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Samenvatting

De titel van dit proefschrift is "Golfinteractie met doorlatende kustwaterbouw-
kundige constructies"”. Veel kustwaterbouwkundige constructies worden gebouwd om
de achterliggende gebieden zoals polders, haventerreinen, havenbassins en
toegangsgeulen te beschermen tegen de invloed van golven. Golfoverslag,
golfoploop, golfreflectie en golfdoordringing kunnen hinderlijke of zelfs gevaarlijke
situaties veroorzaken. Om de betreffende constructies optimaal te laten functioneren
en optimaal te ontwerpen moet zoveel mogelijk inzicht verkregen worden in de
fysische processen die de invloed van golven op constructies, en vice versa, bepalen.
Met dit inzicht kunnen vervolgens voorspellende numerieke modellen gemaakt
worden die bruikbaar zijn voor ontwerp-, beheers- en onderzoeks-doeleinden.

Het onderzoek beschreven in dit proefschrift is met name geconcentreerd op
golfinteractie met constructies die doorlatende delen bevatten zoals het geval is bij
golfbrekers die opgebouwd zijn uit stortsteen. Een relatief nieuw type golfbreker is
de zogenaamde berm-golfbreker. Deze golfbrekers vervormen als gevolg van de
golfwerking; onder stormcondities verplaatsen stenen zodat de zeewaartse kant van
de golfbreker vervormt totdat een nieuw evenwicht is bereikt. Het inschatten van
deze vervorming is belangrijk om eventueel bezwijken van de constructie te kunnen
voorspellen en om de golfinteractie met de vervormde constructie te bepalen.

Eén van de belangrijke fysische processen bij golfinteractie met golfbrekers
opgebouwd met steenmateriaal is de stroming door doorlatende delen van de
constructies. Laboratoriumproeven zijn uitgevoerd om inzicht te krijgen in de
weerstand die stromingen door poreuze materialen ondervinden waarbij met name
kenmerken van deze stromingen zijn bestudeerd die voor de kustwaterbouwkundige
praktijk van belang zijn; oscillerende en stationaire turbulente stromingen door
steenmaterialen. Geconcludeerd werd dat oscillerende turbulente stroming door
poreuze media tot een hogere weerstand leidt dan op grond van een vergelijking met
stationaire turbulente stroming verwacht kon worden. De extra weerstand hangt af
van het stromingsveld waarin de parameter die de verhouding weergeeft van de
mate van turbulentie t.0.v. de mate van oscillatie cen belangrijke rol speelt.
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Na inventarisatie van modelleringen om golfbeweging te simuleren is een tweetal
numerieke modellen ontwikkeld. Series van individuele golven worden gesimuleerd
waarbij beide modellen beperkt zijn tot golven die loodrecht op de constructie
invallen. Omdat de doorlatendheid van de constructie de waterbeweging zowel
binnen als buiten de constructie bepaalt, zijn beide waterbewegingen en de interactie
daartussen in beide modellen gesimuleerd.

Het eerste model is een één-dimensionaal model waarbij brekende golven op een
relatief simpele manier worden gemodelleerd en drukken als hydrostatisch worden
verondersteld. Uit een groot aantal vergelijkingen met laboratoriumproeven en
toepassingen met veel types constructies is gebleken dat de verstrekkende aannamen
die ten grondslag liggen aan het model een brede toepasbaarheid niet in de weg
staan. Het model is o.a. zeer geschikt om de invloed van variaties in de
hydrodynamische omstandigheden en aanpassingen in het ontwerp van
kustwaterbouwkundige constructies te bestuderen. Hoewel het model nog op enige
punten verbeterd en uitgebreid kan worden, laten de principes die ten grondslag
liggen aan het model slechts weinig ruimte om de waterbeweging in een nog grotere
mate van detail te simuleren. Daarom is een tweede numeriek model ontwikkeld dat
kan leiden tot een nog grotere toepasbaarheid en grotere hoeveelheid informatie
omtrent het stromingsveld.

In nauwe samenwerking met het Waterloopkundig Laboratorium is voortgebouwd
op een onderzoekslijn voor het ontwikkelen van een adviesgereedschap voor
complexe stromingsproblemen. Door dit twee-dimensionale model (2DV) geschikt
te maken voor het simuleren van golven, inclusief brekende golven, op doorlatende
kustwaterbouwkundige constructies is een model ontstaan dat zeer complexe
interacties tussen golven en constructies kan simuleren. Hoewel het model nog niet
gemakkelijk toepasbaar is, biedt het model zeer goede mogelijkheden om een breed
toepasbaar advies- en onderzoeksmodel te worden waarbij het eerder genoemde één-
dimensionaal model en dit twee-dimensionaal model elkaar goed aanvullen.

Na het uitvoeren van een additionele validatie voor beide modellen met berm-
golfbrekers is het één-dimensionale model uitgebreid met een modellering om het
vervormen van constructies zoals berm-golfbrekers, grindstranden en reef-type
constructies te simuleren. Hiermee is een model ontstaan dat zowel de interactie
tussen externe en interne waterbewegingen simuleert maar ook de interactie tussen
waterbewegingen en de vervorming van constructies.



Abstract

Wave interaction with permeable coastal structures is studied and discussed in this
thesis. Physical processes involved in the hydraulic and structural response of coastal
structures under wave attack are examined and predictive numerical models for
wave interaction with permeable coastal structures are developed. Special attention
is given to berm breakwaters. This relatively new type of rubble-mound structure
reshapes under heavy storm conditions by redistributing the stones in the seaward
profile. The reshaping of such dynamic structures is modelled numerically.

Porous media flow has been studied theoretically, experimentally and numerically.
Laboratory experiments were carried out to study gaps in knowledge in this field
such as the resistance of porous media to an oscillatory wave motion. Emphasis was
put on flow through coarse granular material in which resistance components for
laminar and turbulent flow as well as inertial resistance are significant. The tests
showed that the values for the friction coefficients in a conventional description of
the resistance are higher for an oscillatory wave motion than for a stationary flow.
This increased friction depends on the flow field. New formulations for porous
media flow were derived and implemented in two predictive numerical models.

A one-dimensional model based on shallow-water wave equations and a two-
dimensional (2DV) numerical model based on Reynolds-averaged Navier-Stokes
equations were developed for simulating wave motion both inside and outside
permeable structures. Both models simulate normally incident wave trains in the
time-domain. The first model has become an engineering and research tool which
has been validated and applied for many flow conditions and several types of coastal
structures. The model is suitable for studying the influence of variations in the
hydrodynamic properties and of variations in the lay-out of coastal structures. The
second model is a research tool, mainly developed at Delft Hydraulics, for
simulating complex flow patterns providing a detailed description of for instance
breaking waves. Depending on the type of structure and the complexity of the wave
motion, one of the two models can be used to obtain the required information on
the flow field.

iii
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ABSTRACT

Wave interaction with berm breakwaters is studied by performing physical-model
tests which were used for additional validations of the two numerical models. A
procedure was developed to simulate the reshaping of dynamic structures such as
berm breakwaters, reef-type structures and gravel beaches and was incorporated in
the one-dimensional wave model. This integrated simulation model can therefore be
used to study the interaction of the internal and external wave motion of permeable
structures and to study the interaction of the wave motion with the structures
themselves.
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Chapter 1

1. Introduction
1.1 General

Coastal regions are environments with several functions essential for the safety and
the economy of their hinterlands. The importance of potential flooding of lowlands,
of drinking water supply, of harbours, of fisheries, of environmental aspects and of
recreation make coastal regions multi-functional areas in which a balance must be
found between the various functions. To find the optimum solution, coastal
engineering provides a link between the physical processes in coastal regions and
the management of these regions. In this thesis, hydrodynamic processes are studied
and modelled to provide coastal engineers with knowledge and tools to predict
properties of the hydrodynamic processes and to design structures in coastal regions.

Among the most important hydrodynamic processes in coastal regions are the
propagation of water waves and their effects on the coast and on coastal structures.
These free surface waves may cause overtopping of dikes, in which cases these
structures do not provide adequate flood protection. The down-rush of water at the
rear-side of the dike may also cause unacceptable erosion thus failing to safeguard
the structures’ stability. Wave penetration into harbours and wave transmission
through permeable structures result in ship motions which must be limited. In
addition, the wave forces on coastal structures such as dikes, breakwaters and gravel
beaches and on the individual elements of these structures must be predicted to
protect the structure from failure and unacceptable damage. For instance, the
dimensions of the elements and the lay-out of the cross-section of the structure must
be designed. The above mentioned examples indicate that wave propagation in
coastal regions and wave attack on coastal structures must be predicted to determine
the location of the structures and to optimize the design of each structure.
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Wave propagation and wave attack on coastal structures lead to a response of the
structure or if the loads exceed the strength or resistance against motion to
displacements of elements of the structure. For some types of structures this
response can only be acceptable if the displacements that occur are limited (dikes,
conventional rubble-mound breakwaters). For other types of structures many more
displacements can be allowed (gravel beaches, berm breakwaters). In the latter, to
determine the new seaward slope and its influence on the wave attack the location
of displaced units must be known.

To predict wave attack on coastal structures, physical modelling can be used. Often
small-scale tests are performed to limit expenses, even though the tests might be
influenced by scale-effects. Small-scale tests with structures with permeable parts
can relatively easily be influenced by scale-effects due to the difficulty of
representing both the stability of stones and the permeability correctly. Another
problem with physical modelling is that accurate measurements are not always
possible, for instance in breaking waves.

An alternative way to predict wave attack on coastal structures and the subsequent
structural response is through mathematical description of the dominant physical
processes. Analytical solutions of the governing equations which describe the
dominant processes can often only be found for a limited number of applications.
In many cases in coastal engineering, especially those with significant non-linear
effects, no widely-applicable analytical solutions can be found and preference is
given to numerical methods of solution.

In this thesis wave attack on permeable coastal structures is studied both by means
of physical modelling and by numerical modelling of the dominant processes.
Emphasis is put on structures like berm breakwaters, conventional rubble-mound
structures and gravel beaches, where the flow through the permeable part of the
structure effects the external wave motion and the resulting forces on elements of
the structures. The flow inside the permeable part is studied both theoretically and
through physical modelling. This physical modelling of porous media flow is
necessary to describe the flow mathematically. Two numerical models have been
developed to simulate wave attack on and inside permeable coastal structures. With
data from new physical-model tests an additional validation of both numerical
models is performed. After verification of the wave attack, as provided by the
numerical models, a response model is developed to study the interaction of this
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wave attack with the displacement of stones and gravel on the seaward slope of
structures like berm breakwaters and gravel beaches.

1.2 Background of the present study

For many years the complex phenomena arising from the breaking of waves on
coastal structures and their effects on the structures have been studied, with
empbhasis on physical-model tests and the empirical relations arising from such tests.
For instance run-up levels, overtopping discharges and the stability of stones in the
seaward profile are predicted by using hydraulic parameters like the wave height in
front of the structure and structural parameters like the stone diameter. These
empirical relations account for the effects of the wave motion without modelling the
wave motion. Through mathematical modelling of this wave motion itself, more
detailed information like velocities and accelerations of water moving along the
slope can be obtained. Using these properties, assessed through numerical modelling,
may lead to more generally applicable solutions for hydrodynamic processes and
stability parameters. In general, a mathematical solution may exclude possible scale-
effects which occur in small-scale physical modelling. In addition, an accurate
mathematical description is an important complementary design tool.

The above indicates the need for a predictive mathematical model and consequently
a numerical model for breaking waves on coastal structures. Such models are
valuable for designing coastal structures with permeable parts consisting of granular
material like rubble-mound breakwaters because a wide variety of parameters, like
stone diameter, grading and roughness as well as structure lay-outs increase the
possible design options. In combination with a limited number of physical-model
tests, a numerical model might provide information concerning the effects of
changes in the design of a breakwater.

Here, the numerical modelling of individual breaking waves consists of a two-track
approach with two complementary numerical models. Although for both models the
present study is restricted to normally incident waves, the assumptions do not
prevent extension towards the modelling of oblique wave attack. For the first of the
two models, far-reaching assumptions have been made beforehand which limit the
possibility of implementing detailed descriptions of the physical processes of the
wave motion. This, however, does not imply that the model cannot provide accurate
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results for a wide range of hydrodynamic properties of various types of coastal
structures. For the second model less restrictive assumptions have been made
beforechand which enables a long term development by continuing the
implementation of more detailed descriptions of the physical processes. For instance,
in the second model more detailed descriptions of air-entrapment, turbulence and
structure lay-out can be implemented, while the basic assumptions of the first model
do not permit such an in-depth development. Although the two models serve both
practical engineers and research-based engineers, research on which the first model
was based was especially intended to provide a design tool for engineers while the
second model still requires additional assistance by researchers.

To model porous media flow accurately, physical-model testing was necessary in
order to obtain values for friction coefficients and to study the dependency of these
coefficients on several parameters. After modelling of this porous media flow, the
interaction between the external wave motion and the internal wave motion can be
studied and incorporated in the two numerical models.

Both numerical models need to be verified. Tests in which the interaction between
external and internal wave motion is of major importance are suitable. Berm
breakwaters are not the only appropriate type of structure for this goal, but because
berm breakwaters are relatively new and to date have received relatively little
attention, research aimed at this type of structure is even more relevant.

The natural response of berm breakwaters to hydrodynamic loads makes them
economically attractive, not in the least because smaller rock material can be used
than with conventional breakwaters. On the other hand, the dynamic behaviour,
typical of berm breakwaters requires special attention. The seaward slope undergoes
reshaping until a stable seaward profile has developed. This dynamic behaviour of
the seaward slope is very much depending on the hydrodynamic loads and vice
versa. This interactive character of the hydrodynamics and the reshaping process are
studied here, not only with physical-model tests but also with a new wave load-
response model implemented in one of the numerical models.

Like empirical relations to predict hydrodynamic parameters, such relations also
exist for the structural response. Although the most recent relations are valid for a
wide range of parameters, no detailed modelling of both the hydrodynamics and the
structural response are included. Therefore, for a more accurate prediction ultimately
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more detailed information on the hydrodynamics will be needed. The earlier
mentioned numerical models can provide such detailed information on the wave
motion along the slope. The response of the structure to this wave attack can also
be modelled and solved numerically. Coupling of such a response model to a wave
model enables the simulation in the time-domain of the wave interaction with
dynamic structures like berm breakwaters and gravel beaches. The simulation of
profile development of the seaward slopes may be used not only to predict the
dynamically stable seaward profile but also to study the influence of reflection
caused by super-structures on the profile or to study the degradation of the size of
stones due their movement along the slope. In addition, such wave load-response
can also be used as a complementary design tool.

1.3 Aim and scope of the present study

The aim of the research presented in this thesis is to contribute to a better
understanding of physical processes involved in the hydraulic and structural response
of coastal structures under wave attack and to develop predictive models of wave
interaction with permeable coastal structures with special attention to berm
breakwaters.

To achieve these objectives, laboratory experiments were carried out to provide new
insight into physical processes and to validate predictive models. These predictive
models must be able to simulate wave interaction with permeable structures in the
time-domain and include the simulation and effects of porous media flow. The
numerical modelling of wave attack and the response of structures is restricted to
normally incident waves.

1.4 Outline

The general lay-out of this thesis is as follows. In Chapter 2, formulations for
models to simulate wave motion on coastal structures and models for porous media
flow are discussed. Porous media flow is treated in Chapter 3 which includes a
description and analysis of physical-model tests to study stationary and oscillatory
porous media flow.



CHAPTER 1

The first of the two numerical models able to simulate normally incident waves on
various types of coastal structures, including permeable structures, applies a one-
dimensional description of the wave attack. The model is presented in Chapter 4.
The second numerical model is based on a two-dimensional description of this wave
motion which enables a detailed simulation of the breaking process. Chapter 5 deals
with this model. Physical-model tests on a berm breakwater are discussed in Chapter
6 along with an additional validation of both numerical models.

The two numerical models determine hydrodynamic properties through which the
wave loads can be assessed. In Chapter 7 a model simulating the response of a
structure to the wave loads is described and coupled to one of the numerical wave
models. The wave load-response model is validated and used to study the profile
development of the seaward slopes of gravel beaches, berm breakwaters and reef-
type structures.

In Chapter 8 an overview of the main conclusions is presented with suggestions for
future developments.



Chapter 2

2. Theoretical background
2.1 Introduction

In this chapter the main assumptions and the main lines of the mathematical
description for some groups of numerical wave models are discussed. Firstly, four
types of model formulations to simulate free surface waves propagating on finite
water depth are described briefly. Thereafter, some aspects of models for simulating
porous media flow are mentioned. Finally, combined models simulating both free
surface waves and porous media flow are discussed.

Most wave models have initially been developed for wave propagation over gently
sloping beaches. Wave motion and, in general, the motion of an incompressible
Newtonian fluid can be described accurately by the Navier-Stokes equations.
However, because solving these equations is very complex it is appropriate to use
approximations in order to derive equations which are easier to solve. For instance,
before waves start to break the flow can be assumed inviscid and irrotational,
leading to potential flow models which can be used to study wave propagation over
uneven bottoms preceding wave breaking. A brief discussion of potential flow
models is given in Section 2.2.1.

In shallow water the non-linear effects of wave propagation cannot always be
neglected. Here, two types of shallow-water equations are discussed namely the
finite-amplitude shallow-water equations (Section 2.2.2 and Chapter 4) and the
Boussinesq equations (Section 2.2.3). The shallow-water equations are not valid for
describing the breaking process, so in regions in the transition zone from non-
breaking to broken waves, empirical expressions, approximate models or the full
Navier-Stokes equations (see Section 2.2.4 and Chapter 5) must be applied. After
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breaking, the finite-amplitude shallow-water equations can again be used to
approximate the bores originating from the breaking process, up to the shoreline.
Peregrine (1967, 1972) gives a derivation of linearised water wave equations, finite-
amplitude shallow-water wave equations and the Boussinesq equations.

In principle, for wave attack on structures the same model formulations as used for
wave propagation over beaches can be used. However, due to the steeper slopes of
structures, for some types of the models not all approximations used to derive the
applied equations are valid. Models based on such types of equations are therefore
approximate models, for which verification is not only required to test the numerical
model itself, but also to study the consequences of exceeding the range of validity
of the equations.

For wave motion inside permeable structures, the same types of equations as for the
wave motion outside the structure can be used. Models with permeable structures
based on potential flow theory, finite-amplitude shallow-water equations and Navier-
Stokes equations have been developed. The formulations for these models are
discussed in the Sections 2.3 and 3.2.

Finally, some formulations and aspects for the simultaneous modelling of the wave
motion inside and outside permeable structures are discussed in Section 2.4. Two
of such integrated models are described in detail in the Chapters 4 and 5.

2.2 Modelling of wave motion on coastal structures
2.2.1 Potential flow models

As long the waves are not breaking, even strongly non-linear waves can accurately
be described by models based on potential flow theory. These models use the
assumptions that compressibility and viscous effects can be neglected. For flow
conditions in which air-entrainment or wave impacts occur, compressibility cannot
be neglected. If initially no rotation occurs and if no vorticity is transported into the
fluid through the boundaries, neglecting the viscosity of the fluid implies that the
wave motion is free from rotation. However, for many cases rotation is transported
into the fluid domain at the bottom boundary and, as in breaking waves, at the free
surface boundary.
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Moreover, the computations become very complex when the fluid domain becomes
multiple-connected. This is the case when an overturning wave tongue hits the free
surface underneath (the backwash water layer of the previous wave). These mulitiple-
connected free surfaces can be solved by using advanced techniques such as the
Volume-of-Fluid method (VOF), see Hirt and Nichols (1981), but are not easily
solved when using the most suitable and frequently applied techniques for potential
flow models, ie., the Boundary Integral Equation (BIE) or Boundary Element
Methods (BEM). Because potential flow models become less accurate near breaking
due to the increasing importance of viscous effects, a model based on the Navier-
Stokes equations, that include viscous effects, is more appropriate for describing the
wave breaking process itself.

Although no potential flow models are capable of simulating the complete breaking
process and only limited wave-structure interactions are possible, they provide very
accurate information on the generation of breaking waves. For two-dimensional
models see Longuet-Higgins and Cokelet (1976), Vinje and Brevig (1981), Dold and
Peregrine (1986) and Klopman (1987) and for a three-dimensional model Broeze
(1993). Methods developed by Stokes (1847) and Rienecker and Fenton (1981),
assuming potential flow, will be used as suppliers of incident waves for the
numerical models described in respectively Chapter 4 and Chapter 5.

2.2.2  Finite-amplitude shallow-water equation models

Until breaking occurs finite-amplitude shallow-water equations can be used to
describe wave propagation over short distances (a few wavelengths) on gentle
slopes. After breaking they can be used to approximate the bores originating from
the breaking process. Although the equations are not strictly valid for steeper slopes
or to describe the breaking process, several numerical models have been developed
that use these equations to simulate wave motion on steep coastal structures,
including breaking waves. They provide information on the wave motion which is
sufficiently accurate for many applications. This indicates that for many applications
the consequences of exceeding the range of the validity of the equations may be
limited. Owing to the steep slopes, the number of wavelengths between the toe of
a structure and the water line is small. In such cases there is insufficient time for
inaccuracies in the solution due to invalid assumptions to evolve and to effect the
solution to a large extent.
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In Chapter 4 a numerical model based on this type of equation is described in detail.
For a detailed description of the derivation of this type of equation, see Peregrine
(1972) or Dingemans (1994). Here, the assumptions behind the derivation of the
finite-amplitude shallow-water wave equations will be indicated.

As a basis, the Navier-Stokes equations of motion for an incompressible Newtonian
fluid with a constant fluid mass density will be used. For a derivation of the Navier-
Stokes equations see for instance Lamb (1932) or Batchelor (1967).

Ju

— + (u'V)u + vl _ vVl -k (2.1)
ot P

The continuity equation is equal to the following incompressibility constraint:
Veu =0 (2.2)

Here, normally incident gravity waves are studied. Variations in the horizontal
direction perpendicular to the direction of wave propagation are neglected as well
as their effects on the wave motion in the remaining two directions (x and z
coordinates). Neglecting viscous effects leads to the Euler equations:

du , 9w _ (2.3)
ox 0z

Q+u%+wa—u+lap—

at ax 3z P oax 24

ow ow ow 1 op
2T b u— +w—e + — £ 4 =0 .
ot “ar "W "ear 8 @3)

The shallow water assumption implies that the wavelength must be much greater
than the water depth. This consequently leads to the term dw/dx being of a small
magnitude. The condition for an irrotational flow,

=¥ 2.6)
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shows that the term du /0z is also small for shallow water, which means that a
uniform velocity can be assumed over the depth.

For shallow water the terms in Equation 2.5 with variations of the vertical velocity
in time and space (0w/0¢, dw/dx and dw/dz) are significantly smaller than the term
with the variation of the pressure in the vertical direction (//p-dp/dz). Neglecting
these relatively small terms and integration of this equation for vertical momentum
(£q.2.5) with respect to z, along with the dynamic boundary condition, shows that
for shallow water the pressures are hydrostatic (the dynamic boundary condition
implies that the pressure is zero at the surface after neglecting the surface tension
and the stresses due to the atmosphere above the water).

The above mentioned assumptions lead to the following one-dimensional momentum
equation:

du du an
— +u— +g-— =90 2.7
ot ox £ dx @7)

where 7 is the elevation of the free surface with respect to the horizontal axis. The
term 07/0x can be replaced by d(h-z,)/3x where A is the instantaneous local water
depth and z, is the slope elevation with respect to the horizontal axis.

Integration of the continuity equation (£q.2.3) with respect to z over the
instantaneous local water depth (from the slope elevation z, to the level of the free
surface 7) gives:

n

ou
an_,ofa dz + w, (2.8)

where w, is the vertical velocity at the free surface. With W, = —u%dzoldx this
yields:
n
d an
w = -— |udz + u_=— 29
1 ox " Ox @9)
2
Using the kinematic boundary condition at the free surface, implying that fluid
particles at the free surface move with the surface,
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a—n+ui1l:w (2.10)

ot T ox !
this yields, after replacing dn/0¢ by 34/0t:

o, dhu @.11)

ot ox

where £ is the instantaneous local water depth and « is the mean horizontal velocity.

Using the continuity equation (Eq.2.11), the momentum equation (Eg.2.7) can be
rewritten and from this the set of governing equations for finite-amplitude shallow-
water wave equations are obtained (Eq.2.1/ and Eq.2.12):

Ohu  ohu’ 0 n) 212)
ot ox dx

Peregrine (1972) derived this set of equations by using non-dimensional variables
to show the relative magnitude of the terms and to justify the omission of some
terms. Several authors derived this set of equations by assuming hydrostatic
pressures (neglecting vertical accelerations) and initial uniform horizontal velocities
like in Van Gent (1992) where a control volume is used to derive the balances of
momentum and mass.

The solution of the finite-amplitude shallow-water wave equations shows that the
propagation of the wave crests occurs faster than the propagation of the wave
troughs. This amplitude dispersion results in a continually steepening of the wave
front. Frequency dispersion (the process in which all Fourier wave components
travel at their own velocity) may counteract the effects of the amplitude dispersion.
For the finite-amplitude shallow-water wave equations the absence of frequency
dispersion prevents adequate counteracting of amplitude dispersion, which results
in overestimation of the non-linear effects. This leads to a steepening of the wave
front which is too fast, see Dingemans (1994). The frequency dispersion can be
improved by applying Boussinesg-like equations. As discussed by Ursell (1953), for
long waves with small amplitudes, such Boussinesq-like equations are more
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fundamental than the finite-amplitude shallow-water wave equations treated here.
Airy (1845) had already shown that applying the latter equations for waves in
shallow water causes changing in the wave form when propagating at uniform
depth, a conclusion which is valid for long waves with wave heights of the same
order of magnitude as the water depth. The discussions in the above mentioned
articles show that the shallow-water wave equation, as shown in Equation 2.12, can
be used for long waves in shallow water with sufficiently large amplitudes but not
so large that vertical accelerations become important (finite-amplitudes).

