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A B S T R A C T   

Electricity balancing is one of the main demanders of short-term flexibility. To improve its integration, the recent 
regulation of the European Union introduces a common standalone balancing energy market. It allows actors that 
have not participated or not been awarded in the preceding balancing capacity market to participate as voluntary 
bidders or ‘second-chance’ bidders. We investigate the effect of these changes on balancing market efficiency and 
on strategic behavior in particular, using a combination of agent-based modelling and reinforcement learning. 
This paper is the first to model agents’ interdependent bidding strategies in the balancing capacity and energy 
markets with the help of two collaborative reinforcement learning algorithms. Results reveal considerable effi-
ciency gains in the balancing energy market from the introduction of voluntary bids even in highly concentrated 
markets while offering a new value stream to providers of short-term flexibility. ‘Second-chance’ bidders further 
drive competition, reducing balancing energy costs. However, we warn that this design change is likely to shift 
some of the activation costs to the balancing capacity market where agents are prompted to bid more strate-
gically in the view of lower profits from balancing energy. As it is unlikely that the balancing capacity market can 
be removed altogether, we recommend integrating European balancing capacity markets on par with balancing 
energy markets and easing prequalification requirements to ensure sufficient competition.   

1. Introduction 

To improve the efficiency of balancing markets and increase 
competition, the European Union (EU) has adopted a guideline that 
proposes significant changes to the balancing market design. Using an 
agent-based model (ABM1) with reinforcement learning (RL), we 
analyze the impact of these proposed market changes on bidder strate-
gies and balancing market efficiency. 

In order to maintain system frequency, European transmission sys-
tem operators (TSOs) commonly procure balancing services through a 

two-stage process by first reserving the capacity in the balancing ca-
pacity market and then activating it as balancing energy when actual 
system imbalances occur. The need for new sources of short-term flex-
ibility is growing as more conventional generation is being decom-
missioned and more variable renewables are coming online leading to 
rapid changes in residual load (ENTSO-E, 2019). Market design can 
create incentives for the entry of participants with new forms of flexi-
bility (Poplavskaya and De Vries, 2019). This is relevant for balancing 
markets, in which the number of balancing service providers (BSPs) has 
been fairly limited because of strict prequalification procedures and long 

* Corresponding author. AIT Austrian Institute of Technology, Center for Energy, Electric Energy Systems, 1210, Vienna, Austria. 
E-mail address: ksenia.poplavskaya@ait.ac.at (K. Poplavskaya).   

1 In this paper, we use the following abbreviations: ABM – agent-based modeling, aFRR – automatic frequency restoration reserve, BC – balancing capacity, BE – 
balancing energy, BRP – balance responsible party, BSP – balancing service provider, CCGT – combined-cycle gas turbine, DA – day-ahead, EU – the European Union, 
FCR – frequency containment reserve, GCT – gate closure time, GL EB – EU Regulation establishing a guideline on electricity balancing, mFRR – manual frequency 
restoration reserve, TSO – transmission system operator, RES – renewable energy sources, RL – reinforcement learning. 
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procurement timeframes (Poplavskaya and De Vries, 2019). The 
concentrated nature of balancing markets has long raised concerns 
about the high risk of strategic bidding2 and market power3 (e.g. Just 
and Weber, 2015; Poplavskaya et al., 2020a). 

To improve the efficiency of balancing markets and increase 
competition, the EU guideline on electricity balancing (GL EB) intro-
duced a common market for balancing energy, which, until now, was 
usually procured together with balancing capacity. A standalone 
balancing energy market allows a broader selection of BSPs to partici-
pate: besides bidders that were awarded in the balancing capacity 
market, other BSPs with flexibility available on a short notice may 
submit balancing energy bids as ‘voluntary’ bids (European Commis-
sion, 2017a). Besides, BSPs whose capacity bids were not awarded may 
still use the standalone balancing energy market as a second opportunity 
to make a profit. 

This study investigates the implications of the new balancing market 
design, in particular:  

• its effect on actors’ strategies in the markets for balancing capacity 
and balancing energy and  

• whether or to which extent voluntary bids can help increase market 
efficiency. 

We inform decision-makers by analyzing the effects of regulatory 
changes on the pricing and availability of flexibility in the balancing 
capacity (BC) and balancing energy (BE) markets, on volume distribu-
tion among different marketplaces (balancing and day-ahead markets) 
and factors having an influence on this distribution. For this, we build 
upon the agent-based model of the BE market, Elba-ABM, introduced in 
Poplavskaya et al. (2020) by 1) developing a detailed model of the BC 
market, 2) linking it to the exogenous day-ahead (DA) market, 3) 
introducing voluntary bids in the balancing energy market. The main 
methodological contribution of this paper consists in the development of 
a novel collaborative reinforcement learning algorithm to model linked 
bidder strategies in the BC and BE markets. 

The rest of the paper is structured as follows: the key references on 
the balancing market design and bidding strategies of BSPs are sum-
marized in Section 2. The model of the balancing market, Elba-ABM, and 
the enhancements implemented to study the research questions are 
introduced in Section 3. In Section 4, we present the simulation sce-
narios and analyze the simulation results. In Section 5, we discuss policy 
implications of the research results and provide conclusions. 

2. Background and literature 

2.1. Brief overview of the structure of the balancing market in Europe 

In the European networks, to offset frequency deviations caused by 
plant outages, unplanned changes in demand or in the output from 
variable renewable generation in real time, the TSO uses a stepwise 
procedure activating first the fastest frequency containment reserves 
(FCR) and, for larger deviations, frequency restoration reserves (FRR). 

The latter are further subdivided into automatic (aFRR) and manual 
(mFRR)4 reserves. Based on the sign of the imbalance, either upward 
(procured in the positive market) or downward (procured in the nega-
tive market) regulation is performed. 

The European balancing capacity markets loosely correspond to 
regulation reserve markets in the U.S., more specifically, in PJM, CAISO, 
ERCOT or NYISO5 and a few other organized electricity markets whereas 
balancing energy markets correspond to so-called real-time markets (see 
e.g. Zhou et al., 2016). The biggest difference is that, in the U.S., 
day-ahead and real-time markets are co-optimized by the independent 
system operator (ISO) with the day-ahead markets using a 
security-constrained economic dispatch. In the EU, balancing markets 
are cleared by the TSO within their own control areas: normally, 
balancing capacity is procured ahead of the day-ahead electricity market 
to secure enough capacity for potential energy activation in real time 
(balancing energy market). The day-ahead electricity market, in turn, is 
cleared by nominated electricity market operators. In addition, the 
products in the US reserve markets vary significantly across different 
states both in terms of naming and technical properties.6 After the 
adoption of the GL EB, the balancing products are required to be stan-
dardized across the EU countries. 

2.2. Studies of the balancing market 

Balancing markets do not exist in isolation but are part of a sequence 
of short-term electricity markets. They provide alternatives for the 
commercialization of flexibility, hence the links between them motivate 
the bidding strategies of BSPs and should be considered if we are to 
derive meaningful conclusions for the balancing markets. These in-
terdependencies were analyzed in Hers et al. (2016), Just and Weber 
(2015), Maaz et al. (2017), Ocker et al. (2017) and Weidlich (2009a). 
For instance, Weidlich (2009a) used ABM to study the connection be-
tween DA, balancing energy market and the CO2 market, Ocker and 
Ehrhart (2017) described the relation between the balancing market 
volumes and the efficient design of the intraday market. In his research, 
Maaz et al. (2017) focused on the bidding in three sequential balancing 
markets for balancing capacity while CE Delft (2016) explored further 
interdependencies between balancing and intraday markets. 

