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Abstract

The Statix meta-language has been developed in order to simplify the definition of
static semantics in programming languages. A high-level static semantics definition of
a language in Statix can be used to generate a type-checker, hence abstracting over the
shared implementation details. Statix should be able to express the static semantics of it-
self aswell. The process of defining a language using itself is called bootstrapping. In this
thesis we discuss the bootstrapping of the Statix meta-language within the Spoofax lan-
guage workbench. The bootstrapping of a type-system domain specific language hasn’t
previously been discussed in existing work. It acts as an interesting case study on the use
of Statix to define semantics for a constraint-based declarative language as well as the use
of Statix throughout a full compiler pipeline. In addition bootstrapping grants Statix a
more expressive type system, which enables the future development of the language.

Throughout this thesis we discuss the components of the Statix compiler and explain
how these changed as part of the bootstrapping process. The correctness is validated
by comparing compiled specifications of the bootstrapped compiler and the existing ref-
erence solution for alpha equivalence. We also provide a brief indication of the perfor-
mance of the bootstrapped Statix compiler.

The bootstrapped compiler is believed to be correct, but does currently not perform
to the desired standard. The compiler is successful on smaller language projects, but
has a massive growth in compile time when it is used on larger, more complex language
projects. This means future work is needed in order for it to be incorporated into the
language workbench.
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Chapter 1

Introduction

The Statix meta-language (Antwerpen, Poulsen, et al. 2018) is a type-system domain specific
language, which has been developed in order to simplify the definition of static semantics in
programming languages. Static semantics are the possibly context-sensitivewell-formedness
conditions of a language that can be checked at compile time. Statix is used to give a high level
description of static semantics using a declarative constraint-based approach. It uses scope
graphs (Néron et al. 2015) to define name binding patterns. This method is believed to have
the potential for standardizing the treatment of name binding in programming languages
and their tools (Antwerpen, Poulsen, et al. 2018).

The process of bootstrapping a compiler of a programming language has become a com-
mon practice (Konat, Erdweg, and Visser 2016). This process consists of expressing the lan-
guage that you intend to compile using said language, resulting in a self-compiling compiler.
It allows for compiler development to be performed using a higher level language and can
additionally be seen as a test of the language being compiled.

Statix is a meta-language which is part of the Spoofax language workbench (Kats and
Visser 2010). Language workbenches are compiler compilers that provide a set of high-
level meta-languages for defining programming languages and their compilers. The meta-
languages each focus on a specific aspect of the language or compiler, such as the syntax and
static semantics. This means that a compiler that is expressed using a language workbench
consists of definitions in multiple meta-languages.

Sincemeta-languages are used to only express a specific part of a language compiler, they
can’t be used to fully bootstrap themselves. Instead, bootstrapping a meta-language is done
using the full language workbench, meaning that only the aspect which the meta-language
focuses on is expressed using itself. For example a meta-language that is used to describe
grammars of programming languages can only be used to describe its own grammar during
bootstrapping, while its semantics have to be formulated using other meta-languages. In
this thesis we describe how we bootstrapped Statix within the Spoofax language workbench.
This consists of expressing the static semantics of Statix using Statix, as well as altering a set
of transformations that compile Statix specifications, which are dependent on the semantic
analysis result.

There are multiple reasons for bootstrapping Statix. Firstly, bootstrapping Statix allows
for further innovation to the language, since its static semantics are defined using a more ex-
pressive language. The Statix meta-language can be used to express more complex type sys-
tems, such as those that contain parametric polymorphism. This is a feature that Statix itself
currently does not support, but it could reduce the size of Statix definitions and makes them
easier to express. Secondly, the most recent version of Spoofax, Spoofax 3, does no longer
support the meta-language in which the type system of Statix is expressed. This means that
in order to bootstrap the entire Spoofax 3 language workbench, Statix type system has to be
expressed using Statix. Finally, bootstrapping provides useful insight in the application of

1



1. INTRODUCTION

Statix. This is because bootstrapping can be seen as a case study on the use of Statix to define
semantics for a constraint-based declarative language as well as the use of Statix throughout
a full compiler pipeline.

Themain objective of this thesis is bootstrapping the Statix meta-language and validating
its correctness. This means that the type checking behavior of Statix after bootstrapping
needs to stay consistent and the resulting static semantics definitions should not be altered.
Since there are already several language projects that use Statix, this validation process can
be done using actual examples.

1.1 Contributions
In this thesis, we claim the following contributions:

• We provide a detailed description of the Statix compiler.

• We discuss our bootstrapped implementation of Statix (Janssen et al. 2023) and explain
the motivation behind choices that were made.

• We go through the process of validating the correctness of the bootstrapped implemen-
tation.

• We reflect on the feasibility of bootstrapping semantic specification languages.

1.2 Thesis Outline
The remainder of this Thesis is structured as follows. In chapter 2 we give the relevant back-
ground on the Statix meta-language. In chapter 3 we give a detailed description of the Statix
compiler. The bootstrapped implementation of the Statix compiler is discussed in chapter 4.
In chapter 5 the bootstrapped compiler is evaluated. In chapter 6 we look at work related to
this thesis. Finally, chapter 7 concludes this thesis.
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Chapter 2

The Statix Meta-language

In this chapter we give background information on the Statix meta-language (Antwerpen,
Poulsen, et al. 2018). We will explain its role in the Spoofax language workbench. Then
we briefly introduce how Statix works, using some examples. Finally we motivate why it is
useful to bootstrap Statix.

2.1 Statix as part of the Spoofax Language Workbench
Statix is a meta-language that is part of the Spoofax language designer workbench (Kats and
Visser 2010), which is an open-source workbench that language designers can use for design-
ing textual programming languages. Statix can be used to specify the static semantics of a
newly designed language. Static semantics are the well-formedness conditions of a language
that can be checked at compile time. Two other meta-languages that are part of Spoofax and
play an important role in language design are: SDF3 (SouzaAmorim andVisser 2020), which
is used specify the syntax of a language and Stratego (Visser 2003), which is used to perform
transformations on intermediate representations of a language. A basic Spoofax pipeline is
shown in Figure 2.1. The following steps are shown:

• In the parse step a grammar specification is used to transform a text file to an abstract
syntax tree (AST).

• The static semantics specification is applied to the AST in the analysis step in order to
obtain an analysis result.

• The compilation step consists of applying transformation rules to the AST, these trans-
formations can rely on information from the analysis result.

Figure 2.1: Basic pipeline in Spoofax
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2. THE STATIX META-LANGUAGE

The role of Statix in Spoofax is to specify a set of constraints on an abstract syntax tree
(AST) of a language that represent the static semantics of the designed language. These
constraints are context sensitive, unlike parsing constraints. The Statix specification gets nor-
malized (see chapter 3) to an intermediate representation, which can togetherwith the object
language AST be passed to the Statix solver to be solved. The Statix solver returns an analysis
result that contains type information, such as the types of terms, and possibly errormessages
when the constraints cannot be fully solved.

2.2 Introduction to Statix
In this section we explain how Statix is used to specify the static semantics of an object lan-
guage and illustrate this using an example. First we will explain that typing rules in Statix
closely resemble formal inference rules. Then we will introduce scope graphs (Néron et al.
2015), which is a concept that allows for the encoding of name binding patterns in a wide
range of programming languages.

2.2.1 Typing rules
Typing rules in Statix are expressed using a construction that is similar to formal inference
rules. This means that every rule has a conclusion that holds when all the premises that
belong to it hold as well. This often means that a Statix rule will have a conclusion that
matches a node of an AST and this conclusion holds if the premises that apply to its subtrees
also hold. We will illustrate this with the following example of a Statix definition for plus
expressions, for which the signature is given in Figure 2.2.

signature
sorts Exp constructors
Int : int -> Exp
Plus : Exp * Exp -> Exp

sorts Type constructors
INT : Type

Figure 2.2: Statix signature for plus expressions

rules
typeOfExp : Exp -> Type

typeOfExp(Int(_)) = INT().

typeOfExp(Plus(e1, e2)) = INT() :-
typeOfExp(e1) == INT(),
typeOfExp(e2) == INT().

