±θ5,±θ6]s , plotted on
the expanded surface of the cylinder, retrieved from the theoretical variable stiffness constant thickness
design for maximum buckling moment with strength constraints, V S−busttheo , in the circular cylinder
under bending, Note: circumferential distance starts from the point with the maximum axial tension
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FIGURE 6.12: Axial strain and axial section force of realistic constant stiffness, C S − bustr eal , and
theoretical constant stiffness, C S − busttheo , laminate designs for maximum buckling moment with
strength constraints in the circular cylinder under bending based on AbaqusTM results, Note: circum-
ferential distance starts from the point with the maximum axial tension
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FIGURE 6.13: Axial strain and axial section force of realistic variable stiffness constant thickness, V S −
bustr eal , and theoretical variable stiffness constant thickness, V S − busttheo , laminate designs for
maximum buckling moment with strength constraints in the circular cylinder under bending based on
AbaqusTM results, Note: circumferential distance starts from the point with the maximum axial tension
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(a) C S −bustr eal (b) V S −bustr eal

FIGURE 6.14: Critical buckling modes of realistic constant stiffness, C S −bustr eal , and realistic vari-
able stiffness constant thickness, V S−bustr eal , laminate designs for maximum buckling moment with
strength constraints in the circular cylinder under bending from AbaqusTM

ters and hence D16 and D26 terms in the out of plane stiffness matrix of the realistic
designs. The D16 and D26 terms, which are small compared to the other terms of
the out of plane stiffness matrix for a balanced symmetric laminate, can be elimi-
nated by using infinite number of very thin layers.

6.3 ELLIPTICAL CYLINDER UNDER AXIAL COMPRESSION

Circumferential stiffness tailoring of elliptical cross-section cylinders under ax-
ial compression has been studied by Sun and Hyer [88]. The philosophy be-

hind their approach is to tailor the laminate stiffness such that all the points around
the circumference of the elliptical cylinder buckle at the same strain value. There-
fore, by eliminating the points which are more prone to buckling in a QI or CS
laminate through stiffness tailoring, the material is used more efficiency and the
buckling load is increased.

In this section, circumferential laminate stiffness tailoring of the same ellipti-
cal cylinder as the one studied by Sun and Hyer [88] is investigated using the de-
veloped framework for circumferential tailoring of general cross-section cylinders.
The semi-minor and semi-major axes of the elliptical cross-section are 125 mm
and 87.5 mm, respectively and the length of the cylinder is 320 mm. The lami-
nate thickness is 1.12 mm including 8 layers made of a medium modulus graphite-
epoxy fiber-reinforced composite material with the material properties listed in
table 6.6.
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TABLE 6.6: Material properties of a medium modulus graphite-epoxy [39]

Longitudinal modulus, E1 [GPa / psi] 130 / 18.855e6
Transverse modulus, E2 [GPa / psi] 9.70 / 1.407e6
Shear modulus, G12 [GPa / psi] 5 / 7.252e5
Poisson’s ratio, ν12 [-] 0.30
Longitudinal tensile strength, Xt [MPa / psi] 1500 / 2.176e5
Longitudinal compressive strength, Xc [MPa / psi] 1250 / 1.813e5
Transverse tensile strength, Yt [MPa / psi] 50 / 0.725e4
Transverse compressive strength, Yc [MPa / psi] 200 / 2.901e4
Shear strength, S [MPa / psi] 100 / 1.450e4

6.3.1 THEORETICAL CONSTANT THICKNESS LAMINATE
The theoretical constant thickness laminate designs for maximum buckling load
are found by solving the min-max optimisation problem in equation 6.1 in the first
step of the multi-step optimisation framework. The design variables in the first
step are four lamination parameters, V1A , V3A , V1D and V3D , to find the theoretical
balanced symmetric laminates. The multi-modality of the buckling load maximi-
sation problem for the elliptical cylinder is 100. The theoretical CS and constant
thickness VS laminate designs for maximum buckling load of the elliptical cylinder
under axial compression are buckling critical and hence consideration of strength
constraints in the optimisation problem is not required.

The buckling and failure loads of the theoretical QI, QItheo , maximum buck-
ling load CS, C S −butheo , and maximum buckling load VS ,V S −butheo , laminate
designs and the improvements of V S −butheo over C S −butheo design are shown
in table 6.7. The safety factors of the C S−butheo and V S−butheo laminate designs
are 2.05 and 1.61 based on the SAFD results. The linear and nonlinear buckling
loads are found from AbaqusTM using simply supported boundary conditions and
the difference between the linear buckling loads from AbaqusTM and SAFD is less
than 4%. Based on the AbaqusTM results, the nonlinear buckling load is dropped
up to 7% with respect to the linear buckling loads and the improvements in the lin-
ear and nonlinear buckling loads of the V S−butheo over the C S−butheo laminate
design are 36.5% and 37.5%, respectively.

The lamination parameters of the theoretical CS laminate design for maximum
buckling load, C S −butheo , are:

C S −butheo : [V1A ,V3A ,V1D ,V3D ] = [−0.14,0.07,0.15,−0.35] (6.6)

The distribution of lamination parameters of the theoretical VS designs for maxi-
mum buckling load, V S −butheo , is shown in figure 6.15.
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TABLE 6.7: Linear and non-linear buckling loads and failure load of theoretical quasi-isotropic, QItheo ,
selected theoretical constant stiffness, C S−butheo , and selected theoretical variable stiffness constant
thickness, V S −butheo , laminate designs for maximum buckling load in elliptical cylinder under ax-
ial compression, Note: Fb−l i n = linear buckling load from the semi-analytical finite difference (SAFD)
and AbaqusTM, Fb−nonl i n = nonlinear buckling load from AbaqusTM, F f = failure load from SAFD
and conservative Tsai-Wu failure envelope (chapter 5) and Imp = improvements of V S −busttheo over
C S −busttheo calculated from (FV S −FC S )/FC S

Design QItheo C S −butheo V S −butheo Imp(%)
Fb−l i n (SAFD) [kN] 156 168 229 36.7
Fb−l i n (AbaqusTM) [kN] 150 169 231 36.7
Fb−nonli n (AbaqusTM) [kN] 147 158 217 37.5
F f (SAFD) [kN] 363 345 369 7
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FIGURE 6.15: Distribution of lamination parameters in theoretical variable stiffness laminate design
for maximum buckling load, V S −butheo , of the elliptical cylinder under axial compression, Note: cir-
cumferential distance starts from the point at the end of the semi-minor axis



6.3. ELLIPTICAL CYLINDER UNDER AXIAL COMPRESSION 173

{{6

Improvement mechanisms
The distributions of the axial strain and sectional force of the QItheo , C S −butheo

and V S−butheo laminate designs of the elliptical cylinder are shown in figure 6.16.
These distributions are obtained from the AbaqusTM results and plotted versus the
normalised circumferential distance from the point at the end of the semi-minor
axis of the cross-section of the elliptical cylinder.

It is clear figure 6.16(a) that the axial strain distribution of the QItheo , C S −
butheo and V S − butheo laminate designs are uniform, because the two ends of
the cylinder remain planar and parallel. As it is shown in figure 6.16(b), the axial
sectional force of the QItheo and C S −butheo laminate designs are uniform due to
the uniform laminate stiffness distribution. However, the axial sectional force of
the V S −butheo laminate design is redistributed such that the axial compressive
sectional force in the areas of the elliptical cross-section with larger radius of cur-
vature is less than that in the areas with smaller radius of curvature. This is due
to circumferential stiffness tailoring which reduces the stiffness in the areas with
larger radius of curvature and stiffens the areas with smaller radius of curvature.

Numerically critical linear buckling mode shapes of the QItheo , C S−butheo and
V S −butheo laminate designs designs are shown in figure 6.17. In the QItheo and
C S−butheo laminate designs, cross-sectional areas with larger radius of curvature
are more prone to buckle. However, in the V S − butheo laminate design, due to
the axial sectional force redistribution in figure 6.16(b), the buckling modes are
expanded all around the elliptical cross-section. Therefore, the material around
the circumference is used more efficiently to maximise the buckling load.

6.3.2 THEORETICAL VARIABLE THICKNESS LAMINATE
The theoretical variable thickness laminate design for maximum buckling load is
obtained by solving the min-max optimisation problem in equation 6.4 in the first
step of the multi-step optimisation framework. Similar to the constant thickness
VS laminates, only four lamination parameters, V1A , V3A , V1D and V3D , are used
as the design variables in the first step to find the theoretical variable thickness
balanced symmetric laminates. The multi-modality of the buckling load maximi-
sation problem for the considered elliptical cylinder is 100. The elliptical cylinder
with a constant thickness laminate has 8 layers and the elliptical cylinder with a
variable thickness laminate is bounded between 4 and 12 layers. The theoretical
variable thickness VS laminate design for maximum buckling load, V SV T −butheo

is buckling critical and hence consideration of strength constraints is not neces-
sary.

The buckling and failure loads of the V SV T − butheo laminate design of the
elliptical cylinder are listed in table 6.8, and compared with those of the constant
thickness VS, V S −butheo , laminate design and the amount of improvements of
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FIGURE 6.16: Axial strain and axial section force of theoretical quasi-isotropic, QItheo , selected the-
oretical constant stiffness, C S −butheo , and selected theoretical variable stiffness constant thickness,
V S −butheo , laminate designs for maximum buckling load in the elliptical cylinder under axial com-
pression based on AbaqusTM results, Note: circumferential distance starts from the point at the end of
the semi-minor axis
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(a) QItheo (b) C S −butheo (c) V S −butheo

FIGURE 6.17: Critical buckling modes of theoretical quasi-isotropic, QItheo , selected theoretical con-
stant stiffness, C S−butheo , and selected theoretical variable stiffness constant thickness, V S−butheo ,
laminate designs for maximum buckling load in the elliptical cylinder under axial compression from
AbaqusTM

TABLE 6.8: Linear and non-linear buckling load and failure load of variable stiffness constant thickness,
V S −butheo , and variable thickness (4 < No. of layers < 8) variable stiffness, V SV T −butheo , laminate
designs for maximum buckling load in elliptical cylinder under axial compression, Note: Fb−l i n = linear
buckling load from the semi-analytical finite difference (SAFD) and AbaqusTM, Fb−nonli n = nonlinear
buckling load from AbaqusTM, F f = failure load from SAFD and conservative Tsai-Wu failure envelope
and Imp = improvements of V SV T −butheo over V S −butheo calculated as (FV SV T −FV S )/FV S

Design V S −butheo V SV T −butheo Imp(%)
Fb−l i n (SAFD) [kN] 229 285 24.4
Fb−l i n (AbaqusTM) [kN] 231 286 24
Fb−nonli n (AbaqusTM) [kN] 217 270 24.4
F f (SAFD) [kN] 369 393 6.5

the V SV T −butheo over the V S −butheo laminate design are shown. The differ-
ence between the linear buckling loads from SAFD and AbaqusTM is less than 1%.
Based on the SAFD results, the safety factor of the V SV T −butheo laminate design
is 1.37. The nonlinear buckling load is reduced about 6% with respect to the lin-
ear buckling load, based on the AbaqusTM results. The improvements in the linear
and nonlinear buckling loads of the V SV T −butheo over the V S−butheo laminate
design are 24% and 24.4%, respectively, based on the AbaqusTM results.

