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ABSTRACT

The Netherlands is characterised by mostly low lying, flat, and engineered
agricultural lands, which are sensitive to flooding. To protect against floods,
a correct network characterisation is of the utmost importance. A Dutch wa-
ter resources management company, Hoogheemraadschap De Stichtse Rijn-
landen (HDSR), wishes to have a highly automated method to characterise
the water course network. In this thesis, I investigate the possibilities of
automatically identifying water courses in flat and engineered landscapes,
using the raw points of the Algemeen Hoogtebestand Nederland 3 (AHN3)
Light Detection and Ranging (LiDAR) dataset.

I found that there are many methods described in literature which iden-
tify channel-like features, and some which identify water courses in engi-
neered landscapes, but none of these are suitable for this application. Thus,
I designed a new methodology which is based on two concepts; (1) concave
hulls, and (2) the Medial Axis Transform (MAT). The concave hull approach
makes use of the presence of water in the water courses, while the MAT uses
the concave profiles of the water courses to identify them. A workflow was
implemented which uses the raw AHN3 LiDAR point cloud to identify for
every water course the polygons of the water surface, and the geographi-
cal position of the water surface’s center lines. The implemented prototype
was used for four different areas to test its applicability to different environ-
ments; a clay, peat, urban, and sand area. The water course characteristics in
terms of water surface width and surface concavity, differ between these ar-
eas. The resulting datasets were validated to obtain mapping and positional
accuracies.

The experiments performed in this thesis show the potential of the de-
signed methodology. The concave hull method is very robust to errors in
the identification; there are relatively few errors of commission. However,
the method does not perform well for high vegetation coverage or low wa-
ter surface width. It is particularly suited for use in areas where relative
water levels are high, water courses are wide, and vegetation coverage is
low. The MAT is able to operate well when water levels are low, or even
when water courses are dry, and it is relatively insensitive to vegetation cov-
erage. However, it does not perform well for water courses which show
little surface curvature, and is prone to errors of commission caused by lo-
cal non-watercourse convexities and concavities. The combined prototype
provides a strong and promising approach for the automatic identification
of water courses in flat and engineered landscapes from the raw AHN3 point
cloud. When the methods are combined, they manage to identify 98% of all
water courses for the clay area, 97% for the peat area, 95% for the urban area,
and 76% for the sand area. Clearly, the identification rates profit from the
combination of methods. However, the relatively high error of commission
of the MAT also radiates into the combined method. The error of commis-
sion is then 8% for the clay and peat area, 47% for the urban area, and
17% for the sand area. A number of possible improvements are identified
which could elevate the identification rate for the sand area, but specifically
lower the presented commission rates. Although the methods currently re-
quire a small amount of calibration when applied to new areas, they can in
principle be fully automated.
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1 INTRODUCT ION

The Netherlands is characterised by mostly low lying, flat, and engineered
agricultural lands, of which approximately 55% is sensitive to flooding [Parry
et al., 2007]. To protect against floods, and to maintain an optimal water bal-
ance, a good drainage system is thus of the utmost importance. Artificial
drainage networks in agrarian landscapes consist of connected linear fea-
tures such as channels, culverts, and reshaped gullies [Bailly et al., 2011].
Together these linear features (hereafter referred to as ‘water courses’) form
a network of structures (Figure 1.1 and Figure 1.2) which transit water from
the fields into larger canals [Bouldin et al., 2004]. An up-to-date and detailed
recognition of the network of water courses is crucial for landscape man-
agement issues such as water resources management [Cavalli et al., 2013].
The storage capacity within the network plays an important role in design-
ing drainage channels and pumping stations [Malano and Hofwegen, 1999],
and the assessment of network storage capacity is a crucial tool in flood
management as it can identify areas which are potentially vulnerable to
floods [Cazorzi et al., 2013]. A correct network characterisation containing
large-scale and up-to-date positioning and geometry of the water courses
is beneficial for the programming of measures, which can guarantee safety
from flooding [Cazorzi et al., 2013].

In the Netherlands there are 24 water boards, ’waterschappen’ in Dutch,
which each are responsible for the water resources management in their
designated areas. One of these water boards, the Hoogheemraadschap De
Stichtse Rijnlanden (HDSR), uses the SOBEK software suite by Deltares for
hydrologic modelling in their working area. A correct and up-to-date char-
acterisation of the water course network in terms of position and dimen-
sions, is beneficial for the correctness of the model output. Current meth-
ods employed by the HDSR to characterise the drainage network are based
on Algemeen Hoogtebestand Nederland (AHN) Light Detection and Rang-
ing (LiDAR) measurements and stereo-imaging. The AHN dataset is updated
every 6 years, while the stereo images are updated yearly. The methods em-
ployed by the HDSR are labour-intensive, and subjective1. The HDSR wishes
to have a highly automated method to characterise the water course net-
work, allowing faster and less subjective updates in the future. A LiDAR

dataset, the Algemeen Hoogtebestand Nederland 3 (AHN3)2, is available
for the Netherlands which can be used to develop the new technique. In
this thesis, I investigate the possibilities of automatically identifying water
courses in flat and engineered landscapes, using the AHN3 dataset.

1 Information obtained through personal communication with Roger de Crook, on January 26
th

2016.
2 AHN: www.AHN.nl.

1

www.AHN.nl
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storage capacity

center line

water edge

bank edge

slope of banks:
1/2 – 1/10, 1/0

Figure 1.1: An exemplary cross section of a drainage channel. The slopes of the
channel banks are typically between 1/2 - 1/10, but can be vertical in
some cases, and the slopes of the opposite banks are not always equal
(image courtesy of HDSR).

Figure 1.2: Together, water courses form an artificial drainage network (dataset of
water courses courtesy of HDSR, background aerial photo courtesy of
PDOK).
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1.1 the ahn3 lidar dataset

Manual field observations and photo-interpretations are traditional meth-
ods for the delineation of the drainage network. Manual field observations
are limited by human resources and money constraints [Gandolfi and Bis-
chetti, 1997], and involve the subjective judgement of the observer [Gandolfi
and Bischetti, 1997]. Network detection from aerial images is subject to the
same subjectivity. Furthermore, this technique has problems with obscura-
tion and misleading effect of the canopy, the image scale, and the presence
of distortions and shadows. Good quality large scale images, and a large
amount of work, are needed to correctly delineate the drainage network
using aerial images [Gandolfi and Bischetti, 1997]. LiDAR has become an
accepted means of acquiring topographic data because of short data acqui-
sition and processing times, relatively high accuracy and point density, and
reductions in acquisition costs [Flood and Gutelius, 1997; Hill et al., 2000;
Charaniya et al., 2004; van der Zon, 2013]. The width and height of water
courses are often larger than the resolution of topographic data provided
by LiDAR sources, thus this kind of data has high potential for the use in
mapping of water courses [Bailly et al., 2008].

The AHN3 is a freely available dataset provided by the Dutch government
agency ‘Rijkswaterstaat’, containing detailed and precise elevation measure-
ments covering the entire Netherlands. These elevation measurements were
obtained using laser altimetry (LiDAR) from airplane or helicoptre. The first
version of the AHN (AHN1) was acquired between 1996 and 2003, and was
mainly meant for water system management purposes. The second version
of the AHN (Algemeen Hoogtebestand Nederland 2 (AHN2)) was acquired
between 2008 and 2013, and is an improvement relative to the original AHN

because of higher point density and precision. AHN2 is characterised by a
systematic and stochastic error of maximum 5 cm, with an average point
density varying between 6-10 points per m2 [van der Zon, 2013]. The AHN2

point cloud is available in an unfiltered form, and a filtered form only con-
taining the points at field level. The AHN3 is a continuation of the AHN2, re-
taining the characteristics of the AHN2 with respect to systematic and stohas-
tic error and average point density. During every leafless season of spring
(between 2014-2019), a new part of the Netherlands is acquired. Apart from
the year of measurement, the AHN3 differs from the AHN2 in terms of the
added classification of points. The contractors responsible for acquiring
the measurements have classified every point in AHN3 into one of the five
classes: vegetation, ground surface, buildings, water, and artificial. Detailed
information about the classification process is not specified, but very high
quality standards and the use of advanced algorithms is mentioned4, which
are based on surface relief, slope, and the mixed occurrence of high and
low reflections. Next to the classification, every point is provided with the
additional attributes; scan angle, flightline ID, the return number and num-
ber of returns, GPS time, and LiDAR signal intensity. The AHN3 is provided
in the compound Coordinate Reference System (CRS) EPSG:7415, which uses
Amersfoort / RD New (European Petroleum Survey Group (EPSG):28992) for
(x,y) coordinates and Normaal Amsterdams Peil (NAP) height (EPSG:5709)
for the (z) values.

3 See footnote 1.
4 http://www.ahn.nl/pagina/het-ahn/inwinning-en-productie.html

http://www.ahn.nl/pagina/het-ahn/inwinning-en-productie.html
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1.2 water courses in the flat and engineered
landscapes around utrecht

The working area of the HDSR is situated around the city of Utrecht, the
Netherlands. It consists for the most part of flat (elevation typically ranges
between -2 m to +10 m) and engineered landscapes, which can be divided
into four different dominant environments. Three of these four environ-
ments are largely agricultural, and can be classified according to their sub-
soils; clay, peat, and sand, while urban areas form the fourth environment.
While the water courses in these environments differ in some aspects (de-
scribed in detail in Section 5.2), the environments share several important
and defining characteristics. These areas are all very flat, with altitude dif-
ferences limited to a few m per km2. But above all, they are all human
engineered; they either consist of urban centers, or are used by intensive
agricultural practices outside urban centers. Since all of these areas are in-
tensively used (and large parts reside below sea level), drainage is not left
to chance; the network is almost entirely artificial. In rural areas, it consists
of smaller -often regularly spaced- ditches intersecting the meadows, which
eventually drain into larger canals and rivers. In urban centers, sewers rep-
resent a large part of the drainage network, and water courses are mostly
present in the form of canals. In all these environments, water levels are
strictly regulated.

1.3 the state-of-the-art for automatic iden-
tification of water courses

The vast majority of methods developed in interdisciplinary studies have
not been applied to the identification of (artificial) water courses in flat,
human-engineered areas, however they may still be relevant to the cause of
this thesis. Thus, this overview (see Chapter 2 for an extensive literature
review) is not limited to the state-of-the-art in extraction of artificial water
course networks, but it also considers methods designed for mapping of
channel-like features and extraction of hydro break lines5.

Many methods have been designed to identify channel-like features, of
which only the local depression-based method by Liu et al. [2015] may
have potential for the identification of artificial water courses in this study.
However, their method has never been applied to such an environment,
and was only tested with a relatively course 5 m gridded Digital Elevation
Model (DEM) for the identification of tidal channels6. Höfle et al. [2009] and
Toscano et al. [2014] present methods to identify hydro break lines. How-
ever, the method by Höfle et al. [2009] requires significant pre-processing
[Toscano et al., 2014], and both methods are unable to identify dry water
courses. Only a few authors have actually tried to map artificial water
course networks in agricultural areas using LiDAR data, and none of these
methods were identified as suitable for this study. I tested the GeoNet tool-
box [Passalacqua et al., 2010, 2012] for the identification of water courses

5 Hydro break lines can be defined as the edges of water bodies. They indicate the land-water
boundary, which is used to generate more accurate gridded Digital Elevation Models (DEMs)
[Toscano et al., 2014].

6 Tidal channels are linear depressions embedded in coastal landscapes [Liu et al., 2015], and are
formed by the repeated advancement and retreat of the tides [Vandenbruwaene et al., 2012].
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0 100 200 m

Identified water courses
Missed water courses

(a) Error of omission

0 100 200 m

Reference water courses
Erroneously identified water courses

(b) Error of commission

Figure 1.3: Identification of water courses by Passalacqua et al. [2012] for an area
with peat soil near Utrecht. The dataset is compared to a reference
dataset provided by the HDSR (background aerial photo courtesy of
PDOK).

to a clay and peat soil area around Utrecht, and obtained poor results for
low-relief water courses (Figure 1.3).

What most of these methods have in common, is that they use derivatives
of the original LiDAR datasets. They require the generation of a gridded DEM,
which is an inherent problem with such datasets since they contain missing
data where the water is located. This is due to the absorption of LiDAR sig-
nals by water, thus generation of gridded DEMs of these parts is inherently
difficult and prone to error. Furthermore, the usage of such gridded DEMs

infers a certain decrease of accuracy due to the necessary conversion and in-
terpolation process of the raw LiDAR points [Gold and Edwards, 1992; Fisher,
1997; Brzank et al., 2008]. For this reason, I prefer methods that use the raw
LiDAR points. I was unable to identify any suitable method for the identi-
fication of wet and dry artificial water courses in the flat and engineered
landscapes around Utrecht from raw LiDAR. There is thus the need for the
development of a new method.

1.4 the discerning properties of water courses
around utrecht

The artificial water courses around Utrecht have in common that they are
human-engineered, and thus mostly have regular shapes. Furthermore,
since these are low-elevation areas, water is widely present in these land-
scapes, and water courses are often -if not permanently- filled with water.
Based on the provided description, three characteristics of the water courses
in these areas can be provided, which can potentially be used to discern
them from the rest of the landscape:

1. Low elevation in the landscape: Since the landscapes show very little
relief, it is plausible that the water courses are the landscape features
with the lowest elevation.
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2. Concave profiles: Since almost all of the water courses are artificial, es-
pecially the regularly spaced ditches in rural areas will have distinct
concave profiles.

3. Presence of water: Due to the low elevation of the landscape, and con-
stant regulation of water levels, it is likely that most of the water
courses always contain water.

In LiDAR point clouds such as the AHN3, the first two characteristics of wa-
ter courses are well reflected, since elevation values of point measurements
are recorded. Furthermore, the third characteristic is reflected in the AHN3

LiDAR point cloud by voids in the data, since the red laser signal is almost
entirely absorbed by water, thus no -or a very weak- reflected signal reaches
the sensor. In practice, only the second and thirds characteristic can be ef-
fectively used to discern water courses from the rest of the landscape. In
these human-engineered landscapes, it is very possible that water levels are
artificially kept higher in some parts than in others, thus water courses may
not always be the lowest feature in the landscape. Thus, the identification
of water courses should be done based on their concave profiles or presence
of water.

1.5 my hypothesis for the automatic iden-
tification of water courses in flat and
engineered landscapes

I identified two properties of water courses which can be used to extract
them from the AHN3 LiDAR dataset; their presence of water, and concave
profiles. Using only one of these properties would negatively affect the
identification, since not every water course strongly displays both properties.
Obviously, dry water courses cannot be identified by presence of water, and
shallow water courses (i.e. with low-curvature or vertical banks) cannot be
identified by surface concavity. Thus, I propose to utilize both properties to
design a more robust methodology. Two concepts are identified which each
utilize one of these properties:

• Concave hull: The concave hull is similar to the convex hull, but allows
interior angles of the hull to be concave, and therefore to be less than
180

◦ Thus, it can give a good approximation of non-convex distribu-
tions of points. LiDAR point clouds of a landscape which contains a
network of water courses (and thus a network of voids in the data),
can also be seen as a pronounced non-convex distribution of points.
Therefore, I suggest that the concave hull can be useful for the identi-
fication of water courses, since it can envelope the groups of ground
surface points in the landscape, while the water courses remain empty
space (see Figure 1.4a).

• MAT: The Medial Axis Transform (MAT) is a skeleton-like shape-descriptor
that models objects as a union of balls, it essentially gives a lower di-
mensional representation of an object [Ma et al., 2012]. Approximating
the MAT for a typical water course would result in three medial sheets;
two inner medial sheets, and one outer medial sheet. The outer medial
sheet of a water course forms a ’center plane’ (see Figure 1.4b), which
can be used to extract the water course’s center lines.
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Polygons of ground surface points

0 50 100 m

(a) Plan view of polygons formed by es-
timating the concave hull for ground
surface points in an AHN3 subset.
The water courses (white space) bor-
der these polygons.

(b) Perspective view of outer medial
sheets approximated by the MAT for
the water courses.

Figure 1.4: Examples of the base datasets generated by the concave hull and MAT

concepts.

For a more extensive description of these concepts (figures included), the
reader is referred to Chapter 3 of this thesis. Both concepts can use raw
(albeit classified) LiDAR point clouds as input. The concave hull approach
makes use of the presence of water in the water courses, and should thus
be able to identify water courses with a sufficiently large water surface, irre-
spective of their degree of concavity. In contrast, the MAT uses the concave
profiles of the water courses to identify them, and can work irrespective of
water presence, and should thus additionally be able to identify dry water
courses. My hypothesis is that a combination of these concepts can form a
robust methodology for the identification of water courses from AHN3 in the
flat and engineered landscapes around Utrecht.

1.6 objectives & research question

This thesis identifies the possibilities for the characterisation of the water
course network in the flat and engineered landscapes around Utrecht, from
the AHN3 LiDAR point cloud dataset, thereby striving for full automation. I
use two concepts to identify the water courses; the concave hull, and the
MAT, the combination of which forms a robust methodology according to
my hypothesis. The result of the thesis is a workflow that takes an AHN3

LiDAR point cloud as input, and accordingly identifies for every water course
the polygons of the water surface, and the geographical position of the wa-
ter surface’s center line. The workflow thus results in the creation of two
datasets: (1) A 2D dataset of water surface polygons, and (2) a 2D dataset
of water surface center lines. The methodology is used with different areas
to test its applicability to different environments. The resulting datasets are
validated to obtain mapping and positional accuracies. The main research
question of this thesis is defined as follows:

”To what extent can the position and planimetric geometry of the drainage
networks in flat, engineered landscapes be automatically identified from the AHN3

LiDAR point cloud?”
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To answer this main research question, the following sub-questions are
answered:

1. What are the typical properties of water courses in the flat and engi-
neered landscapes around Utrecht, that make them different from the
rest of the landscape?

2. How (well) are these typical properties reflected in the AHN3 dataset?

3. Which methods can use these properties to identify the water courses
in the AHN3 dataset?

4. How can the polygons of the water surfaces, and the water course
center lines be extracted from the AHN3 using these methods?

5. How well do the extracted datasets compare to reference data?

6. To what extent can the approach be fully automated?

To answer these questions, (1) a literature study is performed to identify
the current state-of-the-art in automatic identification of water courses, (2)
a methodology is designed and a prototype implementation of the method-
ology is developed to serve as a proof of concept, and (3) the prototype is
tested and validated for different areas to obtain mapping and positional
accuracies for water courses identification in different environments.

1.7 scope of research
There is limited time to fulfil the objectives set in this thesis, thus the scope
of the current research has to be strictly defined. The following restrictions
are specified:

1. By absence of any meta data on point classifications in the AHN3 dataset,
it is assumed that the classification is error-free. This thesis specifically
does not deal with the classification of points itself.

2. A methodology is designed for the identification of water courses in
flat and engineered landscapes, such as the Netherlands. Although
the methodology may work well for other landscapes, these are not
evaluated in this thesis.

3. The methodology is designed such that it can be (nearly) fully auto-
mated, but the prototype does not necessarily reach the same level of
automation. The implemented prototype serves as a proof of concept
of the proposed methodology only. It is not in any way aimed to be
production ready.

4. The methodology and implementation are designed with topology in
mind, but the thesis does not deal with topological repair.

1.8 thesis outline
The chapters in this thesis are structured as follows:
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• In Chapter 2 a literature study is presented which introduces the
reader to the current state-of-the-art in identification of water courses.

• In Chapter 3 a theoretical background is given of several concepts
which are important for the reader to understand when reading this
thesis.

• Chapter 4 presents the methodology developed in this thesis for the
identification of water courses in flat and engineered landscapes.

• Chapter 5 subsequently describes how the proposed methodology is
implemented, which datasets are applied to the implementation, and
how the error metrics are computed. Finally, it resents the experimen-
tal results and performance of the implemented prototype for each of
the datasets.

• Chapter 6 reflects on the performance and implementation of the method-
ology, and identifies its strengths and weaknesses.

• Finally, Chapter 7 summarises the most important findings and con-
clusions, gives an answer to the research questions, and lists recom-
mendations for future work.





2 RELATED WORK

The use of LiDAR mapping to extract water course-like features has been ap-
plied to many problems: e.g. for the detection of tidal channels1 [Lohani
and Mason, 2001; Mason et al., 2006; Liu et al., 2015], gullies2 [Baruch and
Filin, 2011], streams [Cho et al., 2011], and coastal structural lines3 [Brzank
et al., 2008]. The vast majority of the methods developed in these interdis-
ciplinary studies have not been applied to the mapping of artificial water
course networks in agricultural areas, however they may still be relevant to
the cause of this thesis. Furthermore, the identification of hydro break lines
can be a promising method, since it essentially provides a dataset of wa-
ter course outlines. These water course outlines can then be used to create
the required datasets of water course polygons and center lines specified in
Section 1.6, through center line approximation procedures [Haunert, 2008;
Zervakis, 2015]. Thus, this literature study will not be limited to purely
the extraction of artificial water course networks, rather it will also consider
methods designed for mapping of other water course-like features and the
identification of hydro break lines. This chapter provides an overview of
relevant methods for the identification of water course-like features in Sec-
tion 2.1, identification of hydro break lines in Section 2.2, and the identifica-
tion of artificial water course networks in Section 2.3. The GeoNet toolbox
[Passalacqua et al., 2010, 2012], developed for the identification artificial
water course networks in flat and engineered landscapes, is applied in Sec-
tion 2.4 to two separate low-relief areas around Utrecht. Finally, Section 2.5
gives an overview of the most important findings in this literature study.

2.1 identification of water course-like fea-
tures

A wide range of methods exist which try to identify water course-like fea-
tures. To provide structure, I divided these methods into three categories:
(1) flow-routing models, (2) thresholding methods, and (3) geometry and
geomorphology-based methods. These categories are loosely based on Liu
et al. [2015], and they are not mutually exclusive. All flow-routing and
thresholding methods are essentially based on the geometry or geomorphol-
ogy of landscape features, and would thus fit equally well under ‘Geometry
and geomorphology-based methods’. I chose to define separate categories
for flow-routing and thresholding methods, since they represent distinct
ways of working, which can have a significant influence on their applicabil-
ity to the identification of water courses in artificial water course networks.

