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Engineering Primitives to reuse design process knowledge 
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Delft University of Technology, Kluyverweg 1, Delft, the Netherlands 

In the conceptual design process a designer has too little resources to encompass all many 
requirements, design options, and tools to find an initial set of feasible solutions. To find new 
solutions knowledge should be managed and engineered as key business asset. The 
knowledge based engineering technology supports the implementation of this approach. It 
captures human repetitive processes in knowledge primitives. In this paper the development 
of design process primitives is discussed, based human approaches to solve a complex design 
problem and by analyzing the design process. The development yielded four engineering 
process primitives; environment, system, process, and property primitives. These primitives 
match framework scoping levels and the knowledge categories; wisdom, understanding, 
skill, and information. 

I. Introduction 
EW solutions in engineering design are required to meet future demands. In 2002 the Advisory Council for 
Aeronautics Research in Europe1 stated that in twenty years the aeronautic systems will differ from today’s 
systems at least as much as today’s systems differ from those of the 1930s. The aeronautics community will 

have to take on such a challenge and be one of the pioneers of the European Union knowledge society1,2. 
 

To meet future demands new feasible solutions must be available to industry. The attractiveness of a new 
solution depends on the associated risk and ‘merit of success’. Risk is defined as probability of failure times impact, 
which can be simplified to invested resources (at least today). Merit of success is the product of probability of 
success and impact, the gained resources (returns). The attractiveness of a solution depends on the balance between 
risk and merit of success, ideally low risk and high merit of success. Before companies embrace a new solution 
proper insight in the involved risk and merit of success should be available. Improving the knowledge on the product 
design space will increase this insight. However, improved knowledge is obtained through experience, also 
increasing the invested resources. To pass this hurdle an approach is needed that enables companies to gain product 
design space knowledge with a limited amount of resources. 

 
To increase design space knowledge more design problems must be attacked and the investigation more 

thorough, both increasing invested resources. In engineering design the driving resources are people. A human is 
capable to relate different worlds and to find an “out-of-the-box” solution. However, a computer is never bored and 
can perform the same routine “endlessly”. Supporting engineering by automating repetitive non-creative processes 
the design process can be improved, decreasing required resources. This relieves them from non-value adding 
activities, making more time available to exploit their creativity and engineering skills. In order to pass to this new 
vision of business, knowledge should be managed and engineered as a key business asset2. 

 
This means that the engineering design process will need to make a paradigm shift. Where previously the 

geometric model took a central position, today design knowledge should have the focus. This implies that the design 
process needs knowledge primitives instead of geometric model primitives; a technology that supports this shift is 
Knowledge Based Engineering3 (KBE). Currently, many design processes rely on CAD primitives (e.g. lines, 
surfaces, volumes) to capture the product model, sometimes extended to capture design knowledge, however still 
presuming that the CAD primitives are the proper primitives to capture also non-geometrical design knowledge. We 
argue that a proper implementation should be based on the right primitives: engineering knowledge. 
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A KBE based design environment is in development to support a Multi-disciplinary Design and Optimization 
MDO design problems, called the Design and Engineering Engine3,4 (DEE). Within this framework a generic 
modeler is developed, called the Multi Model Generator (MMG), based on KBE primitives. The primitives are 
called High Level Primitives3 (HLPs), capturing not only geometry but all product modeling knowledge in a product 
primitive. To start the MDO process an initial set of parameter values are required, delivered by the so-called 
Initiator. In a previous article5 by the authors an example structure Initiator was developed based on problem 
feasilization, a set of human methods to attack an engineering design problem; problem simplification, problem 
decomposition, and trial and error methods. The article showed that the Initiator could be modeled as multiple 
DEEs, different in scope (e.g. aircraft, panel) and phase (e.g. conceptual, preliminary). 

 
To capture the Initiator process, the DEE design process must be captured. Following the KBE methodology a 

set of design process primitives should be obtained. This paper presents an approach to and implementation of such 
engineering (design process) primitives. The methodology is based on the branch of evolutionary epistemology6. 
Specific technologies used for the implementation are for searching MDO, for modeling KBE, for capturing 
extensible markup language7 (XML), and for communication an agent based framework8 (ABF). 

 
This paper is structured as follows. First a short background on the KBE methodology and DEE concept is 

presented in section II. In section III the focus is on the human approach in the design process, discussing applied 
methods to solve an engineering design problem. In section IV the engineering design process is elaborated and 
related to the previously mentioned technologies. Section V introduces the engineering primitives, discussing the 
theory and implementation. The paper is concluded with a discussion on the performed research and the next 
development steps. 