The steepening of the wave front leads to the formation of bores. Since steepening
of the wave front also precedes the breaking of waves, bores are supposed to
represent the forming of breaking waves and even the bore can be seen as a
representation of the propagation of the wave front. However, the equations forming
this bore are not strictly valid in this region and can therefore only be used as an
approximative representation.

Analytical solutions of the shallow-water wave equations are reviewed by Meyer
and Taylor (1972). Methods based on characteristics are used to find analytical
solutions for waves on a constant depth. For slopes, solutions of the non-dissipative
shallow-water wave equations are found for waves with limited amplitudes, that do
not form bores, resulting in waves which are fully reflected. Such fully reflecting
conditions are usually not valid, especially for beaches. For higher waves, solutions
with bores can be found by using jump conditions at the position of the (moving)
bore. Methods based on characteristics can also be used to find solutions with bores
by using numerical models, however, the bores need to be detected and require
separate treatment. Finite-difference methods do not require such separate treatment
and numerical models based on this method have been successfully applied.

Based on the shallow-water equations (Eg.2.7// and Eq.2.12) Hibberd and Peregrine
(1979) developed a numerical model with an explicit dissipative finite-difference
scheme based on Lax-Wendroff (1960) and discussed by Richtmyer and Morton
(1967). This finite-difference scheme causes a difference between the phase
velocities of the wave components, as prescribed by the equations, and those
computed by using the discretised equations. For each wave component these
differences depend on the time and space-steps used in the discretised equations.
Fortunately, the smaller these time and space-steps are made the smaller these
differences become. In the scheme an additional term can be included to minimize
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numerical oscillations due to non-linear dispersive effects introduced by the
discretisation. In most cases these parasitic waves which appear near the bore are
unacceptable and therefore this additional term must be included. An additional
difficulty is the treatment of the boundary at the shoreline. Most methods designed
to determine the motion of the shoreline make use of extrapolations of the velocities
and surface elevations near this wave front. The accuracy of these properties near
the shoreline is relatively low due to the numerical oscillations which minimize the
merit of accurate extrapolation procedures. Nevertheless, for many of these shoreline
procedures the time-steps in the discretised equations are often limited by such
shore-line procedures, rather than by the discretisation of the basic equations.

Bottom friction can be included in the non-dissipative shallow-water wave equation
(Eq.2.12) as follows:

Ohu | ohu’ | ¢h oh-z) 7y (2.13)
ot ax ax p

The bottom shear stress 7, can be expressed as:

rb=% pflulu (2.14)

where f'is the friction factor which needs to be determined empirically.

The finite-amplitude shallow-water wave equations that include bottom friction have
not been solved analytically. Based on these equations and by using concepts of
Hibberd and Peregrine (1979), several numerical models have been developed and
used for many practical cases. For applications with steep impermeable coastal
structures where wave reflection and run-up on impermeable rough slopes have been
studied see for instance Kobayashi et al. (1987). Chapter 4 provides a description
of a numerical model to simulate wave motion on impermeable coastal structures
and also the wave motion on and inside permeable structures. Figure 2.1 shows an
example of a simulation of the wave motion on an impermeable structure obtained
from this one-dimensional model where breaking waves are represented as bores.
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Fig.2.1 Simulation of the wave motion on an impermeable
structure with a model based on finite-amplitude
shallow-water equations.

2.2.3  Boussinesq-type models

As mentioned in the previous sub-section, the finite-amplitude shallow-water wave
equations give a relatively quick steepening of the wave front because non-linear
effects are overestimated. This is related to the omission of the effect of vertical
flow accelerations on the pressure, resulting in the absence of frequency dispersion.
Boussinesg-like equations contain additional terms to improve these characteristics.
For waves with small amplitudes in relation to the water depth and travelling over
long distances, for instance on beaches and mildly sloping structures, this effect
cannot be neglected. Therefore, weakly non-linear equations like the Boussinesq
equation (1872) are preferable to describe waves before they start to break.
However, their applicability is limited since for most applications these models are
less accurate than finite-amplitude shallow-water wave models for slopes steeper
than about /.70. So, although their applicability may be wide for spilling breakers
on beaches, their field of application is smaller for wave motion on structures.
Furthermore, the one-dimensional Boussinesg-type models are, like the models
based on the equations in the previous sub-section, not capable of simulating the
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overturning wave tongue and, consequently, not capable of simulating the breaking
process of overturning/ plunging waves.

Boussinesg-type models for the surf-zone have been developed by Abbott et al.
(1983) and Schiiffer et ol (1993), the latter including spilling breakers in an
empirical, geometrical approach.

2.2.4  Navier-Stokes-type models

The motion of an incompressible Newtonian fluid can be described accurately by
the Navier-Stokes equations. For flow conditions in which air-entrainment or wave
impacts occur, compressibility has to be taken into account, although, in most wave
motions the effects of compressibility can be neglected.

The second term in the Navier-Stokes equation (Eg. 2. /) is the non-linear convective
term. For conditions in which this term is of importance, e.g., for relatively high
waves in coastal areas, no analytical solutions exist and discrete solutions are
required. Such solutions are also required because of non-linearity caused by free-
surface boundary conditions. For flow conditions in which this convective term is
relatively large compared to the shear stresses specified in the fourth term, the flow
field can become turbulent which means that infinitesimally small deviations in the
initial and boundary conditions cause large deviations in the solution. Often one is
not interested in such a co-incidental solution but in the average of the possibly
occurring properties, i.e., the motion of the mean flow and not the coincidental
deviation from it. Averaging the possible solutions of the Navier-Stokes equation
leads to the Reynolds-equation describing the mean flow:

%_l: + (u-V)u + V% + V(W) -vViu =k 2.15)

where the fourth term specifies the Reynolds-stresses. These contain Reynolds
pressures and shear-stresses. The gradients of the Reynolds pressures can usually be
neglected since they are much smaller than the gradients of the normal pressures in
the third term of the Reynolds-equation. For most applications the Reynolds shear-
stresses, i.e., turbulence shear-stresses, are much larger than the viscous shear
stresses described by the fifth term, permitting neglecting of the latter. Omitting the
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Reynolds pressure component, the Reynolds stresses can be approximated by a
gradient-type of transport:

Vi(u'u') = -V-(v, A) (2.16)

where v, is the eddy-viscosity, i.e., turbulence viscosity and the components of 4 are
A;=(9u, /3x,+0u; /9x; ).

Models based on potential flow theory fail to model the breaking process while
models based on the finite-amplitude shallow-water wave equations or Boussinesg-
like equations cannot model the wave front in detail. This can be overcome by
solving the two-dimensional (2DV) Navier-Stokes/Reynolds-equations. This requires
a powerful method, able to deal with multiple-connected free surfaces. The "Marker
And Cell’ method (MAC), see Welch ef al (1966), and the *Volume-of-Fluid’
method (VOF), see Hirt and Nichols (1981), are such advanced techniques. For
instance the first method is used by Sakai ef al. (1986) for simulations of breaking
waves. For the second method, the treatment at the surface can be improved by
using the adapted flux-method known as ’FLAIR’, see Ashgriz and Poo (1991).
Because the governing equations and the procedure for solving these equations do
not require a specific definition of the free surface, very complex shapes of this
surface can be dealt with including air-entrapment where air is modelled as vacuum.
The pressure-gradients in the Navier-Stokes/Reynolds equation can be computed
from given velocities by applying the pressure Poisson equation:

%Vzp = V-(—(u-V) u+ V(v A) + k) (2.17)

where the vector k represents the gravitational accelerations. By solving this
equation conservation of mass is satisfied.

The VOF-method, as initiated by Hirt and Nichols (1981), is used by Lemos (1992)
who combined the model with a %-e turbulence model, by Van der Meer ef al.
(1992) where smooth impermeable slopes are implemented based on Petit and Van
den Bosch (1992), and by Wu (1994) for breaking waves against a vertical wall. In
principle the models are not only capable of simulating free surfaces which become
multiple-connected but also capable of modelling air-entrapment, see Figure 2.2.
Both are essential for the simulation of overturning waves. Because the models are
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two-dimensional, they can accommodate a wider range of types of structures then
the models based on the one-dimensional descriptions, as mentioned in the previous
two sub-sections.

In Chapter 5 a numerical model based on the Reynolds-averaged Navier-Stokes and
the VOF-method is described. The model, into which smooth impermeable slopes are
implemented by Petit and Van den Bosch (1992), has been extended and verified,
enabling simulations of wave motion on and inside permeable structures.

Fig.2.2 Simulation of a breaking wave on an impermeable
slope by a numerical model based on the Navier-
Stokes-equations solved by using the VOF-method.

2.3 Modelling of porous media flow

Wave attack on permeable coastal structures with a high permeability such as those
consisting of coarse granular material or large artificial blocks, cannot be modelled
accurately without modelling porous media flow. The energy dissipation inside the
permeable parts, the infiltration and seepage in the swash and backwash area, and
the interactive flow between the external wave motion and the internal wave motion
often cause the wave attack to be quite different from the flow on impermeable
structures.
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For the numerical simulation of wave motion inside permeable structures, in
principle the same types of equations can be used as for the external wave motion
as discussed in the previous sub-sections. However, the equations must be adapted
because the porosity and different friction terms need to be implemented. Because
the flow through the permeable parts of coastal structures is often turbulent, the
porous media flow is different from the well-known groundwater flow which is a
laminar flow. Furthermore, the wave attack on coastal structures and their relatively
coarse material make the porous media flow highly time-dependent. Therefore, not
only must the differences between laminar and turbulent porous media flow be
studied but also the influence of the oscillatory flow on the friction. In Chapter 3
porous media flow will be discussed in detail and experimental tests to study porous
media flow will be described.

After implementing the permeability of the porous medium in the formulations,
numerical models were developed for porous media flow, while some are connected
to models for the external wave motions. These are formulations based on potential
flow theory (Koutitas, 1982), finite-amplitude shallow-water wave equations
(Hannoura, 1978; Van Gent, 1992/1994-a; Wurjanto and Kobayashi, 1993; Engering
et al., 1993) and Navier-Stokes equations (Van Gent et al., 1994-a/c). The latter two
types of equations will be described in Chapter 3 and applied in Chapters 4 and 5.

2.4 Modelling of combined external-internal wave motion

In the previous sections numerical models for the external wave motion and models
for porous media flow have been mentioned. Some of them contain descriptions of
both the internal and external wave motion which permits computation of both wave
motions simultaneously. The coupling of both parts, however, is different in all of
the numerical models mentioned.

Koutitas (1982) gave a description of a numerical model where the external wave
motion was modelled with finite-amplitude shallow-water wave equations and the
internal wave motion with a model based on potential flow theory. The model
described in Chapter 4 (Van Gent, 1992/1994-a) and those by Wurjanto and
Kobayashi (1993) and Engering ef al. (1993) all use equations of the shallow-water
type (long-wave equations) for both the external wave motion and the internal wave
motion. In the model treated in Chapter 5 the wave motion described is based on
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Navier-Stokes equations in both the external and the internal region. Except for the
latter numerical model the models use a one-dimensional description of both the free
and phreatic surface. Neither gives a detailed description of the un-saturated zone
between the free and phreatic surface, see Figure 2.3.

FREE SURFACE

ERMEABLE SLOPE

PHREATIC SURFACE

Fig.2.3 Un-saturated zone between the free and phreatic surface.

The models by Koutitas (1982) and Wurjanto and Kobayashi (1993) neglect this
phenomenon completely because the free surface and the phreatic surface are forced
to stay connected (4 and B in Figure 2.3 are then at the same point). For the
situation in Figure 2.3 this causes the run-up point (4) to be pulled downward and
the phreatic surface to be pushed upward. This causes severe inaccuracies in the
calculation of both the external and internal wave motion for cases in which, due
to the relatively high internal friction, the phreatic surface is unable to keep up with
quick motion of the swash and backwash. In the model by Engering et al. (1993)
and the model described in Chapter 4, the free and phreatic surfaces do not have to
remain connected (points 4 and B in Figure 2.3 are treated separately). A separate
treatment for the movement of point B is included in both models by prescribing a
maximum velocity for the phreatic surface in the vertical direction. Engering et al.
(1993) force the phreatic surface to move in the direction of the run-up point (B
moves towards 4) while the treatment by the model described in Chapter 4 does not
require this. Furthermore, this model takes the infiltration through the un-saturated
zone into account. The model described in Chapter 5 does not need such separate
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treatment since it can give a two-dimensional description of the surface and is, in
principle, able to deal with un-saturated zones.

The different treatment of aspects like the one mentioned above easily cause
relatively large differences between the respective numerical models even though
they might use the same basic equations and similar numerical schemes. Other
aspects of the coupling between the two parts of the model will be discussed in
Chapter 4.
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Chapter 3

3. Porous media flow
3.1 Introduction

The need for studying porous media flow for modelling wave motion on and inside
coastal structures has been discussed in the previous chapters. In Section 3.2
formulations to describe porous media flow will be given. The importance of non-
stationary porous media flow in coastal engineering applications is shown in Section
3.3. Measurements to study both stationary and non-stationary porous media flow
are described in Section 3.4. Parts of the research treated in this chapter are more
specifically described in Van Gent (1991, 93-a, 94-c or 95-a). A valuable discussion
of dynamics of fluids in porous media is given by Bear (1972).

3.2 Formulations for porous media flow

The well-examined groundwater flow and flow through other small-size material is
mostly laminar. Laminar stationary flow of an incompressible fluid through a
homogeneous porous medium can be described by using the Law of Darcy (1856):

u--K (Wprpg) G.1)
Pg

where u denotes the vector of the filter velocities, also called bulk velocity or
specific discharge velocity. For the permeability coefficient K, hereafter K=1/a,
many relations exist, see Bear (1972). The following expression, after Kozeny
(1927), is supported here, since it can be derived theoretically:

RV
a=o 0 v (32)
n gD
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where a=1/K, v is the kinematic viscosity, D is a characteristic length-scale, » is the
porosity of the porous medium and « is a non-dimensional coefficient to be
determined empirically.

For many applications for civil engineering purposes the vertical accelerations can
be neglected. For such applications often a one-dimensional description of the flow,
including the assumption of hydrostatic pressures, will do. For laminar porous media
flow this reduces Equation 3.1 to the one-dimensional equation I=a- u where / is
the pressure gradient (I=-1/pg-dp/dx), a the dimensional friction coefficient
(s/m) and u the depth-averaged filter velocity. For flow through a porous medium
of coarse granular material the resistance can be reasonably well expressed by a
term that is linear with the flow velocity (a°u) and a term that is quadratic with
the flow velocity (b u |u|). Such a relation was proposed by Forchheimer (1901):

I=au+bulu| (3.3)

where a and b are both dimensional coefficients. The first term can be seen as the
laminar contribution and the second term can be seen as the contribution of
turbulence, although the influence of large-scale convective transport is also
included in this second term (small-scale convective transport occurs on the scale
of the pores). For turbulent porous media flow, and in the transition between
laminar and turbulent flow, this equation can be used. The friction coefficients a
(s/m) and b (s*/m?) are dimensional and contain several parameters. Many empirical
and semi-empirical formulae have been derived from measurements. For a literature
survey see Bear (1972). Here, for the friction coefficient a, expression 3.2 is used
again. The coefficient « is not assumed constant at first since it might still depend
on the flow properties or the geometry of the porous medium. For the friction
coefficient b an expression proposed by Ergun (1952) and others is used, since it
can also be derived by using the Navier-Stokes equations (see e.g., Van Gent,
1991):

1-n 1
D

(3.4)

S
w
o0

The Forchheimer equation (£g.3.3) is valid for stationary flow. Polubarinova
Kochina (1952) added a time-dependent term. This type of formula for unsteady
porous flow is referred to as the extended Forchheimer equation:
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I=au+bu|u|+c§—E (3.5)
ot

where ¢ is a dimensional coefficient (s*/m). This formula can also be derived from
the Navier-Stokes equation, using concepts like averaging techniques (e.g., Irmay,
1958; Van Gent, 1991). Irmay (1958) did not take the phenomenon added mass into
account and therefore derived for ¢ the expression ¢=1/ng.

To accelerate a given volume of water, momentum is needed. More momentum is
needed to accelerate the same volume of water in a porous medium. This is called
added mass because the extra momentum needed suggests that a larger volume of
water has to be accelerated. Including the phenomenon added mass in the expression
for the coefficient ¢, Gu and Wang (1991) and Van Gent (1991) derived the same
type of expression theoretically:

L+e, 1Try— (3.6)

ng ng

where 7 is a non-dimensional coefficient that takes the phenomenon added mass
into account.

The extended Forchheimer equations (Eg.3.5) cannot directly be used for flow
through porous media with considerable large-scale convective transport. This can
be included by an additional term:

I:au+bu|u|+cﬂ+du% (3.7
ot ox

where d=1/n’g. For porous media flow with a phreatic surface and a sloping
impermeable bottom (with elevation z,), the pressure gradient in the horizontal
direction can be rewritten as (assuming hydrostatic pressures in the vertical
direction):

jo- Lop_ _ohz) (3.8)
pg ox ox
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Now, Equation 3.7 can be rewritten as:

1 o(h-
+c“§£+_l—u2+—(—2=—au—bu|u[ (3.9
ng ot plg Ox ox

Using the continuity equation for the porous medium,

Oh , 1ohu _, (3.10)
dt n ox

this Equation 3.9 can be rewritten as:

dhu dh 1 Ohu? d(h-z,)
(l+cy,) — - c,u— + — + ngh———
ot gt n Ox ox (3.11)

= -ngh(au +bulu|)

Equations 3.10 and 3.11 resemble the continuity equation and the finite-amplitude
shallow-water wave equation (long-wave equation) for free surface wave motion as
written in Equations 2.11 and 2.12. The numerical model discussed in Chapter 4
uses formulations of the type denoted in Equations 3.10 and 3.11. Equation 3.11 can
be derived directly from the Navier-Stokes equations with the same approach as
discussed in Section 2.2.2. The Navier-Stokes equations can be adapted for direct
use for porous media flow, see also Van Gent (1991). The equations for two-
dimensional incompressible flow with a constant fluid mass density through a
homogeneous isotropic porous medium read:
1+0A@+ 1 @jauw))rl op

ng ot n2g ox oz pg ox (3.12)
-au-buy(u?+w?)

1*%@){ 1 duw 8w2)+_1_@=

ng ot n’g Ox dz pg 0z (3.13)

—aw-bwy(ut+w?) - g
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For the coefficients a and b the expressions denoted in Equations 3.2 and 3.4 can
be used. However, the coefficients o and f in the expressions for a and b
respectively must be determined empirically from tests with sufficiently small
convective terms. Otherwise the coefficients in the Forchheimer equation (Eg.3.3)
and the adapted Navier-Stokes equations (E£q.3./2 and Eg.3.13) are not the same.
The presence of a large convective term results in a higher value for the coefficient
b in the Forchheimer equation since the momentum needed to give the water this
acceleration ends up in this quadratic term. A possible additional resistance, similar
to the added mass resistance due to local acceleration, might occur due to
convective acceleration. Such a phenomenon can easily be included in the Equations
3.12 and 3.13. However, in the measurements described in this chapter no
convective term was present and therefore no conclusions can be drawn concerning
this matter.

The expressions for a and b (Eq.3.2 and Eq.3.4) contain representative length-scales
D. For granular material a characteristic stone diameter seems to be the most
appropriate. It can be argued whether D, 5, D5, or Dy, is the most appropriate
characteristic length-scale for the porous medium. The equivalent sphere diameter
Dy, is defined as Dy =(6M;, /mp,)"” where M, is the average mass of a rock
grading. The diameter D, , can be seen as a representative scale for the size of the
pores. On the other hand, Dy, can be used as a characteristic length-scale while the
influence of grading (affecting the size of the pores) can be included separately in
the expressions for o and (8 (see £g.3.2 and Eq.3.4). The diameter D, is also a very
common characteristic length-scale. In the measurements which will be described
here, the values o and g, calculated with D, 5, D5, and Dy, respectively will all be
presented.

3.3 Importance of inertia

The extended Forchheimer equation (Eq.3.5) contains three contributions to the total
resistance for flow through a porous medium, namely the resistance due to laminar
and turbulent flow and the inertial resistance. Gu and Wang (1991) discussed the
importance of these three components for a wide range of practical coastal wave
conditions. A discussion using a similar approach is given below.
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The relative importance of resistance forces can be estimated by using two non-
dimensional parameters. The magnitude of the resistance due to turbulence relative
to the laminar resistance is linear with the Reynolds-number, Re, defined as UD/v
where » is the kinematic viscosity and U is a characteristic velocity (for which the
maximum pore velocity is taken). The magnitude of the resistance due to turbulence
relative to the inertial resistance is linear with the Keulegan-Carpenter number, KXC,
defined as UZ/D where T is the wave/oscillation period. The magnitude of the
inertial resistance relative to the laminar resistance is linear with Re/KC=D %/Tv.

Table 3.1 Dominant resistance components under coastal wave conditions.

Material D (m) U (m/s) Re Re/KC Dominant
description” (UD/v) (D’/Ty) resistance
Sand 0(107) <0(107) <0(10° <0(10° Laminar
Pebbles 0(107) 0(107) 0(10%) 0(10%) Laminar
Fine gravel Turbulence
Inertial
Coarse gravel o(107) o107 0(10%) 0(10%) Turbulence
Crushed stone Inertial
Boulders 0(10°) 010 0(109) 0(109) Turbulence
Crushed stone Inertial
Artificial blocks 010" >0(10°) >0(10°) >0(10°) Turbulence
Large rock Inertial

" classification by Gu and Wang (1991), for standard classification of stones see PIANC (1972).

With the estimates o~0(1000), 3~O(1) and y~O(1), where o, 8 and v are the
coefficients in Equations 3.2, 3.4 and 3.6, the relative magnitude of the resistance
forces can be estimated:

fl _ _inertial resistance 10°2 Re

/i T laminar resistance KC

f_‘T _ turbulence resistance 102 Re (3.14)
f L laminar resistance

]iT _ turbulence resistance KC

fI inertial resistance
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Table 3.1 and Figure 3.1, both derived from Gu and Wang (1991), give an
illustration of the dominant resistance components under coastal wave conditions.
Figure 3.1 shows regions with different dominant resistance components in relation
to the above mentioned dimensionless parameters KC and Re. Under coastal wave
conditions porous flow through sand is dominated by laminar resistance (denoted
with £;). Inertial resistance (f;) and resistance due to turbulence (f;) are of minor
importance (f, > f;; f, > f). For porous flow inside gravel beaches and rubble-mound
structures, however, inertial resistance and resistance due to turbulence cannot be
neglected. In small-scale physical-model tests, none of the three resistance
components can be neglected.

Re
uby 4 TURBULENGE
v /10 COARSE GRAVEL
fT> 10 fL LARGE ROCK
4
10 f.|.>10fI —l fl'fT .
16? f.fr FINE GRAVEL
[
1 SAND
_za LAMINAR INERTIA
10
| fL>1OfI fL f|>10fL
1074 fL>1ofT fI fI >10fT
K Re/KC
10 T T T T T T T T D2
10 10* 162 1 10°  16* 1 (Ti&)
TESTREGIONS: |  SMITH = | NEWTESTS

Fig.3.1 Regions with different dominant resistances (laminar,
turbulence and inertia) and the region where new oscillatory
flow tests have been performed.

The friction coefficients in the linear (laminar) term (a) and in the quadratic
(turbulence) term (b) from the Forchheimer equations were measured before in tests
with stationary flow. A very limited number of measurements with oscillatory flow
has been performed and reported. Available data were insufficient, however, to
determine inertia coefficients systematically. Therefore, the coefficient in the inertia
term (c) needs to be studied. Furthermore, it must be verified whether a possible
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dependency of the coefficients a and b on parameters like the Re-number and the
KC-number exists, see a discussion in Van Gent (1991).

Smith (1991) did experiments in an oscillating water tunnel through different
arrangements of packing of spheres. Two sizes of spheres and two arrangements of
the packing were tested with different amplitudes of the velocity and different
oscillation periods. One sample of rock material was tested. Although his data-set
was not sufficient to improve or extend existing porous media flow formulations,
his experiments provided valuable experience which contributed a lot to the design
of the set-up for new experiments to study both stationary and oscillatory flow
through rubble-mound material.

New measurements were carried out, mainly to study the differences between
stationary and non-stationary flow rather than to improve or extend the formulations
for stationary porous media flow. It was supposed that relatively large differences
between stationary and oscillatory flow could occur in a flow regime where inertia
is relatively important compared to the contribution of turbulence. The experiments
described here were done in the regime where the ratio of the contribution of inertia
compared to the contribution of turbulence is larger than in the measurements by
Smith (1991). The new tests were done with higher Re-numbers and with lower KC-
numbers.

The magnitude of the dominant resistance components in the new tests, described
in the following section, has been illustrated in Figure 3.1. The figure shows that
none of the three resistance components can be neglected in the tested region. The
figure shows the relevant areas for sand, fine gravel, coarse gravel and large rock
under coastal wave conditions. It illustrates that the tested region is of importance
for applications with coastal wave conditions.

3.4 Permeability measurements
3.4.1 Description of the measurements
In Van Gent (1993-a) the measurements, the test results and the analysis used to

derive new expressions for porous media flow coefficients have been described in
detail. In the following, a summary of these activities is given. The measurements
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were performed in the oscillating water tunnel of Delft Hydraulics within the
framework of the European MAST-G6S research project.

Experimental set-up

The tests were performed in an oscillating water tunnel having the shape of a U-
tube. In the horizontal section of the U-tube, /5 m long and 0.30 m wide, a box
(1=0.75 m; h=0.50 m; b=0.30 m) containing porous material was placed, see Figure
3.2. To obtain a sufficiently large flow rate through the samples, the cross-section
of the horizontal section of the U-tube was reduced. To obtain this, an additional
bottom was placed 0.30 m above the permanent bottom of the tunnel and a slope
was created on both sides of the test section.

B PRESSURE TRANSDUCER

| PISTON

+075m
SAMPLE

Fig.3.2 Experimental set-up.