1 Tidal channels are linear depressions embedded in coastal landscapes [Liu et al., 2015], and are
formed by the repeated advancement and retreat of the tides [Vandenbruwaene et al., 2012].

2 Gullies are depressions embedded within the terrain, formed by the erosive action of water
flowing downhill [Baruch and Filin, 2011].

3 Brzank et al. [2008] identify coastal structural lines, which are essentially the edges of tidal
channels.

11
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All the methods described in these categories are based on the use of grid-
ded DEMs.

2.1.1 Flow-routing models

Many methods extract water course networks from gridded DEMs using flow
accumulation algorithms (e.g. Jenson and Domingue [1988]; Costa-Cabral
and Burges [1994]; Lohani and Mason [2001]). Such algorithms assume that
slopes along the entire water course are positive, and consider flow-routes to
begin near ridges and places with relatively high surface curvature [Baruch
and Filin, 2011]. However, these assumptions do not necessarily apply for
artificial water course networks in flat landscapes. Studies on the detec-
tion of artificial water course networks in agrarian landscapes have shown
that flow-routing models are not suitable for anthropogenic networks [Bailly
et al., 2008].

2.1.2 Thresholding methods

An often used technique to extract water course-like features, is by set-
ting thresholds values. For example, Meisels et al. [1995] extract chan-
nels by identifying pixels with curvature values higher than a threshold.
Brzank et al. [2005] select local height minima below an empiric determined
threshold, which is then used for region growing. Subsequently, they check
whether the mean intensity value of a region is below an empirically deter-
mined intensity value, to extract water bodies. Many more authors make
use of similar forms of thresholding (e.g. Chorowicz et al. [1992]; Fagherazzi
et al. [1999]; Rutzinger et al. [2006]). Usage of such thresholds negatively af-
fects the ability to detect features which display significant form diversity
[Baruch and Filin, 2011], and may limit the methods to use low-resolution
DEMs [Liu et al., 2015]. Multi-scale thresholds can potentially overcome these
limitations. Lohani and Mason [2001] use an adaptive height threshold to
locate tidal channels, which enables them to identify tidal channels with
geometric properties. However, their approach is still limited to using low-
resolution gridded DEMs, where channels are approximately one pixel wide
[Baruch and Filin, 2011]. Baruch and Filin [2011] use multi-scale thresholds
to detect gullies based on surface curvature, and Cavalli et al. [2013] use a
curvature based and slope-dependent threshold to extract a water course
network, but both methods are designed for use in strongly textured ter-
rains.

2.1.3 Geometry and geomorphology-based methods

Cho et al. [2011] detect stream channels in very low-relief landscapes, based
on local minima and maxima in elevation values from a 1 m gridded DEM,
but comment that the method requires significant training and computation.
Furthermore, the method may be usable with low-resolution gridded DEMs

only [Liu et al., 2015]. This limits its potential for the identification of the
water courses around Utrecht, of which some are close to or below 1 m in
width. Mason et al. [2006]; Brzank et al. [2008]; Liu et al. [2015] developed
methods for the potential extraction of tidal channels, from areas which are
similarly flat to the landscapes around Utrecht. Mason et al. [2006] use
a method based on edge detection, Brzank et al. [2008] additionally fit a
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hyperbolic tangent curve4, while Liu et al. [2015] base their method on en-
hancing local depressions. Many of the tidal channels are enclosed within
raised levees, which are slightly higher than the surrounding flats [Mason
et al., 2006]. I assume that the edge detection algorithms works particularly
well due to the presence of these levees, which are generally absent around
the artificial water courses in Utrecht. Thus, the methods by Mason et al.
[2006]; Brzank et al. [2008] may be less suited for the identification of such
artificial water courses. Furthermore, Brzank et al. [2008] requires an ad-
ditional dataset representing the underwater topography. Liu et al. [2015]
claim their method to be weakly dependent on scale, robust, and automatic,
and suggest that it may have potential for the identification of other types of
water course features. However, their method was only tested with a course
5 m resolution gridded DEM.

2.2 identification of hydro break lines
Höfle et al. [2009] identify hydro break lines5 by modeling the locations
of laser shot dropouts based on timestamps of the recorded laser measure-
ments, after which potential water regions are detected by using a region
growing algorithm. The separation between water and non-water points is
then determined by object-based classification. Although this is a promis-
ing method for the identification of hydro break lines (and thus for the
identification of water course polygons in this thesis) in LiDAR data with
laser dropouts, it requires significant pre-processing [Toscano et al., 2014].
Toscano et al. [2014] proposes using LiDAR intensity data as well as an ad-
vanced histogram analysis of LiDAR elevation data to automatically detect
and delineate water bodies with very little pre-processing. They generate a
gridded DEM of the LiDAR elevation data, thereby setting pixel values to 0 if
LiDAR signals are missing. Then, the histogram analysis identifies peaks in
the elevation data, which are identified as water bodies since these mostly
have the same elevation. Histogram analysis will not suffice for smaller wa-
ter bodies, since these do not generate high enough peaks in the elevation
data. These water bodies are identified based on LiDAR intensity data, which
is low for water bodies due to high absorption of the LiDAR signal. Both
Höfle et al. [2009] and Toscano et al. [2014] are unable to classify dry water
courses, since their methods are specifically designed with the properties of
the water surfaces in mind.

2.3 identification of artificial water course
networks

Very few authors have tried to map artificial water course networks in agri-
cultural areas using LiDAR data. Bailly et al. [2008] propose a three-step
procedure: (1) estimation of elevation profiles from raw LiDAR points on
a set of pre-located sites perpendicular to field plot boundaries, (2) curve

4 The edges of the tidal channels can be extracted from the hyperbolic tangent curve using either
maximum slope, or maximum curvature, depending on the shape of the water course banks
[Brzank et al., 2008].

5 Hydro break lines is synonymous to the edge of a water body, they thus give the distinction
between water and non-water areas, which can be used for the generation of gridded DEMs
from LiDAR points [Toscano et al., 2014].
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shape analysis to derive concavity indicators from the elevation profiles,
and (3) a boolean classification procedure that discriminates ditches from
‘non-ditches’ on the basis of the concavity indicators. They achieved ditch
omissions of around 50%, and ditch commissions of around 15%. They at-
tribute the poor performance of the method for a major part to insufficient
density of LiDAR points, and vegetation coverage of the ditches at LiDAR sur-
vey time. Their LiDAR point density averaged 10 points per m2, which is
comparable to the point density of the AHN3. Cazorzi et al. [2013] identifies
two important limitations of Bailly et al. [2008]; (1) ditches can only be identi-
fied if they are located exclusively at field boundaries, and (2) a geographic
database of plot boundaries must be available. I add to these limitations,
that the method of Bailly et al. [2008] may not work well for water courses
which are largely filled with water, since this will hinder the estimation of
elevation profiles and subsequent derivation of concavity indicators.

Passalacqua et al. [2010] designed a methodology which involves a pre-
processing step to remove noise and enhance features that are critical to the
network extraction. Water courses can typically be characterised by positive
curvature, and by high values of flow accumulation. Therefore, the sub-
sequent network extraction is based on these properties, which distinguish
water courses from the rest of the landscape. Passalacqua et al. [2010] define
the concept that, if many possible curves are created connecting point a to
point b, then the curve with the largest overall positive curvature and flow
accumulation would be the actual water course. This concept is mathemati-
cally expressed in a cost function, which is used to extract the water course
network. Passalacqua et al. [2012] extended Passalacqua et al. [2010] for the
use in flat and engineered landscapes, by using Laplacian instead of geomet-
ric curvature to more effectively distinguish water courses in these environ-
ments. They successfully extracted the water course network using a 3 m
gridded DEM for the low-relief human-impacted landscape of Le Sueur River
Basin, Minnesota. However, their study area has elevation differences of up
to 60 m, and therefore seems to be less flat than the area around Utrecht used
in this study. Furthermore, the use of surface curvature to distinguish water
courses may provide insufficient results if these water courses display little
surface curvature, and the use of flow accumulation may not be suitable
for anthropogenic networks [Bailly et al., 2008]. However, the combination
of these distinguishing properties, and the enhancement of features during
pre-processing, may mitigate these downsides to some extent. Passalacqua
et al. [2010] have released the presented methodology to the community
as a toolbox called GeoNet, which is freely available for download6, and
Passalacqua et al. [2012] extended GeoNet with their solution for flat and
engineered landscapes. In Section 2.4 I test the applicability of the standard
[Passalacqua et al., 2010] and extended [Passalacqua et al., 2012] GeoNet
package for the (very) low-relief landscape around Utrecht.

Cazorzi et al. [2013] propose a methodology based on the extraction of
local small-scale low-relief features from a 1 m gridded Digital Terrain
Model (DTM), by elimination of the large-scale landscape forms from the
data. A filter is applied to the DTM, which results in a smoothed elevation
model that approximates the large-scale landscape forms. Then, by subtract-
ing this smoothed model from the DTM, an approximation of the local relief
is obtained. The water course network is then detected by labeling of peak
values in the local relief map through the use of a threshold value, which is
taken as the standard deviation of the local relief. Their results proved to

6 GeoNet: https://sites.google.com/site/geonethome/source-code

https://sites.google.com/site/geonethome/source-code
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be more reliable than their outdated cartography-based reference data, and
a median distance of reference points to the extracted water course network
was registered to be about 1 m. The usage of a threshold on the local relief,
can have implications on the ability of the method to identify water courses
of different forms (Section 2.1.2), but this could be mitigated by using mul-
tiple or adaptive thresholds. Cazorzi et al. [2013] tested their method for
an area with elevation differences of maximum 30 m within 1km2, which
can be considered low-relief, but is somewhat more textured than the area
around Utrecht used in this study. Furthermore, I suspect that the use of
local relief is less suitable for low-relief water courses, which are especially
present in some of the water-rich areas around Utrecht.

2.4 geonet tested for utrecht

Since GeoNet was shown to work well in flat and engineered landscapes
[Passalacqua et al., 2012], and is freely available for download with instruc-
tions provided, I tested the standard [Passalacqua et al., 2010] and extended
[Passalacqua et al., 2012] GeoNet package for the (very) low-relief landscape
around Utrecht. The methods were applied to two separate areas; one area
with clay soil, and the other with peat soil. The area with clay soil has water
courses which are clearly distinguishable from the surrounding meadows
by elevation (Figure 2.1a), while the area with peat soil has much less dis-
tinguishable water courses (Figure 2.1b). The gridded DEMs for both areas
were constructed using LAStools (see Section 5.1.1), using the AHN3 LiDAR

point cloud as source, from which the vegetation, building, and artificial
classes were filtered out. For the clay soil area, the GeoNet methods were
performed using the standard values for the user-defined parameters. For
the area with peat soil, the standard and extended GeoNet methods were
both performed with ’flowThresholdForSkeleton’ set to 300. Additionally,
for the extended GeoNet method, ’nFilterIterations’ was set to 10. The re-
sults of the methods were compared to a reference dataset of water course
center lines (see Section 5.2) supplied by the HDSR.

- 1.8 m - 0.4 m
Elevation (NAP)

0 100 200 m

(a) Area with clay soil

- 2.7 m - 1.5 m
Elevation (NAP)

0 100 200 m

(b) Area with peat soil

Figure 2.1: DEMs generated for two areas near Utrecht, using LAStools, from AHN3

source. Vegetation, building, and artificial classes were filtered out. Ele-
vation is given in meters relative to the NAP.
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0 100 200 m

Identified water courses
Missed water courses

(a) Error of omission for standard
GeoNet.

0 100 200 m

Reference water courses
Erroneously identified water courses

(b) Error of commission for standard
Geonet.

0 100 200 m

Identified water courses
Missed water courses

(c) Error of omission for extended
GeoNet.

0 100 200 m

Reference water courses
Erroneously identified water courses

(d) Error of commission for extended
GeoNet.

Figure 2.2: Water courses extracted by standard [Passalacqua et al., 2010] and ex-
tended [Passalacqua et al., 2012] GeoNet, for the area with clay soil (Fig-
ure 2.1a). The dataset is compared to a reference dataset provided by the
HDSR (background aerial photo courtesy of PDOK).

results For the clay area, standard GeoNet performed poorly, display-
ing many errors of omission (Figure 2.2a) commission (Figure 2.2b), but ex-
tended GeoNet performed well (Figure 2.2c and Figure 2.2d). For the peat
area, both methods performed poorly, showing extensive errors of omission
(Figure 2.3a and Figure 2.3c) and commission (Figure 2.3b and Figure 2.3d).
As expected, the GeoNet method extended for flat and engineered land-
scapes overall performed better than standard GeoNet, but still had ma-
jor difficulties identifying the water courses in places with very low relief
(Figure 2.3 and Figure 2.1b). Furthermore, both GeoNet methods lack the
accuracy needed for the current research, since the lines drawn for the wa-
ter courses often do not correspond to the actual centre lines of said water
courses. The illustrated deficiencies indicate that the GeoNet package is not
well suited for the identification of water courses in regions such as Utrecht,
which are characterised by very low relief and water courses which are hard
to distinguish from their surrounding meadows based on elevation.
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0 100 200 m

Identified water courses
Missed water courses

(a) Error of omission for standard
GeoNet.

0 100 200 m

Reference water courses
Erroneously identified water courses

(b) Error of commission for standard
Geonet.

0 100 200 m

Identified water courses
Missed water courses

(c) Error of omission for extended
GeoNet.

0 100 200 m

Reference water courses
Erroneously identified water courses

(d) Error of commission for extended
GeoNet.

Figure 2.3: Water courses extracted by standard [Passalacqua et al., 2010] and ex-
tended [Passalacqua et al., 2012] GeoNet, for the area with peat soil (Fig-
ure 2.1b). The dataset is compared to a reference dataset provided by the
HDSR (background aerial photo courtesy of PDOK).

2.5 summary
Many methods have been designed to identify water course-like features
(Section 2.1), which I have classified into three categories: (1) flow-routing
models, (2) thresholding methods, and (3) geometry and geomorphology-
based methods. Flow-routing models may not be suitable for anthropogenic
networks [Bailly et al., 2008], and thresholding methods can have difficul-
ties detecting features which display significant form diversity [Baruch and
Filin, 2011], and may be limited to use low-resolution DEMs [Liu et al., 2015].
The use of multi-scale thresholds can potentially overcome these limitations,
but no suitable multi-scale thresholding methods were identified for the use
in the flat and engineered landscapes around Utrecht. The geometry and
geomorphology-based methods presents a broad category, of which only
the local depression-based method by Liu et al. [2015] may have potential
for the identification of artificial water course channels in this study. How-
ever, their method has never been applied to such an environment, and was
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only tested with a relatively course 5 m gridded DEM for the identification of
tidal channels. Höfle et al. [2009] and Toscano et al. [2014] present methods
to identify hydro break lines (Section 2.2), from the water course center lines
could be extracted. However, the method by Höfle et al. [2009] requires sig-
nificant pre-processing [Toscano et al., 2014], and both methods are unable
to identify dry water courses. Only a few authors have actually tried to
map artificial water course networks in agricultural areas using LiDAR data
(Section 2.3), and none of these methods were identified as suitable for this
study. I tested the GeoNet toolbox [Passalacqua et al., 2010, 2012] for the
identification of water courses in a clay and peat soil area around Utrecht,
and obtained poor results for low-relief water courses.

What most of the identified methods have in common is that they use
derivatives of the original LiDAR datasets. They require the generation of a
gridded DEM, which is an inherent problem with such datasets since they
contain missing data where the water is located. This is due to the absorp-
tion of LiDAR signals by water, thus generation of gridded DEMs of these
parts is inherently difficult and prone to error. Furthermore, the usage of
such gridded DEMs infers a certain decrease of accuracy due to the neces-
sary conversion and interpolation process of the raw LiDAR points [Gold
and Edwards, 1992; Fisher, 1997; Brzank et al., 2008]. For this reason, I pre-
fer methods that use the raw LiDAR points. I was unable to identify any
suitable method for the identification of wet and dry artificial water courses
in the flat and engineered landscapes around Utrecht from raw LiDAR. Thus,
there is a need for the development of a new method.



3 THEORET ICAL BACKGROUND

This chapter provides an overview of the relevant theory for this thesis. Sec-
tion 3.1 describes the concept of the Voronoi Diagram (VD), and how they
can be used to identify polygon centre lines. In Section 3.2, an introduction
is given of convex and concave hulls. Furthermore, it gives an example of
the usage of the concave hull for a point cloud with water courses. Lastly,
Section 3.3 presents the MAT. It shows an example of approximating the me-
dial axis of water courses, explains how the medial axis can be segmented
into medial sheets using the medial bisector, and introduces the Ball Pivot-
ing Algorithm (BPA) for the triangulation of medial sheets.

3.1 voronoi diagrams for polygon centre
lines

A VD [Aurenhammer, 1991] partitions a plane into convex cells (see Fig-
ure 3.1), which is done based on distance to a set of generating points. The
partitioning is performed such that each cell contains exactly one generating
point, and all other points in the cell are closer to this generating point than
to any other. Every edge of a Voronoi cell forms the boundary between two
adjacent cells.

VDs can be used to approximate the centre line of a polygon, by using the
points on the polygon boundary as generating points. A line-in-polygon test
can then select the VD’s edges which are completely inside the polygons1,
these edges form the polygon centre line (see Figure 3.2). The degree to
which the centre line is correctly identified depends on the density of the
generating points. If this density is high enough (see Figure 3.2b), then the
method will approximate the polygon’s medial axis, which is similar to the
polygon’s centre line [Gold, 1999; Haunert, 2008].

3.2 the concave hull of a set of points

The convex hull of a set of points in the Euclidean plane is defined as the
smallest convex set that contains the points. For example, if P is a subset
of points in the plane, then the convex hull can be visualised as the shape
obtained when stretching a rubber band around P [de Berg et al., 2000].
However, if the set of points has a pronounced non-convex distribution,
then the convex hull of these points will not provide a good characterisation
of this distribution of points (see example in Figure 3.3b) [Duckham et al.,
2008].

1 Method obtained through personal communication with Martijn Meijers (TU Delft) on Monday,
February 15, 2016.
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Figure 3.1: A VD [Aurenhammer, 1991] created on a set of generating points.

(a) A sparse distribution of generating points leads to a poorly approximated centre
line.

(b) A dense distribution of generating points leads to a well approximated centre
line.

Figure 3.2: Approximation of a water course (blue polygon) centre line (red) using a
VD [Aurenhammer, 1991] created on the generating points (green) on the
water polygon boundary, for two different generating point densities.
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(a) A non-convex set of
points.

(b) The convex hull of
the points in (a).

(c) The concave hull of
the points in (a).

Figure 3.3: The concepts of the convex hull and concave hull for a set of points
(image courtesy of Duckham et al. [2008]).

Conversely to the convex hull, the concave hull allows interior angles of
the hull to be concave, and therefore to be less than 180

◦. The concave hull
can therefore minimize the area of the containing shape, giving a better
approximation of the non-convex distribution of points (as shown in Fig-
ure 3.3c). The concept of the concave hull was introduced in Galton and
Duckham [2006] as ’non-convex footprints’, and developed in Moreira and
Santos [2007] as concave hulls. Similar solutions to this problem were devel-
oped by Edelsbrunner et al. [1983] in the form of alpha-shapes, and by Duck-
ham et al. [2008] in the form of characteristic shapes. While there is only
one convex hull for every set of points, there can be many different concave
hulls, the shape of which depends on the threshold distance between two
points that is regarded as ’open’ space [Moreira and Santos, 2007; Duckham
et al., 2008]. There is no ’correct’ or ’best’ characteristic shape, this depends
on the final application [Moreira and Santos, 2007; Duckham et al., 2008].

3.2.1 Algorithm for computing the concave hull

It is possible to compute the concave hull of a set of points in the (x,y)
plane by computing a TIN of all the points based on their (x,y) values, and
subsequently removing all triangles whose edge-length is above a chosen
‘concavity’ value, by order of the longest edge length2. This effectively grows
the convex hull inwards, and results in a concave hull of the set of points.

3.2.2 The concave hull of a point cloud with water courses

A LiDAR point cloud of a landscape which contains a network of water
courses (and thus a network of voids in the data), can also be seen as a
pronounced non-convex distribution of points. Therefore, to obtain a good
characterisation of the distribution of this set of points, the concave hull is to
be preferred above the convex hull. By specifying a sufficiently low thresh-
old distance (concavity value), the concave hull can envelope the groups
of ground surface point in the landscape, while the water courses remain

2 This algorithm description for the computation of the concave hull was obtained through per-
sonal communication with Martin Isenburg (rapidlasso) on June 1

st
2016.
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empty space3 (see Figure 3.4). This can be useful for the identification of
water courses.

3.3 medial axis transform (mat)
The MAT is a skeleton-like shape-descriptor that models objects as a union
of balls. The MAT is formally defined as the set of maximal balls that are
tangent to the surface of a shape at two or more points. The centres of
these maximal balls, also called medial balls, form a medial skeletal struc-
ture of the object [Peters et al., 2015]. The medial axis thus gives a lower
dimensional representation of an object [Ma et al., 2012].

3.3.1 Approximating the MAT

Ma et al. [2012] proposed a method to produce approximate medial axis
points given a set of surface sample points and their corresponding nor-
mal vectors. The method works as follows (and is visualised in Figure 3.5)
[Peters et al., 2015]:

• Medial balls are found for each point p in the point cloud by iteratively
shrinking a very large ball that is centred along the point’s normal n.

• At each of these iterations, a point q is found that is nearest to the
ball’s centre. At the next iteration, the ball is accordingly shrunk such
that it touches both p and q, and remains centred along n.

• The iteration continues until the ball’s interior is empty, and there are
no closer points to its centre than p and q.