The distribution of lamination parameters and laminate thickness for the V SV T−
butheo laminate design of the elliptical cylinder are shown in figures 6.18 and 6.19.
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FIGURE 6.18: Distribution of lamination parameters in theoretical variable thickness (4 ≤ No. of layers
≤ 12) variable stiffness laminate design for maximum buckling load, V SV T −butheo , in the elliptical
cylinder under axial compression
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Improvement mechanisms

The distributions of axial strain and sectional force of the V SV T −butheo laminate
design of the elliptical cylinder are shown in figure 6.20 and compared with these
distributions for the V S−butheo laminate design. These distributions are from the
AbaqusTM results and plotted versus the normalised circumferential distance from
the point at the end of the semi-minor axis.

As it is clear from figure 6.20(a), the distribution of axial strain of the V SV T −
butheo laminate design is uniform similar to the V S−butheo laminate design. This
is because the two end cross-sections of the elliptical cylinder under axial com-
pression remain planar and parallel. However, the axial compressive strain of the
V SV T −butheo laminate is less than the V S −butheo laminate, which means that
the V SV T −butheo laminate is stiffer than the V S −butheo laminate in the axial
direction.

The thickness distribution of the V SV T −butheo laminate design in figure ??,
further increases the in-plane stiffness and hence the axial section compression
load in the cross-sectional areas with smaller radius of curvature and further re-
duces it in the cross-sectional areas with larger radius of curvature, compared to
the V S −butheo laminate design. Although the cross-sectional areas with smaller
radius of curvature are more buckling resistant due to their geometric properties,
increasing the out of plane stiffness with the third power of the laminate thickness
in these areas, further increases the buckling resistance of these areas.

The numerically critical buckling modes of the elliptical cylinder with the V SV T−
butheo laminate is shown in figure 6.21. The expansion of the buckling mode in the
V SV T −butheo laminate design is limited to the cross-sectional areas with larger
radius of curvature. Comparing this with the all around the circumference expan-
sion of the buckling mode in the V S−butheo laminate design, in figure 6.17, shows
the effect of increased out of plane stiffness in the the cross-sectional areas with
smaller radius of curvature in the V SV T −butheo .

6.3.3 REALISTIC CONSTANT THICKNESS LAMINATE

The realistic CS and constant thickness VS laminate designs for maximum buck-
ling load of the elliptical cylinder are retrieved from the corresponding theoretical
designs in the second step of the multi-step framework. The straight and steered fi-
bre laminates are retrieved for an 8 layer balanced symmetric layup configuration;
[±θ1,±θ2]s .

The stacking sequence of the realistic CS laminate design, C S −bur eal , which
is retrieved from the theoretical CS laminate design for maximum buckling load,
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FIGURE 6.20: Axial strain and axial section force of theoretical variable stiffness constant thickness,
V S−butheo , and theoretical variable stiffness variable thickness, V SV T −butheo , laminate designs for
maximum buckling load in the elliptical cylinder under axial compression based on AbaqusTM results,
Note: circumferential distance starts from the point at the end of the semi-minor axis
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FIGURE 6.21: Critical buckling mode of variable stiffness variable thickness laminate design for maxi-
mum buckling load, V SV T −butheo , in elliptical cylinder under axial compression from AbaqusTM

C S −butheo , by using a GA is:

C S −bur eal (elliptical cylinder) :[±θ1,±θ2] = [±31/±78.5]s

(6.7)

The fibre angle distribution in each layer of the realistic constant thickness VS lam-
inate design, V S − bur eal , is obtained by using a GA for initialisation and sub-
sequently a gradient-based optimiser. As explained in section 4.5, the gradient-
based optimiser minimises the approximation of the complementary Lagrangian
built at the theoretical design, V S − butheo , subject to a constraint on the aver-
age steering curvature. The V S −bur eal laminate design for the elliptical cylinder
is retrieved at an average steering curvature of κ = 3 m−1 which beyond that the
buckling load of the retrieved realistic laminates is not improved.

The distribution of lamination parameters for the theoretical, GA obtained and
realistic laminate designs are depicted in figure 6.22. It is clear that the zigzag dis-
tribution of lamination parameters in the design obtained from GA is turned into a
smoother distribution of lamination parameters in the realistic design due to im-
posing an average steering curvature constraint. The difference in the distribution
of lamination parameters in the theoretical and realistic laminate designs, and as
such existence of small non-zero values for V2D and V4D , is due to the limited num-
ber of layers in the considered stacking sequence, [±θ1,±θ2].

The buckling and failure load of the C S − bur eal and V S − bur eal laminate
designs and the improvements of V S −bur eal over the C S −bur eal laminate de-
signs are shown in table 6.5. Based on the SAFD results, the safety factors of the
C S −bur eal and V S −bur eal laminate designs are 1.79 and 1.47, respectively. The
difference between the linear buckling loads from SAFD and AbaqusTM is up to
12%. As shown inside the parentheses, the linear and nonlinear buckling loads
of the realistic VS laminate designs are up to 17% less than those of the theoreti-
cal VS laminate designs based on the AbaqusTM results. This difference between
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FIGURE 6.22: Distribution of lamination parameters in the theoretical variable stiffness constant thick-
ness laminate, V S −butheo , laminate design obtained from GA and realistic variable stiffness constant
thickness laminate, V S −bur eal , of the elliptical cylinder under axial compression
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TABLE 6.9: Linear and non-linear buckling loads and failure load of realistic constant stiffness, C S −
bur eal , and realistic variable stiffness constant thickness, V S−bur eal , laminate designs for maximum
buckling load in the elliptical cylinder under axial compression, Note: Fb−l i n = linear buckling load
from the semi-analytical finite difference (SAFD) and AbaqusTM, Fb−nonli n = nonlinear buckling load
from AbaqusTM, F f = failure load from SAFD and conservative Tsai-Wu failure envelope, Imp = im-
provements of V S −bur eal over C S −bur eal calculated from (M(V S)−M(C S))/M(C S) and the values
inside parenthesis show the percentage of drop with respect to the corresponding theoretical designs in
table 6.7

Design C S −bur eal V S −bur eal Imp(%)
Fb−l i n (SAFD) [kN] 164 (-2%) 177 (-29%) 7.9
Fb−l i n (AbaqusTM) [kN] 167 (-1%) 197 (-17%) 17.9
Fb−nonli n (AbaqusTM) [kN] 157 (-1%) 190 (-14%) 21.3
F f (SAFD) [kN] 293 (-18%) 261 (-42%) -11.1

the realistic and theoretical CS laminate designs is about 1%. Therefore, the 17%
difference between the buckling loads of the realistic and theoretical VS laminate
designs can be interpreted as the result of poor initialisation of the gradient-based
optimiser, in addition to the limited number of layers, considering that an enough
large average steering curvature, κ = 3 m−1, is considered in the fibre angle re-
trieval process. Based on the AbaqusTM results, the nonlinear buckling loads is
decreased up to 7% with respect to the linear buckling loads and the linear and
non-linear buckling load improvements are 17.9% and 21.3%, respectively. The
linear buckling load of the V S −bur eal laminate design from AbaqusTM analysis is
197.4 kN which is 18.2% higher than the value of 166.9 kN reported in [39]

The steered fibre paths are obtained from the fibre angle distributions of the
V S −bur eal laminate design using the streamline analogy in the third step of the
multi-step optimisation framework. The retrieved fibre paths for the V S −bur eal

laminate design are shown on the expanded surface of the elliptical cylinder in
figure 6.11.

The numerically critical buckling mode shapes of the C S − bur eal and V S −
bur eal laminate designs are depicted in figure 6.24. These buckling mode of the
V S − bur eal laminate design is expanded all around the elliptical cross-section,
which shows that the material is used more efficiently.

The distributions of the axial strain and sectional force in the realistic lami-
nate designs are plotted in figure 6.25 based on AbaqusTM results. These distribu-
tions are very similar and close to the distributions of the axial strain and sectional
force in the theoretical laminate designs and hence the buckling load improve-
ment mechanisms in the realistic laminates are the same as those described for
the theoretical laminates in subsection 6.3.3.
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FIGURE 6.23: Optimum steered fibre paths of the realistic variable stiffness constant thickness design,
V S −bur eal , with an 8 ply balanced symmetric laminate, [±θ1,±θ2]s , plotted on the expanded surface
of the cylinder, retrieved from the theoretical variable stiffness constant thickness laminate design for
maximum buckling load, V S−butheo , in the elliptical cylinder under axial compression, Note: circum-
ferential distance starts from the point at the end of the semi-minor axis

(a) C S −bur eal (b) V S −bur eal

FIGURE 6.24: Critical buckling modes of realistic constant stiffness, C S −bur eal , and realistic variable
stiffness constant thickness, V S−bur eal , laminate designs for maximum buckling load in the elliptical
cylinder under axial compression from AbaqusTM
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FIGURE 6.25: Axial strain and axial section force of realistic constant stiffness, C S −bur eal , and the-
oretical constant stiffness, C S −butheo , laminate designs for maximum buckling load in the elliptical
cylinder under axial compression based on the AbaqusTM results, Note: circumferential distance starts
from the point at the end of the semi-minor axis
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FIGURE 6.26: Axial strain and axial section force of realistic variable stiffness constant thickness,
V S −bur eal , and theoretical variable stiffness constant thickness, V S −butheo , laminate designs for
maximum buckling load in the elliptical cylinder under axial compression based on the AbaqusTM re-
sults, Note: circumferential distance starts from the point at the end of the semi-minor axis





7
OPTIMISATION RESULTS FOR

STIFFENED CIRCULAR CYLINDER

7.1 INTRODUCTION

This chapter is devoted to circumferential laminate stiffness tailoring of circular
cylindrical shells stiffened with longitudinal stiffeners under bending moment

for maximum buckling capacity. In addition to the buckling capacity, material fail-
ure is considered as another design driver in the cases where the maximum buck-
ling capacity design is material failure critical. To this end, the semi-analytical so-
lutions for static and buckling analysis of longitudinally stiffened cylindrical shells,
developed in chapter 3, is used to evaluate the strains and buckling capacity. Sim-
ilar to the unstiffened cylinders, the strength is evaluated using the conservative
Tsai-Wu failure envelope in the strain space, which was introduced in chapter 5.
The approximations of the buckling capacity and strength, which are introduced
and developed in chapters 4 and 5 respectively, are used in the multi-step optimi-
sation framework developed in chapter 4 to find the optimum CS and circumfer-
entially VS laminate designs.

For case studies, two circular cylindrical shells under bending moment with
different thickness to radius ratios are selected. The laminate thickness and mate-
rial of both cylindrical shells are selected to be identical to those of the unstiffened
circular cylindrical shell described in chapter 6. The laminate thickness is 4.39 mm
(0.1728 in) including 24 layers made of AS4/8773 material, the properties of which
are given in table 6.1. As shown in figure 7.1, the small cylinder has a diameter of
609.6 mm (24 in) and a length of 812.8 mm (32 in), which are identical to the the

185
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(a) Large circular cylinder with 457.2 mm (18 in) length and
4.39 mm (0.1728 in) thickness and 12 stiffeners with cross-
section No. 5
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163

(b) Small circular cylinder
with 812.8 mm (32 in) length
and 4.39 mm (0.1728 in)
thickness and 8 stiffeners with
cross-section No. 4

FIGURE 7.1: Cross-sections of stiffened circular cylinders under bending moment, Note: j = number of
discretisation point in the cross-section

unstiffened circular cylinder in chapter 6. The large cylinder has a diameter of 2032
mm (80 in) and a length of 457.2 mm (18 in), to resemble a fuselage section placed
between two frames.