From the market participants’ perspective, the balancing market 
presents an additional trading option for their flexibility, as long as they 
are prequalified to participate (Poplavskaya and De Vries, 2019). The 
DA market is the largest market that provides market participants with 
robust price signals. It is particularly relevant for the BC market, 
commonly clearing ahead of the DA market, as it determines the actors’ 
opportunity costs (Poplavskaya et al., 2019a). The gate closure times 
(GCTs) of different marketplaces also determine whether non-awarded 
bids can be submitted elsewhere. The bidder can use available market 
information to form price expectations and to exploit arbitrage oppor-
tunities. Several researchers have shown that, unlike largely competitive 
DA markets, balancing markets offer different options for strategic 
behavior, such as orientation of bid prices to the highest bid in 
pay-as-bid auctions rather than to one’s actual costs (Ocker, 2017). 
Furthermore, market participants may have incentives to oversupply or 
undersupply the market, taking profit of intertemporal dependencies 
among sequential markets (Poplavskaya et al., 2019a). Using large data 
sets, Just and Weber (2015) came to the conclusion that the German 

2 Any rational bidder follows a strategy in a market. In this context, however, 
under “strategic behavior” or “strategic bidding” we understand bidding to 
exploit market information and/or one’s dominant market position in order to 
excessively profit from a given market.  

3 Market power is defined as “the ability to affect the market price” where 
“the effect must be profitable and the price must be moved away from the 
competitive level” (Stoft, 2002, p. 318). The study of market power is motivated 
by the repeated presence of unrealistically high prices for the balancing service 
at the times apparently unaffected by scarcities. 

4 Some EU countries such as France and Spain, also use replacement reserves 
(RR) to replenish the amount of the manual frequency restoration reserve 
(ENTSO-E WGAS, 2020). 

5 PJM – Pennsylvania-New Jersey-Maryland interconnection, CAISO – Cali-
fornia independent system operator, ERCOT - Electric Reliability Council of 
Texas, NYISO – New York independent system operator.  

6 Such as Spinning and Non-spinning Reserves in PJM, Responsive Reserves 
in ERCOT, or Contingency Reserves in CAISO. 
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market design provides a possibility to exploit strategic opportunities 
between the DA and the balancing market. They further showed that 
pay-as-bid pricing intensifies the incentive from deviating from one’s 
true costs. This result was also confirmed by Poplavskaya et al. (2020). 

The behavior of market participants has been further shown to be 
affected by other factors, including the repeated nature of balancing 
auctions, incomplete information, (low) competition levels and their 
portfolio structures (Maaz, 2017). Perceived risk and uncertainty, for 
instance, are linked to a low bidding frequency for balancing capacity, a 
low product resolution, i.e. the number of hours the bid should be 
available for potential activation, and the volatility of balancing energy 
prices (Bublitz et al., 2014; Conejo et al., 2010). 

2.3. The effect of design changes on bidder strategies in the balancing 
market 

A look at historical prices makes the effect of market design changes 
on bidding strategies and therefore prices evident. A good examples of 
this illustrated in Fig. 1. It shows price developments in the German 
positive and negative aFRR markets, respectively. In 2018, as a result of 
the adoption of the disputed ‘mixed-price calculation’ (in Ger. Mis-
chpreisverfahren), the BC market experienced a large price hike (Fig. 1, 
top) whereas a mirroring effect was produced for BE prices ((Fig. 1, 
bottom). The abrupt change in the bidding behavior was caused by the 
change of the scoring rule: instead of awarding the bidder based on the 
BC bid price alone, an additional weighing factor based on the BE bid 
price was introduced. Interestingly enough, the prices went back to 
‘normal’ soon after the ‘mixed-price calculation’ method was abolished 
in mid-2019. 

Although the number of bidders in the balancing market has 
increased in the last few years thanks to the entry new flexibility pro-
viders, such as aggregators,7 it is still much more limited as compared to 
the short-term electricity markets. The reasons for this include strict 
prequalification requirements, sometimes drafted only for specific 
technologies to fulfil; a thus far limited amount of short-term flexibility 
and a complex two-stage market structure. A modular approach to 
determining barriers to entry in European balancing markets was pre-
sented in Borne et al. (2018). The market structure has been addressed in 
great detail in Poplavskaya and De Vries (2019), where the authors 
provided a framework for analyzing balancing market design and 
comparing it to the requirements introduced in the GL EB. 

The implications of some of the upcoming design changes have been 
studied in Poplavskaya et al. (2019a) and in Poplavskaya et al. (2020a). 
The authors in Poplavskaya et al. (2020) demonstrated, among others, 
that the introduction of a standalone balancing energy market led to 
considerable efficiency gains in particular in combination with marginal 
pricing, yet was alone insufficient to protect the market from strategic 
bidding requiring additional adjustments (Poplavskaya et al., 2020a). 
Another arguably important market design adjustment is the introduc-
tion of voluntary bids in the BE market. Poplavskaya et al. (2019) used 
theoretical bidding calculus to study the impact of market sequences on 
the optimal bidding strategies of BSPs and observed that voluntary bids 
can significantly alter bidder strategies by altering the regular BSP’s 
price and competition expectations and dampening market power. 

2.4. Research gaps and contribution 

Due to their novelty, the effect of voluntary bids has not yet been 
modelled or sufficiently studied in research. Voluntary bids as a design 
change in the balancing market have been marginally addressed, for 
instance, in Ehrhart and Ocker (2021) and Poplavskaya et al. (2019b). 
Ehrhart and Ocker (2021) and Poplavskaya et al. (2019b) provide a 

preliminary analysis of the impact of voluntary bids on balancing ca-
pacity costs based on a theoretical bidder calculus. The paper by Ehrhart 
and Ocker (2021) and Poplavskaya et al. (2019b) addresses voluntary 
(also called ‘free energy bids’) on the margins and rather uses a theo-
retical mathematical model to study market equilibria between the 
day-ahead and balancing markets. Neither of the mentioned papers use a 
simulation approach or model the balancing markets based on the 
design required by the GL EB. 

Balancing markets have been subject of close scientific attention in 
the recent years, yet a large part of it was focused on optimizing the 
bidding strategies of market actors or individual technologies, i.e. on the 
perspective of individual participants (e.g. Algarvio et al., 2019; Guinot 
et al., 2015; Kumbartzky et al., 2017; Benini et al., 2018; Schäfer et al., 
2019). From the perspective of the market itself, the research has been 
focused on national markets (e.g. Germany Koch and Hirth, 2019; Ocker 
and Ehrhart, 2017), the Netherlands (van der Veen and Hakvoort, 2016) 
or the Nordics (Herre et al., 2020)). To our knowledge there has not yet 
been a comprehensive model-based study of the new balancing market 
design, as prescribed by the GL EB. 

This paper is intended to address the identified research gap and to 
contribute to the policy dialogue about the efficient balancing market 
design. It is pivotal for adequate system operation at the time when more 
sources of flexibility are becoming available from a wider range of 
technologies and providers (e.g. Burger et al., 2017), balancing pro-
curement is getting internationalized and harmonized (European Com-
mission, 2017b) and the task of system balancing is becoming more 
challenging (ENTSO-E, 2019). 

This study contributes to the policy dialogue on efficient balancing 
market design through an innovative, powerful method to study the 
market and emulate agents’ strategic behavior. To address the research 
questions posed in Section 1, we support our analysis with the results of 
an agent-based model, Elba-ABM, enhanced with reinforcement 
learning. The latter is used to model agents bidding strategically based 
on the available market information and own experience. To the au-
thors’ knowledge, it is the first study that uses an agent-based model 
with learning agents to analyze the effect of voluntary bids on the 
strategies and the relation between the BC and BE markets. It is also the 
first to develop a collaborative machine-learning approach to modelling 
bidding strategies in interrelated markets. It allows us to draw valuable 
conclusions about the ways to make the most of short-term flexibility 
while keeping the prices close to competitive levels and inform decision- 
makers about possible caveats of market design changes. 

3. Methodology 

To answer the research questions posed in this study, we adapt the 
simulation framework of Elba-ABM, balancing energy market model 
developed in Poplavskaya et al. (2020). 