Figure 2.3: Statix specification for plus expressions

In Figure 2.3 the Statix rules that apply to plus expressions are shown together with its
signature. The rule for integers doesn’t have any premises, while the rule for a plus expres-
sion is a conclusion with two premises after the “:-” which are linked by the conjunction
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2.2. Introduction to Statix

operator “,”. Using this example we can see that if we have to substitute the plus expres-
sion 2 + 3, which has the textual AST: Plus(Int(2), Int(3)), in the bottom rule that the two
premises match the top rule, meaning the premises and consequently the conclusion on the
plus expression holds.

2.2.2 Scope Graphs
The typing rules in the simple example above don’t need any context with regards to the AST
node for them to hold, but this isn’t true for all AST nodes in less basic expressions. For ex-
ample a variable reference node without context, won’t allow for a conclusion on the type of
the variable. This is why traditionally an environment is passed down to every premise, such
that a rule about a reference can have access to its declaration. However Statix doesn’t use
an environment for storing its declarations but it uses a scope graph (Antwerpen, Poulsen,
et al. 2018; Antwerpen, Néron, et al. 2016; Néron et al. 2015) instead. We will now explain
the elements of a scope graph, which are shown visually in Figure 2.4:

• Scopes represent a region of a program where name resolution behavior is uniform.
Scopes in a scope graph are represented by nodes.

• Labeled, directed edges between scope nodesmodel the visibility between scope nodes.
This allows for the ability to for example differentiate between the visibility within a
programming module and its imported modules.

• Declarations in scope graphs are represented by a node containing the information
of the declaration, such as variable name and type, and a edge connecting to a scope
node labeled by a relation name. The relation represents what subset of declarations
(namespace) the declaration belongs to. Examples of frequently used relations in scope
graphs are variables and functions.

• References in scope graphs are known as queries. The query specifies which relation
the reference belongs to andwhat the rules are regarding its visibility. The Statix solver
will be able to infer which declaration(s) belong to a query.

Figure 2.4: Scope graph elements

Rather than passing down an environment to premises, in Statix a scope will be passed
down. This scope can then be used to add new declarations to it, extend the scope with
another scope using a labeled edge or use it as the entry point for query to resolve a reference.

5



2. THE STATIX META-LANGUAGE

We will now demonstrate how scope graphs in Statix are used using an example of a
Statix specification for a basic lambda calculuswith plus expressionswhich is given in Figure
2.5. We will go through this specification using the scope graph that successfully gets cre-
ated from the following lambda calculus example (including reference indexes): λx.(λy.(x1+
y1)x2), which has textualAST: Fun("x", App(Fun("y", Plus(Var("x"), Var("y"))) Var("x"))).
The scope graph is shown in Figure 2.6.

1 signature
2 sorts Exp constructors
3 Int : int -> Exp
4 Plus : Exp * Exp -> Exp
5 Fun : string * Exp -> Exp
6 Var : string -> Exp
7 App : Exp * Exp -> Exp
8
9 sorts Type constructors

10 INT : Type
11 FUN : Type * Type -> Type
12
13 relations
14 var : string -> Type
15
16 name-resolution
17 labels P
18
19 rules
20 typeOfExp : scope * Exp -> Type
21
22 typeOfExp(_, Int(_)) = INT().
23
24 typeOfExp(s, Plus(e1, e2)) = INT() :-
25 typeOfExp(s, e1) == INT(),
26 typeOfExp(s, e2) == INT().
27
28 typeOfExp(s, Fun(x, e)) = FUN(S, T) :- {s_fun}
29 new s_fun,
30 s_fun -P-> s,
31 !var[x, S] in s_fun,
32 typeOfExp(s_fun, e) == T.
33
34 typeOfExp(s, Var(x)) = T :- {path}
35 query var
36 filter P* and {x' :- x' == x}
37 min $ < P
38 in s |-> [(path, (x, T))|_].
39
40 typeOfExp(s, App(e1, e2)) = T :- {S}
41 typeOfExp(s, e1) == FUN(S, T),
42 typeOfExp(s, e2) == S.

Figure 2.5: Statix specification for lambda calculus with plus expressions
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2.2. Introduction to Statix

The first thing we consider is that part of the signature are the declarations of the relation
and edge label, which will be used in scope graph creation. The rule signature of typeOfExp
is different than the one in Figure 2.3, because now a scope is added such that this can be
passed down to sub-expressions, which can be seen in the plus expression rule (Line 24-26).

Scope creation in this example happens in the rule for functions (Line 28-32). In the first
two premises of this rule a new scope is introduced and then the current scope is extended
using a P labeled edge, the result of this can be seen twice in Figure 2.6. The following premise
contains the declaration of the variable introduced by the lambda in the newly created scope
using the appropriate relation. Finally the type of sub-expression is checked using the new
scope.

In the rule for variable references (Line 34-38) scope querying occurs. A scope graph
query consists of multiple parts, that each have an effect of what the result of the query will
be. Firstly it is defined under which relation the query is performed. Secondly a regular ex-
pression describes which edges can be traversed, in our example in Figure 2.5 this can be any
number of P edges. After this a constraint can be defined on the resulting declarations that
filters them, in our example the declaration string has to be equal to the string of the variable
reference. Then an order can be defined on which paths in a scope graph are preferred, the
query in Figure 2.5 prefers declarations in the current scope ($) over those reached via one
or more P edges. Finally the scope in which the query starts is given and the term that will
matchwith the result of the query. The result term is a list where every element is a tuple of a
path term, representing the path taken and a tuple term containing the retrieved declaration.

In the scope graph in Figure 2.6 it can be seen that both variables are declared with the
integer type, but if you look at the Fun rule in Figure 2.5 you can see that the declaration
occurs with a variable S instead of the Int() type constructor. The declaration in the scope
graph will be of integer type however, since Statix uses type inference and the variable S
will be solved to an integer type, because the variable references are part of plus expressions,
which require its sub-expression to be of integer type.

Figure 2.6: Scope graph of λx.(λy.(x1 + y1)x2)
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2. THE STATIX META-LANGUAGE

2.3 Why bootstrap Statix?
In this section we will explain the motivation behind bootstrapping Statix. Firstly the type
system of Statix is currently expressed using NaBL2 (Antwerpen, Néron, et al. 2016), which
is meta-language used to express static semantics that is more restrictive than Statix. This re-
strictiveness means that certain improvements that could be made to Statix are currently not
possible, due to the limitations of the type system inNaBL2. An example of such an improve-
ment is the addition of parametric polymorphism in constraint type signatures. Currently
Statix requires every user defined constraint to have an explicit type signature, which means
that constraints that operate on lists require the exact type signature of the elements of the
list. This results in the user having to define a different constraint for every type of list it
wants to use the constraint on. In Figure 2.7 you can see that currently you would require
two different constraints for concatenating lists of different types even though the rule struc-
ture is equal, so ideally you would use parametric polymorphism as shown in 2.8 such that
you would need only one constraint definition.

rules
concatIntList: list(int) * list(int) -> list(int)

concatIntList([], ys) = ys.
concatIntList([x|xs], ys) = [x|concatIntList(xs, ys)].

concatStringList: list(string) * list(string) -> list(string)

concatStringList([], ys) = ys.
concatStringList([x|xs], ys) = [x|concatStringList(xs, ys)].