II. Knowledge Based Engineering 

A. Knowledge based engineering 
La Rocca9 defines KBE as a technology that is based on the use of dedicated software tools (i.e. KBE systems) 

that are able to capture and reuse product and process engineering knowledge. The main objective of KBE is 
reducing time and cost of product development by means of the following: 

• Automation of repetitive and non-creative design tasks 
• Support of multidisciplinary integration from the conceptual phase of the design process 

 
The KBE cornerstones are rule-based design, object-oriented modeling, and parametric CAD3. KBE has its roots 

in knowledge-based systems (KBS) applied in the field of engineering, hence the name. KBS is based on methods 
and techniques from artificial intelligence (AI). AI aims at creating intelligent entities10. KBE focuses on capturing 
rules of repetitive, non-creative human processes. Engineers have a product or object-oriented view of the world, 
which the object-oriented modeling approach supports. KBE found its first application as follow-up of CAD to 
enable designers to reuse models. CAD is based on geometrical primitives, KBE on knowledge primitives. 

 
Cooper11 defines five important features required for any KBE system: functional coding style, declarative 

coding style, runtime value caching and dependency tracking, dynamic data types, and automatic memory 
management. However to be complete the system should support code-generating macroexpansion, full-featured 
editing, inspecting, and debugging environment, true compiled code, tight connection to geometry. Considering 
existing languages two fashionable alternatives exist: augmented CAD systems, and proprietary from-the-ground-up 
KBE languages. Inspecting the first clarifies the distinct and complementary roles of true KBE on one hand, and 
CAD on the other. On the other hand the proprietary solution will fail to keep up with the cutting edge developments 
inherent in the field of engineering and design computing. 

B. Design and Engineering Engine 
A DEE is defined3 as an advanced design environment that supports and accelerates the design process of 

complex products through the automation of non-creative and repetitive design activities. Figure 1 shows the DEE 
concept. Example architectures of the DEE can be found in [12] and [13]. 
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The Initiator is responsible for providing feasible 
starting parameter values for the instantiation of the 
search process. The search process selects a set of 
parameter values and instantiates the (parametric) 
product model. The MMG is responsible for 
instantiation of the product model and extracting 
different views on the model in the form of report 
files, capturing discipline specific model information, 
e.g. aerodynamic mesh or a Finite Element model, to 
facilitate the related expert tools. The discipline expert 
tools are responsible for testing one or several 
properties of the product and valuation the resulting 
behavior (e.g. structural response or aerodynamic 
performance. The performance synthesis is 
responsible for determining the objective and 
constraint values based on the performance values. 
The search process is responsible for checking 
convergence of the design solution and the 
compliance of the product’s properties with the design 
requirements. The multi-agent task environment is 
responsible for communication and facilitates data 
transfer between the individual tools. 

 
The design process connects these tools. Figure 1 

is actually an abstract representation of that design 
process. The design process is a human developed 
process. First the human approaches to an engineering 
design problem are discussed and related to the design 
process. Then the design process is elaborated in 
section IV, discussing the process step by step. 

III. Human approaches to an engineering design problem 
This section discusses methods humans use to solve an engineering design problem. As stated before the 

feasilization5 methodology encompasses the approaches of problem simplification, problem decomposition, and trial 
and error methods. This methodology focuses on how a human solves a problem from the ground up, however a 
human also uses previously found solutions to shortcut this elaborate trial and error process and interpolate (and 
extrapolate) an ‘in-between’ solution (e.g. educated guess). These methods are solution capturing and solution inter- 
and extrapolation. In the next section these five methods are elaborated. 

A. Problem simplification 
Problem simplification, or modeling, provides the best approach to find an initial solution space that can be 

obtained with the information and engineering knowledge available at the start of the design problem. Via 
simplifying the design space the problem complexity is reduced. This enables the designer to make a (relatively) 
quick scan of a simplified design space, to identify feasible and ‘optimal’ areas that can be further investigated using 
a more detailed analysis. The design problem is simplified such that only the driving requirements (e.g. function), 
design option parameters (product configuration), and constraints (behavior) are taken into account. A simplified 
problem is defined as a reduced set of the requirements (i) and is solved by using a reduced number of design 
options (ii) and simplified behavior (iii).  