This algorithm results in the creation of two products: the interior and
exterior MAT. The interior MAT is obtained when the normals point outward
(such as in Figure 3.5). The exterior MAT is obtained by flipping the nor-
mals, essentially resulting in the complement of the space that is occupied
by the interior MAT [Peters et al., 2015]. In three-space, the medial axis is
represented by a set of medial sheets; these are manifolds with boundaries
that meet along Y-intersection curves. Together, these medial sheets form a
skeleton-like structure (see [Siddiqi and Pizer, 2008] and [Peters and Ledoux,
2016]).

noise heuristics Peters et al. [2015] improved the performance of the
shrinking ball algorithm by Ma et al. [2012] for LiDAR point clouds which
contain significant noise. The algorithm was extended with heuristics that
can prematurely stop the shrinking of the medial balls. These heuristics
are based on the progression of the separation angle, which is the angle
pcq, where c is the ball’s centre. Two heuristics were proposed [Peters and
Ledoux, 2016]:

1. Stable ball preservation: Whenever the separation angle drops below a
threshold tpreserve, the ball-shrinking process is stopped and the me-
dial ball for p is selected as the last ball which did not violate the
threshold. This heuristic prevents small-scale surface roughness from
polluting the medial sheets.

3 Note that this method only works if any points classified as water are first removed from the
point cloud. This also means that a solid classification of the points needs to be available.
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(a) The convex hull.

(b) The concave hull.

Figure 3.4: The convex hull and concave hull computed for a subset of AHN3 points.
Displayed is a 3 m uniformly spaced subset of AHN3 points, but the
convex hull and concave hull were computed for the full subset of points
(background aerial photo courtesy of Google Maps).
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Figure 3.5: The shrinking ball algorithm (Image courtesy of [Peters et al., 2015]).

Figure 3.6: Cross section of a water course. The two inner (green points) and one
outer medial sheets (red points) are displayed of a medial axis approxi-
mated for a set of points on the water course banks.

2. Plane detection: When the separation angle of the initial medial ball is
lower than a threshold tplanar, no medial ball is assigned to the point
p. This heuristic prevents small-scale surface roughness of planar fea-
tures from polluting the dataset of medial sheets.

These heuristics exploit the information that is captured in the sequence
of medial balls of a surface point, and provide a more robust way of approx-
imating the medial balls.

approximating the mat for water courses Approximating the MAT

for a typical water course would result in three medial axes (see Figure 3.6);
two inner medial axes, and one outer medial axis. This is visualized in 3D
in Figure 3.7, which shows the inner and outer medial axes approximated
for a subset of the ground surface points in the AHN3 LiDAR point cloud. The
outer medial axis of water courses forms a ’centre plane’, which essentially
describes the location of the channel centre line depending on the height of
the water surface. The lower points in this outer medial axis describe the
centre line of the water surface at the time of point cloud measurement.

3.3.2 Segmentation into medial sheets using the medial bisector

Approximating the outer medial axis for the water courses in a subset of
the AHN3 dataset, results in a dataset without a distinction between separate
water courses (such as in Figure 3.7). However, for further processing of the
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Figure 3.7: Perspective view of inner (green points) and outer (red points) medial
sheets of a medial axis approximated for a subset of ground surface
points in the AHN3 dataset.

approximated medial axis, it is beneficial that it is segmented into separate
medial sheets as much as possible.

The medial bisector can be used to segment the medial axis into separate
medial sheets. Any medial ball generated by the shrinking ball algorithm
has two points where the ball touches the ground surface, and the vectors
from the medial ball centre to these surface points are called spoke vectors.
The bisector of these two spoke vectors is called the medial bisector, which
is by definition tangent to the corresponding medial sheet, and points in
the direction of decreasing ball radius on the medial sheet (see Figure 3.8).
Different medial sheets will have different bisector orientations, while these
orientations are very similar within sheets, thus the medial bisector can be
used to successfully differentiate between the medial sheets4.

3.3.3 Triangulation of medial sheets using the Ball Pivoting Algorithm

The BPA can triangulate a set of points using the following principle (de-
scribed in [Bernardini et al., 1999]); If a manifold M is the surface of a
three-dimensional object, and S is a subset of M, then the algorithm starts
by selecting an initial seed triangle. Subsequently, a ball with radius p is
placed in contact with the three vertices of the seed triangle. Then, while
keeping the ball in contact with two of these vertices, the ball is pivoted
until it touches another point in the subset. This pivoting operation is per-
formed around each edge of the mesh boundary. Every time the pivoting
ball contacts three vertices, a new triangle is added to the mesh.

4 The method of segmenting the medial axis into medial sheets by using the medial bisector was
obtained through personal communication with Ravi Peters (TU Delft) on February 15

th
2016 .
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Figure 3.8: Shown are the medial bisectors corresponding to the medial points of a
medial axis, which are tangent to the medial sheet to which these medial
points belong. The medial bisectors point in the direction of decreasing
ball radius on the medial sheet (image courtesy of Ravi Peters, TU Delft).



4
A NEW METHODOLOGY FOR THE
AUTOMAT IC IDENT IF I CAT ION OF
WATER COURSES

The literature review in Chapter 2 did not identify any suitable methods for
the automatic identification of artificial water courses from the raw AHN3

points for flat and engineered landscapes. Thus, I introduce a new method-
ology in this chapter, which is based on two complementary concepts: the
concave hull (see Section 3.2), and the MAT (see Section 3.3). This chapter
thoroughly explains the methodology which I designed around the concave
hull concept in Section 4.1, and the MAT in Section 4.2. Lasty, Section 4.3
describes how the concave hull and MAT methods are combined to form one
single, robust, methodology which identifies the water course polygons and
centre lines.

4.1 the concave hull method

The concave hull method takes advantage of a key property of AHN3 mea-
surements (and of any other red laser-based LiDAR dataset) above open wa-
ter bodies; the LiDAR signal emitted above water bodies is almost completely
absorbed, only LiDAR signals emitted at or near nadir are reflected strong
enough to be detected by the sensor. Since the points in the AHN3 dataset
are classified into five classes (see the description of AHN3 in Section 1.1),
among which a water class, the few LiDAR measurements which did reflect
on the water bodies can be filtered out. What remains is a dataset with
separate disconnected groups of ground surface points, with voids in be-
tween these groups which represent the water bodies, from which visual
detection of the water courses is relatively easy (see Figure 4.1a). These
groups of ground surface points can be captured in polygons by generating
their concave hulls (as described in Section 3.2), which results in multiple
disconnected ground surface polygons (shown in Figure 4.1b). The majority
of water courses are represented by the space between these ground surface
polygons, while a minority is represented by interior polygons. From such
datasets, automatic derivation of the water courses is possible.

This principle forms the basis of what I refer to as the ‘concave hull
method’. The conceptual workflows in Figure 4.2 and Figure 4.8 list the
subsequent procedures required to identify the water course polygons and
centre lines from the AHN3 dataset using this method. By hand of these
workflows, Section 4.1.1 explains the procedures in detail for the identifica-
tion of the water course polygons, and Section 4.1.2 explains the procedures
required to generate the water course centre lines.

4.1.1 Identification of water course polygons

To identify the water course polygons, two datasets are generated; (1) the
concave hulls of the ground surface points, and (2) the concave hulls of the

27
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 Ground surface

0 25 50 m

(a) Subset of AHN3 ground surface
points.

0 25 50 m

 Interior polygons
 Ground surface

(b) Polygonal dataset of the concave
hulls of the groups of ground sur-
face points.

Figure 4.1: This figure shows the base principle of the concave hull method. The
concave hulls are computed for the groups of ground surface points in
the AHN3 dataset. The majority of the water courses are represented by
the space between these concave hulls, while some are interior polygons
of the concave hulls.

Figure 4.2: Conceptual workflow for the identification of the water course polygons
using the concave hull method.
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vegetation points. The first dataset is used to identify the water courses,
while the second is used to remove artefacts from the first. The required
procedures (see workflow in Figure 4.2) are elaborated upon in the following
paragraphs.

step 1: filtering the point cloud To compute a concave hull of the
ground surface points, it is important that some of the non-ground surface
points are removed from the dataset. Naturally, all points classified as water
should be removed, but this is also true for the points classified as vegeta-
tion and artificial objects. Vegetation can occlude parts of the water courses,
either by growing on the water surface, or by overhanging canopies from
vegetation on the channel banks. If these points are not removed from the
dataset, then this influences the generated concave hulls. Furthermore, ar-
tificial objects such as bridges can also occlude parts of the water courses,
and cause similar problems. Thus, in this first step, all points classified as
water, vegetation, and artificial objects are removed from the dataset. Fur-
thermore, in a parallel filtering operation, all points except the vegetation
points are removed from the dataset. At the end of this first step, two
datasets are formed: (1) a dataset of ground surface and building points,
and (2) a dataset of vegetation points.

step 2: generating the concave hulls Concave hulls are generated
for both filtered point clouds. This results in two separate datasets1; (1)
the concave hulls of the clusters of ground surface points (such as in Fig-
ure 4.1b), and (2) the concave hulls of the clusters of vegetation points. Water
courses which are contained in the ground surface point clusters (e.g. they
are not part of the connected network of water courses) are represented in
the output dataset of concave hulls as interior polygons (see Figure 4.1b),
which is done similarly for clearings in patches of vegetation.

step 3: artefact removal By removing vegetation from the AHN3 point
cloud in step 1 of the workflow, the voids otherwise occluded by these vege-
tation points are exposed, thus easing the identification of the water courses.
Unfortunately, there is a trade-off in removing the vegetation points. In
most cases, the red laser used for the AHN3 acquisition partially penetrates
through the vegetation canopy, and are either absorbed by the water sur-
face or reflected by the ground surface below the canopy. However, in some
cases the vegetation canopy is so dense that the laser signal cannot penetrate
through, thus any ground surface below the canopy is not detected. If these
vegetation points are removed from the AHN3 point cloud, then voids in the
data remain, and if large enough these voids are erroneously identified as
water bodies (see the artefacts in Figure 4.3b). This is undesirable, since the
concave hull method is based on the assumption that all voids in the point
cloud are water courses, which they are not in this case.

To remove these artefacts, the previously generated dataset with the con-
cave hulls of the vegetation point clusters is used. This removal procedure
is based on the following assumption: if the artefact is indeed caused by
the removal of vegetation points, then this artefact should be completely
covered by the concave hull of the specific patch of vegetation points that in-
duced the void. Thus, to identify and remove these artefacts, all polygons in

1 The concave hulls are generated for the groups of points in the ground surface and vegetation
datasets. The minimum point density that a group of points is required to have for the gen-
eration of concave hulls, depends on the value of the ‘concavity’ parameter specified in the
concave hulls algorithm (see Section 3.2.1).
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(a) The concave hulls of ground surface
and vegetation points.

(b) The interior polygons are artefacts
caused by vegetation removal.

Figure 4.3: The removal of the vegetation points from the AHN3 dataset can leave
voids within the groups of ground surface points. These voids then lead
to artefacts represented by interior polygons in the dataset of concave
hulls.

the dataset of ground surface concave hulls which are within the vegetation
concave hulls are selected and subsequently dissolved with the ground sur-
face polygon that has the largest shared common border (see Figure 4.4 for
an example of this procedure). In practice, some of the artefacts are slightly
larger than the concave hulls of the vegetation points, due to the manner
of concave hull formation (see the example in Figure 4.5). Thus, before
identification of the artefacts, the concave hulls of the vegetation patches
are slightly buffered2. This ensures that the majority of these artefacts are
successfully identified and removed.

step 4: removing interior polygons After eliminating the artefacts,
the remaining interior polygons are removed. This results in a dataset such
as in Figure 4.1b, with the concave hulls of the ground surface points, and
the water courses in the space space between these polygons. The water
courses enclosed by the ground surface points are now represented by holes
in the concave hulls.

step 5: extracting the water course polygons To obtain a dataset
of the water course polygons, essentially the inverse of the concave hull
dataset of ground surface points is required. Instead of polygons of the
ground surfaces, polygons of the water courses are needed. To get this
inverse dataset, a polygon can be generated which is as large as the total
extent of the disjoint hull dataset. Then, the difference between this polygon
and the concave hull dataset creates the inverse dataset, which thus gives
the polygons of the water courses (see Figure 4.6).

2 Twice the average point spacing of the point cloud provides a good measure for the required
buffer value.
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(a) The concave hulls of the vegetation
points cover the vegetation artefacts.

(b) A clean dataset of ground surface
concave hulls is formed by remov-
ing the vegetation artefacts.

Figure 4.4: The vegetation artefacts can be removed by identifying the interior poly-
gons which are within the concave hulls of the patches of vegetation
points, and accordingly dissolving these with the ground surface poly-
gon that has the largest common boundary.

Vegetation

Ground surface

(a) A group of vegetation points con-
tained by a group of ground surface
points.

Vegetation

Ground surface

(b) The concave hulls of the groups
of ground surface and vegetation
points. There is empty space be-
tween them.

Figure 4.5: The vegetation canopy can be so dense that no ground surface points are
measured underneath, causing sharp transitions between vegetation and
ground surface points. If the concave hulls of these ground surface and
vegetation points are formed, then there will be empty space between
them, while the vegetation artefacts will have the size of the vegetation
concave hulls plus the empty space. If these vegetation concave hulls are
accordingly used to filter the vegetation artefacts, then they will not fully
cover the artefacts, and the filtering result will be suboptimal.
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Figure 4.6: A dataset of water course polygons generated by the concave hull
method.

step 6: smoothening the water course polygons The water courses
generated by the procedure above can have many irregularities, caused by
perturbations in the water course banks3. These irregularities are largely
smoothened through the use of three procedures; (1) a buffer-debuffer op-
eration4, (2) Boyle’s Forward-Looking Algorithm5 [Boyle, 1970], and (3)
polygon simplification using the Douglas-Peucker algorithm [Douglas and
Peucker, 1973]. Figure 4.7 shows how these three procedures significantly
smoothen the polygon irregularities.

4.1.2 Identification of water course centre lines

The method described in Section 4.1.1 can be used to obtain the polygons of
the water courses, but needs to be extended for extracting the water course
centre lines. Extracting polygon centre lines is an ongoing topic of research,
and multiple techniques are available for the cause. A solid description of
several procedures is given in Haunert [2008] and Zervakis [2015], of which
a short summary is presented here:

• Rasterisation and iterative collapse: Polygons can be rasterised and itera-
tively thinned until the rasterised shape is at maximum one cell wide
(described in Zervakis [2015]). The gridded skeleton can then be con-
verted to a polyline, after which any unwanted branches should be
removed. The accuracy of the resulting centre line approximation is
highly dependent on the raster resolution, and increasing the raster
resolution will also increase the required computation time. Further-
more, the rasterisation and subsequent vectorisation inherently infer

3 Note that many of these perturbations occur where vegetation is present on the water course
banks. Possibly the vegetation deforms these banks through some physical processes, or the
irregularities are caused by the vegetation removal in step 1 of this workflow.

4 A nice example of a buffer-debuffer operation is shown here: http://blog.cleverelephant.
ca/2010/11/removing-complexities.html.

5 Boyle’s Forward-Looking Algorithm is a “forward looking” interpolation method introduced
by [Boyle, 1970]. A fictive line is drawn between a starting point and a point, n points ahead.
Then, 1/nth of the fictive line is stored, ending in point p, and a new fictive line is drawn
from point p to the next point, n points ahead. This procedure is repeated until the fictive line
connects to the end point. The algorithm does not change the number of points on the lines, it
only translates them.

http://blog.cleverelephant.ca/2010/11/removing-complexities.html
http://blog.cleverelephant.ca/2010/11/removing-complexities.html
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(a) A highly irregular water course. (b) Irregularities removed from the wa-
ter course in (a) by a buffer-debuffer
approach.

(c) The water course in (b) smoothened
using Boyle’s Forward-Looking Al-
gorithm.

(d) The water course in (c) simplified us-
ing the Douglas-Peucker algorithm.

Figure 4.7: A highly irregularly shaped water course generated by the concave hulls
method. Such water courses can be smoothened by sequentially using
a buffer-debuffer approach, Boyle’s Forward-Looking Algorithm [Boyle,
1970], and the Douglas-Peucker algorithm [Douglas and Peucker, 1973].
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a loss in positional accuracy [Liao and Bai, 2010], especially at lower
raster resolutions.

• Medial Axis Transform: The MAT (see Section 3.3 and Peters et al. [2015])
can be computed to approximate the medial axis of any given polygon.
This method gives a solid approximation of the polygon centre line
provided the polygon has sufficient point density [Haunert, 2008], and
denoising heuristics [Peters and Ledoux, 2016] can prevent formation
of unwanted branches. However, a major disadvantage of this method
is that it generates a set of medial points, and as such lacks topology.

• Voronoi Diagram: VDs (see Aurenhammer [1991]) can be constructed
on the points of polygon boundaries, after which a line-in-polygon
test can select the VD’s edges which are completely within the poly-
gons. These lines form the polygon centre line (see Section 3.1). This
method gives a solid approximation of the medial axis [Haunert, 2008]
provided the polygon has sufficient point density. McAllister and
Snoeyink [2000] successfully approximated the medial axis of river
networks with VDs.

• Triangulation-based skeleton: Triangulation-based skeletons can be based
on constrained or conforming Delaunay triangulations. Polygons are
triangulated, after which the triangles that share one edge with the
polygon are selected. Skeleton edges are constructed by connecting
the centres of the two other triangle edges. Triangulation-based skele-
tons have the disadvantage that small disturbances in the polygon
boundary have a significant effect on the skeleton, producing a spike
[Haunert, 2008].

• Straight skeleton: The straight skeleton was introduced by Aichholzer
et al. [1995]. It can be constructed by shrinking the polygon in a step-
wise fashion, which is performed by simultaneous parallel offsetting
of the polygon edges. The resulting skeleton mostly consists of long
straight lines. A large disadvantage of the straight skeleton is that it is
sensitive to reflex angles close to 360

◦, in which cases the skeleton will
diverge from the centre of the polygon [Haunert, 2008]. It is possible
to solve this issue and approximate the medial axis with the straight
skeleton, but additional procedures are required.

Obtaining the polygon centre lines by rasterisation and iterative collapse
has the major disadvantage that rasterisation and subsequent vectorisation
procedures are required, making this the less preferred option. Furthermore,
triangulation-based skeletons are highly affected by disturbances in polygon
boundaries, and approximation of the medial axis with the straight skeleton
requires a relatively complex procedure. The MAT and VD approach require
a less complex procedure to approximate the medial axis, but the MAT gen-
erates sets of points which lack topology. Based on this comparison, using
VDs to approximate the polygon centre lines is the best option for this thesis.
The required procedures (see workflow in Figure 4.8) are elaborated upon
in the following paragraphs.

step 7: creating the voronoi diagram from points The VD can be
used to generate centre lines of the water course polygons. To generate the
VD, first the polygons of the water course polygons have to be converted to
points, since VDs are constructed from points6. Point density is an impor-

6 It is also possible to generate VDs from lines, but this is more complex (see Held [2001]).
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Figure 4.8: Conceptual workflow for the identification of the water course centre
lines using the concave hulls method.

tant factor here, if point density is too low, then the generated centre lines
will not approximate the medial axis well. Thus point density should be
increased if needed, by inserting additional points on the polygons of the
polygon, in between the original line vertices. The VD is then created on
these points.

step 8: extracting centre lines from voronoi diagram After cre-
ating the VD, the edges which make up the centre lines need to be selected.
This is done by finding all edges that make up the VD, which are completely
inside the water course polygons. Thus, the VD should first be deconstructed
into it’s edges, after which the appropriate edges can be selected.

step 9: cleaning the centre lines When using the VD of polygon
boundary points to approximate the polygon medial axis, a number of un-
wanted branches are generated (Figure 4.9a), next to the actual wanted cen-
tre lines (Figure 4.9b). Branches are here defined as any edge with a 3-
connected vertex on one end, and a 1-connected vertex on the other end.
These branches can be removed by manual cleaning, but doing this for the
entire extracted river network would involve a lot of manual labour, and de-
feats the purpose of developing an automated centre line extraction method.
These branches can be automatically pruned using a number of different
methods:

• Shortest path between start and end point: Zervakis [2015] describes a
method which cleans the centre line by manually selecting a start and
end point. The shortest path between the start and end point then
gives the cleaned centre line.

• Dissolving the Voronoi diagram: This method presents an alternative
to the line-in-polygon test described in Section 3.1 for the selection of
centre lines from the generated Voronoi polygons. The line-in-polygon
test is used to select the VD’s edges which are completely within the
water course polygons (se Figure 4.10a). Instead of using the line-in-
polygon test, the Voronoi polygons can be dissolved with the channel
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bank polygons which they intersect7. In the case of Figure 4.10a, this
creates two large polygons on either sides of the water course, the
separation line of which is the centre line of the water course (see
Figure 4.10b). This method essentially does not clean the centre line,
but avoids unwanted branches being added to the centre line in the
first place.

• Removal of 1-connected vertices To remove the unwanted branches, any
vertices which are connected to only one edge can be removed. This
can be done iteratively, until all unwanted branches have been pruned.
A threshold on the number of iterations needs to be set to avoid re-
moval of the entire centre lines.

• Removing branches based on branch length: A threshold branch length
can be set, below which branches are automatically be removed. This
can be done iteratively so that sub-branches are also removed.

Pruning the unwanted branches by finding the shortest path from a start
to an end point still requires the manual selection these points, which is
not practical. Automatic selection of these points is difficult, especially for
irregularly shaped water courses such as Figure 4.9. Extraction of a cleaner
centre line by dissolving the VD presents a more elegant method of centre
line extraction, but entirely depends on opposite river banks being repre-
sented by separate polygons. This will not be the case for many water
courses (multiple water courses in Figure 4.1 have opposite channel banks
represented by the same ground surface polygon), thus the method cannot
be used here. This leaves two possible methods: (1) removal of 1-connected
vertices, and (2) removing branches based on branch length. Both methods
can be applied to the case presented here, of which the removal of branches
based on branch length is slightly more elegant since it can remove all small
unwanted branches, without the needs of setting a threshold on the number
of iterations8. Consequently, this method was selected for use in this thesis.