A piston positioned at one of the shafts produced oscillating water movements.
Various combinations of amplitudes and oscillation periods could be generated. The
piston movement was recorded (both the control signal and the actual signal). This
made possible the assessment of the filter velocities through the sample. These
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velocities were checked with a Laser-Doppler Velocity meter (LDV) positioned
above the slope and outside the range of the water particles moving through the
sample. Although the control signal that was used for the oscillatory flow tests was
sinusoidal, it appeared that the actual displacement was not exactly the same. For
each oscillation period the stroke of the piston was increased in steps of about /%
of the maximum stroke of the piston (= /.50 m). The step-wise increase in stroke
was continued till the moment the maximum pressure of the tunnel was reached.
The average maximum piston movement was about /0% of the maximum stroke of
the piston which corresponded to a maximum velocity of about 0.5 m/s near the
sample. This indicates that the tests were carried out in the lower range of the
possible piston displacement which led to relatively large deviations from a
sinusoidal motion of the piston at the points where the piston changes direction.

A stationary flow can be produced in the tunnel with a flow rate up to 0.10 m’/s.
After positioning of the sample in the tunnel a large flow discharge was imposed
on the sample such that air bubbles were removed. The actual test-runs started with
a constant flow of 0.0/ m’/s. The flow rate was increased in steps of 0.0/ m’/s up
to a maximum 0.0 m%s.

At the bottom of the box pressure transducers and differential pressure transducers
were installed, both inside the box and just outside. The distance between the
transducers inside the box was 0.50 m. The distance between the transducers
installed outside the box was 0.8 m. For the stationary flow tests the flow rate
generated by the pump was measured (both the control and the actual flow rate) and
checked with the LDV-equipment. All signals were recorded during one minute with
a sampling frequency of 100 Hz.

To reduce wall effects halves of spheres of roughly the same size as the tested rock
material were glued to the vertical sides of the box containing the samples of rock
material, see Figure 3.3. Although wall effects were reduced, the filter velocities
were multiplied by a factor, for which 0.95 was assumed to be a realistic value, to
account for the remaining wall effects. The velocities measured from the piston and
the measured velocities near the sample differed slightly due to leakage below the
additional bottom. This has been taken into account by using an estimate of the
leakage. This estimate was based on measurements with the LDV-equipment in the
cross-section both above and below the additional bottom, see for details Van Gent
(1993-a).



POROUS MEDIJA FLOW

Fig.3.3 Reduction of wall effects. Fig.3.4 Sample with spheres.

Tested material

Five samples of various types of stones were tested. Their relevant properties are
given in Table 3.2. Test materials denoted with R/, R3 and R4 were provided by
Hydraulic Research, Wallingford (U.K.). Test material R3 was obtained from
material R/ which was rounded by abrasion in a cement mixer to get a 5 to /0%
weight loss. R4 was obtained from material R/ and rounded to get a 20 to 25%
weight loss. A full description is given by Bradbury et al. (1988). Material R8 was
used as core material in tests at Hannover, see Quméraci (1991). Apart from the five
samples of stones, a sample of wooden spheres in a cubic packing arrangement was
tested, see Figure 3.4.

The porosity » was assessed by weighing the stone sample in a box with a volume
equal to the box placed in the oscillating water tunnel. The volume of the stones
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was found by division by the stone density. The porosity of the sample of spheres
was derived theoretically. Because the wooden spheres expand in water, the actual
porosity could have been slightly lower. The aspect ratio /¢ is defined as the
average length of the longest axis of the stones (/) divided by the minimum length
perpendicular to this axis (7). The rock samples were compacted before testing so
that no compaction could take place during execution of the tests.

Table 3.2 Description of tested material.

Code  Material Dys(m) D,y (m)  Dgy(m) D,s/D,s Ut n

Rl Irregular rock 0.0525 0.0610 0.0760 127 19 0442
R3 Semi round rock 0.0419 0.0487 0.0607 127 20 0454
R4 Very round rock 0.0425 0.0488 0.0606 126 22 0393
R5 Irregular rock 0.0170 0.0202 0.0251 103 23 0449
RS Irregular rock 0.0230 0.0310 0.0385 174 20 0388
S Spheres 0.0460 0.0460 0.0460 1.0 10 0476

The number of samples is not sufficient for a full parameter study. Parameters such
as porosity, diameter, grading, aspect ratio and shape (gross shape, roughness and
surface texture) are varied. Since the number of samples is rather limited and many
parameters are varied, formulations for the friction coefficients (£g.3.2 and Eq.3.4)
cannot be extended to include parameters like grading and aspect ratio. However,
the results can be compared with existing formulae.

3.4.2  Stationary flow tests

The coefficients @ and b from the Forchheimer equation (£q.3.3) could be derived
by using the measured pressure gradients and measured filter velocities and applying
linear regression analysis. Assuming that the coefficients are constant for the tested
range, a plot //u versus u would give a straight line. / is the measured hydraulic
gradient and u is the calculated filter velocity derived from the piston displacement.
Extrapolation of the lines in Figure 3.5 gives the a-values at the vertical axis. The
b-values can be derived from the slopes of the lines.
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0 STATIONARY FLOW — COEFFICIENTS A & B

X¥xOmA
MEASURED

FIT

/U (s/m)
S

S1

R4

T

T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
U (m/s)

Fig.3.5 Data points from stationary flow tests and fits to the
Forchheimer equation (eq.3.3).

It appears that the assumption that the @ and b values for a particular sample are
constant within the tested range, is correct since the measured data correspond fairly
well with the fitted line except for the two lowest measuring points with sample RS
and the highest point from sample R5 (excluded from further analysis). One data
point from sample R4 has also been excluded since it was assumed that this point
was caused by an error in the data-acquisition or by failure of the equipment. All
other data points, resulting in rather straight lines, do not indicate that the validity
of the Forchheimer equation (prescribing straight lines in Figure 3.5) should be
questioned. Therefore, the divergent points from the samples R4, RS and RS have
not been included in the further analysis.

Table 3.3 shows results of the stationary flow tests. The coefficients a and b from
the Forchheimer equation (Eg. 3.3) are given as well as their standard deviation (std).
The values of o and 8 from Equation 3.2 and 3.4 were calculated, using three
characteristic length scales for D: D, 5, D, , and the equivalent sphere diameter D,
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Table 3.3 Results stationary flow tests’.

Sample a stda  a-D,s a-D, o-Dy, b stdb B-D,s B-D,sy B-Dyy
RI 0.23 0037 1327 1791 2780 6.0 0076 0.48 0.55 0.69
R3 0.00 0016 0 0 0 10.7 0.05 0.75 0.88 1.09
R4 0.3¢4 0015 808 1066 1644 6.0 0.06 0.25 0.29 0.36
R5 1.81 0.093 1204 1662 2566 32.8 0.75 0.91 1.07 1.33
RS 0.89 0.055 554 1007 1552 21.7 0.4 0.47 0.63 0.78
S1 0.33 0023 2070 2070 2070 7.4 0.16 0.69 0.69 0.69
Table 3.4 Ranges in oscillatory flow tests.

Sample U (m/s) T (s) KC Ac

RI 0.13-0.50 2-4 15000-66000 8-60 0.007-0.049
R3 0.12-0.45 2-4 12000-46000 8-65 0.007-0.033
R4 0.12-0.49 2-4 16000-58000 11-82 0.007-0.058
R5 0.05-0.25 2-4 2000-10000 9-88 0.003-0.022
RS 0.09-0.34 2-4 6000-25000 13-91 0.007-0.036
S1 0.07-0.51 2-4 5000-38000 6-93 0.007-0.052

Table 3.5 Results oscillatory flow tests’.

Sample b(stat) b stdb b(range) ¢ stdc c(range) vy  stdy y(range)
R1 6.0 85 123 7.2-11.5 021 014 0-040 041 013 0.24-0.58
R3 107 136 202 12-17 027 014 0-045 042 021 0.09-0.83
R4 6.0 9.2 084 81-12 030 014 0-045 032 0.13 0.10-0.48
RS 32.8 35 523 31-50 012 016 0-040 033 024 0.08-0.62
R8 217 23 1.80 21-28 031 014 0-045 030 012 0.09-045
S 7.4 93 334 6-21 015 013 0030 027 010 015-0.36

1

a in s/m; b in s'/m’; c in s'/m; a-D,,; denotes the a-value calculated with D, for D; b(stat)

is the b-coefficient from the stationary flow tests; std denotes the standard deviation.
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Smith (1991) found values for « and 3, with Dy, as characteristic length-scales,
between 437-3752 and 0.36-1.06 respectively. In the present tests, these ranges were
0-2780 and 0.36-1.33 respectively. The comparison of these results shows that
neither of these ranges is substantially divergent. Both test series also clearly
indicate that the coefficients o and 8 (Eq.3.2 and Eg.3.4) are not constant for all
samples. Other expressions for @ and 5 than those used in Equations 3.2 and 3.4
exist. For instance Engelund (1953), Koenders (1985) and Den Adel (1987) gave
expressions with different powers for the porosity. They also prescribe constant
values for o and 3. This consequently leads to considerable differences between the
values predicted by these equations and the values actually measured for a and b for
each sample. These expressions, however, also considerably overestimate the
average b-values of all samples, see van Gent (1993-a).

The coefficients « and § are not constant for all samples. This implies that the
expressions for a and b (Eg.3.2 and Eq.3.4) are over-simplified. Probably
parameters such as grading, aspect ratio and shape (gross shape, roughness and
surface texture) still have to be implemented in the expressions. Furthermore, the
orientation of stones with respect to the mean flow direction may play a role. For
a free-falling stone, the longest axis is more likely to orientate horizontally while
the smallest axis of the stone is more likely to orientate in the vertical direction, see
Figure 3.6, as a result of which the porous medium is not isotropic. This can,
however, be implemented in two-dimensional porous media flow equations (£g.3.12
and Egq.3.13) by prescribing different coefficient ¢ and b in the two directions.

Based on comparisons between measurements by several authors, in Van Gent
(1993-a) a simple implementation of the influence of the orientation of stones with
respect to the mean-flow direction is proposed: 8 in Equation 3.4 can be replaced
by B, (I/t)*3*¥*7 where I/t is the aspect ration and v the minimum angle between
the direction of the mean flow and the direction of the longest axis of the stones.
Although the third dimension must be regarded as well, in Figure 3.6 the situation
with a horizontal mean-flow direction (4, ¥=0°) is supposed to give less resistance
than for a situation where this flow is vertical (B, ¥=90°). The proposed formula,
however, cannot be verified with the present measurements. For flow conditions in
which the direction of the mean flow is not known beforehand, based on the
measurements the use of /./ as an average value for 8, (assuming an average of
¥=45° and using D,, for D in Eq.3.4) can be advised.
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g

Fig.3.6 Orientation of stones in relation to the direction
of the mean flow.

343 Oscillatory flow tests

The oscillatory flow tests were performed for relatively high Reynolds-numbers and
for low Keulegan-Carpenter numbers. The ranges of some relevant parameters for
the oscillatory flow tests are listed in Table 3.4. Note that in both the Re-number
and in the KC-number the maximum pore velocity (U/n) is taken as the
representative velocity. As a measure for the accelerations in the porous medium the
non-dimensional Ac-number is introduced here and defined as Ac=U/(nTg). Three
oscillation periods were used: 2, 3 and 4 s. Maximum filter velocities U up to 0.50
m/s were used.

Deviations near the zero-crossings of the velocity signal occurred due to testing in
the lower range of the capacity of the piston displacement. The c-term amplifies
deviations from a smooth velocity signal. This made it impossible to separate the
contributions of the a and b-terms to the complete signal of the pressure gradient
for each test run individually. Therefore, the assumption was made that the values
for the coefficients a are equal to those measured in the stationary flow tests. As
will be shown later, the results of the oscillatory tests indicate that the term
au+bwlul for oscillatory flow conditions is larger than for stationary flow. The
difference is assumed to be caused by a higher b-value (contribution of turbulence)
rather than by a higher a-value (laminar contribution). It can be expected that unlike
a stationary flow, an oscillatory movement of the fluid causes extra turbulence
rather than extra laminar flow. This indicates that it is more likely that for
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oscillatory flow the b-values are higher than that the a-values are higher. It might
also be that the g-value becomes lower and that the b-value increases for oscillatory
flow. The term a-u+bu|u| also increased in oscillatory flow tests with one of
the samples where the a-value was zero in the stationary flow tests. Since it is
supposed that a-values do not become negative, it is assumed that a-values do not
become lower in an oscillatory wave motion.

0 HYDRAULIC GRADIENTS

MEASURED

EXT. FORCHHEIMER

-0.4 -

0.8 1

-1.21

=1.81

-2.0 T T
12.0 14.0 16.0 18.0
TIME (s)

Fig.3.7 Measured hydraulic gradient (I) and fit to the extended
Forchheimer equation (eq.3.5).

The 5 and c coefficients were determined by using a graphical approach,
comparisons were made between the signal from the measured pressure gradient /
and the calculated signal obtained by using the extended Forchheimer equation
(Eq.3.5). The term ¢-3u/dt is supposed to be zero at the peak of the velocity signal
(u=U). Therefore, the term au+bwiu| could be determined from these
maximum velocities. The c-term is relatively important around the zero-crossings
of the velocity signals (u < U); the c-coefficients could be determined by fitting the
extended Forchheimer equation to the measured signal near the zero-crossings.
Despite the complicated way used to derive the c-coefficients it is estimated that,

39



CHAPTER 3

40

based on the observed influence of variations of these values, this approach does not
give errors larger than roughly 70%.

Figure 3.7 shows an example of measured pressure gradients from a test with rock
sample RS with an oscillation period of 2 s and a maximum filter velocity of
U=0.20 m/s. The fit to the extended Forchheimer equation is shown as well.

0 HYDRAULIC GRADIENTS

DA

TIME (s)

Fig.3.8 Contribution of each term to a signal from the extended
Forchheimer equation (eq.3.5).

In Table 3.5, the results of the oscillatory flow tests have been summarised. For
comparison, the »-values from the stationary flow tests have also been listed (b-
stat). The b-values from the oscillatory flow tests are higher. The b and c-values
show large standard deviations. However, as will be shown in the following sub-
section, these deviations are systematic rather than random. For the tests with small
amplitudes of the velocities (small U), the term with the ¢-coefficients (Eg.3.5) did
not contribute to a distinctly better representation of the measured hydraulic
gradient. Therefore, the corresponding c-values were set at zero. These values, of
which the accuracy is very low, have not been used to determine the corresponding
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added mass coefficients vy, see Table 3.5 and Equation 3.6 (they would lead to
negative added mass coefficients).

Smith (1991) found c-values in the range 0./3-1.3 with an average of 0.36. Here,
c-values were found between 0 and 0.45, with an average of 0.23. His
corresponding vy-values, neglecting the negative values, were between 0 and /.10
with an average of 0.29 and a standard deviation of 0.24. Here, values for vy
between 0.08 and 0.83 were found, with an average of (.34 and a standard deviation
of 0.17.

In Figure 3.8, the contributions of the a, b and c-terms to the complete signal from
the test shown in Figure 3.7 are illustrated. The figure shows that the contribution
of the c-term is rather limited. Even for a test with a relatively high c-value (¢=0.4),
the contribution of the ¢-term is only of relative importance in a small part of the
oscillation period, i.e., near the zero-crossings.

RELATIVE CONTRIBUTIONS OF FORCHHEIMER TERMS.

—
100 MAX. CONTRIBUTION
=1

MIN. CONTRIBUTION
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R3R4RS[ 51
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T
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Fig.3.9 Contributions of each term from the extended Forchheimer
equation (eq.3.5).
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For each sample the contributions of the three terms from the extended Forchheimer
equation (Eq.3.5) are calculated with respect to the maximum hydraulic gradient
(1,..), see Figure 3.9. The ratio of a-U and I, varied between 0 and 0.41. The
term with coefficient b is the largest for all samples; the ratio of b U0 and 1,,,,
varied between 0.59 and 7.00. The contribution of the term with coefficient ¢
reached its maximum just after the zero-crossings. At that point, the contribution of
(c-dw/dt) ,,,, reached its maximum of 40% of I,,,, for some tests with sample R/. It
may look as if the influence of the a-term is of the same order of magnitude as the
contribution of the c-term. However, the part of signal in which the contribution of
the c-term is relatively large, is small.

3.4.4  Expressions for friction coefficients

The measurements showed that oscillatory flow conditions lead to higher values for
the friction coefficients b than under stationary flow conditions, especially for the
relatively low KC-numbers. Figure 3.10 shows this dependency for the tests with
the rock samples. The expression for the friction coefficient 4 contains the non-
dimensional coefficient 8, see Equation 3.4. Here, this coefficient is divided into the
stationary flow contribution B, and an extra resistance 8’ in the case of an
oscillatory wave motion. In Figure 3.11 this extra resistance is shown as function
of the Keulegan-Carpenter number defined as KC=UT/(nD, ).

A dependency of the friction coefficients on the KC-number was found for the
resistance of a single cylinder in an oscillatory flow by Keulegan and Carpenter
(1958). They found that the drag coefficient increases with lower KC-numbers while
the inertia coefficient increases with higher KC-numbers. Here, the same conclusion
was found for the drag (quadratic) coefficient but the inertia coefficient seems to
increase with the Ac-parameter rather than with the KC-number. Boundary layers,
and possibly small eddies, will be destroyed if the flow direction changes. This
destruction of the boundary layers requires extra momentum. The destruction of
these boundary layers will be greater if the inertia term, relative to the turbulence
term, is larger. This is inversely proportional to the KC-number, since the KC-
number can be seen as the ratio between the influence of the turbulence term and
the influence of inertia. Boundary layers are not developed instantaneously. This
causes a kind of history effect in the friction term; the friction at a specific point of
time is not directly dependent on the momentary velocity at that.time. To account
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for this phenomenon, a characteristic velocity of the flow field is more useful than
the momentary velocity. Therefore, this phenomenon can be implemented by taking
the maximum bulk/filter velocity U for the characteristic velocity in the KC-number.
The dependency of the Forchheimer friction coefficient b on the XC-number has
been incorporated in the expression:

A

1-n 1 where KC = ur

3
n® g D, nD, s,

B 75
b=B. (r22) (3.15)

Smith (1991) did a relatively small number of tests in a range with low KC-
numbers. This might explain why he did not find a dependency on this parameter
although it might also be that for smooth spheres this dependency on the KC-
number is weaker than for flow through stone samples. This could not been verified
by using the present tests because only one sample of spheres was tested.

The inertia term from the extended Forchheimer equation has also been analysed.
Again a dependency on the flow field was found although much weaker than the
dependency of the b-values on the KC-number. The c-values seem to depend on the
acceleration parameter 4c=U/nTg. It has been incorporated in the expression for the
added mass coefficient -y, see Equations 3.16. Because the importance of the whole
inertia term is small, see Figures 3.8 and 3.9, this dependency on the Ac-number is
not as important as the dependency of the coefficient 4 on the KC-number. For
reasons of simplicity, one may decide to neglect the complex dependency of the
coefficient ¢ on the flow field and use a constant value for vy of 0.34, a value which
is rather close to the value found by Smith (1991), i.e., 0.29.
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Fig.3.10 Friction coefficient 3 as a function of the KC-number.
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Equation 3.16 shows the expressions for the coefficients a, » and c. Although the
coefficients « and (8, may still depend on parameters like grading, shape, aspect ratio
or the orientation of the stones, the values /000 and /.7 can be used for « and 3,
respectively if for the characteristic length-scale the D, is used. Replacing the D,
by the Dy, gives for these values /500 and 1.4 respectively while the coefficient 7.5
in Equations 3.15 and 3.16 must be replaced by 5.9. The expressions for a, b and
v in Equation 3.16 (with ¢,=vy - (I-n)/n) can also be used in the Equations 3.11-
3.13.

3.5 Scale effects

Many small-scale physical models are used to study wave motion on coastal
structures containing permeable parts, e.g., rubble-mound structures. The
schematisation of the permeable part easily introduces scale effects, see for a
discussion for instance Cohen de Lara (1955) or Le Méhauté (1957,1958). The
stones in the cover layer are usually scaled with the model factor, the length-scale
factor A, between the prototype structure and the small-scale model, to represent the
stability of the stones correctly. Applying this scale factor for the stones results in
an acceptable representation of the non-linear friction for porous media flow (£g.3.4
or Eq.3.15). However, this scale factor is not applicable to scale the linear friction
(£q.3.2). Applying the same scale factor leads to a too high friction in the small-
scale model. This aspect is of minor importance if the linear contribution can be
neglected with respect to the quadratic friction term (e u<b-u-|u|). However, this
is usually not the case in small-scale model tests. This discrepancy can be partially
solved by scaling the core material by a different factor, leading to larger core-
material although this introduces other scale effects on the friction between the
cover and core material and the behaviour of granular filters. If both the linear and
the quadratic friction are significant, one can use a different scale factor to represent
the total resistance (a-u+b-u-|u]) optimally. However, the relative contributions
of the linear and quadratic terms depend on the flow field which varies not only in
the structure itself, but also for each wave condition. To assess characteristic
velocities inside the permeable structure for the complete test series, one can apply
numerical models able to model this internal flow field.
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3.6 Conclusions

Formulations for porous media flow have been derived for implementation in the
numerical models described in the subsequent two chapters. To contribute to the
study of porous media flow unconventional measurements were performed,
described and analysed. The measurements, performed in a U-tube tunnel showed
differences between stationary and oscillatory flow conditions. For flow regimes
where inertia is important (low Keulegan-Carpenter numbers), the friction is greater
than under stationary flow conditions. The differences between stationary and
oscillatory flow depend on the Keulegan-Carpenter number which means that the
resistance depends on the flow-field. Inertia coefficients have also been determined.
The contribution of the inertial resistance is smaller than the two other resistance
components, namely the laminar friction and the friction due to turbulence. The
analysis of the test results has led to new expressions for porous media flow
friction-coefficients where effects of non-stationary flow have been incorporated.



Chapter 4

4. Numerical simulation of wave attack by a 1D model
4.1 Introduction

In Chapter 2 formulations for numerical simulation of normally incident waves on
coastal structures are discussed. Numerous numerical models have been developed
based on the finite-amplitude shallow-water wave equations of which those by
Hibberd and Peregrine (1979) and the subsequent model by Kobayashi et al. (1987)
can be seen as a basis for further developments. In this chapter a numerical model
that can be scen as an extension of those two models will be presented. It is not
only applicable to a wider range of impermeable structures but also for permeable
structures. The derivation of the formulations for the external wave motion is
discussed in Section 2.2.2 and those for the porous media flow in Section 3.2. Parts
of the research treated in this chapter are more specifically described in Van Gent
(1992, 1994-a). Here, typical aspects of the numerical model will be treated with
special emphasis on the coupling of the external wave motion and the internal
porous media flow. The validation of the numerical model is also discussed. In
Chapter 6 additional verification tests are presented. Furthermore, some applications
of the numerical model, named ODIFLOCS (One DImensional FLOw on and in
Coastal Structures), are presented.

4.2 Model composition and basic equations

4.2.1 General model composition

A combined model with interaction between the external and internal wave motion
will be discussed here. The model is composed in such a way that an external layer
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of water partially overlaps a layer of water governed by the equations for porous
media flow. The basic equations will be discussed in the next sub-section. Figure
4.1 shows a sketch of the general composition of the model.

“ INTERNAL LAYER

h, PERMEABLE

x=0
Fig.4.1 Model composition.

The slope of the structure is divided into a number of slope sections, each of which
has a constant angle of the slope and a constant bottom friction coefficient. The
slope can be modelled as impermeable or permeable. Permeable structures can be
modelled as homogeneous or with an impermeable core, again divided into a
number of core sections with a constant angle of the slope for each section. The
permeable region is modelled as homogeneous which means that a constant porosity
and a constant stone diameter are used.

At the seaward boundary, either regular waves or irregular incident waves can be
prescribed. The landward boundaries, both for the free surface flow and for the
internal boundary of the porous media flow, can be modelled as open or closed
(non-reflecting or fully reflecting respectively). Other specific boundaries are the
interface between the external and internal wave motion, the position of the run-up
point (’shoreline’ at the outer slope) and the boundaries for the phreatic surface.
These will be treated in detail in the following sub-sections.

As discussed in Section 2.4, in this model the free surface and the phreatic surface
can be disconnected as shown in the Figures 2.3 and 4.1. This requires the
modelling of the infiltration and seepage phenomena. These will be discussed briefly
in the following sub-sections.
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4.2.2  Basic equations

In the derivation and the accompanying assumptions for the finite-amplitude
shallow-water wave equations as discussed in Chapter 2, no source terms are
included, see Equations 2.11 and 2.13. This is also the case for the corresponding
equations for porous media flow modelling, Equations 3.10 and 3.11. As can be
seen in Figure 4.1, the region with free surface flow partially overlaps the
permeable region. In this section with overlapping regions, the external wave motion
causes pressure differences resulting in a flow between the external volume of water
and the volume in the permeable part. Both the volume-flux of this exchange and
the momentum of this flow must be incorporated in the basic equations as source
terms.

For the external wave motion the basic equations become:

dhu  ohu? oh 1
—_— 4+ =-gh— -ghtan0_ - - +
ot ox & ax g § 2fu|u| 14
4.1)
oh Jhu
_— = q
ot dx

where 4 is the thickness of the water layer in the external part, u is the depth-
averaged velocity in this layer, 6, is the angle of the outer slope, f is the bottom
friction coefticient, g is the volume-flux of the flow between both layers and g, is
the horizontal component of the velocity of this flow which is obtained by assuming
that this flow is perpendicular to the slope.

For the internal wave motion the governing equations read:

142
ohu oh 1 ohu? a5k
U — + =~

l+c,) — -
Ared o ¥ 5 " % ok

= - ng - ngh tan 6,

- ngh (au + bulu|) - 19

4.2)
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where # is the thickness of the water layer in the permeable part, u is the depth-
averaged filter/discharge velocity in this layer, 6, is the angle of the slope of the
core, a, b and c, are coefficients for the permeability and flow resistance of the
porous medium and » is the porosity.