Agent-based modelling is a useful tool for modelling markets with 
low competition levels, such as the balancing market, as shown in Maaz 
(2017), Poplavskaya et al. (2020) and Weidlich (2009). We chose ABM 
in order to:  

1) reflect all market design characteristics of the BC and BE markets and 
intertemporal links between them.  

2) represent diverse portfolios and bidding strategies of market actors 
not bound by assumptions of perfect competition and foresight. 

The original model focused on the representation of a balancing en-
ergy (BE) market alone. Its main goal was to study the effect of intro-
ducing a BE market with marginal pricing, independent of the BC 
market, as per the provisions of the GL EB. It was compared with the 
current balancing market design, where BSP submit BC and BE bids 
together (far) ahead of real time. Using Elba-ABM, bidding strategies of 
strategic and true-cost bidders were compared, given these design 
changes in terms of system costs and weighted average prices in the BE 

7 For an example of the list of prequalified BSPs, the reader is referred to the 
official webpage of the German TSOs, www.regelleistung.net. 

K. Poplavskaya et al.                                                                                                                                                                                                                           

http://www.regelleistung.net


Energy Policy 158 (2021) 112522

4

market. The BC market results were taken for granted, meaning that all 
bid capacity was assumed to be awarded, whereas BSPs could only 
compete on the BE price. The BE markets for upward and downward 
regulation were modelled and settled separately. The model did not 
consider the possibility of asymmetric bidding or the availability of 
voluntary bids. To illustrate the differences between the original and the 
new model, their characteristics are compared in a table in Appendix A. 

In the updated Elba-ABM, a decision-making process with a larger 
scope is introduced as agents first compete both on volume and price in 
the BC market and then on balancing energy price in the subsequent BE 
market. Specifically, the market environment has been extended in the 
following ways:  

1) It includes a detailed model of the BC market for upward and 
downward regulation with 24 hourly auctions per day each.  

2) Asymmetric bidding is allowed: BSPs may submit different volumes 
and prices in the positive and negative BC markets for any given 
hour.  

3) Positive and negative market are cleared in parallel, so agents cannot 
obtain updated information in one market to make a decision about 
the other, so they have to decide whether and how much to bid in 
both markets beforehand.  

4) It accommodates the possibility to submit voluntary bids in the 
balancing energy market.  

5) The day-ahead market is modelled implicitly by allowing agents to 
calculate their opportunity costs based on the expected DA market 
price for each hour of the next day using a naïve price forecast (see 
Section 3.2 for more detail). 

Based on the BC market results, the set of participants in the BE 
market is always different. After the BC market is cleared, the agents are 
notified which generators and volumes have been awarded. This infor-
mation is then passed on to the BE market, as is shown in Fig. 2. The 
awarded bidders commit their capacity in the BC market whereas the 

Fig. 1. The evolution of marginal prices for positive aFRR, balancing capacity (top) and balancing energy (bottom) in Germany from end of 2018 to mid-2020. The 
period during which ‘mixed price calculation’ was in force is marked with dashed lines. Please note that the logarithmic scale is used. 

Fig. 2. Temporal flow between the balancing capacity and balancing energy 
markets and their links with the day-ahead market as well as three bidder types 
in the balancing energy market, regular bidders, ‘second-chance’ bidders and 
voluntary bidders. 
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non-awarded bidders may choose to participate in the BE market after 
the clearing of the DA market as ‘second-chance’ bidders. Finally, 
additional short-term flexibility in the BE can be provided by voluntary 
bidders who did not participate in the BC market. Then, a common merit 
order is built in the BE market clearing. The details of the model ar-
chitecture and the extensions are graphically illustrated in Appendix B. 

Participants in the balancing market are heterogeneous, some of 
them are price-takers whereas others bid strategically. The optimal bids 
of the latter are determined using reinforcement learning. Specifically, 
the agents in the extended Elba-ABM have been enhanced as follows:  

1. Complex BSP bidding: agents can compete both on volume and on 
price taking the expected DA market price into account, 

2. Two new agent groups, voluntary bidders and “second-chance’ bid-
ders, introduced,  

3. Strategic bidders in the balancing market modelled with the help of 
reinforcement learning by representing them as two algorithms for 
one agent (one in the BC and the other in the BE market) that 
collaborate in order to maximize annual profits. 

Model assumptions about the market and the agents are specified in 
Appendix C. Sub-sections 3.1 and 3.2 provide further details about the 
implementation of the extended Elba model on the market and agent 
levels, respectively. 

3.1. Model extension: Balancing capacity market 

The extended Elba-ABM model includes a detailed design of the 
balancing capacity market with the following characteristics:  

• 48 daily auctions based on a predefined reserve requirement. The 
demand for BC is determined by the TSO and therefore fixed and 
inelastic.  

• pay-as-bid settlement of awarded bids  
• bidding prior to the gate closure time (GCT) of the DA market: the 

GCT of the BC market is D-1 at 8am. Daily bidding in the BC market 
with hourly products implies that market actors can submit up to 24 
hourly bids in each direction for the next day.  

• the minimum bid requirement is 1 MW. 

A special procedure is introduced for situations in which the TSO 
could not procure a sufficient amount of balancing capacity to fulfil its 
reserve requirement: the TSO announces a second auction round in 
which all prequalified generators are obliged to provide their available 
capacity and the awarded power plants are remunerated on a cost-based 
basis. 

The balancing energy market model (same as in the original Elba- 
ABM) follows the requirements of the GL EB8:  

• BE bids are submitted in a standalone market close to real time,  
• hourly BE auctions close 25 min before delivery,  
• product duration is 1 h,  
• awarded bids receive the uniform marginal price,  
• voluntary bids are allowed. 

3.2. Model extension: Agent design and bidder types 

The agents’ decisions in the BC and BE markets are linked to the 
expected prices in other short-term markets and to their variable costs 
(Poplavskaya et al., 2019a). Their bids are composed of three decision 

variables: the BC bid price per generator and hour, p+BC
g,k , BC bid volume 

q+BC
g,k and BE bid price p+BE

g,k in the positive market (upward regulation) 
and similar decision variables in the negative market ( − BC, − BE). 
BSPs submit BC and BE prices in separate marketplaces in different 
timeframes. The demand for BC, DBC

k , is set by the TSO.9 In the positive 
BC market, the generator bid is b+BC

g, k = {p+BC
g,k ,q+BC

g,k }, k ∈ d and in the BE 
market: b+BE

g,k = {pBE
g,k , q+BE

g,k }; in the latter, the bid volume is equal to the 

committed BC bid volume, q+BC, awarded
g, k . 

Agents bid differently in the positive and negative BC markets, as 
only the former involves actually producing energy. BC prices in the 
positive market are related to agents’ opportunity costs per generator, i. 
e. the revenue forgone by not participating in other markets. Note that 
hydro power plants have low variable costs (1–2€/MWh, as assumed in 
(Weidlich, 2009, p. 153), which implies that they have high opportunity 
costs, as compared to gas turbines with high variable costs that mostly 
serve as peakers and have a much lower load factor. In the BE market, 
price-taker agents have no influence over the market outcome and bid at 
their short-term variable cost in the positive BE market p+BE

g,k = cvar
g ∀k 

while in the negative BE market, they bid up to their avoided variable 
costs as, i.e. willing to pay to the TSO. This is motivated by the fact that 
even if they reduce output, they still receive the revenues from the 
day-ahead market (Poplavskaya et al., 2020a). 

Market actors may have different portfolios and strategies and decide 
on the bid volumes and prices individually per generator considering 
their variable costs and/or their prior experience. In the model, the 
choice can be made between two agent types:  

1) price-taking bidders that bid their true opportunity costs in the BC 
market and, if awarded, bid their true short-term marginal costs in 
the BE market as would be expected under the assumption of perfect 
competition;  

2) strategic bidders that attempt to maximize their profits based on 
market information and previous experience using a collaborative 
machine-learning algorithm. Since the balancing market is a two- 
stage process, reinforcement learning (RL) has been implemented 
as two collaborating agents in two different timeframes, daily (BC 
market) and hourly (BE market). 