Removing the branches based on branch length could be done by creating
a graph network of the centre line network. Accordingly, all vertices with
degree 1 (thus only 1 connected edge) are selected. Then for every of these
vertices, their corresponding neighbouring vertices are traversed, until a ver-
tex is encountered with degree 3 (thus having 3 connected edges, marking
the start/end of a branch). The edges in between these vertices belong to the
same branch, and are used to compute the branch length. If branch length
is lower than a threshold, the vertices are removed.

4.2 mat approximation

The MAT approximation provides a method complementary to the concave
hull (see Section 4.1) for the identification of water course centre lines. Whereas
the concave hull method works in 2D, and is based on the absorption of the
red LiDAR signal by water surfaces, the MAT uses the 3D shape of the land-
scape to identify water courses. The MAT complements the concave hull

7 Method obtained from: http://www.ian-ko.com/resources/howto.htm.
8 Note that a threshold is still needed for the branch length, but an appropriate length is more

straightforward to estimate than an appropriate number of iterations.

http://www.ian-ko.com/resources/howto.htm
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(a) A water course polygon with a
centre line with several unwanted
branches.

(b) A water course polygon with a
cleaned centre line.

Figure 4.9: The extraction of centre lines from the VD (described in step 8 of Sec-
tion 4.1.2), can lead to the formation of multiple unwanted branches. The
cleaning method identified in step 9 of Section 4.1.2 removes the un-
wanted branches, and leaves the wanted centre line.

method by its ability to additionally identify dry water courses9. The under-
lying principle of the MAT, and an example of approximating the MAT for wa-
ter courses is described in Section 3.3. Similarly to the concave hull method,
visual derivation of water courses from an approximated outer medial axis
in plan view (see Figure 4.12a) is relatively simple. This dataset of the outer
medial axis, generated from the AHN3 ground surface points, forms the ba-
sis of my proposed MAT methodology for the identification of water course
centre lines. Following from the subsequent required procedures listed in
the conceptual workflow in Figure 4.11, the following paragraphs describe
how the MAT method can be used to identify the water course centre lines.

step 1: filtering the point cloud The MAT should approximate the
outer medial axis of the landscape. Thus, all points except for the ground
surface points are filtered from the AHN3 dataset (see Section 1.1 for a de-
scription) before approximating the medial axis, otherwise it will also be
approximated for the objects in the other classes.

step 2: approximating the outer medial axis Subsequently, the outer
medial axis is approximated for the filtered point cloud, for which the
shrinking ball algorithm (see Section 3.3.1 and Peters et al. [2015]; Peters
and Ledoux [2016]) can be used. The output will be a point cloud contain-
ing the outer medial axis of the landscape (see Figure 4.12a).

9 Note that the MAT has the potential to identify both wet and dry water courses, as long as
relative water levels are not too high (i.e. there should be a sufficiently large portion of the
water course banks visible to approximate the MAT).
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(a) A VD of boundary points used to approximate the centre
line (black) of a water course polygon (blue), in between
two river banks (red and green). The centre line is defined
as all edges of the VD which are completely within the water
course polygons.

(b) Using the same VD as in (a), but the Voronoi polygons are
dissolved with their corresponding river banks. This gener-
ates a centre line without unwanted branches.

Figure 4.10: Two different methods of centre line extraction using VD’s.

Figure 4.11: Conceptual workflow for the identification of the water course centre
lines using the MAT method.
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step 3: segmenting the medial axis The base dataset of outer medial
axes is an unsegmented dataset, i.e. there is no distinction between indi-
vidual water courses. For subsequent procedures it is preferable to have a
segmented dataset of medial sheets, thus to distinguish as much as possible
the individual water courses, which is done based on the medial bisector
method described in Section 3.3.2. Figure 4.12b shows a dataset of medial
sheets, resulting from the segmentation of the outer medial axis shown in
Figure 4.12a.

step 4: artefact removal The MAT of the landscape (i.e. the ground
surface points) approximates the medial axis for the water courses, but also
for other landscape features reflected in the terrain. It is desirable to re-
move these artefacts as much as possible from the dataset of medial sheets
before extraction of centre lines, to avoid erroneous results. This procedure
removes artefacts from the segmented dataset, while keeping the medial
sheets of the water courses intact as much as possible.

The medial sheets of the water courses have in common that they form
large collections of points (see Figure 4.12b). However, some of the seg-
mented medial sheets in the dataset are very small, meaning that they most
likely do not belong to the network of water courses. By setting a threshold
on the minimum number of points per segment, such smaller segments can
be removed. This is used as a first step in the procedure.

A second step in the artefact removal design is based on point density in
octree cells1011. Octrees are spatial data structures which recursively subdi-
vide space into smaller octants (see Figure 4.13), and are commonly used
to segment and structure point clouds [Wang and Tseng, 2011; Zhou et al.,
2011; Schön et al., 2013]. Octrees [Samet, 1990] can be constructed such that,
as long as an octant contains a certain number of points, the octant is again
subdivided into eight equally sized octants [Broersen et al., 2016]. This pro-
cess can be continued until a predefined maximum number of subdivisions
is reached. This predefined number of subdivisions then controls the size of
the smallest possible octant, and thus the resolution of space segmentation.
Broersen et al. [2016] describe an efficient way to segment a point cloud by
using a linear octree and locational codes. The generated octree structure
can be used to remove artefacts from the segmented dataset. It is possible to
check for every cell in the octree, how many points are contained in this cell.
If the number of points in the cell is lower than a specified threshold number,
then these points are removed from the dataset. Since every cell in the octree
which contains points is of the same size, this procedure in essence filters the
point cloud based on point density. Since the water courses in the dataset
consist of points clustered into dense medial sheets (see Figure 4.12b), point
density in these respective cells will be higher than the threshold number,
which should be set accordingly. The dataset resulting from the described
procedure is much cleaner (see Figure 4.12c), making identification of indi-
vidual water courses easier, while at the same time reducing the number of
erroneously identified water courses12.

10 The Statistical Outlier Removal filter in CloudCompare (see http://www.cloudcompare.org/

doc/wiki/index.php?title=SOR_filter) is also a good option for artefact removal, but I did
not achieve sufficiently good results.

11 This second artefact filtering procedure is introduced since the first procedure does not filter
artefacts which belong to any of the larger medial sheets.

12 A sufficiently low threshold number prevents the vast majority of the ’good’ water courses
from being removed, but such removal can not be fully avoided using the presented denoising
method. Future research should look into a more sophisticated artefact removal procedure.

http://www.cloudcompare.org/doc/wiki/index.php?title=SOR_filter
http://www.cloudcompare.org/doc/wiki/index.php?title=SOR_filter
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(a) Unsegmented outer medial axis of the landscape.

(b) Outer medial axis in (a) segmented into medial sheets.

(c) Artefacts removed from the medial sheets in (b). Colours are randomly assigned.

Figure 4.12: Plan view of the outer medial axis approximated for the ground sur-
face points in a subset of the AHN3 dataset, using the MAT method
described in Section 4.2. The outer medial axis can be segmented into
medial sheets using the method described in step 3 of Section 4.2. Sub-
sequently, artefacts can be removed from these medial sheets using the
procedure described in step 4 of Section 4.2.



4.2 mat approximation 41

Figure 4.13: An example of a cubic segment of space, captured in an octree [Samet,
1990]. The space is recursively subdivided into eight equal-sized oc-
tants, until a specified maximum subdivision level is reached. Image
courtesy of https://geidav.wordpress.com.

step 5: extracting the water course centre lines Approximating
the outer MAT and subsequent segmentation and denoising, results in a rela-
tively clean dataset of individual water courses (see Figure 4.12c). However,
these water courses are still merely sheets of outer medial axis points, while
the goal is to obtain the water course centre lines. There are multiple ways
possible to come from this dataset to a dataset of centre lines:

• Quadtree averaging: A quadtree can be generated for the denoised
dataset of outer medial axes, by minor alteration of the octree gen-
eration method described in Broersen et al. [2016]. Then, segment by
segment, the (x,y) coordinates of the points in the quadtree cells can
be averaged to form one averaged 2D point for every cell. This results
in a 2D dataset of averaged points, where ideally the water courses
are represented by a series of points, which can be connected using
nearest neighbour searches to form centre lines.

• Plane fitting: Planes can be fit through the denoised medial sheets (e.g.
using the RANSAC algorithm by Schnabel et al. [2007]), after which
the channel centre lines can be obtained by intersecting each plane
with a horizontal plane at the elevation of the water surface.

• Polynomial or spline fitting: It is possible to fit polynomials [Alexa et al.,
2003] or splines [Fabio, 2003; Wang et al., 2006] to the medial sheets
(see e.g. Deng and Han [2013] for a RANSAC splines fitting algorithm).
Then, the channel centre lines can be obtained by intersecting each
polynomial or spline with a horizontal plane [Lee and Fredricks, 1984]
at the elevation of the water surface.

• Triangulation: The medial sheets can be triangulated to approximate
the surface (see example in Figure 4.14), e.g. by using the BPA (see
Section 3.3.3). The triangulation works best when performed on a uni-
formly distributed subset of points. A centre line of the water surface
can then be derived by intersecting the triangulation with a horizontal
plane, or by selecting the lower edge segments.

Quadtree averaging may work well if water courses are represented by
straight lines only, intersections are simple, and the water courses have sym-
metrical cross sections (such as Figure 3.6). Unfortunately, there are many
exceptions to these situations, and in these cases the presented method will
not work well. Connecting neighbouring points will be particularly diffi-
cult near the intersections of medial sheets, and where multiple sheets are

https://geidav.wordpress.com
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parallel and close to each other. Plane fitting can work well in situations
where channels are straight, and can be applied to both symmetrical and
asymmetrical water courses. But, some water courses are curved, and fit-
ting planes through curved water courses will lead to suboptimal results.
Fitting polynomials or splines to the medial sheets alleviates this problem,
but requires a great deal of scripting, and intersecting these with planes is
no trivial task. Approximation of the medial sheets by triangulation can be
applied to any straight, tilted, or curved surface. Furthermore, intersection
of a triangulation with a horizontal plane is relatively easy, and implemen-
tations of the BPA are readily available. For these reasons, triangulation is
used in this thesis to extract the centre lines.

Theoretically, the lower points of the medial sheets are formed by the
medial balls which touch the ground surface points that are closest to the
water surface, thus the connection between these points should represent
the centre line of this water surface. After triangulating the medial sheets
(see Figure 4.14), these centre lines have to be extracted. One possibility is
to intersect a horizontal plane with the triangulation, and accordingly cal-
culate the line of intersection between the two shapes. However, this would
only work for very regularly formed water courses, where the triangulation
approximates a rectangular shape. For the water course in Figure 4.14, the
shape is highly irregular, and intersecting a plane with the lower parts of
the triangulation would lead to a discontinuous centre line. A second possi-
bility involves extracting all the edges on the lower half of the triangulation,
which together should form a continuous centre line (see Figure 4.14c). To
extract these, I designed a simple algorithm: first the outlines of the tri-
angulation have to be identified by selecting the edges which are in the
triangulation only once. Then, the lower edges can be extracted from these
polygons using the following principle (see Figure 4.15). Every edge on the
outline of the triangulation has two vertices, v1 and v2, and is connected to
a third vertex, v3, which completes the triangle. To test whether the edge
belongs to the upper or lower part of the outline, vertex v3 is projected onto
the corresponding edge at a right angle. Then, if the projected point v3’ is
below vertex v3 in terms of elevation, the edge is on the lower half of the
outline. Otherwise, it belongs to the upper half.

4.3 combined concave hull - mat method

The concave hull method (presented in Section 4.1) and the MAT method
(presented in Section 4.2) are based on different water course properties.
While the concave hull method identifies water courses through the pres-
ence of water, the MAT method identifies water courses through their 3D
shape (i.e. they typically exhibit a concave surface curvature). This is a po-
tentially very useful combination, since the two properties can complement
each other well in certain situations. In the case where a large part of the
water course banks are under water due to high water levels, the MAT will
have difficulties approximating the medial axis due to the low availability
of points on the water course banks. But in the same situation the concave
hull method may perform well due to the abundant availability of water,
and thus high absorption of the LiDAR signal. Conversely, the MAT can per-
form better for low-water level situations, and has the potential to detect
dry water courses. Furthermore, the concave hull method adds the ability
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(a) A uniformly distributed subset of points taken from a water courses’ outer me-
dial axis.

(b) A triangulation of the uniform subset in (a).

(c) The selection of all lower edges of the triangulation in (b).

Figure 4.14: Medial sheets can be triangulated to approximate the surface, using
the implementation of the Ball Pivoting Algorithm [Bernardini et al.,
1999], after which the lower edges can be selected to represent the water
course centre line.

v1

v2

v3

v3’

Figure 4.15: This figure shows a method to identify whether a boundary edge is on
the lower or upper half of the triangulated surface. Vertex v3 of the
triangle is projected onto edge (v1, v2). Then, if the z coordinate of
the projected point v3’ is lower than that of v3, the edge belongs to the
lower half.



44 a new methodology for the automatic identification of water courses

Figure 4.16: Conceptual workflow for the identification of the water course centre
lines using the combined concave hull - MAT method.

to identify the water course polygons13. The combination of these meth-
ods can mitigate the weaknesses of both, extends their possibilities, and can
make the methodoly as a whole more robust.

Both the concave hull and MAT method generate separate datasets of the
water course centre lines. To combine these (see the conceptual workflow
in Figure 4.16), the datasets are merged, thus forming a dataset with two
centre lines for every water course14. By buffering these centre lines15, and
accordingly dissolving the buffers, one polygon remains for every water
course. Then, the centre lines of these polygons are generated and cleaned
by using the techniques described in Section 4.1.2 for the extraction of poly-
gon centre lines for the concave hulls. See Figure 4.17 for a visualisation of
the designed procedure.

13 In theory, this is also possible with the MAT method, but requires a more extensive procedure
(see Section 7.3).

14 This method is easy to implement, and works sufficiently well for this proof of concept, but
more sophisticated approaches are possible (see Section 7.3).

15 To estimate an appropriate buffer value (see also Section 7.3 about this topic), it would be
a good measure to compute the average (or median) positional deviation of both datasets
with respect to each other, and set the buffer value accordingly. For this, the ’point matching’
procedure described in Section 5.4.2 can be used.
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0 2 4 m

 MAT center lines
 Characteristic shape center line

(a) Center lines generated by the con-
cave hull and MAT methods.

0 2 4 m

 Merged center lines

(b) The centre lines in (a) merged.

0 2 4 m

 Merged center lines
 Buffered center lines

(c) The merged centre lines of (b)
buffered.

0 2 4 m

 Merged center lines
 Buffered center lines
 New center line

(d) New centre line generated for the
buffer polygon.

Figure 4.17: The centre line generated by the concave hull (see Section 4.1.2) and
MAT (see Section 4.2) methods are combined (see Section 4.3) by merg-
ing the centre lines, subsequently buffering them, and lastly by gener-
ating a new centre line using the method outlined in Section 4.1.2.





5 IMPLEMENTAT ION AND
EXPER IMENTS

This chapter describes the implementation of the methodology presented
in Chapter 4, and presents and briefly analyses the results of the applica-
tion of this methodology to four different areas. First, Section 5.1 lists and
describes all the tools that are used in the implementation, and Section 5.2
describes the areas and datasets which are used in the later experiments.
Then, Section 5.3 describes in detail the prototype implementation of the
methodology presented in Chapter 4, and also mentions to what degree the
implementation is automated. A procedure for the validation of the datasets
generated by the implemented prototype is presented in Section 5.4, and
finally, the results of the experiments and error metrics are described in
Section 5.5.

5.1 tools used
A large number of tools are used in this thesis to implement the method-
ologies described in Chapter 4. Section 5.1.1 lists and shortly describes the
programs which are used in thesis for processing and visualisation of the
datasets. A number of algorithms are used in this thesis to compute e.g.
the concave hulls, the MAT, and triangulations of medial sheets. These algo-
rithms and their implementations were not designed by me, and are there-
fore described separately in Section 5.1.2. Furthermore, a number of Python
packages are used for convenience and automation, which are described in
Section 5.1.3.

5.1.1 Programs

In this thesis, I made use of the following programs for processing, conver-
sion, and visualisation purposes:

• Quantum GIS (QGIS)1: Geographical Information System (GIS) software
used for many elementary GIS operations and visualisations, also in
combination with System for Automated Geoscientific Analysis (SAGA)
and Geographic Resources Analysis Support System (GRASS) GIS imple-
mentations.

• CloudCompare2: 3D point cloud processing software, used for file
conversions, elementary point cloud processing, and visualisation.

• LAStools3: Software suite used for many point cloud operations, such
as tiling and filtering.

1 QGIS: http://www.qgis.org.
2 CloudCompare: http://www.danielgm.net/cc/.
3 LAStools: https://rapidlasso.com/lastools/.
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• MeshLab4: Software used for file conversions, visualisation, and trian-
gulation (see Section 5.1.2) of point clouds.

• PostgreSQL5: Open source database used for storage and retrieval of
the point clouds and generated octree.

5.1.2 Algorithm implementations

This section describes the implementations which are used in this thesis, but
not designed by me.

lasboundary Lasboundary is a function available in LAStools. It reads
LiDAR data and computes a boundary polygon for the points. It can compute
the convex hull of points, but is also able to compute a boundary polygon
to which it refers as the ‘concave hull’, which is based on the algorithm
described in Section 3.2.1. This is currently the only freely available and
practical implementation of the concave hull concept (see Section 3.2), thus
I use lasboundary in this thesis to compute the required concave hulls.

masbcpp This is a C++ implementation6 of the shrinking ball algorithm
(see Ma et al. [2012] and Section 3.3.1) developed by Peters et al. [2015] to
approximate the MAT of a point cloud, which includes the noise heuristics
(see Peters and Ledoux [2016] and Figure 3.3.1) to deal with noisy input data.
It requires NumPy binary files as input, and is thus used in conjunction with
Pointio.

pointio Pointio7 is a small utility for managing point clouds as NumPy
binary files (.npy). It is used to convert the point clouds in LAS format to
NumPy binary files for input in masbcpp.

medial bisector The medial axis is segmented into medial sheets based
on medial bisector difference (see Section 3.3.2), for which a Python-based
region growing algorithm is used8, which utilizes the NumPy and pykdtree
packages (see Section 5.1.3. The algorithm has two controlling parameters;
a threshold on the bisector angle difference (◦) , and the k-number in the
k-nearest neighbours search. The bisector angle threshold determines how
large of a difference in medial bisector angle is allowed between neighbour-
hoods, if the difference is above the specified threshold, then the neighbour-
hoods are regarded as separate segments. Thus, lower values of the bisector
angle threshold result in more and smaller medial sheet segments. The k-
number in the k-nearest neighbours search determines how many points
are used to form the neighbourhoods for region growing. Here too, lower
values of the k-number result in more and smaller medial sheet segments.

The values of the required bisector angle threshold and k-number depend
on the properties of the medial axis. If the distribution of medial points is
patchy, then high values of the k-number can prevent excessive segmenta-
tion on straight sections, but this also decreases the ability to segment the
medial sheets at intersections. The required bisector angle largely depends

4 MeshLab: http://meshlab.sourceforge.net.
5 PostgreSQL: https://www.postgresql.org.
6 masbcpp: https://github.com/tudelft3d/masbcpp
7 Pointio: https://github.com/Ylannl/pointio
8 The implementation of the medial bisector method was obtained from Ravi Peters (Delft Uni-

versity of Technology) through personal communication, on February 15
th

2016.

http://meshlab.sourceforge.net
https://www.postgresql.org
https://github.com/tudelft3d/masbcpp
https://github.com/Ylannl/pointio
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on the angle which the water courses make at their intersections. If they are
at right angles, then higher values of the bisector threshold may be sufficient
to segment them. However, if the water courses are nearly parallel oriented
or the changes in bisector angle are very gradual, then lower values of the
bisector threshold are required to segment them.

ball pivoting algorithm An implementation of the BPA (see Section 3.3.3)
is available in MeshLab and is used in this thesis to triangulate the medial
sheets. Three parameters need to be specified, which are specific to the
implementation of the algorithm in MeshLab9:

• Pivoting ball radius (in meters): This is the radius of the ball which
is pivoting over the set of points. Gaps that are larger than the ball
radius will not be filled.

• Clustering radius (% of ball radius): To avoid the creation of too small
triangles, if a vertex is found too close to a previous one, it is merged
with it.

• Angle Threshold (in degrees): If an angle between two triangles is
encountered that is too large, then the ball stops pivoting.

The triangulation of the medial sheets is significantly affected by the set-
tings of these parameters. The value of the pivoting ball radius influences
to what extent gaps in the medial sheets are allowed, i.e. if there are gaps
in a medial sheet and the ball pivoting radius is smaller than the gaps, then
only part of the medial sheet will be triangulated. Similarly, also a very
high setting of the pivoting ball radius will negatively affect the triangula-
tion; the triangulation will be too generalized, and smaller details will not
be captured in the triangulation. The value of the clustering radius controls
how much detail is retained in the triangulation. Low values of this pa-
rameter will lead to many smaller triangles being included in the resulting
mesh, while high values remove many of the triangles and result in a very
generalised result. The correct setting of this parameter depends mostly on
the required detail of the mesh. Lastly, the angle threshold controls to what
extent curves in the medial sheets are tolerated. If a low angle threshold is
used, then the algorithm may stop the triangulation when a curve or corner
is encountered in the medial sheet. If the value is set too high, then artefacts
can be introduced into the mesh since any angle is allowed.

implementation of the octree generation This thesis uses an octree
generated on the points in the medial sheets to remove artefacts (see step
4 in Section 4.2). The methodology behind this specific octree generation
algorithm is described in Broersen et al. [2016], and their implementation
was slightly adjusted to the purpose of this thesis10. This implementation is
entirely scripted in Python, and stores the resulting octree and the processed
point cloud in a PostgreSQL database. The script makes use of the psycopg2

package (see Section 5.1.3) to communicate with the PostgreSQL database,
and uses the libLAS package (see Section 5.1.3) to read the input point cloud
in LAZ format.