The friction coefficient £, arising from the simplification of the bottom shear stress
(Eq.2.14), has to be determined empirically. For slopes consisting of stones, the
friction coefficient f'can be estimated by using the empirical formula from Madsen
and White (1975):

h

£ =029 (E")"'s (

D tan6, )0.7
R

(4.3)

where A, is the depth at the toe of the structure and R is the run-up level which can
be estimated by using the wave height (for instance R=H or R=1.5-H). The formula
was assessed for fully turbulent flow on a uniform slope.

Kamphuis (1975) and others also derived relations for the friction coefficient f
experimentally. The simple expression f=0.4(a;/k,)"” for a;/k, <100 where
k,=2-D,, was found for rough turbulent flow for which the friction factor is
independent of the Reynolds-number. Although these experiments were performed
in an oscillating water tunnel with a horizontal bottom and at depths greater than
a few times the particle diameters, on the basis of physical-model tests Cornett and
Mansard (1994) concluded that the formula is accurate for rubble slopes as well.
Friction factors varied roughly between 0./2 and 0.6 corresponding to relative
roughness factors a,/k, between approximately 3.7 and 0.8 (Slopes /:1.75 and 1:3,
D,;,=0.042 m, H=0.10-0.22 m, T=1.5-3.0 s). Cornett and Mansard (1994) also
found higher friction coefficients during backwash than during swash.

As an indication, for smooth slopes for f the value 0.02 can be used while for rough
slopes the value for fis higher, roughly between 0./0 and 0.60. For very rough
slopes it is expected that the bottom friction cannot be taken simply as a constant
times the squared velocity. It is likely that inertia effects such as those observed for
the coefficient b in Equation 3.15 for porous media flow, cause additional friction.
This, however, has not been quantified and therefore is not included here.
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In the permeable part above which no phreatic surface exists (between x=0 and x=P
in Figure 4.1), the pressure is assumed to be hydrostatic and determined by the
position of the free surface. This assumption will be verified by using the physical-
model tests discussed in Chapter 6. In this section with overlapping regions, the
pressure gradient for the permeable part is determined by the slope of the free
surface and not by the slope of the permeable layer. Therefore, in this section the
term -ngd(:h’)/dx in Equation 4.2 must be replaced by -ngh, d(h,+h,)/dx where A,
is the thickness of the external layer and 4, is the thickness of the permeable layer.
The thickness of this layer (4,) in this region is time-independent (h,=z;z.). In the
region with a phreatic surface (x >P in Figure 4.1), the pressure is determined by
the phreatic surface.

By assuming hydrostatic pressures in the derivation of the one-dimensional equation
for porous media flow, the friction in the vertical direction is not accounted for
directly. It is assumed that applying values for the friction coefficients o and 8
which are about a factor /.5 higher than those obtained in Chapter 3, this
shortcoming can be compensated for slightly. For the porous media flow coefficients
a, b and c, the expressions shown in Equations 3.2, 3.4 and 3.6 can be used. In
addition, the dependency of the coefficients b and ¢, (c,=y'(1-n)/n) on the flow
field can be taken into account, see Equation 3.16. The maximum velocities U are
assessed by recording the maximum velocities which occurred during the preceding
wave period. For computations with irregular waves the peak-period 7, has been
used as the characteristic wave period.

423  Boundary conditions
Incident waves

At the inflow boundary incident waves must be defined. Regular or irregular wave
trains can be used. Regular wave trains are computed with the Stokes second-order
wave theory (Stokes, 1847) or the Cnoidal wave theory (in conformance with Roy,
1986), depending on the Ursell-number, U (Ursell, 1953) (U < 26: Stokes, U> 26:
Cnoidal). Irregular wave trains can be applied by using existing time-series or by
generating time-series based on the TMA-spectrum defined with the wave height H,,,

and the peak period 7,. This spectrum is based on the JONSWAP-spectrum but
adapted to finite water depth, see Bouws er al. (1985).
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The seaward boundary allows a reflected wave to leave the computational domain.
This can be done by applying the conventional method of characteristics with the
Riemann-invariants a,, and 8, (o =u+2c and B, =-u+2c with c=V/(gh)). Therefore,
Equation 4.1 is rewritten for a horizontal bottom in the following form:

1
3 3 S fulul (4.4
il (u+c)—k - -2~ along ax _ u+c )
ot ox h dt
1
3Bg 3B, S fulul dx
» + (u—c)—gx— =+ g along i u-c (4.5)

Assuming linear long waves at the inflow boundary implies (x=0): h=h,+n,+7, and
u=u+u, where u,=n,V/(g’h,) and u,=-n,V (g/h,) (h, is the still-water level at x=0).
For h,»n this yields n,=%8/(h, /g)-h, at x=0 where the seaward advancing
characteristic 8, can be assessed from information from the computational domain
through Equation 4.5. This yields both the position of the free surface (%) and the
velocity (u) at x=0.

Landward boundaries

At the landward boundary for the external wave motion an open or a closed
boundary can be used. An open boundary, obtained by using a non-reflecting
boundary based on the method of characteristics, has been implemented to enable
computations with overtopping where the crest is the end of the computational
domain or for submerged structures. A closed boundary can be used to model a
fully reflecting boundary necessary for computations with a vertical wall (e.g., at
the crest of a structure). The one-dimensional model is less accurate if large changes
in the angle of the slope occur or for computations with wave motions where the
assumption that the pressures are hydrostatic does not hold. Therefore, the
assumptions for the model require that the wave action near such a vertical part is
relatively calm. This excludes many applications with overtopped vertical structures.

Boundaries similar to the landward boundary for external wave motion must also
be described for the porous media flow. Again a non-reflecting boundary, for
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overtopping of an impermeable core (phreatic level higher than the top of the core)
or a fully reflecting boundary for very steep core sections can be used.

Free surface at the slope

The treatment of the boundary at the intersection with the slope is similar to those
described by Hibberd and Peregrine (1979) and Kobayashi er al. (1987). At the last
wet point, the ’shoreline’ (4 in Fig.4.2), an extrapolation procedure is performed
to determine the depth at the computational point upward from the shoreline (B in
Fig.4.2). If after the following time-step, the depth at this last point becomes greater
than a minimum water depth A, the shore-line in the computation moves upward.
If, on the other hand, after the new time-step the depth at the position of the
shoreline (4 in Fig.4.2) becomes smaller than the minimum water depth A, the
shoreline is moved downward.

hEXTEF%NAL

h INTERNAL

Fig.4.2  Treatment of the free surface Fig.4.3  Treatment of phreatic surface
at the structure interface. at the structure interface.

This concept has been used in many models but the extrapolation procedures often
differ. In the extrapolation procedures information is used from positions in the
computational domain at which the accuracy of the properties is relatively low.
Therefore, very accurate extrapolation procedures yield very limited profit. As long
as the exact treatment of this boundary at the slope has negligible effect on the
accuracy of the computation, preference should be given to a treatment which does
not lead to instabilities at this landward boundary.
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Phreatic surface

Several boundaries for the porous media flow need to be dealt with. For
computations with an impermeable core, the treatment of the last wet-point on the
impermeable core is treated in the same way as the free surface at the outer slope.
The point where the phreatic surface meets the outer slope needs a separate
treatment. In the model, the phreatic surface at this internal boundary point can
fluctuate between two levels (R in Figure 4.3). These levels are exactly between the
slope elevation of the boundary grid point and the slope elevation of the
neighbouring grid points. This means that the phreatic level can fluctuate between
the lower limit and the upper limit. If the phreatic level becomes lower than the
lower limit, the internal boundary point is moved downward. If the level becomes
higher than the upper limit the boundary point is moved upward.

Because the model is one-dimensional, no vertical velocities are computed.
However, the downward vertical velocity of the phreatic surface has a maximum.
This is the result of the equilibrium of gravity and friction. If this maximum should
be exceeded, the gradient in the pressures (/=-1/pg-dp/dz ) would be greater than
one. This means that the water would flow quicker than the free seepage velocity
which is assumed not to occur at the phreatic surface. The upward velocity also has
a maximum which is in the same order of magnitude as the maximum downward
velocity. This aspect is discussed in Holscher e al. (1988). The maximum upward
velocity taken can be different from the maximum downward velocity, however,
here the maximum vertical velocity is taken the same in both directions. In formula:

I=aw+bw|lw| <1 (4.6)

where [ stands for the pressure gradient in the vertical direction (with one as the
maximum value), w for the vertical velocity and ¢ and b for the Forchheimer
friction coefficients (Equations 3.2 and 3.4). For w, n(dh,/dy) is taken. The
maximum vertical velocity of the phreatic surface can be solved from this equation.
The true maximum differs from this value because the flow does not have to be
completely vertical at the phreatic surface.
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Like the vertical velocity at the phreatic surface, the flow g between the external
flow and the internal flow (see Equations 4.1 and 4.2) is also limited. The velocity
of this flow can, however, be higher than the free seepage velocity calculated from
Equation 4.6 because the pressure gradient (/) can be greater than one. The exact
pressure gradient in the vertical direction is unknown in this one-dimensional model,
where the pressures are assumed to be hydrostatic. The assumption that the pressure
gradient is smaller than one is made here to determine the maximum velocity for
the flow ¢.

To facilitate computations with submerged and low-crested structures, some
additional boundaries are needed. For structures that become dry at the crest for
some period, the wave motion can be modelled both in front of and behind the
structure by using only one layer describing the external wave motion. In the dry
region at the crest a very thin layer of water is modelled instead of a dry slope. For
the minimum thickness of this layer of water, a very low value for A can been used.
The external wave motion has direct influence on the internal wave motion in the
region where the layer describing the external wave motion overlaps the layer
describing porous media flow (through hydrostatic pressures). For structures that
become dry at the crest for some period, two of these regions of overlapping layers
are modelled with a phreatic surface in the region in between. This implies that two
regions with an interactive flow, ¢, are modelled and that the procedure used to
handle the phreatic surface reaching the slope is also applied at the rear of the
structure. Infiltration is modelled in the region of the ’dry’ crest for those cases in
which the layer of water at the crest is greater than A.

4.2.4  Infiltration and seepage

The disconnection of the free surface and the phreatic surface leads to infiltration
or seepage as shown in Figure 2.3. The implementation of phenomena like
infiltration and seepage is required to uncouple the free surface and the phreatic
surface (discontinuous surface). Those phenomena are modelled in a rather simple
way. However, modelling of the motion of water on and inside a structure with a
continuous surface, would give an unrealistic coupling, see Section 2.4. Forcing the
movement of the phreatic level so that it stays connected with the external free
surface, causes disturbance of both the external and the internal motion. Therefore
the application of the chosen model seems justified.
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An area with infiltration occurs if the free surface appears above the phreatic surface
with a ’dry’ area or un-saturated area in between (see Figure 4.4). In the un-
saturated zone the water can be spread in the horizontal direction due to the
influence of the stones and due to the initial horizontal momentum of this water. A
rather simple procedure to handle infiltration is used here; the direction of the water
in this un-saturated area is assumed to be vertical. Furthermore, in the model this
water reaches the phreatic surface instantaneously with a vertical velocity equal to
the free seepage velocity (w in Eq.4.6). For fine material, more detailed modelling
of infiltration can be obtained by applying concepts based on Green and Ampt
(1911) and Richards (1931) for vertical infiltration in un-saturated bottoms.
Although rapidly varying water motion can be accounted for, these concepts are
derived and verified (see Reeder et al., 1980) only for flow through fine grained
material where laminar flow occurs in the zone of saturation. Under such flow
conditions different phenomena may be dominant than for turbulent porous flow
through coarse rubble mound material. Because the model is intended to describe
wave motion under these turbulent flow conditions, a simple procedure based on the
free seepage velocity is used.

7%

ig.4.4

Situation with infiltration. Fig.4.5  Situation with seepage.
Another phenomenon, seepage, can occur if the phreatic surface reaches a ’dry’
slope (see Figure 4.5). A new phreatic surface is computed without the restriction
that this surface has to stay inside the structure; if the new phreatic surface appears
to be above the slope of the structure, the volume above this boundary (outside the
structure) is assumed to be the flow out of the structure. The restriction concerning
the maximum value of the velocity of the phreatic level, as discussed in the previous
sub-section, results in a maximum velocity of this outflow.
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4.3 Numerical scheme
4.3.1 Numerical discretisation

The shallow-water wave equations and the corresponding equations for porous
media flow are solved with an explicit finite difference scheme. The second-order
scheme by Lax-Wendroff (1960), analysed by Richtmyer and Morton (1967),
conserves the quantities mass and momentum well. The equations are written in
conservation form (with m=h-u). Before discretising the equations, the variables are
made dimensionless (in conformance with Kobayashi et al, 1987): t=t/T"';
x=x/T'V(gH'); u=ul/V(gH'), h=h/H'; z,/~z,/H'; 0=T'V(g/H) tan 6.
=TV (@@H)f; q=q./V(gH') and g=q'T/H' where the notation with
primes, denoting dimensional variables and those without non-dimensional
properties, is only applicable in this sub-section. Suitable dimensionless variables
could, however, also have been obtained by replacing 7' by V(H/g) as a
characteristic quantity to reduce time to non-dimensional time (in conformance with
Hibberd and Peregrine, 1979) which is preferable if the relative magnitude of
several terms in the equations is studied.

The equations are rewritten in vector form. For the external wave motion this yields:

LU e 4.7)
ot ox
where
m m: R ho+fulul - qq,
i = , F=| h 2 1, G-= (4.8)
h m q

Applying the Lax-Wendroff scheme with space-step A x, time-step At and
é,=u (jAx, nAy) yields:
~ -~ 1 ~ ~ ~
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where A =Af/Ax and
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The term r,,=dg,,,/3t can be discretised by using dg/9t = -0/0x [ 0h,u,/d1] where this
term can be obtained from the discretisation of the porous media flow equations
(where A, is the thickness of the porous layer and u, is the filter velocity) or by
discretising 7;,, = dg; ,/0¢ backwards in time. The latter has been used here. The term
lin = 0(q;,°q,;,)/0¢ is also discretised backwards in time. Because these terms are
not rewritten as terms without time-derivatives, the scheme is not strictly a Lax-
Wendroff scheme, but these alternative discretisations of the terms, which in many
cases are relatively small, reduce the complexity and computational time
considerably.

The discretisation of the corresponding equations for describing the porous media
flow (Eg.4.2) can be discretised very similar to those for the external wave motion,
The expression for the bottom friction is, in fact, replaced by the Forchheimer
porous flow friction terms and in some terms the porosity is included, but those
adaptations do not effect the discretisation method.
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The Lax-Wendroff scheme allows the possibility to include an additional term to
minimize numerical oscillations, appearing as parasite waves near the wave front,
see for instance Hibberd (1977). These parasite waves, due to non-linear dispersive
effects introduced by the discretisation, appeared to be unacceptable for
computations with bores. For the external wave motion this additional term is
included, but for the internal wave motion physical damping is sufficient to
minimize these numerical oscillations. This additional term is included in the right
side of Equation 4.9:

Div = 34 (@t (Boaw= B) = Quy,y (% By ) (4.14)

where

) o o

Quin= &, Trge, @iy (4.15)
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in which I is the unit matrix and the coefficients e, and e, are written by using the
eigenvalues of A, v, = u+c and v, = u-c:
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Damping increases for higher values of ¢, and ¢,. For both constants the value /./
was used in all computations with this additional damping.

Figure 4.6 shows surface elevations derived from computations with and without
additional damping. The computation with regular waves (H=0.20 m; T=1.5 s) on
an impermeable slope with a friction factor f=0. 15 was performed with a space-step
of Ax=0.025 m, a time-step of Ar=0.006 s and a minimum water depth at the
shoreline of A=0.005 m. The comparison clearly indicates that computations without
additional damping show parasite waves near the wave front. The additional
damping term diminishes these numerical oscillations effectively without affecting
the run-up level.
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6 INFLUENCE NUMERICAL DAMPING
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Fig.4.6 Influence of damping term on surface elevations, with
(lines) and without (dashed) additional damping.

43.2  Numerical dissipation

The wave profile at a specific moment can be divided into a large number of
(Fourier-) components of different height and different length. Wave propagation
can be seen as a combination of the propagation of each of these components. The
behaviour of each of these components with respect to the amplitudes and the
frequencies of these components (amplitude and frequency dispersion), is implicitly
described by the applied equations. However, since the shallow-water equations only
give an approximation of the actual wave propagation, differences occur between
the actual behaviour of these components and that described by the equations
(modelling error). In addition, the discretisation of the equations also causes
differences between the propagation of the components in the equations and those
in the discretised equations (discretisation error).

As an indication, differences between the simple-wave equation (3/0f+c-0u/dx=0)
and the discretisation of this equation using the Lax-Wendroff numerical scheme
will be shown. Due to non-linearity such an analysis cannot be performed for the



NUMERICAL SIMULATION OF WAVE ATTACK - 1D

shallow-water wave equations. Here, results of an analysis of the Lax-Wendroff
numerical scheme similar to those by Petit (1994) for a large number of numerical
schemes will be shown.

Each of the wave components, characterised by a wave number (k=2n/L) and
angular celerity (w,,=27/T ), is subjected to different dissipation and dispersion
characteristics, since the discretisation has different effects on all of these
components. Substituting a Fourier-component u;,=11 D, e™"*¢** (at the point jAx
and time nAf) in the discretised equation, yields the growth-rate per time-step, D,
(dissipation), of the amplitudes # of the components in the discretised equation
compared to those in the equation itself: D, =V/[(1-u’(I1-cosa))*+u’sin’e] for a given
Courant-Friedrichs-Lewy (CFL)-number p=c A#/Ax and component o=k Ax=
27n/L-Ax. The above substitution also yields the celerity of components in the
discretised equation, c,,,,=w,,, /k, compared to those in the equations, ¢, , the
following relative dispersion: c,,, /c,,=1/(ucy)-arccos[(1-p’(1-cose))/D,, ].

eq >
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Fig.4.7 Dissipation and dispersion by the numerical scheme (labels
denote the CFL-number p,).

The left graph of Figure 4.7 shows the growth-rate and the right graph shows the
dispersion for components with a given number of computational points (A x) per
wavelength (Z). Because the shortest possible wavelengths in the numerical model
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are only 2-A x in length, the lower limit of the number of grid-points per
wavelength is 2. Both the growth rate and the dispersion depend on the CFL-number.
The growth-rate for a CFL-number p=I.] shows that this yields an unstable
computation since the growth-rate is greater than one (’negative dissipation’). The
ideal situation is for a CFL-number p=/.0 for which both the dissipation and
dispersion in the discretised equations are the same as in the equations itself. The
celerity of the components in the discretised equations, compared to those described
by the equations, for instance, for a CFL-number p=0.7 are better than those for
lower CFL-numbers. The dissipation of the shortest components (close to 2-Ax) is
large for this CFL-number which means that the shortest components which are
inaccurately described (dispersion) dissipate relatively quickly. Although this
analysis is performed for the simple-wave equation, it is assumed that for the
shallow-water wave equations similar trends will occur. Therefore, this analysis will
be used to find appropriate values for At and A x.

The numerical model described here uses a constant grid spacing and a constant
time-step. Therefore, the celerity in the shallow-water equations (c=u +V/(g'h)
varies in time and space which means that the choice of constant CFL-number p=1.0
is not possible. This implies that computations with accurate simulation of the short
wave components is impossible. In the applied numerical model, the short
components are of relative importance near the wave front. In this position
numerical dissipation of these components is relatively large (left side of the left
graph). Since these wave fronts (bores) are supposed to represent breaking waves,
an area where energy is dissipated, the numerical dissipation at this position might
not be completely inappropriate but this numerical dissipation instead of physical
dissipation introduces a dependency of the results on the CFL-number (Az and Ax).
To minimize this dependency due to numerical dissipation, one can apply the model
with specific values of Af and A x yielding the same ’average’ CFL-number, or by
using a large number of computational points per wavelength.

For flow conditions where the average velocity is close to zero, the average of the
celerity ¢, is about V/(g'h,). The choice of a specific number of computational
points per wavelength, n,, , to achieve a sufficient accuracy yields a condition for
the space-step (A x=L/n,, =V/(g-h,)-T/n,.). The choice of a specific ’average’ CFL-
number, for instance p,,=0.7, yields the condition for the time-step (A¢=
Mg AX/C o =l T/ ).
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The maximum value of the celerity, ¢,,, must be limited to satisfy the stability
criterium throughout the computation (for computations without additional damping
p=c-At/A x <1 where c=|u+V/(g-h)|). In practice, the choice of an ’average’ CFL-
number p,,, <0.7 yields a stable computation if the treatment of the boundary at the
slope does not require a stricter limitation.

6 INFLUENCE CFL-NUMBER
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Fig.4.8 Influence of CFL-number on surface elevations;, u=0.7
(lines) and pu=0.07 (dashed).

Figure 4.8 shows that the influence of the CFL-number on computed surface
elevations is relatively small, except for the region near the wave front (H=0.20 m,
T=15 s, Ax=0.025 m). In this region parasite waves are not only damped by the
additional term to diminish these numerical oscillations (see previous sub-section)
but also by the numerical scheme itself (Fig.4.7). The dissipation of short wave
components is relatively small for the low CFL-number p,,, =0.07 but reaches a
maximum for u,,. =0.7 (see left graph is Figure 4.7). Although the influence of
variation in CFL-numbers can be low, due to the large number of computational
points and a low ratio of wavelength to computational domain length, parasite waves
are effectively removed for computations with p,,.=0.7 without changing the global
appearance of the solution.
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4.4 Validation of the numerical model
4.4.1 Comparison with an analytical solution

Numerical model results have been compared with analytical solutions of standing
waves on a slope as given by Carrier and Greenspan (1958). These exact solutions
of the shallow-water wave equations are derived for waves on a slope without
friction. From the analytical solution a relation between the amplitude of sinusoidal
incident waves (1,,) and the (vertical) amplitude at the shoreline (4;) can be derived:
A,=n, 7/V (sT/8 (g/h,)) where s is the slope (s=tan 6,), T is the wave period and
h, is the depth at the toe of the slope. Breaking at the slope does not occur if
A<l/(47) g T*s .

For comparison with numerical model results incident waves with an amplitude
equal to the maximum amplitude without occurrence of breaking waves are taken:
n,,=1/(8V'2)-1/7°s*>T** g "¥-h,;"». For a slope 1.4, a wave period of 5.0 s and
a still-water level 4,=2.0 m at the toe of the slope this gives an incident wave height
of 0.15 m.

The numerical computation was done with a minimum water depth of A=0.005 m
at the slope. To obtain a stable computation with the above mentioned wave
conditions, the treatment of the boundary at the frictionless slope determines the
maximum possible CFL-value for a specific value of the friction coefficient for
which the very low value f=0.001 was used. For the space-step and the time-step,
Ax=0.045 m and At=0.003 s were used respectively giving u=0.30. The computation
was done without the numerical damping term as analysed in the previous section,
since no parasite waves occurred in the computation of this standing wave.

Figure 4.9 shows comparisons for both surface elevations and velocities. The
comparison of the six surface profiles during up-rush show good agreement,
although the run-up is slightly underestimated. The velocities during up-rush and
down-rush show good agreement as well, except for the high velocities in the
relatively thin water layers near the run-up point.
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solutions of a standing wave; surface elevations
(upper graph) and velocities (lower graph).

442  Comparison with data from physical-model tests

Further validation of the hydraulic model was performed with data from physical-
model tests. Surface elevations and velocities above a berm breakwater slope have
been compared in Terum and Van Gent (1992). In Chapter 6, an additional
validation of computed surface elevations and run-up levels on a berm breakwater
slope is described. Here, comparisons will be shown for run-up and run-down levels
on impermeable and permeable slopes, as well as coefficients for wave transmission
over submerged and low-crested structures.
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A verification of run-up and run-down levels on an impermeable structure has been
performed. With respect to the treatment of the run-up point (*shoreline procedure’)
run-up on smooth slopes is relatively difficult to describe in a numerical model
because of the relatively large fluctuations of the run-up point. Measurements
performed by Burger and Van der Meer (1983) in a large-scale flume have been
used to verify run-up and run-down levels. The run-up and run-down levels were
measured visually. Regular waves were generated on a slope /:3. Wave heights
varied roughly between H=0.2 m and H=1./ m. In the computations a low value for
the friction coefficient was used; f=0.005 (lower values lead to unstable
computations).

Figure 4.10 shows the comparisons of run-up levels on impermeable slopes. The
non-dimensional run-up (R, /H) and run-down levels (R,/H) are shown as a function
of the surf-similarity parameter £, (Battjes, 1974). The tests were done with
plunging, collapsing and surging waves. For these tests a local maximum near the
transition from plunging waves to collapsing waves was found in both the physical-
model tests and in the computational results. The agreement between the measured
and computed run-up levels is rather good. Although the model gives increasing
run-down levels (absolute values) for higher values of the surf-similarity parameter,
the trend is not correctly reproduced quantitatively.

Run-up levels on a permeable slope have been verified against 49 tests with regular
waves on uniform sloping structures performed by Ahrens (1975). Tests with three
slope angles were used: /:2.5, 1:3.5 and 1:5. The stone diameters (Dgp) varied
between 0.20 m and 0.34 m. Wave heights and wave periods varied between
H=0.55-1.15 m and T=2.8-11.3 s respectively. The surf-similarity parameters varied
between £,=0.7 and £,=6.3. The depth in front of the structure was 4,=4.58 m.

For the friction coefficient the empirical formula by Madsen and White (1975),
Equation 4.3, in which R=1.5-H was used for the run-up level, has been applied.
The structure had a core of sand. This was implemented in the computations as an
impermeable core. The porosity of the filter layer was estimated to be n=0.40. For
the friction coefficients 2/20 and 2.0 were used for ap g, and (3p g, respectively.
Added mass was not modelled.