The small and large cylinders are stiffened with 8 stiffeners and 12 longerons
with I cross-sections No. 4 and 5, the geometric properties of which are shown in
figure 7.2 and listed in table 7.1. In both cylinders, the stiffeners are composed
of a quasi-isotropic (QI) laminate made of the same material, AS4/8773, as the
cylindrical shells. It is assumed that the stiffeners are perfectly bonded to the in-
ternal surface of the cylindrical shell as depicted in figure 7.1 and the shell-stiffener
debonding failure is not considered in the design process. In this chapter, circum-
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FIGURE 7.2: I cross-section of the stiffeners

TABLE 7.1: Geometric properties of different I cross-sections selected for stiffeners [113]

Property No. 4 No. 5

A [mm / in] 63.5 / 2.5 101.6 / 4
B [mm / in] 50.8 / 2.0 101.6 / 4
T [mm / in] 2.39 / 0.094 7.95 / 0.313
R [mm / in] 3.96 / 0.156 6.35 / 0.250
Area [1e3 mm2 / in2] 0.504 / 0.781 0.392 / 0.607
Ixx [1e6 mm4 / in4] 0.2735 / 0.6571 3.919 / 9.415
Iy y [1e6 mm4 / in4] 0.0493 / 0.1184 1.264 3̃.037

ferential laminate stiffness tailoring of the selected longitudinally stiffened circular
cylinders for maximum buckling moment are investigated in section 7.2. Since the
maximum buckling moment designs of the cylinder with larger thickness to radius
ratio are material failure critical, the laminate designs of this cylinder for maximum
buckling moment with strength constraints are studied in section 7.3.

7.2 MAXIMUM BUCKLING MOMENT DESIGN

In this section, first the theoretical CS and constant thickness VS laminate designs
for maximum buckling moment are obtained in subsection 7.2.1. To investigate

the effect of laminate thickness variation in addition to fibre steering, theoretical
variable thickness VS laminate designs are obtained and compared with the theo-
retical constant thickness VS laminate designs in subsection 7.2.2. The realistic CS
and constant thickness VS laminate designs are retrieved from the corresponding
theoretical designs in subsection 7.2.3.
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7.2.1 THEORETICAL CONSTANT THICKNESS LAMINATE

The theoretical CS and constant thickness VS laminate designs of the two circular
cylindrical shells are obtained for the maximum buckling capacity by solving the
optimisation problem in equation 6.1 in the first step of the multi-step optimisa-
tion framework. Two in-plane lamination parameters, V1A and V3A , and two out
of plane lamination parameters, V1D and V3D , are used as design variables to find
the theoretical balanced symmetric laminate designs and 60 buckling modes are
considered in the multi-modal buckling optimisation problem.

The optimum lamination parameters of the theoretical CS laminates designs
for maximum buckling moment, C S −butheo , are:

C S −butheo (Small cylinder) : [V1A ,V3A ,V1D ,V3D ] = [−0.67,0.29,−0.31,−0.34]

C S −butheo (Large cylinder) : [V1A ,V3A ,V1D ,V3D ] = [−0.90,0.50,−0.54,−0.08]

The distribution of lamination parameters for the maximum buckling moment
theoretical VS laminate designs, V S −butheo , of the circular cylinders are shown
in figure 7.3.

The buckling and material failure moment of the theoretical QI, QItheo , max-
imum buckling moment CS, C S − butheo , and maximum buckling moment VS,
V S − butheo , laminate designs and the improvements of V S − butheo over C S −
butheo designs for the two selected stiffened circular cylindrical shells are listed
in table 7.2. The linear buckling moment values from the SAFD method are in
good agreement with AbaqusTM results, showing a maximum difference of less
than 13%. Based on AbaqusTM results, the amount of improvement in the buckling
moment of V S−butheo over C S−butheo laminate designs are 68.2% and 43.2% for
the small and large cylinders, respectively.

Based on the SAFD results, the safety factors of the laminate designs of the
small cylinder are less than one, 0.34 and 0.43 for the C S −butheo and V S −butheo

designs respectively, while the safety factors of the laminate designs of the large
cylinder are greater than one, 1.06 and 1.01 for the C S−butheo and V S−butheo de-
signs respectively. Therefore, in the small cylinder, the laminate designs for maxi-
mum buckling moment are material failure critical and consideration of strength
constraints in the optimisation problem is essential. Maximum buckling moment
design of the small cylinder with consideration of strength constraints is inves-
tigated in section 7.3, however, for better understanding of the mechanisms in-
volved in buckling capacity improvement due to circumferential stiffness tailor-
ing, the theoretical the realistic laminate designs for maximum buckling capacity
of both cylinders are studied in this section and in section 7.2.3, respectively.



7.2. MAXIMUM BUCKLING MOMENT DESIGN 189

{{7

0 0.25 0.5 0.75 1
−1

−0.5

0

0.5

1

1.5

Normalised circumferential distance [−]

La
m

in
at

io
n 

pa
ra

m
et

er
s 

[−
]

 

 
V

1A
V

3A
V

1D
V

3D

(a) V S −butheo design design of the small cylinder

0 0.25 0.5 0.75 1
−1

−0.5

0

0.5

1

1.5

Normalised circumferential distance [−]

La
m

in
at

io
n 

pa
ra

m
et

er
s 

[−
]

 

 
V

1A
V

3A
V

1D
V

3D

(b) V S −butheo design design of the large cylinder

FIGURE 7.3: Distribution of lamination parameters in theoretical variable stiffness constant thickness
laminate designs for maximum buckling moment, V S−butheo , of the stiffened circular cylinders under
bending, Note: normalised circumferential distance starts from the point with maximum axial tension
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TABLE 7.2: Linear buckling moments and failure moments of theoretical quasi-isotropic, QItheo , the-
oretical constant stiffness, C S − butheo , and theoretical variable stiffness constant thickness, V S −
butheo , laminate designs for maximum buckling moment in stiffened circular cylinders under bend-
ing, Note: Mb−l i n = linear buckling moment from the semi-analytical finite difference (SAFD) and
AbaqusTM, M f = failure moment from SAFD and conservative Tsai-Wu failure envelope and Imp = im-
provements of V S −butheo over C S −butheo calculated as (M(V S)−M(C S))/M(C S)

Cylinder Bending moment QItheo C S −butheo V S −butheo Imp(%)
Small Mb−l i n (SAFD) [kN.m] 828 1304 2126 63.1
Small Mb−l i n (AbaqusTM) [kN.m] 816 1252 2107 68.2
Small M f (SAFD) [kN.m] 810 454 919 102.3
Large Mb−l i n (SAFD) [kN.m] 3841 8107 11974 47.7
Large Mb−l i n (AbaqusTM) [kN.m] 4327 8820 12629 43.2
Large M f (SAFD) [kN.m] 12769 8625 12150 40.9

Improvement mechanisms
The distributions of the axial section force and axial strain of the theoretical lami-
nate designs, QItheo , C S−butheo and V S−butheo , for the selected stiffened circular
cylindrical shells are obtained from AbaqusTM and plotted versus the normalised
circumferential distance in figures 7.4 and 7.5.

The two end cross-sections of the circular cylinder remain planar during bend-
ing deformation and hence the axial strain distributions of all laminate designs are
sinusoidal as depicted in figures 7.4(a) and 7.5(a). Similar to the unstiffened circu-
lar cylinder in subsection 6.2.1, the neutral axis of the QItheo and C S−butheo lam-
inate designs are coincident with the diameter of the circular cross-section, about
which the bending moment is applied, while the neutral axis of the V S −butheo

laminate design is moved toward the tension side.
The axial sectional force distributions of QItheo and C S −butheo laminate de-

signs, shown in figures 7.4(b) and 7.5(b), are also sinusoidal due to the uniform
stiffness distribution. Unlike the unstiffened circular cylinder, in the stiffened cir-
cular cylinders the axial section force distributions of QItheo , C S−butheo laminate
designs, which are calculated at the same bending moment, are not the same. The
reason is different load distributions between the cylindrical shell and the stiff-
eners due to the different laminate stiffness properties in QItheo and C S −butheo

designs. The magnitudes of the maximum axial compressive and tensile section
forces for C S −butheo design are less than those for the QItheo design, while the
magnitudes of the maximum axial compressive and tensile strains for C S −butheo

design are larger than those for the QItheo design. Therefore, the QItheo laminate
design is stiffer than the C S −butheo laminate design in the axial direction.

As shown in figures 7.4(b) and 7.5(b), the axial section force distributions of the
V S−butheo laminate designs are not sinusoidal due to the circumferential stiffness
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FIGURE 7.4: Axial strain and axial section force of theoretical quasi-isotropic, QItheo , theoretical con-
stant stiffness, C S−butheo , and theoretical variable stiffness constant thickness, V S−butheo , laminate
designs for maximum buckling moment in the stiffened small circular cylinders under bending based
on AbaqusTM results, Note: normalised circumferential distance starts from the point with the maxi-
mum axial tension and dash-dot lines indicate the location of stiffeners in the cross-section
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FIGURE 7.5: Axial strain and axial section force of theoretical quasi-isotropic, QItheo , theoretical con-
stant stiffness, C S−butheo , and theoretical variable stiffness constant thickness, V S−butheo , laminate
designs for maximum buckling moment in the stiffened large circular cylinders under bending based
on AbaqusTM results, Note: normalised circumferential distance starts from the point with the maxi-
mum axial tension and dash-dot lines indicate the location of stiffeners in the cross-section
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tailoring. The maximum axial tensile section force of the V S − butheo laminate
design is larger than that of the C S −butheo laminate design. In the unstiffened
cross-sectional areas, placed between stiffeners, the distribution of axial compres-
sive section force of the V S − butheo laminate design is almost uniform and its
magnitude is reduced compared to the C S −butheo laminate designs. In the stiff-
ened cross-sectional locations, the magnitude of axial compressive section force
of the V S−butheo laminate design is increased compared to the unstiffened cross-
sectional areas. The maximum magnitude of the axial compressive section force
in the stiffened cross-sectional locations of the V S−butheo laminate is larger than
that of the C S −butheo laminate design.

Therefore, the buckling capacity of the V S−butheo laminate is increased com-
pared to the C S −butheo laminate due to the reduced magnitude of axial section
force in the unstiffened cross-sectional locations placed in the compression side.
There are two mechanisms involved in this reduction; a global load redistribution
mechanism which reduces the maximum axial compressive section force and in-
creases the maximum axial tensile section force similar to the buckling capacity
improvement mechanism of the unstiffened circular cylinder under bending mo-
ment, described in subsection 6.2.1, and a local load redistribution mechanism
which redirects the axial compressive section force from the middle of the unstiff-
ened cross-sectional areas from to the stiffened locations which is similar to the
buckling load improvement mechanism of the uni-axial compressive panel with
imply supported enforced straight edges as shown by IJsselmuiden et al. [33].

The critical buckling modes for the QItheo , C S −butheo and V S −butheo lam-
inate designs of the stiffened circular cylindrical shells are shown in figures 7.6
and 7.7. It is clear that the local buckling modes of the V S−butheo laminate design
are expanded to a larger area in the compression side of the cross-section to use
the material more efficiently.

