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Multiprocessor Systems on a Chip (MPSoCs) are suitable platforms
for executing complex embedded applications. To reduce the cost
of the hardware platform, applications share resources, which may
result in inter-application timing interference due to resource request
conflicts. Bounding or prohibiting this interference is crucial, as the
timing of real-time applications has to be predicted in each possible
case. Resources that allow sharing without application interference
are denoted as composable. Composability is a desired platform
property, as it enables the design and analysis of applications in
isolation, and their integration with linear effort. Previous work
demonstrates composability for different resources, i.e., processor,
interconnect, memory. Processor composability is achieved by uti-
lizing an Operating System (OS) that schedules fixed duration task
slots, using a two-level, hierarchical approach. First, the OS deter-
mines which application owns the next slot following a strict, pre-
emptive Time Division Multiplexing (TDM) policy, and then it picks
and schedules a task of that application. As scheduling decisions are
taken exclusively at slots borders, when a task finishes before its slot
depletes, the time left is wasted. This may result in low processor
utilization for streaming applications for which the execution of a

task may start after its predecessor tasks have finished. In this work we propose a new task scheduling
strategy, namely application-space task scheduling that eliminates wasted slot time. We make use of the
fixed duration slots and the application TDM, to preserve composability, but the application invokes the
task scheduler immediately after each task finish, inside its slot. As the application-space task schedul-
ing strategy alone may not support all types of task scheduling, e.g., preemptive, we propose to combine
OS-space and application-space scheduling on the same processor. To experimentally investigate the com-
posability and performance of our scheme we survey existing benchmarks for the embedded domain, and
build a workload consisting of two streaming applications and a synthetic application. We executed these
applications on an MPSoC with two processor tiles, a monitor tile, all connected by a Æthereal NoC. Our
experiments indicate that mixing application-space and OS-space task schedulers is composable. Further-
more, the application-space task scheduling achieves 17% to 40% better performance than the OS-space
task scheduling for the streaming applications exercised.
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Abstract

M
ultiprocessor Systems on a Chip (MPSoCs) are suitable platforms for executing com-
plex embedded applications. To reduce the cost of the hardware platform, applications
share resources, which may result in inter-application timing interference due to resource

request conflicts. Bounding or prohibiting this interference is crucial, as the timing of real-time
applications has to be predicted in each possible case. Resources that allow sharing without
application interference are denoted as composable. Composability is a desired platform prop-
erty, as it enables the design and analysis of applications in isolation, and their integration with
linear effort. Previous work demonstrates composability for different resources, i.e., processor,
interconnect, memory. Processor composability is achieved by utilizing an Operating System
(OS) that schedules fixed duration task slots, using a two-level, hierarchical approach. First,
the OS determines which application owns the next slot following a strict, preemptive Time Di-
vision Multiplexing (TDM) policy, and then it picks and schedules a task of that application.
As scheduling decisions are taken exclusively at slots borders, when a task finishes before its
slot depletes, the time left is wasted. This may result in low processor utilization for streaming
applications for which the execution of a task may start after its predecessor tasks have fin-
ished. In this work we propose a new task scheduling strategy, namely application-space task
scheduling that eliminates wasted slot time. We make use of the fixed duration slots and the
application TDM, to preserve composability, but the application invokes the task scheduler im-
mediately after each task finish, inside its slot. As the application-space task scheduling strategy
alone may not support all types of task scheduling, e.g., preemptive, we propose to combine
OS-space and application-space scheduling on the same processor. To experimentally investigate
the composability and performance of our scheme we survey existing benchmarks for the em-
bedded domain, and build a workload consisting of two streaming applications and a synthetic
application. We executed these applications on an MPSoC with two processor tiles, a monitor
tile, all connected by a Æthereal NoC. Our experiments indicate that mixing application-space
and OS-space task schedulers is composable. Furthermore, the application-space task scheduling
achieves 17% to 40% better performance than the OS-space task scheduling for the streaming
applications exercised.
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Introduction 1
In the recent years, the number and complexity of the applications executed on an
embedded platform have drastically increased [8]. Multiprocessors system-on-chip (MP-
SoC) are the platforms employed to execute these complex applications. Such a platform
consists of multiple processing tiles (PT), memory tiles, peripheral tiles, etc. Figure 1.1
presents a typical architecture of an MPSoC. The tiles can communicate with each other
via an interconnection infrastructure. A processing tile (PT) consists of a programmable
processor core, typically a CPU or DSP, and local resources, e.g. local memory, that are
tightly coupled with the core.

A typical MPSoC executes a set of applications, that shared the MPSoC resources,
in order to reduce the cost of the hardware platform. Each application consists of one
or more tasks, each of which executing sequentially on a processor core. Based on their
timing constraints, there are two main classes of applications: real-time and non real-
time. An application has real-time constrains if the correctness of its operation depends
not only upon its functionality, but also upon its timing behaviour, e.g. software radio
decoding, video decoding. On the other hand, non real-time applications are applications
for which no deadlines or no timing constrains exists, e.g., file download, email clients,
etc.

Real-time applications can be divided into three categories based on the critical-
ity of their requirements, namely hard real-time (HRT), firm real-time (FRT) and soft
real-time (SRT). In hard real-time applications, missing a deadline can have disastrous
consequences. An example of such an application is the airbag control system of a vehicle.
Firm real-time applications have similar real-time requirements to hard real-time appli-
cations. However, missing a deadline results in unacceptable output quality degradation,

Interconnection

Memory Tile

Processing

Tile

Processing

Tile...

Pheripheral

Tile...

Figure 1.1: Architecture of an MPSoC
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Figure 1.2: Data-Driven Application Model

but has no catastrophic implications. Example of such applications are audio decoders
and software radios. Soft real-time applications are applications which can accommodate
occasional deadline misses. Examples of such applications are some video encoders and
decoders, for which the quality degradation due to missing a deadline can be alleviated
by repeating a previous picture. To guarantee by design that real-time applications met
their deadlines, their timing behavior should be predictable when they execute on a
platform. In general, a system is predictable if we can forecast the timing behavior of
its part and the interaction between them. Thus, in order to build such a system, the
hardware, software and the arbitration at shared resources have to be predictable.

Furthermore, applications can also be divided into three broad classes based on the
invocation of their tasks over time. These classes are: time-driven, event-driven and data-
driven. Time-driven applications are applications whose tasks are triggered at precise
periodic moments in time. Example of such applications are sensor monitoring and
video capturing. Event-driven applications are applications whose tasks are triggered
sporadically, at the occurrence of a given set of events. Examples of such applications
are human-computer interaction applications. Data-driven, i.e. streaming, applications
are applications that consist of communicating tasks which are triggered based on data
availability. Examples of such applications are MPEG encoder and decoder. Typically,
time-driven applications have real-time constrains while event-driven and data-driven
applications may be real-time or non real-time. In this work, we mainly focus on data-
driven applications. An example of two applications belonging to this class is presented
in Figure 1.2.

As mentioned above, to decrease the cost of a hardware platform, applications share
its resources, e.g., memory, peripherals, etc. The applications might interfere at shared
resources due to resource request conflicts. Due to this interference, when the behavior
of one application changes, e.g. an application is updated, the timing behavior of all
other applications mapped on the same platform is affected. Hence sharing of resources
makes timing verification difficult and integration effort exponential in the number of
applications. This is especially problematic for real-time applications, for which meeting
the time constrains should be guaranteed by construction.

Furthermore, timing verification becomes even more difficult when energy and/or
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power management are employed in the system. Energy and power management
involves scaling the resources operating points which has a direct impact on the appli-
cation time behavior. A change in one application leads to the need to reverify all other
applications.

To avoid large integration and verification effort, a composable design approach
[13], [16], [21] is required. A system is composable if the functionality and the timing
behavior of each application is independent of other applications mapped on the same
platform. The composable platform ensures that the applications do not interfere each
other, thus the verification and integration effort is linear in the number of applications.