The results are presented in Figure 4.11. The non-dimensional run-up levels (R, /H)
are shown as a function of the surf-similarity parameter. The agreement is rather
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3 RUN-UP AND RUN-DOWN ON A SMOOTH IMPERMEABLE SLOPE (1:3)
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good. For the highest values of the surf-similarity parameter (§,>J) the deviations
increase. From the comparisons it can be concluded that the model predicts run-up
levels on permeable slopes sufficiently accurately.

Lisev (1993) measured overtopping discharges over reshaped berm breakwaters. The
crest of the structure was positioned at a level of /.07 m while the depth at the toe
was h,=0.80 m. Stone sizes in the cover layer and core were D, ;,=0.034 m and
D, ;,=0.011 m respectively. Eleven series of irregular wave trains were tested with
wave heights varying between H,=0.146 m to H =0.295 m and wave periods
between 7,=2.0 s and 7,=2.8 s.

In the numerical model the structure was homogenous with a stone size of
D,;p=0.034 m. The influence of the flow field on the values of the friction
coefficients 8 and vy have again been implemented as described in Equations 3.16
and Section 4.2.2. In these computations the following values have not been varied:
f=0.15 (estimated by using Equation 4.3 with A, =0.80 m, the most gentle sloping
part in the reshaped profile, /:4.3 and R=H, for which H =0.20 m was taken);
n=0.40; op,so =1500; Bepnso =1.65; Ax=0.05 m; At=0.01 s; A=0.005 m. For each
wave condition five series of about 500 waves were generated, based on a TMA-
spectrum.

Figure 4.12 shows the measured and computed overtopping discharges as a function
of the relative freeboard defined as F=F/(H’gT/2x)'”. The five computed
overtopping discharges per wave condition were averaged while the vertical lines
in Figure 4.12 denote the corresponding standard deviations. Overtopping discharge
is one of the most difficult properties to predict because of the relatively large
influence of the irregularity of wave trains and the low percentage of overtopping
causing waves (between zero and about 40 waves for the conditions with a high and
low relative freeboard respectively). Nevertheless, the numerical model seems to be
able to provide a useful estimate of overtopping discharges. However, the computed
overtopping discharges may easily deviate a factor two from the measured
discharges for wave conditions with relatively large overtopping discharges.

To study the accuracy of predictions of wave transmission, two series of
computations have been performed with low-crested and submerged structures. For
all computations the structure modelled was based on the small-scale tests by
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Fig.4.12 Wave overtopping over a berm breakwater.

Daemen (1991). Both the front slope and rear slope were /:1.5. The crest of the
structure was positioned at a level of 0.50 m while the depth at the toe varied
between 4,=0.25 m and h,=0.75 m. The width at the crest was 0./2 m. Stone sizes
in the cover layer and core were D,;,=0.040 m and D,;,=0.028 m respectively.

Two series of eleven computations with a wave train of 200 to 250 waves (TMA-
spectrum) were performed. The first series of eleven computations had waves with
H=0.132 m (H,,,=0.100 m) and T,=2.10 s (wave steepness s5,,=0.02), those in the
second series had waves with a wave steepness of s5,,=0.04 characterised by
H=0.132 m (H,,,=0.100 m) and T,=1.45 5. This led to dimensionless crest heights
between R, /H =-1.9 for submerged structures and R ,/H,=+1.9 for non-overtopped
structures.

In the numerical model the structure was modelled as homogenous with a stone size
of D,;,=0.030 m. The influence of the flow field on the values of the friction
coefficients 8 and vy have been implemented as described in Equations 3.16 and
Section 4.2.2. In these computations the following values have not been varied:
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Fig.4.13 Wave transmission at low-crested and submerged structures.

/=0.15 (estimated by using Equation 4.3 with /1, =0.25 m, a representative slope of
1:3.24 and R=H,); n=0.40; 01,5, =1500; B.p50 =1.65; Ax=0.025 m; At=0.005 s;
A=0 m.

Figure 4.13 shows the computed transmission coefficients (K,=H,/H,) as function
of the relative crest height in a diagram (from Van der Meer and d’Angremond,
1991), with data from physical-model tests by several authors. The use of different
stone diameters in these tests is the main cause of the large spread around ’average’
values. Data by Daemen (1991) is added (v: 5,,=0.02; a: 5,,=0.04). For structures
with a relatively high crest, wave transmission is largely determined by the
permeability of the core, while for structures with a crest near the still-water level
the permeability of the cover layer is more important. Variations in stone diameter
therefore contribute to a large variation in wave transmission coefficients for higher
values of the relative crest height.

In the region with higher crests, the numerical model gives higher wave
transmission coefficients than those obtained from the physical-model tests, probably
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due to an overestimation of the permeability. For the computations with submerged
structures (R, /H,<0) wave transmission coefficients are close to the ’average’
measured values but still somewhat higher than the corresponding data by Daemen
(1991). These data also show lower values for the transmission coefficients for tests
with a wave steepness of 5,,=0.04 than those with s,,=0.02. Although weaker, this
trend can also be observed in the numerical model results. Unlike data from
measurements, the numerical model gives transmission coefficients up to K=/ for
structures of which the level of the crest is a few times the wave height below still-
water level, which is a logical result. In general, the numerical model shows
explicable trends in variations of the transmission coefficients as a result of varying
parameters. The computed values of the transmission coefficients can be used as
rough approximations.

4.5 Numerical model applications
4.5.1 Sensitivity to permeability of structures

In the previous section some model results for run-up and wave transmission are
shown. Here, some results obtained with three types of structures are described to
show the influence of the permeability of these structures. For this purpose, an
impermeable structure, a permeable structure with an impermeable core and a
homogeneous permeable structure are used. Regular waves with a wave height
H=0.20 m and a wave period T=1.5 s on a seaward slope corresponding to a
reshaped profile of a berm breakwater were computed. For the permeable structures,
the porous media flow friction-coefficients as given in Equation 3.16 were used
(ctpnso =1500; B, p,so =1.65). The applied numerical parameters are Ax=0.025 m,
Ar=0.006 s and A=0.005 m.

Figure 4.14 shows the envelope of surface elevations for the three structures. As
expected, the run-up level and the fluctuations in surface elevations are the largest
for the impermeable structure. Figure 4.15 shows the maximum depth-averaged
velocities that occur during one wave cycle for each position above the slope
(positive is towards the crest of the structure). These velocities reach an absolute
maximum just below the still-water ’shoreline’. In both directions, the absolute
maxima reach the highest values for the case with an impermeable structure. For the
maximum velocity in the direction away from the crest of the structure, this
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Fig.4.16 Influence of added mass and flow-dependent friction-
coefficients on the velocities inside a berm breakwater.

maximum occurs more seaward, namely near the flattest part of the seaward slope.
The influence of the impermeable core is relatively small compared to the
computation with a homogeneous structure, except for the maximum velocities in
the seaward direction. The homogeneous structure gives less reflection (K,=0.16
with K,=H, /H,) than the one with an impermeable core (K,=0.27). The impermeable
structure gave a reflection coefficient K,=0.22. Reflection of these regular waves
causes local maxima in the curve for maximum velocities in the seaward direction.

To show the influence of added mass and the implementation of flow-dependent
friction coefficients, a comparison is made between signals of computed filter-
velocities. Figure 4.16 shows signals at a position inside the berm of the structure
with an impermeable core as shown in Figure 4.14 (x=0.80 m). The first
computation is done without added mass and with a constant value for the friction
coefficient 8. The second computation is performed with a constant value for the
added mass coefficient vy. The dependency of these two coefficients on the flow
field (Eq.3.16) is taken into account in the third computation (equal to the one used
in the Figures 4.14 and 4.15). At this position, the filter-velocities reach the highest
value in the computation without added mass but at some other positions, for
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instance more towards the crest, those obtained with the other two computations
show higher maxima. Figure 4.16 also shows that inertia effects found when
including added mass lead to a small phase shift, i.e., a time-lag, compared to the
situation without added mass. Increasing the porous flow friction coefficients shows
explicable trends in parameters like run-up, reflection and internal set-up, but the
influence of taking added mass and flow-dependent friction coefficients into account
is more difficult to predict. However, in most cases computations including added
mass or flow-dependent friction coefficients show similar results to those obtained
with a constant and slightly higher value for the friction coefficient 8, namely
somewhat higher run-up levels and somewhat higher reflection coefficients.

4.5.2 Impressions of the flow field

Because the numerical model is a one-dimensional model, which implies that no
equation for the momentum in the vertical direction is solved, the model does not
provide vertical velocities directly. This does not mean that no estimate of these
vertical velocities can be given. Van Gent (1992) describes a simple approach used
to derive vertical components of velocities leading to vector plots which give some
additional information concerning the computed flow field. The approach, which
does not affect the computation of the wave motion itself, is discussed briefly and
some examples are given.

In principle, the horizontal components of velocities at specific elevations are not
all equal to the depth-averaged velocity since the velocity profile is not uniform
over the depth. However, the model does not provide sufficient information from
which to obtain the deviations from these depth-averaged velocities. Vertical
components have been estimated, however, by assuming a uniform profile for the
horizontal velocities. To obtain vertical components, the kinematic boundary is used
at the free surface (Eg.2./0). At the slope, the velocity is supposed to be parallel to
the slope except for structures with a permeable slope. For such structures the
interactive flow (g), assumed to be perpendicular to the slope, also contributes to
the velocity components. This affects both the horizontal and vertical components.
The approach described here provides velocity vectors at the surface and along the
slope. Velocity vectors between the free surface and the slope are obtained through
linear interpolation. The velocity vectors inside the permeable layer are computed
by using the same approach. After solving the differential equations, the vertical



NUMERICAL SIMULATION OF WAVE ATTACK - 1D

components of velocity vectors in the region of the external wave motion can be
obtained through: w=/AWAt+uAW/AX] (z-z,)/h+[u Az, /Ax+q- (cos 0)*]-(1-(z-z, )/h)
where z is the vertical position. For the horizontal component of the velocity above
the slope the approach yields: w=u,-cos 0-sin 8-(1-(z-z, )/h)-q where u,, is the
depth-averaged velocity.

Fig.4.17 Impression of the flow field on Fig.4.18 Impression of the flow field on
and inside a berm breakwater with an and inside a permeable structure with a
impermeable core. crown-wall.

Some applications of the approach are shown in Figures 4.17 and 4.18. The scale
for the vectors inside the breakwaters is about three times larger than for those
outside. The first figure shows the computed flow field for a wave on a slope of a
berm breakwater with an impermeable core. The second figure shows a similar
impression of the flow field for a rubble-mound structure with a crown-wall at the
crest, modelled with a fully reflecting boundary. Reflection caused by this crown-
wall can be seen in this figure.

4.5.3  Various other applications

Reference will be made to some applications using the numerical model described
without discussing them in detail. A sensitivity analysis as well as applications
involving the estimate of the permeability coefficient as applied by Van der Meer
(1988) and the prediction of the magnitude of the internal set-up for a practical case,
are given in Van Gent (1994-a). Lisev (1993) investigated the influence of the lay-
out of the core of berm breakwaters. Based on physical-model tests and the use of

75



76

CHAPTER 4

the numerical model it was concluded that the core can be extended into the berm
without essentially affecting the performance of the structure. Julien (1993-a/b)
studied the effects of the position and the magnitude of friction on properties like
run-up levels and energy dissipation. The effects of berms on run-up levels were
also studied. Kwik (1994) studied the influence of wave spectra on overtopping
discharges, including a comparison of numerical model results with prototype
measurements with double peaked wave-spectra. Hamilton and Hall (1994) verified
applications with rubble-mound structures with crown-walls and De Groot et al.
(1995) carried out an additional validation. The model was used to study wave
transmission over an impermeable submerged structure with a fully reflecting wall
behind this structure, to clarify trends observed in a limited data-set from physical-
model tests, see Klopman and Klein Breteler (1994). In Van Gent (1994-¢) the
model has been extended for wave interaction with vegetation on embankments by
simulating the motion of reed.

4.6 Conclusions

A numerical model for simulation of normally incident waves on various types of
structures was made, based on shallow-water wave equations. The wave motion
outside structures and the flow inside the permeable regions are modelled
simultaneously, which enables applications with permeable structures. The method
used to connect the external wave motion and the internal wave motion allows the
free surface and the phreatic surface to move independently, ie., in the one-
dimensional model the free surface can be disconnected from the phreatic surface.
This enables implementation of phenomena like infiltration and seepage.

Analysis of the numerical scheme and an additional damping term shows the effects
of numerical aspects on the computations. Comparison of the numerical model
results with an analytical solution of the shallow-water wave equations shows that
the numerical scheme and the boundary conditions only cause small inaccuracies.
Comparison with data from physical-model tests show that for some parameters,
e.g., run-up levels, the model provides accurate results. For parameters which do not
show sufficient correspondence with physical-model tests, e.g., wave transmission
coefficients, variations of such parameters as a result of variations in hydraulic and
structural properties show the same trends as observed in such physical-model tests.
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The model allows for the studying of variations of hydraulic parameters as results
of variations in structural lay-out, e.g., the permeability of structures.

Since the model solves one-dimensional equations, implying also that the free
surface is described as a function of the horizontal coordinate, the field of
application is limited. Although the model is easy to use in many practical
situations, eventually a more sophisticated description of the flow field will be
required to obtain more accurate results, a more detailed description of the flow
field and a wider field of application.
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5. Numerical simulation of wave attack by a 2D model
5.1 Introduction

In Chapter 4 a numerical model for simulation of normally incident waves on
coastal structures is discussed with emphasis on the implementation and validation
of wave motion on and inside permeable structures. In this chapter a similar
procedure is applied but now for a model based on a different type of equation,
namely the Navier-Stokes equations. The advantages of the relatively simple model
applied in the previous chapter, such as computational speed, accessibility and a
good accuracy of some of the predicted hydraulic properties, may be sufficient for
many applications. However, in many cases a wider range of applicability, a higher
accuracy and a more detailed description of the flow field are desired. Therefore,
a numerical model has been developed which is intended to provide more accurate
and detailed descriptions of the flow field for a wider range of structures including
permeable structures.

The model treated in this chapter, named SKYLLA, is based on the Navier-Stokes
equations which are solved by using the Volume-of-Fluid (VOF) method. The model
by Hirt and Nichols (1981) is used as a basis for further developments. Petit and
Van den Bosch (1992) modified aspects of the original model such as the treatment
of the free surface, the procedure to satisfy the equation for continuity and the
implementation of smooth impermeable upward slopes. Activities described in this
chapter were carried out in close cooperation with H.A H. Petit and P. van den
Bosch, both of Delft Hydraulics. The joint research is described in detail in Petit ef
al. (1994-a/b/c), Van Gent et al. (1994-a/b/c), Van Gent and Petit (1994,1995) and
Van Gent and Vis (1994). The analytical solutions for testing the numerical model
for cases with porous media flow were provided by H.A.H. Petit. Both his



80

CHAPTER 5

cooperation and his permission to present those analytical solutions in Section 5.4.1
are gratefully acknowledged.

5.2 Model composition and basic equations
5.2.1 General model composition

The two-dimensional numerical model with a combined modelling of free surface
wave motion and porous media flow will be discussed here. The model is two-
dimensional which allows for simulations with large variations in the vertical
direction in both the flow field and in the lay-out of structures. The basic equations
will be discussed in the next sub-section. The subsequent sub-section deals with the
method used to solve these equations. This method uses cells for which a non-
equidistant rectangular grid is used. Figure 5.1 shows a sketch of the general
composition of the model.

Fig.5.1 Model composition.

Smaller cells can be used in regions where the flow field is expected to become
relatively complex, for instance in regions where overturning waves occur. Cells are
assigned a specific porosity which is »=/.0 in the region of the external wave
motion and a different porosity in regions where porous media flow will be
simulated. Because the numerical model uses velocities at the four boundaries of
each cell, porosities are redefined at the cell boundaries. This is done by
interpolation between porosities of two neighbouring cells. This implies that the
transition between regions of a different porosity is described by a poly-line
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consisting of line segments along cell boundaries with a porosity in between those
of the surrounding regions. A number of regions with a different stone diameter and
porosity can be specified. In each of these regions, the porous medium is
homogeneous and isotrope. At the boundaries between regions with different
properties, no friction other than those for the description of porous media flow are
implemented. Impermeable slopes as well as combinations of impermeable parts
with permeable parts can be modelled.

The left and right boundaries of the computational domain can be open, in which
case these boundaries act as weakly reflecting boundaries. Regular waves can be
generated at these boundaries while reflected waves can leave the computational
domain here.

5.2.2  Basic equations

In Section 2.2.4 the Navier-Stokes equations are discussed briefly. For normally
incident waves the wave motion is described by momentum equations in two-
dimensions. The governing equations for the external flow read:

a_u + aiz + auW + l@ - v (a_zz + @) + g = 0 (51)
ot dx 9z p Ox "Yox2 972 }
ﬂ + auW + a—u)z + lﬂ’. -V (& + @) + g = 0 (52)
ot dx 9z poz loxr  gz2 ‘

where u and w are the velocities in the x and z direction respectively and », the
turbulence viscosity. By applying a constant viscosity, these equations only deviate
slightly from the original Navier-Stokes equations (Egq.2./) because for the
kinematic viscosity (») a value is taken of the magnitude as the turbulence viscosity
(v). The grid is too coarse to simulate turbulence directly. This implies that the
equations describe the mean flow and do not include turbulence components. In fact,
the Reynolds-equations (£g.2.15) are solved by neglecting Reynolds-pressures and
the laminar shear-stresses and by using the formulation for the Reynolds shear-
stresses as written in Equation 2.16 with a constant turbulence viscosity.
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For the internal wave motion adapted Navier-Stokes equations for porous media
flow were derived, see Equations 3.12 and 3.13. To simplify the solution of this set
of equations and to avoid separate procedures for each of the regions with different
properties, this set of equations (Eq.5./-5.2 and Eq.3.12-3.13) is reduced to a set of
equations that can be applied throughout the entire computational domain:

I+CA% +_a(u>2+ 8(32)+_1__6_p+gau e gbu @R ew?)

n ot dx'n dz'n n p Ox
(5.3)
2 2
_nmv (ﬂ + iﬁ) +g :O
"1 o9x? az* *
1
+CAiw_+__a_(EE) + ._a_(y)z + _1_@_ + gaw +gbw l(u2+w2)
n Ot OJx'mn dz'n p 0z 5.4)
2 2 '
-n”’v(aw+aw)+g=0
"1 ox2 9z? :

where u and w represent filter/discharge-velocities in permeable regions. The integer
m is high enough to assure that the corresponding terms are sufficiently small to be
negligible in permeable regions (where these term have no physical meaning). The
coefficients for the porosity 7, the dimensional friction coefficients @ and b, and the
added mass coefficient c,, can be varied per cell. For the coefficients a, b and vy
(c,=y-(1-n)/n), the expressions given in Equation 3.16 are used. By specifying a
stone diameter for each cell and a characteristic filter/discharge velocity U for the
entire permeable region in advance, these porous media flow friction-coefficients
are assigned a specific constant value for each cell. These coefficients are zero in
the non-permeable region.

Conservation of mass, dw/dx+dw/dz=0, is satisfied in both the region with free
surface flow and the permeable regions by solving the pressure Poisson equation
(similar to Eg.2.17). This equation is obtained by taking the time derivative of the
equation for conservation of mass and by replacing the time-derivatives du/d¢ and
dw/dt in this equation by there equivalents obtained from the Equations 5.3 and 5.4.
This yields the pressure field from a given velocity field at a specific moment of
time.
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5.2.3 Volume-of-Fluid method

Solving the Navier-Stokes equations yields a velocity field at a specific moment.
When applied to wave propagation, new velocities result in changes of the free
surface. In complex flow patterns such as occur in overturning waves, methods that
describe the free surface evolution directly by solving differential equations for the
free surface position (surface tracking methods) are very difficult to handle.
However, in the VOF-method of Hirt and Nichols (1981) the fluid domain can be
changed without using a description of the free surface position (surface capturing
method). In principle, this enables the simulation of complex flow patterns with, for
instance, multiple-connected free surfaces that occur in an overturning wave tongue
hitting the water layer underneath. The principle of this method will be discussed
briefly below.

u
Az F=080 == F=070

Ax

Az F =065 F=0.85

AX

c D

uAt
Fig.5.2 Transport of fluid based on the vOF-method.

The vOF-method makes use of fluid fractions, i.e., a percentage of each cell in the
computational domain is filled with fluid. This fluid fraction (F) can vary between
zero (empty) and one (full). Based on the computed velocity field, a fraction of the
fluid in a cell is transported to the surrounding cells. For cells which are not
completely filled, this can be done in several ways. Figure 5.2 shows the principle
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of the method. Based on the two fluid fractions of two neighbouring cells (Fig.5.2-
A), a ’local surface’, schematised by a straight line intersecting the two cells, can
be constructed (B). A part of the fluid is transported between these two cells (C) by
using the instantaneous time-step Az and the velocity obtained from solving the
Navier-Stokes equations. This yields new fluid fractions in both cells (D). At each
time-step this procedure to transport fluid between two cells is carried out at all cell
boundaries.

0 FLAIR — CASE DISTINCTION

D c
0.75 1
B8 A
© 0.50 -
0.25 -
0.00 : ; ,
0.00 0.25 0.50 0.75 1.00

Fb
Fig.5.3 Distinction of 'local surface’ for transport of fluid between
two partially filled cells.

The volume to be transported between two cells depends considerably on the
procedure used to construct a ’local surface’ as shown in Figure 5.2-B. This
definition of the ’local surface’ can be done in several ways. The original VOF-
method of Hirt and Nichols (1981) defines a ’local surface’ as being either
horizontal or vertical. Several authors provided alternative definitions for these
’local surfaces’. The one of Ashgriz and Poo (1991), called FLAIR, was found to be
the most accurate of the concepts considered. Figure 5.3 shows four cases of how
to construct a ’local surface’ between two neighbouring cells where neither is
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completely filled or completely empty. Based on the fluid fractions, the FLAIR-
method defines which of the four cases is to be used (left diagram). All
combinations of two cells can be orientated such that the fluid fraction in the left
cell is greater than the one on the right side (F, >F),).

For transporting fluid between two cells of one which is partially filled and the
other one is completely empty or completely filled, a ’local surface’ needs to be
defined within this partially filled cell. Figure 5.4 shows the four possible types of
"local surface’ slopes for a partially filled cell with an empty neighbouring cell. The
procedure, as described in Figure 5.3, can provide the ’local surface’ slope between
the partially filled cell (Fig.5.4) and its upper neighbouring cell, and also between
this cell and its lower neighbouring cell. The average of these two ‘local surface’
slopes is taken as the slope of the surface inside the partially filled cell. Based on
this slope, 3, and the fluid fraction, F,, a distinction can be made between the four
possible cases, see the left diagram in Figure 5.4,

FLAR — CASE DISTINCTION

1.00
A
0.75 1
© 0504 B ¢ ,
0.25
?
D D:
0.00 — Fa =
0o 1 2 3 4 5 6 7 8 9 10

Fig.5.4 Distinciion of local surface’ inside a partially filled cell for
transport of fluid to an empty neighbouring cell.
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For cases in which the neighbouring cell is completely filled, the same procedure
as the one in Figure 5.4 can be applied. For all combinations of completely filled
cells and completely empty cells the ’local surface’ orientation is known. The
procedure described determines the ’local surfaces’ without any other information
than the fluid fractions in the cells. For transporting fluid between two cells the
fluid fractions of these two cells provide sufficient information for most of the
cases. To obtain more accurate procedures more information on the fluid fractions
and the velocity field in the surrounding cells can be used. However, this
complicates the procedure considerably. This has not been done so far, except for
cases in which the procedure described by Ashgriz and Poo (1991) was found to
give unacceptable inaccuracies. Petit and Van den Bosch (1992) concluded that this
was the case for situations like those shown in Figure 5.3 where the neighbouring
cell on the left side of these two cells is empty. Their procedure to handle these
situations has been implemented in the model and was found to considerably
increase the accuracy of the treatment near empty cells.

Because filter/discharge velocities are used in the numerical model, the procedures
to transport mass between the cells (VOF-method and FLAIR-method), do not require
any adaptation for transport inside permeable regions.

5.2.4  Boundary conditions
Free surface

At the free surface and close to impermeable slopes not all velocities necessary to
discretise the equations are within the fluid domain. Figure 5.5 shows the velocities
which are required for the discretisation to obtain a horizontal velocity inside the
fluid (Fig.5.5-4) and near the free surface (Fig.5.5-B). Boundary conditions are
required to solve the lack of information at the free surface. Several conditions can
be applied. For instance, a method in which the velocities outside the fluid domain
are obtained by copying velocities from the fluid domain to the positions outside the
fluid (no gradients in velocities near the free surface) has been investigated.
Methods where these velocities are obtained by extrapolation from velocities inside
the fluid domain and a method where the flow is assumed to be irrotational at the
free surface were also studied. The assumption of irrotational flow is not valid in
regions with breaking waves. Based on comparisons with analytical solutions, it was
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found that applying the method using the assumption of irrotational flow near the
inflow boundary in combination with the method of copying velocities from the
fluid domain proved to be the most appropriate method of those investigated (Petit
et al., 1994-a).
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Fig.5.5 Required velocities in discretisation for horizontal velocities,
A) in the fluid, B) at the free surface,
C) at impermeable slopes, D) at permeable boundaries.

Impermeable slopes

The boundaries for impermeable slopes are defined on sub-grid level which means
that the slope can intersect cells (no ’stair-case’ slope). Figure 5.5-C shows that for
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the discretisation of some velocities in the fluid, virtual velocities at positions which
are actually inside the impermeable structure are also required. To solve this, at
these positions velocities are defined in such a way that at the position of the
impermeable slope specified boundary conditions are satisfied. Both the procedures
to satisfy no-slip or free-slip boundary conditions have been implemented. A large
number of types of intersections of impermeable slopes with cells can be
distinguished. In Petit ef al. (1994-c) several of these types of intersections are
treated. This enables description of climbing and falling impermeable slopes where
these slopes are described by straight lines inside each cell. Not all types of
intersections with cells have been described and implemented but already a large
number of possible structural lay-outs have been made possible. Simulations with
realistic representations of surface roughness are not yet possible for structures with
a limited roughness since no variation of bottom friction is possible other than a)
completely smooth by applying the free-slip boundary condition or 5) a specific, but
not variable, friction by applying a no-slip boundary condition.