 

 
Figure 1: The Design and Engineering Engine (DEE); 
left the main design process flow; right the Multi-model 
generator and the analysis tools 
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i. The requirements are divided into functional requirements, performance requirements, and 
constraint requirements. The functional requirements are a set of test cases. These test cases are a 
representation of the product functions and specify the properties of the environment, e.g. only in-
plane load cases (other functions are left out, e.g. out-of-plane loads). The performance requirements 
in structural design are described in weight and costs, and the constraints are failure criteria like 
structural buckling, material strength. 

ii. The design options define the parametric product model. A reduced version is obtained by 
including only the driving model design options. The resulting problem has a reduced design domain, 
which can be described by fewer parameters than the complete problem. For instance in conceptual 
design the panel parametric model does not encompass connection elements, like rivets.  

iii. The constraint performance values are determined by analysis during the test process. The test 
models are based on approximations of system boundaries, system geometry, and system functions. 
E.g. for a panel the system boundaries are schematized via approximation of the polygonal edge with 
a rectangular shape and interaction with surrounding structure is left out. The system geometry of the 
real product and the model differ, e.g. a curved skin is approximated as a flat plate. Finally, only the 
main system functions (e.g. load transport, not noise insulation) are used for model definition, and 
functional interference with surroundings is left out, e.g. behavioral coupling between different 
products, in structural design the buckling interaction between panels. 

 
Via iteratively decreasing the level of simplification the designer attempts to find the ‘optimal’ and feasible 

solution to the complete design problem. Commonly this iterative process is modeled by multiple phases (see Figure 
2). Each phase has a unique level of problem simplification, e.g. a conceptual or preliminary level. The number of 
phases required for a specific design problem depends on the problem complexity and the available resources. 
During the design process these phases are executed iteratively, if the designer is unable to find a feasible solution 
space, the previous phase must be repeated. This process is stopped if no feasible solution space is found, or if a 
feasible solution is obtained for the complete problem. 

B. Problem decomposition 
A human uses decomposition, or analysis and synthesis, to break up a complex problem into multiple smaller 

problems concerning part of the design space. One of the complications with the decomposition of a design problem 
is that it assumes that the sum of partial solutions forms a feasible overall solution. In reality this is often not the 

 
Figure 2, The phases resulting from problem simplification; commonly referred to as the conceptual, 
preliminary, and detailed phase 

 
Figure 3: Products of a methodic decomposition of an aircraft 
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case. Interference between the partial solutions can invalidate the applicability of the sum of partial solutions. This 
problem is addressed. After the components, the product is designed; incorporating checks on failure modes 
associated with the combination of component solutions, e.g. rib crushing due to bending of the wing. 

 
Two general types of decomposition exist, the methodic and systematic approach14. A systematic approach is to 

select a subset of the product properties (characteristics) and decompose the product based only that subset, e.g. 
discipline oriented (aerodynamics or structures) as used in the test phase. The advantage is that this methodology 
can be used for multiple products. The methodic approach is based on a decomposition based on all properties, and 
hence is restricted to the defined product. In principle, a product can have multiple systematic decompositions and 
only a single methodic decomposition. The systematic approach is commonly used, but the methodic approach is 
not. Here we focus at the initial implementation of the methodic approach. 

 
The decomposition is based on function and design option. The functions product components depend on the 

function and design option of the product. Since a component is again a product of its components this process 
continues until a physical relation between function, model and behavior is known or can be chosen. Typically, in 
aircraft design, these products are called ‘design values’ (e.g. material properties), known feasible design solution 
specifications. Hence the decomposition process reveals a hierarchical network of products (see Figure 3). Methodic 
decomposition creates a possibility to capture design knowledge at different abstraction levels, e.g. from material, to 
aircraft. An advantage of the structured approach is that new design knowledge (e.g. design options or analysis 
tools) or known design solutions can be captured by the structure without changing it. 

 
In another paper15 by the authors an application of the methodic decomposition approach is presented for the 

structural design of a wing structure. The XML language7 is used to capture the hierarchical product structure. 

C. Trial and error methods 
Three product design categories can be identified; routine, innovative, and creative designs16, illustrated in 

Figure 4. Routine designs concern designs that fit within the space of previous solutions, e.g. redesign of a Boeing 
767, innovative designs are based on the same design options, but have extended parameter values, e.g. Airbus 
A380, and creative designs are based on a different design option, e.g. ‘Blended Wing Body’ instead of a ‘Kansas-
city aircraft’. Typically, a new product design will encompass all three design categories, spread across the network 
of products, e.g. from material to aircraft. 