7.2.2 THEORETICAL VARIABLE THICKNESS LAMINATE
For the selected longitudinally stiffened cylindrical shells, the theoretical variable
thickness VS laminate designs, with the same weight as the constant thickness VS
laminates, are obtained for maximum buckling capacity by solving the optimisa-
tion problem in equation 6.4 in the first step of the multi-step optimisation frame-
work. The baseline constant thickness laminate is comprised of 24 layers and the
number of layers of the variable thickness laminate is bounded between 16 and 32
layers. Similar to the constant thickness laminates, two in-plane lamination pa-
rameters, V1A and V3A , and two out of plane lamination parameters, V1D and V3D ,
are used as design variables to find the theoretical balanced symmetric laminate
designs and 60 buckling modes are considered in the multi-modal buckling opti-
misation problem.
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(a) QItheo (b) C S −butheo (c) V S −butheo

FIGURE 7.6: Critical buckling modes of theoretical quasi-isotropic, QItheo , theoretical constant stiff-
ness, C S −butheo , and theoretical variable stiffness constant thickness, V S −butheo , laminate designs
for maximum buckling moment of the stiffened small circular cylinder under bending

(a) QItheo (b) C S −butheo (c) V S −butheo

FIGURE 7.7: Critical buckling modes of theoretical quasi-isotropic, QItheo , theoretical constant stiff-
ness, C S −butheo , and theoretical variable stiffness constant thickness, V S −butheo , laminate designs
for maximum buckling moment of the stiffened large circular cylinder under bending
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TABLE 7.3: Linear buckling moments of theoretical variable stiffness constant thickness, V S −butheo ,
and theoretical variable stiffness variable thickness, V SV T −butheo , laminate designs for maximum
buckling moment of stiffened circular cylinder under bending, Note: Mb−l i n = linear buckling moment
from the semi-analytical finite difference (SAFD) and AbaqusTM, and Imp = improvements of V SV T −
butheo over V S −butheo calculated as (M(V SV T )−M(V S))/M(V S)

Cylinder Bending moment V S −butheo V SV T −butheo Imp(%)
Small Mb−l i n (SAFD) [kN.m] 2126 3318 56.0
Small Mb−l i n (AbaqusTM) [kN.m] 2107 3159 50.0
Large Mb−l i n (SAFD) [kN.m] 11974 18237 52.3
Large Mb−l i n (AbaqusTM) [kN.m] 12150 19157 57.7

The optimum distributions of lamination parameters and laminate thickness
for the two selected longitudinally stiffened cylinders are depicted in Figs 7.8 an 7.9,
respectively.

In table 7.3, the linear buckling moments of the variable thickness VS laminate
designs for maximum buckling moment, V SV T −butheo , are listed and compared
with the linear buckling moments of the baseline constant thickness VS laminate
designs for maximum buckling moment, V S − butheo . The linear buckling mo-
ments of the V SV T −butheo designs from SAFD and AbaqusTM are in good agree-
ment with less than 6% difference. By varying the laminate thickness in addition
to the fibre steering, based on the TM results, the buckling capacity improvements
of 50% and 57.7% are theoretically achievable in the small and large cylinders, re-
spectively.

Improvement mechanisms

The distributions of the axial strain and section load of the V SV T−butheo laminate
design of the stiffened circular cylinders are depicted in figures 7.10 and 7.11. The
distributions of axial strain for both cylinders, shown in figures 7.10(a) and 7.11(a),
are sinusoidal. The distributions of the axial section load in the compressive un-
stiffened cross-sectional areas between the stiffeners are the same for the V S −
butheo and V SV T −butheo laminate designs and therefore the buckling moment
improvements are due to the increased bending stiffness.

The critical buckling modes of the V SV T − butheo laminate designs are de-
picted in figures 7.12 and 7.13. The effect of the increased laminate thickness in
the compression side of the cross-section of the stiffened small cylinder is visible
in the critical buckling mode shape of the stiffened small cylinder in figure 7.12.
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(a) V SV T −butheo design of the small cylinder
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FIGURE 7.8: Distribution of lamination parameters in theoretical variable stiffness variable thickness
laminate designs for maximum buckling moment, V SV T −butheo , in stiffened circular cylinders under
bending, Note: normalised circumferential distance starts from the point with maximum axial tension
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FIGURE 7.9: Laminate thickness variation in theoretical variable stiffness variable thickness laminate
designs for maximum buckling moment, V SV T −butheo , in stiffened circular cylinders under bending,
Note: normalised circumferential distance starts from the point with maximum axial tension
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FIGURE 7.10: Axial strain and axial section force of theoretical variable stiffness constant thickness,
V S−butheo , and variable stiffness variable thickness, V SV T −butheo , laminate designs for maximum
buckling moment of the stiffened small circular cylinder under bending based on AbaqusTM results,
Note: normalised circumferential distance starts from the point with the maximum axial tension
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FIGURE 7.11: Axial strain and axial section force of theoretical variable stiffness constant thickness,
V S−butheo , and variable stiffness variable thickness, V SV T −butheo , laminate designs for maximum
buckling moment of the stiffened large circular cylinder under bending based on AbaqusTM results,
Note: normalised circumferential distance starts from the point with the maximum axial tension
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FIGURE 7.12: Critical buckling mode of theoretical variable stiffness variable thickness laminate design
for maximum buckling moment, V SV T −butheo , of the stiffened small circular cylinder under bending
moment based on AbaqusTM results

FIGURE 7.13: Critical buckling mode of theoretical variable stiffness variable thickness laminate design
for maximum buckling moment, V SV T −butheo , of the stiffened large circular cylinder under bending
moment based on AbaqusTM results
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7.2.3 REALISTIC CONSTANT THICKNESS LAMINATE
In the second step of the multi-step optimisation framework, the realistic CS and
constant thickness VS laminate designs are retrieved from the corresponding theo-
retical designs for maximum buckling capacity, found in the first step. The straight
and steered fibre laminates are retrieved in the form of 24 layer balanced symmet-
ric laminates, [±θ1,±θ2,±θ3,±θ4,±θ5,±θ6]s .

The realistic CS laminates for maximum buckling moment, C S−bur eal , which
are retrieved from the corresponding theoretical CS laminates, C S −butheo , using
GA, are:

C S −bur eal (Small) :[±θ1,±θ2,±θ3,±θ4,±θ5,±θ6]s =
[±21.0,±63.8,±68.5,±68.9,±70.2,±71.0]s

C S −bur eal (Large) :[±θ1,±θ2,±θ3,±θ4,±θ5,±θ6]s =
[±31.0,±64.8,±68.9,±71.1,±72.7,±72.9]s

The circumferential distributions of fibre angles in each ply of the realistic constant
thickness VS laminate designs for maximum buckling moment, V S −bur eal , are
retrieved from the corresponding theoretical constant thickness VS designs, V S −
butheo , while constraining the average steering curvature. Pareto fronts showing
the linear buckling and material failure moments of the V S−bur eal designs versus
the amount of average steering curvature, κ, are depicted in figure 7.14.

As described in subsection 6.2.3, performance of the theoretical designs is con-
sidered to be an upper-bound for the performance of realistic designs primarily
due to the limited number of layers, the ply angles or the fibre angle distributions
of which are used as design variables to find the realistic CS or VS laminates, re-
spectively. It is clear from figure 7.14, the buckling and failure moments of the
retrieved realistic VS laminates are less than the buckling and failure moments of
the theoretical VS laminate designs.

By tightening the constraint on the average steering curvature of realistic VS
laminates, the buckling and failure moments are degraded as shown in figure 7.14.
The realistic VS laminate designs are expected to be superior than the theoretical
CS laminate designs, even for small steering curvatures. However, as it is depicted
in figure 7.14, the buckling moment of the realistic VS laminates becomes equal
and less than the buckling moment of the theoretical CS design at average steering
curvatures of 2.95 m−1 (0.075 in−1) and 1.97 m−1 (0.05 in−1) for the small and large
cylinders, respectively.

As described in subsection 4.5.3, the gradient-based optimiser in the second-
step of the multi-step optimisation framework, finds the fibre angle distribution
which minimises the Lagrangian built from the convex conservative separable ap-
proximations of inverse of buckling moment at the theoretical VS design. There-
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FIGURE 7.14: Pareto fronts showing the linear buckling moment, Mb , and failure moment, M f , versus
the average steering curvature of the retrieved realistic variable stiffness constant thickness laminate
designs for maximum buckling moment, V S−bur eal , of the stiffened circular cylinders under bending
moment based on semi-analytical finite difference (SAFD) results
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fore, the gradient-based optimisation in the second step is a local search and hence
the retrieved realistic VS laminate is dependent on the initial fibre angle distribu-
tion used. The pareto fronts in figure 7.14, are obtained by starting from an initial
fibre angle distribution found by best matching the distribution of lamination pa-
rameters in theoretical designs using genetic algorithm (GA). Other points of the
Pareto front are found from the gradient-based optimisation initialised from the fi-
bre angle distribution of the previous point on the Pareto front and a large enough
average steering curvature and tightening the constraint on the average steering
curvature step by step. The local nature of the gradient-based fibre angle retrieval
process and the initialisation pattern used, are the reasons for the buckling mo-
ment of the retrieved realistic VS designs with small average steering curvature
values to become less than the buckling moment of the theoretical CS design.

Selection of the realistic VS design for manufacturing should be performed by
calculating the local steering curvature in each of the retrieved realistic VS designs
and comparing it with the maximum allowable local steering curvature which is a
function of course width and material type. Since manufacturing of the realistic VS
laminates is beyond the scope of this work, here, selection of the retrieved realistic
VS designs is performed visually from the steered fibre paths which are enough
smooth. The steered fibre paths are generated based on the streamline analogy in
the third step of the multi-step optimisation framework. The steered fibre paths
for average steering curvatures of κ = 6.30 m−1 (κ = 0.16 in−1) and κ = 3.15 m−1

(κ= 0.08 in−1) for the small and large cylinders are shown in figures 7.15 and 7.16,
respectively. The dashed lines represent the longitudinal stiffeners.

It is well-known that the effect of layers which are placed further from the
middle-surface of the shell, ±θ1 layers in this case, on the out of plane stiffness ma-
trix is more than the effect of layers which are placed closer to the middle-surface,
±θ6 layers in this case, however, all the layers have the same effect on the in-plane
stiffness matrix. Therefore, it is expected that for maximum buckling moment, the
steered outer layers are mostly driven by the out of plane stiffness requirements
while the steered inner layers mostly provide the optimum section force distribu-
tion.

It is clear from figures 7.15 and 7.16 that the steered fibre paths placed on the
compression side of the circular cross-section, from 2/8 to 6/8 of the normalised
circumferential distance, of both cylinders have a similar pattern. In the inner lay-
ers, the fibres are more aligned in the axial direction at the stiffener locations to
have larger in-plane stiffness A11 and more in the circumferential direction in be-
tween the stiffeners to have smaller in-plane stiffness A11 and hence transfer the
axial section force from the unstiffened areas to the stiffened locations, which have
a larger out-of plane stiffness and are less buckling critical. In the outer layers, the
fibres tend to align in the circumferential direction at the stiffener locations to in-
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FIGURE 7.15: Optimum steered fibre paths of the realistic variable stiffness constant thickness design,
V S −bur eal , with a 24 ply balanced symmetric laminate, [±θ1,±θ2,±θ3,±θ4,±θ5,±θ6]s , plotted on the
expanded surface of the cylinder, retrieved at average steering curvature κ = 6.30 m−1 (κ = 0.16 in−1)
from the theoretical variable stiffness constant thickness design for maximum buckling moment, V S −
butheo , in the stiffened small circular cylinder, Note: normalised circumferential distance starts from
the point with maximum axial tension and the dashed lines are the longitudinal stiffeners
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FIGURE 7.16: Optimum steered fibre paths of the realistic variable stiffness constant thickness design,
V S −bur eal , with a 24 ply balanced symmetric laminate, [±θ1,±θ2,±θ3,±θ4,±θ5,±θ6]s , plotted on the
expanded surface of a cylinder three times longer than the original stiffened large circular cylinder, re-
trieved at average steering curvature κ= 3.15 m−1(κ= 0.08 in−1) from the theoretical variable stiffness
constant thickness design for maximum buckling moment, V S −butheo , in the stiffened large circular
cylinder, Note: normalised circumferential distance starts from the point with maximum axial tension
and the dashed lines are the longitudinal stiffeners
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TABLE 7.4: Linear buckling moments and failure moment of realistic constant stiffness, C S −bur eal ,
and realistic variable stiffness constant thickness, V S−bur eal , laminate designs for maximum buckling
moment in the stiffened circular cylinders under bending, Note: Mb−l i n = linear buckling moment
from the semi-analytical finite difference (SAFD) and AbaqusTM), M f = failure moment from SAFD and
conservative Tsai-Wu failure envelope, Imp = improvements of V S−bur eal over C S−bur eal calculated
from (M(V S)−M(C S))/M(C S) and the values inside parenthesis show the percentage of drop with respect
to the corresponding values of the theoretical designs in table 7.2