Figure 2.7: List concatenation of integers and strings

rules
concatList: A => list(A) * list(A) -> list(A)

concatList([], ys) = ys.
concatList([x|xs], ys) = [x|concatList(xs, ys)].

Figure 2.8: List concatenation using parametric polymorphism

The second reason for bootstrapping Statix is that in the newest version of the Spoofax
language workbench, Spoofax 3, the NaBL2 language is no longer supported, which means
that in order for the language workbench to be bootstrapped the static semantics definition
of Statix can no longer be in NaBL2, but has to use Statix instead.

Finally bootstrapping Statix can give use useful insight on the application of Statix. For
example it allows for further studies on the performance of the Statix solver, since currently
existing Statix projects now use the Statix solver when they get built instead of the NaBL2
solver. This means these projects can now be used to benchmark the Statix solver, while in
the past you would need to use a project written in the language for which the Statix project
has defined static semantics.

8



Chapter 3

The Statix Compiler

In this chapter we discuss the Statix compiler. We mention the different steps of the compi-
lation pipeline and we go into depth about the analysis and normalization steps.

3.1 Compilation pipeline

In this section we will describe the steps which transform a textual Statix specification file to
a file which is compatible with the Statix solver. The Statix pipeline can be seen in Figure 3.1
alongwith the pipeline of an object language that the Statix specification file belongs to, such
that it is clear how the two are related. In the bootstrapping scenario the object language is
Statix as well.

Figure 3.1: The Statix compiler pipeline

These are the steps taken in the Statix compiler pipeline:

• The first step is parsing the text file to an abstract syntax tree (AST) according to its
grammar specification in SDF3 (parse : textfile Ñ AST).

• After this step static analysis is performed on the AST by combining it with the static
semantics specification and solving the constraints. The results of the solver are stored
in an analysis object (analysis : AST Ñ analysis result).

• The type information stored in the analysis object can then be used to transform the
AST to the spec A-Term file supported by the Statix solver in the normalization step
(normalize : AST, analysis result Ñ spec).

9



3. THE STATIX COMPILER

3.2 Static Analysis
The static analysis mostly gets done by solving the constraints defined in the specification file.
In the current compiler this file is written in the deprecated NaBL2 meta-language (Antwer-
pen, Néron, et al. 2016), while in the bootstrapped version of the compiler the constraints
will be specified in Statix itself. A large part of the constraint specification concerns the typ-
ing of Statix and how names in Statix are resolved. An in depth explanation of how this has
been implemented using Statix is given in section 4.1.

3.2.1 Custom Analysis
The majority of the static semantics of Statix can be expressed using the aforementioned
meta-languages, but there are some constraints that the meta-languages cannot support. An
example is checking whether the name of a Statix module corresponds to its file-path, since
both NaBL2 and Statix don’t have access to this information. To make sure that these kind of
static semantics can also be checked, the runtime of the meta-languages allows the designers
to write a custom analysis section in the Stratego meta-language, which is a less restricted
language used for themanipulation ofASTs. Checking for duplicate rule patterns and correct
scope graph extension behavior are two more complex examples of this custom analysis in
the Statix compiler. We will explain these analysis examples in the following subsections.

3.2.2 Duplicate rule patterns
As part of the solving process the Statix solver needs to perform pattern matching on the
rules that are part of a specification. To make sure that the solver will always match on the
same rule when presented with the same argument terms, Statix has a rule specificity order,
where the most specific rule will be selected during pattern matching. To make sure that it
will never be unclear which pattern is the most specific, this is statically checked.

rules
rule: int * int

rule(8, 8).
rule(x, x).
rule(x, y).
rule(a, b) :- true.
rule(_, _) :- false.

Figure 3.2: Rule patterns in Statix

In Figure 3.2 a set of rule patterns is given for a rule that takes two integers. The top three
rules are decreasingly specific and are allowed to exist together. The bottom three rules all
have the same specificity, namely they accept any pattern of two integers, so they shouldn’t
be allowed to exist together.

In the Statix compiler where NaBL2 is used to express the static semantics, the check for
invalid overlapping rule patterns is part of the custom analysis, but in the bootstrapped Statix
compiler this analysis is expressed in Statix and is described in section 4.2.

3.2.3 Scope graph extensions
To ensure that the Statix solver can correctly solve all its given constraints using a constructed
scope graph, the scope graph construction has to adhere to some rules. In Figure 3.3 some
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examples of valid and invalid scope graph extensions are given.

1 rules
2 extend: scope
3
4 extend(s1) :- {s2} new s2, s2 -P-> s1. //valid
5 extend(s1) :- {s2} s2 -P-> s1. //invalid
6
7 rule: string
8
9 rule("correct") :- {s} new s, extend(s). //valid

10 rule("incorrect") :- {s} extend(s). //invalid
11
12 extend(s) :- !var["x"] in s. //valid
13 extend(s) :- query var //invalid
14 filter P* and {x :- !var[x] in s}
15 in s |-> _.

Figure 3.3: Valid and invalid scope extensions

The first two rules in lines 4 and 5 show that in order for a scope to be extended it has to
be owned first, for amore detailed explanation onwhat this entails see (Antwerpen, Poulsen,
et al. 2018). A newly introduced variable is not an owned scope until it is referenced in a new
constraint. A scope passed down to a rule head is assumed to be owned, but if one of the
rules belonging to a certain constraint extends the scope that is passed down, all calls to that
constraint in other rules will require the passed down scope to be owned, which you can see
in lines 9 and 10.

The rules in lines 12-15 of Figure 3.3 show in which context a scope can and cannot be
extended. In rule 4 it is attempted to extend the scope graph within the context of a scope
graph query, if this was valid it would mean that within the query the scope would have an
extra declaration, but outside of it that would not be the case and this would violate the fact
that a scope graph is consistent and the outcome of its queries are always the same regardless
of where the query is placed within the specification.

The analysis that checkswhether a Statix specification adheres to rules set on scope graph
extensions is implemented in Stratego using the analysis result of the static analysis in both
versions of the compiler. A more in depth explanation of this analysis and how it need to be
adjusted during bootstrapping is given in section 4.3.

3.3 Normalization
After the analysis step has completed the resulting type information can be used to transform
the abstract syntax tree to a file format that is supported by the Statix solver. The first part of
this transformation step consists of converting the syntactic sugar used in Statix to the core
constructs that are supported by the Statix solver.

An example of such a normalization is given in Figure 3.4. In this example you can see
how the maps construct gets normalized to a signature and two separate rules. The maps con-
struct is used as a shorthand for a constraint that applies another constraint to every element
of a list or lists. In the example in Figure 3.4 the checkExpressions constraint will go through
a list of Exp using the checkExpression constraint. The Exp parameter of the checkExpression
constraint is lifted to a list parameter(list(*)), while the scope parameter is not (*), this can
also be seen in the normalized signature. This transformation is dependent on the analysis
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result, because it needs to infer what the type of the * is in the mapping rule. The two rules
that are constructed as part of the normalization are a base case rule for an empty list and a
recursive rule, in which the mapped constraint gets applied to the head element of a list and
a recursive step is applied to the tail of the list.

rules
checkStatements: scope * Exp

checkStatements maps checkStatement(*, list(*))

=======>

checkStatements: scope * list(Exp)

checkStatements(_, [ ]) :-
true.

checkStatements(x_1, [x_2|xs_2]) :-
checkStatement(x_1, x_2),
checkStatements(x_1, xs_2).

Figure 3.4: The normalization of a mapping rule

Once all the sugared constructs have been transformed an A-Term is generated. An A-
Term is tuple that gets stored to a file and contains all the information of the Statix specifica-
tion that the Statix solver needs to solve the constraints of a specification applied to an AST
of an object language. The A-Term tuple is made up of the following five lists:

• A list of imported modules

• A list of edge labels introduced in the module

• A list of relations introduced in the module

• A list of all rules specified in the module. These rules consist of a rule pattern and their
premises, the rule signatures are not needed.