For permeable slopes no additional boundary conditions are required since
permeable slopes are described along cell boundaries and therefore do not intersect
cell boundaries (Fig.5.5-D). No formulation for additional bottom friction is
implemented for permeable slopes.

In- and outflow boundaries

The left and right boundaries of the computational domain can either be closed or
open. If open boundaries are required, waves must be allowed to leave the
computational domain without causing reflections back into the computational
domain. Therefore, at both sides weakly reflecting boundaries are implemented
while at the same time waves can be generated at these boundaries. For
computations with open boundaries on both sides of the computational domain, the
numerical flow is hard to control. Often an uncontrollable and unrealistic average
discharge through the computational domain occurred. Therefore, weakly-reflecting
boundary conditions have been implemented which allow for the prescription of
average values of both the velocities and the surface elevations. This allows for
computations where the average discharge can be prescribed as zero in limit, or for
instance given a value in such a way that the mass-transport associated with a
specific wave train is allowed to enter and leave the computational domain. As will
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be discussed in the following sub-section, incident waves (1; ) are obtained by using
a program by Klopman (1989) who also proposed the following type of expression
for obtaining an average-prescribing weakly reflecting boundary:

3 3 —
a(n-m)—ca(n -n) +r,(nm-m) =0 (5.5)

where the value of , determines how fast the surface at the boundary is forced
towards the prescribed average value of the surface elevation (1 ). By applying zero
as the value for r, the conventional expression for a weakly reflecting boundary
appears. The same expression is used for the horizontal velocity (u), so both the
parameters 7, and , need to be prescribed in advance. Appropriate values have to
be determined based on experience with similar flow conditions. For computations
with only one open boundary the values zero for both 7, and r, will do.

Incident waves

Regular wave trains can be generated at the weakly reflecting boundaries. These
incoming non-linear waves are based on the theory by Rienecker and Fenton (1981).
Use is made of the program RFWAVE by Klopman (1989). The theory is based on
potential flow theory for gravity waves over a horizontal bottom. Since this theory
is applied here for waves which are partially reflected by the presence of structures,
not only incident waves but also reflected waves are present at the open inflow
boundary. The reflected waves cause a difference between the actual free surface at
the boundary and the contribution of the incident waves to this free surface. The
incident waves and reflected waves can be distinguished but the problem remains
that horizontal and vertical velocities have to be prescribed for the incident waves
up to the level of the actual free surface and not to the level of the free surface
belonging to the incident waves only. Therefore, a method of stretching the
velocity-profiles from the level of the free surface of the incident waves to the
actual free surface is applied to solve this problem. This ’stretching’ cannot satisfy
both the balance of momentum and of mass. Based on comparisons of numerical
test results with an analytical solution, it was decided to satisfy the balance of
momentum and allow small deviations of the balance of mass. More detailed
information concerning the treatment and verification of these incident waves and
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the treatment of empty or partially filled cells near open boundaries, can be found
in Petit et al. (1994-a) and Van Gent ef al. (1994-a).

For an adequate representation of an irregular wave climate a relatively long wave
train must be computed. See Section 5.6 for a discussion of the involved problems
concerning the computing time.

5.3 Numerical scheme

For the numerical discretisation of the basic equations (Eq.5.3-35.4), a partial-upwind
numerical scheme was applied. The discretisation itself and an analysis to obtain
stability criteria are given in Van Gent et al. (1994-b). Here, only a brief analysis
of the dissipation and dispersion characteristics of the partial-upwind scheme, similar
to the one performed in Section 4.3.2, will be discussed.

To give an indication of the differences between the behaviour of wave components
as described by the equations and those by the discretised equations, again a
comparison is made by using the simple-wave equation (3u/dt+c-dw/9x=0) instead
of the (adapted) Navier-Stokes equations (Egq.5.3-5.4). The partial-upwind scheme
with the upwind fraction g8, (where 0 < §,,<1), space-step Ax, time-step A#, CFL-
number p=c-At/Ax and u,,=u (jAx, nAt) yields:

Ui = Wi — B | Bl -0y ,) + %(1 B (g = Uy ) (5.6)
Substituting again the Fourier-component #;,=4 D, e e™ax (at the point jAx and
time nA?) in the discretised equation, yields the growth-rate per time-step, D,,, of
the amplitudes of the components (i) in the discretised equation compared to those
in the equation itself: D,=V/[I+u (I-cose)(w (1+B,’+(1-B,,) cose)-28,,)] per
component with a=k-A x=27n/L-A x. The above substitution also yields the celerity
of components in the discretised equation, ¢,,,=w,../k, compared to those in the
equations, c,, : ¢,,,/c,,= 1/(pa)-arccos{(1-u-B,, (I-cosa))/D,, ].

Figure 5.6 shows the growth-rate per time-step and the dispersion by the scheme
relative to those of the equations itself. For the upwind fraction §,,, the value 0.5
was used. Lower upwind fractions yield higher growth-rates and lower values for
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the relative dispersion which consequently means that lower upwind fractions lead
to less accurate results. The left graph in Figure 5.6 indicates that for higher values
of the CFL-number, the growth-rate per time-step is greater than one which leads to
instable computations. The stability condition for this scheme is u <@3,, for the
simple-wave equation. This restriction is more complex for the two-dimensional
Navier-Stokes equations containing diffusion terms (see Van Gent et al. 1994-b).
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Fig.5.6 Dissipation and dispersion by the numerical scheme (labels
denote the CFL-number u; Bup=0.5).

5.4 Validation of the numerical model

5.4.1 Comparison with analytical solutions

Waves over a horizontal bottom

For the validation of the numerical model, and especially for the validation of the
implementation of weakly reflecting boundaries, a comparison was made for wave
propagation over a horizontal bottom. At one side regular waves with a height of

0.20 m and a period of 3.0 s on a still-water depth of /.0 m were generated, based
on the analytical solution by Rienecker and Fenton (1981). An open outflow
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boundary was positioned at exactly two wavelengths (A=8.835) behind the inflow
boundary. A free-slip boundary was applied at the bottom. At the free surface the
condition that the flow is free from rotation is applied. In the discretisation an
upwind fraction of 8,,=0.30 was applied. In the x and z-direction, 295 and 40 cells
were used respectively (A x=0.06 m, equidistant, and Az=0.02 m at the still-water
level). For the time-step At=0.005 s was used (u,=0.26). For the viscosity a constant
value of »,=0.025 m’/s was specified. The coefficients r, and r, were both taken
zero here which means that the weakly reflecting boundaries do not prescribe a
given average.
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Fig.5.7 Surface elevations at in- and outflow boundaries (lines and
dashed lines resp.) and differences between those by the
analytical solution and at the inflow boundary (center line).

Figure 5.7 shows the free surface as computed by the numerical model at both sides
of the computational domain. Since the computational domain is exactly two
wavelengths long, the graph shows that the differences between the surface
elevations at both boundaries are small, both with respect to magnitude and to
phase. The third signal shows the difference between the surface elevations as
prescribed by the analytical solution and the computed surface elevations at the
inflow boundary. These differences are less than 4 mm (less than 2% of the wave
height). This indicates that the numerical model can simulate wave propagation over
a horizontal bottom rather accurately.
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Flow through porous media

Several verifications of the implementation of porous media flow have been
performed. Before the wave motion on and inside a permeable structure is verified
by using physical-model tests, three comparisons with analytical solutions are
carried out. The first case concerns a layer of water with a thickness L, that is
initially positioned above a dry permeable part, see Figure 5.8. At #=0, the layer of
water starts entering the permeable part. For this simplified case of uniform flow
entering a permeable part (-L,<x,<0), the Navier-Stokes equations are reduced to
a set of one-dimensional differential equations (Van Gent et al., 1994-b) where u
is the filter-velocity, »n the porosity and x, the position of the free surface, at =0,
x,=-L,:

S8 (L, vx)(au+but-1)- (L -1)yur-gx
du n w 0 n2

o L x 5.7)

w

n? Yo

With dx,/dt=u, this set of differential equations was solved by using a fourth-order
Runge-Kutta method with A7r=0.005 s while for the constants L, », g, a, b the
values 0.5 m, 0.5, 4 m/s’, 0 s/m and 16.9 s*/m’ were used respectively (for g, 4 m/s’
is taken instead of 9.8/ m/s’ to exaggerate the local maximum and the local
minimum in Figure 5.8). After the layer has entered the permeable part, the
differential equation reduces to: du/dt=ng(1-au-bu?) for which an analytical solution
was found:

u(t) = u -u

u(to) _ul e ~bng(u, -uy)(t-1y) / 1- u(to) _ul e -bng(u, -uy)(t-1y) (5 8)
———— _ .
u(t,) -u, u(ty) —u,

where u,=-a/2b+V/(a *+4b)/2b, u,=-a/2b-V/(a *+4b)/2b and u(t,) is the initial
velocity at #=t, where ¢, is the moment at which the whole layer of water has
entered the permeable part. Figure 5.8 shows the comparison of the numerical
results (A x=0.05 m) and these solutions. At =0, the velocity is zero, at =0.435 s
a local maximum of u=0.6848 m/s occurs and at t=0.850 s (¢,) the layer has entered
the permeable part, after which the velocity converges to the velocity 0.75 m/s.
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VELOCITY OF ENTERING LAYER OF WATER
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Fig.5.8 Comparison of numerical results with an analytical solution
Sfor the velocity of a layer of water entering a porous block.
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Fig.5.9 Calculated pressure jumps at the interfaces of a porous block
with a steady flow.

The difference between the numerical model results and the solutions of the set of
simplified differential equations reaches a maximum of 0.0/29 m/s at t=0.4 5. As
shown in Figure 5.8, the phenomenon is well reproduced.
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A second verification concerns the flow through a saturated permeable block, see
Figure 5.9. At x=0 a constant inflow with a velocity of / m/s is produced while
between x=/ m and x=2 m a saturated permeable block is positioned. The pressure
jumps at the interfaces (x=/ m and x=2 m) can be determined analytically.
Integrating the momentum equation for a uniform flow in the x-direction yields:

P (x,+0x) - P (x,-8x) =

1+CA) % (5.9)

1 2 2
— -1 -0 +bu”+2) + (1+
[2 )u x[g(au u“+2) + ( v

n

where x, is the position of the outflow boundary (x=2 m). The same procedure can
be used at the inflow boundary (x=1 m). The pressure jump is then equal to the one
at the inflow boundary, except for the sign. Outside the permeable block the
pressure is determined by dP/dx=-g while inside the permeable block the pressure
gradient can be assessed through dP/dx=-g(au+bu’+1).

In Figure 5.9 the numerical results are shown. Some arbitrary values for the
constants », a, b and g were used (0.5, 1 s/m, 0.75 s”/m’ and 2 m/s’ respectively).
Because in the numerical model the pressure jumps are spread over 3-A x,
8x=3/2-Ax is used in Equation 5.9 for comparison of analytical solution with the
numerical model results. The pressure jumps of the analytical solution and the
numerical model results were 2.4375 m’/s’ and 2.5065 m’/s’ respectively. This
comparison is again rather good. For 8x|0, the analytical solution gives 3 m?’/s’ to
which the numerical model results will come close for lower values of Ax.

A third analytical solution has been compared with numerical model results. Now,
a stationary flow through a rectangular block with only linear porous friction (6=0)
has been examined. Neglecting convection and assuming hydrostatic pressures, the
solution for the phreatic surface is determined by h(x')=V/(h -x/L,(h>-h})
where £, is the free surface level at the inflow boundary (left in Fig.5.10), h, is the
free surface level at the outflow boundary and L, the length of the permeable block
(for Fig.5.10: x'=x-2). Some arbitrary values for the constants n, @, L, and g
were used (0.2, 4.0 s/m, 6.0 m and 10 m/s” respectively). The levels 4, and h, were
2.0 m and 1.0 m respectively. In the numerical computation for Ax=0./ m has been
used. The phreatic level was defined as the level at which, in the computation, 50%
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3 PHREATIC SURFACE IN_ POROUS BLOCK
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Fig.5.10 Comparison of numerically computed phreatic surface and
an analytical solution.

of the cell was filled with water (F=0.5). Figure 5.10 shows the comparison
between both phreatic surfaces. Differences at x=2, 4, 6 and 8 m were 0.0233,
0.0206, 0.0105 and 0.0234 m, respectively.

5.4.2 Comparison with data from physical-model tests

A validation of the numerical model against physical-model results for permeable
structures will be described in Chapter 6 as well as a comparison with the one-
dimensional model discussed in the previous chapter. Here, a validation of
numerical model simulating breaking waves in front of a submerged bar will be
discussed. More detailed information concerning this validation, including computed
velocities and a sensitivity analysis, can be found in Van Gent ef al. (1994-a).

The physical-model tests were performed in a flume with a length of 45 m, a width
of 1.0 m and a depth of 1.2 m, see Luth et al. (1994). An offshore bar was modelled
with a /2 m long impermeable upward slope of 1.20 followed by a horizontal
section of 4.0 m and a 6.0 m long downward slope of /:10. The still-water depth
at the toe of the bar was 0.80 m, so the still-water depth on the top of the bar was
0.20 m. The wave generator was equipped with reflection compensation. At the
backward end an active wave absorber was used to prevent wave reflection. Figure
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5.11 shows a sketch of the experimental set-up. In addition to the test series to study
wave kinematics over this submerged bar, additional measurements were carried out,
using the same experimental set-up to be able to verify numerical model results.

Regular waves with a height of 0.29 m and a wave period of /.8 5 were used here.
The wave reflection in front of the bar was 2% or less and may be considered
negligible. Surface elevations were measured with wave gauges at several cross-
sections. Because surface elevations at all cross-sections on the upward slope were
required for the validation, these surface elevations were recorded on film. Surface
elevations above the downward slope were not recorded on film. The surface
elevations and the area with much entrapped air were recorded after analysis of the
film. Velocities were also measured and verified but these will not be presented
here.

'2 SUBMERGED BAR
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Fig.5.11 Experimental set-up for validation with waves over a
submerged bar.

In the computation only the sections with the upward and horizontal slopes were
modelled, while for both sections the free-slip boundary condition was applied. The
incident wave boundary was positioned 0.5 m in front of the upward slope (1:20),
the outflow boundary was positioned at the end of the horizontal section at the crest
of the bar. At the boundaries, for which no average-prescribing technique was
developed at the time of this validation, a net transport over the bar of about 0.05
m/s occurred. This net mass-transport did not occur in the physical-model tests,
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Fig.5.12 Measured (dashed) and computed (lines) surface elevations.
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since no re-circulation of water from behind the bar towards the front of the bar was
included. Incident waves were generated by applying the stream-function method
of Rienecker and Fenton (1981) with /6 Fourier components. In x and z-direction
480 and 50 cells were used respectively. The time-step was flexible but not larger
than 0.07 s. For the viscosity the constant value 0.001 m’/s was taken although at
the moment that the validation was carried out, at the surface a higher viscosity was
required to lead to a stable computation (0.008 m%s). Lower values of the viscosity
resulted in numerical instabilities. The upwind fraction 3, in the discretisation was
0.20. The computed free surface elevations were defined as the levels at which cells
were 50% filled with water (F=0.5).
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Fig.5.13 Measured (left) and computed (right) envelope of surface elevations.

Figure 5.12 shows comparisons between measured and computed surface elevations
for 10 points of time within one wave-cycle. The periodicity per wave cycle was
found to be satisfactory for both the computed and the measured surface elevations.
These comparisons and the analysis of the envelope of the surface elevations
(Fig.5.13) show that, unlike in the measurements, computational results give no
increase in wave height in the first part above the /:20 slope (x=2-4 m) and give
no decrease in wave height (x=4-6 m) before the breaking process (x=8-11 m)
starts. The increase in wave height above the first part of the slope cannot simply
be explained by shoaling due to a limited water depth. In the model tests the wave
board generated second-order waves, which means that free third-order (or higher)
waves are generated in the flume. Due to the breaking process second-order and
higher-order waves are also generated and can affect the wave motion near to the
analysed cross-sections. The amplitude of the third-order wave generated near the
wave board is much smaller than the first and second-order waves and therefore, the
differences in local wave heights due to these third-order waves can only be rather
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small. However, still the phenomenon of higher-order waves is supposed to
contribute to observed asymmetry and variation of the wave height in the first part
above the slope (x=2-4 m) in the flume.

The wave height in the region of the evolution towards a breaking wave (x=6-8 m)
is predicted rather accurately. However, the increase in wave height just before
breaking (x=7-8 m) causes a somewhat larger wave height before breaking. The
breaking process itself occurs in the same area (x=8-7/] m). The computed
transmitted wave height is accurate although the decrease in wave height occurs
faster in the numerical model than in reality.

The wave celerity in the computations is lower (smaller wavelength) but this is not
a problem for most applications. Although the discretisation of the time-dependent
terms causes the wave celerity in the numerical model to be somewhat lower than
in reality, this is not the main cause of the differences in wave celerity (variation
of the time-step has little influence). Small deviations in the wave height or in the
velocities of the incident waves probably cause a slightly lower wave celerity in the
numerical model.

In the region where much air is entrapped (area between two dashed lines), the
computations show a free surface which is positioned roughly in this area with
entrapped air (taking the phase shift into account). Although the modelling of air
is poor, these comparisons do not indicate that this inadequate modelling
significantly influences the simulation of the flow field obtained.

Differences between measured and computed velocities were for a large part
attributed to too low inflow velocities at the incident wave boundary. In most cases
observed differences in wave heights can be related to the differences in velocities
(underestimated wave height corresponds to underestimated velocities).

The comparison between data from these physical-model tests and the numerical
model results are hindered by both unwanted phenomena in the physical-model test
and by discrepancies between the observed wave conditions at the position of the
inflow boundary and the incident waves used in the numerical model. Nevertheless,
the validations gives a useful indication of the accuracy of the model for simulations
with breaking waves.
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5.5 Numerical model applications

Results of practical applications with berm breakwaters will be presented in the
following chapter. Here, computed flow fields near several types of structures will
be shown, without a validation or discussion of quantitative results.

%

Fig.5.14 Flow through a permeable block in a closed box.

Results obtained from a simulation of a flow through a porous block are shown
first. All boundaries of the computational domain are closed. Figure 5.14 shows six
graphs of the computation, of which the first is the initial condition in which the
water level at the left side is initially much higher than at the right side. The porous
block was given a friction equal to those for stones with a porosity of n=0.5 and
a diameter of D=0.2 m. The porous section and the non-porous sections on both
sides are 1.0 m wide. The second and third figures show that the free surface at the
left side decreases so quickly that, owing to friction, the phreatic surface cannot
follow these rapid changes. The last figure shows the final stage in which the fluid
is at rest. Entrapped-air is still in the fluid, since physical processes which cause
this air to move upwards are not modelled. Nevertheless, the process seems to be
simulated rather realistically.
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Fig.5.15 Breaking wave in front of a permeable
low-crested structure.

Figure 5.15 shows a simulation of a breaking wave on and over a permeable low-
crested structure with a permeable cover layer and a permeable core. Both the left
and right side of the computational domain are open. At the left side regular waves
with a wave height of H=0.45 m and wave period of 7=2.0 s were generated on
a water depth of 0.80 m. The crest of the structure was at a level of 0.90 m and the
width of the crest was 1.25 m. The seaward slope was 1:2, the rear side slope was
1:1. The computation shows how a transmitted wave is being generated by
overtopping of the structure. Wave motion over submerged and low-crested



NUMERICAL SIMULATION OF WAVE ATTACK - 2D

structures, such as shown here, still needs to be studied in detail to obtain a better
insight into the dependency on several parameters of phenomena like wave
transmission and wave overtopping.

Figure 5.16 shows a simulation of wave motion on an impermeable slope with a
horizontal berm on which a permeable part is positioned. This type of embankment

Fig.5.16 Wave motion on an impermeable slope
with permeable mini-dam.
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Fig.5.17 Breaking wave on a permeable slope in
Jront of caisson with protruding parapet.

is often constructed along channels to stimulate the growth of various kinds of
vegetation which also effects the wave motion and consequently the stability of
revetments. In Van Gent (1994-¢) reed and its effect on the wave motion have been
modelled numerically on the basis of shallow-water wave equations. As shown, in
principle, this can also be done by applying this two-dimensional model.

Figure 5.17 shows an example of a simulation of a breaking wave on a permeable
berm in front of an impermeable caisson. Small adjustments in the lay-out of a
structure may have a considerable effect on several parameters. For instance the
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addition of a small protruding element at the crest of a vertical wall may cause a
considerable decrease in overtopping discharges. For such applications the numerical
model can be used in combination with physical-model tests. After studying the
main phenomena for estimating overtopping discharges by performing physical-
model tests for a specific structure, the relative importance of small deviations, such
as adding a protruding element to the structure, can be studied numerically. Such
a numerical investigation may replace or partially replace additional model tests.
However, for studying aspects such as impact forces the present numerical model
is not suitable. Because it is supposed that air-entrapment and compressibility
dominate the magnitude of impact forces, these aspects must be improved. Some
improvements and extensions to enlarge the field of applications are proposed in the
following section.

5.6 Improvements and extensions of the numerical model

In contrast with the one-dimensional model presented in the previous chapter where
far-reaching assumptions have been made in advance, in principle the two-
dimensional model allows for more-detailed modelling of many relevant phenomena.
For instance it may be possible to improve procedures to model turbulence or the
performance of air entrapment due to complex flow patterns in order to obtain more
accurate results. This gradual optimization is a basic aspect of this numerical model.
It allows for the use for applications for which a sufficiently high accuracy is
obtained and a simultaneous further development to extend the field of application
and accuracy.

One of the main shortcomings of the model as presented here is that irregular waves
cannot be computed within manageable computing time. Since simulations with
irregular wave fields are required for most applications, this will be one of the first
aspects to be optimised. To achieve a reduction in computing time the model uses
a non-equidistant grid (Fig.5.7). This enables specification of larger grid sizes in
regions with only large-scale flow structures and small grid sizes in regions where
more complex small-scale flow patterns are to be expected. The time-step is also
variable. If the criterium for stability is not satisfied at a specific location, the
computation from the previous point of time to the new point of time is repeated
with a time-step which is sufficiently small to achieve a stable computation. If the
stability criterium allows, the time-step is increased again. Both the non-equidistant
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grid size and the variable time-step have resulted in a considerable reduction in
computing time. However, the computing time can be diminished even further by
applying a simple form of a space-varying time-step.

Figure 5.18 shows the concept of this space-varying time-step. At a specific location
and a specific point of time, the stability criterium is not satisfied (denoted with the
thick dot in Fig.5.18). Then, an inner region is specified in which the computation
will be repeated with a smaller time-step. The surrounding region in which the
stability criterium does not require a smaller time-step, the computation towards the
new point of time does not have to be repeated with smaller time-steps. By using
the computational results at the boundaries of the inner region at both the old point
of time and the new point of time, the computation in this inner region can be
repeated with smaller time-steps to satisfy the stability criterium. Because the largest
part of the computational domain does not have to be computed with the smaller
time-step, which quite often can be ten times smaller than the previous time-step,
this procedure can yield a considerable reduction in computing time. This enables
practical use of the model for computations over many wave periods as required in
the study of irregular wave fields.

Fig.5.18 Local variable time-step in regions which, at a certain point
of time, require a smaller time-step for stability reasons.

Another aspect of the model which can be improved is the implementation of a
more sophisticated turbulence model. For the applications treated here, a constant
turbulence viscosity is used. However, a more realistic turbulence viscosity is not
a constant but depends on both space and time. Many models for implementing
these dependencies have been developed although none of them has general validity
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and most of them have not initially been developed with turbulence generation
under breaking waves in mind. Even sophisticated turbulence models like the &-e
model are not appropriate for all flow conditions. Moreover, such sophisticated
turbulence models can dominate the computational effort to such an extent that they
prevent the practical use of the numerical model. Whether this is the case still has
to be verified. Because even without sophisticated turbulence model the model
requires a considerable computing time, the contribution of such a turbulence model
might be relatively small. More simple formulations such as based on mixing-length
theory may be more suitable at this time but the difficult problem of prescribing a
characteristic length-scale remains.

Other improvements leading to a wider applicability and higher accuracy are the
implementation of surface roughness on impermeable slopes, a more sophisticated
treatment of air-entrapment, improvements of the VOF/FLAIR method near the free
surface and the implementation of more phenomena related to porous media flow
such as infiltration and anisotropy.

5.7 Conclusions

By means of the two-dimensional model presented in this chapter, normally incident
breaking waves on coastal structures, including permeable structures, can be
simulated numerically. The methods to solve the Navier-Stokes equations, which
have been adapted to describe porous media flow also, allows for detailed modelling
of many physical phenomena. More sophisticated modelling of turbulence and the
free surface may improve the accuracy of the model. However, as it is the model
already provides rather accurate simulations of the wave motion on coastal
structures. Validations against analytical solutions, a validation against breaking
waves in front of a submerged bar and the realistic impressions of the flow field
that the model provides confirm that the model can be rather accurate and widely
applicable. Present disadvantages, such as the restriction to regular waves, can be
overcome without affecting the model descriptions extensively. The wide range of
applicability, however, also requires validations on a wide range of flow conditions.
In the following chapter, a validation with berm breakwaters will be given.
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Chapter 6

6. Berm breakwaters
6.1 Introduction

Berm breakwaters are a relatively new type of structure. Their natural response to
hydrodynamic loads makes them economically attractive, not in the least because
smaller rock material can be used than with conventional breakwaters. On the other
hand, the dynamic behaviour, typical of berm breakwaters requires special attention.
The seaward slope undergoes reshaping until a stable seaward profile has developed.
This dynamic behaviour of the seaward slope depends very much on the
hydrodynamic loads and vice versa. This interactive character of the hydrodynamics
and the reshaping process are studied here, as well as in the subsequent chapter.