1.1 Problem Statement

Prior work [25], [12] demonstrated a composable and predictable MPSoC platform. In
this thesis we build upon this existing platform and we further investigate task schedul-
ing. [25], [12] employ a preemptive two level hierarchical scheduling framework which
is able to execute a mix of real-time and non real-time applications, each scheduled
according to its suitable policy. The application scheduler uses Time Division Multi-
plexing (TDM) scheduling algorithm in order to guarantee the composability between
applications running on the shared processor. TDM is implemented using precise timer
interrupts. The tasks of an application can be scheduled by any scheduling algorithm.
The application and task scheduler on a processor takes local decisions, and it does not
need to be aligned or synchronized with any other scheduler in the system. In the ex-
isting platform [12], the processor time is divided into system time slots of equal length.
One part of the system time slot, i.e. the Operating System (OS) slot, is utilized by the
OS, and the rest is used as task slot where applications’ tasks are executed.

Currently [25], [12] implement an OS which performs task scheduling inside the OS
slot. We denote this strategy as OS-space task scheduling, and we graphically present
it in Figure 1.3(A). The advantage of this strategy is that it can potentially schedule all
types of applications, e.g., time-driven, event-driven and data-driven. In OS-space task
scheduling, the task scheduler is invoked at the OS slot. It means that task scheduling is
performed periodically, between two consecutive task slots. This implies that, even if a
task finishes before the end of its slot, the OS will not schedule another task in that slot.
We denote this phenomenon as task slot fragmentation. This fragmentation may results
in processor under-utilization, thus potential application performance degradation.

In this work, we propose a novel application-space task scheduling strategy ( Fig-
ure 1.3(B)). We propose to invoke the task scheduler in the task time slot (application
time) aiming to reduce the performance loss due to slot fragmentation.

1.2 Contributions

The main contribution of this thesis is the application-space task scheduler. In this
strategy task scheduling is performed immediately after a task iteration is finished, re-
moving fragmentation. We expect that the application-space task scheduling strategy
gives better application performance than OS-space task scheduling strategy, especially,



4 CHAPTER 1. INTRODUCTION

Figure 1.3: Task Scheduling Strategies

in case of data-driven applications and non real-time applications.
Although application-space task scheduling can give better application performance,

this strategy alone cannot support all applications. Specifically, it cannot schedule time-
driven applications if the application does not have exclusive access to a timer and an
interrupt, i.e. the platform does not support virtualized timers and interrupts. More-
over, the application-space task scheduling strategy may not support all types of task
scheduling, e.g., preemptive task scheduling algorithms.

We tackle this limitation by proposing a new composable strategy that supports
both OS-space and application-space task scheduling. In other words, at initialization
an application can specify in which manner its tasks should be scheduled. Thus the
resulting platform can service different types of applications. For example, time-driven
applications can use OS-space task scheduling while data-driven applications can use
application-space task scheduling.

Moreover, application-space task scheduling has implications in platform energy man-
agement. Real-time applications demand a conservative energy management approach
that requires the Energy Manager to closely monitor application progress [22]. In the
application-space scheme the moments when a task finishes an iteration are not by
default visible to the OS, thus the OS cannot monitor application progress. As a re-
sult, OS-space energy management is not possible in conjunction application-space task
scheduling. Future work will address the OS-application interaction, and the energy
management interfaces that alleviated this limitation.

In summary, we achieved the following:

• Design and implement a new composable task scheduling strategy which gives bet-
ter performance for the applications running on the platform, namely application-
space task scheduling.

• Integrate the OS-space and application-space task scheduling to offer composable
and flexible task scheduling options.

• Build a set of applications to investigate the composability and compare the per-
formance of application-space vs. OS-space task scheduling.
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1.3 Organization

The remainder of the thesis is as follows. We start by giving an overview of the hard-
ware, application model and Operating System in Chapter 2. Next, Chapter 3 details
advantages and limitations of OS-space and application-space task scheduling strategies
together with the implementation of new proposed task scheduler. Then Chapter 4 de-
scribes the set of applications which we built for our experiments. Finally, experimental
results are presented in Chapter 5, followed by conclusion and future works in Chapter
6.



6 CHAPTER 1. INTRODUCTION



Background 2
In this chapter, we present an overview of the existing composable, predictable hardware
platform and its software architecture [12]. In Section 2.1 we describe of the existing
hardware platform is presented. The application model is described in Section 2.2,
followed by the details of the Operating System in Section 2.3. Finally, Section 2.4
summarizes this chapter.

2.1 Hardware Platform

The hardware platform architecture is shown in Figure 2.1. Our platform consists of
several processing tiles, a monitor tile and an external memory tile, all connected by a
Æthereal NoC [9]. A platform is composable if each and every shared resource of the
platform is composable. A composable platform is also predictable if the time to serve an
application request on a resource is bounded. We utilize a composable and predictable
NoC (Æthereal offers composability and predictability for every logical connection be-
tween pairs of memory-mapped initiator and target ports) and memory tile [1]. In the
following we present the details of the processor tiles relevant for our task scheduling
work.

2.1.1 Processor Tile

A processor tile has several main components: a MicroBlaze processor core, a set of
local memories assisted by a set of Remote Direct Memory Access (RDMA) units, and
a Voltage Frequency Control Unit (VFCU).

Figure 2.1: Hardware Platform Architecture

7
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Figure 2.2: Processor tile architecture

The MicroBlaze processor core is responsible for executing the code of applica-
tions. The MicroBlaze is a 32-bit processor soft-core provided by Xilinx [29]. The
instruction set architecture (ISA) of the MicroBlaze core is a Reduced Instruction set
computer (RISC) ISA.

Local memories are connected with the processor via a Local Memory Bus (LMB)
that has one cycle access time. The local memory is split into a data memory, which
is accessible only by the local processor, and a communication memory (CMEM), as
illustrated in Figure 2.2. The communication memory is further split in outgoing com-
munication memory (cmem out) and incoming communication memory (cmem in). We
assume that the entire task’s private data and code fits in the data memory on the
processor executing that task. A FIFO is mapped either in its consumer’s cmem in
or in a separate memory tile. The RDMA units are used to post data from the local
cmem out of a processor to the cmem in of another processor tile or to a remote memory
tile by initiating a set of NoC transactions. The advantage of a separate communication
memory is that the arbitration is avoided, resulting in shorter memory access delay and
smaller chip area. To ensure composability each application that has tasks mapped on a
processor has associated an RDMA unit and a pair of cmem in and cmem out memories.

The Voltage Frequency Control Unit (VFCU) is used to support composability
and power management on a processor. The processor is programming the VFCU via a
Fast Simplex Link (FSL) [28]. The structure of VFCU is shown in Figure 2.3. VFCU
contains two sub modules: the system timer and the frequency generator. The system
timer is responsible for providing time information for the frequency generator so that
the frequency generator can function correctly. In addition to, it also provides the time
reference to the processor. The programmable frequency generator provides two basic
functionalities:

• Setting output frequency based on parameters given by the processor. This feature
is utilized for energy and power management.

• Gating the output clock, i.e., set output frequency to 0, and un-gate it at a given
future moment in time. This feature is utilized to ensure the fixed duration OS
slots required by composability.
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Figure 2.3: Voltage Frequency Control Unit

Figure 2.4: Monitor Tile Architecture

2.1.2 Monitor Tile

The monitor tile consists of a MicroBlaze core, its local memory, and peripheral inter-
faces to communicate with the host PC. The monitor has two basic functions. First, it
configures the system i.e. NoC, UART before the start of application execution. The
FSL channel from the monitor to each processor tile are used to synchronize the ini-
tialization of the processor tiles. Second, the monitor tile can be used to gather log
data from each processor tiles after the application has started. When events of interest
happen, the processing tiles send messages to the monitor tile through the monitor FSL.
The monitor tile collects this information and sends it to the host PC. The architecture
of the monitor tile is presented in Figure 2.4.

2.2 Streaming Application Model

A suitable model for a streaming application is a task graph in which tasks commu-
nicate tokens through blocking FIFOs. A task performs an infinite number of itera-
tions, in each iteration consumes its input tokens, executes some computation, then
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Figure 2.5: C-HEAP Protocol

produces its output tokens, which in turn may be processed by other tasks. Each FIFO
is attached to one producer task and one consumer task, which block if the FIFO is
full and empty, respectively. These task graphs can be modeled as Cyclo-Static Data-
Flow(CSDF) graphs [7], [23] when real-time analysis is demanded. The details on how
the task is constructed and communicate each other, is described as follows.