3.2.1. Link to the day-ahead market 
Participation in the day-ahead market is implicitly considered in the 

model. An agent can sell its capacity either in the BC or the DA market or 
split it between the two. It is assumed that all agents are price-takers in 
the DA market, i.e. any volume is offered at their variable costs. To 
determine their opportunity costs, the agents in the BD market consider 
the expected DA market price that is calculated using a naïve forecast. It 
is based on the DA market prices of the day before prior to, during and 
after the delivery hour, k: {λDA

d− 1, k− 2…k+2 }, where λDA
d, k is the market price 

on day d and hour k. We calculate the forecast error and the standard 
deviation of the forecast. Assuming a normal distribution of the forecast 
error, we use the confidence interval of 95% to obtain the lower bound, 
which determines the expected marginal price. It is assumed that each 
actor has the same price expectation for a given hour. 

The trading options of market participants and, ergo, their strategies 
in the BC market depend on another factor, whether or not they are 

8 The GL EB further mandates that each standard balancing product in the 
future is procured in a single TSO-TSO balancing platform (European Com-
mission, 2017a). However, for the sake of simplicity, this model assumes a 
single bidding zone. 

9 The demand for balancing capacity depends on the TSO’s estimations and 
the bidding zone’s generation and demand volumes. The demand for automatic 
frequency restoration reserve (aFRR) varies depending on the country size and 
the TSO’s estimation of the biggest plant outage, etc. and can range between 
several hundreds to several thousands of MW. The demand of 200 MW is 
assumed in the simulation scenarios in Section 4 based on the demand of the 
Austrian TSO, APG, for aFRR. 
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expected to be infra or extra-marginal in the DA market, that is, whether 
their variable costs are expected to be below or above the DA marginal 
price (Müsgens et al., 2014). For instance, if an actor is expecting to be 
infra-marginal in the day-ahead market, he may decide not to bid in the 
BC market10. 

3.2.2. Voluntary and second-chance bidders 
Actors that did not participate in the BC market, i.e. voluntary bid-

ders, as well as ‘second-chance’ bidders, compete both on volume and on 
price in the BE market. Note that all voluntary bidders are assumed to be 
price-takers. 

‘Second-chance’ bidders are those bidders that were not awarded in 
the BC market and, after the GCT of the DA market, evaluate if they take 
a second chance and participate by submitting voluntary bids to the BE 
market (see also Fig. 2). As the DA market is not modelled explicitly, it is 
assumed that if a generator’s variable costs are below the actual DA 
marginal price, the generator’s full volume was awarded in DA market. 
If that is the case, the agent bids the maximum available capacity in the 
negative BE market. Conversely, if extra-marginal in the DA market, the 
agent bids the maximum available capacity in the positive BE market. 

3.2.3. Bid submission 
In the BC market, the agents’ action domain includes the following 

constraints for the BC bid volume in the positive and negative markets 
(based on Maaz (2017, p. 81): 

qDA
g,k + q+BC

g,k ≤ qmax
g  

qmin
g + q− BC

g,k ≤ qDA
g,k  

where qDA
g,k is the expected volume in the DA market in a given hour. 

Consequently, the bids submitted in the positive and negative market 
must validate the condition: 

q+BC
g,k + q− BC

g,k = qmax
g − qmin

g 

For the positive market, opportunity costs in a given hour, k, are 
calculated as follows (based on (Maaz, 2017, p. 81)): 

copp, +BC
g, k

(
q+BC

g,k

)
=max

(

λDA
k − cvar

g ,

(
cvar

g − λDA
k

)
*qmin

g,k

q+BC
g,k

)

where λDA
k corresponds to the expected price in the DA market and 

copp, +BC
g, k corresponds to the opportunity cost of generator g in hour k in 

the positive BC market. 
For a power plant that is likely to be infra-marginal in the DA market 

( λDA
k > cvar

g ), the opportunity costs, copp, − BC
g, k , are the difference between 

the expected DA price and the plant’s variable costs. An extra-marginal 
power plant, in turn, faces fixed operational costs equal to the minimum 
volume required for the plant to deliver the committed volume for up-
ward regulation. Conversely, in the negative market, opportunity costs 
of each generator are given by: 

copp, − BC
g, k

(
q− BC

g,k

)
=max

(
0,
(

cvar
g − λDA

k

)
*

qmin
g + q− BC

g,k

q− BC
g,k

)

An infra-marginal power plant has no opportunity costs in the 
negative market as it receives the DA price and does not face any costs 
for reducing its output. An extra-marginal power plant ( λDA

k < cvar
g ), 

should run at least qmin
g + q− BC

g,k in the DA market in order to provide 
downward regulation. If the expected DA price is lower than a genera-
tor’s variable costs, it must still be able to reduce its output, i.e. it runs at 

qmin
g + q− BC

g,k . 
Positive and negative BC auctions are cleared simultaneously and the 

bid volumes depend on the expected DA market price. 
For price-taking bidders, we assume a risk-neutral strategy, which 

translates into: 

b+BC
g, k =

{{
copp, +BC

g, k , qavail
g

}
, if λDA

k < cvar
g

{0, 0} , else  

b− BC
g, k =

⎧
⎨

⎩

{0, 0} , if λDA
k < cvar

g
{

0, qavail
g,k

}
, else 

If a generator is extra-marginal, the price-taking agent will not bid in 
the negative BC market but will bid the maximum available capacity in 
the positive BC market at the generator’s opportunity costs. Conversely, 
if the generator is infra-marginal, such an agent will place the maximum 
available volume in the negative BC market at a price of zero as it does 
not face any opportunity costs. At the same time, it will not bid any 
capacity in the positive BC market. 

If the actor was not awarded in either the positive or negative BC 
auction, the maximum available capacity is bid in the DA market.11 If he 
was awarded in the positive market, the DA market receives the dif-
ference between the committed positive volume and the maximum ca-
pacity of a generator. If awarded in the negative BC market, the 
maximum available volume is bid into the DA market12: qDA

g,k = qmax
g −

q+BC, awarded
g,k . 

For strategic bidders, two collaborating RL agents represent one 
market actor using a profit-maximizing strategy. 

The BC market agent places two bids in the BC market per generator 
for each hour of the following day considering the available information 
in both markets. The RL agent in the BC market has two decision vari-
ables, the bid price and the bid volume, which have a significant effect 
on the action space. The level of discretization of the action space de-
pends on the number of generators in the agents’ portfolio. In order to 
limit the state-action space and the computational time and yet obtain 
meaningful results, the discretization of price actions is set to 7 and of 
volume actions to 4 per generator for a portfolio of three generators. 
This means that the combined discretized price-volume action space of 
an agent with three generators equals to 21,952 action pairs in each 
market time step. As a result, the agent can place either a markup or a 
markdown (also known as ‘bid shading’ (Ocker et al., 2018a)) up to its 
opportunity cost (i.e. bid up to maximum twice its opportunity costs). 
With regard to the bid volume, the bidder may bid 0%, 30%, 70% or 
100% of the available capacity of a generator in its portfolio in the BC 
market. 

For the training, the agent’s model in the BC market is updated with 
the following information, separately for the positive and the negative 
markets: 

3.3. Demand for balancing capacity  

2) the agent’s past bid prices and volumes,  
3) past seven DA market and weighted average BC and BE market 

prices,13 

10 Note that this distinction has no bearing for the bids in the BE market as it 
takes place after the GCT of the DA market. 

11 Since the DA market closes after the BC market, then, if the bidder was not 
awarded in the BC market, he can either still bid in the DA market or, if 
voluntary bids are allowed, place a voluntary bid in the BE market instead 
(‘second-chance’ bidder).  
12 The volume submitted to the DA market is used only for reference purposes 

to identify the bidders’ preferences.  
13 As bidders are remunerated pay-as-bid in the BC market, the TSO does not 

usually provide the information about the marginal price but rather publishes 
the hourly weighted average price. 
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4) profit from the DA market,  
5) the hour and weekday of the bid. 