Physical-model tests were carried out to study wave interaction with a berm
breakwater. These small-scale tests were used to verify the one-dimensional model
described in Chapter 4 and the two-dimensional model presented in the previous
chapter. The two numerical models are also compared mutually. Here, a summary
will be given of research concerning the measurements and the comparisons with
the numerical models described in Van Gent (1993-c, 1994-d, 1995-b) and Van
Gent et al. (1994-b).

6.2 Berm breakwater features
Before the physical-model tests and the additional validation of the numerical

models are described, a general introduction to berm breakwaters will be given as
well as a short overview of research topics related to this type of structure.
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Berm breakwater concept

Conventional breakwaters consist of armour layers with heavy artificial units or
natural rock. In most cases these structures have a uniform sloping cross-section.
For these conventional breakwaters only little damage (displacements) is allowed
under severe storm conditions (design conditions). Wave motion causes loading on
the structure which the structure has to withstand. In some cases it can be desirable
to construct a breakwater which works more in harmony with the flow field in such
a way that the hydrodynamic loads are reduced.

To achieve a reduction in the hydrodynamic loads, the breakwater can be
constructed with a geometry such that the resistance of the structure at a specific
position along the slope corresponds with the local hydrodynamic loads. In this way
the resistance can be lower at positions where the hydrodynamic loads are relatively
small. At positions along the slope where these loads are more severe, this resistance
must be greater.

The local angle of the slope and the weight of the stones or units determine the
resistance to a large extent. If uniform material is used, the angle of the slope can
be steeper at positions where the loads are relatively small. At positions where these
loads are larger the slope angle must be smaller. Since the hydrodynamic loads
depend on the complete profile of the structure, the optimum local slope angle for
a specific type of material (as steep as possible to save material) is not known in
advance.

When the stones are free to move under wave attack, a profile will be formed in
which the resistance to hydrodynamic loads is minimized at all positions along the
profile; elements will be moved to positions where they are just stable. This means
that, for instance, at positions where waves break, resulting in relatively large
hydrodynamic loads, the local slope angle becomes small. At positions where the
loads are less, for instance before the breaking process starts, the angle can be
larger. At higher positions along the slope, the loads may be smaller and the stones
have a relatively large resistance since they are not submerged. This gives steeper
slopes near the run-up point. The profile gets an S-shape; steep near the seabed,
gentle where the waves break and steep near the run-up point. The forming of a
seaward profile that minimizes the hydrodynamic loads allows the construction with
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smaller material than is used for conventional breakwaters. This also results in
designs with fewer categories of stones.

Breakwaters with an S-shaped cross-section that are constructed with units that are
stable, are called S-shaped breakwaters. With the S-shape the loads are reduced,
whereas the slope is steeper at positions where the loads are relatively small.

Allowing displacement of stones gives the opportunity to construct a seaward profile
that is different from the expected equilibrium profile. As discussed before, nature
forms a profile for which the local angle of the slope is in harmony with the local
hydrodynamic loads. A breakwater which is designed to undergo such a natural
profile adjustment is called a berm breakwater. Therefore, a berm breakwater can
be described as a mound of rock which, as a result of wave-structure interaction,
undergoes reshaping until a equilibrium seaward profile is formed.

In contrast with S-shaped breakwaters, the initial profile of a berm breakwater is not
near the expected equilibrium profile. A berm breakwater is often constructed with
a horizontal berm just above still-water level. In this way the berm can be used to
position equipment during further construction of the breakwater.

SWL

RESHAPEDPROFILE /o™

PRIMARY STONES SECONDARY STONES

Fig.6.1 Berm breakwater lay-out.

The reshaped profile of a berm breakwater is to a large extent determined by the
most severe storm that occurred during the existence of the structure. The stones in
the reshaped profile are stable under mild wave conditions, but under relatively
severe conditions the stones can move slightly while the (average) profile stays the
same. A storm exceeding the largest storm that occurred in the existence of the
structure may cause a further development of the profile until a new stable cross-
section is formed.
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Often two classes of stones are used. The larger stones form the primary class and
are used for the top-layer. The smaller stones form the secondary class and are
positioned in the core. Unlike the core, the top-layer is allowed to reshape on the
seaward side of the structure. The amount of stones from the primary class has to
be sufficient to form a new equilibrium profile in such a way that the core is not
affected by waves. This is the case if, after reshaping of the profile, the core is
covered by stones from the primary class in a layer of at least two to three stone
diameters thick.

The armour stones required for berm breakwaters are much smaller than those
required for conventional breakwaters; the weight can be two to ten times smaller.
A much wider gradation can be used which allows the design to be based on the
actual quarry output. Because the stone sizes are smaller, the construction equipment
can be lighter than that used for conventional breakwaters. Since slopes are mainly
constructed under the angle of internal friction, less rehandling of stones is
necessary. At some locations berm breakwaters are the only realistic type of
structure; the wave conditions can be so extreme that conventional breakwaters
would require unrealistically large stones, whereas at some other locations the stone
sizes for conventional breakwaters are not available.

Some practical experience with berm breakwaters is described by Montgomery et
al. (1988) and Juhl and Jensen (1993).

Points of concern for berm breakwaters

For the design of berm breakwaters several features need to be studied. The width
and the height of the berm in the initial profile determines the amount of primary
stone which can take part in the reshaping process. This amount has to be sufficient
for the core material to be adequately covered after reshaping of the structure.
Therefore, the reshaped profile needs to be known in advance. This reshaped profile
can be predicted rather accurately on the basis of assumed design conditions, see
Van der Meer (1988).

Movements of stones on a berm breakwater slope imply that rock degradation is
more significant than for conventional breakwaters. Rock degradation following
emplacement results in changes in stone sizes and the roughness of the stones. This
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causes a decreasing resistance to wave forces resulting, to a certain extent, in a
different equilibrium profile (flatter). For some design implications concerning this
aspect see Allsop and Latham (1987) and Latham ef al. (1988).

Another consequence of the use of smaller stones for berm breakwaters is an
increased effect on the rear-side of the structure. Damage to the rear-side of the
structure is not usually allowed. This damage can be prevented by increasing the
crest height, increasing the crest width, increasing the stone diameter at the rear-side
or decreasing the rear slope.

Another point of concern, typical of berm breakwaters, is the so called longshore
transport of the armour stones. The stones from a berm breakwater can be displaced
not only to another place in the same cross-section, but also in the direction parallel
to the structure. The cross-section of a dynamically stable structure can reach an
equilibrium profile for a specific wave climate (no net cross-shore transport).
However, under these conditions a net longshore transport can still take place. This
longshore transport is caused by waves that attack the breakwater under an angle.
This transport of stones has to be prevented unless the net amount of displaced
stones has to be sufficiently small.

Breakwater round heads are usually more exposed to wave attack than other parts
of the breakwater. A measure to deal with this problem for berm breakwaters is to
increase the amount of stones in the profile at the round heads. This can be done
by constructing a higher or wider berm. The equilibrium slope will be more gentle
at the location of the round heads as a result of the more severe wave attack. For
design aspects at singular points of berm breakwaters and for longshore transport
on berm breakwaters reference is made to Burcharth and Frigaard (1988) and Van
der Meer and Veldman (1992).

6.3 Physical-model tests
6.3.1 Description of physical-model tests
A small-scale physical model of a berm breakwater was tested in a flume 42 m

long, 0.80 m wide and 1.05 m high. The wave generator was equipped with
reflection-compensation to prevent re-reflection of reflected waves against the wave
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generator. The structure was positioned at 28 m from the wave generator. The
structure was constructed in two steps. First a core consisting of coarse granular
material was placed (D,;,=0.0175 m). The section of the wave flume with the core
was sealed. This sealed section was filled with a known volume of water. This
procedure provided the in situ porosity. After construction of the cover layer,
composed of larger granular material (D,;,=0.0266 m), this procedure was repeated.
Assuming that the porosity of the core before and after the construction of the cover
layer was the same, the porosity of the cover layer could be determined. Both
porosities appeared to be nearly the same, namely 0.4/8 and 0.417, which could be
expected since both categories were obtained by sieving from the same initial
sample.

) BERM BREAKWATER
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Fig.6.2 Cross-section of the berm breakwater in the experimental set-
up with pressure transducers indicated by P1-P8.

Figure 6.2 shows a sketch of the experimental set-up with the initially horizontal
berm at a level of 0.80 m, the still-water level being 0.75 m. All slopes were 1:1.5
except for the submerged seaward slope which was 1:7.25.

Pressure transducers were positioned in the seaward slope and in the core of the
structure. These transducers were fixed to thin steel bars attached to the bottom of
the flume. Because the steel bars were rather thin, they were free to move slightly
in the horizontal direction which may have occurred owing to settling of the
structure. Therefore, the vertical positions of these transducers were known
accurately whereas the horizontal positions may have changed a little in the
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direction towards the wave generator. This horizontal displacement was estimated
to be less than 0.03 m. The positions of the transducers are indicated in Figure 6.2.
The pressure transducers were protected by small caps with a diameter of 0.02 m,
which is still smaller than the surrounding stones. The signals were recorded at a
sampling frequency of 50 Hz after second-order low-pass filtering at 25 Hz.

Velocities were measured with an electro-magnetic flow meter (EMF075)
simultaneously in the vertical and horizontal direction. A velocity range of 1.0 m/s
was used. The maximum error band was 0.6% in both directions. The transducers
reacted to air by giving their maximum voltage (maximum velocity) within a period
of 0.20 s. Velocities were measured every 0.0 m in the x-direction, between the toe
of the structure and the area where air was enclosed owing to breaking waves.
Velocities were measured at the levels of 0.35 m, 0.45 m, 0.55 m and 0.65 m above
the bottom of the flume. The sampling frequency was 50 Hz.

5 BERM BREAKWATER — PROFILE DEVELOPMENT
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Fig.6.3 Seaward slope after four series of regular waves.

Surface elevations were recorded by three resistance-type wave gauges, two in front
of the structure and one behind the structure (one 4.0 m in front of the crest of the
structure, one 3.2 m behind the crest and one mobile). This permitted the study of
reflections, wave transmission and the internal set-up. The maximum error band of
these wave gauges is 0.5% of an operating range of 0.75 m. Video recordings were
made of the surface elevations at a rate of 25 pictures each second. The region
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above the seaward slope was divided into three partially overlapping sections. In
front of each section the video camera was positioned for some time. Since regular
waves were studied, the observed surface elevations in each section could be
connected to those from the other two sections afterwards. The run-up levels were
measured visually through the glass side-walls of the flume and were checked by
using the video film. Because the water layers during run-up are smaller than the
size of the stones and because the water line was specified without reference to the
percentage of entrapped air, differences might have occurred between run-up and
run-down levels obtained and those that would have been recorded if a run-up gauge
had been used.

Reshaping the seaward profile was achieved by four series of /000 regular waves
where each series had an increased impact on the dynamic seaward slope compared
to the previous series. After each series, the reshaped profile was measured visually
but not restored. Figure 6.3 shows the seaward profile after each of these series of
regular waves. During the last series, with the highest waves, the crest was raised
from 0.95 m to 1.00 m. After this reshaping process the actual tests were started. No
reshaping took place during these tests.

Table 6.1 Measured properties of regular waves.

H (m) T (s) R-up (m) ~ R-down (m) K, K, Int.set-up (m)
0.119 15 0.10 -0.02 0.11 0.036 0.00
0.162 15 0.15 -0.01 0.25 0.028 0.02
0.230 15 0.21 0.00 0.13 0.019 0.04
0.284 15 0.25 0.02 0.13 0.017 0.06
0.112 2.1 0.11 -0.03 0.18 0.060 0.01
0.166 2.1 0.20 -0.01 0.19 0.051 0.03
0.217 2.1 0.27 0.01 0.20 0.092 0.06
0.261 2.1 >0.27 0.01 0.21 0.123 0.07

Regular waves were studied, with wave periods of /.5 s and 2./ s. For each wave
period, four wave heights were tested, varying between approximately 0.// m and
0.28 m. For those eight waves, several parameters are shown in Table 6.1. In all
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tests, the still-water level was 0.75 m. Due to set-up behind the breakwater (internal
set-up), an average water level reduction occurred at the front. The set-up behind
the breakwater was measured and used to determine the average water level at the
front during the tests. The run-up and run-down levels presented in Table 6.1 are
related to this water level at the front. The internal set-up levels presented are the
summation of the measured set-up behind the structure and the resulting water level
reduction at the front (respectively 2/3 and //3 of the presented values). The
incident waves and reflected waves were extracted from the measured signals from
two wave gauges in front of the structure. The reflection coefficients are obtained
by dividing the extracted reflected wave height by the incident wave height, while
the transmission coefficients were obtained by dividing the transmitted wave height
by the incident wave height.

6.3.2 Discussion of test results

The run-up levels show an increase that is roughly linear with increased wave
heights. Severe overtopping occurred for one wave series, but the damage at the rear
was still limited. The run-down levels vary around the average water level in front
of the structure. Reflection coefficients do not show a clear trend, although it seems
as if the reflections increase for longer wave periods. The second wave series in
Table 6.1 shows a very high reflection coefficient compared to other waves of the
same wave period. The reasons for this high reflection are not understood. The
transmission coefficients are very low and tend to increase for longer wave periods.
The last two wave series show an increase in transmission due to overtopping. The
waves with severe overtopping show the highest values for the transmission
coefficients. The internal set-up is larger for higher waves and for longer periods.

The analysis of the video images has resulted in graphs with surface elevations in
the area above the seaward slope. The surface elevations have been measured at ten
points of time, with a constant time-interval, within one wave period (Fig.6.6-6.9).
The surface points were determined at positions in the x-direction at every 0.05 m
or (.10 m (depending on the fluctuations). In the case of air entrapment (Fig.6.7 and
Fig.6.9), two surface points are plotted at one x-position for a single moment of
time; the upper shows the free surface and the area between both lines indicates
where air was situated. Because a wave gauge was positioned in the region where
the video images were made, the video images could be synchronised with the other

117



118

CHAPTER 6

signals. Comparisons with numerical results will be discussed in the subsequent
sections.

Analysis of the signals from the pressure transducers (Fig.6. I I, where zero-pressures
correspond to still water) showed that the pressures inside the berm do follow the
fluctuations of the free surface closely; the maxima of the measured pore-pressures
occur at nearly the same moments of time at which the free surface above the
transducers have maxima. Figure 6.4 shows pressure fluctuations as function of the
vertical position, derived from the free surface fluctuation (upper symbols) and two
pressure transducers in the same cross-section (lower symbols). At such a cross-
section, the maximum minus the minimum free surface is used as the pressure
fluctuation at the average free surface (zero-pressure at the free surface). This has
been done for the cross-sections x=0.8 m (transducers P7 and P8, with the slope at
z=0.54 m) and x=1.3 m (transducers PS5 and P6, with the slope at z=0.63 m). Figure
6.4 shows that pressure differences caused by fluctuations of the free surface do not
fully penetrate into the permeable part; the pressure differences decrease in the
downward direction.

9 PRESSURE DIFFERENCES 0.9 PRESSURE DIFFERENCES
/><
SLOPE x=1.3m ST "éLOPE x=1.3m
0.6 1
T SLOPEx=08m| ¢ SLOPE x=0.8 m
2] (%]
> x
b oy ¥ -
N x=0.8 m; H=0.119 m N x=0.8 m; H=0.112 m
o 0.3 -‘ : / B
x=1.3 m; H=0.119 m A x=1.3 m; H=0.112 m
SO ,4" ‘/" e
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0.0 . . 0.0 . :
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
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Fig.6.4 Pressure fluctuations in vertical direction; regular waves
with wave periods of T=1.5 s (left) and T=2.1 s (right).
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6.4 Validation and intercomparison of the numerical models
6.4.1 Validation of the one-dimensional wave model

Several properties calculated by the one-dimensional numerical model described in
Chapter 4 have been verified by using the physical-model tests. Velocities and
surface elevations have been verified against measurements above the most gently
sloping part of a berm breakwater, see for instance Torum and Van Gent (1992). In
the present tests, velocities were measured lower down the slope. Before the
comparison between measured and computed surface elevations is treated, some data
on run-up and run-down levels and reflections will be compared.

The test series presented in Table 6.1 have been used for comparison. In the
computations the still-water level was set at the measured average water level in the
section between the wave generator and the structure. The inflow and outflow
boundaries were positioned at 0.20 m before the toe of the structure and just behind
the crest of the structure respectively. In the numerical model the reshaped seaward
slope of the berm breakwater was represented by five straight sections. The crest
level was /.00 m, while the structure was modelled as a homogeneous structure with
a porosity of 0.4/7 and a stone diameter D,, of 0.0266 m. This means that the
permeable core (n=0.418, D,;,=0.0175 m) is represented by the same material as
the cover layer. The dependency of the porous media flow friction-coefficients on
the flow field has been implemented as described in Section 4.2.2. For the friction
coefficient £, 0./0 has been used in all simulations (Eq.4.3 with tan 6,=0.2 and
R=0.25 m). The incident waves were computed with the Stokes second-order theory.

Run-up values are compared in Figure 6.5. For calculating the surf-similarity
parameter &,, a /:4 slope was taken as a representative slope. The computations
represent the measured run-up values rather well. For the run-down levels, the
computations with wave periods of 1.5 s (lower values of £,) were rather accurate.
The computations with a wave period of 2./ s (higher values of £,) do show the
correct trend, but absolute differences of 0.04 m occur. Computations with uniform
slopes also indicated that the run-up levels were represented rather accurately
(Section 4.4.2). This was not the case for the run-down levels. The same
conclusions can be drawn for the tests described here.
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Fig.6.5 Measured and computed run-up and run-down
levels on a berm breakwater.

Reflection coefficients for the eight series of waves as shown in Table 6.1 were in
the measurements and the computations respectively: 0./ vs. 0.06; 0.25 vs. 0.06;
0.13 vs. 0.10; 0.13 vs. 0.15; 0.18 vs. 0.48, 0.19 vs. 0.28; 0.20 vs. 0.29 and 0.21 vs.
0.27. The agreement between these reflection coefficients is poor. However, the
observed trend, that the values for the reflection coefficients are higher for longer
wave periods, is reproduced.

Surface elevations obtained from the video images have been compared with
numerical results for four of the wave series mentioned in Table 6.1. The upper
graphs in Figures 6.6-6.9 show the measured surface elevations while those in the
middle are the computed surface elevations at the same moments of time. The
comparison between measured and computed surface elevations shows that the
numerical results give a rather good impression of the wave action until the position
where air is captured. As expected, behind this point with entrapped air the
resemblance is much weaker.

Velocities measured in a single point cannot properly be compared to depth-
averaged velocities produced by the numerical model since depth-averaged velocities
may deviate substantially from velocities in a single point. Nevertheless, in Van
Gent (1993-c), comparisons between measured velocities and calculated depth-
averaged velocities are shown for four waves. Differences up to 30% occur between
the measured velocities and the depth-averaged velocities. However, it is impossible
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to contribute the differences totally to inaccuracies of the model, since the variations
in the velocity profile may easily cause such differences. Therefore, no firm
conclusions can be made based on such a comparison.

6.4.2 Validation of the two-dimensional wave model

For the same wave conditions as those used in the previous sub-section, measured
run-up levels, surface elevations, velocities and pressures have been compared with
results from the two-dimensional numerical model described in Chapter 5.

The computational domain in the numerical model started at 4 m in front of the toe
of the reshaped structure where the waves were generated by applying the stream
function method by Rienecker and Fenton (1981) using /6 Fourier-components. The
outflow boundary was positioned at the landward side at 7.5 m behind the crest of
the structure. At both boundaries the average-prescribing weakly reflecting boundary
conditions were applied. For the average water levels at these boundaries the
measured values were prescribed. No net mass transport was allowed through the
boundaries. The structure was modelled with the measured slope and the measured
properties of both the cover layer and the core. The dependency of the porous media
flow friction-coefficient 8 on the flow field has been accounted for by including the
dependency on the KC-number; 8=, (1+7.5/KC) where KC=UT/nD,, and 8, =1.1.
For the representative filter-velocity U an estimated value was applied and for T the
wave period was used. Added mass was not modelled. In x and z-direction, 270 and
80 computational cells were used respectively. The computations were performed
with a constant viscosity »,=0.005 m’/s (lower values lead to instabilities). In the
discretisation of the equations an upwind fraction of 8,,=0.2 was used. Surface
elevations were defined at positions of cells which were filled with fluid for 50%.
After a start-up time of six to eight waves to obtain periodic results, data was used
for comparison with the measured properties.

Snapshots of the surface elevation for ten phases within one wave-cycle are shown
in the Figures 6.6-6.9 for two wave conditions with a wave period of /.3 s and two
wave conditions with a wave period of 2.1 5. The comparisons for the five profiles
in the first half of each wave cycle show good agreement (upper graphs). In the
second half of each wave cycle (lower graphs) considerable air-entrapment occurs
for the two wave series with largest wave heights (Fig.6.7 and Fig.6.9). The
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Fig.6.6 Comparison of surface elevations; measured, 1D-model

and 2DV-model; H=0.119 m, T=1.5 s.
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Fig.6.7 Comparison of surface elevations; measured, 1D-model

and 2DV-model; H=0.230 m, T=1.5 s.
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Fig.6.8 Comparison of surface elevations, measured, 1D-model
and 2DV-model; H=0.112 m, T=2.1 s.
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Fig.6.9 Comparison of surface elevations; measured, 1D-model
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comparisons with the computed results become rather complex in the second part
of the wave cycle since the exact position of the free surface is not clear. However,
the comparisons indicate that the decrease in wave height above the berm occurs
faster in the computation than observed from the measurements. It seems as if this
overestimated reduction in wave height leads to an underestimation of the run-up
levels. For the two wave conditions with lower waves (Fig.6.6 and Fig.6.8), the
comparisons are also rather good in the second half of the wave cycle.

Run-up values obtained from the numerical model are too low for all four wave
conditions 0.07 vs. 0.10; 0.14 vs. 0.21; 0.08 vs. 0.11 and 0.18 vs. 0.27 m, for the
measured and computed levels with the wave conditions H=0.119 m, T=1.5 s,
H=0.230m, T=1.5 s; H=0.112 m, T=2.1 s, H=0.217 m, T=2.1 s, respectively. All
these values are relative to the average water levels in front of the structure during
testing. The definition of the surface elevations at the positions of cells that are 50%
full of water instead of another percentage, might influence the computed run-up
levels slightly. If, for this definition, positions of cells that are /0% full of water are
regarded as surface elevations, the computed run-up levels may increase but not so
much that they would fit to the measured run-up levels. The error in the dissipation
of energy recorded in the computed breaking process, which may result from
inadequate description of the physical processes or from numerical dissipation, is
assumed to cause these underestimated run-up levels.

Velocities from the measurements and the numerical model are compared. For each
of the four wave conditions Figure 6.10 shows three examples of comparisons of
both horizontal and vertical velocities. For the higher waves could comparisons be
made only in the region before breaking because the other measurements were
disturbed by air-entrainment. Most of the comparisons show that the both the
horizontal and vertical velocities are represented rather well in this region. As can
be expected, the differences increase for positions closer to the crest of the structure.
The numerical model underestimates the surface fluctuations in this region which
accompanies an underestimation of the velocities. In the region where breaking and
air-entrapment occurs no velocities could be compared, but since the surface
elevations are represented relatively inaccurately, the comparisons would probably
yield velocities that are too low. Nevertheless, it can be concluded that in the region
just before breaking, both the surface elevations and the velocities are rather well
represented.
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Fig.6.10 Comparison of velocities; measured (dashed) and computed
by the 2DV-model (lines).
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Fig.6.11 Comparison of pressures; measured (dashed) and computed
(lines) by the 2DV-model; H=0.217 m, T=2.1 s.

Pressures obtained from the eight transducers and the computed pressures at the
same positions are compared as well. The positions of these transducers are shown
in Figure 6.2. Figure 6.11 shows the comparison for one of the wave conditions
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(H=0.217 m, T=2.1 s5). Transducer P4 is positioned between the transducers P3 and
P6. The recorded pressures by transducer P4, however, clearly deviate from those
recorded by P3 and P6. The signals of transducer P4 are roughly 50% of the
expected pressures for all analysed wave conditions. Because no convincing physical
explanation can be given for these low pressures the signals of transducer P4 are
highly questionable. The comparisons with the other transducers are fairly accurate
except for those with transducer P8. For this transducer the measured signal is not
unrealistic compared to the signals from P3-P7. Therefore, the difference at the
position of transducer P8 was assumed to have been caused by a slightly different
simulation of the internal flow field in this region. Both the internal set-up as
recorded by transducer P/ (average level), and the internal wave height are
reproduced with a high accuracy. The computed signals at positions just below the
breaking waves (transducers P2, P3 and P6) also show good correspondence with
the measured signals, although these measured signals show more high-frequency
fluctuations.

6.4.3 Evaluation of the numerical model validations

The validations described in the previous two chapters indicate that both models can
be used with good result for many applications. Here, the results from the two
models with respect to the berm breakwater tests will be compared.

Surface elevations were compared for four series of waves. The first comparison,
shown in Figure 6.6, indicated that both numerical models provide a rather good
simulation of the wave motion. For the other comparison with relatively low waves,
shown in Figure 6.8, the same conclusion can be drawn but the one-dimensional
model tends to resemble a standing wave while the measurement and the two-
dimensional model show steeper wave fronts. The comparisons with the two series
with higher waves are shown in Figures 6.7 and 6.9. In the first half of the wave
cycle the steepening of the wave front is somewhat quicker in the numerical models
than in the measurements, although the differences in this region are still small for
both models. In the second half of the wave cycle, air-entrapment in the region of
breaking makes comparisons more difficult. The resemblance of results from both
numerical models to the measurements is weak. The one-dimensional model forms
a steep bore but apparently the total momentum is still reproduced satisfactorily
since the run-up levels are accurately reproduced. The two-dimensional model shows
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overturning waves where too much dissipation occurs, since run-up levels are not
reproduced accurately. However, this is not caused solely by inaccurate modelling
of the overturning wave, since this run-up levels were also inaccurate for the two
series with non-overturning waves.