Cylinder Bending moment C S −bur eal V S −bur eal Imp(%)
Small Mb−l i n (SAFD) [kN.m] 1218 (-7 %) 1895 (-11 %) 55.5
Small Mb−l i n (AbaqusTM) [kN.m] 1177 (-6 %) 1843 (-13 %) 56.4
Small M f (SAFD) [kN.m] 532 (17 %) 679 (-26 %) 27.6
Large Mb−l i n (SAFD) [kN.m] 7252 (-11 %) 9698 (-24 %) 33.1
Large Mb−l i n (AbaqusTM) [kN.m] 7788 (-13 %) 9946 (-26 %) 27.7
Large M f (SAFD) [kN.m] 9211 (7 %) 10419 (-17 %) 13.1

crease the bending stiffness D22 at the stiffener locations and tend to align in the
axial direction in between the stiffeners to increase the out of plane stiffness com-
ponent D11 for the unstiffened areas in between the stiffeners. The steered fibre
paths in the tension side of the circular cross-section smoothly tend to align in the
axial direction in the cross-sectional location with maximum axial section force, at
normalised circumferential distance 0 or 1.

The linear buckling moment and failure moment of the retrieved realistic VS
designs of both cylinders are listed in table 7.4. The linear buckling moments ob-
tained from AbaqusTM are in good agreement with the SAFD results with less than
8% difference. The percentage of variation of the buckling and failure moments of
the realistic designs with respect to the theoretical designs, in table 7.2, are shown
inside the parentheses. The linear buckling moments of the realistic designs are
dropped compared to the corresponding theoretical designs. Based on AbaqusTM

results, these drops are −6% and −13% for the CS laminate designs of the small
and large cylinders and −13% and −26% for the VS laminate designs of the small
and large cylinders, respectively. The amount of buckling moment improvements
based on AbaqusTM results for the realistic VS designs with respect to the realistic
CS designs are 56.4% and 27.7% for the small and large cylinders, respectively. The
safety factors of the realistic laminate designs of the small cylinder are less than
one, 0.44 and 0.36 for the C S −bur eal and V S −bur eal laminates respectively and
the safety factors of the realistic laminate designs of the large cylinder are greater
than one, 1.27 and 1.08 for the C S−bur eal and V S−bur eal laminates, respectively.

The distributions of axial strain and section force for the realistic laminates of
the small and large cylinders are plotted in figures 7.17 and 7.18, respectively, and
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compared with those of the corresponding theoretical laminates. As it is clear from
figures 7.17(d) and 7.18(d), the distribution of the axial section force and hence the
buckling moment improvement of the realistic and theoretical constant thickness
VS laminate designs are the same.

The critical buckling modes of the C S −bur eal and V S −bur eal laminate de-
signs of the stiffened circular cylindrical shells are shown in figures 7.19 and 7.20.
The expanded buckling mode shapes of the theoretical VS laminate designs in fig-
ures 7.6(c) and 7.7(c) are confined to one unstiffened area between two stiffeners
as shown in figures 7.19(b) and 7.20(b).

7.3 MAXIMUM BUCKLING MOMENT DESIGN WITH CON-
STRAINT ON STRENGTH

It was shown in section 7.2 that the maximum buckling moment designs of the
longitudinally stiffened small circular cylinder are material failure critical. There-

fore, in this section the optimisation problem is formulated to find the maximum
buckling moment designs with consideration of strength constraints. Theoreti-
cal and realistic constant thickness laminate designs are investigated in subsec-
tions 7.3.1 and 7.3.2, respectively.

7.3.1 THEORETICAL CONSTANT THICKNESS LAMINATE
The design drivers for finding the theoretical designs in the first step of the multi-
step optimisation framework are the buckling moment and material strength of
the stiffened small circular cylindrical shell. Pareto fronts, which show the buckling
moment versus the material failure moment, are constructed for theoretical lami-
nate designs of the stiffened small circular cylinder under bending moment similar
to the Pareto fronts built for unstiffened circular cylinders in subsection 6.2.1. Only
four lamination parameters V1A , V3A , V1D and V3D are selected as the design vari-
ables in the first step of the multi-step framework and the multi-modality of the
buckling optimisation problem is 60.

Pareto fronts of buckling moment values versus the failure moment values of
theoretical designs, based on the SAFD analysis results, are shown in figure 7.21.
The failure moment values of the designs located below the diagonal line are larger
than their buckling moment values. Among these buckling critical designs, the
maximum buckling moment CS and VS designs are selected, which have safety
factors of 1.12 and 1.23.

The optimum set of lamination parameters in the selected theoretical CS de-
sign for maximum buckling moment with strength constraints, C S −busttheo , is:

C S −busttheo : [V1A ,V3A ,V1D ,V3D ] = [0.08,0.45,0.52,−0.13]
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(a) Axial strain in the CS laminate
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(b) Axial section load in the CS laminate
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(c) Axial strain in the VS laminate
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(d) Axial section load in the VS laminate

FIGURE 7.17: Axial strain and axial section force of realistic constant stiffness, C S −bur eal , theoret-
ical constant stiffness, C S − butheo , realistic variable stiffness constant thickness, V S − bur eal , and
theoretical variable stiffness constant thickness, V S−butheo , laminate designs for maximum buckling
moment in the stiffened small circular cylinders under bending based on AbaqusTM results, Note: nor-
malised circumferential distance starts from the point with the maximum axial tension and dash-dot
lines indicate the location of stiffeners in the cross-section
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(b) Axial section load in the CS laminates

0 0.25 0.5 0.75 1
−1

−0.5

0

0.5

1
x 10

−6

Normalised circumferential distance [−]

A
xi

al
 s

tr
ai

n 
at

 1
12

.9
8 

N
.m

 (
10

00
 in

−l
bs

) 
[−

]

 

 

VS−bu
theo

VS−bu
real

(c) Axial strain in the VS laminates
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(d) Axial section load in the VS laminates

FIGURE 7.18: Axial strain and axial section force of realistic constant stiffness, C S −bur eal , theoret-
ical constant stiffness, C S − butheo , realistic variable stiffness constant thickness, V S − bur eal , and
theoretical variable stiffness constant thickness, V S−butheo , laminate designs for maximum buckling
moment in the stiffened large circular cylinders under bending based on AbaqusTM results, Note: nor-
malised circumferential distance starts from the point with the maximum axial tension and dash-dot
lines indicate the location of stiffeners in the cross-section
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(a) C S −bur eal (b) V S −bur eal

FIGURE 7.19: Critical buckling modes of realistic constant stiffness, C S −bur eal , and realistic variable
stiffness constant thickness, V S−bur eal , laminate designs for maximum buckling moment of the stiff-
ened small circular cylinder under bending from AbaqusTM

(a) C S −bur eal (b) V S −bur eal

FIGURE 7.20: Critical buckling modes of realistic constant stiffness, C S −bur eal , and realistic variable
stiffness constant thickness, V S−bur eal , laminate designs for maximum buckling moment of the stiff-
ened large circular cylinder under bending from AbaqusTM
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FIGURE 7.21: Pareto fronts of buckling moment versus failure moment for theoretical constant stiffness
and variable stiffness constant thickness laminate designs of the stiffened small circular cylinder un-
der bending, Note: Mb−l i n = linear buckling moment from the semi-analytical finite difference (SAFD),
M f = failure moment from SAFD and conservative Tsai-Wu failure envelope, QItheo = theoretical quasi-
isotropic laminate, C Stheo = theoretical constant stiffness laminates, V Stheo = theoretical variable stiff-
ness laminates, bu = maximum buckling capacity design, bust = selected design for maximum buckling
capacity with strength constraints, and st = maximum strength design

The optimum distribution of lamination parameters of the theoretical VS designs,
V S −busttheo , is shown in figure 7.22.

The linear buckling and failure moments of the designs for maximum buckling
moment with strength constraints including the theoretical CS, C S−busttheo , and
the theoretical VS, V S −busttheo , laminates are listed in table 7.5 using SAFD and
AbaqusTM analyses. The SAFD buckling moments are in good agreement with the
results from the commercial finite element software AbaqusTM and show less than
5% difference. The amount of improvement in the buckling moment of the VS
design with respect to the CS design is 23.3% based on AbaqusTM linear buckling
moment results.

The distributions of axial strain and axial section force around the circum-
ference of the stiffened cylinder with theoretical laminate designs are obtained
from AbaqusTM and plotted versus the normalised circumferential distance in fig-
ure 7.23. Locations of stiffeners in the circumference are specified by dash-dot
lines.
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FIGURE 7.22: Distribution of lamination parameters in theoretical variable stiffness constant thickness
laminate design for maximum buckling moment with strength constraints, V S−butheo , of the stiffened
small circular cylinder under bending, Note: normalised circumferential distance starts from the point
with maximum axial tension

TABLE 7.5: Linear buckling moments and failure moments of selected theoretical constant stiffness,
C S − busttheo , and selected theoretical variable stiffness constant thickness, V S − busttheo , lami-
nate designs for maximum buckling moment with strength constraints in the circular cylinder under
bending, Note: Mb−l i n = linear buckling moment from the semi-analytical finite difference (SAFD) and
AbaqusTM, M f = failure moment from SAFD and conservative Tsai-Wu failure envelope and Imp = im-
provements of V S −busttheo over C S −busttheo calculated as (M(V S)−M(C S))/M(C S)

Design C S −busttheo V S −busttheo Imp(%)
Mb−l i n (SAFD) [kN.m] 903 1147 27.0
Mb−l i n (AbaqusTM) [kN.m] 876 1097 25.3
M f (SAFD) [kN.m] 1013 1412 39.4
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(a) Axial strain
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(b) Axial section load

FIGURE 7.23: Axial strain and axial section force of theoretical quasi-isotropic, QItheo , selected theo-
retical constant stiffness, C S −busttheo , and selected theoretical variable stiffness constant thickness,
V S −busttheo , laminate designs for maximum buckling moment with strength constraints in the stiff-
ened small circular cylinders under bending based on AbaqusTM results, Note: normalised circumfer-
ential distance starts from the point with the maximum axial tension and dash-dot lines indicate the
location of stiffeners in the cross-section
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(a) C S −busttheo (b) V S −busttheo

FIGURE 7.24: Critical buckling modes of selected theoretical constant stiffness, C S −busttheo , and se-
lected theoretical variable stiffness constant thickness, V S −busttheo , laminate designs for maximum
buckling moment with strength constraints in the stiffened small circular cylinder under bending from
AbaqusTM

Critical buckling modes of the C S −busttheo and V S −busttheo designs of the
stiffened small circular cylinder are shown and compared in Fig 7.24.

7.3.2 REALISTIC CONSTANT THICKNESS LAMINATE
The optimum ply angles of the realistic CS laminate design, C S − bustr eal , and
the optimum distribution of fibre angles in each ply for the realistic VS laminate
design, V S−busttheo , are retrieved from the selected theoretical laminate designs,
C S −busttheo and V S −busttheo , respectively.