2.2.1 Task Communication

The inter-task communication is implemented using the C-HEAP [24] protocol and FI-
FOs. A C-HEAP FIFO is implemented as a circular buffer in shared memory, where each
buffer has one producer and one consumer, as shown in Figure 2.5. The unit element in
the communication is called token. The size of token is fixed per FIFO. The number of
tokens, which are written/read by producer/consumer in each transaction, are denoted
as token rates. The producer and consumer of the same FIFO can have different token
rates. In the current implementation, we do not support communication between two
tasks which belong to different applications.

If the producer and consumer tasks are mapped on the same processor, the FIFO
administration and data buffer are mapped in the local memory. If the data buffer is
too large for the local memory, it can be mapped onto the a remote memory tile. If the
producer and consumer tasks are mapped on different processors, the FIFO data buffer
may be mapped in the consumer’s local memory. In this case, the communicated data is
only written across the NoC. This eliminates the round trip delay that would be incurred
if the consumer had to read the data across the NoC.

Regardless of the location of the FIFO data buffer, the FIFO administration, e.g. read
and write pointers, are kept in the local memories of both the producer and consumer
in order to avoid polling remote memory locations. Because the OS often checks the
task eligibility, remote access that should be avoided, would cause a large time penalties.
Moreover, the FIFO administration does not occupy a large memory space, thus, the
storage overhead is negligible. The FIFO administration is updated and synchronized
after data is produced into or consumed from the FIFO buffer.
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Figure 2.6: System Slot Time

2.2.2 Task Construction

Typically, a task is implemented as a never-ending loop that reads input data, performs
computation and produces output. In our case, the input and output operations are left
for operating system, which is discussed later in next section. We implemented a task as
a function that executes and returns (for each invocation), as exemplified in Listing 2.1.
This function consists of two arguments which are arrays of pointers. The first argument
points to input tokens and the second argument points to output tokens.

Listing 2.1: Task Code

void Task1 ( int ∗∗ in , int ∗∗ out ){
out = funct ion ( in ) ;

}

2.3 CompOSe

CompOSe[6] is a composable, lightweight operating system (OS). CompOSe utilizes a
preemptive two-level hierarchical scheduler to enable different task schedulers per ap-
plication. In our platform, each processor runs an independent instance of CompOSe,
without any knowledge of the other processors. Thus each processor is completely decou-
pled from other processors and memories and has its own clock. We start by introducing
the CompOSe functionality in section 2.3.1. Next, the data structure of CompOSe is pre-
sented in section 2.3.2. Finally, we present how to initialize CompOSe on each processor
tile.

2.3.1 Functionality

In this section, we present the functionality of CompOSe. The processor time is divided
into system time slots of equal length. A part of the system time slot, the OS slot, is
used to execute CompOSe. The rest is used as a task slot, as presented in Figure 2.6.
The operating system slot is responsible for saving context of the previous task on its
stack, to schedule a new application along with its new task and restore the context of
the selected task while the task slot is responsible for executing the task. Both the OS
and the task slot have a fixed duration to ensure composability.

The core of CompOSe is the functional loop presented in Figure 2.7. An interrupt
from the system timer marks the beginning of a new system slot that starts with an
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Figure 2.7: Functional Flowchart
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Figure 2.8: Task State Transition

OS slot. In interrupt handler(), the context of the interrupted task is saved on its
stack. Next, the application-scheduler selects an application using the defined scheduler.
Currently, there is a built-in TDM application scheduler in our system.

In the next step, the task scheduler selects the task. Each application may use any
task scheduling algorithm. Then the task state is checked. If the selected task is marked
as idle (finished), it is reset to its original state, meaning that the task’s register values
are reseted. The original state is defined as the state in which the task was in after the
application was initialized, but not yet started. Finally, the task context is restored to
the system from its stack and the task state changes to running.

If the timer interrupt comes while the task is executing, the task state changes to
preempted and the context of the preempted task is saved on its stack. Otherwise, if
the task returns before the timer interrupt, its state changes to idle (iteration finished).
The details of task state transition is illustrated in Figure 2.8. The initial state of a
task is IDLE. If the task is selected to run, its state changes to READ. During this
time, the task reads the tokens from input FIFOs. Next, the task is executed and its
state changes to RUN. After the task finishes an iteration, its state changes to WRITE
where the task write tokes to output FIFOs. Finally, the task comes back to IDLE
state. If the interrupt comes during the task in READ, RUN or WRITE state, its
state changes to PREEMPTED READ, PREEMTED RUN and PREEMMTEDWRITE
state, respectively.

In order to achieve the composability for our system, we need to have a constant oper-
ating system execution time. We remove the variation in duration by halting the proces-
sor after the operating system execution, up to its worst-case duration. The worse-case
operating system duration must accommodate all time required to service the interrupt,
reset the task, run the application scheduler, run the task scheduler.

Moreover, in the OS slot task information is sent to monitor tile. CompOSe offers
slack and power management to exploit potential unused processor capacity – idle task
slots.

2.3.2 Data Structures

The key data structure elements of CompOSe are shown in Figure 2.9. At the top, we
have the Core Control Block (CCB), followed by the Application Control Block (ACB),
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Figure 2.9: Data Structure Organization

Task Control Block (TCB) and FIFO Control Block (FCB). The data structure of each
processor is dynamically allocated in the local memory of the processing unit during the
system initialization. In our platform, each processor is unaware of tasks or applications
on other processors, even tasks belonging to the same application.

As shown in Figure 2.9, the CCB holds the list of applications on the processor by
pointing to a linked list of applications. Besides, the CCB has a function pointer to
select the application scheduler for the processor in question. On the application level,
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we see that each ACB holds information about all the tasks and FIFOs that belongs
to the application and resides on the processor in question. Moreover, the ACB also
has a function pointer, thus allowing to define different task schedulers for different
applications.

The TCB consists of pointers to stack, heap start and instructions of task. Each TCB
also holds the firing rules tables for input and output FIFOs. The firing rules tables hold
information about which input FIFOs and output FIFOs a task reads and writes each
iteration. In this manner, CompOSe knows what conditions must be satisfied for the
task to run. In addition, the TCB has a pointer to a function which is called at the end
of each iteration to update the firing tables. Note that, from the CSDF graphs, we can
get these information to create firing rules tables.

As seen in Figure 2.9, the FCB contains pointers to the local buffer memory and
remote buffer memory. Each FCB also points to its producer and consumer task. If
two tasks belong to different processors, a pointer is used to select the RDMA for the
communication between these two tasks.

2.3.3 Initialization

Before executing applications and tasks, we need to initialize CompOSe on each processor
tile. Listing 2.2 presents a simple example of CompOSe initialization. First, this code
initializes a system in which application scheduler uses TDM scheduling algorithm. Next,
os add application and os add task functions are used to add applications and tasks
to the system. In os add application function, we can specify which task scheduling
algorithm is used for each applcation, e.g, round-robin task scheduling algorithm. After
creating applications and tasks, we create FIFOs and link them to producer and consumer
tasks. Then, we set the duration of task slot. Finally, we call os start function to start
CompOSe.

Listing 2.2: Initialization Pseudo-Code Example

int main ( ){

// Set a p p l i c a t i o n schedu l e
os c r eat e compose ( system id , &app scheduler tdm , . . . ) ;
. . .

//Create and add a p p l i c a t i o n s to system
o s add app l i c a t i on ( app id , &ta sk s ch edu l e r r r , . . . ) ;
. . .

//Create and add ta s k s to a p p l i c a t i o n
os add task ( task id , app id , &task funct ion , &t a s k f i r i n g r u l e , . . . ) ;
. . .

//Create FIFOs and l i n k to producer and consumer ta s k
o s a d d f i f o ( f i f o i d , app id , p roducer task id , consumer task id , . . . ) ;
. . .

// Set the durat ion o f t a s k s l o t
o s s e t t a s k s l o t t i m e ( t a s k s l o t d u r a t i o n ) ;



16 CHAPTER 2. BACKGROUND

// S ta r t execu t ing a p p l i c a t i o n s and ta s k s
o s s t a r t ( ) ;

}

2.4 Summary

In this chapter, we present an overview of the hardware and software utilized as a basis
for the contributions of this thesis. The hardware platform consists of multiple tiles
that are connected by a Æthereal NoC. The processor tile is the central element in
the system. The main responsibility of a processor tile is executing applications. Each
processor tile runs an instance of CompOSe, independently of the other processor tiles in
the system. All task communication and synchronization is using C-HEAP protocol. The
core of CompOSe is a functional loop which consists of two major parts, the Operating
System slot and the task slot. The Operating System slot is responsible for saving the
context of the previous task, to schedule a new application and along with its new task.
In the following chapter, we discuss about advantages and limitations of different task
scheduling strategies and propose a new task scheduler strategy.
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In this chapter, we address the problem regarding the location at which the scheduling
algorithm is executed. Two potential solutions are operating system(OS)-space task
scheduling and application-space task scheduling, as presented in Figure 1.3.