It is assumed that if the BC volume bid is less than the total available 
capacity, the rest is bid in the DA market. 

The BE market agent places bids in the BE market using the algorithm 
formulated in Poplavskaya et al. (2020). Similar to the BC market agent, 
we use a Q-fitted algorithm14 to maximize the agent’s cumulative 
reward over the entire portfolio and the episode (one year), based on the 
memory of previous market results and agent’s own performance. Be-
sides, as part of the dataset in the BE market, the agent now receives the 
volumes of capacities awarded in the BC market per hour and generator 
in its portfolio. 

Together, BC and BE agents maximize the total reward for the stra-
tegic bidder. Different timeframes of the BC and BE markets create 
modelling challenges: the BC agent cannot otherwise quantify the ex-
pected reward and place an appropriate BC bid; it must assume that the 
BE agent is behaving optimally. Collaboration of the reinforcement 
learning algorithms is achieved in three ways:  

1) through sequential training in the two markets,  
2) sharing market information passed to the two agent’s datasets,  
3) sharing profits. 

The profit of a BSP depends on whether the capacity bid was awar-
ded and whether or not the committed capacity bid received an acti-
vation call. If the bid capacity was not included in the merit order for 
balancing energy (extramarginal BC bid), the BSP faces the opportunity 
costs for withholding capacity and the profit only includes the payment 
obtained from the amount, qBC

g,k, of the bid volume multiplied by the bid 
price: 

πBC =
∑G

g=1
qBC

g,k *
(

pBC
g,k − copp

g

)
∀ k 

Conversely, if activated, the overall profit is a sum of the two mar-
kets: 

πBM =

{
πBC + πBE, if bBC is awarded
0, else. ,

where 

πBE =
∑G

g=1
qBE

g,k*
(

pBE
g,k − cvar

g

)
∀ k  

3.3.1. Training of the collaborative RL algorithm 
Due to the fact that the agent’s strategy in two interdependent 

balancing capacity and balancing energy markets are represented by 
two separate RL algorithms, their collaboration to form a coherent 
bidding strategy in all markets, among others involves consecutive 
training. That is:  

• the algorithm for the BC market is trained in year 1 while the one in 
the BE market bids its true costs and all available volume;  

• the strategy is reversed in year 2, during which the algorithm in the 
BC market bids optimally whereas the one in the BE market places 
random bids;  

• In year 3, the algorithm in the BC market trains while the one in the 
BE market places optimal bids,  

• In the final fourth year, both algorithms place optimal bids and we 
use those to evaluate the quality of the learned strategy. 

This is necessary in order to ensure that the two algorithms do not 
interfere with each other’s training process, i.e. keep the environment of 
each agent stationary. 

During training, independently of the market, the agent follows an 
epsilon-greedy approach. It takes the optimal action with a probability 
of 1-epsilon, and a random action with a probability of epsilon. This is 
done as a tradeoff between exploitation and exploration (something 
required for RL training). As to the reward, both agents receive a reward 
that is proportional to the profits generated in both the BC and BE 
market. That is, despite the BC and BE agents being trained in different 
years, they all optimize the same reward function. 

4. Scenarios and results 

4.1. Description of the simulation scenarios 

To study the effects of voluntary bids on bidding behavior, we 
analyze several scenarios in which the number of bidders is limited for 
two reasons. The first reason is methodological: increasing the number 
of participants would risk ‘crowding out’ the strategic bidder from the 
BC market, making the training less effective and, ergo, the results less 
conclusive. Second, an oligopolistic setting represents the ‘worst-case’ 
scenario, in which a change in market design can be expected to have the 
most benefit. Therefore, the scenarios contain three agents, each with a 
portfolio of three to five generation units. Each agent submits separate 
bids per generator submits to the positive and one to the negative 
balancing markets. The details of the agents’ portfolios can be found in 
Appendix D. 

The following three scenarios are defined:  

1) ‘all_TC’: Baseline scenario with only price-taker actors (who bid their 
‘true-cost’).  

2) ‘TC_&_SB’: Scenario with true-cost bidders and one strategic bidder.  
3) ‘all_SB’: Scenario with three strategic bidders. In this scenario, a 

single true-cost-bidding agent is added that bids a high capacity price 
(300€/MW) as a proxy for scarcity situations in which the learning 
agents withhold balancing capacity. 

Three variations of Scenarios 2 and 3 are analyzed. They include:  

a) ‘no voluntary bids’: voluntary bidding in the BE market is not allowed,  
b) ‘+vol’: the introduction of a single voluntary bidder with both cheap 

and expensive generation units who bids different – randomly chosen 
– flexibility volumes between 50% and 100% of the available ca-
pacity into the BE market.  

c) ‘+vol & second_chance’: in addition to a voluntary bidder, non- 
awarded BSPs may participate in the BE market as second-chance 
bidders (see also Fig. 2). 

With the help of these seven scenarios, we trace the effects on the 
bidding strategies and on overall market efficiency based on market 
prices, total market costs as well as agents’ profits. These simulations 
represent a close-to-real-life setup, in which actors do not have full in-
formation and have to make bidding decisions in several markets in 
different timeframes. The model therefore provides insight into possible 
consequences of different market designs and degrees of competition on 
actors’ bidding strategies and the possibilities for market exploitation. 

Observe that reinforcement learning is inherently non-deterministic, 
and the optimization function is non-convex, consequently, there could 
be multiple equilibria, making it difficult to say if the optimum is ab-
solute or local. At the same time, we cannot guarantee an equilibrium in 
complex scenarios with multiple learning agents that influence each 
other and make the environment non-stationary. In such an environ-
ment, the model is unlikely to converge to a single equilibrium and the 
RL agents may not be equally successful. This is a general issue for multi- 
agent setups in reinforcement learning but also a more realistic way to 

14 Interested readers are invited to refer to Lago et al. (2018) and Poplavskaya 
et al. (2020) for more details on the implementation of the learning algorithm. 

K. Poplavskaya et al.                                                                                                                                                                                                                           



Energy Policy 158 (2021) 112522

8

model what happens in the real world. Our analysis should therefore be 
considered as a supplementary method for evaluating the risk of 
opportunistic behavior in complex, realistic settings. 

By keeping a limited number of RL agents (up to three in our simu-
lations), the agents have shown a good performance, i.e. managed to 
maximize their profits as compared to the previous years and to their 
counterparts with a true-cost strategy. Comparing the same scenario 
with the agents pursuing a true-cost strategy and then another one with 
the same agents with a RL strategy allowed us to pinpoint the differences 
in terms of bid price choices (and how often these deviate from the true 
costs), bid volume distribution and the profits. This approach helped us 
to improve the interpretability of the obtained results and demonstrate a 
satisfactory performance of the collaborative RL algorithm. The model 
has been further shown to yield valuable insights and to perform well 
within a reasonable computational time. It allowed us to develop new 
ways of capturing strategic behavior in the balancing market whose 
concentration has been demonstrated on multiple occasions (Just and 
Weber, 2015; Ocker et al., 2018b; Poplavskaya et al., 2020b). 

4.2. Summary and discussion of the results 

When analyzing the results, it is important to bear in mind the 
balancing market complexity. A bidder has an option to participate in 
the positive or in the negative BC market or split its available capacity 
between the two. The BE market is also split in two separate auctions. 
Agents’ bidding strategies in the positive and negative BC and BE mar-
kets differ. 

In the following, we highlight the main takeaways from the simu-
lation scenarios, whereas all the results are summarized in Appendix E. 