The realistic straight and steered fibre laminates are retrieved in the form of
a balanced symmetric layup with 24 layers, [±θ1 , ±θ2 , ±θ3 , ±θ4 , ±θ5 , ±θ6]s .
The following realistic straight fibre laminate is found by best matching with the
theoretical optimum lamination parameters using GA :

C S −bustr eal :[±θ1,±θ2,±θ3,±θ4,±θ5,±θ6]s =
[±30.1,±30.1,±14.4,0.02,90.02,90.02]s

The Pareto front showing the buckling and failure moments of the retrieved re-
alistic VS laminates versus the average steering curvature is depicted in figure 7.25.
To have a fair comparison with the retrieved realistic VS designs for maximum
buckling moment in section 7.2.3, the realistic VS designs for maximum buckling
moment with strength constraints at an average steering curvature of κ= 6.30 m−1

(κ= 0.16 in−1) is selected. This design is indicated as V S −bustr eal design and the
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FIGURE 7.25: Pareto fronts showing the linear buckling moment, Mb , and failure moment, M f , versus
the average steering curvature of the retrieved realistic variable stiffness constant thickness laminate
designs for maximum buckling moment with strength constraints, V S−bustr eal , of the stiffened small
circular cylinders under bending moment based on semi-analytical finite difference (SAFD) results

steered fibre paths for the realistic laminate are shown in figure 7.26. The dashed
lines are representatives of longitudinal stiffeners.

The buckling and failure moments of the realistic CS, C S − bustr eal , and re-
alistic VS, V S − bustr eal , laminate designs for maximum buckling moment with
strength constraints are listed in table 7.6. The SAFD buckling moments are com-
pared with the linear buckling moments from the commercial finite element soft-
ware AbaqusTM and show good agreement with less than 2% difference. The drops
in the linear buckling moment of the realistic CS and VS designs with respect to
the corresponding theoretical designs, shown inside the parentheses, are −17%
and −11%, respectively based on the AbaqusTM results. The amount of improve-
ment in the buckling moment of the VS designs with respect to the CS designs is
16.7% based on AbaqusTM linear buckling moment results.

Critical buckling modes of the C S−bustr eal and V S−bustr eal laminate designs
of the stiffened small circular cylinder are shown and compared in Fig 7.27. It is
clear that the buckling mode shape in the compression side of the cross-section
of the V S −bustr eal laminate is expanded to a larger area compared to the C S −
bustr eal laminate.

The distributions of axial strain and section force for the realistic laminates of
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(b) ±θ2
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(c) ±θ3
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(d) ±θ4
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(e) ±θ5
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(f) ±θ6

FIGURE 7.26: Optimum steered fibre paths of the realistic variable stiffness constant thickness design,
V S −bur eal , with a 24 ply balanced symmetric laminate, [±θ1,±θ2,±θ3,±θ4,±θ5,±θ6]s , plotted on the
expanded surface of the cylinder, retrieved at average steering curvature κ = 6.30 m−1 (κ = 0.16 in−1)
from the theoretical variable stiffness constant thickness design for maximum buckling moment with
strength constraints, V S −busttheo , in the stiffened small circular cylinder, Note: normalised circum-
ferential distance starts from the point with maximum axial tension and the dashed lines are the longi-
tudinal stiffeners
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TABLE 7.6: Linear and non-linear buckling moments and failure moments of realistic CS and constant
thickness VS laminate design for maximum buckling moment with strength constraints in the stiffened
small circular cylinder under bending, Note: Mb−l i n = linear buckling moment, M f = failure moment
and Imp = (M(V S)−M(C S))/M(C S)

Design C S −bustr eal V S −bustr eal Imp(%)
Mb−l i n (SAFD) [kN.m] 761 (-19%) 999 (-14 %) 31.1
Mb−l i n (AbaqusTM) [kN.m] 748 (-17 %) 986 (-11 %) 31.9
M f (SAFD) [kN.m] 608 (-66 %) 1148 (-23 %) 88.8

(a) C S −bustr eal (b) V S −bustr eal

FIGURE 7.27: Critical buckling modes of realistic constant stiffness, C S −bustr eal , and realistic vari-
able stiffness constant thickness, V S−bustr eal , laminate designs for maximum buckling moment with
strength constraints in the circular cylinder under bending from AbaqusTM

the stiffened small cylinder are plotted in figure 7.28 and compared with those of
the corresponding theoretical laminates. As shown in figure 7.28(d), the distribu-
tion of the axial section force in the realistic VS laminate is similar to the theoretical
VS laminate with less fluctuations due to the restrained average steering curvature.
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(a) Axial strain in the CS laminate
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(b) Axial section load in the CS laminate
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(c) Axial strain in the VS laminate
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(d) Axial section load in the VS laminate

FIGURE 7.28: Axial strain and axial section force of realistic constant stiffness, C S −bustr eal , theoreti-
cal constant stiffness, C S −busttheo , realistic variable stiffness constant thickness, V S −bustr eal , and
theoretical variable stiffness constant thickness, V S −busttheo , laminate designs for maximum buck-
ling moment with strength constraints in the stiffened small circular cylinders under bending based on
AbaqusTM results, Note: normalised circumferential distance starts from the point with the maximum
axial tension and dash-dot lines indicate the location of stiffeners in the cross-section



8
CONCLUSIONS AND

RECOMMENDATIONS

8.1 CONCLUSIONS

A computationally efficient framework was developed for circumferential lam-
inate stiffness tailoring of general cross-section cylinders to maximise the buck-

ling capacity. In addition to buckling capacity, material strength constraints were
considered as design drivers to ensure that the material failure did not happen be-
fore buckling. The strains, required to compute the material strength measure, and
the buckling capacity were evaluated from static and buckling analyses performed
using a computationally efficient semi-analytical solution.

The semi-analytical solution method was developed for static and buckling
analysis of unstiffened and longitudinally stiffened cylindrical shells with general
cross-sections. In the developed semi-analytical solution, only the cross-section
of the cylinder was discretised. The circumferential discretisation was consistent
with the circumferential stiffness tailoring and was computationally more efficient
than the full finite element discretisation due to less degrees of freedom. The semi-
analytical solution showed good agreement with the finite element analysis for un-
stiffened and longitudinally stiffened circular and elliptical cylinders (chapter 3).

A multi-step optimisation framework, developed by the ASCM group at TUDelft,
was used to obtain the optimum variable stiffness (VS) laminate, tailored in the cir-
cumferential direction of the cylinder, and the baseline optimum constant stiffness
(CS) laminate designs. In the first step of the multi-step framework, the output
is a theoretical or conceptual optimum distribution of laminate stiffness proper-

219
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ties, which does not provide information about the realistic layup, and the design
drivers are the structural performance measures. In the seconds step, the output is
the realistic optimum fibre angle or distribution of fibre angles in each layer of the
CS or VS laminates, respectively. The design drivers of the second step are the theo-
retical designs, found in the first step, and the steering curvature constraint, which
is a manufacturing constraint in automated fibre placement. In the third step, the
outputs are the steered fibre paths of the VS laminate and the design driver is the
optimum fibre angle distribution found in the second step (chapter 4).

The multi-step framework is based on convex separable approximations of the
design drivers, which for the work reported here, were the buckling capacity and
material strength. Construction of the convex separable approximation of the buck-
ling capacity, based on the insight into the physics of the buckling problem, was
explained (chapter 4).

The main contributions made by the author to the multi-step optimisation
framework were to develop convex separable approximations for the material strength
and to implement a constraint screening strategy in the first step to handle opti-
misation problems with a huge number of constraints e.g. buckling optimisation
with strength constraints (chapters 4 and 5).

A failure envelope, which is developed based on the requirements of the multi-
step optimisation framework, was introduced for evaluation of material strength.
This failure envelope is based on the Tsai-Wu failure criterion, independent of the
ply angles and conservative. The independency of the conservative failure enve-
lope on the ply angle allows material strength to be used as a design driver in the
first step of the multi-step optimisation framework, where lamination parameters
were used as design variables. In this thesis, the conservative Tsai-Wu failure en-
velope was re-expressed as one or two elliptical equations in the strain space, de-
pending on the material properties, to facilitate its usage in the first step of the
multi-step framework (chapter 5).

A convex separable approximation of the failure index, which is a measure of
material strength, was constructed in this thesis. Physical insight into the failure
index was not sufficient to construct the convex separable approximation of failure
index and hence a numerical algorithm was developed to be used in combination
with physical insight. The developed numerical algorithm can be used to con-
struct the convex approximation of any structural response without the need for a
physical insight into the structural response (chapter 5).

The developed framework for circumferential laminate stiffness tailoring of
general cross-section cylinders was applied on two unstiffened cylindrical shells,
namely a circular cylinder under bending and an elliptical cylinder under axial
compression, and two longitudinally stiffened circular cylinder under bending with
different thickness to radius ratios. In each case, the theoretical and realistic CS
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and constant thickness VS laminate designs for maximum buckling capacity, and if
necessary with consideration of strength constraints, were obtained and the buck-
ling capacity improvements due to fibre steering and the corresponding mecha-
nisms were investigated.

• The theoretical CS and constant thickness VS laminate designs for maximum
buckling moment of the considered unstiffened circular cylinder were mate-
rial failure critical. Therefore, buckling critical theoretical laminate designs
were obtained by consideration of strength constraints in the optimisation
problem. The selected theoretical CS and constant thickness VS laminate
designs have safety factors of 1.19 and 1.12, respectively (chapter 6).

• The theoretical CS and constant thickness VS laminate designs for maximum
buckling load of the considered unstiffened elliptical cylinder were buckling
critical with safety factors of 2.05 and 1.61, respectively. Therefore, inclusion
of strength constraints in the optimisation problem was not essential unless
designs with larger safety factors were required (chapter 6).

• The theoretical CS and constant thickness VS laminate designs for maxi-
mum buckling moment of the large longitudinally stiffened circular cylin-
der under bending were buckling critical with safety factors of 1.06 and 1.01,
respectively. However, the theoretical CS and constant thickness VS lam-
inate designs for maximum buckling moment of the small longitudinally
stiffened circular cylinder were material failure critical. Therefore, strength
constraints were considered in the optimisation problem and the theoreti-
cal CS and constant thickness VS laminate designs with safety factors of 1.12
and 1.23 were selected (chapter 7).

Significant improvements were obtained in the linear buckling capacity of the
selected theoretical constant thickness VS over the selected theoretical CS lam-
inate designs. These improvements for the unstiffened circular, unstiffened el-
liptical, large and small stiffened circular cylinders were 28.2%, 36.7%, 43.2% and
25.3%, respectively (chapters 6 and 7).

The buckling load of the realistic laminate designs were less than the theoret-
ical laminate designs. This was mainly due to the finite thickness of layers which
limits the number of layers in the realistic CS and VS laminates with a certain thick-
ness and constraining the average steering curvature in realistic constant thickness
VS laminates (chapters 6 and 7).

A source of difference in the performance of theoretical and realistic balanced
symmetric laminate designs was presence of small non-zero values for the two out
of plane lamination parameters, V2D and V4D , in the realistic designs due to the
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limited number of layers, while only two in-plane lamination parameters, V1A and
V3A , and two out of plane lamination parameters, V1D and V3D , were used as de-
sign variables to obtain the theoretical designs. The twist-bending coupling effect,
due to V2D and V4D , was clearly visible in the critical buckling modes of the realistic
CS and constant thickness VS laminate designs of the unstiffened circular cylinder
(chapters 6 and 7).