The structure of this chapter is as follows. We start by introducing the related work
in Section 3.1. Next, Section 3.2 discusses the advantages and limitations of both task
scheduling strategies. Based on these advantages and limitations, we propose a new task
scheduler which is a mixed of OS-space and application-space task scheduling. Section
3.3 details the implementation of our proposed task scheduler. Finally, different task
scheduling algorithms, which are currently employed in our task scheduler, are described
in Section 3.4 and continue the summary is given in Section 3.5.

3.1 Related Work

Goyal et al. [10] first proposed a hierarchical scheduling framework to support different
scheduling algorithms for different application classes in a multimedia system. In hier-
archical scheduling framework, multiple applications can run at the same time on the
system while guaranteeing independent execution of these applications. The hierarchical
scheduling framework can be presented as a tree of nodes. Each node represents an
application with its own scheduler for its internal workloads (e.g., tasks). Resource (e.g.,
processor usage) is allocated from the parent node to its children nodes, as shown in
Figure 3.1.

Over the years, there has been a growing attention to hierarchical scheduling frame-
work of real-time systems. A number of researches have used hierarchical scheduling
techniques to create flexible real-time systems. Deng and Liu [3] presented a two-level
real-time scheduling framework in scheduling real-time applications and non real-time
applications for open systems, where the schedulability of real-time applications can be
validated independently of other applications. In the open systems, during the run-
time, the user may request the start of some applications whose behavior has not been
analyzed together with current executing application. Kuo and Li [17] proposed exact
schedulability analysis techniques for such a two-level framework with the fixed priority
scheduler as global OS scheduler. Lipari and Baruah [20] presented exact schedulability
analysis techniques for two-level framework with EDF based global OS scheduler.

Most of researches in hierarchical scheduling framework focus on the application-level
scheduling or the schedulability when a new application enters the system. In this thesis,
we discuss about the design and implementation of task-level scheduling in hierarchical
scheduling framework.

17
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Figure 3.1: Hierarchical Scheduler Framework

3.2 OS-Space and Application-Space Task Scheduling

In the previous work [25], the platform employed a preemptive two level hierarchical
scheduling framework which is able to execute a mix of real-time and non real-time ap-
plications, each scheduled according to its suitable policy. In order to guarantee the
composability and predictability of the platform, the application scheduler uses TDM
scheduling algorithm. The task of application can be scheduled by any scheduling al-
gorithm. The application and task scheduler takes local decisions, and is not aligned
or synchronized with any other scheduler in the system. Thus, we do not need any
communication between schedulers on different processors.

Previous work [25] [12] implements the OS-space task scheduling strategy. The
advantage of this strategy is that it can schedule different types of applications, e.g.,
time-driven, event-driven and data-driven. In OS task scheduling, the task scheduling
decisions are made at specific time instance, OS periods, independent of events such as
task finish. A hardware timer is used to generate the interrupt at specific time instance
to invoke the scheduler. This implies that, even if a task finishes before the end of its
slot, the OS will not schedule another task in that slot. As a result, the OS task schedul-
ing might cause lots of idle CPU processing time which leads to potential performance
degradation, as presented in Figure 3.2.

On the other hand, in application-space task scheduling strategy, the task scheduler
is invoked immediately after the task finishes an iteration, as presented in Figure 3.3. It
leads to a potentially better task slots utilization. Thus, we can achieve better application
performance, finish time and throughput.

Although, application-space task scheduling strategy can give better application per-
formance, this strategy alone still cannot suffice to all applications. Compared to OS-
space task scheduling, application-space task scheduling has following limitations:



3.3. TASK SCHEDULER IMPLEMENTATION 19

Processor Slot Time

T1

Processor Slot Time

Task

Finished

 

T2

Unused Slot

Time

OS

Figure 3.2: OS-Space Task Scheduling

Processor Slot Time

T1

Processor Slot Time

Task

Finished

T2 T2

Task Context

Switching

 

OS

Figure 3.3: Application-Space Task Scheduling

• Unable to schedule time-driven applications because the application does not have
exclusive access to a timer and an interrupt.

• Unable to support all types of task scheduling, e.g., preemptive task scheduling
algorithms.

Thus, we propose a new task scheduler which allows both OS-space and application-
space task scheduling in the same system. In this manner, our new task scheduler can
service different types of applications. For example, time-driven applications can use OS
task scheduling strategy while data-driven applications can use application-space task
scheduling strategy.

3.3 Task Scheduler Implementation

In this section, we describe the implementation of our new task scheduler in details. The
structure of this chapter is as follows. We start by introducing the data structure in
Section 3.3.1. Next, the functionality of task slot is described in Section 3.3.2. Then,
Section 3.3.3 presents the functionality of OS slot.

3.3.1 Data Structure

In order to implement the new task scheduler, we first need to modify the structure
of ACB (Application Control Block). We add one more variable, namely schedul-
ing strategy, to the ACB to store which task scheduling strategy the application wants
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Figure 3.4: New ACB Data Structure

to use. If the value of this variable is 0, application uses OS-space task scheduling strat-
egy. Otherwise, application uses application-space task scheduling strategy if the value
of this variable is 1. New ACB data structure is presented in Figure 3.4. In order to
initialize the value for scheduling strategy variable, we add one more parameter to the
function os add application(...,...,int scheduling strategy, ..., ...). Thus, user can decide
which task scheduling strategy for each application during the initialization time before
executing applications together with their tasks.

In the prior work, ACB has a function pointer thus allowing to define different task
schedulers for different applications. The functionality of this function pointer is used to
call the task scheduling algorithm function to select next executable task. In this work,
we still keep this function pointer. However, we change the implementation of task
scheduling algorithm functions, e.g., round-robin task scheduling function, TDM task
scheduling function. Instead of changing the current task variable inside these functions,
new functions will send next executable task as a return value. The differences between
old and new task scheduling functions are presented in Listing 3.1. The reason why we
need to modify the structure of this function will be discussed later.

Listing 3.1: Differences between Old and New Task Scheduling Function

void o l d t a s k s c h e d u l i n g f u n c t i o n (ACB ∗ app){
app−>cu r r en t t a sk = f i n d n e x t e x e c u t ab l e t a s k ( ) ;

}

TCB ∗ new ta sk s ch edu l i n g fun c t i on (ACB ∗ app){
return f i n d n e x t e x e c u t ab l e t a s k ( ) ;

}

3.3.2 Task Slot Functionality

In this section, we describe new functionality of task slot. The new functional loop of
task slot is illustrated in Figure 3.5.

As the previous implementation, at the starting of the task slot, it checks the input
FIFOS and copies tokens from input FIFOs to local buffer. Next, the selected task is
executed. If the interrupt comes while the task is executing, the task state changes to
preempted and the context of the interrupted task is saved on its stack.
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Figure 3.5: New Task Slot Functional Flowchart



22 CHAPTER 3. COMPOSABLE TASK SCHEDULING

Otherwise, if the task finishes an iteration before the timer interrupt, it checks which
task scheduling strategy the current running application uses. If the current running
application uses the OS-space task scheduling strategy, a wait loop is used to wait for
the next timer interrupt.

Otherwise, if the application-space task scheduling strategy is used, the task scheduler
is called to select the next task to run. Next, the selected task is reset to its original state
and the task context switch is executed to restore task context from its stack. The inter-
rupt is enabled at the end of task context switch. The pseudo-code that demonstrates
the functionality of task slot is presented in Listing 3.2. The function os execute task
is called at the beginning of task slot to start application time. Note that, we present
task contxtsw function as C code in Listing 3.2 in order to understand easily. In our
platform, this function is implemented using assembly to change the content of registers.

Listing 3.2: Task Slot Functionality Pseudo-code

void o s ex e cu t e t a sk (TCB ∗ task ){
//Not execu te the i d l e task , on ly i n f i n i t e loop
i f ( task−>id != 0)
{

// read inpu t tokens
. . .
// execu te t a s k
. . .
// wr i te output tokens
. . .