4.2.1. Results of the scenarios with no voluntary bidders 
The price duration curves for scenarios ‘all_TC’ and ‘TC_&SB’ (a) to 

c)) are shown for the BC market in Fig. 3 and for the BE market in Fig. 4. 
This comparison demonstrates the extent to which the presence of a 
single strategic bidder in the balancing market can affect the market 
outcome, even considering market design improvements such as the 
introduction of a standalone BE market and the use of marginal pricing 
(as was discussed in Poplavskaya et al. (2020)). 

In ‘TC_&_SB’ scenarios, the strategic bidder can affect market results, 
which translates into higher market costs (for the TSO) as compared to 
the ‘all_TC’ scenario. While the total BC costs increased from M€ 12 to 
M€ 19, the BE market costs are over three times higher (M€ 5,9 vs. M€ 
18,8). Heim and Götz (2013) already found that the market outcome can 
be significantly affected by the actions of a single dominant supplier, 
leading, for example, to a dramatic decrease in market liquidity. A 
similar effect can be observed in Fig. 4 (orange line): the presence of a 
strategic bidder, roughly covering a fourth to a third of the total supply, 
leads to prices above 100 €/MWh ca. 10% of the time and to price spikes 
of almost 500 €/MWh. (In comparison, less than 2% of the time was all 
or nearly all supply needed to offset an imbalance.) 

The agents’ decisions in the BC markets are linked to their strategies 
in the BE market by the estimated likelihood of being called in the BE 
market and expected profits in both markets (Ocker et al., 2018a; Pop-
lavskaya et al., 2019a). As a result, a strategic bidder may forego profits 
in the BC market to increase his participation in the lucrative BE market. 
Fig. 5 shows that in a scenario with no voluntary bids the strategic agent 
frequently bids close to its true costs. Notably, it also bids below its costs 
16% of the time in order to secure its participation in the BE market. The 
incentive to participate in the latter is high: the profits of the strategic 
bidder in the positive BE market were 5,3 times higher than those in the 
positive BC market (M€ 0,5 vs. M€ 2,65, see Fig. 5, left). 

4.2.2. Results of the scenarios with voluntary and second-chance bidders 
This trend is reversed in the scenarios ‘TC_&_SB + vol’ and ‘TC_&_SB 

+ vol&second_chance’. The introduction of a voluntary bidder adds 
considerable price pressure on the incumbents in the BE market and 

reduces market power. It should be noted that we did not assume that 
the voluntary bidder’s portfolio consists of only cheap generation (see 
Appendix D for agent portfolios). Voluntary bidders prompted more 
competitive behavior: the deviated from their true costs in the BE 
market only 20% and 11% of the time, respectively, as compared to 46% 
in the no-voluntary-bids scenario (Fig. 5). This led to a reduction of 
weighted average positive BE market prices of 72% in scenario TC_&_SB 
(see Appendix E). Simulations of the BE market for downward regulation 
produce similarly positive results (see also Fig. 6, right). 

Even though second-chance bidders do not obtain revenues from the 
BC market (by definition), their presence in the BE market helps reduce 
the weighted average price and the total BE market costs further (Fig. 6, 
right). This can be explained by the intensified competition stemming 
from those bids that were initially filtered out by the BC market, where 
the TSO reserves a limited volume due to its high BC reservation costs. 

4.2.3. The effect of voluntary bids on the balancing capacity market 
Although the introduction of voluntary bids improves prices in the 

BE market, the same cannot be said about the BC market. As is illustrated 
in Fig. 3, the strategic agent almost never underbids its BC cost but bids 
higher more often when its participation in the BE market is no longer 
contingent on the outcome of the BC market (when second-chance 
bidding is allowed). As a result, the strategic agent (agent #2) in-
creases its profits in the positive BC market and even more so in the 
negative BC market (see Fig. 6, left). Given dwindling BE profits, the RL 
agent maximizes profits elsewhere thanks to the collaborative learning 
algorithm. The negative market where it can earn profits from 
committing capacity to reduce output while also generating revenues in 

Fig. 3. Price duration curves in positive (top) and negative (bottom) balancing 
capacity markets, scenarios with all true-cost bidders and different 
bidder types. 
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the DA market also proves to be more lucrative. 
On the market side, the efficiency gains obtained in the BE market 

still outweigh the increased costs in the BC market. It should be kept in 
mind that negative amounts in the negative BE market indicate pay-
ments to the TSO. 

If we assume that the balancing market is an oligopoly and all agents 
bid strategically (scenarios ‘all_SB’), a different picture emerges. All 
scenario variants produce extremely high yearly BC market costs in the 
model (between M€ 233 and M€ 54). These results, however, should be 
interpreted with caution. First of all, unlike true-cost bidders submitting 
all available capacity to the BC market, strategic bidders can choose how 
much to submit in the positive and/or negative BC market in order to 
generate more profit. As BC demand is inelastic, in order to ensure that 

sufficient capacity is procured at all times, an expensive backup bidder 
with a constant bid of 300 €/MW was introduced. In the simulations, it is 
used to signal scarcity in the market. However, as this bidder sets the 
price much of the time, this modeling choice influences the average 
prices in the model significantly. Strategic bidders optimize their profits 
over a total of four marketplaces, i.e. positive and negative auctions in 
the BC and BE markets. As a result, a large share of the BC market costs 
produced in these scenarios can be traced back to the back-up generator. 
Considering pay-as-bid pricing in the BC market and the model 
assumption that strategic bidders can bid up to twice their current op-
portunity costs, they cannot fully profit from the high prices generated 
by the backup bidder. Yet, they jointly push the price upwards and earn 
profits that by far exceed those in the ‘TC_&_SB’ scenarios (see Appendix 
E). Learning effects in frequently repeated auctions (Ocker and Ehrhart, 
2017), demonstrated in our results, allow strategic bidders to increase 
their profits substantially by learning from previous auction results. 

Since in the BE market, the price pressure is still created by the 
voluntary bids, strategic bidders are compelled to moderate their bids 
and bid their true costs 46% (‘all_SB + vol’) and 64% (‘all_SB +
vol&second_chance’) of all times, as compared to only 2% in the scenario 
with no voluntary bids. Similarly, a significant reduction is observed in 
the weighted average BE market prices (Appendix E). However, high 
concentration in the BC market raises the total costs to such an extent 
that they eclipse the gains from the BE market. In addition, similar to the 
‘TC_&_SB’ scenarios, in the presence of voluntary bidders, strategic 
bidders tend to shift most of their balancing capacity to the negative 
market. Remember that reinforcement learning algorithm i.a. considers 
the profits from the DA market (see Section 3.2.3) and, in this way, 
inframarginal generators maximize profits in the negative market while 
at the same time getting paid in the DA market. 

4.3. Impact of introducing voluntary bids 

The need for additional short-term flexibility is becoming more ur-
gent as the volatility of residual demand and scarcity events are going to 
increase in the future. Voluntary bids benefit the balancing energy 
market, as set out in Section 4.2., as well as flexibility owners. Although 
participation in the BE market as a voluntary bidder means that they 
forego revenues from the capacity market, it provides additional flexi-
bility for those BSPs that find it difficult to estimate their availability 
farther ahead of real time. 

Such voluntary bidders are likely to have an impact on both the 
overall market and other bidders. Voluntary bidders with very low costs 
are likely to emerge, consider, for instance, aggregators of EV fleets. Yet, 
such bidders will also need to pass technical prequalification, so it would 
be unrealistic to assume that their entry into the balancing market would 
be massive or cheap across the board. For this reason, the impact of a 
single voluntary bidder with differently priced assets was studied. 
Considering that the balancing capacity market provides most of the 

Fig. 4. Price duration curves in positive (top) and negative (bottom) balancing 
energy markets, scenarios with all true-cost bidders and different bidder types. 

Fig. 5. The share of times the strategic agent bid its true costs or deviated from them over the year in the positive BC market (left) and in the BE market (right). The 
results for the negative market can be found in Appendix E. 
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input to the balancing energy market, the introduction of voluntary bids 
does not eliminate but rather weakens the link between the two market 
stages. Reduced predictability and downward price pressure incentivize 
agents to bid closer to their true costs. 