9 The parameter descriptions are taken from the ‘help’ section of the BPA implementation in
MeshLab.

10 A detailed description of the implementation of the octree generation algorithm of Broersen
et al. [2016] can be found here: http://repository.tudelft.nl/islandora/object/uuid:

c9e55f6a-c874-4aee-9ceb-6bbcf34d9dc7/?collection=research.

http://repository.tudelft.nl/islandora/object/uuid:c9e55f6a-c874-4aee-9ceb-6bbcf34d9dc7/?collection=research
http://repository.tudelft.nl/islandora/object/uuid:c9e55f6a-c874-4aee-9ceb-6bbcf34d9dc7/?collection=research
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5.1.3 Python packages

The Python scripting language is used in this thesis for data conversion and
automation of processes. A number of packages have been used, which are
shortly listed and described here:

• pyshp11: Provides read/write support for the ESRI Shapefile format.

• NetworkX12: A Python software package that allows creation and ma-
nipulation of graph networks. Supports reading the ESRI Shapefile
format natively.

• psycopg2
13: A package that is used to access and manipulate the Post-

greSQL database.

• libLAS14: A C/C++ library for reading and writing the ASPRS LAS
format.

• pykdtree15: A package with kd-tree implementation for fast nearest
neighbour searches. It is used in this thesis for the medial bisector
implementation (see Step 3 of Section 5.3.3), and validation of the
datasets (see Section 5.4).).

• Fiona16: OGR’s17 API for Python. Reads and writes data using multi-
layered GIS formats. Used in this thesis to read shapefiles for the
dataset validation (see Section 5.4).

5.2 areas and datasets
The working area of the HDSR is located in the centre of the Netherlands (see
Figure 5.1). Four areas of 3x3 km were selected which are together represen-
tative for the diversity of environments in the HDSR working area; an area
with clay, peat, and sandy soils, and an urban area (see Figure 5.2 for their
locations). The water course characteristics differ between these areas due
to their different subsoils, geographical location, and land use, which makes
them a good test case for the methods designed in this thesis. Datasets of
AHN3 LiDAR points were obtained for each of these areas18. Per area, the to-
tal number of LiDAR points in the resulting datasets can exceed 200 million.
To make these datasets more manageable, they were each divided into nine
square tiles of 1x1 km each, while adding a buffer of 10 m to enable the
designed methods to work well around the seams. The acquisition dates of
the AHN3 LiDAR datasets for these areas all fall in winter 2014

19. The AHN3

datasets for each of these four areas are used in this thesis to test the imple-
mentation of the concave hull (see Section 5.3.1), MAT (see Section 5.3.3), and
combined concave hull - MAT method (see Section 5.3.4) for the identification
of water course polygons and centre lines. Existing datasets of water course
polygons and centre lines were obtained from the HDSR, which cover all four

11 pyshp: https://pypi.python.org/pypi/pyshp.
12 NetworkX: https://networkx.github.io.
13 psycopg: http://initd.org/psycopg/.
14 libLAS: http://www.liblas.org.
15 pykdtree: https://github.com/storpipfugl/pykdtree.
16 Fiona: https://pypi.python.org/pypi/Fiona.
17 OGR: http://gdal.org/1.11/ogr/.
18 The AHN3 datasets can be downloaded from: https://www.pdok.nl/nl/ahn3-downloads.
19 Acquisition dates of AHN3 were obtained from the header data in the AHN3 LAZ files.

https://pypi.python.org/pypi/pyshp
https://networkx.github.io
http://initd.org/psycopg/
http://www.liblas.org
https://github.com/storpipfugl/pykdtree
https://pypi.python.org/pypi/Fiona
http://gdal.org/1.11/ogr/
https://www.pdok.nl/nl/ahn3-downloads
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Figure 5.1: Working area of HDSR (outlined in red) in the Netherlands.

identified areas, and are used to serve as a reference dataset to validate the
datasets generated by the designed methods. All datasets involved in this
survey use the CRS EPSG:28992. The areas and their general characteristics
are listed in Table 5.1 and shortly described in the following paragraphs.

clay The clay area (see Figure 5.3a) is located near the small village of
Cabauw, and has a rural setting with the majority of the land surface being
used for agricultural purposes. Building coverage is low, and vegetation is
present in patches around buildings, but is very limited in the meadows.
The water courses can be visually readily distinguished from the landscape,
since they often have water surfaces of 2 m in width or more. The elevation
of the clay area varies between -2.5 m to +3 m NAP, and topographic relief
is very low. There is very little relief, but water courses display enough
local surface curvature to visually distinguish them from the rest of the
landscape.

peat This area (see example in Figure 5.3b) has a rural setting, and like-
wise to the clay area, the majority of the land surface is used for agricultural
purposes. It is located near the small village of Zegveld, where building
coverage is equally low to the clay area. Similarly, vegetation is present in
patches around buildings, but is very limited in the meadows. Water is om-
nipresent in this landscape. The water courses are often (much) more than
3 m wide, and it is thus relatively easy to distinguish them from the rest of
the landscape based on water coverage. The elevation of the area varies be-
tween -2.5 m to +1.5 m NAP, and topographic relief is very low. The relative
water levels in the water courses of this area is high, and some of the water
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Figure 5.2: The four selected study areas, which are all 3x3 km in size. The HDSR

working area is outlined in black. The extents of the selected study areas
have been marked by: orange (sandy soils), blue (peat soils), green (clay
soils), and red (urban area).

Table 5.1: This table lists some of the characteristics of the areas specified in Sec-
tion 5.2. The specified location in EPSG:28992 indicates the (x,y) position
of the lower left coordinate of the area (they are all 3x3 km in size). The
percentage of building coverage is computed by dividing the total num-
ber of building points in every dataset by the total number of points in the
dataset, which was done in a similar fashion for the vegetation coverage.
The percentage of water coverage is computed by taking the total surface
area of all water polygons in the HDSR reference dataset (see Section 5.2),
and dividing it by the total surface area of the corresponding area.

Area

Characteristic Clay Peat Urban Sand

Location (in EPSG 28992) (120279 (116785 (128271 (147565

, 440768) , 457391) , 454058) , 446180)
Location (city / village) Cabauw Zegveld de Meern Langbroek
Setting (rural/urban) Rural Rural Urban Rural
Building coverage (in %) 2 2 14 0.5
Vegetation coverage (in %) 5 8 27 47

Water coverage (in %) 9 14 8 5

Elevation range (in m) -2.5 to +3 -2.5 to +1.5 -2 to +10 +1.5 to +6
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courses display very little local surface curvature, which makes it difficult
to distinguish them visually from the rest of the landscape based on this
property.

sand This area (see Figure 5.3c) is located near the small village of Lang-
broek, and has a rural setting. Most of the land is used for agricultural
purposes, but recreational and nature areas are also widely present. Build-
ing coverage is very low here, but vegetation is plentiful, with large patches
of forest spread throughout the landscape. Open water is much less present
in this area than in any of the other described areas, i.e. water surfaces are
often around or below 1 m in width. Elevation in the area varies between
+1.5 m to +6 m NAP, and relief is low, but water courses display enough local
surface curvature to visually distinguish them.

urban The urban area (see Figure 5.3d) is located near the large village
of ‘de Meern’, where major construction works have been undertaken in
the last five years. The area largely has a low-density urban setting, with
building coverage naturally being the highest of the four selected areas.
Vegetation is also plentiful here, especially near buildings and in human-
engineered parks. There are many water courses in this area, often in the
form of canals. In contrast to the other areas, water courses here are very
variable in surface width, shape, and spacing. Elevation varies between -
2 m to +10 m NAP, and relief is low, but local human-engineered surface
convexities are often present (e.g. in the form of noise-cancelling levees).

hdsr reference datasets The HDSR has kindly provided me with a
dataset of water course polygons, and water course centre lines. These
products are the result of manual work20; they are created by visually iden-
tifying the extent and centre lines of the water courses from stereo aerial
photos stemming from winter 2014, thereby striving for a 96% identification
rate. After this procedure, the dataset is further modified after any possi-
ble mutations recorded by the HDSR. The aerial photos used for the water
course identification, have an accuracy of about 0.1 m. The datasets of water
courses resulting from the described manual procedure, have an accuracy
of 0.15 to 0.2 m at best.

5.3 the implemented prototype

A methodology was designed in Chapter 4 which identifies water course
polygons and centre lines in flat and engineered landscapes from AHN3. This
section describes a prototype implementation of this methodology. The pro-
totype is described in four separate subsections; (1) Implementation of the
concave hull method to identify the water course polygons (Section 5.3.1),
(2) Implementation of the concave hull method to identify the water course
centre lines (Section 5.3.2), (3) Implementation of the MAT method (Sec-
tion 5.3.3), and (4) Implementation of the combined concave hull - MAT

method (Section 5.3.4). Finally, Section 5.3.5 describes the extent to which
the implemented prototype is automated, and provides an estimate of re-
quired processing time.

20 The information about the procedure and specifications of the reference datasets were obtained
via personal communication with Roger de Crook (HDSR), and René van Ginkel (Arcadis).
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0 100 200 m

(a) The clay area: little vegetation and
clearly recognisable water courses.

0 100 200 m

(b) The peat area: little vegetation and
very wide water courses.

0 100 200 m

(c) The sand area: a lot of vegetation
and narrow water courses.

0 100 200 m

(d) The urban area: water courses are
very variable in shape and size.

Figure 5.3: Characteristic top-down views of the selected areas used for testing the
implemented methods (background aerial photos courtesy of Google
Maps).

5.3.1 Implementation of the concave hull method to identify water course
polygons

This section describes how the concave hull method was implemented to
identify the water course polygons (see Section 4.1.1 for the methodology).
A detailed workflow of the implementation is visualised in Figure 5.4, which
shows the entire process from the unfiltered AHN3 point cloud to a shapefile
of water course polygons. The following paragraphs provide a stepwise
description of the implementation, including the required parameter values.

step 1: filtering the input point cloud The point cloud was filtered
using LAStools’ las2las function, which supports removal of points based on
their classification. Two separate filtering procedures are performed, which
result in the creation of two separate point clouds; one point cloud with
ground surface and building points, and another point cloud with only veg-
etation points. The point cloud provided as input to this step should be in
LAZ or LAS format, and similarly for the output.
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Figure 5.4: A detailed workflow of the implementation designed for the identifica-
tion of water course polygons using the concave hull method.
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step 2: generating the concave hulls LAStools provides the las-
boundary function which takes a LiDAR point cloud and computes a concave
hull for the points. By default, the function generates connected concave
hulls of the groups of points, but a ’-disjoint’ flag can be specified which
leads to the creation of a separate concave hull for every group of points.
Furthermore, the ’-holes’ flag can be given, which enables the computation
of interior polygons in the data, i.e. the algorithm (see Section 3.2.1) also re-
moves inner triangles instead of just the convex boundary. By using this flag,
separate polygons are generated for water courses contained within other
ground surface concave hulls (as shown in Figure 4.1b). Lastly, a value for
the ’concavity’ needs to be specified, which controls the threshold distance
for voids to be considered as part of the exterior (or part of an interior poly-
gon). For this thesis, I used a value of 1 m, meaning that water courses need
to be at least 1 m wide to be identified by the procedure. Lower values of the
concavity are possible, but introduce considerably more noise in the output.
LAStools’ lasboundary function is used to generate both the concave hulls
of the ground surface and buildings point cloud, as well as of the vegetation
point cloud. This results in the generation of two shapefiles with concave
hulls.

step 3: artefact removal A chain of processes is used to remove arte-
facts from the two concave hull shapefiles. For both shapefiles, the QGIS

function ’Export/Add geometry columns’ is used to add geometrical infor-
mation to the polygons. After this, the process for both shapefiles differs.
For the shapefile of vegetation concave hulls, first the QGIS ’Extract by at-
tribute’ function is used to extract all vegetation polygons larger than 15 m2,
and save them to a new shapefile. The polygons are then buffered by 1 m
using QGIS’s ’Fixed distance buffer’ function. For the shapefile of ground
surface concave hulls, the QGIS function ’Eliminate sliver polygons’ is used
to dissolve all polygons smaller than 15 m2. This function merges all se-
lected polygons with neighbouring polygons based on the largest common
boundary. A value of 15 m2 is used since this removes many small artefacts,
while leaving the vast majority of water courses intact, since their surface
areas commonly exceed the threshold size. It is important to re-evaluate this
value when applying the implementation to different environments and dif-
ferent settings of the concavity parameter. The previous step already filters
many of the artefacts, but still leaves some larger patches. These could
be removed by increasing the area threshold, but this increases the risk of
removing the water courses themselves. Thus, an additional procedure is
implemented which selects all ground surface polygons which are within
the buffered vegetation polygons using QGIS’s ’Select by Location’ function.
The QGIS ’Eliminate sliver polygons’ function is then used to merge these
polygons with the neighbouring polygon that shares the largest common
boundary. The result is a relatively clean shapefile of ground surface con-
cave hulls.

step 4: removing interior polygons The shapefile now consists of the
concave hulls of ground surface points, while most of the water courses are
represented by voids. However, there are still some interior polygons con-
tained in the concave hulls, which also represent water courses. To convert
these to voids, the SAGA function in QGIS ’Polygon dissolve (all polygons)’
is used to dissolve all polygons, without keeping inner boundaries. This
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results in a dataset with one large multi-polygon of all concave hulls, with
interior polygons removed. All water courses are now represented by voids.

step 5: extracting the water courses In this step, the shapefile out-
put by the previous step is inversed to obtain polygons of the water courses,
instead of polygons of the ground surface points. First, the QGIS function
’Polygon from layer extent’ is used to generate a polygon with size of the ex-
tent of shapefile with ground surface concave hulls. Subsequently, the QGIS

’Difference’ function is used to obtain the difference between both shapefiles,
resulting in a shapefile with polygons of the water courses.

step 6: clipping the water courses The procedure in step 5 takes the
difference between a rectangular layer extent, and the concave hulls. How-
ever, these concave hulls have the property that they are not straight nor
rectangular. Thus, by taking the difference between these layers, a narrow
polygon is introduced along the edges of the dataset. To remove this arte-
fact, the shapefile has to be clipped. First the QGIS function ’Fixed distance
buffer’ is used with the layer extent polygon as input. By specifying a buffer
size of -1 m, and dissolving the result, a polygon is generated which is nega-
tively scaled by 1 m in every dimension. Subsequently, the QGIS ’Intersection’
function is used to intersect the scaled layer extent with the water courses
shapefile, thereby generating a new water courses shapefile where the outer
1 m is cut off. The effectively removes the generated artefact.

step 7: smoothening of water courses The polygons of the water
courses are still highly irregular in shape, and need to be smoothened and
simplified. First a buffer-debuffer procedure is executed, by first buffering
all water courses by 1 m, and subsequently using a buffer of -1 m. For this
the QGIS ’Fixed distance buffer’ function is used. Secondly, Boyle’s Forward-
Looking Algorithm [Boyle, 1970] is used to further smoothen the water
courses. This algorithm is available in the GRASS QGIS function ’v.generalize’,
and is used with a look ahead parameter of 5

21, which sufficiently smoothens
the polygons, but does not change the polygon shape too much. Increase the
value of this parameter if more intensive smoothening is required. Lastly,
the polygons are simplified to remove more of the irregularities, using the
QGIS ’Simplify Geometries’ function (which uses the algorithm by [Douglas
and Peucker, 1973], with a tolerance threshold of 0.5 m. The tolerance
threshold controls the minimum distance between vertices, the higher the
value of the threshold, the intenser the simplification. A value of 0.5 m was
selected since it sufficiently simplifies the polygons, without changing too
much of their original shape. This concludes the current implementation of
the concave hull method to identify the water course polygons, and results
in a shapefile of cleaned, smoothened, and simplified polygons of the water
courses.

5.3.2 Implementation of concave hull method to identify water course cen-
tre lines

The following section describes how the concave hull method was imple-
mented to identify the water course centre lines, after the methodology de-

21 The look ahead parameter controls the number of points that the algorithm uses to ‘look for-
ward’. The larger this number, the more intense the translation of points, resulting in more
smoothening.
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scribed in Section 4.1.2. A workflow of the implementation is visualised
in Figure 5.5, which shows the entire process from the shapefile of water
course polygons to a shapefile of water course centre lines. The following
paragraphs provide a stepwise description of the implementation, including
the required parameter values. The specified procedure follows logically on
the procedure specified in Section 5.3.1 for the identification of water course
polygons.

Figure 5.5: A detailed workflow of the implementation designed for the identifica-
tion of water course centre lines using the concave hull method.

step 8: creating the voronoi diagram This step creates a VD on the
boundary points of the water course polygons. The polygons are first densi-
fied to provide sufficient point density to generate a dense VD. For this the



5.3 the implemented prototype 59

QGIS ’Densify geometries given an interval’ function is used, with an interval
of 1 m22. The geometries are subsequently converted to a point dataset, us-
ing the SAGA QGIS function ’Convert polygon/line vertices to points’. Then,
the QGIS function ’Voronoi Polygons’ is used to generate a shapefile of the
VD created on the densified boundary points.

step 9: extracting centre lines from the voronoi diagram To ex-
tract the centre lines of the water courses using the VD, first the diagram
is converted to lines using the QGIS function ’Polygons to Lines’, and sub-
sequently the QGIS function ’Explode lines’ is used to deconstruct the lines
into edges. Then, the QGIS ’Select by Location’ function allows to select
the edges of the VD which are inside the water course polygons. The QGIS

function ’Save selected features’ is subsequently used to extract the selected
edges to a new shapefile, which thus contains the approximated centre lines
of the water courses.

step 10: clip centre lines The shapefile with centre lines has to be
clipped to remove any buffer space added when tiling the AHN3 dataset (see
Section 5.2). First, the centre lines are clipped by generating a clipping layer.
This clipping layer is generated by using the QGIS function ’Fixed distance
buffer’, and using the previously created water course extent polygon as
input, while specifying a buffer of -10 m, and dissolving the result. This
generates a polygon which is negatively scaled in every dimension by 10

m. Then, this layer is intersected with the shapefile of centre lines using the
QGIS function ’Intersection’, which generates a clipped shapefile of water
course centre lines.

step 11: cleaning the centre lines The generated shapefile of water
course centre lines still contains many unwanted branches (see Section 4.1.2).
A methodology was described in Section 4.1.2, which can be used to prune
these unwanted branches. The methodology is implemented in Python, us-
ing the pyshp and NetworkX packages. Hereby, the NetworkX package is
used to read the shapefile of centre lines, and accordingly generate a graph
network of the edges in this shapefile. All 1

st-degree nodes (nodes which
only connect to a single edge) are selected, after which their connecting
edges are traversed until a 3

rd-degree node (which connects to three edges)
is encountered. These edges then form a single branch. NetworkX provides
functions to find the 1

st- and 3
rd-degree nodes. Subsequently, the line length

of all these branches is checked, and the branch is removed if the length is
lower than a specified threshold. A threshold of 20 m was used in this im-
plementation, which removes many of the unwanted branches, but leaves
longer -wanted- branches intact. The pyshp package is subsequently used
to write the remaining edges to a shapefile, which forms the output centre
lines of the concave hulls implementation.

5.3.3 Implementation of the MAT method to identify water course centre
lines

This section describes how the MAT method (see Section 3.3 for the method-
ology) was implemented to identify the water course polygons. A workflow

22 The interval of 1 m means that additional points are inserted on the polygon boundaries in
between the original vertices, until the euclidean distance between points or vertices is 1 m at
maximum.
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of the implementation is visualised in Figure 5.6, which shows the entire
process from the unfiltered AHN3 point cloud to a shapefile of water course
centre lines. The following paragraphs provide a stepwise description of
the implementation, including the required parameter values.

step 1: filtering the point cloud The AHN3 point cloud is filtered
using LAStools’ las2las function, leaving only the ground surface points.
The point cloud provided as input should be in LAZ or LAS format, and
the output should be LAS format.

step 2: approximating the outer medial axis To approximate the me-
dial axis of the water courses (see Section 3.3 for a theoretical description),
the proven and ready-to-use C++ implementation of the Shrinking Ball Al-
gorithm, masbcpp (see Section 5.1), is used. Since masbcpp requires NumPy
binary files (.npy) as input, Pointio (see Section 5.1) is used to convert the
LAS file to NumPy Binaries. During this conversion, the original coordi-
nates are translated to coordinates more suitable for masbcpp’s procedures.
Thus, additionally to converting the LAS file to NumPy binaries, Pointio
generates a NumPy binary file which stores the translation parameters. Af-
ter conversion, masbcpp is used to estimate the normals of the points in the
point in the point cloud, and subsequently approximate the medial axis of
these points. Parameter values of respectively 30

◦ and 32
◦ were used for

the stable ball preservation and plane detection noise heuristics (see Sec-
tion 3.3.1 and Peters and Ledoux [2016] for a description of these heuristics).
These values were selected using trial and error, and proved to provide an
optimal approximation of the water course’s outer medial axis with the least
amount of noise. The output of masbcpp consists of a NumPy binary with
the approximated outer medial axis.

step 3: segmenting the medial axis The medial axis is segmented
based on the difference in medial bisector (see Section 3.3.2), using a Python-
based region growing algorithm (see Section 5.1). Using trial and error, seg-
mentation proved optimal using a value of 6

◦ for the bisector angle thresh-
old, and a value of 9 for the k-number. For most of the water courses, the
individual medial sheets are identified properly (see Figure 5.7a) using these
parameter values. However, in some of the more complicated areas, segmen-
tation is insufficient (see Figure 5.7b). This can have negative consequences
during the later triangulation procedure, which works best if individual me-
dial sheets are given as input, else part of the sheets are not triangulated. For
these complex areas, a value of 7 for the k-nearest neighbours results in a
more segmented dataset (see Figure 5.7c), and provides better results in the
triangulation procedure for these areas. A downside of the lower k-number
is that more smaller medial sheet segments are formed, some of which are
so small that they are removed in the later artefact removal procedure. To
combine the strengths of the two settings, and mitigate their weaknesses,
the segmentation is performed separately with both parameter values. This
produces two separate datasets of medial sheets, which are combined at a
later stage. The segmentation script outputs a NumPy array with a segment
id for every MAT point, which are subsequently converted to the Object File
Format (.off) using a Python-based script with the NumPy package.

step 4: artefact removal The Object File Format files which form the
output of the segmentation procedure, are converted by Meshlab to Poly-
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Figure 5.6: A detailed workflow of the implementation designed for the identifica-
tion of water course centre lines using the MAT method.
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(a) Medial axis segmented into medial sheets for a section with straight water
courses. Using the parameter values 6

◦ for the bisector angle threshold, and
a value of 9 for the k-number. The segmentation performs well.