• A list of scope graph extensions that occur in the rules used by the module. An exten-
sion is made up of a rule name, a number indicating which parameter of that rule is a
scope that get extended and the name of the label with which the scope get extended,
either a relation or an edge label.

The first four lists can easily be extracted from the normalized AST, the list of scope graph
extensions is a result of the custom analysis mentioned in section 3.2.3.

12



Chapter 4

Bootstrapped Implementation

In this chapterwediscuss the important elements of the bootstrapped implementation (Janssen
et al. 2023) as well as the relevant design choices that were made. This chapter could help
someone better understand the code that accompanies this thesis.

4.1 Typing & Name Binding of Statix
In this section we will describe the type system of Statix (Antwerpen, Poulsen, et al. 2018)
and how this type system is used with regard to name binding and name resolution in Statix.
Wewill cover the names that can be defined in Statix and explain themotivation behind their
name binding policy in the bootstrapped version of Statix. We we will then show how types
in Statix are used to type check Statix using an example.

4.1.1 Term Types
Constraints in Statix are largelymade up of terms. These can be simple terms like e.g. integers
and strings or they can be composite terms like e.g. lists and tuples. In order to be able to
define typing rules for constraints the term types seen in Figure 4.1 are defined. Amajority of
these types do not require further explanation since they state what they represent. The Sort
type contains the string that refers to the sort that the type is associated with. The List type
contains the type of all elements of the list, since all elements of a list in Statix should have
the same type. Finally the Tuple type consists of a list of types that the tuple is composed of.

sorts
TType

constructors
INT : TType
STRING : TType
PATH : TType
LABEL : TType
AST_ID : TType
SCOPE : TType
LIST : TType -> TType
TUPLE : list(TType) -> TType
SORT : string -> TType

Figure 4.1: Term Types of Statix
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4.1.2 Modules
The modules of Statix are defined in the scope-graph using a relation that pairs the module
identifier with a scope (module : string ˚ scope). The scope is the module scope in which all
constraints, sorts, constructors, relations and labels are declared. This scope can be retrieved
from the scope graph when a module is referenced in an import statement and then can be
used to add an import edge to the scope graph. The relation is not a functional relation from
identifier to scope, because the relation is queried using a scope to find the corresponding
identifier as well, such that it can be used for error messages or qualifying the name of a
predicate or label reference. In the next section we will briefly describe the structure of a
scope graph created from a Statix specification.

4.1.3 Scope graph structure
There is one global scope, which contains the declarations of all Statix modules, this scope
gets extended by all individual modules. Themodule scopes contain the declarations of user
defined constraints, sorts, constructors, relations and scope graph labels. When a module
imports anothermodule there is a an import edge in the scope graph between the twomodule
scopes.

Module scopes get extended with any number of rule scopes representing every rule
inside of the module. The rule scope contains the declarations of the variables that are part
of its rule pattern. A rule scope can get extended one ormore times by a scope of an existential
constraint or a scope of a higher order constraint belonging to a scope graph query, which
will contain the declarations of variables introduced by that constraint.

A schematic overview of a scope graph of a Statix specification is shown in Figure 4.2.

Figure 4.2: The structure of a scope graph of a Statix specification

4.1.4 User Defined Constraints
User Defined Constraints can’t be expressed using a term type, but they do have a type signa-
ture that consists of term types. This is why a sort for constraint types is defined to represent
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sorts
IType

constructors
PRED : list(TType) -> IType
FUN : list(TType) * TType -> IType

Figure 4.3: Predicate Types of Statix

constraints, which can be seen in Figure 4.3. A basic constraint or predicate type is composed
of a list of the term types of its parameters, while a functional constraint type also contains a
separate term type to represent the type of the term it returns.

Constraints are declared in the scope graph using a relation that maps their identifier to
their constraint type (predicate : string Ñ IType). Constraints in Statix are declared with
their type signature, which makes their name binding straightforward. A constraint type is
resolved when either a rule for it is defined or it is used as an inline constraint or term.

4.1.5 Variables
Variables that are used in rules are defined by a relation that maps the variable identifier to
a term type (variable : string Ñ TType). Variables can be declared either by being part of
a rule head or they can be introduced in an existential constraint. Both ways of declaration
presented challenges for declaring the variables in a scope-graph in Statix, which we will
now explain.

A variable can occur multiple times in a rule pattern, but should be declared only once.
This means that when you encounter a variable in a rule pattern as part of an ASTwhile type
checking, you can’t just declare it immediately since that might lead to duplicate declarations
of the same variable. Instead all variables occurrences are collected when type checking a
rule pattern, duplicates get filtered out and then the variables that remain get declared.

In an exists constraint new variables get introduced, but these variables have no type
associated with them. They can get bound to any type, but the type has to be consistent
throughout its use. This means that when the variable has to be declared the type is un-
known, but it does have to be declared in the scope-graph somehow, since there should be a
way to resolve it when the variable gets referenced. To get around this problem we make a
clever usage of the way Statix constraints are solved. We declare variables with a free unifi-
cation variable instead of an already derived type, but because Statix constraints are solved
using type inference, the type will be correctly inferred from its references.

4.1.6 Sorts & Constructors
Sorts can be defined by just their user defined name or they can alias another type. In the
scope-graph sorts are declared using a relation that maps their identifier to a term type
(sort : string Ñ TType), for a non-aliased sort this term type will be of type sort with the
newly declared identifier as its parameter, while for alias declarations the type will be the
aliased type.

The relation that defines constructors in the scope-graph maps a combination of the con-
structor’s identifier and an integer to both a list of term types and a singular term type
(constructor : string ˚ int Ñ (list(TType) ˚ TType)). The reason that the integer is also needed
to define a particular constructor is because it represents the number of arguments a con-
structor has and it is allowed to use the same identifier for multiple constructors as long as
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sorts
LType

constructors
EDGE : LType
RELATION : IType -> LType

Figure 4.4: Label Types of Statix

they have different arities. The right-hand side of the relation represents the types of the
arguments of the constructor and the type of the sort the constructor belongs to.

4.1.7 Relations & Scope Graph Edge Labels
Relations and scope-graph edge labels are defined by a single relation. We chose one relation,
because relations and scope-graph labels belong to the same name-space and the Statix solver
models relations as edge labels (Rouvoet et al. 2020). We could have chosen to use two
separate relations, but that would mean that checking whether you are using a duplicate
name requires two scope-graph queries instead of one, which is less efficient. To differentiate
between relations and scope-graph edge labels we have defined a label type that is shown
in Figure 4.4, and the relation maps identifiers to these label types (label : string Ñ LType).
A label type can either be of edge type or of relation type, where a relation type contains an
instance of the same internal type we use to define constraints. This type can be used, since
relations are also made up out of a list of term types and can possibly be functional.

4.1.8 Type Checking Example: ListTail Term

signature
constructors
ListTail: list(Term) * Term -> Term

constraints
termOk: scope * Term -> TType
listTermOk: scope * list(Term) -> TType

rules
termOk(s, ListTail(hs, tail)) = LIST(T) :-
T == listTermOk(s, hs),
LIST(T) == termOk(s, tail).

Figure 4.5: Statix code relevant to type checking a ListTail term

The types and scope-graph relations described in the previous subsections are used to
typecheck Statix programs. During this process conditions are checked like the types of a
user defined constraints’ parameters match the types of the arguments of some reference of
that particular constraint. Another example is that the types of a ListTail term (Figure 4.5)
are correct, we will use this as an example of what type checking Statix in Statix looks like.