The realistic CS and constant thickness VS laminate designs, retrieved from
the selected theoretical laminate designs, were buckling critical similar to the cor-
responding theoretical laminate designs. However, the magnitudes of safety factor
may change (chapters 6 and 7).

The improvements in the linear buckling capacity of realistic constant thick-
ness VS laminates over realistic CS laminates were 29.6%, 17.9%, 27.7% and 31.9%
for the unstiffened circular, unstiffened elliptical, large and small stiffened circu-
lar cylinders, respectively. The buckling capacity improvement of the steered fibre
laminates with respect to the straight fibre ones, was due to the stiffness and sec-
tion load redistribution (chapters 6 and 7).

• In the unstiffened circular cylinder under bending, the neutral axis of the
constant thickness VS laminate was shifted toward the tension side. The ax-
ial section force distribution of the constant thickness VS laminate was al-
most uniform in the compression side of the cross-section, while this distri-
bution for the CS laminate was sinusoidal. The magnitudes of the maximum
axial section forces on the tension and compression sides of the constant
thickness VS laminate were larger and smaller than the CS laminate, respec-
tively. This was due to the stiffness tailoring that reduced the local stiffness in
the compression side and stiffened the tension side. Therefore, the load was
released in the compression side and transferred to the tension side. This
mechanism increased the buckling load and expanded the buckling modes
to a larger area in the compression side (chapter 6).

• In the unstiffened elliptical cylinder under axial compression, buckling modes
of quasi-isotropic (QI) and CS laminates showed that the regions of the cross-
section with larger radius of curvature were more prone to buckle. In the
constant thickness VS laminates, due to the circumferential stiffness tailor-
ing, the axial compressive section load was redistributed such that less com-
pressive section load was carried by the regions with larger radius of curva-
ture and more compressive section load was transferred to the areas with
smaller radius of curvature, which were more buckling resistant. The buck-
ling modes were expanded all around the circumference of the elliptical cylin-
der due to the stiffness tailoring, to use the material more efficiently (chapter
6).
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• In the stiffened circular cylinder under bending, improvement in the buck-
ling moment of the constant thickness VS laminate design compared to the
CS laminate design was due to two mechanisms; A global load redistribu-
tion, similar to the constant thickness VS laminate design of the unstiffened
circular cylinder under bending, which released the load in the compression
side of the cross-section and transferred it to the tension side of the cross-
section and a local load redistribution in each area between two stiffeners
in the compression side of the cross-section, which reduced the compres-
sive load in the middle of that local area and transferred it to the stiffened
locations. The local load redistribution was similar to the buckling load im-
provement mechanism in the VS laminate design of a panel under in-plane
uni-axial compression. These mechanisms were reflected in the pattern of
steered fibre paths (chapter 7).

To investigate the effect of laminate thickness variation in addition to fibre
steering in buckling capacity improvement, the theoretical variable thickness VS
laminates of the considered case studies, the unstiffened and stiffened circular
cylinders under bending and the unstiffened elliptical cylinder under axial com-
pression, were obtained and compared with the corresponding theoretical con-
stant thickness VS laminates (chapters 6 and 7).

Significant improvements were obtained in the buckling capacity of the the-
oretical variable thickness VS laminate over the theoretical constant thickness VS
laminate with the same weight. Improvements of up to 45.4%, 24%, 57.7% and
50% were obtained for the selected unstiffened circular, unstiffened elliptical, large
and small stiffened circular cylinders. These improvements showed the potential
of laminate thickness variation in addition to fibre steering in buckling capacity
improvement. The buckling capacity improvements were due to stiffness and sec-
tional force redistribution (chapters 6 and 7).

• In the variable thickness VS laminates of the considered unstiffened and
stiffened circular cylinders under bending, the laminate thickness was in-
creased in the cross-section areas with the maximum axial compressive and
tensile section loads. The axial section load of the variable thickness VS lam-
inate in the thicker area of the tension side of the cross-section, was larger
than that of the constant thickness VS laminate. In the unstiffened regions
of the compression side of the cross-section, the axial section load of the
variable thickness VS laminate was almost uniform and equal to that of the
constant thickness VS laminate. Therefore, the main mechanism of buck-
ling moment improvement was due to the increased out of plane stiffness,
which is proportional with the third power of the laminate thickness, in the
increased thickness area in the compression side (chapters 6 and 7).
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• In the variable thickness VS laminate of the considered unstiffened ellipti-
cal cylinder under axial compression, the laminate thickness was increased
in the cross-sectional areas with the smaller radius of curvature, which were
geometrically more buckling resistant. The axial section load distributions
in the constant and variable thickness VS laminate designs had the same
pattern; the magnitude of axial compressive section load in the areas with
smaller radius of curvature was larger than its magnitude in the areas with
larger radius. The increased axial compressive section load and out of plane
stiffness in the cross-sectional areas with smaller radius, which were more
in the variable thickness VS laminate than the constant thickness VS lami-
nate, were the main reasons of buckling load improvement. The effect of out
of plane stiffness was evaluated to be more than the axial compressive sec-
tion load, due to its third power proportionality with the thickness and the
buckling mode shapes (chapter 6).

Nonlinear buckling loads of the obtained designs were close to the linear buck-
ling loads. This showed that no significant loss of stiffness happened in the pre-
buckling regime. The amount of improvements in the linear and nonlinear buck-
ling loads of the VS laminate designs compared to the CS laminate designs were
almost the same or close (chapters 6 and 7).

8.2 RECOMMENDATIONS
• The semi-analytical solution method can be implemented in a finite element

context, instead of finite difference, to handle cross-sections with more com-
plex geometries.

• The effect of stiffness tailoring on post-buckling behaviour of the designed
laminates should be investigated.

• The configuration of stiffeners, i.e their location, laminate and geometry, can
be selected as design variables in addition to the steered fibre paths to inves-
tigate the interaction between stiffeners and stiffness tailoring due to fibre
steering.

• Robustness constraints, e.g. 10% rule, are already formulated in the lamina-
tion parameters space and can be included in the first step of the multi-step
framework for finding the theoretical designs. These constraints should also
be imposed in the retrieved realistic designs.

• Laminate thickness was treated as a continuous design variable in theoret-
ical designs, while it is a discrete design variable in the realistic designs.
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Therefore, considering the large improvements of variable thickness lami-
nates over constant thickness ones, the second step of the multi-step frame-
work should be improved to retrieve realistic variable thickness laminates by
determining the exact location and order of ply drops.

• The final outputs of the third step of the multi-step framework are the stream-
lines representing the steered fibre paths in each layer of the realistic VS
laminates. The exact location of the centreline of each course and the exact
cut-restart locations should be determined for manufacturing of the steered
fibre constant thickness laminates.

• Using the cut-restart ability of the AFP machine, gaps and overlaps can be
eliminated to the small triangular areas at the cut-restart locations and the
laminate thickness becomes almost uniform. The small triangular gaps and
overlaps should be taken into account in the structural analysis to investi-
gate their effect on the structural performance.





A
SENSITIVITY ANALYSIS

A.1 STRENGTH

In this section, the sensitivity of the failure index of discretisation point e with
respect to the in-plane stiffness matrix of discretisation point j ,Ψm

j and inverse

of the in-plane stiffness matrix of discretisation point j , Φm
j , is derived. As shown

in equation 5.37, the failure index can be approximated linearly in terms of strain.
From equation 5.44 for the in-plane case:

rs = NT A−1 g (A.1)

The sensitivity of the failure index with respect to inverse of in-plane stiffness
matrix is composed of two parts:

dr

dA−1
j

= ∂r

∂A−1
j=e

+ ∂r

∂N

dN

dA−1
j

(A.2)

The first term in Equation A.2 is the local part which is due to change of stiffness
while load distribution is constant:

∂r

∂A−1
j=e

= 1

2
(gNT +NgT ) (A.3)

and the second term is due to the change of load distribution when the stiffness
properties of one element changes. Derivative of failure index with respect to the
element load vector can be easily calculated as:

s = dr

dN
= A−1g (A.4)
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and by defining,
floc = sT N = sT ABU (A.5)

where B is the strain-displacement relation matrix and U is the displacement vec-
tor, we obtain:

∂r

∂N

dN

dA−1
j

= d floc

dA−1
j

(A.6)

In order to calculate d floc

dA−1
j

, it is more convenient to differentiate with respect to the

stiffness:
d floc

dA j
= ∂ floc

∂A j=e
+ ∂ floc

∂U

dU

dA j
(A.7)

The first part of A.7 is again local and evaluated easily:

∂ floc

∂A j=e
= sT BU (A.8)

and in order to find the second part adjoint sensitivity analysis method is applied:

d floc

dA j
= d fl oc

dA j=e
−VT dK

dA j
U (A.9)

where V is the adjoint displacement and K is the static stiffness matrix. The adjoint
force is defined as:

fad = d floc

dU
= BT As (A.10)

therefore V is found from:
KV = fad (A.11)

The sensitivity of failure index at the considered element with respect to the in-
verse of in-plane stiffness at element j is denoted by Φm

j :

Φm
j = ∂r

∂A−1
j

(A.12)

whereasΨm
j is the sensitivity with respect to in-plane stiffness:

Ψm
j = ∂r

∂A j
(A.13)

These sensitivities are related through:

Φm
j =−A jΨ

m
j A j (A.14)
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SUMMARY

Automated fibre placement (AFP) machines are able to place simultaneously
several bundles of fibres, called tows, on a surface. Using AFP machines, it is

also possible to manufacture composite laminates with fibres placed in curvilinear
paths. The fibre orientations and stiffness properties of these laminates are spa-
tially varied and hence they are called variable stiffness (VS) laminates in contrast
to the traditional laminates with straight fibres which are called constant stiffness
(CS) laminates.

Past research has shown that the structural performance of laminated compos-
ite structures can be improved by spatial tailoring of laminate stiffness. One of the
widely used structural components in aerospace industry are cylindrical shells. In
this thesis, a computationally efficient framework was developed for circumfer-
ential laminate stiffness tailoring of unstiffened and longitudinally stiffened cylin-
drical shells with arbitrary cross-sections to maximise the buckling capacity with
consideration of strength constraints. In addition, the AFP manufacturing con-
straint on the maximum curvature of curvilinear fibre paths was considered. This
constraint was applied to avoid wrinkling of the fibres placed inside the turn of
a curved tow. The aforementioned framework utilised computationally efficient
analysis and optimisation tools.

A semi-analytical solution was developed for static and buckling analysis of
cylindrical shells under axial force, bending, and torsion, or a combination thereof.
The semi-analytical solution was developed based on the analytical displacement
field from the Saint-Venant’s solution and using finite difference for the discretised
cross-section. Due to the limitation of discretisation to the circumferential direc-
tion, the semi-analytical finite difference (SAFD) solution is compatible with cir-
cumferential tailoring, has fewer degrees of freedom than the full finite element
analysis and is computationally more efficient.

A multi-step optimisation framework was developed in the ASCM group of
TUDelft to find the optimum straight and steered fibre laminates. The design
drivers related to the structural performance and manufacturing are considered
in different steps of the multi-step framework and the most suitable optimisation
algorithm is used in each step. In the first step of the multi-step framework, the
output is the theoretical or conceptual optimum distribution of laminate stiffness
properties, which does not provide information about the realistic layup, and the
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design drivers are the structural performance measures. In the seconds step, the
output is the realistic optimum fibre angle or distribution of fibre angles in each
layer of the CS or VS laminates, respectively. The design drivers of the second step
are the theoretical designs, found in the first step, and the steering curvature con-
straint. In the third step, the outputs are the steered fibre paths of the VS laminate
and the design driver is the optimum fibre angle distribution found in the second
step. The multi-step framework is based on convex separable approximations of
the structural performance measures, i.e. buckling factor and material failure in-
dex.