(b) Medial axis segmented into medial sheets for a section with curved water courses.
Using the parameter values 6

◦ for the bisector angle threshold, and a value of 9

for the k-number. The segmentation is suboptimal.

(c) Medial axis segmented into medial sheets for a section with curved water courses.
Using the parameter values 6

◦ for the bisector angle threshold, and a value of 7

for the k-number. The segmentation is slightly optimised with respect to (b).

Figure 5.7: The medial axis of the landscape as approximated by the MAT, seg-
mented into medial sheets, using different parameters for the segmen-
tation process. Note that the colours are randomly assigned to the seg-
ments.
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gon File Format (.ply), and subsequently converted to ASPRS LAS format
by CloudCompare. An octree structure is then created on the points in the
segmented medial sheets, using the octree generation script (see Broersen
et al. [2016] and Section 5.1). The octree is constructed such that all black
leaf nodes (thus nodes which contain points) have the same geometrical size,
which depends on the specified number of octree subdivisions. For the tile
size of 1x1 km used here (see Section 5.2), the number of subdivisions was
set to 8, which equates to an octant size of approximately 4x4 m. The octree
generation script stores the entire point cloud and octree structure in a Post-
greSQL database, thus a SQL query can be used to remove artefacts from
the point cloud based on point density in the octants. I slightly modified
the Python-based script by Broersen et al. [2016] to select only those points
from the PostgreSQL database in octants with more than 5 points. This
implementation uses the psycopg2 package to connect to the PostgreSQL
database from Python. Since all octants have the same cell size, this algo-
rithm essentially removes artefacts based on point density.

Additional artefacts are filtered by removing very small medial sheets
segments, which are likely to be collections of artefacts. The threshold size
for medial sheet segments to be removed depends on the segmentation pa-
rameters used in the segmentation algorithm (see step 3 of this section).
Optimal thresholds (see Figure 4.12b and Figure 4.12c for the result) were
obtained by trial and error, and are set to 50 points for the (6◦ bisector angle,
7 k-number) configuration, and 100 points for the (6◦ bisector angle, 9 k-
number) configuration. This filtering procedure was performed in sequence
to the previous filtering procedure, in the same Python script.

After the denoising procedures, the point cloud is corrected in a separate
Python script for the offset introduced during the earlier medial axis ap-
proximation (see step 2 of this section), by translating the point cloud using
the translation parameters stored in the corresponding NumPy Binary File.

step 5: extracting the water course centre lines The next step in
the workflow involves the extraction of the water course centre lines from
the medial sheets, which is done based on the implementation of the BPA

(see [Bernardini et al., 1999] and Section 3.3.3) in MeshLab (see Section 5.1).
The triangulation works best if it is performed separately for each medial
sheet, using a uniform subsection of the points in the sheet. First, the pack-
age liblas is used in a Python script to load the LAS file with segmented
medial sheets, and accordingly outputs a separate LAS file for each of the
segments. Subsequently, CloudCompare is used to take a uniform subset
of each of these segments, and export the segment to .xyz file. The uni-
form subset is taken such that the points are spaced approximately 2 m
apart, which is dense enough for a solid representation of the medial sheets.
Denser subsets can be used, but this significantly slows down the procedure.
The .xyz files are then loaded into Meshlab one by one, and the medial sheet
is triangulated using the Meshlab implementation of the BPA. The algorithm
requires three parameters values (see Section 5.1): (1) pivoting ball radius
(m), (2) clustering radius (% of ball radius), and (3) angle treshold (◦).

The algorithm was tested for multiple different configurations of these
parameters, and overall performed well using a 4 m ball pivoting radius,
20% clustering radius, and 40

◦ angle threshold. However, it is difficult to
find a configuration that is suitable for the successful triangulation of ev-
ery medial sheet. I found that, especially for the dataset created with 9

k-nearest neighbours, this parameter configuration did not always perform
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well. This dataset is less segmented, and there may thus be larger gaps
between groups of points. In these cases it is better to use a larger piv-
oting ball radius, and a higher angle threshold. Thus, for the 9 k-nearest
neighbours dataset, the triangulation was performed using 6 m for the ball
pivoting radius, 20% clustering radius, and 70

◦ for the angle threshold. The
combination of these two datasets is able to successfully triangulate nearly
all medial sheets. All the triangulations are stored in the Object File Format
(.obj). They are accordingly read by a Python script, and all the outer edges
on the lower half of the triangulation outline are selected (using methods
outlined in Section 4.2), and accordingly written to a shapefile using pyshp.
This shapefile then contains the centre lines of the water courses.

The procedures above result in the creation of two different shapefiles
with centre lines. These centre lines overlap in many places and do not con-
nect well. To create one single dataset of centre lines, the same methodology
(see Section 4.3) and implementation (see Section 5.3.4) is used as described
for the combined concave hull - MAT centre lines. The result is a dataset with
one centre line for every medial sheet.

5.3.4 Implementation of the combined concave hull - MAT method

To combined the datasets of water course centre lines stemming from the
implementation in Section 5.3.2 for the concave hull method, and the imple-
mentation in Section 5.3.3 for the MAT method, the methodology described
in Section 4.3 is followed. First, both centre line datasets are merged using
the SAGA QGIS function ‘Merge Layers’, after which they are buffered by 1

m and dissolved, using the QGIS function ’Fixed distance buffer’. This re-
sults in the creation of one water course polygon for every water course,
after which new centre lines can be derived for these polygons using the
implementation used for generating the centre lines in the concave hulls
implementation (see Section 5.3.2). The output is a shapefile of centre lines
generated by the combined concave hull - MAT prototype.

5.3.5 Degree of automation and processing time

As stated in Section 1.7, I designed the methodology for water course iden-
tification with full automation in mind, but full automation of the imple-
mentation is not a requirement. However, processes are automated in the
current implementation where possible, for practical purposes. The degree
of automation is shortly described for the implemented prototype in the fol-
lowing paragraphs. Additionally, an indication of the required processing
time is provided.

automation of the concave hull implementation The concave hull
implementation (see Section 5.3.1) is automated to a large degree. A batch
file calls the LAStools program to perform Step 1 and 2 of the procedure; the
point cloud filtering and concave hulls generation. Subsequently, the batch
file starts QGIS, and a plugin is executed which performs all the processes
described in Step 3 through to 10. Lastly, this plugin calls a Python script to
perform Step 11. In principle, the method can be fully automated, although
the current implementation requires the selection of appropriate parameter
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values. The processing time required for the current implementation varies
between 10 to 15 minutes for a 1x1 km area23.

automation of the mat implementation Execution of the MAT imple-
mentation (see Section 5.3.3) is somewhat more cumbersome than for the
concave hulls implementation. The first step in the process, filtering the
point cloud, currently is done separately from the rest of the implementa-
tion. Step 2 and 3, approximation and segmentation of the medial axis are
performed in Ubuntu which runs in a VirtualBox. These steps are auto-
mated by calling the required programs from a Bash script. Step 4 and 5 of
the implementation are performed in the native Windows environment, and
have been automated using a batch script. The CloudCompare procedures
are executed by using its command line environment, and Meshlabserver
is used to automate the MeshLab procedures. Similarly to the concave hull
method, the method has the potential for full automation, although the cur-
rent implementation requires the selection of appropriate parameter values.
The processing time required for the current implementation varies between
30 to 45 minutes for a 1x1 km area24.

automation of the combined concave hull - mat method The com-
bined implementation (see Section 5.3.4) is fully captured in a QGIS plugin,
which automatically performs all required procedures to generate a new
centre line. However, similarly to the other implementations, it requires the
selection of appropriate parameter values. The processing time required for
the current implementation varies between 5 to 10 minutes for a 1x1 km
area25.

5.4 validation of results
The generated datasets are validated to provide an indication of the perfor-
mance of the implementations, i.e. to indicate to what extent the generated
datasets can be considered valid. The following error metrics are defined
[Lillesand et al., 2008], for which reference datasets obtained from the HDSR

(see Section 5.2) serve as reference data:

• Error of omission: The error of omission is defined as the percentage of
water courses in the reference dataset, which are not identified by the
respective method.

• Error of commission: The error of commission is defined as the per-
centage of water courses in the generated dataset, which are not in
the reference dataset. Thus, this metric gives the percentage of water
courses on the generated map which were erroneously identified as
such.

• Positional accuracy: While the above metrics refer to the mapping accu-
racy, thus to the correctness of the map in terms of the percentage of
omitted or committed water courses, the positional accuracy refers to
the extent to which the actual position of the water courses is correctly

23 The indicated processing time is obtained by testing the implementation on a Windows 10

machine with an Intel(R) Core(TM) i5-4460 CPU @ 3.20GHz, 8 GB DDR3 RAM, and a 7200

rpm hard drive.
24 See footnote 24.
25 See footnote 24.
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indicated. It can be estimated by calculating the average positional
deviation for multiple water courses in the generated dataset with re-
spect to the reference dataset.

These metrics can give a solid indication of the mapping (errors of omis-
sion and commission) and positional accuracy of the generated datasets, but
it has to be taken into account that the reference datasets can also contain er-
rors (see a description of the reference dataset specifications in Section 5.2),
which affects the computed error metrics. This complication has to be taken
into account when evaluating the metrics26.

Section 5.4.2 and Section 5.4.1 describe the possible methodologies to esti-
mate these metrics for the datasets of water course polygons and centre lines,
and the implementations are described in Section 5.4.3 for the water course
polygons, and Section 5.4.4 for the centre lines. Note that there can be dis-
tinct differences between the validation results of the two datasets. Whereas
the validation of the water course polygons indicates the extent to which
the identification was correct in terms of water surface area, the validation of
water course centre lines indicates the extent to which the identification was
correct in terms of the number of water courses.

5.4.1 Validation of water course polygons

The mapping accuracies can be estimated by intersecting the generated wa-
ter course polygons with the reference water course polygons. To estimate
the error of omission, the polygon areas of the reference dataset which do
not intersect with the generated dataset are summed, and accordingly di-
vided by the total polygon area of the reference dataset. Similarly, the er-
ror of commission can be estimated by summing the polygon areas of the
generated dataset which do not intersect with the reference dataset, and
subsequently dividing these by total polygon area in the generated dataset.
These mapping accuracies give an estimate of the extent to which the gener-
ated and reference datasets agree with respect to the total identified water
course surface area, but not of positional accuracy. I currently do not have
an adequate way of computing the positional accuracy for the generated
dataset. The centre lines generated by the concave hull method are derived
from the water course polygons, thus the positional accuracy computed for
the centre line dataset (see Section 5.4.2) can also give an estimate of the po-
sitional accuracy for the water course polygons. However, it has to be kept
in mind that some additional positional error may have been introduced
during centre line generation.

5.4.2 Validation of centre lines

I identified three methods which can provide in validation of the generated
centre lines; (1) manual selection of points of interest, (2) buffer operation,
and (3) point matching. These methods are briefly described here, and a
best method is selected based on weighing of their advantages and disad-
vantages.

• Manual selection of points of interest: Points of interest can be selected
manually in the generated and reference centre line dataset, for exam-

26 Manual identification of water courses from aerial imagery or the AHN3 point cloud could pro-
vide an alternative reference dataset (which is also listed as possible future work in Section 7.3),
but requires significant labour.
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ple at well recognisable places such as intersections. The positional
deviation of these points in the generated dataset with respect to the
reference dataset, can then be measured and averaged, giving an indi-
cation of the positional accuracy for the generated dataset.

• Buffer operation: A buffer operation can be performed on the centre
lines in the generated dataset, thus forming a set of polygons of which
the size depends on the specified buffer. Then, the reference centre
line dataset can be intersected with these polygons, and the line seg-
ments which do not intersect with any of the polygons are selected.
By accordingly calculating the cumulative length of these lines, and
relating this to the total centre line length of the reference dataset, an
estimate of the error of omission is obtained. A similar procedure can
be used to obtain the error of commission, for which the buffer op-
eration should be performed on the reference dataset, and the centre
lines in the generated dataset should be intersected with the resulting
polygons. This validation method can give estimates of the mapping
accuracy, but does not directly evaluate the positional accuracy of the
generated dataset. However, some measures of the positional accuracy
can be derived from the buffer operations and identified mapping ac-
curacies. For example, if the centre lines are buffered by 0.5 m, and
the error of omission is estimated at 15%, then this means that 85%
of the water courses must have been positioned within 0.5 m distance
of their position on the reference map. These metrics can be repeated
for different buffers sizes, giving a better indication of the positional
accuracy of the generated dataset.

• Point matching: Another method is to take a subset of points on the
generated centre lines, and accordingly identify for these points what
is the shortest euclidean distance to the centre line in the reference
dataset. By averaging these distances, and estimate is obtained of the
generated dataset’s positional accuracy. Furthermore, it is possible to
obtain the mapping accuracies by setting threshold distances. For ex-
ample, if a threshold distance of 2 m is set, and the distance between
a point on the generated centre line and the reference centre line is
larger than this distance, then this point counts as an error of com-
mission. Similarly, points can be selected on the generated centre line
to find the error of omission. The metrics are computed by taking the
number of points omitted or committed, relative to the total number of
points. All the identified error metrics can be computed using random
or uniform point matching.

From the identified methods, manual selection of points of interest is by
far the most subjective, and only provides the positional accuracy and not
the mapping accuracies. By using buffer operations, all metrics describing
the mapping accuracy can be directly estimated, but a direct measure of
the positional accuracy is not available and has to be derived from the map-
ping accuracy. Random or uniform point matching provides directly both
the mapping and positional accuracy in an objective manner, and is thus
selected as the most suitable validation method for the centre line datasets
generated in this thesis.
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5.4.3 Implementing the water course polygons validation procedure

Validation of the water course polygons generated by the concave hull im-
plementation (see Section 5.3.1) was done after the methods described in
Section 5.4.1. The following procedures were all performed in QGIS, man-
ually for each of the four areas to which the concave hull implementation
was applied. The dataset of water course polygons supplied by the HDSR (see
Section 5.2) was used as reference data. First, the nine tiles (see Section 5.2)
with generated water course polygons for an area are merged using the QGIS

SAGA function ’Merge Layers’. The polygons in both the generated and ref-
erence datasets are then dissolved, forming essentially one large polygon
for each of the datasets, using the QGIS SAGA function ’Polygon dissolve
(all polygons)’, while keeping the inner boundaries. The QGIS function ’Ex-
port/Add geometry columns’ is then used to find the total surface area of
the water courses in each of these datasets. The QGIS function ’Difference’ is
then used to generate a difference layer for both the reference and generated
datasets, the resulting datasets of which respectively indicate the omitted
and committed surface areas. The polygons in both datasets are then dis-
solved using the QGIS SAGA function ’Polygon dissolve (all polygons)’, while
keeping the inner boundaries, after which the QGIS function ’Export/Add
geometry columns’ is used to compute the total surface areas for the omit-
ted and committed water surfaces. By dividing the omitted surface area by
the total surface area in the reference dataset, and dividing the committed
surface area by the total surface area in the generated dataset, an indication
is obtained of the percentage of the water surface areas which were omitted
and committed.

5.4.4 Implementing the water course centre lines validation procedure

The generated datasets are validated using the methods described in Sec-
tion 5.4.2 for the water course centre lines. The methodology was imple-
mented in a Python script, using the Fiona, NumPy, and pykdtree packages
(see Section 5.1.3). The error metrics are computed separately for each of
the four areas (see Section 5.2), and for each of the three implementations
(Section 5.3.2, Section 5.3.3, and Section 5.3.4), thereby using the datasets
supplied by the HDSR as reference data (see Section 5.2). The following para-
graphs describe how the validation procedures were implemented.

preparing the datasets The water course centre line datasets output by
the concave hull and MAT implementations, as well as the HDSR centre line
reference dataset, need to be prepared before metrics can be computed. First,
the nine tiles (see Section 5.2) with centre lines are merged for every area
using the QGIS SAGA function ’Merge Layers’. Then, the QGIS SAGA function
‘Convert lines to points’ is used to convert the reference and generated centre
line datasets to points, while inserting additional points every 0.1 m for the
reference dataset, and every 1 m for the generated datasets. The additional
insertion of points every 1 m for the generated datasets is needed to ensure
that the validated points are approximately evenly spaced, and that points
are present in the entire network. Points were inserted every 0.1 m for the
reference dataset, to ensure that these points are spaced densely enough to
make possible an accurate estimate of the approximate distances between
the centre lines.
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computing the error metrics To compute the metrics, I wrote a small
Python script that uses the Fiona package to read the shapefiles containing
the generated and reference points, which result from the data preparation
procedure. These points are stored in two separate NumPy arrays, after
which pykdtree is used to generate kd-trees on the arrays of points, which
enables swift nearest neighbour finding. The errors of omission and com-
mission are then computed in two separate procedures:

• The error of omission is computed by using nearest neighbour searches
for the points in the reference dataset, thereby identifying for every
point, the distance to the closest point in the generated dataset. Then,
if the distance between the reference point and its closest neighbour
in the generated dataset is larger than 5 m, then the reference point
is counted as an error of omission. The number of reference points
identified as error of omission is then divided by the total number of
points in the reference dataset, which gives the error of omission for
the generated dataset.

• The error of commission is computed by using nearest neighbour searches
for the points in the generated dataset, thereby identifying for every
point, the distance to the closest point in the reference dataset. Then,
if the distance between the generated point and its closest neighbour
in the reference dataset is larger than 5 m, then the generated point is
counted as an error of commission. The number of generated points
identified as error of commission is then divided by the total number
of points in the generated dataset, which gives the error of commission
for the generated dataset.

The positional accuracy of the generated dataset is obtained by taking the
average of the distances from the generated points, to their closest neighbour
in the reference dataset, but only for those generated points which have not
been identified as error of commission. The described validation procedure
is done separately for every dataset of centre lines (thus for the different
areas and different methods).

5.5 experiments
This section describes the performance of the prototype implementations
for the identification of water course polygons (see Section 5.3.1) and centre
lines (see Section 5.3.2, Section 5.3.3, and Section 5.3.4) for all four areas.
The metrics for the different areas are displayed in Table 5.2 for the water
course polygons, and Table 5.3 for the centre lines. Section 5.5.1 describes
the mapping accuracies, and Section 5.5.2 describes the positional accuracies.
For a description of the areas used in these experiment, the reader is referred
to Section 5.2.

5.5.1 Mapping accuracies

clay Performance of both the concave hull and MAT method is good for
the clay area (see the virtually absent errors of omission in Figure 5.8a and
Figure 5.8b). Both methods manage to identify more than 95% of all water
courses, while the two methods combined even identify more than 98%.
Furthermore, the error of commission is below 1.5% for the concave hull
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Table 5.2: This table lists the metrics which were computed (after Section 5.4.1) for
the water course polygons generated by the concave hull, for the clay, peat,
sand, and urban areas.

dataset

Error metric Clay Peat Urban Sand

Error of omission (%) 13 10 6 43

Error of commission (%) 6 8 11 15

Table 5.3: This table lists the metrics which were computed (after Section 5.4.2) for
the centre lines generated by the concave hull, MAT, and combined con-
cave hull - MAT, for clay, peat, sand, and urban areas.

dataset

Error metric Clay Peat Urban Sand

Positional accuracy (m) Concave hull 0.5 0.7 0.7 0.6
MAT 0.6 0.8 1 0.8
Combined concave hull - MAT 0.6 0.7 0.8 0.9

Error of omission (%) Concave hul l 5 5 9 58

MAT 4 15 15 26

Combined concave hull - MAT 2 3 5 24

Error of commission (%) Concave hull 1 2 17 4

MAT 8 8 46 17

Combined concave hull - MAT 8 8 47 17

and 8% for the MAT and combined concave hull - MAT. Also for the omission
and commission of the total water surface area (13% and 6%), the concave
hull method performs relatively well27. The clay area is in many ways an
ideal area for both methods to identify water courses. This is because the
water course surfaces are wide, easing identification using the concave hull,
and also the water courses have sufficient concavity to be identified by the
MAT. Furthermore, vegetation in the area is mostly limited to small patches
near built environments, and does not cover much of the water courses.

peat For the peat dataset, the concave hull performed equally well as for
the clay dataset, with 95% of all water courses identified. The total percent-
age of water surface area identified also scored similarly to the clay area,
with 90%. However, the MAT performed less (see the difference between
Figure 5.8c and Figure 5.8d), with only 85% of water courses identified. The
concave hull method performs equally well here since water surfaces are
even wider than in the clay area (see also Section 5.2), and can thus by iden-
tified based on this characteristic, and also there is little vegetation covering
these surfaces. However, the water courses display less clear concave pro-
files, since relative water levels are higher here (thus many water courses
have only very small banks), which impedes classification by the MAT in
multiple cases. Although the MAT performs less for this area, it still man-
ages to identify some of the water courses which were not identified by the

27 Note that the differences of water course outline identification between the concave hull
method (Section 5.3.1) and the HDSR (Section 5.2) are markedly different, thus there will al-
ways be some error of omission of commission for every water course polygon.
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0 100 200 m

 Identified water courses
 Missed water courses

(a) Error of omission of the clay area for
the concave hull.

0 100 200 m

 Identified water courses
 Missed water courses

(b) Error of omission of the clay area for
the MAT.