A ListTail term in Statix is like a cons term, but instead of a singular head you can have
any arbitrary number of head elements. This means that the ListTail term is made up out of

16



4.2. Duplicate Pattern Checking

a list of terms of the same type T and a tail term that needs to be of list type of type T. For
example [1, 2, 3|[4]] is a correct ListTail term while [1, ‘‘2”, 3|[4]] and [1, 2, 3|4] are terms that
will not type check. The statix code for this type checking behaviour can be seen in Figure
4.5.

4.2 Duplicate Pattern Checking
In this section we explain how we have defined the constraints that check for duplicate rule
patterns in Statix using Statix. The necessity of such an analysis is described in section 3.2.2.
In short, this analysis is required to ensure that the Statix solver always has a clear answer,
when it needs to determine what constraint it should match on.

A rule pattern in Statix is also called the rule head and is made up of a constraint name,
which the rule belongs to, and the terms that represent the rule pattern. There should be no
duplicate rule patternswithin a specification. In order to compare a rule headwith other rule
heads we have defined the following relation: rulePattern : string Ñ (list(Term) ˚ scope),
which allows us to declare rule patterns and query the scope graph for all patterns that a pat-
tern needs to be compared to. The relationmaps the name of the corresponding constraint to
a tuple of the list of terms representing the pattern and the scope in which the corresponding
constraint is declared. The scope is necessary, because in Statix you are allowed to define a
constraint that shadows a constraint in an imported module.

4.2.1 Comparing two rule patterns
In order to compare two rule patterns you need to compare all terms from left to right and
in the end you should be able conclude whether these two patterns match on a different
set of inputs or not. Comparing an integer or string term is straightforward, but comparing
variables requires the context in which the variables are located. When you compare the
following three patterns: rule(a, a), rule(b, b), rule(c, d), the first two should be concluded
to be equal, but the third is different, this is because where variable a in the first pattern
is used variable b is used consistently in the second pattern, but in the third pattern two
different variables are used. This is why during a pattern comparison we pass along a list of
string tuples that bind two variables, such that further occurrences of these variables can be
compared correctly.

A Fragment of the Statix code that implements the pattern comparison is given in Figure
4.6. The comparePatterns constraint is given two list of terms, representing the rule patterns
and a list of string tuples, representing the previouslymentionedmapping between variables.
The constraint results in a tuple containing an integer, which encodes the boolean result of
the comparison, and the mappings of all variables encountered. Since Statix doesn’t have
built in booleans and if statements, we use integers and pattern matching to define different
branches of a comparison. The compareTerms constraint uses pattern matching to compare all
possible combinations of Statix terms, Figure 4.6 shows the cases for integer terms and tuple
terms as an example. The comparePatternsHelper rules show how a result of compareTerms is
used to either conclude that a pattern is different or the resulting mappings are passed along
to the comparison of the remaining terms.
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signature
sorts
Mappings = list((string * string))

sorts Term constructors
Int: int -> Term
Tuple: list(Term) -> Term

rules
comparePatterns : list(Term) * list(Term) * Mappings -> (int * Mappings)

comparePatterns([], [], ms) = (0, ms).
comparePatterns([], _, ms) = (1, ms).
comparePatterns(_, [], ms) = (1, ms).
comparePatterns([x|xs], [y|ys], ms) = comparePatternsHelper(compareTerms(x, y, ms), xs, ys).

comparePatternsHelper: (int * Mappings) * list(Term) * list(Term) -> (int * Mappings)

comparePatternsHelper((1, ms), _, _) = (1, ms).
comparePatternsHelper((0, ms), xs, ys) = comparePatterns(xs, ys, ms).

compareTerms : Term * Term * Mappings -> (int * Mappings)

compareTerms(Int(x), Int(x), ms) = (0, ms).
compareTerms(Tuple(xs), Tuple(ys), ms) = comparePatterns(xs, ys, ms).
...
compareTerms(_, _, ms) = (1, ms).

Figure 4.6: Fragment of the rules used for comparing rule patterns in Statix

4.2.2 Comparing all rule patterns

Wewill now list the steps we have used to compare a rule head to all relevant patterns during
its type checking:

1. Declare the rule pattern in the scope graph using its constraint name.

2. Resolve all the rule patterns using a scope graph query that selects all patterns declared
using the same constraint name from the current module and all imported modules.

3. Filter out the rule patterns of shadowed constraints by looking at whether the scope
of the declarations matches the scope of the constraint for which the current pattern is
being checked.

4. Compare all the remaining rule patterns to the current pattern and filter out all the
patterns that are different.

5. Check whether a single rule pattern remains, if not add the appropriate error message
to the rule head of the rule that is being type checked.
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4.3 Scope Graph Extension Analysis
In this section we briefly discuss how we have adapted the preexisting implementation for
scope graph extension permission analysis to use Statix. The reasons for why this analysis
is necessary are given in section 3.2.3 and in Rouvoet et al. (2020). Since we only adapted
the previous implementation we will only touch on what we needed to include in the Statix
analysis and won’t provide many details on how the analysis is performed.

The scope graph extension analysis consists of two main parts, checking whether the
scope that is being extended is instantiated and checking whether the extension of a scope
is allowed within the context in which it is located. Verifying whether a scope is instantiated
is done by solving a set of constraints that get generated by going through the ASTs of Statix
rules. These constraints state whether a variable declaration or reference either provides
scope extension permission or requires it. They are solved by a custom fixed point solver. In
order to solve these constraints it is required that variable references can correctly be resolved
to their declarations. To ensure that this is possible we set the ref AST property of every
variable reference to its declaration when resolving it in Statix, as seen in figure 4.7.

typeOfVariable(s, Var(id)) = T :- {id'}
resolveVariable(s, id) == [(_,(id', T))|_] | error $[Variable [id] not defined],
@id.ref := id'.

Figure 4.7: Using the ref AST property

The scope extension analysis that is reliant on context uses barriers to determine when
a scope can and cannot be extended. The barriers are used to section of parts of a scope-
graph. An example of when such a barrier is introduced is within the higher order con-
straint of a scope graph query, only scopes within this context are allowed to be extended
since the other scopes cross the barrier. Tomodel these barriers in Statix we use two relations
barrier : scope and varBarrier : string Ñ scope. The barrier relation allows for the declara-
tion of scope graph barriers and the varBarrier relation is used to indicate what outer scope
can be reached from a variable declaration without crossing a barrier. Comparing the scope
that can be reached from the scope of a variable reference to the scope that is obtained by
querying varBarrier determines whether that variable reference could be that of a scope that
gets extended.

4.4 Normalization
In this section we discuss how bootstrapping affects the normalization step of the Statix com-
piler. The transformations that occur during the normalization step don’t need to be changed
themselves, but they are dependent on the analysis result, which in the bootstrapped version
is a Statix analysis result, while in the original version it is an NaBL analysis result. This
means that the transformations need to be modified to use the Statix analysis result and the
Statix analysis result needs to provide the information necessary for the transformations. In
the remainder of the section we address how we have adapted specific parts of the normal-
ization step.

4.4.1 Transformation of Sugared Constructs
The transformations of sugared constructs are dependent on the type information of terms
and constraints. In these transformations the AST nodes of sugared constructs are replaced
with core constructs, for an example see 3.4 in section 3.3. In the original version of the
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Statix compiler the transformations are implemented by first annotating the AST with the
type information from the NaBL analysis result and then using the annotations to do the
normalization. This meant that in the bootstrapped version we can annotate the AST with
the type information from the Statix analysis result and as long as the type information is
consistent there is no need to further change the transformation steps.