The material failure envelope is dependent on the ply angles, however, instead
of the ply angles, lamination parameters are used as design variables in the first
step of the multi-step framework. This problem is resolved using a conservative
Tsai-Wu failure envelope developed by IJsselmuiden et al. [139], which is indepen-
dent of the ply angles. The main contribution made by the author to the multi-step
optimisation framework was to develop convex separable approximations of the
material failure index.

The developed framework for circumferential laminate stiffness tailoring of ar-
bitrary cross-section cylinders was applied on two unstiffened cylindrical shells,
namely a circular cylinder under bending and an elliptical cylinder under axial
compression, and two longitudinally stiffened circular cylinder under bending with
different thickness to radius ratios. Significant improvements, from %25.3 to %43.2,
were obtained in the linear buckling capacity of the selected theoretical VS lami-
nates over the selected theoretical CS laminate designs. The buckling load of the
realistic laminate designs were less than the theoretical laminate designs mainly
due to the limited number of layers of the realistic CS and VS laminates and con-
straining the steering curvature in realistic VS laminates. The improvements in the
linear buckling capacity of the realistic VS laminates over the realistic CS laminates
were between %17.9 and %31.9. The buckling capacity improvement of the steered
fibre laminates with respect to the straight fibre ones, was due to the stiffness and
section load redistribution.

In the the unstiffened circular cylinder under bending, the axial section force
distribution of the VS laminate was almost uniform in the compression side of the
cross-section, while this distribution for the CS laminate was sinusoidal. The mag-
nitude of the maximum axial section forces on the compression side of the VS
laminate was smaller than the CS laminate and hence the buckling capacity was
improved.

In the unstiffened elliptical cylinder under axial compression with the VS lami-
nate, the axial compressive section load was redistributed such that less compres-
sive section load was carried by the regions with larger radius of curvature, which
were more prone to buckling in the quasi-isotropic (QI) and CS laminates, and
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more compressive section load was transferred to the areas with smaller radius of
curvature, which were more buckling resistant in the QI and CS laminates. There-
fore, the material around the elliptical cross-section of the cylinder with the VS
laminate was used more efficiently, the buckling modes were expanded all around
the circumference and the buckling load was increased.

In the stiffened circular cylinder under bending, improvement in the buckling
moment of the VS laminate design compared to the CS laminate design was due to
two mechanisms; A global load redistribution, similar to the unstiffened circular
cylinder under bending, and a local load redistribution in each area between two
stiffeners in the compression side of the cross-section, which further reduced the
magnitude of the compressive load in the middle of that local area by transferring
it to the stiffened locations.

To investigate the effect of laminate thickness variation in addition to fibre
steering in buckling capacity improvement, the theoretical variable thickness VS
laminates of the considered case studies were obtained and compared with the
corresponding theoretical constant thickness VS laminates. Significant improve-
ments, from 24% to 57.7%, were obtained in the buckling capacity of the theoreti-
cal variable thickness VS laminate over the theoretical constant thickness VS lam-
inate with the same weight. The effect of the laminate thickness variation in buck-
ling capacity improvements was mainly due to the increased out of plane stiffness
in the buckling critical regions, however, in the elliptical cylinder, the laminate
thickness variation was effective in buckling capacity improvement also through
load redistribution.

Nonlinear buckling capacities of the obtained designs were close to the linear
buckling capacities. This showed that no significant loss of stiffness happened in
the prebuckling regime.





SAMENVATTING

Machines voor automatische vezelplaatsing (AFP) zijn in staat om meerdere
vezelbundels, ook wel tows genaamd, gelijktijdig op een oppervlak te plaat-

sen. Met behulp van AFP machines is het ook mogelijk om composiet laminaten
te maken met vezels die in gekromde banen zijn geplaatst. De vezeloriëntaties
en stijfheidseigenschappen zijn in zulke laminaten ruimtelijk variabel en worden
daarom ook wel variabele stijfheid (VS) laminaten genoemd in tegenstelling tot
conventionele laminaten met rechte vezels welke constante stijfheid (CS) lamina-
ten worden genoemd.

Onderzoek uit het verleden laat zien dat de mechanische prestaties van een ge-
lamineerde composieten constructie verbeterd kunnen worden door ruimtelijke
herverdeling van de stijfheid van het laminaat. Een in de lucht- en ruimtevaart-
industrie wijdverbreid onderdeel is de cilindrische schaal. Voor dit proefschrift
werd een numeriek efficiënte methode ontwikkeld voor stijfheidsherverdeling in
omtreksrichting voor zowel onverstijfde als in lengterichting verstijfde cilindrische
schalen van willekeurige doorsnede ten einde de kniklast van de schaal te vergro-
ten rekening houdend met de grenzen aan de sterkte van het materiaal. Daarnaast
werd ook rekening gehouden met de bij AFP behorende beperking van de maxi-
maal mogelijke kromming in vezelpaden. Deze beperking werd opgelegd om het
rimpelen van vezels in de binnenbocht van een gekromde tow te vermeiden. In de
voornoemde methode werd gebruikt gemaakt van numeriek efficiënte analyse en
optimalisatie tools.

Een semi-analytische oplossing werd afgeleid voor statische en knik analyse
van cilindrische schalen onder een axiale belasting, een buigmoment, een torsie-
moment of een combinatie daarvan. De semi-analytische oplossing werd afge-
leid aan de hand van het analytische vervormingsveld van Saint-Venants oplossing
en gebruikmakend van finiete differentiatie voor de gediscretiseerde doorsnede.
Door alleen in omtreksrichting te discretiseren heeft de semi-analytische finiete
differentiatie (SAFD) methode minder vrijheidsgraden dan volledige eindige ele-
menten analyse en is daardoor numeriek efficiënter.

Een meerstaps optimalisiatiemethode voor optimale laminaten met rechte en
gestuurde vezels is binnen de ASCM groep van de TU Delft ontwikkeld. De aan
mechanische prestaties en productie gerelateerde ontwerp drijvers worden elk in
verschilleden optimalisatiestappen meegenomen en het meeste geschikte algo-
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ritme wordt toegepast in iedere stap. De uitkomst van de eerste stap van de meer-
stapsmethode is de theoretische of conceptuele verdeling van laminaateigenschap-
pen, welke geen informatie bieden over de realistische lagenopbouw, en waarvan
de verdeling gedreven wordt door de mechanische prestaties. De uitkomst van de
tweede stap is een realistische optimale vezelhoekverdeling in elke laag van het CS
of VS laminaat, respectievelijk. De drijvers van de tweede stap zijn het theoretische
ontwerp gevonden in de eerste stap en de toelaatbare kromming van de vezels. De
uitkomst van de derde stap zijn gestuurde vezelpaden van het VS laminaat. De
drijvers van de derde stap zijn de vezelhoekverdeling uit de tweede stap. De meer-
stapsmethode is gebaseerd op convexe separabele benaderingen van de mate van
mechanische prestatie, bedoeld zijn de knikfactor en de materiaalbezwijkindex.

De materiaalbezwijkenvelop hangt af van de oriÃńntatie van elke laag in het
laminaat. In de eerste optimalisatiestap van de meerstapsmethode worden echter
lamineeringsparameters gebruikt als ontwerpvariabelen. Dit probleem wordt om-
zeild door het gebruik van een conservatieve Tsai-Wu bezwijkenvelop ontwikkeld
door IJsselmuiden et al. [139], die onafhankelijk is van laagoriëntaties. De belang-
rijkste bijdrage van de auteur aan de meerstapsmethode was de afleiding van de
convexe separabele benadring van de bezwijkindex.

De hier ontwikkelde methode voor de laminaatstijfheidsherverdeling in om-
treksrichting van cilinders met een willekeurige doorsnede is toegepast op twee
onverstijfde cilindrische schalen, namelijk een ronde cilinder belast in buiging en
een axiaal belaste elliptische cilinder, en op twee in de lengterichting verstijfde en
in buiging belaste ronde cilinders met verschillende ratioâĂŹs in radius en wand-
dikte. Significante verbeteringen, van 25.3% tot 43.2%, werden behaald voor de li-
neaire kniklast voor de geselecteerde theoretische VS laminaatontwerpen ten op-
zichte van de geselecteerde CS laminaatontwerpen. De kniklast voor de realisti-
sche laminaatontwerpen was minder dan voor de theoretische laminaatontwer-
pen, voornamelijk door het beperkte aantal lagen in de realistische CS en VS la-
minaten en door de beperking in de toelaatbare kromming in realistische VS la-
minaten. De verbeteringen in de lineaire kniklast van de realistische VS laminaten
ten opzichte van de realistische CS laminaten lagen tussen 17.9% en 31.9%. De
verbetering in kniklast van de laminaten met gestuurde vezels ten opzichte van de
laminaten met rechte vezels kon verklaard worden door de herverdeling in stijf-
heid en sectiebelasting.

De axiale sectiebelastingsverdeling was voor het VS laminaatontwerp van de
onverstijfde ronde cilinder in buiging nagenoeg uniform aan de op druk belaste
zijde van de doorsnede, terwijl deze verdeling voor het CS laminaat een sinusoÃŕde
was. De grootte van de maximale axiale sectiebelasting aan de op druk belaste
zijde van het VS laminaat was kleiner dan voor het CS laminaat en dus was de
kniklast verbeterd.
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In de onverstijfde elliptische cilinder belast in axiale compressie werd met het
VS laminaat de axiale drukbelasting dusdanig herverdeeld dat de secties met een
grotere krommingstraal, die voor quasi-isotrope (QI) en CS laminaten gevoeliger
waren voor knik, minder belast werden, terwijl de secties met een sterkere krom-
mingsstraal zwaarder belast werden, die voor quasi-isotrope (QI) en CS laminaten
juist beter bestand waren tegen knik. Het materiaal in de elliptische doorsnede
werd hierdoor in de cilinder met het VS laminaat efficiënter benut, knikmodi wer-
den over de gehele omtrek van de cilinder verdeeld en de kniklast werd verhoogd.

De verbetering in kniklast voor de verstijfde in buiging belaste cilinder voor het
VS laminaat ten opzichte van het VS laminaat kon aan twee mechanismen worden
toegeschreven; een globale lastherverdeling, vergelijkbaar met de herverdeling die
optrad voor de onverstijfde cilinder in buiging, en een lokale lastherverdeling in
de ruimte tussen twee verstijvers aan de op druk belaste zijde van de doorsnede,
waardoor de drukbelasting in het midden van de sectie nog verder verlaagd werd
door overdracht van de belasting aan de verstijvers.

Om het effect van de variatie in laminaatdikte naast dat van vezelsturen op de
verbetering in kniklast te bestuderen, werden de theoretische VS laminaatontwer-
pen met variabele dikte voor de hiervoor genoemde ontwerpstudies berekend en
vergeleken met het beste theoretishe VS ontwerp met constante dikte. Significante
verbeteringen, tussen de 24% tot 57.7%, werden behaald voor de kniklast van de
theortische variabele dikte VS laminaten met het zelfde gewicht. Het effect van
diktevariatie op verbetering van de kniklast kwam met name door een toename in
materiaaldikte in voor de kniklast kritische regio,s. Desalniettemin droeg de varia-
tie in laminaatdikte voor de elliptisch cilinder ook bij aan lastherverdeling.

De niet-lineaire kniklasten lagen voor de berekende ontwerpen dicht bij de li-
neaire kniklasten. Dit liet zien dat er geen significant verlies in stijfheid optrad in
het pre-knik regiem.