0 100 200 m

 Identified water courses
 Missed water courses

(c) Error of omission of the peat area for
the concave hull.

0 100 200 m

 Identified water courses
 Missed water courses

(d) Error of omission of the peat area for
the MAT.

Figure 5.8: The errors of omission for the generated centre lines shown for the con-
cave hull and MAT for the clay and peat areas (background aerial photo
courtesy of PDOK).

concave hull method. This is indicated by the fact that the combined con-
cave hull - MAT method identifies roughly 97% of the water courses, which is
more than the concave hull method does by itself. The errors of commission
are comparable to the clay dataset.

urban For the urban dataset, the concave hull identified more than 90%
of all water courses, while the MAT identified approximately 85%. This area
is characterized by water courses which are very variable in shape of the wa-
ter surface and concavity of their banks. Although the concave hull method
has no problems identifying the open water surfaces (as indicated by the 6%
error of omission in terms of water surface area), since they are mostly wide
enough here, it does not do a good job estimating the centre lines for larger
water surfaces. In these cases, many branches are formed (see Figure 5.9b),
which are not removed in the branch pruning process since they are gen-
erally longer than the threshold for branch removal. This causes many of
the errors of commission for the concave hulls approach (which is also in-
dicated by the fact that the error of commission of the water surface area
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is somewhat lower with only 11%), but also increases the error of omission
since the centre lines may be out of place and thus counted as error of omis-
sion. Furthermore, there are relatively many dry water courses in the urban
environment, which are not identified by the concave hull method (see Fig-
ure 5.9a). The MAT has relatively high error of omission (see Figure 5.9c)
due to the irregular channel banks (e.g. vertical or very small banks), which
lead to highly fragmented or no medial sheets. However, what is more im-
portant is the high error of commission for the MAT, with more than 45% of
the dataset being erroneous. Many of these errors are caused by the many
human-engineered concavities and convexities (see Figure 5.9d) which are
present in this urban environment, many of which are not water courses.
The combined concave hull - MAT identifies 95% of all water courses, but
also contains all the errors propagated from the MAT.

0 100 200 m

 Reference water courses
 Missed water courses

(a) Error of omission of the urban area
for the concave hull.

0 100 200 m

 Reference water courses
 Erroneously identified water courses

(b) Error of commission of the urban
area for the concave hull.

0 100 200 m

 Identified water courses
 Missed water courses

(c) Error of omission of the urban area
for the MAT.

0 100 200 m

 Reference water courses
 Erroneously identified water courses

(d) Error of commission of the urban
area for the concave hull.

Figure 5.9: The errors of omission and commission for the generated centre lines
shown for the concave hull and MAT for the urban area (background
aerial photo courtesy of PDOK).

sand The concave hull method does a poor job in identifying the water
courses in the sand area (see Figure 5.10a), it finds just over 40% of all water
courses. This is caused by the fact that water is not well visible in this
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landscape, water surfaces are often narrower than 1 m, and many patches
of forest are present. The method performs somewhat better in terms of the
water surface area which is identified (57%), but this difference in is mainly
caused by the fact that the larger (thus more surface area) water courses
in the area are correctly identified, which thus have a major weight in the
computation of this percentage. The MAT does a better job (see Figure 5.10c)
with more than 74% of water courses identified, but similarly struggles with
the identification of the narrower water courses. The concave hull method
displays very little error of commission (see Figure 5.10b), which is typical
for this method in all the four areas (again, the error of commission in terms
of water surface is higher with 15% since several large water courses weigh
heavily on this percentage). The MAT shows an error of commission of more
than 17%, however I estimate that at least half of these are not actually
errors, they are water courses which are not present in the reference dataset
(see Figure 5.10b), but are actually existing water courses. Combining the
concave hull and MAT methods for this area only raises the identification
rate of the water courses to roughly 76%, indicating that the MAT identified
almost all of the water courses identified by the concave hull, and is clearly
the better performing method (in the current implementation) for this area.

5.5.2 Positional accuracy

Average positional accuracy of the different methods is in the order of 0.5 to
1 m, which slightly varies per area. For regular, straight water courses, the
positional accuracy is generally below or close to 0.5 m, but deviations are
often larger near intersections. This is presumably also the reason that the
positional accuracy is highest for the clay area, since this area is the most
characterised by straight water courses. In general, the concave hulls and
MAT methods agree quite well in terms of position, while the HDSR reference
dataset often deviates from the two.

5.5.3 The quality of reference and input data: impact on error metrics

The analysis of the identification results in Section 5.5.1 has indicated that
the reference dataset provided by the HDSR (see Section 5.2) does not always
present the ‘true’ situation, it contains errors in the identification and po-
sitioning of water courses. Multiple situations were encountered where a
water course was present in the reference dataset, which was clearly not
present in the AHN3 data and the resulting generated datasets. These situ-
ations were encountered in each of the four areas (see Section 5.2), and an
example is shown in Figure 5.11 for such a situation encountered in the ur-
ban area. Figure 5.11a shows that a water course was not identified, which
is present in the reference dataset. However, this water course is also not
present in the displayed background aerial photo of spring - summer 2014

(obtained from PDOK), and since both the AHN3 as well as the HDSR reference
datasets stem from winter 2014 (thus a time discontinuity between the data
is not of influence), this appears to be an identification error in the HDSR

reference dataset. Interestingly, the water course is visible in an aerial photo
of 2007 (obtained from Google Maps, see Figure 5.11b), which indicates that
this may be an artefact which stems from an earlier version of the HDSR ref-
erence dataset. Of course, other identification errors may be present in the
dataset, which are solely caused by the human interpreter. Another identi-
fied error of the HDSR reference dataset, is that some water courses identi-



74 implementation and experiments
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 Identified water courses
 Missed water courses

(a) Error of omission of the sand area
for the concave hull.

0 100 200 m

 Reference water courses
 Erroneously identified water courses

(b) Error of commission of the sand
area for the concave hull.
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 Identified water courses
 Missed water courses

(c) Error of omission of the sand area
for the MAT.

0 100 200 m

 Reference water courses
 Erroneously identified water courses

(d) Error of commission of the sand
area for the MAT.

Figure 5.10: The errors of omission and commission for the generated centre lines
shown for the concave hull and MAT for the sand area (background
aerial photo courtesy of PDOK).

fied by the concave hull and MAT methods are not present in the reference
dataset, while they clearly appear to be correctly identified water courses.
These situations occur mostly in the sand area, of which Figure 5.10d shows
an example. Here a large number of water courses are identified, which
are not present in the reference dataset, but which based on shape and size
clearly seem to be valid water courses. These water courses are hard to
identify, since they are covered by forest, thus this likely indicates an incom-
pleteness of the reference dataset.

Next to identification errors, also positional errors may be present in the
reference dataset. Many cases were identified where, based on compari-
son to aerial photos, the generated products by the concave hull and MAT

methods seemed to be closer to the ‘true’ situation than the HDSR reference
dataset. However, in about equally many situations the HDSR datasets per-
formed better than the generated datasets. As described in Section 5.5.2,
the concave hull and MAT results agree well in most cases, while the HDSR

dataset deviates from the two. This suggests that either the environmental
conditions were different for the AHN3 as opposed to the HDSR reference
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datasets (for example a difference in water level, which can significantly
change within days), or the subjectivity of the human interpreter of the
HDSR reference datasets is of influence (thus the difference in procedures).
The difference in input data and used procedures to create the reference
and generated datasets, is also very clearly visible by comparing the met-
rics for the identification of water courses (Table 5.3), to the metrics for the
identification of water surface area (Table 5.2). These computed values can
differ significantly for the same area, which is caused by the fact that the
metrics for the identification of water surface area are more sensitive to the
differences between the methods. Although the centre line may be correctly
identified (and thus the water course is identified), there may still be signif-
icant differences between the polygons of the water courses, and thus their
surface areas.

Next to the problems described above, it also has to be taken into account
that there is some specified inaccuracy in the AHN3 (see Section 1.1) and
HDSR reference datasets (see Section 5.2), and my methods depend strongly
on the correct classification of point in the AHN3. Concluding from the prob-
lems identified above, it can be said that there is no way of knowing which
of the datasets represents the ‘true’ situations, without synchronized input
data and solid ground truth. Thus, the computed error metrics should be
used as only an indication of the ‘true’ mapping and positional accuracies
of the designed methods.
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0 50 100 m

 Identified water courses
 Missed water courses

(a) The error of omission with a background aerial
photo of PDOK, stemming from 2014.

0 50 100 m

 Identified water courses
 Missed water courses

(b) The error of omission with a background aerial
photo of Google Maps, stemming from 2007.

Figure 5.11: The error of omission shown for the centre lines generated by the con-
cave hull for the urban area, displayed with two different background
photos. This shows that the area has changed in the time period be-
tween the two photos.



6
REFLECT ION ON THE
PERFORMANCE AND
IMPLEMENTAT ION OF THE
CURRENT PROTOTYPE

Chapter 5 described the implementation of the methodology, and presented
the results of the experiments. Based on these results, this chapter describes
the strengths and weaknesses of the concave hull method in Section 6.1,
and of the MAT method in Section 6.2. Additionally, these sections will give
insight into why the methods performed as they did, and possibilities for
future improvement of the implementations are suggested.

6.1 the concave hull method
strong performance in flat and water abundant landscapes The
concave hull method identifies water courses based on the presence of voids
in the LiDAR measurements, caused by the absorption of the LiDAR signal
by water, and adequate filtering of the remaining water points from the
point cloud. Therefore, the method can operate completely independent of
landscape topography; i.e. the presence or lack of topographic relief of the
landscape is of no influence, as long as the water courses have significantly
large water bodies. The ability of the method to identify water courses in
virtually flat landscapes is showcased by its solid performance for the low-
relief peat area (see Section 5.5.1), whereas the MAT suffers in this area from
the lack of surface curvature of the water courses. Thus, the concave hull
method is particularly suited for use in areas where relative water levels are
high and water is a predominant feature of the landscape.

robustness to errors In rural areas, the concave hull method is char-
acterized by low error of commission; the chance that a water courses iden-
tified by this method is not actually a water course in reality, is very small.
This is due to the fact that the concave hull method makes use of the voids
in the LiDAR measurements, and in rural areas there is only one major fac-
tor which induces such voids; the presence of water bodies. The removal
of vegetation points from the dataset in the filtering procedure (see Step 1

of Section 5.3.1) can also induce such voids, but the resulting artefacts are
largely removed by using an effective cleaning method (see Step 3 of Sec-
tion 5.3.1). Furthermore, the error of omission of the concave hull method
is equally low to the error of commission, for water abundant and low-
vegetation areas. This is due to the fact that the procedure used to identify
the water course polygons is relatively simple and concise (see Section 5.3.1),
thus there is little which can go wrong in the identification procedure. In
other words; if a significantly wide and uncovered water course is present
in the landscape (granted that water points are adequately classified, and
red laser is used for the LiDAR measurements), then it is highly likely that
the concave hull method will correctly identify it. The robustness to errors
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is a major strength of the concave hull method, and makes it a safe solution
for combination with other methods, since it adds few additional errors.

sensitivity to water surface width The current implementation of the
concave hull method is limited to the identification of water courses with a
water surface width of at least 1 m, which is due to the fact that a value
of 1 m was specified for the ’concavity’ parameter (see Section 3.2.1 for an
explanation of this parameter). As a consequence of this concavity value, if
a water surface - thus the void in the point cloud - is narrower than 1 m,
then it is not identified by the concave hull algorithm (see Section 3.2.1) as a
void. Thus, the water course will not be identified in this case. In the sand
area, water surfaces are not seldom less than 1 m wide (see Section 5.2),
which partially explains why the method performs poorly for this area (see
Section 5.5.1). Furthermore, this sensitivity also means that the concave hull
method is very sensitive to the water level at time of LiDAR measurements.
If water levels are low, then water surfaces may not be wide enough, or they
may even be dry, and the water courses can not be identified.

sensitivity to vegetation coverage The removal of vegetation points
from the point cloud (see Step 1 of Section 4.1.1) can introduce artefacts
into the concave hull dataset, which are effectively filtered using a cleaning
method (see Step 3 of Section 4.1.1). This cleaning method works well when
vegetation is present in small patches only (such as in the clay and peat
area), but it causes problems when vegetation coverage is extensive (such as
in the partially forested sand area, see Section 5.5.1). In these situations, the
vegetation may cover entire water courses, which are accordingly removed
from the dataset in the cleaning method. This presumably explains par-
tially (next to the sensitivity to water surface width) the low performance
of the concave hull method for the sand area, and indicates that the current
implementation is not suited for use in areas with high vegetation coverage.

the difficulty of water course identification in urban areas Ur-
ban environments display a wide variety of different types of water courses,
which are very variable in their water surface width, vegetation coverage,
and water levels. For the urban area, the error of commission by the con-
cave hull method is around 17% (see Section 5.5.1). This has two reasons,
the most important of which is that the branch pruning procedure (see Step
9 of Section 4.1.2) requires setting a threshold on the branch length. This
works fine for rural environments, where water courses are relatively ho-
mogeneous in surface width, but poses problems for urban environments
where water surface width varies significantly. For such variable water
courses, part of the branches will be longer than the specified threshold
length, and will thus not be removed from the dataset of centre lines, and
are accordingly identified as errors of commission in the validation proce-
dure (see Section 5.4.4). A second, somewhat less influential, factor that
affects the error of commission in urban areas is the shadowing effect of tall
buildings (which introduces voids into the LiDAR dataset). Lastly, the urban
area has relatively many dry water courses, which are not identified by the
concave hull method, and increase the error of omission for this area.

improving the current implementation of the concave hull method
Based on the results in Section 5.5.1 and the discussion in this section, a
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number of possible future improvements to the current implementation of
the concave hull method (see Section 5.3.1 and Section 5.3.2) are identified:

• Lower concavity value: This value controls the threshold distance for
voids to be considered part of the exterior (Section 3.2.1). In the current
implementation, this value is set to 1 m, which limits the identification
of smaller water courses. I expect that lowering this threshold to sub-
meter values will significantly increase identification of these smaller
water courses, and will thus improve the metrics obtained for the sand
area. However, lowering this value significantly increases the number
of artefacts (e.g. those caused by vegetation, see Step 3 of Section 4.1.1),
thus more extensive artefact filtering procedures will be required.

• Filtering vegetation artefacts: Currently, a filtering procedure removes
vegetation-induced artefacts from the concave hull dataset (see Step
3 of Section 4.1.1). However, if water courses are entirely covered
by vegetation, then they may be identified as artefacts and removed
from the dataset. I suggest to extend the current filtering procedure
by taking into account the typical shapes of water courses; they are
typically extensive elongated features, which is not true (in the vast
majority of cases) for vegetation artefacts (see e.g. Figure 4.3b). A
decision rule should be formed based on this property, which decides
whether to remove the artefact or not.

• A dynamic threshold for branch removal: The current method to generate
and clean centre lines (see Section 4.1.2) works well for water courses
in rural areas, which are relatively homogeneous in shape and size.
However, as indicated by the error of commission for the urban area
(see Section 5.5.1), the removal of unwanted branches from the cen-
tre lines does not currently work well for water courses with highly
irregular size and shape. The problem is that a static threshold is
used for branch removal (see Step 11 of Section 5.3.2), which is not
sufficient when datasets contain variable-width water courses, since
branch lengths generally become longer with water course width (see
Figure 5.9b for an example of a water course with variable width, for
which the unwanted branches are not automatically removed). This
may be mitigated by using a dynamic threshold, which depends on
water course width. Furthermore, the generation of a correct centre
line is ambiguous for water bodies which are not shaped like a typical
water course ( e.g. for lakes, ponds such as Figure 6.1a). A solution
may be to detect such shapes, and exclude them from centre line gen-
eration.

• Shadowing effect of buildings: In urban areas, the shadowing effect of
buildings (i.e. they block the LiDAR signal in case of non-vertical in-
cidence angles due to overhang) introduces additional voids into the
dataset, which lead to vegetation-like artefacts (see Figure 4.3b), for
which centre lines are generated (see Figure 6.1b). However, since
there is no vegetation on these locations, the current artefact removal
procedure (see Step 3 of Section 4.1.1) does not remove them. To filter
these artefacts, concave hull could be generated of the building points
in the AHN3 dataset. By slightly buffering the resulting polygons (e.g.
a few m), and subsequently identifying which of the artefacts are con-
tained within these polygons, the corresponding artefacts could be
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0 50 100 m

(a) The generation of a correct centre
line for non-elongated water bod-
ies is ambiguous (background aerial
photo courtesy of PDOK).

0 25 50 m

(b) The shadowing effect of buildings
causes voids in the LiDAR data, lead-
ing to artefact centre lines (back-
ground aerial photo courtesy of
Google Maps).

Figure 6.1: This figure shows two problems which commonly occur with the centre
line generation by the concave hull, especially in urban areas.

removed. This is a relatively safe procedure, since water courses are
typically located further away from buildings.

• Artificial objects: Artificial objects (e.g. bridges) are removed from
the point cloud (see Step 1 in Section 4.1.1) since they obstruct wa-
ter courses. In some cases, bridges are removed which do not cross
water courses, but simply cross another road. This leaves additional
voids in the point cloud, and thus leads to artefacts in the concave
hull data, which are not filtered similarly to the previously mentioned
shadowing effect artefacts. The centre lines generated for these arte-
facts have in common that they are parallel to the removed objects,
while the centre lines of water courses are by definition not parallel
to the objects (e.g. bridges) that cross them. This can be a simple, yet
effective, characteristic to the artefact centre lines.

6.2 the mat method
sensitivity to surface curvature While the MAT does not specifically
compute any surface curvature values, it does depend on this landscape
characteristic through the size of its medial balls (see Section 3.3). Thus, if
the landscape is flat, and has no curved features, then no skeleton of the
landscape can be derived. Similarly, if the banks of the water courses in
the landscape show no or very little curvature, then the MAT will be un-
able to identify these channels. This fact explains why the MAT performs
better for the clay area than for peat, although both areas are similar with
respect to the dominant role of water in the landscape. In the clay area, the
water courses have a clear concave profile, while this profile is much less
distinguishable in the peat area (see Section 5.2). The identification of wa-
ter courses in the sand area is problematic for similar reasons. In the sand
area, water courses are much less dominant landscape features than in the
clay and peat areas; there are a few larger water courses which display a
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pronounced curvature, but the majority of water courses here are so narrow
that there are not enough LiDAR points on the surface banks to approximate
the MAT from (this is of course also caused by the current point spacing of
the AHN3). It can be said that the clay area forms a nearly ideal environment
for the identification of water courses by the MAT, with clear concave profiles
and enough LiDAR points on the surface banks. Furthermore, the concave
features in this area are almost all water courses, so there is relatively little
pollution from other sources (this would be different in high-relief terrain).
An advantage of the dependence on surface curvature is the ability to de-
tect both wet and dry water courses, since surface curvature is theoretically
independent from water level (unless the water course is entirely flooded,
covering the banks). This feature is a very strong point of the MAT method,
which distinguishes it from the concave hull method, and makes it a valu-
able addition.

insensitivity to voids in the point cloud Contrary to the concave
hull method, the MAT method is not sensitive to voids in the input LiDAR

point cloud. The input dataset is allowed to contain voids, which makes it
possible to filter out any unwanted classes such as buildings or vegetation.
Consequently, the MAT can theoretically perform equally well in vegetated
areas, as it can in areas without vegetation. This is also true in practice, as
long as the canopy is not too dense and allows some returns of the LiDAR

signal. If the vegetation coverage is too dense, then the water course banks
can be devoid of LiDAR measurements, and the water courses cannot be
identified. However, such situations are not wide spread, and in general the
insensitivity of the MAT to vegetation coverage can be presented as a strong
point.

prone to errors The sensitivity of the MAT method to surface curva-
ture allows it to identify (dry) water courses, but this also makes it prone to
identification errors. Water courses generally have a concave profile, which
is reflected in the skeleton of the landscape. However, there can also be
other features in the landscape with a concave profile, which are not nec-
essarily part of the drainage network (e.g. small inundations or rows of
crops such as potatoes see Figure 6.2a). Furthermore, convex features such
as levees or piles of earth or dirt are also present in the landscape. All
these examples introduce errors into the identification results, leading to
such features being identified as water courses (see Figure 6.2, while they
are different features in reality. Furthermore, the current implementation of
the MAT method is quite convoluted; e.g. relatively many procedures are
required (see Section 5.3.3) to identify the centre lines from the input AHN3

point cloud. This further heightens the chance of error inclusion, since there
are simply more processes where an error can be introduced.

the difficulty of water course identification in urban areas Simi-
larly to the disjoint hull method, also the MAT has a high error of commission
in urban environments (see Section 5.5.1). Urban areas are especially sus-
ceptible to noise in the MAT, due to the human modifications of the original
landscape, which introduces many local convexities and concavities (which
are not all water courses). Furthermore, many of the water courses are
asymmetrical, and the edge selection algorithm (explained in Step 5 of Sec-
tion 4.2) does not perform well in these cases (see Figure 6.3 and Figure 6.4),
leading to very messy centre lines and many errors of commission. Next to
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(a) Rows of freshly planted potatoes,
which add local relief to the terrain
(image courtesy of Hilda Schuitema,
fotoo.nl).

0 50 100 m

(b) Artefact centre lines caused by lo-
cal relief (background image cour-
tesy of PDOK).