 
Through experience a human gains knowledge and experience is gained by trial and error, a search process. In 

case of non-routine designs, the designer has not sufficient knowledge to define a design solution, since a physical 
relation between function, model, and behavior is not yet established. By using a trial and error process the designer 
increases experience via exploring the new design space for feasible relations. If sufficient relations are established 
the product design problem has become a routine design problem, which can be solved based on the known relations 
between function, model, and behavior.  

 
Search algorithms are used to mimic this human capability. In this work two technologies are used; a design of 

experiments17 (DoE) and an algorithm for constrained nonlinear optimization, called ‘fmincon’ (part of the Matlab 
optimization toolbox). These were selected based on availability. 

D. Solution interpolation 

 
Figure 4, Product design categories; routine, innovative, and creative designs 
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Solution interpolation, or analogy, humans are able to find ‘in-between’ solutions. Humans also use this 
capability across different domains. In case of interpolation the method is constrained within one problem domain.  

 
The iterative processes can be improved by reusing product design knowledge. The obtained product designs 

define a mapping between the problem and the solution space, which can be directly applied in the design process. 
However, one must realize that this mapping is only valid within the defined problem domain (interpolation). If a 
problem is defined outside that domain (extrapolation) the solution should not be trusted. In these cases the 
knowledge must be updated to include the new design space. 

 
Known methods that mimic this capability are e.g. case-based reasoning, and surrogate modeling. In the field of 

aircraft design the method developed by Torenbeek18 is a good example of the strength of analogy, using analytical 
formulae to find an initial aircraft weight based on previous aircraft designs. In this work a Matlab kriging toolbox is 
used, called DACE19, selected based on availability. 

E. Solution capturing 
Solution capturing, or memorizing, is a premise of all previous methods. How the human brain actually captures 

knowledge is not yet clear. One group states that humans capture experiences in patterns on different abstraction 
levels20, matching the human decomposition approach. The method is included for completeness, but a discussion 
on this topic is out of scope of this paper. 

IV. Engineering design process 
The engineering design process can be divided into three main process categories, the requirements, search, and 

performance process (see Figure 5). These processes can also be identified in the DEE process, see Figure 1.The 
requirements process translates the customer demands and company demands into a list of requirements. The result 
is a range of possible product requirements. Here, the customer requirements are defined in the same ‘language’ as 
the requirements and only the conceptual design phase is addressed. A proper discussion on this phase is out of the 
scope of this paper. The search process aims at finding a solution that meets the requirements by trial and error. The 
performance process aims at finding the performance values of the product. The values are required to evaluate the 
fitness of each instantiation considered, supporting the search process. The discussed design process is based on 
previous mentioned human approaches and is only one of the possible implementations of the design process.  

A. Search process 
The MDO process attacks this search problem. The search process aims at finding a set of ‘optimal’ system 

specifications (model and behavior properties) to a certain set of requirements (functions, performances, and 
constraints). Basically, it tries to find the physical relations between function, model, and behavior16. The term 
model means a simplified description of a system. Important to note here is that during the design process the model 
has certain level(s) of simplification (further elaborated in section II.A). The difference between model and behavior 

 
Figure 5: Generic design process sub-processes; requirements, search, and 
performance process 

 
Figure 6: Basic search processes; problem definition, design option 
definition, and parameter definition 
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is that the term model refers to the intrinsic properties of the system, and the term behavior refers to the extrinsic 
properties of the system. For example length is an intrinsic property, independent of the product environment, and 
drag an extrinsic property, dependent on the environment. 

The search process needs start vectors to be initiated, obtained by design feasilization5. The search process can 
be started after the problem is adapted to the level of simplification (section III.A). The search process involves 
three steps; problem definition (how are the requirements translated to a search problem), design option definition 
(what are possible model configurations), and parameter definition (what are possible parameter values), illustrated 
in Figure 6. The steps are applied iteratively. At the end the optimal parameter set (which parameter values perform 
best), and design option set (which performance is best) are selected. 