}

curr app = task−>parent ; // ge t curren t a p p l i c a t i o n

i f ( curr app−>s ch edu l i n g s t r a t e gy == 1)
{

// App l i ca t i on uses app l i c a t i on−space t a s k s ch edu l i n g
. . .
// schedu l e next t a s k
do {

s e l e c t e d t a s k = curr app−>t a sk s ch edu l e r ( curr app ) ;
} while ( s e l e c t ed t a sk−>id == 0 ) ; //do not execu te i d l e t a s k

d i s a b l e i n t e r r u p t s ( ) ; // d i s a b l e i n t e r r u p t
o s r e s e t t a s k ( s e l e c t e d t a s k ) ;
// ta s k con tex t sw i tch
curr app−>cu r r en t t a sk = s e l e c t e d t a s k ;
task contxtsw ( ) ;

} else {
// App l i ca t i on uses os−space t a s k s ch edu l i n g

// i n f i n i t e wh i l e loop to wai t f o r next i n t e r r u p t
while ( 1 ) ;

}
}

void task contxtsw ( )
{

// load contex t o f new ta s k
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. . .
e n ab l e i n t e r r u p t s ( ) ; // enab l e i n t e r r u p t
o s ex e cu t e t a sk ( curr app−>cu r r en t t a sk ) ;

}

As seen in Listing 3.2, if the application-space task scheduling strategy is used, we
need to disable interrupts before doing task context switch. In the task context switch,
we need to update the variable current task of ACB data structure. Thus, if we use
the old task scheduling function where the variable current task is modified inside the
function, we need to disable interrupt before running task scheduler. In order to keep the
minimum time when interrupt is disabled, we need to use new task scheduling function.

Note that, the task context switch happening at task slot takes 147 cycles to swap
out the current task and load the selected task to the system. It leads to the delay on
the OS unit because the timer interrupt can come at the time when task context switch
is happening at task slot. In order to guarantee the composability of our platform, we
added this time to the worst case execution time of the OS slot. And the processor after
the operating system execution is halt up to its worst-case duration.

Similar to the prior work, if the timer interrupt comes while the task is executing,
the task state changes to preempted and the context of the preempted task is saved on
its stack. Otherwise, if the task returns before the timer interrupt, its state changes to
idle (iteration finished). The details of task state transition is illustrated in Figure 3.6.
The initial state of a task is IDLE. If the task is selected to run, its state changes to
READ. During this time, the task reads the tokens from input FIFOs. Next, the task
is executed and its state changes to RUN. After the task finishes an iteration, its state
changes to WRITE where the task write tokes to output FIFOs. In the new task state
transition, we introduce a new state, namely FINISH. This state is only used when
application employs application-space task scheduling algorithm. In this state, task
finishes its iteration execution and calls task scheduler to select next executable task.
Finally, the task comes back to IDLE state. If the interrupt comes during the task in
READ, RUN or WRITE state, its state changes to PREEMPTED READ, PREEMTED
RUN and PREEMMTED WRITE state, respectively.

3.3.3 OS Slot Functionality

The new functional loop of operating system unit is illustrated in Figure 3.7. Similar to
previous implementation, an interrupt from the system timer marks the start of the new

Figure 3.6: New Task State Transition
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cycle. In interrupt handler(), the context of the interrupted task is saved on its stack.
Next, the application-scheduler selects an application using the defined scheduler in CCB.
The current app pointer in CCB is updated to point out the scheduled application.

In the next step, the task scheduling strategy of the current running application is
checked. If the current running application uses the OS-space task scheduling, the OS
task scheduler is run to select the next task. Otherwise, if the application-space task
scheduling strategy is used, the OS task scheduler selects the current preempted task
of current running application. Then, the task context switch happens to restore the
context of selected task from its stack. In our platform, function interrup handler is
implemented using Assembly. In order to make its functionality understand easily, we
present this function in C pseudo-code, as presented in Listing 3.3.

Listing 3.3: OS Slot Functionality Pseudo-code

void i n t e r r u p t h and l e r ( ){
//Save s t a t e o f curren t running ta s k to i t s s t a c k
. . .

// Ca l l a p p l i c a t i o n s chedu l e r
//Var i ab l e curren t app i s modi f i ed at the end o f t h i s f unc t i on
system−>app l i c a t i o n s c h e d u l e r ( system ) ;

curr app = system−>current app ;

//Check s ch edu l i n g s t r a t e g y
i f ( curr app−>s ch edu l i n g s t r a t e gy == 0)
{

//OS−space t a s k s ch edu l i n g s t r a t e g y i s used
// Ca l l t a s k s ch edu l e r to s e l e c t next t a s k
curr app−>cu r r en t t a sk = curr app−>t a sk s ch edu l e r ( curr app ) ;

} else {
//Appl i cat ion−space t a s k s ch edu l i n g s t r a t e g y i s used
// S e l e c t curren t preempted ta s k
curr app−>cu r r en t t a sk = curr app−>cu r r en t t a sk ;

}

task contxtsw ( ) ; // ta s k con tex t sw i tch
}

3.4 Task Scheduler Algorithms

In our platform, an application can potentially use any type of scheduling techniques
to schedule its task. Currently, there are three built-in scheduling algorithms for task
scheduler: TDM, round-robin and static-order.

In TDM task scheduling algorithm, there is a list which stores the order of task. The
corresponding task is selected to run in each time slot. If the corresponding task cannot
run in the given time slot, the time slot is left to be empty.

Round-robin scheduling algorithm is a fair scheduling algorithm which schedules the
tasks according to the task order which is stored in the system. The different between
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Figure 3.7: New OS Slot Functional Flowchart



26 CHAPTER 3. COMPOSABLE TASK SCHEDULING

the round-robin and TDM scheduling algorithm is that if the task cannot execute, round-
robin scheduling will try to find other executable task.

Static-order scheduling algorithm is an algorithm in which we can specify the order
of executable task. The main different of this scheduling compared to TDM scheduling
algorithm is that tasks cannot switch to others until they finish an iteration. Compared
to round-robin scheduling algorithm, the task order in static-order scheduling algorithm
is fixed and this algorithm reduces the overhead for task scheduler to schedule the next
task because the task order is known.

Round-robin scheduling algorithm and Static-order scheduling algorithm can be used
in both OS-space and application-space task scheduling strategy. TDM scheduling al-
gorithm can only be used in OS-space task scheduling because it needs fixed-size time
slots. Thus, without timer interrupt, the application-space task scheduling strategy
cannot schedule tasks.

3.5 Summary

In this chapter, we first discuss related work. Then, the advantages and limitations of
two task scheduling strategies are presented. Next, the implementation of our new task
scheduler is described in details. Based on these advantages and limitations, we propose
a new task scheduler which is a mixed of OS-space and application-space task scheduling.
By combining two scheduling strategies, our task scheduler can service different types
of applications. For example, time-driven applications can use OS task scheduling while
data-driven applications can use application-space task scheduling. Finally, three dif-
ferent scheduling algorithms for task scheduler were discussed: TDM, round-robin and
static-order scheduling algorithms. TDM scheduling algorithm can only be used in OS
task scheduling, while round-robin and static-order scheduling algorithm can be used in
both OS-space and application-space task scheduling.

Continuously, the quantitative investigation of our task scheduler is presented in
Chapter 5. Before that, in Chapter 4, we introduce the application benchmark which is
used to design experiments.
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Applications 4
In this work, we focus on data-driven, e.g. streaming, applications. Thus, we first
examine a set of existing streaming benchmark suites consisting of streaming applications
and evaluate the difficulties in order to port existing benchmarks on our platform. Next,
we implement a embedded benchmark suite consisting of two streaming applications
and a synthetic application. Two streaming applications are H.264 decoder and JPEG
decoder. Finally, we map these applications on our platform which consists of two
processor tiles.

The structure of this chapter is as follows. Next section discusses the compatibility
of existing embedded benchmark suites with our platform. Then the implementation
of our embedded benchmark applications is presented in the section 4.2. Finally, the
summary is given in section 4.3.