Figure 6.2: Local forms of topographic relief, for example caused by farming activi-
ties, can potentially lead to artefacts in the set of centre lines generated
by the MAT.

a high error of commission, the MAT method also shows are relatively high
error of omission for the urban area. Water courses in urban areas are very
variable with respect to their surface width, which is also true for the nature
of their banks. In many cases, houses border the water courses, replacing
any form of a natural bank. Furthermore, these water courses can be very
wide and sometimes have vertical banks. The shrinking ball algorithm (see
Section 3.3.1) then returns a very patchy or even no medial axis, thus the
water course are not identified, causing errors of omission.

improving the current implementation of the mat Similarly to the
concave hull method, based on the results in Section 5.5.1 and the discussion
in this section, a number of possible future improvements to the current
implementation of the MAT method (see Section 5.3.3) are identified:

• Improving noise filtering: The current MAT implementation performs an
artefact filtering procedure based on points density (see Step 4 in Sec-
tion 4.2). However, as indicated earlier; although the landscape in
the tested areas (see Section 5.2) is generally low-relief, there are still
irregularities present in the form of local concavities or convexities
(e.g. levees, inundations). The current MAT implementation does not
foresee in filtering artefacts caused by such irregularities. This leads
to high errors of commission compared to the concave hull method,
which is especially true for the urban area. Part of these artefacts are
caused by convex features. Since water courses are by definition con-
cave features, a possibility would be to detect convex features, and
prevent the MAT from approximating the medial axis for such features.
A second procedure should be implemented which detects local con-
cavities which do not have the typical shape of a water course, which
can then also be filtered out. The two procedures together should filter
a good deal of the generated artefacts, and error of commission should
be closer to the concave hull values.
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(b) The centre line is generated next to
a high convex feature on one side of
the water course, which thus has an
asymmetrical cross section (shown
is a gridded version of the AHN3

DTM).

Figure 6.3: The current implementation of the MAT sometimes generates very messy
centre lines for asymmetrical water courses.

Figure 6.4: The asymmetrical water course shown in Figure 6.3, leads to the genera-
tion of a large, tilted medial sheet. Furthermore, the sheet has a patchy
distribution of medial points, which leads to holes in the corresponding
triangulation. The edge selection algorithm (explained in Step 5 of Sec-
tion 4.2) extracts all the lower edges, which includes the lower edges in
these holes, which explains the messy centre line generated in Figure 6.3.
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• Improving water course segmentation: The current implementation of the
medial axis segmentation (see Step 3 of Section 5.3.3) performs well
in most situations, but not when water courses have less pronounced
concavity. In these cases, the medial axis can be patchy, and the seg-
mentation algorithm segments these into many separate sheets. Some-
times this results in the creation of many very small segments, which
are currently automatically filtered out (see Step 4 in Section 5.3.3).
Ideally, these segments should be joined so that they are not filtered
out, and can still be used to represent parts of the water courses1. Ad-
ditionally, medial sheets that are not parallel to each other, or do not
belong to the same water course, should be represented by separate
segments. This additional segmentation rule would decrease the need
for a second segmentation procedure as is used now (with different
segmentation parameters, see Step 3 of Section 5.3.3). This leads to a
less convoluted implementation, and decreases processing time.

• Triangulation and edge selection of medial sheets with gaps: The BPA (see
Section 3.3.3) currently used for the triangulation of medial sheets
works well in most cases, but fails to perform when sheets need to
be triangulated which contain gaps larger than the size of the pivot-
ing ball. In such cases, only a segment of the sheet is triangulated
(see Figure 6.5), and thus parts of the water course centre lines are not
generated. Currently, the implementation uses the BPA implementa-
tion of MeshLab (see Section 5.1.2). My suggestion is to rewrite this
algorithm, either in MeshLab, or a different environment, and enable
it to work with such gaps. The method should detect these gaps2 and
generate triangulations for the sub segments separately.

Another problem with gaps occurs with the current implementation
of the edge selection algorithm (see Step 5 in Section 4.2). centre lines
are extracted from the triangulation by selecting all the lower edges.
This works well in case of straight water courses with vertical medial
sheets and closed triangulations. However, some water courses are
represented by large tilted medial sheets with sparse and patchy dis-
tribution of points. The triangulation of such sheets can have interior
holes (see Figure 6.3 and Figure 6.4), the edges of which are also se-
lected by the edge extraction algorithm. Especially for the urban area
this happens often, and this introduces many artefact centre lines and
raises the error of commission significantly. Such interior holes should
be excluded by the selection algorithm, generating a much cleaner
dataset.

1 This is already possible to some extent in the current segmentation script, but is not yet applied
in this thesis.

2 The detection of these gaps could be done based on properties of the MAT, such as the medial
bisector.
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Figure 6.5: This figure shows a medial sheet for a water course, which contains
gaps between groups of points. The BPA implemented in MeshLab (see
Section 5.1.2) first selects a ‘seed triangle’, from which it performs the
triangulation. But if the seed triangle is in the group of points in the red
rectangle, and the gap between these groups is larger than the specified
ball radius, then the algorithm only triangulates the points in the red
rectangle.





7 CONCLUS ION AND
RECOMMENDAT IONS

In this thesis, I investigated the possibilities of automatically identifying
water courses in flat and engineered landscapes, using the raw (albeit classi-
fied) LiDAR points of the AHN3 dataset. I found that there are many methods
described in literature which identify channel-like features (see Section 2.1),
and some which identify water courses in engineered landscapes (see Sec-
tion 2.3), but none of these are suitable for this application. Thus, this iden-
tifies the need for the development of a new method. I formulated the
hypothesis (see Section 1.5) that a combination of two concepts would form
a robust methodology for the automatic identification of water courses from
AHN3 in the flat and engineered landscapes around Utrecht; (1) the concept
of concave hulls (see Section 3.2), and (2) the MAT (see Section 3.3). A work-
flow was implemented which takes an AHN3 LiDAR point cloud as input,
and accordingly identifies for every water course the polygons of the water
surface, and the geographical position of the water surface’s centre lines.
The implemented prototype was used for different areas to test its applica-
bility to different environments. The resulting datasets were validated to
obtain mapping and positional accuracies. The following sections conclude
the most important findings of this thesis. Section 7.1 answers the research
questions posed in Section 1.6, and thereby describes the potential of the de-
signed prototype for the application of this thesis. Subsequently, Section 7.2
states what the scientific value of the research performed in thesis is, and
how it contributes to the scientific community. Lastly, Section 7.3 presents
possibilities for future work on the designed prototype.

7.1 the potential of the designed proto-
type

This section answers the research questions posed in Section 1.6, starting
from the sub-questions, and ending with the main research question. Through
answering these questions, the potential of the designed prototype for the
automatic identification of water courses in flat and engineered landscapes
from AHN3, will be made clear.

What are the typical properties of water courses in the flat and engineered land-
scapes around Utrecht, that make them different from the rest of the landscape?

The water courses around Utrecht have in common that they are almost
entirely artificial, and thus mostly have regular shapes. In rural areas, the
network of water courses consists of smaller -often regularly spaced- ditches
intersecting the meadows, which eventually drain into larger canals and
rivers. In urban centers, sewers represent a large part of the drainage net-
work, and water courses are mostly present in the form of canals. Further-
more, since these are low-elevation areas, water is widely present in these
landscapes, and water courses are often -if not permanently- filled with wa-
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ter. Three essential characteristics were identified, which can be used to
discern the water courses from the rest of the landscape:

1. Low elevation in the landscape: Since the landscapes show very little
relief, it is plausible that the water courses are the landscape features
with the lowest elevation.

2. Concave profiles: Since almost all of the water courses are artificial, espe-
cially the regularly spaced ditches in rural areas have distinct concave
profiles.

3. Presence of water: Due to the low elevation of the landscape, and con-
stant regulation of water levels, it is likely that many of the water
courses always contain water.

How (well) are these typical properties reflected in the AHN3 dataset?
In LiDAR point clouds such as the AHN3, the low elevation of water courses

in the landscape, and their concave profiles are well reflected, since eleva-
tion values of point measurements are recorded. Furthermore, the presence
of water is reflected in the AHN3 dataset as voids in the data, since the red
laser signal is almost entirely absorbed by water, thus no -or a very weak- re-
flected signal reaches the sensor. Since the AHN3 provides a classification of
points, amongst which also a water category, any signal which does reflect
on the water surface can be filtered out.

In practice, only the concave profiles and presence of water can be effec-
tively used to discern water courses from the rest of the landscape. In these
human-engineered landscapes, it is very possible that water levels are arti-
ficially kept higher in some parts than in others, thus water courses may
not always be the lowest feature in the landscape. Thus, the identification
of water courses can be done based on their concave profiles or presence of
water.

Which methods can use these properties to identify the water courses in the
AHN3 dataset?

Two concepts were identified which each utilize one of these properties:
(1) the concave hull, and (2) the MAT. Both concepts can use raw (albeit
classified) LiDAR point clouds as input. The concave hull approach makes
use of the presence of water in the water courses, and should thus be able
to identify water courses with a sufficiently large water surface, irrespective
of their degree of concavity. In contrast, the MAT uses the concave profiles of
the water courses to identify them, and can work irrespective of water pres-
ence, and should thus additionally be able to identify dry water courses. I
proposed the hypothesis that a combination of these concepts can form a
robust methodology for the identification of water courses from AHN3 in the
flat and engineered landscapes around Utrecht.

How can the polygons of the water surfaces, and the water course centre lines be
extracted from the AHN3 using these methods?

The polygons can be extracted by using the concave hull method, with
the following workflow; First, the input point cloud is filtered, creating two
separate point clouds: (1) a point cloud of ground surface and building
points, and (2) a point cloud with only vegetation points. The concave hulls
for both datasets are then generated, after which artefacts in the dataset are
removed by selecting all artefacts which are contained within the concave
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hulls generated for the vegetation points dataset, and subsequently dissolv-
ing these. This results in a relatively clean shapefile with polygons of the
concave hulls of the ground surface points. In this dataset, most of the wa-
ter course are represented by the space in between the concave hull, but
some are contained in the shapes as interior polygons. All these interior
polygons are then removed, and the inverse of the dataset is taken to obtain
a shapefile of water course polygons (which thus represent the polygons of
the water courses). These polygons are additionally smoothened to remove
irregularities.

The water course centre lines can be extracted by using the following
workflows:

1. concave hull: This procedure follows directly on the procedure to iden-
tify the water course polygons. The dataset of water course polygons
is converted to points, subsequently densified by inserting additional
points on the polygons, after which a VD is created on these points.
All edges of the VD that are within the water course polygons are then
selected and extracted to a new shapefile. These form the centre lines
of the water courses. Any unwanted branches on these centre lines
are pruned, to obtain a relatively clean dataset of water course centre
lines.

2. MAT: The input point cloud is filtered, only leaving ground surface
points. The outer medial axis of the landscape is then approximated,
after which it is segmented into separate medial sheets based on the
medial bisector difference. An octree is then constructed on the points
in the medial sheets, which subsequently is used to remove artefacts
from the sheets based on point density. Additionally, the smallest
sheets are removed, since they likely represent artefacts. From each
of the remaining sheets, a uniform subset of points is then extracted,
which are subsequently triangulated. The edges on the lower half
of the triangulated sheets are then extracted, and written to a new
shapefile. These represent the water course centre lines.

Both workflows are used, which leads to the creation of two datasets of
centre lines for every input point cloud. These centre line datasets are com-
bined by merging the shapefiles, and accordingly buffering all lines in the
dataset. The buffers are then dissolved, which results in one polygon for
every water course. Then, again a VD approach (similarly to the concave
hull) is used to extract the centre lines.

How well do the extracted datasets compare to the reference data?
The concave hull method identifies approximately 95% of all water courses

for the clay and peat area, 90% for the urban area, and 42% for the sand area.
The error of commission is 1% for the clay area, 2% for the peat area, 17%
for the urban area, and 4% for the sand area. The results are somewhat dif-
ferent for the extent to which the method identified the water surface areas,
which is due to the fact that the computed surface area is more sensitive
to differences in the methodology of water course identification (see Sec-
tion 5.5.3). The concave hull method manages to identify 87% of all water
surface area for the clay area, 90% for the peat area, 94% for the urban area,
but only 57% for the sand area. Also for the water surface area, the error
of commission is relatively low, with 6% for the clay area, 8% for the peat
area, 11% for the urban area, and 15% for the sand area. The MAT method
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identifies 96% of all water courses for the clay area, 85% for the peat and
urban area, and 74% for the sand area. The error of commission is 8% for
the clay and peat area, 46% for the urban area, and 17% for the sand area.
As can be seen, both methods generate many artefacts for the urban area,
and have difficulties identifying the water courses in the sand area. When
the methods are combined, they manage to identify 98% of all water courses
for the clay area, 97% for the peat area, 95% for the urban area, and 76% for
the sand area. Clearly, the identification rates profit from the combination
of methods. However, the relatively high error of commission of the MAT

also radiates into the combined method. The error of commission is then
8% for the clay and peat area, 47% for the urban area, and 17% for the sand
area.

To what extent can the approach be fully automated?
The current implementation is not fully automated, although relatively lit-

tle manual action is required to generate the datasets. However, the method-
ology was designed with full automation in mind, and both concepts (the
concave hull and MAT) can in theory be fully automated when developed
further. In practice, some manual calibration of parameters will likely be
required when applying the method to a new area.

To what extent can the position and planimetric geometry of the drainage
networks in flat, engineered landscapes be automatically identified from the
AHN3 LiDAR point cloud?

The experiments and analysis performed in this thesis have successfully
shown the potential of the presented prototype for the automatic identifica-
tion of water courses from AHN3. Both methods included in this prototype,
the concave hull and MAT, proved to be important components. The con-
cave hull method can operate independently of landscape topography, and
depends only on the presence of water in the water courses (and on a solid
classification to filter water points). Furthermore, it is very robust to errors
in the identification; there are relatively few errors of commission. However,
the method is sensitive to vegetation coverage and water surface width (the
current implementation does not perform well for water courses less than
1 m wide), and cannot identify dry water courses. Thus, the concave hull
method is particularly suited for use in areas where relative water levels are
high, water courses are wide, and vegetation coverage is low. Due to the
robustness to errors, this is a relatively safe method to combine with other
methods.

Contrary to the concave hull method, The MAT method depends on land-
scape topography; it identifies water courses by their concave surface curva-
ture. This has the advantage that the MAT is able to operate well when water
levels are low, or even when water courses are dry. Furthermore, it is rela-
tively insensitive to vegetation coverage, and can theoretically operate even
in lightly forested areas. However, the MAT does not perform well for water
courses which show little surface curvature, and is prone to errors of com-
mission caused by local non-watercourse convexities and concavities. Both
methods currently do not perform well for the generation of water course
centre lines in the urban and sand area. For the urban area, both methods
generate relatively many artefacts (thus errors of commission), but improve-
ments have been suggested which may well mitigate the generation of these
artefacts substantially. Furthermore, the concave hull method performs well
in the urban area with respect to the identification of water surface area.
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Similarly to the urban area, improvements are also proposed for the sand
area, but I expect that the identification of water courses here will remain
difficult (unless point density in a future version of the AHN is improved)
since they are relatively narrow and thus difficult to identify.

Through the combination of the strengths of both methods, a more ro-
bust approach is obtained than could be achieved for any of the methods
separately, since part of the weaknesses of both methods are mitigated. The
combined prototype provides a strong and promising approach for the auto-
matic identification of water courses in flat and engineered landscapes from
the raw AHN3 point cloud. In its current form, it is able to identify above
95% of all water course centre lines for the clay, peat, and urban areas, and
above 75% of all water courses for the sand area. Though the methods cur-
rently require a small amount of calibration when applied to new areas, they
can in principle be fully automated. It has to be stressed however, that the
current implementation does not do any form of point classification, thus it
is strongly dependent on the extent to which the classification of the input
point cloud was performed accurately.

7.2 the scientific value and contributions
of this thesis

The research performed in this thesis successfully proved the validity of my
proposed hypothesis; a combination of the concave hull and MAT concepts
forms a robust methodology for the identification of water courses from
AHN3 in the flat and engineered landscapes around Utrecht. The design I
implemented performs favourably compared to GeoNet [Passalacqua et al.,
2010, 2012], which shows poor results in the low-relief peat area. In contrast
to most solutions presented in the present day literature (see Chapter 2),
my design does not require the troublesome generation of a gridded DEM,
and does not suffer from any decrease in accuracy due to the associated
conversion and interpolation processes of LiDAR points. To the contrary, my
design uses the most detailed form of input data possible for this applica-
tion, which is the raw data in the AHN3 LiDAR point cloud. Furthermore,
the design does not require the interference of a human operator, and is
thus very objective compared to manual procedures such as those used by
the HDSR. The present day scientific literature provides no other suitable
solutions for the identification of water courses in flat and engineered land-
scapes using raw LiDAR data. Thus, the methods designed in this thesis fill
a scientific gap, and thereby provide a valuable contribution to the scientific
community.

Additionally, I add that both Höfle et al. [2009] and Toscano et al. [2014]
try to identify hydro break lines, but require relatively complicated proce-
dures. The methodology which I developed around the concept of concave
hull, provides a simple way to identify these hydro break lines, which can
be defined as an additional scientific contribution of this thesis.

7.3 recommendations for future work
Section 6.1 and Section 6.2 already listed and described a number of possible
improvements to the current implementations of the concave hull and MAT
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methods, which can potentially lower the error of omission and commission
for both. This section does not repeat these improvements, rather a number
of additional suggestions for future work are provided, which could extend
the designed prototype with new functionalities and can enable it to be used
for different applications and other locations.

automation and optimisation An obvious extension to the current im-
plementation would be to further automate the required procedures. Ide-
ally, the prototype should be automated to such an extent that only the
specification of an input point cloud is sufficient, after which the required
products are generated automatically. Additionally, the procedures should
be optimised. Currently, the implementation relies heavily on the use of
procedures in LAStools, QGIS, CloudCompare, and MeshLab. This was con-
venient for the development of the prototype since it saves development
time, but also this provides less control over the algorithms used, and is less
optimised in terms of speed. Writing the required procedures by hand can
allow further optimisation and automation. This eventually can make the
prototype ready for use to other, less specialised users.

application to different environments The prototype was tested
only for the use in the flat and engineered landscapes around Utrecht, but
it would be interesting to see how the method performs in other environ-
ments. These methods may perform equally well in engineered landscapes
with more relief, and I think they also have potential for the identification
of streams in natural environments.

different point cloud densities To test the limits of both method-
ologies, the implementation should be tested with other point clouds of
different densities. I assume the methods will also work for less dense
point clouds, albeit only for the larger water courses. Similarly, using a
denser point cloud may significantly improve the ability for identification
of smaller (i.e. narrower) water courses.

generation of hydro break lines Höfle et al. [2009] and Toscano et al.
[2014] identify hydro break lines, but require relatively complicated proce-
dures. The concave hull method presented here provides a relatively simple
solution to generate these hydro break lines. It would be interesting to know
how well this method performs compared to Höfle et al. [2009] and Toscano
et al. [2014], and whether it can accordingly be used to generate more accu-
rate gridded DEMs.

topological repair The topic of topological repair was considered out-
side the scope of this thesis, but it is an important topic nonetheless. The
current prototype generates datasets which are unoptimised in terms of
topology; i.e. there can be gaps in the network of centre lines, lines may not
be connected at intersections, and there may be lines which are completely
disconnected from the network. A form of edge snapping is performed
for the MAT in Step 5 of Section 5.3.3, since two datasets are combined by
buffered the centre lines, which additionally closes small gaps in the centre
lines. However, no procedure was implemented with the specific goal of
topological repair in mind. Ideally, the water course identification should
result in a connected network of water courses, which can then be used for
hydrologic modelling purposes. In reality, water courses are not always con-
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tinuous, they are often intersected by land bridges, allowing farmers to cross
to adjacent meadows. These water courses may or may not be connected un-
derground by tubes. Edge snapping in such situations may introduce more
error into the dataset.Thus, the process of topological repair in water course
networks is not simple, since it is often ambiguous whether two discon-
nected lines should be connected or not. However, it is an important topic,
and is therefore recommended as future work.

aesthetic enhancement The generation of an aesthetically attractive
dataset of water course polygons and centre lines is important when these
datasets are used for visual display purposes. Such visual enhancement of
the datasets is in the current implementation only performed for the wa-
ter course polygons, in a light smoothening procedure (see Step 6 of Sec-
tion 4.1.1). This process could be improved. Furthermore, the generated
centre lines appear as jagged lines when zoomed in, which is due to the
use of VD’s for centre line extraction in the concave hull (see Step 7 of Sec-
tion 4.1.2), MAT method (see Step 5 of Section 5.3.3), and combined method
(see Section 5.3.4). These lines should be straightened to improve visual
attractiveness.

using the mat to identify the 3d geometry of water courses The
MAT is a potentially very versatile method, which is not nearly used to its
fullest extent in this thesis. The method uses the points reflected on the
landscape to form medial balls which approximate the medial axis, and
the points which are used to form the medial balls, and associated medial
points, can be stored. This is potentially very interesting, since if we know
that a certain collection of medial points represents the medial sheet of a
water course, then it is possible to reconstruct the banks of this water course
through the earlier storage of the points. In this way, a 3D geometry of the
water course (above the water surface) could be obtained. Such a 3D geom-
etry can be useful for the estimation of storage capacity in the water course,
but can also be used to derive other products from. For example, it could
be used to extract the polygons and centre lines of the water surface for any
specific water level, or to generate cross sectional profiles (of the part of the
water course above the water surface at the time of measurement). In my
opinion, this is the most interesting topic of future work, and I recommend
this topic to be further explored. At the time of writing, there is not yet
any method available in scientific literature which manages to extract 3D
geometries of water courses, and it could thus provide a solid contribution
to the scientific community.

manual collection of reference data The current verification proce-
dure of the datasets generated by the prototype implementation developed
in this thesis, is based on using reference datasets supplied by the HDSR

(see Section 5.2). As described in Section 5.5.3, the validity of these datasets
is questionable in many cases, thus it would be good to test the designed
implementation with other reference data. This could be done by manual
generation of such reference datasets from aerial photography, or by col-
lecting ground truth in the field. Although these procedures can be labour
intensive, they may be the only way to accurately test the validity of the
generated datasets.
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This document was typeset using LATEX. The document layout was gen-
erated using the arsclassica package by Lorenzo Pantieri, which is an
adaption of the original classicthesis package from André Miede. The
figures and diagrams in this thesis were mostly drawn using IPE. Maps
were generated with QGIS, and point cloud visualisations were made with
CloudCompare. Flow charts were created using https://www.draw.io.
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