  
To optimal reuse previous solutions in the design process, an even distribution of the solutions in the design 

space should be obtained. These solutions can then be used for interpolation (and extrapolation to a certain extent) 
and find new (estimated) solutions. Here for the requirements are discretized in one or multiple sets of requirements, 
turning the N-dimensional search problem into a set of M-dimensional search problems. The discretization applies 
to function, performance, and constraint requirements. If a function is specified as a range it is translated to a set of 
fixed function values, in case of multiple objectives a fixed set of Pareto points is used, and if criteria or parameter 
bounds are variable also these are discretized to a set of values. The number of requirement sets depends on the 
number of discretizations, e.g. four discretizations transforming a range into ten cases results in ten thousand 
separate requirement sets. 

 
Per requirements set one or more design option sets (adapted to the level of simplification) are defined that are 

assumed to be able to meet the requirements. Often, these design options have disconnected design spaces, making it 
a search problem of a discontinuous design space. If the design option parameters are properly defined as continuous 
variables, the search process can be simplified to a set of continuous search problems, a size problem. In this 
implementation the design options are assumed to be properly defined and are investigated separately. First 
determining the individual performances, then making a trade-off based on the requirements. The trade-off is 
simplified to a selection based on objective function value, since this is identical for every design option.  

 
Depending on the search method, per design option one or multiple parameter value sets (start vectors) are 

defined. For each set the performance is evaluated and the ‘optimal’ set is selected. To determine the performance 
multiple tests are performed. Via these tests the behavior (extrinsic) properties are obtained, commonly analyzed per 
discipline. Each discipline has a specific view (e.g. structural model, aerodynamic model) on the product, taking 
only a subset of the model (intrinsic) properties into account. This process is referred to as the performance process, 
discussed in the next section. The search problem can be defined as: 

 

! 

min
x
f (x) = ai " f i# (x)

subject  to :

g(x) $ 0

h(x) = 0

lb $ x $ ub

 (1) 

The design option definition, performance evaluation, and design option selection can be implemented integrally 
by using a topology optimization method. Another possibility would be to use the multi-level, multi-dimensional 
characteristic of the problem (see section II.0), e.g. Bi-Level Integrated System Synthesis21 (BLISS). In this 
implementation the search is discretized; each design option is evaluated individually and the best performing design 
option is selected based on the objective function. To get an initial set of parameter value sets that comply with the 
shape of the solution space, a Design of Experiments (DoE) is used. The experiments are analyzed separately, the 
sizing is performed by a single level optimizer, e.g. Sequential Quadratic Programming (SQP).  

B. Performance process 
The performance process is responsible for finding the performance values required to define the objective and 

constraint functions. The performance process features three steps; performance definition (what performances are 
required for the objective and constraints), (model) analysis process, and multiple test processes. Analysis is a 



 
American Institute of Aeronautics and Astronautics 

 

8 

systematic decomposition (see section III.0) of the product properties, generating a number of sub-products 
(discipline specific, e.g. structural model or aerodynamic model) contemplating a sub-set of properties. The sum of 
the separate evaluations is assumed to be valid for the complete problem.  

 
The performance process translates the performance values to constraint and objective values. In case of a multi-

objective statement the individual objective values should be changed to relative values to be able to compare 
objectives with different ranges.  

 
The model process defines all required model (intrinsic) properties. As seems logical, before the analysis is 

started first a generic product model3 should be defined, to ensure (e.g. geometry) model consistency in the test 
phase. Based on this model the discipline specific model views can be derived to ensure a consistent test process. 
This view is often restricted to geometry properties of the product, but surely not always (e.g. cost modeling, 
equivalent structural modeling15). Technologies to capture this process generally use model primitives, example 
technologies are: CAD (using geometrical primitives like surfaces), KBE (using knowledge primitives like high 
level primitives3), and symbiotic methods (see section II.A). 

 
Each test process receives its view on the product from the modeler. Before the test can be performed the 

relevant functions are translated to a test case (specifying an operating condition), and the environment model (again 
an abstraction of reality). The product behavior is obtained by determining the impact of the environment model on 
the product model in a certain condition, specified by a test case. The performance of the product is obtained by 
applying criteria to the behavior. A problem that can occur during a test process is that the models yield unrealistic 
results (and must be adapted). To overcome this problem often a convergence step is included to check whether the 
obtained behavior is within the range of expected values. Implementation depends on the specific discipline. The 
relations between the model, test, and synthesis processes can be illustrated with a set of simple formulae:  

 

1

2

3

4

5

( )

( , )

( , )

( , )

(

product product

environment product environment

product environment

product environment

model f properties

model f properties properties

criteria f model model

behavior f model model

performance f criteri

=

=

=

=

=

6

7

, )

( , )

( , )

product

product

a behavior

objective f performance properties

constraint f performance properties

=

=

 (2) 

The previously described process can only exist if all the tools are able to communicate. Adding to the 
complexity the tools are often on different computers, with different operating systems, and on different networks 
using different pseudo languages or requiring direct control by humans. MDO needs a support framework for their 
implementation into industry. The framework can be pull based, push based, or a combination of the both. 
Important to note is that Berends8 uses four scoping levels to be able to support a MDO problem with the 
organization, framework, tool, and data level. 