Second-chance bidding further improves competition in the BE 
market. Since the bids in the BC market are based on generators’ op-
portunity costs as opposed to variable costs in the BE market, a bidder 
that was ‘too expensive’ in one market is not necessarily so in the sub-
sequent market. An important implication is that the conditions for high 
market concentration are created by the BC market itself: only a few 
bidders are awarded since the volume of reserved capacity is both in-
elastic and limited. In particular, in smaller countries like Austria and 
the Netherlands, only a few hundred MW per product are procured (APG 
Austrian Power Grid, 2020; TenneT, 2020). However, higher volumes of 
procured balancing capacity would be undesirable in view of BC reser-
vation costs that are mostly recovered directly through grid tariffs paid 
by consumers (ACER/CEER, 2017). 

The scenarios included in the article assumed the presence of 
voluntary bidders (with or without ‘second-chance’ bidders) who 
introduce additional (and uncertain amount of) capacity into the 
balancing energy market and do not participate in the balancing ca-
pacity market. In such conditions and under the GL EB balancing market 
design, the market efficiency can be significantly improved. The Dutch 
balancing market that allows voluntary bids is a good empirical example 
of that. This relies on the premise that such new flexibility providers 
already entered the market and does not cover the transition period 
where that is still not the case. 

The empirical evidence from Germany, where a standalone 
balancing energy market with a possibility to submit voluntary (or 
second-chance) bids was introduced in November 2020, shows that the 
presence of incumbent second-chance bidders only can lead to detri-
mental effects: market prices skyrocketed to tens of thousands of euros 
per MWh until the German regulator, Bundesnetzagentur, introduced a 
price cap of 10,000 €/MWh. In the first few months after such a sig-
nificant change, we would expect few if any new entrants that, for 
instance, would still need time to prequalify. Secondly, such a change 
triggered an adjustment period where market actors were testing the 
new market’s limits leading to high price volatility and some extraor-
dinary price spikes. 

Such transition phases are difficult to replicate with a computer 
model, however, the results of one more scenario, in which there no 
voluntary bidders but these are only the original agents that can place 
second-chance bids in the balancing energy market, were included in 
Appendix E, Table E2. As the simulation results show, such a setup leads 
to a detrimental result for both balancing capacity and energy markets 
as 1) agents no longer have an strong incentive to underbid their costs in 
the balancing capacity market (since it is no longer a prerequisite to 

participate in the balancing energy market) while 2) the prices in the 
balancing energy market increase as well. In this scenario, strategic 
bidders make the highest overall profits in both markets, which seems to 
have to do with the decoupling of the strategies in the BC and BE market 
and the participation in the BE market only depends on being awarded 
in the DA market. This result once again underpins the conclusion made 
in this article about the importance of enabling the entry of new flexi-
bility providers in the balancing energy market. 

Finally, the empirical results from the German market are further 
affected by other market design features that are not yet aligned with the 
requirements to the balancing market design set out in GL EB, making 
them less comparable to the simulated scenarios. The product length in 
the German aFRR and mFRR markets remained 4 h instead of 1 h and the 
pricing rule remained pay-as-bid instead of marginal pricing modelled in 
the scenarios in Section 4.2 and required by the GL EB. 

In sum, short-term flexibility comes at a cost. Under the market 
design proposed in the GL EB, the cost shifts to the balancing capacity 
market. As our research shows, the extent of this shift largely depends on 
the degree of market concentration. Removing the BC market altogether 
as proposed in previous research (e.g. Just and Weber, 2015; Vande-
zande et al., 2010) could be a means to prevent existing distortions. 
Currently, removing the balancing capacity procurement appears 
feasible in the short run as it would entail a risk of a shortage of 
balancing energy. 

Improving the conditions for new actors and technologies to partic-
ipate, i.a. in the TSOs’ prequalification procedures, is essential for 
improving competition in the balancing capacity markets. The results 
presented in this paper indicate that the work of improving balancing 
market design is far from over and the adjustment, harmonization and 
integration of the European balancing capacity markets are crucial next 
steps for ensuring cost-efficient balancing service procurement. They 
would not only increase the available pool of balancing capacity but also 
might allow a degree of demand elasticity, which would discourage 
strategic bidding. 

5. Conclusion and policy implications 

The design of an efficient balancing markets has gained importance 
both due to the ongoing market harmonization efforts and to the 
increasing shares of volatile renewables in European power systems. In 
the European Balancing Guideline adopted in 2019, the new target 
design for the European balancing energy markets was proposed and 
envisaged to improve market access for all types of flexibility providers 
and increase competition. We provide new insights into the implications 
of the balancing market design changes with a particular focus on 1) the 
links between the bidding strategies in the balancing capacity and en-
ergy markets and 2) on the introduction of voluntary bids. 

Fig. 6. Cumulative yearly profits of the strategic agent (agent #2) (left) and the total yearly BC and BE market costs (right) in the scenarios ‘all_TC′ and ‘TC_&_SB’.  
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By expanding the agent-based model of the balancing market, Elba- 
ABM, we demonstrate complex bidding strategies of balancing service 
providers that take the information from the positive and negative 
auctions in the balancing capacity and energy markets into account. The 
novel collaborative reinforcement learning algorithm developed in this 
paper represented interdependent bidder strategies in the two markets. 
For instance, we show that a strategic bidder learns to optimally 
distribute limited available capacity between the positive and the 
negative markets and to underbid its costs in the balancing capacity 
market in order to secure a place in the lucrative balancing energy 
market. 

The efficiency of balancing energy markets can greatly profit from 
short-term flexibility: it does not only expand the TSO’s options for 
handling system imbalances but also substantially reduces the market’s 
exposure to strategic bidding. We show that the authorization of 
voluntary bids in the balancing energy market tends to reduce the cost of 
balancing energy procurement and compels strategic bidders to bid 
close to their true costs. Notably, this holds true even in the scenarios 
with highly concentrated markets with all strategic bidders. Further-
more, if bidders that were not awarded in the balancing capacity market 
can take a second chance by submitting a balancing energy bid, this 
leads to additional efficiency gains. The reason is that it allows to 
overcome the initial concentration caused by the balancing capacity 
market having a limited and inelastic reserve demand. 

We warn, however, that, the authorization of voluntary bids is not a 
‘silver bullet’ for reducing potential for strategic bidding in the 
balancing energy market, especially if the number of new flexibility 
providers remains limited. Strategy-wise, the balancing energy market 
remains linked to the balancing capacity market, a prerequisite for 
participation in the second, energy activation, stage. We show that the 
changes in balancing energy market design can shift possible strategic 
bidding to the balancing capacity market. In the face of falling profits in 
the balancing energy market, learning agents tend to pursue a more 

aggressive profit-maximizing strategy in the balancing capacity market. 
This may lead to much larger costs there and reduces the efficiency gains 
obtained in the balancing energy market through voluntary bids. We 
further show that this is particularly an issue in concentrated markets 
where decreasing profits from the balancing market risk to drive positive 
balancing capacity away from the market. Therefore, securing compe-
tition in the balancing capacity market, e.g. by allowing prequalification 
of new technologies and by integrating European balancing capacity 
markets, is of paramount importance to efficient balancing markets. 