To enable the correct annotation of the AST we set the type AST property of all term and
constraint AST nodes to its type during the analysis step. In Figure 4.8 you can see how the
type AST property is used during type checking within the example from section 4.1.8. In
the rule head the AST node is ascribed to variable a and in the final premise the type is bound
to the node. The AST node can then successfully be annotated in the normalization step by
retrieving the type using the Statix API in Stratego.

termOk(s, a@ListTail(hs, tail)) = LIST(T) :-
T == listTermOk(s, hs),
LIST(T) == termOk(s, tail),
@a.type := LIST(T).

Figure 4.8: Using the type AST property

4.4.2 Specialization of Scope Graph Queries
In Zwaan (2022) a specialization of scope graph queries is added to the normalization step
of the Statix compiler, in order to speed up the solving process of a Statix definition. In order
to transform scope graph queries to their specialized versions, some type information from
the analysis result is needed. One of these requirements is access to a list of all available edge
labels to the query. We have implemented this by querying for all edge labels during the type
checking of a scope graph query and adding the result to the AST node of the query using a
labels AST property.
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Chapter 5

Evaluation

In this chapter we evaluate the bootstrapped implementation of Statix. First we describe the
process of validating its correctness. Then we have a look at its performance and finally we
discuss themain takeaways from the bootstrapping process. The code used for the evaluation
accompanies the bootstrapped implementation (Janssen et al. 2023).

5.1 Correctness
In this section we discuss how we have validated whether the bootstrapped Statix compiler
produces the same result as the original compiler. The validation process is important, be-
cause bootstrapping should not result in different behavior of the compiler. This is because
if the compiler would give different results, existing language projects that use Statix might
become invalid or produce unwanted changes to the language.

5.1.1 Unit testing

In order to test whether the bootstrapped Statix compiler has interchangeable type checking
behaviorwe use unit tests to verify specific aspects of the type systemof Statix. These tests are
written using the Spoofax Testing language (SPT) (Kats, Vermaas, and Visser 2011), which
is part of Spoofax that allows language developers to express tests and provides a framework
to execute them.

Unit tests are important, because they allow the type analysis of the bootstrapped Statix
compiler is equivalent to that of the original compiler. Correct Statix definitions should pass
the analysis, while definitions that contain type errors should not pass the analysis. Whether
a Statix definition contains an error is stored in an analysis result, this result is specific to
language in which the static analysis is expressed, in the original compiler NaBL2 and in the
bootstrapped compiler Statix. This means we cannot directly compare these analysis results,
but we use unit tests to compare them instead. Tests that pass using the original compiler
should also pass for the bootstrapped compiler.

The original Statix compiler already had an accompanying test suite in SPT, which forms
as a basis for the test suite we use to validate the correctness of the bootstrapped Statix com-
piler. This test suite consists of both tests that verify the correct type checking of Statix as
well as the correct solving of a Statix constraint.

While the original test suite does include tests that check Statix definitions that violate
its set typing rules, it is far from complete. This is why we have extended the test suite such
that there is a test case for almost every possible typing error that could occur in Statix. An
overview of the test suite can be seen in Table 5.1. An example of a unit test is given in Figure
5.2.
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Number of Tests
Terms 26
Sorts & Constructors 8
Constraints 36
Rules 37
Relations & Scope graph labels 11
Queries 33

Table 5.1: An overview of the unit tests used to validate type checking

test incorrect strings rule [[
module test

rules
rule: string * string
rule("hi", 9).

]] analysis fails

Figure 5.2: Unit test testing the Statix type system

5.1.2 Correct import behavior
A part of the type analysis of Statix involves adding edges to imported modules to the scope
graph, such that imported constraints, sorts and other definitions can be correctly resolved
in the analysis of a module. SPT unfortunately does not support tests that contain multiple
Statix modules, this is why we tested for correct and incorrect imports manually using the
integrated development environment Eclipse. When the analysis result contains an error,
this is shown in Eclipse.

We tested whether all constructs that can be imported are correctly resolved within the
module that contains the import, as well as whether duplicate imported constructs are not
allowed. Statix supports transitive imports for sorts, constructors and constraints, which
means we also tested for imports that get resolved through multiple import scope graph
edges. Transitive imports allow for the possibility of cyclic and diamond imports, for which
scope graph examples are shown in Figure 5.3.

Figure 5.3: Scope graph examples of import structures
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5.1.3 Equivalence checking
In addition to checkingwhether the type analysis is correct using unit tests, we checkwhether
the transformations which use the analysis result stay consistent and the produced A-Term
stays equivalent. This means that the normalized Statix definition used by the Statix solver
in order to perform analysis does not change nomatter what compiler version is used. Using
another meta-language for the analysis shouldn’t change the result of the transformations
that rely on the analysis.

The contents of an A-Term are described in section 3.3. In reality two A-Terms will not
be perfectly equivalent, because during the normalization of Statix certain sugar constructs
get transformed into core constructs by introducing new variables, which will have some
unique random name. This means we have to check for alpha-equivalence instead of full
equivalence when comparing normalized Statix rules.

To perform this equivalence checking we used Stratego, since it allows for a straightfor-
ward comparison of the two compilation pipeline results. The steps taken to compare a single
Statix AST are as follows:

1. Execute both methods of analysis on the AST and obtain the resulting two analysis
results.

2. Perform the normalization step on a separate instance of the AST using both analysis
results and their corresponding transformations in order to obtain two A-Terms.

3. Compare the lists of imports, edge labels, relations and scope graph extensions of both
A-Terms by converting them to sets and checking for set equivalence.

4. Compare the lists of rules for alpha-equivalence.

The steps described above can be seen in Figure 5.4. The generated ATerm is used to
statically analyze a language file to which the Statix specification on the left of the diagram
belongs to. The ATerm is part of the input given to the Statix solver, as is described in section
3.1 and is shown in Figure 3.1.

Figure 5.4: The equivalence check progress represented by a diagram
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We used the comparison described above in order to compare the normalized Statix spec-
ifications of already established language projects as well as the Statix specification of Statix
we created ourselves. These projects of differing size and complexity act as a test set of real-
istic Statix definitions. In Table 5.5 details can be found about the size of the Statix specifica-
tions. The following information is given:

• The number of Statix modules in which the rules of the Statix specification are given.
In brackets we give the number of modules that contain the signatures of the language
constructs, which are generated from the grammar.

• The number of import edges in the scope graph that is created from the Statix con-
straints.

• The number of constructors within the Statix specification, of which a majority are the
generated language construct signatures.

• The number of rules within the Statix specification.

• The number of lines of all the Statix modules combined (including signatures).

Language Tiger Chicago Java Statix
Modules (Signatures) 1 (14) 14 (15) 63 (66) 9 (10)
Import edges 23 73 637 75
Constructors 78 76 530 305
Rules 86 96 974 347
Lines 850 964 6950 1983
Equivalent 3 3 * - 3 *

* Equivalent when specialized queries are disregarded
Table 5.5: Numbers that reflect the size of several Statix specifications

We briefly describe the language projects that were used as input for the equivalence
check:

Tiger

Tiger is a functional language used as an example in the bookModern Compiler Implementa-
tion in ML (Appel 1998). The language supports constructs such as branching, loops, arrays
and records. The Statix specification for Tiger is given in a single module (excluding lan-
guage construct signatures).

Chicago

Chicago is an experimental language that was created to test Statix. The language includes
constructs such as functions, records, modules and imports. The Statix specification is di-
vided into 14 modules and includes a majority of the language constructs of Statix.