4.1 Portability of Existing Benchmarks

Embedded system often has tight constraint on resources, e.g., memory. In addition
to, the performance is not the most important factor in the embedded domain. Other
factors such as power, parallelism ,i.e. also have to be considered. Thus, the general-
purpose computer benchmark such as SPEC [26], Drystone, Whetstone cannot be used
in embedded benchmark domain. In this section, we examine a set of existing embedded
benchmark suites for the streaming embedded system, and discuss their compatibility
with our platform.

EDN Embedded Microprocessor Benchmark Consortium (EEMBC) [5] The
EEMBC consortium made some efforts to characterize embedded domain. EEMBC
benchmarks produced a set of suite targeting in different embedded market such as au-
tomotive, consumer, networking, office automation, telecoms, and multi-core. The limi-
tation of the EEMBC benchmarks is that it requires high cost of joining the consortium
in order to use these benchmarks.

The EEMBC multi-core benchmark applications are parallelized using functions
which are similar to pthread functions. EEMBC benchmark applications are paral-
lelized using data-parallel approach to make them easily port on different platforms.
The EEMBC multi-core benchmark applications are paralleled using the pthread library,
which has the API task creation functions similar to our API functions. However, it also
uses some other pthread library functions, e.g., mutex, condition, which are currently
unsupported in our platform.

In this work, we made initial porting efforts. The result shows that we can remove
these pthread functions, e.g., mutex, condition, by creating FIFOs to synchronize be-
tween tasks.

27
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MediaBench [19] The purpose of MediaBench is to measure the performance of mul-
timedia and communications systems. MediaBench contains 8 individual benchmark
suites. The image and video media benchmark suite is composed of six image/video
compression standards: JPEG, JPEG-2000, H.263, H.264, MPEG-2, and MPEG-4.
The benchmark applications are: cjpeg, djpeg, h263dec, h263enc, h264dec, h264enc,
jpg2000dec, jpg2000enc, mpeg2dec, mpeg2enc, mpeg4dec, and mpeg4enc. MediaBench
benchmark applications are not parallelized, thus, MediaBench is not suitable for our
multi-core platform where each processor runs an independent instance of operating
system, without any knowledge of other processors.

Embedded System Synthesis Benchmarks Suite (E3S) [4] E3S follows the
organization of the EEMBC benchmarks. There are five application suites: automo-
tive/industrial, consumer, networking, office automation, and telecommunications. This
benchmark was designed for use in automated system-level allocation, assignment, and
scheduling research. Based on the description of processors which is provided by the
vendors, the benchmark will find the scheduling and resource allocation. Then, it will
estimate execution times and power consumption. Because E3S benchmark does not run
on the real platform, the result might not be accurate.

MiBench [11] MiBench has many similarities to the EEMBC benchmark suite. How-
ever, MiBench is composed of freely available source code. MiBench consists of six
categories including: Automotive and Industrial, Control, Network, Security, Consumer
Devices, Office Automation, and Telecommunications. MiBench Benchmarks provide a
small and large data set. The small data set represents a light-weight, useful embedded
application, while the large data set provides a more stressful, real-world application.
MiBench Benchmarks evaluate the instruction level parallelism of the system by mea-
suring the instruction per cycle (IPC). Similarly to MediaBench, MiBench applications
are not parallelized. Thus, MiBench is not suitable for our multi-core platform

ALPBench [18] ALPBench is a new multimedia benchmark suite. ALPBench consists
of parallelized complex media applications gathered from various sources, and modified
to expose thread-level and data-level parallelism using POSIX threads and Intel SSE2
instructions, respectively. The applications are: Speech recognition, Face recognition,
Ray Tracer, MPEG-2 encoder and MPEG-2 decoder. With the thread-level parallelism,
ALPBench applications are useful to exploit the performance on the multi-core system.
However, our platform does not support the data-level parallelism instructions (Intel
SSE2 instruction). Therefore, it is difficult to port the ALPBench to run on our platform.

PARSEC [2] PARSEC is a benchmark suite for chip multiprocessors (CMPs) com-
posed of multithreaded programs. The current version of the suite consists of 9 appli-
cations and 3 kernels which were chosen from a wide range of application domains such
as computer vision, video encoding, financial analytics, animation physics and media
processing. Each application has been parallelized by using data parallel or pipeline
model. The PARSEC benchmark applications are paralleled using the pthread library
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Benchmark Parallelization Model Difficulties

EEMBC data-parallel mutex and condition pthread functions

MediaBench No Non multi-threads application

E3S No Non multi-threads application

MiBench No Non multi-threads application

ALPBench data-parallel/pipeline Need data-level parallelism instructions
(Intel SSE2 instruction) support

PARSEC data-parallel/pipeline Need large memory for applications
and libraries

Table 4.1: Difficulties to Port the Existing Benchmarks on our platform

and OpenMP library, which has the API task creation functions similar to our API
functions. However, the PARSEC benchmark applications were implemented based on
external libraries, e.g., GLib, GNU Scientific Library (GSL) ,i.e., it requires lots of
memory to port the benchmark applications together with these libraries. Because the
instruction memory and data memory on each processing unit is only at 128KB, it is
impossible to port the PARSEC benchmark applications on our platform.

4.2 Embedded Application Benchmark Suite Implementa-

tion

In the previous section, existing embedded benchmarks were investigated. From the
summary of existing benchmarks, as shown in Table 4.1, we can see that there are
some difficulties to port the current existing embedded benchmarks on our platform. In
this section, we describe about our embedded application benchmark suite. This work
focuses on data-driven, e.g. streaming, applications. Thus, the proposed embedded
application benchmark suite consisting of two streaming applications and a synthetic
application. Two streaming applications are H.264 decoder and JPEG decoder. We
map these applications on our platform which consists of two processor tiles. In order
to balance workload between two processors, we first execute these application on one
processor and measure the execution time of each task iteration. Then we calculate the
workload percentage of each task by dividing the total task execution time by the total
application execution time. Application execution time is defined as the sum of all its
tasks’ execution time. The details on implementation and mapping these applications
on our platform are presented as follows.

4.2.1 H.264 Decoder Application

H.264/AVC [27] is a standard for video compression/decompression. H.264/AVC codec
standard is developed by the ITU-T Video Coding Experts Group (VCEG) together with
the ISO/IEC Moving Picture Experts Group (MPEG). The main goal of H.264/AVC
standardization is to enhance compression video coding performance and to provide
efficient transmission of video through low bandwidth channels such as xDSL or UTMS.
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Figure 4.1: Mapping of H.264 Decoder

FIFO Data Type Token Size (bytes)

CH 1 CH 1 Struct 5053

CH 2 CH 2 Struct 1644

CH 3 dbParams 40

CH 4 intraParams 88

CH 5 MacroBlock 1536

CH 6 MacroBlock 1536

CH 7 MacroBlock 1536

Table 4.2: H.264 Communication FIFOs

There are several existing H.264 decoder implementations such as ffmpeg, x264, etc.
We used the sequential H.264 decoder which was designed by Leiden Embedded Research
Center [14] to be easily parallelized using Kahn Process Network [15]. This H.264 decoder
implementation only supports intra prediction. Thus, the video input must only consists
of I-Macroblocks.

We divided H.264 decoder into six tasks, as presented in Figure 4.1. The first task
is responsible for retrieving frame header information. The cavlc and parser task de-
code various syntax elements from the NAL unit and perform context adaptive variable
length decoding. The idct task applies inverse quantization and inverse transform on
the residual data. The intra prediction task performs spatial prediction and produces
reconstructed picture samples. The deblocking filter task removes blocking artifacts from
the reconstructed picture. Finally, the printMB task checks the correctness of output by
comparing with the correct result which was stored in memory or using CRC algorithm.

As presented in Figure 4.1, the H.264 decoder consists of seven communication FIFOs.
The size of token on each communication FIFO is shown in Table 4.2.
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Task Average Execution Time (cycltes) Iterations Workload Percentage

parseSliceHeader 154470 10 0.2%

cavlc + parser 228300 990 32%

idct 173140 990 24%

intra prediction 108480 990 15%

deblocking filter 189470 990 27%

printMB 10250 990 1.8%

Table 4.3: Workload Percentage of H.264 Decoder Tasks

FIFO Data Type Token Size (bytes)

CH 01 FBlock 256

CH 02 PBlock 64

CH 03 IMG Header 128

Table 4.4: JPEG Communication FIFOs

In order to balance the workload on two processor, we first measure the execution
time of each task iteration on one processor. Based on the execution time information,
we derive the workload percentage of each task, as shown in Table 4.3. From this table,
we see that the total workload percentage of the first three tasks is 56.2%. Thus, we
decide to map the first three tasks on one processor and the rest on the other processor.