Future research should focus on modelling and studying the impli-
cations of balancing market integration as well as on further applica-
tions of reinforcement learning in electricity markets. 
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Appendix A. Differences between the original Elba-ABM and the model presented in this paper  

Model characteristics Original Elba-ABM Expanded Elba-ABM presented in this paper 

Modelling of the balancing capacity (BC) 
market 

yes, rudimentary, all participants are assumed to have been 
awarded 

yes, detailed, implementing all design variables, 

Bidding frequency (BC market) n/a daily with hourly products 
Asymmetric bids no, only symmetrical yes 
Pricing rule n/a (profits in the BC market are disregarded) pay-as-bid 
Bid components n/a bid volume and bid price, separately for positive and negative BC 

markets 
Link to the day-ahead market? no, focus on the BE market yes (day-ahead market is exogenous) 
Reinforcement learning used in the BC 

market 
no yes 

Modelling of the balancing energy (BE) 
market 

yes, detailed yes, detailed 

Bidding frequency (BE market) Hourly with 15-min market clearing Hourly with 15-min market clearing 
Pricing rule marginal or pay-as-bid marginal (as per the GL EB) 
Bid components bid price bid price 
Voluntary bids allowed no yes 
Reinforcement learning used in the BE 

market 
yes yes 

Portfolio bidding yes, each agent has a different set of generators yes, each agent has a different set of generators  

Appendix B. Detailed flow diagram of Elba-ABM model 

The model’s balancing capacity market has been fundamentally elaborated to include multiple auction rounds in positive and negative directions. 
Besides, additional building blocks have been added to the model (marked in red) in order to establish a link between the BC market and the DA market 
and to allow ‘second-chance’ bidders and voluntary bidders. 
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Appendix C. Model assumptions 

In the model, a number of assumptions were made about the market and the participants:  

• There are several balancing products procured by the TSO, yet, in the model, it is assumed that participants can bid their available capacity only in 
the BC market for aFRR.  

• To simplify, we assume that variable costs do not change over the simulation period and neither does plant availability (i.e. plant outages and 
maintenance are disregarded).  

• Asymmetric bidding is assumed: BSPs can submit different volumes and prices to the positive and negative markets.  
• All agents participating in the BC market are assumed to be prequalified.  
• Technology-specific variable costs of the units in agents’ portfolios are based on Elia Group (2019, p. 8).  
• Four technologies are assumed to be able to provide aFRR, hydro, coal (as long as it is scheduled as a result of the DA market clearing), gas-fired 

power plants and combined-cycle gas turbines (CCGT). Unlike coal and gas turbines, hydro power plants do not have a minimum load requirement 
(Böttcher and Nagel, 2018, p. 192; Weidlich, 2009). For coal-fired power plants, CCGT and gas turbines, minimum load requirement is assumed to 
be static, 40%, 30% and 10% of the total installed capacity, respectively, based on Evangelos and Lehtilä (2016), Mielczarski (2018), Schill et al. 
(2016) (see Table A.1).   
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Table C. 1 
Assumed marginal costs and minimum load requirements of the technologies used in 
the simulations.  

Technology Marginal cost, €/MWh Minimum load 

Coal 28-60 €/MWh 40% 
CCGT 40-55 €/MWh 30% 
Gas 60-82 €/MWh 10% 
Hydropower 1-2 €/MWh –  

Appendix D. Agents’ portfolios used in the simulation scenarios  

Agent Generator Technology Installed capacity, MW Variable cost, €/MWh Minimum load, % 

Scenarios with true-cost bidders or with two true-cost bidders and a single strategic bidder 
1 a hydro 70 1 – 
(true-cost bidder) f coal 100 40 40  

g CCGT 100 43 30  
j gas 100 60 10 

2 b hydro 70 1 – 
(true-cost or strategic bidder) e coal 100 35 40  

k gas 100 65 10 
3 c hydro 70 2 – 
(true-cost bidder) d coal 100 30 40  

i CCGT 100 55   
h CCGT 100 45 30  
l oil 230 120 10  

Scenarios with strategic bidders 
1 a hydro 60 1 – 
(strategic bidder) d coal 120 30 40  

h CCGT 120 55 30 
2 b hydro 60 1 – 
(strategic bidder) f coal 120 40 40  

g CCGT 120 45 30 
3 c hydro 60 2 – 
(strategic bidder) e coal 120 35 40  

i gas 120 60 10 
4 j oil 200 300 10 
(true-cost bidder) k oil 200 300 10  

Voluntary bidder portfolio  
Generator Technology Installed capacity, MW Variable cost, €/MWh Availability 

5 y wind 40 3 50–90% 
(true-cost bidder) z gas 60 60 50–90%  

Appendix E. Summary of the simulation results  

Table E.1 
Summary of the simulation results showing total market costs, weighted average market prices as well as the degree to which strategic bidders deviate from the true- 
cost-bidding strategy.   

all_TC TC_&_SB all_SB   

no voluntary bids +vol +vol & sec_chance no voluntary bids +vol +vol & sec_chance 

Positive BC market costs, M€ 8,9 8,6 10,1 8,9 23,4 251,5 438,6 
Negative BC market costs, M€ 3,7 10,4 9,2 13,2 210,1 91,5 102,9 
Total BC market costs, M€ 12,6 19,0 19,3 22,1 233,5 343,0 541,5 
Positive BC market - profit (agent #2), M€ 0,0 0,5 1,1 0,9 5,8 1,7 1,9 
Negative BC market - profit (agent #2), M€ 0,0 1,2 1,8 3,7 1,2 14,6 15,8 
Total profit BC (agent # 2), M€ 0,0 1,7 2,9 4,6 7,0 16,3 17,7 
Positive BE market costs, M€ 8,6 19,0 7,2 6,1 23,3 6,4 5,3 
Negative BE market cost, M€ − 2,6 − 0,04 − 5,0 − 5,6 7,5 9,2 − 4,7 
Total BE market costs, M€ 6,0 18,9 2,2 0,5 30,8 15,6 0,6 
Positive BE market - profit (agent #2), M€ 0,4 2,6 0,1 0,1 9,3 1,6 1,2 
Negative BE market - profit (agent #2), M€ 0,2 1,7 0,4 0,3 6,7 3,2 0,6 
Total profit BE (agent #2), M€ 0,6 4,3 0,5 0,4 16,0 4,8 1,8 
Total balancing costs, M€ 18,6 37,9 21,5 22,6 264,3 358,6 542,1 
Positive BC market 
Weighted average price, €/MW 7,7 7,5 10,1 8,2 31,0 294,0 249,0 
Share of bids below true costs, % 0% 16% 1% 3% 27% 9% 17% 
Share of bids above true costs, % 0% 15% 17% 16% 40% 47% 42% 
Negative BC market 

(continued on next page) 
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Table E.1 (continued )  

all_TC TC_&_SB all_SB   

no voluntary bids +vol +vol & sec_chance no voluntary bids +vol +vol & sec_chance 

Weighted average price, €/MW 4,7 19,1 23,4 21,9 242,1 81,0 112,7 
Share of bids below true costs, % 0% 11% 8% 3% 28% 11% 19% 
Share of bids above true costs, % 0% 3% 14% 13% 37% 46% 43% 
BE market 
Positive BE market, weighted average price, €/MWh 53,0 115,0 44,5 33,0 130,0 39,0 32,0 
Negative BE market, weighted average price, €/MWh 16,0 0,3 29,0 36,0 − 42,0 − 4,0 27,0 
Positive BE market, share of bids deviating from true costs, % 0% 46% 20% 11% 84% 54% 36% 
Negative BE market, share of bids deviating from true costs, % 0% 35% 32% 12% 98% 78% 60%   

Table E.2 
Simulation results of the scenario with only second-chance bidders in the 
balancing energy market.   

All_SB  

second_chance_only 
Positive BC market costs, M€ 340,7 
Negative BC market costs, M€ 72,6 
Total BC market costs, M€ 413,3 
Positive BC market - profit (agent #2), M€ 2,7 
Negative BC market - profit (agent #2), M€ 16,7 
Total profit (agent # 2), M€ 19,5 
Positive BE market costs, M€ 13,7 
Negative BE market cost, M€ 6,2 
Total BE market costs, M€ 19,9 
Positive BE market - profit (agent #2), M€ 3,2 
Negative BE market - profit (agent #2), M€ 5,6 
Total profit BE (agent #2), M€ 8,8 
Total balancing costs, M€ 426,3 
Total profit (agent #2), M€ 28,3  
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