 
Figure 7: Performance analysis process steps; model analysis, behavior test, 
performance definition, and performance synthesis 
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V. Engineering primitives 
This section discusses first the background of the engineering primitives by a short discussion on an existing 

framework used to implement the MDO problem and by an analysis of the word ‘knowledge’, respectively in 
section A and B. This is followed by the introduction of the individual primitives in sections C, D, E, and F, 
respectively called the property, process, system, environment primitive. 

A. MDO frameworks 
The engineering process primitives are focused at an implementation in a MDO problem. Multiple MDO 

frameworks already exist and have coped with the different requirements. Berends8 uses four scoping levels in the 
implementation a multi-agent task environment framework. The scoping levels are respectively the organization, 
framework, tool, and data level. 

On the organization level the MDO problem is executed and managed, responsible for resource management. 
The aim at organization level is to find a solution that meets all the problem requirements. Ensured is that the 
necessary resources are available and guards schedule and resource constraints. The framework goal is to produce a 
MDO problem-solving environment, responsible for resource interfacing. The framework does not zoom in to tool 
level but only connects and integrates individual tools, such that the problem can be solved. Also a quality control 
function is addressed, the tool interfaces are validated. At the tool level the objective is a correct functioning of 
discipline analysis tools, responsible for delivering process execution support. The discipline specialists belong to 
this level. The data level is handles product information, and is responsible for information flow control. 

 
These levels fulfill MDO functions, part of the product engineering field. Translating the words organization, 

framework, tool, and data to the product engineering language one could obtain words like environment, system, 
process, and property. This becomes really interesting when it is connected to the definition of knowledge. 

B. Knowledge categories 
The engineering primitives are based on design process knowledge. The design process has been elaborated in 

section II, but what do we mean by knowledge? Knowledge is defined22 as (1) the information, understanding and 
skills that you gain through education or experience, (2) the state of knowing about a particular fact or situation.  

 
The first definition identifies three knowledge categories, understanding, skill and information. These categories 

can be linked to the before mentioned scoping 
levels. Information connects to the lowest level 
of data and property. Skill is the knowledge of 
specialist know-how and could be linked to tool 
or process level. Understanding concerns 
knowledge about certain situations and the 
ability to act to that specific situation, and could 
therefore be linked to the second scoping level of 
framework and system. This leaves the first 
scoping level, which apparently supersedes 
knowledge. The first scoping level of 
organization and environment can be linked to 
wisdom. 

 
Wisdom is defined as (1) the ability to make 

sensible decisions and give good advice because 
of the experience and knowledge that you have, 
(2) how sensible something is, (3) the knowledge 
that a society or culture has gained over a long 
period of time. 

 
This decomposition fits the approach humans 

used to model the environment, at least in the 
western hemisphere. The first scoping level 
would be to consider everything, hence the  

Figure 8: Knowledge scoping levels 
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environment. The next step is to address the world as a collection of 
separate systems, interacting with each other. This gives the 
advantage that the systems can be addressed individually, however 
still influenced by other systems. The next simplification disregards 
the other systems and considers the system as a closed system, 
yielding actually a process only changing when the input is changed. 
The final step is to neglect time, transforming dynamic into static. 
This static closed system is nothing more then a collection of 
properties. The four scoping levels are illustrated in Figure 8. 

 
To include the different human knowledge types, these four 

scoping levels are used for the development of four ‘knowledge’ 
primitives, one for every scoping level. An initial implementation is 
presented in the following sections. The development of the property 
and process primitives is completed. The system primitive can at this 
moment cope with single level implementations (the decomposition 
capability is not yet captured). The environment primitive is still 
only a theoretical object. 