4.2.2 JPEG Decoder Application

JPEG standard is defined by the Joint Photographic Experts Group. This standard
defines the encoding and decoding of continues-tone still image. JPEG typically uses
lossy compression method. JPEG can achieve 10:1 compression with little perceptible
loss in image quality. We used the JPEG decoder implementation, which is originally
written by Pierre Guerrier, as a starting point. Firstly, we divided the JPEG decoder
into three tasks, as shown in Figure 4.3. The variable length decoding (VLD) task parses
the input bit stream and performs the Huffman decoding. The inverse discrete cosine
transformation (IDCT) task performs zigzag scan and dequantization operation. The
color conversion (CC) task is used to convert from the YCbCr color space to the RGB
color space.

As presented in Figure 4.3, JPEG decoder consists of three communication FIFOs.
The size of token on each communication FIFO is shown in Table 4.4. At the first
iteration, the VLD task parses the input image to retrieve the image header information
and send it to CC task through channel CH 3. Based on the received image header
information, CC task changes the read token rate of channel CH 2 to N, where N is the
number of pixel-space values block (PBlock) for one MCU. After that, VLD task writes
one block of frequency-space values (FBlock) to channel CH 1 task per iteration. At
each iteration, IDCT task reads one FBlock from channel CH 1 and writes one PBlock
to channel CH 2. Finally, CC task reads N PBlocks from channel CH 3 per iteration.
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Figure 4.2: Execution Time of Tasks in H.264 Decoder
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Figure 4.3: Mapping of JPEG Decoder

Task Average Execution Time (cycltes) Iterations Workload Percentage

VLD 13501 480 35%

IDCT 16111 480 41%

CC 28734 160 24%

Table 4.5: Workload Percentage of JPEG Decoder Tasks

Figure 4.4 shows the execution time of each tasks. The workload percentage of each
task is shown in Table 4.5. Similar to H.264 decoder mapping, we map VLD task on the
first processor while other is on the second processors in order to balance the computation
and minimize the communication between two processors.

4.2.3 Synthetic Application

Synthetic applications are typically used to emulate the behavior of different applications.
In our implementation, synthetic application consists of five tasks, as shown in Figure 4.5.
In latter experiments, we want to investigate the composability of our interconnect and
memory. Thus, we want all task communication happen between two different processors.
In this manner, producer and consumer task of all communication FIFOs need to be at
different processors.

The implementation of a synthetic task is fairly simple. Each task reads one token
from the input channel, consume a certain number of cycles, then writes one token to
output channel per iteration. The behavior of different kinds of FIFOs is simulated by
setting different token size and FIFO size, and changing the token rate of the FIFOs.
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Figure 4.4: Execution Time of Tasks in JPEG Decoder

Figure 4.5: Synthetic Application Graph

4.3 Summary

In this chapter, we discussed potential applications which are suitable to investigate com-
posability and application performance of our proposed task scheduler. For this, we first
examine existing embedded streaming benchmarks. E3S benchmark applications does
not run on the real platform while MiBench and MediaBench benchmark applications
are not parallelized, thus, they are not suitable for our multi-core platform. ALPBench
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benchmark applications need to use Intel SSE2 instruction which are currently unsup-
ported in our platform. PARSEC benchmark applications use external libraries, thus,
it requires large memory to port these libraries on our platform. EEMBC multi-core
benchmark applications are parallelized using pthread library. However, the current
implementation of our platform does not support some pthread library functions, e.g.,
mutex init, cond signal. Thus, we need to make some significant changes on EEMBC
applications or our platform in order to port these application on our platform.

Based on the difficulties to port existing benchmark applications on our platform, we
developed an application embedded benchmark suite, which consists of two streaming ap-
plications and one synthetic application. Two streaming applications are H.264 decoder
and JPEG decoder. Based on these applications, we designed experiments to investigate
the composability and the effect on application performance of our task scheduler. The
details on these experiments and results are presented in Chapter 5.
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Experiments and Results 5
We performed the experiments on an MPSoC with two processor tiles, a monitor tile,
all connected by a Æthereal NoC. The detail processor tile configuration is presented in
Table 5.1.

In this work, we focus on the composability of our task scheduler and on the appli-
cation performance when using different task scheduling strategies and algorithms. For
all experiments, we ran a workload consisting of a media application and the synthetic
application. Media application can be H.264 decoder or JPEG decoder application. The
application TDM order is presented in Figure 5.1. The mappings of each application on
two processors are presented in Figure 4.1, Figure 4.3 and Figure 4.5.

The structure of this chapter is as follows. We start by investigating the composability
of our task scheduler. The result of this experiment is presented in Section 5.1. Next,
Section 5.2 compares the performance of media applications when using application-
space task scheduling and OS-space task scheduling. Finally, the summary is given in
section 5.3.

5.1 Composability Experiments

Two experiments are used to investigate the composability of our platform. In the first
experiment, we use different task scheduling strategies for synthetic application. Then,
we verify whether the start time and response time of a media application remains
constant when synthetic application uses different task scheduling strategies. If the start
time and response time of two media applications remain constant, it means that our
task scheduler is composable. Note that, start/finish time is the absolute time when a
task iteration starts/ends while response time is difference between finish time and start
time in each task iteration.

In order to have a complete investigation on the composability of our platform, we
do the second experiments to investigate composability for interconnect and memory.
For this experiment, we change to token size of the inter-processor FIFO of synthetic

Parameter Configuration

D-MEM Size 128KB

I-MEM Size 128KB

CMEMIN Size 32KB

CMEMOUT Size 32KB

Table 5.1: Processor Tile Configuration

37
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Figure 5.1: Application TDM Order Experiment
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Figure 5.2: Differences in H.264 Start Time - Scheduler Composability Experiment

application. Similarly, we verify whether the start time and response time of a media
application remains constant when synthetic application uses different FIFO token size.

For all experiment, we use a task slot duration of 20000. Media applications, e.g,
H.264 video decoder and JPEG decoder, use round-robin scheduling algorithm with the
application-space task scheduling strategy. The details on these experiments and result
are as follows.

5.1.1 Task Scheduler Composability

In the first experiment, we investigate the composability of our task scheduler. This
experiment is performed through two steps. We start by running synthetic applica-
tion using OS-space task scheduling strategy. Then, we run synthetic application using
application-space task scheduling strategy.

Figure 5.2 and Figure 5.3 presented the start and response time differences for H.264
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Figure 5.3: Differences in H.264 Response Time - Scheduler Composability Experiment

video decoder application’s last task between two cases: synthetic application using OS-
space task scheduling strategy and synthetic application using application-space task
scheduling strategy. Similarly, the start and response time differences for JPEG decoder
application are presented in Figure 5.4 and Figure 5.5. From these figures, we see that
the when we change the task scheduling strategy of synthetic application, the behavior
of synthetic application changes, e.g., start time, response time. However, differences
in start time and response time of our media applications stay at zero, showing no
interference. Thus, we can conclude that our task scheduler is composable.

5.1.2 Interconnect, Memory Composability

In the second experiment, we investigate the composability of our interconnect and
memory by modyfing the token size of the inter-processor FIFO of synthetic application.
We also perform two runs in this experiments. First, we run synthetic application using
a token size of 4B. Then, in the second run, synthetic application uses a token size of
16K. Finally, we verify whether the start time and response time of a media application
remains constant when synthetic application uses different FIFO token size.

Figure 5.6 and Figure 5.7 presented the start and response time differences for H.264
video decoder application’s last task between two cases: token size of 4B and token size
of 16K. Similarly, the start and response time differences for JPEG decoder application
is presented in Figure 5.8 and Figure 5.9. From these figures, we see that the when
we change the token size of inter-processor FIFO of synthetic application, the behavior
of synthetic application changes, e.g., start time, response time. However, differences
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Figure 5.4: Differences in JPEG Start Time - Scheduler Composability Experiment
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Figure 5.6: Differences in H.264 Start Time - Memory Composability Experiment
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Figure 5.7: Differences in H.264 Response Time - Memory Composability Experiment
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Figure 5.8: Differences in JPEG Start Time - Memory Composability Experiment
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Figure 5.9: Differences in JPEG Response Time - Memory Composability Experiment

in start time and response time of our media applications stay at zero, showing no
interference. Thus, we can conclude that our interconnect and memory is composable.
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Figure 5.10: H.264 Scheduler Experiment

5.2 Application Performance Experiments

In this section, we analyze the effect of task scheduling on streaming application per-
formance in two experiments. In the first experiment, we investigate the application
performance when using different task scheduling algorithms and strategies. In the sec-
ond experiment, we study the effect of variations of task slot duration on each task
scheduling algorithms and strategies.