Java

Java is a high-level object-oriented programming language which is frequently used in prac-
tice. The existing Statix specification provides the static semantics of Java version 8. This
specification is significantly larger than the other 2, consisting of 63 modules.
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The equivalence check was completely successful on the Tiger specification and mostly
successful on the Chicago and Statix specifications. The only differences that were observed
from the equivalence checkwere regarding the specialization of scope graph queries (Zwaan
2022). This is a relatively new addition to the Statix compiler and if have the equivalence
check focus on the original queries only, no differences are observed. We cooperated with
the author of the paper on specialization of scope graph queries and he had the following
explanation for the observed results:

The Statix backend uses compile-time optimization on queries (Zwaan 2022). At
the heart of the optimization is a derivative-based approach to generate a deter-
ministic finite-state automaton (DFA) from a regular expression (Owens, Reppy,
and Turon 2009; Brzozowski 1964). Debugging has shown that the Statix im-
plementation is non-deterministic. Sometimes, for the same input, different but
equivalent DFAs are generated. Usually, it is the case that one of the DFA’s has a
duplicate state (similar to Owens, Reppy, and Turon (2009) fig. 4). This results
in some redundancy in the representation of optimized queries, This is easy to
observe for humans, but beyond the scope of this project to actually fix, as the
root cause of the non-determinism is not yet identified.

Using the Statix specification of Statix from our bootstrapped compiler as an input for
the equivalence check is similar to the method of sound bootstrapping proposed in (Konat,
Erdweg, and Visser 2016). In this method you try to reach a fixpoint when comparing the
binaries of multiple bootstrapping iterations. When we use the bootstrapped Statix speci-
fication as an input for the equivalence check, we are essentially comparing two iterations
of bootstrapping, namely the first iteration that uses the NaBL2 specification of the baseline
compiler to type check Statix files and a second iteration that uses the Statix specification of
the first iteration to type check its Statix files. Instead of comparing binaries we compare the
compiled Statix files, but we do reach a fixpoint after one iteration.

Wewere not able to perform the equivalence check on the Java specification however. This
is due to the fact that solving the Java Statix specification using our bootstrapped compiler
did not terminate. We looked into what was causing this issue and came to the following
conclusion:

Statix allows for transitive imports of sorts, constructors and constraints. The Java Statix
specification is made up of a large number of Statix modules and contains a complex import
structure, that results in a dense scope graph containing many diamond imports (Figure
5.3). Combining these two facts results in a large number of possible paths when resolving
queries, this is because the amount possible non-cyclic paths has an upper bound that grows
exponentially relative to the size of the scope graph. The large number of possible paths
produces a large overhead for the current Statix solver. When you combine this with the
large amount of references that exist in the Java Statix specification it becomes clear why the
analysis can not be solved within a reasonable amount of time.

5.2 Performance

In order to gain an impression on how the bootstrapped version of the Statix compiler per-
forms, we conducted some benchmarking. We looked at the effect of several elements of
the Statix compiler and compared the performance of the new version of the compiler to the
NaBL2 based version of the compiler.
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5.2.1 Benchmark setup
The benchmarking is performed using a Java script, in which we can register a time for each
of the separate steps of the Statix compiler. The benchmarks are executed on a HP ZBook
Studio G3 with an Intel i7-6700HQ processor. Every benchmark consisted of ten warm-up
iterations and ten measurement iterations.

We use a total of six different versions of the Statix compiler for benchmarking. Both the
non-bootstrapped NaBL2 based version of the compiler and the bootstrapped Statix based
version of the compiler are used in order to compare them. For both types of the compiler
we have three different versions, where in some versions features of the compiler are left out
in order to see their influence on the compile time. The following three versions were used:

• A version of the compiler in which there are no rules for checking duplicate declara-
tions of sorts, constructors, relations, constraints as well as checking whether there are
no duplicate rule patterns.

• A version of the compiler which does have rules for checking duplicate declarations,
but doesn’t contain rules for checking whether there are duplicate rule patterns.

• A version of the compiler that has all features of the Statix compiler, including duplicate
rule pattern checking.

As input for the benchmarking we used the Tiger and Chicago language projects, which
we describe in section 5.1.3 and forwhich you can see details in Table 5.5. These two language
projects are similar in size, but their biggest difference is that in the Tiger project all rules are
given in one Statixmodule, while in theChicagoproject the rules are spread out overmultiple
modules and a structure of imports is used. This results in the Chicago project having amore
complex scope graph during analysis.

Version used Analysis time (s) Normalization time (s)
NaBL2 Statix NaBL2 Statix

Not any duplicate checking 1.38 1.50 0.26 0.15
No duplicate rule pattern checking 1.46 1.66 0.25 0.15
All duplicate checks 1.51 2.03 0.24 0.15

Table 5.6: Results of benchmarking the Statix compiler on the Tiger language project

Version used Analysis time (s) Normalization time (s)
NaBL2 Statix NaBL2 Statix

Not any duplicate checking 1.90 0.92 0.33 0.19
No duplicate rule pattern checking 1.96 4.06 0.32 0.21
All duplicate checks 2.33 54.77 0.34 0.25

Table 5.7: Results of benchmarking the Statix compiler on the Chicago language project

5.2.2 Results
In Tables 5.6 and 5.7 and Figures 5.8 and 5.9 the results of the benchmarking on the Tiger and
Chicago language projects are shown.

Firstly we can observe that the analysis time of the bootstrapped compiler is often slower
than the NaBL2 version of the compiler. This could suggest that the back-end of the Statix is
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not as optimized as that of NaBL2, but it could also caused by the nature of our specification
in Statix. Further research is required to determine what is causing the difference.

A second observation from the results is the fact that doing any form of duplicate check-
ing requires more time during the analysis phase of the compiler, but this time increases a lot
more for the Statix based version of the compiler compared to the NaBL2 based version. In
the results for the Tiger and Chicago project there is a larger increase in analysis time when
duplicate declaration checking is added to the compiler and an even larger increase when
duplicate rule pattern checking is added. This can be explained by the fact that the dupli-
cate rule pattern checking we have defined in the bootstrapped compiler (See section 4.2)
requires a lot of constraints to be solved in order to compare every possible rule combina-
tion. In the NaBL2 version of the compiler the duplicate rule pattern checking analysis is not
defined using NaBL2, but is checked as part of the custom analysis section of the compiler
(section 3.2.1) using a functional approach in Stratego (Visser 2003), which is faster than
solving a large number of constraints.

The increase in analysis time in the Chicago results is a lot greater than the increase in the
Tiger results. The likely explanation for this behavior is that the Chicago project has a more
complex scope graph, caused by the higher number of modules and import edges shown in
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Table 5.5. This means that scope graph queries are harder to resolve, resulting in a larger
analysis time.

Finally we can see that the normalization time is larger in the NaBL2 version of the com-
piler, but is barely affected by whether there is duplicate checking. It was expected that the
normalization time wouldn’t get affected by the presence of duplicate checking, because this
is purely part of the analysis and none of the transformations in the normalization phase use
that information. It is however interesting to see that doing the same transformations in the
bootstrapped compiler takes less time for both language projects used. This could mean that
using the Statix analysis object is faster than using the NaBL2 analysis object, but the more
likely explanation is that the NaBL2 version includes deprecated features which required
transformations, meaning there are extra traversals of the AST.

5.3 Bootstrapping process
In this section we summarize how we handled the challenge of bootstrapping Statix. We
explain some of the choices that were made during the process and try to express the lessons
learned from our experience.

Since themain focus of our bootstrapping process wasmaking sure that the compiler was
still correct and there was already a reference implementation, we could use existing tests as
well as write new tests for the original compiler to verify the bootstrapped compiler. This
meant we were able to use an approach that resembles test-driven development.

While reworking the transformations in the normalization step such that they function
with the new analysis result, we came to the conclusion that most of the transformations of
the original compiler can be reused as long as the type system stays the same. This is due to
the fact that these transformations took an AST that was annotated with the types of terms
and constraints as input and then relied on these type annotations to perform transforma-
tions instead of the analysis result. So as long as we could obtain the same type annotations
from the analysis result, these transformations did not need to be altered.