C. Property 
The highest simplified knowledge primitives are property 

primitives. A property defines one or more characteristics of something. Information like name, id, value, value 
type, and specific design space knowledge, e.g. bounds, design space, mutability, feasibility, is captured by the 
primitives. The property primitive is unaware of its primitive parent and is defined by its parent, which can replace it 
at any time, supporting dynamic data typing11. All primitives are designed such that the user only has to specify the 
relevant information at that level, obtaining a declarative programming style, a high-level programming language 
that can be used to solve problems without requiring the programmer to specify an exact procedure to be followed. 

 
An UML (Unified Modeling Language) diagram of an example implementation is presented in Figure 9. A 

Primitive superclass is defined, capturing generic information and methods required for all objects. The Property 
primitive obtains the knowledge via inheritance from the Primitive, and has as basic attribute a value. Since different 
property types exist, multiple classes are defined that use the Property primitive as superclass; the Number, Array, 
Text, and Structure primitives.  

An interface is defined such that the primitives can be instantiated by XML files. An example XML file is 
presented in Figure 10. A XML interface is used because it offers an editing and inspection environment and the 
implementation is relatively easy.  

D. Process 
A process is defined as (a series of) things that are done in 

order to achieve a particular result. Design knowledge on how 
to relate design option parameter values to test cases values 
and requested performances values is captured on this level. 
The processes described in section IV.B belong to these 
primitives. 

 
The Process primitive inherits (like Property) from 

Primitive, and has input, output and source attributes. The 
Process is a superclass of specific processes, Function, 
ProcessOfProcesses, and AnalysisProcess. For the 
implementation the last two a lazy9 evaluation is used instead 
of an eager one, mimicking the request methodology described 
by Berends8. In that paper Berends defines that this level is the 
field of discipline specialist actors and their functional coding 
style. In a more complete implementation the capabilities can 
be extended to include dependency tracking11. 

 

 
Figure 9: An overview of the four primitives 
used and the xml interface in the current 
implementation 

 
Figure 10: Example XML input for the 
instantiation of a Property primitive  
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An example interface of the 
Function and AnalysisProcess are 
presented in Figure 11. 

E. System 
A system is an organized set of 

theories, based on sub-systems and 
processes to make it function. Design 
knowledge on how to adapt something 
to better suit the environment. This can 
be supported by a trial and error 
process (e.g. search methods) or by 
reusing previous solutions (e.g. 
regression methods). The system 
changes its identity if the environment 
requirements change, supported by 
runtime value caching. The processes 
described in section IV.A belong to 
these primitives. 

  
The System inherits from Primitive, 

and has requirements, specification 
and core as attributes. Specific implementations are used to implement the trial and error process and the 
interpolation process. The first is implemented in a so-called Performance primitive, the other in a so-called 
RequirementRange primitive. The first uses the earlier mentioned DoE and SQP, and the second DACE.  

 
An example of the Performance and RequirementRange interface is depicted in Figure 12. There one can see 

that all other primitive types, Property, Process, and System are used in the implementations. This is a good example 
of the amount of code reuse that can be obtained by using this approach. 

F. Environment 
Environment is defined as the conditions that affect behavior and development of something. Design knowledge 

on how to assemble a set of systems to meet a certain set of conditions is to be captured by the Environment 
primitive. However, this primitive is not yet implemented. An example implementation will follow in a future paper. 

 
Figure 11, Example XML interfaces for Process primitives; Function, 
and AnalysisProcess 

 
Figure 12, Example XML interfaces for System primitives; Performance, and RequirementRange 
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VI. Discussion 
This paper discussed the methods human use to attach an engineering design problem. The methods are based on 

human knowledge. In an analysis of this knowledge four scoping levels were identified, each one considering a 
different type of knowledge. The four scoping levels are called environment, system, process, and property, and 
address respectively the knowledge types; wisdom, understanding, skill, and information. To capture these different 
types of knowledge four engineering primitives are being developed.  

 
The implementation featured the power of reusing code, which besides supporting uniqueness of knowledge also 

saves resources. This advantage shows best in new obtained solutions, featuring an identical structure as the initial 
proposed problem. Hence, the solutions are stored in the same grammar as was used to describe the problem.  

Another benefit is the hierarchical structure of the problem. Complexity hiding is used to support inspecting of 
the problem and/or solution. At each level relevant information is presented, while by ‘zooming in’ the information 
can be traced back to its origin(s).  

However the presented solution still has to prove its power in more extensive applications.  
 
Next development steps focus on an implementation of the environment primitive, enabling a multi-level system 

approach, and of a conceptual design test case to evaluate the performance of the methodology. 
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