5.2.1 Application Performance over Multiple Iterations

In this experiment, we look into the effect of using OS-space and application-space
task scheduling strategies on streaming application by observing the application finish
time for some iterations. We measure the last task finish time in each iterations when
using different scheduling model. We used the task slot duration of 200000 for H.264
application and the task slot duration of 20000 is used for JPEG application. The result
is presented in Figure 5.10 and Figure 5.11 respectively.

Figure 5.10 and Figure 5.11 show that the application-space task scheduling strategy
reduces the finish time of application for all task scheduling algorithms, thus, it gives
better performance than OS-space task scheduling strategy.

Figure 5.12 and Figure 5.13 present the improvement in per scheduling policy, i.e.,
for round-robin and static-order task scheduling algorithms. The result indicates that
application-space task scheduling achieves 17% to 40% better performance than using
OS-space task scheduling for the JPEG decoder and H.264 decoder, respectively. These
graphs show that static-order scheduling algorithm gives nearly same result as round-
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Figure 5.11: JPEG Scheduler Experiment

robin scheduling algorithm. As seen in Figure 4.1 and Figure 4.3, the order of executable
tasks in our media applications is always fixed. Thus, even we use round-robin scheduling
algorithm, it still schedules tasks with order as as static-order scheduling algorithm.

Moreover, we observe that the application performance improves much more in later
iterations. Thus, it means that by using the application-space task scheduling, the
application performance can improve, especially when application needs to run for a
long period of time. We have this improvement because application-space task scheduling
strategy reduces not only internal fragmentation of task slot but also overhead which is
caused by OS slots and task slots of other applications.

5.2.2 Task Slot Duration Variations

In this experiment, we study the effect of variations of task slot duration on each task
scheduling algorithms and strategies. We run each streaming application with different
task slot duration and measure the finish time of last task at a given iteration. H.264
application was run with different task slot duration starting from 20000 to 200000. As
seen in Figure 4.2 and Figure 4.4, most of H.264 decoder tasks will finish inside the task
slot duration of 200000. Thus, if the task slot duration is larger than 200000, lots of
time will be wasted due to internal fragmentation. Similarly, JPEG application was run
with different task slot duration starting from 20000 to 50000. The result is presented
in Figure 5.14 and Figure 5.15 respectively.

Figure 5.14 and Figure 5.15 show that by choosing the appropriate task slot duration,
we can improve the performance of applications. Furthermore, the experiments also show
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Figure 5.12: H.264 Application Performance Improvement
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Figure 5.13: JPEG Application Performance Improvement
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Figure 5.14: H.264 Task Slot Duration Experiment
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Figure 5.15: JPEG Task Slot Duration Experiment
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the different behavior of each task scheduling strategies. For OS-space task scheduling,
the performance improves as long as the tasks iterations do not fully fit inside a task slot.
After a task slot duration that accommodate entire task iterations, if we increase task
slot duration more, the performance reduces because of internal fragmentation. This
is not the case of application-space task scheduling where the internal fragmentation is
eliminated. Thus, application-space task scheduling increases application performance
when using larger task slot duration. Thus, using OS-space task scheduling is more
difficult to predict which task slot duration gives best performance than application-space
task scheduling, especially when application consists of tasks having a large variation in
execution time between each iterations, e.g, H.264 decoder application as presented in
Figure 4.2.

5.3 Summary

In this chapter, we discuss about experiments and result. Our experiments indicate that
our task scheduler and our platform are composable. They also indicate that application-
space task scheduling strategy achieves better application performance than OS-space
task scheduling strategy, as expected. Moreover, applications using application-space
task scheduling experience more improvement on application performance when they
execute more iterations. Finally, these experiments demonstrate the effect of task slot
duration on performance of application when using with different task scheduling algo-
rithms and strategies. For OS-space task scheduling, the performance improves as long
as the tasks iterations do not fully fit inside a task slot. After a task slot duration that ac-
commodate entire task iterations, if we increase task slot duration more, the performance
reduces because of internal fragmentation. This is not the case of application-space task
scheduling where the internal fragmentation is eliminated. Thus, application-space task
scheduling increases application performance when using larger task slot duration.
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Conclusions and Future Work 6
This chapter concludes the thesis and presents a view on future work. The structure of
this chapter is as follows. The conclusion is given in Section 6.1, while future work is
given in Section 6.2.

6.1 Conclusions

In this thesis, we build upon the existing platform [25], [12] and we further investi-
gate task scheduling. Prior work employs a preemptive two level hierarchical scheduling
framework which is able to execute a mix of real-time and non real-time applications,
each scheduled according to its suitable policy. The Operating System (OS) schedules
applications and task at fixed duration task slots. First, the OS determines which ap-
plication owns the next slot following a strict, preemptive Time Division Multiplexing
(TDM) policy, and then it picks and schedules a task of that application. As scheduling
decisions are taken exclusively at slots borders, when a task finishes before its slot de-
pletes, the time left is wasted. This may result in low processor utilization for streaming
applications for which the execution of a task may start after its predecessor tasks have
finished.

In this work we propose a new task scheduling strategy, namely application-space
task scheduling that eliminates wasted slot time. We leave the fixed duration slots and
the application TDM scheduler unaltered, to preserve composability, but the applica-
tion invokes the task scheduler immediately after each task finish, inside its slot. As
the application-space task scheduling strategy alone may not support all types of task
scheduling, e.g., preemptive, we propose to combine OS-space and application-space
scheduling on the same processor.

To experimentally investigate the composability and performance of our scheme we
survey existing benchmarks for the embedded domain, and build a workload consist-
ing of two meda applications and a synthetic application. Two media applications are
H.264 video decoder and JPEG image decoder. We executed these applications on an
MPSoC with two processor tiles, a monitor tile, all connected by a Æthereal NoC. Our
experiments indicate that mixing application-space and OS-space task schedulers is com-
posable. The application-space task scheduling achieve 40% and 17% better performance
than using OS-space task scheduling for H.264 decoder and JPEG decoder application re-
spectively. Furthermore, applications using application-space task scheduling get more
improvement on application performance when they execute more iterations. Finally,
these experiments demonstrate the effect of task slot duration on performance of appli-
cation when using with different task scheduling algorithms and strategies. For OS-space
task scheduling, the performance improves as long as the tasks iterations do not fully fit
inside a task slot. After a task slot duration that accommodate entire task iterations, if
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Figure 6.1: Hierarchical Slot

we increase task slot duration more, the performance reduces because of internal frag-
mentation. This is not the case of application-space task scheduling where the internal
fragmentation is eliminated. Thus, application-space task scheduling increases applica-
tion performance when using larger task slot duration.

6.2 Future Work

In this section, a number of improvements and useful features are presented as the
possible future research areas.

6.2.1 Embedded Application Benchmark Suite

It is important to have a strong benchmark suite that exhibits typical embedded system
application behavior. The current embedded application benchmark suite only contains
of three applications. In the future, we can extend our benchmark applications by writing
a tool to port all EEMBC multi-core applications on our platform. EEMBC multi-
core benchmark applications use some pthread library functions which are currently not
supported on our platform, e.g, mutex, cond. In other to solve this problem, there
are two possible solutions: implement these functions in our platform or remove these
functions by rewriting the applications.

6.2.2 Hierarchical Slot

Currently, task slot of all applications running on the platform has to be at the same
duration. As presented in Figure 5.14 and Figure 5.15, applications might behave better
with different task slot duration. An idea to show this problem is to create a hierarchical
slot in our platform. The system time will be divided into major time slot. In each
major time slot, an application is selected to run. The major time slot is then divided
into minor time slot. And the application will select a task or some tasks to run in minor
time slot. The duration of minor time slot can be different for each application. The
structure of hierarchical slot is presented in Figure 6.1.
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