During the definition of the static semantics of Statix in Statix we tried two approaches:
looking at the existing static semantics definition in NaBL2 and translating this to Statix and
studying the documentation of Statix and come up with a Statix definition from scratch. We
found that the latter approach works better than the former, since the first approach requires
you to get familiar with NaBL2 and the existing definition which is language specific, so
adopting a similar approach in Statix might not work well. However the preexisting specifi-
cation does provide a complete set of static semantics, so studying it after you have defined
your own set of semantics can aid in making sure that your specification is complete as well.
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Chapter 6

Related work

In this chapter we discuss work that is related to this thesis. We explore research related to
the Statix meta-language as well as the topic of bootstrapping meta-languages.

6.1 The Statix Meta-language
In this sectionwewill discuss papers that have contributed to or used the Statixmeta-language.
We mention what they focus on, summarize their approach and discuss their results.

The Statix meta-language was introduced by Antwerpen, Poulsen, et al. (2018). The aim
of this paper is to prove that the scope graph framework introduced by Néron et al. (2015)
supports the modeling of interesting name binding patterns in programming languages,
such as structural and parameterized types. It accomplishes this by viewing the scopes in a
scope graph as an actual type. The scope graph model is extended with scope relations and
scope graph resolution queries with their own visibility policies. All these extensions of the
scope graph model are then incorporated in Statix, for which the paper provides the declar-
ative semantics. The scopes-as-types approach and the Statix language are evaluated using
case studies of languages that contain the following name binding patterns: structural sub-
typing, parametric types and generic class types, showing that the scope graph model has
the potential to the potential to standardize the treatment of name-binding in programming
languages.

Our work obviously heavily builds on Scopes as types, since our work is in a large part a
case study on whether the Statix language, which has incorporated the scope graph model,
can be used for a constraint-based declarative language, namely Statix.

The paper by Rouvoet et al. (2020) expands on the work of Antwerpen, Poulsen, et al.
(2018) and focuses on the execution of Statix. The main purpose of the paper is to ensure
answer stability of name resolution queries during the solving of Statix constraints. The
paper distills and refines the core aspects of Statix into Statix-core and provides operational
semantics such that queries are scheduled in a way that answer stability is guaranteed. A
proof is given that these operational semantics are sound, which relies on the type system of
Statix having a permission to extend a scope.

The permission to extend a scope has been incorporated into the Statix compiler as men-
tioned in section 3.2.3. In order we to successfully bootstrap the Statix compiler we had to
make sure that this analysis was still functional after bootstrapping, the explanation on how
we accomplish this is given in section 4.3.

We will now briefly mention other papers that work on or with Statix. The paper by
Zwaan (2022) looks at speeding up Statix based type checkers by specializing scope graph
resolution queries using partial evaluation. Pelsmaeker et al. (2022) presents a language
parametric code completion editor service that relies on a Statix specification and the Statix
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constraint solver. Misteli (2020) looks at how you can develop language parametric refactor-
ings by creating a program model using the static semantics specification of a language in
Statix.

6.2 Bootstrapping Meta-languages
In this sectionwewill look at papers that focus on bootstrappingmeta-languages of language
workbenches.

The paper by Konat, Erdweg, and Visser (2016) provides a detailed analysis of the boot-
strapping problem of language workbenches and provides a method for sound bootstrap-
ping. The Spoofax language workbench and more specifically the syntax specification lan-
guage SDF3 are used to show the intricate dependencies encountered when bootstrapping a
meta-language using a languageworkbench. A soundmethod for bootstrapping is described
that relies onmeta-language compilation reaching a fixpoint. Besides this method, the paper
also provides the details on having an interactive bootstrapping environment that supports
breaking changes and how to decompose those. The approach has been implemented in the
Spoofax language workbench and evaluated by bootstrapping eight interdependent meta-
languages.

As mentioned in section 5.1.3, we believe that our method of validating the correct boot-
strapping of Statix is similar to the sound bootstrapping proposed in Konat, Erdweg, and
Visser (2016). We did not make use of an interactive bootstrapping environment to compare
the binaries bootstrapping iterations, but used amethod that checks for equivalence between
compiled specifications.

Prinz and Alexander Shatalin (2019) discuss the requirements of bootstrapping a lan-
guage workbench and therefore bootstrapping individual meta-languages. It shows that
in order for a successful bootstrapping of a meta-language to occur, it is important to take
into account the dependencies and references it has to other meta-languages of the language
workbench. An example is given of the bootstrapping of the LanguageLab language work-
bench (Gjøsæter and Prinz 2015), and it is shown that there are dependencies and references
between the structure (grammar), generator (transformations) and editor meta-languages,
which need to be dealt with during different steps of the bootstrapping process.

As discussed in chapter 3 the Statix language also has dependencies to multiple meta-
languages, which are the structure andgeneratormeta-languages and itself. Ourworkdoesn’t
go in depth on how these dependencies would affect the overall bootstrapping of the Spoofax
language workbench, but instead focuses more on the specifics on how a constraint-based
language for static semantics is bootstrapped.

Prinz and Mezei (2020) the observations made about the bootstrapping situation of lan-
guage workbenches in Prinz and Alexander Shatalin (2019) are confirmed by comparing the
bootstrapping of four language workbenches, namely Eclipse Modeling Framework (EMF)
(Steinberg et al. 2009), JetBrainsMeta Programming System (MPS) (Pech, Alex Shatalin, and
Völter 2013), LanguageLab (Gjøsæter and Prinz 2015) and Dynamic Multi-Layer Algebra
(DMLA) (Mezei et al. 2019). In this paper several observations are made about the boot-
strapping of language workbenches and one of them is that at first glances meta-languages
have a very tight connection between one and other, which would make bootstrapping diffi-
cult, but at the concept level there are often a few core concepts that are self-referential and
mutually referencing each other.
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Chapter 7

Conclusion

In this chapter we will draw conclusions based on our work and give recommendations for
future work.

Thepurpose of this thesiswas to obtain a correct bootstrapping of the Statixmeta-language.
We accomplished this by providing a Statix specification of the static semantics of Statix as
well as by adapting the transformations within the Statix compiler. We have shown that the
Statix compiler within the Spoofax language workbench can successfully be bootstrapped
without its behavior changing from the reference solution. This shows that Statix can be
used to define the static semantics of a declarative constraint-based language.

Although we claim to have a correctly bootstrapped Statix compiler, it is currently not yet
a viable option to use in practice. This is due to the fact that using the bootstrapped compiler
to compile more complex large Statix language projects takes an excessive amount of time.
The reason for this is that Statix supports transitive imports which can cause an exponential
growth in the amount of resolution paths to consider and the current Statix back-end is not
prepared to deal with that.

7.1 Future work
We recommend that in order to start using the bootstrapped Statix compiler within Spoofax,
future work should focus on improving the performance of the compiler. We believe that
this can be achieved by critically looking at the Statix constraint solver and adapting it such
that the solving time can not exponentially grow. As well as looking at improving the Statix
back-end, the static semantics specification of Statix in Statix could be adapted to improve the
performance. Once the performance has been improved such that larger language projects
such as the Java project can be built, the correctness validation method used in our work
could be used on these projects as well in order to verify whether the correctness is still valid
for larger projects.

Another suggestion for future work is looking at whether the bootstrapped Statix com-
piler can be used to add generics to the Statix language. It has been shown that Statix can
be used to express parametric types (Antwerpen, Poulsen, et al. 2018) and this would be a
welcome addition to the language.

Finally another direction for future work would be incorporating the bootstrapped ver-
sion of Statix as part of the boostrapping of the latest version of the Spoofax language work-
bench, Spoofax 3.
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