Run-up values are significantly better represented by the one-dimensional model.
Although the use of a specific value for the empirical friction coefficient f in the
one-dimensional model influences the run-up levels slightly, the model provides
accurate run-up values. Those obtained by using the two-dimensional model
however are much less accurate. The reduction in wave height during breaking is
too large in this two-dimensional model which results in too low run-up levels. The
treatment of the free surface is supposed to cause the greater part of the
inaccuracies. These inaccuracies are to a large extent originated from the modelling
of the breaking process. Improvements of this treatment are, however, not easy to
obtain.

Velocities could only be compared in the region before actual breaking occurred.
However, in the region before breaking the wave deformation is simulated rather
accurately by the two-dimensional model. The one-dimensional model which
computes depth-averaged velocities can only provide a rough estimate of velocities
in a specific position. Even for the four series of waves investigated, where the two-
dimensional model does not provide a substantially better simulation of the wave
motion than the one-dimensional model, this two-dimensional model still provides
much more detailed information on the flow field.

Pore-pressures measured in the berm of the berm breakwater appeared not to be
hydrostatic, since the fluctuations of the free surface do not fully penetrate the
permeable layer (Fig.6.4). In particular for cases in which the vertical components
of pore-velocities are not small compared to the horizontal pore-velocities,
neglecting the friction in the vertical direction might especially lead to inaccurate
results. This effect was somewhat accounted for in the one-dimensional model by
using a higher friction in the horizontal direction (see Section 4.4.2). Reducing the
pressure gradient for porous media flow in the region where a layer of water
overlaps a saturated permeable layer might be a good alternative. This reduction
cannot be constant since it is likely that this reduction decreases for longer wave
periods and for a higher permeability and increases for thicker permeable layers.
The two-dimensional model reproduces the pore-pressures accurately which indicates
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that the internal flow field is simulated realistically and that the applied porous
media flow friction-coefficients are sufficiently accurate.

In general, it can be concluded that considering the relatively large simplifications
of the wave motion, the one-dimensional model simulates the flow field rather well.
This indicates that the applied assumptions are justified for this application. The
two-dimensional model, for which less far reaching assumptions have been made,
provides a detailed description of the flow field, but the accuracy of predicted run-
up levels and consequently also overtopping discharges is too low. The present
version is therefore not suitable for practical use on steep permeable structures with
respect to these important parameters. Unlike the one-dimensional model, the two-
dimensional model permits more detailed modelling of many phenomena by
extending the present version without large modifications of the model structure.
The two-dimensional model with its capability to simulate multiple-connected free
surfaces and to simulate wave motion in conditions with a large influence of two-
dimensional aspects however has a much larger potential for practical application
than the one-dimensional model. Improvements of the model in relation to a better
modelling of turbulence, air-extrusion and free surface treatment are expected to
increase the accuracy and applicability of the model.

6.5 Conclusions

Analysis of the physical-model tests with a small-scale berm breakwater showed that
the pressure differences caused by fluctuations of the free surface do not fully
penetrate into the permeable part underneath. This is logical since the friction in the
permeable layer affects the vertical pore-velocities and therefore also the pressure
fluctuations in the vertical direction. In the one-dimensional numerical model this
decrease of pressure fluctuations in the downward direction has not been taken into
account. It, however, might be incorporated by reducing the magnitude of the
applied pressure gradient in the horizontal direction. Although this reduction is not
easy to determine because it depends on several properties including the flow field,
this might lead to more accurate numerical results. Pore-pressures were rather
accurately predicted by the two-dimensional numerical model.

Like the tests with impermeable and permeable uniform slopes described in Section
4.4.2, measured run-up values on a berm breakwater slope are also accurately
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predicted by the one-dimensional model. The reduction in wave height during
breaking in the two-dimensional model is overestimated, which results in too low
run-up levels. The present version of the two-dimensional model is therefore not
suitable to predict accurate run-up levels.

Comparisons between the measured and simulated surface elevations indicate that
both numerical models give a rather good impression of the wave action until
breaking. The resemblance is much weaker in the area where air is captured.

The one-dimensional model does provide depth-averaged velocities. Comparisons
of velocities measured at specific points therefore, do not give a good indication of
the accuracy of the model. Velocities in the area just before breaking are reproduced
with good accuracy by the two-dimensional model.



Chapter 7

7. Wave load - response model
7.1 Introduction

For dynamic structures such as berm breakwaters and gravel beaches, the response
to wave attack can be described by using parameters like the wave height, wave
period, stone size and storm duration. The use of more detailed information on the
flow field such as velocities, accelerations, pressures and forces on stones may lead
to a more generally applicable description of the dynamic behaviour of structures.
This can be done by simulating both the wave motion and the response of the
structure numerically.

Validation of the two numerical models described in the previous chapters indicated
that both models can provide accurate results for wave motion on for instance berm
breakwaters. Therefore, a step towards the simulation of the movement of stones
along the slope can be made. Such a numerical simulation of the reshaping process
by simulating both individual waves and the motion of individual stones, requires
relatively long computing times. Therefore, the one-dimensional numerical model
described in Chapter 4 (ODIFLOCS) is used for this purpose rather than the time-
consuming two-dimensional model described in Chapter 5 (SKYLLA). The procedure
used to simulate reshaping which will be described in this chapter can, however,
also be applied in combination with other numerical models simulating individual
waves such as the model described in Chapter 5. Although only structures under
normally incident waves and cross-structure transport of material are studied here,
a similar procedure can also be used to model transport of stones along the structure
as a result of oblique wave attack. This, however, requires a two-dimensional
horizontal (2DH) or a three-dimensional (3D) numerical wave model, including
porous media flow which is not yet available.
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7.2 Modelling of forces and profile development
7.2.1  Approach for simulating profile development

The stability of the stones is strongly dependent on the hydrodynamic conditions.
Several expressions for this stability have been developed. Iribarren (1938) and
Hudson (1953) derived widely used expressions where the hydrodynamic properties
are represented by the wave height. Van der Meer (1988) performed many
laboratory tests to study the influence of other hydrodynamic properties as well. The
results were summarised in empirical relations that also contain hydraulic parameters
like the wave period and number of waves. Although these design recommendations
are sufficiently accurate for many applications, more generally applicable results can
be obtained by simulating the wave motion first and then using flow properties like
the velocities and accelerations to predict the forces on stones. This can be done
numerically.

Results obtained from such a numerical approach may be less hampered by scale
effects than those from physical-model tests on a small-scale. In addition, sensitivity
of the reshaping process to parameter variations like for instance the permeability
of structures, can be studied more easily with a numerical model than with physical-
model tests. Such a numerical model can also be applied to cases for which no
empirical relations exist, like for instance structures or beaches which contain large
immovable components such as gravel beaches fronting seawalls or rubble mound
slopes in front of rigid crest elements.

In the approach towards a numerical wave load-response model several model
formulations are required. Firstly, the hydrodynamic flow, both outside and inside
the structure, need to be known and modelled numerically. The one-dimensional
model (Chapter 4) can be used as a first approximation. Secondly, information
concerning the magnitude of forces on stones is necessary. Attempts to measure
forces on idealised stones have been made by Sigurdsson (1962) and Sandstrem
(1974). Terum (1992) measured forces on a single stone in the cover layer of a
berm breakwater. Thirdly, relations between the forces on stones and the
hydrodynamic behaviour are necessary. As mentioned before, the hydrodynamics
can be represented by local velocities and local accelerations. As a first
approximation, a Morison-type of expression (Morison ef al., 1950) can be used, see
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for instance Kobayashi and Otta (1987) or Terum (1992). Fourthly, information
concerning failure mechanisms and forces causing damage is needed. Often failure
mechanisms referred to as rolling, sliding or lifting are distinguished. These
mechanisms or other failure mechanisms need to be modelled. Finally, the new
positions of unstable stones need to be known if the complete reshaping process is
to be simulated. For most breakwaters severe damage is not acceptable, so for those
cases it is not of primary interest to study the new positions of the stones. However,
for berm breakwaters and gravel beaches these new positions are of primary
concern.

Norton and Holmes (1992) described a simulation model for the reshaping process
of berm breakwaters under normally incident, monochromatic wave attack, by
modelling individual stone displacements. This was based on a Morison-type of
equation. In the present model, initiation of the movement of stones is also based
on a Morison-type of equation, including drag, inertial and lift forces. However,
unlike that of Norton and Holmes (1992), the present model can also be used with
irregular waves, since it simulates the reshaping process in the time-domain.
Furthermore, in the model described here, the new positions of unstable stones are
determined from the hydrodynamic conditions.

7.2.2  Modelling of forces on stones

The hydrodynamic loads on a single stone can be modelled by using a number of
forces representing different phenomena. For the relation between the
hydrodynamics and the forces, local velocities and local accelerations are required.
The numerical model provides these local properties although averaged over the
depth. Differences between these properties at the position of the particles and the
depth-averaged velocities naturally cause inaccuracies.

Three forces resulting from the hydrodynamic loads have been distinguished; the
drag force acting parallel to the slope in the direction of the velocity, the inertial
force acting parallel to the slope and the lift force acting perpendicular to the slope.
For the drag force and the inertial force expressions similar to those in the Morison
equation can be used. The lift force is the most difficult one to determine. Often,
the assumption that the lift force is proportional to the squared velocity and the
squared diameter of the stone is used.
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F, = —; p cpk, D* uljul (7.1)
Du
F, = pcy,k D == D (7.2)
F, =1 k, D* u? 73 :
LTy Pkl (73) Fig.7.1 Forces on particle.

where the acceleration Du /Dt is approximated by du/d¢; ¢, ¢, €, are the drag
coefficient, the inertia coefficient and the lift coefficient respectively; £, and £, are
the volume shape factor and the area shape factor respectively. With the area shape
factor k, the actual projected area in the flow direction can be incorporated. Since
a cover particle is partially sheltered by other particles, the actual projected area is
smaller than for a single particle in a flow. The sheltering effect has not been
incorporated separately and therefore affects the values of the coefficients which
will be derived through calibration. For spheres, the value for £, is «/4 since the
projected area, neglecting the sheltering effect, is 7/4 D 2. The volume shape factor
k, is /6 for spheres since its volume is equal to 7/6 D>. For stones slightly higher
values must be used: &£,=0.66 and k,=0.9 were used in all computations. A constant
stone diameter is taken, while the equivalent sphere diameter Dy, is used as the
characteristic stone size (Dgy=1.24D,).

The submerged weight is often taken as the counter-acting force, although
occasionally other counteracting forces have been proposed, see for instance
Brandtzaeg and Torum (1966). The submerged weight acts vertically and can be
written as ( p, represents the density of the stone material):

W, = (p,-p) g k, D* (74)

Several concepts can be used for initiation of movement. The stability criteria for
the phenomena referred to as /ifting and sliding can respectively be expressed by:

F, < W, cosd (7.5)

|Fp+F,-W,_ sind| < tanp (W, cosd - F, ) (7.6)
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where p denotes the angle of internal friction and ¢ the local slope angle. Here, the
phenomenon referred to as rolling is assumed to occur if both stability conditions
are not satisfied.

An additional force is implemented at the intersection of the free surface with the
slope (wave front). The first particle near the wave front is assumed not to be
submerged (W=p, gk,D’ ). If velocities are in the direction of the particle, the
pressure at the wet side of the particle is expressed by the pressure thrust
approximated by 0.5-pgh’D+p’hD. If this force, acting parallel to the slope,
exceeds the counteracting component of the weight of the particle, the particle is
regarded as unstable. For unstable particles, the direction in which they will possibly
move, has to be determined.

7.2.3  Modelling of stone displacements

In this section a method to simulate stone displacements on the seaward slope of
structures and gravel beaches is discussed. Initiation of movement is calculated as
described in the previous section.

Usually the flow pattern around particles is very complex. Consequently, the forces
resulting from the pressure gradients around the particles are not easy to determine.
The drag, inertial and lift forces implemented in the model for the initiation of
movement, are the result of these pressure gradients. For particles moving along the
slope other forces may be of importance. It is assumed that for particles moving
along the slope the pressure gradient directly depending on the slope of the free
surface (hydrostatic pressures) is of more importance than it is for stable stones in
the cover layer. Therefore, such a force (Froude-Krylov force) is taken into account
when determining the direction in which the unstable particles will move. This force
is assumed to act parallel to the slope and is related to the volume of the particle.
Calibration, however, will show that this force is of minor importance compared to
the magnitude of the other forces.

F)
Fo=pcogk D3 52_ (7.7)
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where 7 is the free surface elevation and ¢, is a coefficient to be determined through
calibration. This force, as well as the drag and inertial forces and the weight of the
stone, determine in which direction an unstable particle will move after one of the
stability criteria is (Eq.7.5 and/or Eq.7.6) not satisfied:

|Fp+F,~-Fp-W_ sing| >0 = UPWARD (7.8)
|Fp+F,~-F,-W, sing| < 0 = DOWNWARD (7.9)

The inertial force and the drag force act differently on non-moving stones in the
cover layer than on stones moving along the slope. However, as a first
approximation the same formulations and the same values for the drag and inertia
coefficients are used for initiation of movement and for moving stones, even though
for determining the direction of the stone the additional force shown in Equation 7.7
may also affect the values of these coefficients; the formulations for the drag and
inertial forces and the coefficients ¢, and ¢,, in Equations 7.1 and 7.2 are also used
in Equations 7.8 and 7.9.

After determining the direction in which an unstable particle may move, the local
hydrodynamic properties at a position one space-increment (A x) away from the
original position, will be considered. Whether the particle would be stable or
unstable in that neighbouring position is verified. If the particle is stable at that
position, the particle will stay in its original position. If the particle is also unstable
at the neighbouring position the particle will be moved to this position. This is done
without any time-delay which means that the particle is moved over a space-
increment A x within a period of Ar. The choice of At depends on the space-
increment Ax and the wave celerity which means that the velocity of the stones is
in fact related to the (average) wave celerity.

The phenomenon of particles moving while they stay at the same position is called
rocking. In the present simulation model, unstable particles that are not displaced
because they would be stable at their neighbouring position, are regarded as rocking.

The response/morphological model for cross-structure transport is interactive with
the hydraulic model. At each time-step (A¢) the hydraulic properties are determined
at all positions. Whether the particles are stable at their present position and whether
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they need to be displaced or not is verified for each position and each time-step.
The profile changes due to the movement of the particles while the new profile is
immediately incorporated in the hydraulic model.

Some numerical problems remain. Particles are moved over one space increment
within one time-step. The space-increment Az by which the profile is adapted in the
vertical direction must still be determined. The space-increment A x is usually not
equal to the size of the particles. For instance for small material several particles are
positioned within one space-increment A x. For the space-increment A z a value is
taken such that an area in the cross-section equal to D-A x is replaced within a
period A x/u,. For the velocity u, a representative velocity of V/(g-H,,.) is used
although in principle a time and space dependent velocity of the particles can be
applied here.

Another numerical problem occurs when the concept is used in combination with
a one-dimensional hydraulic model. For particles that are relatively large compared
to the wave height and compared to the numerical space-increment Ax, the variation
in the vertical direction A z may disturb the hydraulic model to an unacceptable
degree. The numerical model applied is a one-dimensional hydrostatic model which
does not solve a non-hydrostatic momentum-equation in the vertical direction and
is therefore relatively sensitive (causing inaccuracies) to abrupt changes of the
profile. This means that for relatively large particles, the space-increment A z must
be decreased. This leads to a slower response of the numerical structure to the wave
climate. This can be partially overcome by increasing the total simulation-time, but
if the relation between a smaller space-increment Az and the profile adjustment-time
is not linear the development in time is not correct and therefore less suitable for
studying the development in time of structures with relatively large particles.
Several comparisons indicated that this relation was close to linear and therefore this
does not seriously affect the accuracy of the results.

7.3 Calibration and validation of the wave load-response model

Calibration

In the first instance dynamically stable profiles can be classified by using the
parameter H,/AD,;, For dynamically stable profiles this value varies roughly
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between 3 and 500. This parameter varies between 4 and 6 for berm breakwaters.
For gravel beaches this value is higher. Since in principle the procedure described
in the previous sections can be applied to processes where suspension transport can
be neglected, gravel beaches can also be dealt with. For calibration of the model a
gravel beach was taken instead of a berm breakwater slope, since for gravel beaches
many more displacements occur and material is often transported both upward and
downward.

Tests performed by Van der Meer (1988) are used for calibration and validation of
the morphological model described. The coefficients that need to be determined
through calibration are the coefficients ¢, ¢, , ¢,, and c,. The combination of the
coefficients derived from the calibration test is used in other computations where
several parameters vary. Van der Meer (1988) derived expressions for the prediction
of reshaped profiles from his test-results. Conditions that these expressions have
been derived from are used for comparison. Since for these tests the differences
between the measured profiles and the profiles prescribed by the expressions are
relatively small, the expressions have been used for convenience.

5 COMPARISON MEASURED-CALCULATED PROFILES
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Fig.7.2 Comparison of profiles.

The computations for both calibration and validation have been done with a TMA-
spectrum (Section 4.3.2) although physical-model tests have been performed with
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different spectra. However, neither Van der Meer (1988) nor Kao and Hall (1990)
observed a clear influence of the spectral shape. Therefore, it is assumed that these
dissimilar spectra do not to contribute to possible deviations between the data from
the measurements and computational results. The spectra are represented by the
significant wave height H, and the mean wave period T,. The material is
characterised by the D,,;,. The computations have been performed for approximately
500 waves. For the friction coefficients in the porous medium and for the added
mass coefficient, the expressions given by Equation 3.16 have been used
(incorporated as described in Section 4.2.2).

In the test used for calibration, in the dynamically stable situation accretion occurs
both above the still-water level and below the still-water level. The test concerns a
uniform /:3 slope with material with a diameter of 0.0/10 m (D,;,). The wave
height H,, the wave period T,, and the still-water level were 0.24 m, 1.8 s and 0.80
m respectively (H,/AD,,=13.2). The friction factor fwas set at 0.10 (Eq.4.3 with
R=1.5-H,). Figure 7.2 shows the reshaped profile after 500 waves. The following
values were found for the coefficients: ¢,=0.018, ¢,=0.075, ¢,~0.08 and c,=0.01
(with an angle of internal friction of p=50°). A comparison with measured values
will be discussed later in this section.

Validation

In Van Gent (1993-c), 20 comparisons between the profiles derived from the
expressions and the simulated profiles were presented. Tests with stones of
D, 5,=0.0041 m, 0.0062 m, 0.0110 m and 0.0257 m were used. The initial slopes
were /:5, 1:3 and 1:1.5. Wave spectra represented by 500 waves with combinations
of H=0.14 m, 0.18 m, 0.24 mand T,,=1.3 s, 1.8 5, 2.5 s and 3.0 s were simulated.
For all computations the friction coefficient f was set at 0.]0.

The above mentioned combination of the four coefficients was used in /6 of the 20
simulations. For the simulations with the larger material, D,;,=0.0257 m, the lifting
process appeared to be underestimated. The calibrated lift coefficient was therefore
adapted; for material larger than D,;,=0.0110 m, a linear relation is used as a first
approximation: ¢,=7.85-D,,, with a maximum value for ¢, of 0.38. This relation
appeared to give rather good results, but in fact it is a procedure for which no
physical explanation was found.
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As expected, differences occurred between the measured and calculated profiles.
However, in most cases the trends were the same; in most cases accretion and
erosion took place in roughly the same sections as observed in the measurements.
For the computations with 1:5 slopes, often both the accretion and the erosion were
underestimated; for the computations with the /.3 slopes, the section above the still-
water level was rather good but the accretion below the still-water level was
positioned too much downward; the computations with the 7:/.5 slopes showed both
above and below the still-water level a rather good comparison. In general, it
seemed as if accretion was underestimated in cases where it occurred above the still-
water level whereas it was overestimated where accretion occurred further down the
slope. This conclusion was, however, not valid for all simulations.

For the calculation of forces, the model uses depth-averaged velocities rather than
velocities near the surface of the slope. During up-rush, it is expected that a depth-
averaged velocity is a rather good characteristic velocity in the run-up area. Lower
down the slope, the layer of water above the slope is thicker. Here, the depth-
averaged velocity may differ much more from the velocity near the surface of the
slope. This may be an explanation for the relatively weaker correspondence with the
measurements for the section below the still-water level compared to the slightly
better results above the still-water level.

Sensitivity analysis

Several computations have been done to study the dependency of the reshaped
profile on a number of model parameters. For this purpose a /.5 slope with material
with a diameter of D,;, =0.004] m was used while the same wave train of 500
waves, characterised by H,=0./8 m and 7,,=2.5 5, was used in all cases. Other
parameters were the same as those used earlier in this section.

In Figure 7.3 the influence of variations of some of the model parameters is shown.
The calibrated values were used, while in each graph one of the parameters was
varied. Figure 7.3 shows that the values for the drag coefficient c,, the lift
coefficient ¢, and the friction factor f affect the reshaped profile considerably. To
obtain a significant influence of a variation of the inertia coefficient c,, and the
porosity n, these parameters must be varied over a rather large range. The sensitivity
to the coefficients c,, the angle of internal friction, the implementation of added
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mass and the implementation of the flow-dependency of the porous-flow friction
coefficients appeared to be very small for this case. For steeper initial slopes the
effect of variations in the angle of internal friction increases.

To study the effect of the space-step Ax, three computations were performed but the
time-step was also varied such that the CFL-number (see Section 4.3.2) is the same
for all three computations (u=0.56). The effect of this variation is small; Figure 7.3
shows that in particular the differences between the two computations with the two
smallest space-steps are small.

The influence of the lay-out of the core of a berm breakwater on the reshaped
profile is shown in the bottom-left graph of Figure 7.3. The same wave train was
used in the three computations; 500 waves with a wave height of #=0.20 m, a
wave period of T,=2.4 s and a still-water level of 0.70 m. The first structure was
modelled as homogeneous, the second structure had an impermeable core while for
the third computation the impermeable core was extended below the berm. For all
computations the friction factor was f=0.30, the porosity n=0.40, the stone diameter
D, 5, =0.034 m, the angle of internal friction 39° and the initial slope as shown in
the bottom-left graph of Figure 7.3. Figure 4.15 shows the effect of an impermeable
core on the maximum velocities for a very similar berm breakwater. It appeared that
the maximum velocities in the direction away from the structure are much higher
for the structure with an impermeable core. Comparison of the reshaped profiles
shows that more erosion takes place for the structures with an impermeable core
leading to more transport towards the toe of the structure. These results are therefore
consistent. The effect of an extension of the core below the initial berm has less
influence, although the part of profile that is affected is slightly wider. The effect
of core material seems to be of some importance for the reshaped seaward slopes
of berm breakwaters although the shape of the core has a relatively small influence.

Alternative approach

The calibration and validation described here shows that the model gives reasonable
results regarding the rather simple formulations for the wave motion, the forces and
the stone displacements. The same values for the coefficients ¢, , ¢; and c,, have
been taken for stones in the cover layer as for stones moving along the slope. More
accurate results might be obtained by using different values for these two situations
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of the stones. However, that would require a much more difficult calibration
procedure. Measurements on a stone in the cover layer would be useful to determine
the values for the coefficients ¢, ¢, and ¢,, for stones in the cover layer. Hardly
any data concerning these values are available although Terum (1992) performed
force measurements on a non-moving stone in a cover layer of a berm breakwater.
These measurements resulted in values of ¢, in the range of 0./4 and 0.42 and in
values for ¢, in the range of -0.22 and 0.36, while no separate coefficient for
sheltering was taken into account. However, Terum (1992) proposed the values 0.35
and 0.20 for ¢, and c,, respectively. Values of ¢, could not be determined
accurately.

A comparison was made between computed reshaped profiles for the berm
breakwater used in the experiments by Terum (1992). The first computation was
performed with the coefficients obtained from the described calibration (c,=0.018,
¢,;=0.267, ¢,;=0.08). A second computation was performed by an alternative method.
The coefficients obtained by Terum (1992) were applied to the method of initiation
of movement (c,=0.35 and c,,~0.20 for non-moving stones). For the lift coefficient
¢,, which could not be obtained from the measurements, the calibrated value
(¢,=0.267) was used. For the procedure to prescribe in which direction unstable
stones are moved, the values from the calibration were used although one might
expect that the values for a moving stone would be higher than for a non-moving
stone (c,=0.01/8 and ¢,~0.08 for moving stones). Like in the computations
concerning the effect of the core described in the previous sub-section, the initial
profile of the berm breakwater was the same as the one on which the measurements
were performed. Other parameters concerning the structure and the wave train are
also the same as in those preceding computations. The bottom-right graph in Figure
7.3 shows that the alternative method with much higher values for the coefficients
for initiation of movement produces a profile that is much more affected. It is
concluded that the measured values cannot be used without serious adaptations to
the method of reshaping.

Failure mechanisms
The numerical model deals with stability criteria against the failure mechanisms

sliding and lifting. If neither of the criteria is satisfied, this failure mechanism is
regarded as rolling. For the 20 computations mentioned in the sub-section on
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validation, the relative importance of each failure mechanism was studied. A more
detailed discussion is given in Van Gent (1993-c). In nearly all cases rolling is the
dominant failure mechanism. Den Breeker and Vries (1985) derived the same
conclusion based on examination of high-speed film images, taken in physical-model
tests. For the less dynamic slopes, with lower values of the parameter H/AD, ,, the
percentages of stones displaced as rolling stones are in most cases lower. For these
less dynamic slopes, the total number of displacements is also much lower. The
initial profile also influences the percentages of the failure mechanisms; for berm
breakwaters, lifting is more important than s/iding while for reef-type structures with
the same values for the parameter H/AD,;,, displacements due to sliding occur
significantly more often than due to /ifting, even exceeding the percentages of
rolling stones.

7.4 Applications with the wave load-response model
7.4.1  Profile development of gravel beaches

Most of the computations for model calibration and validation described in the
previous section concern gravel beaches. In addition to those comparisons and the
sensitivity analysis, a qualitative verification is given in this section. Whether the
influence of variation of parameters corresponds to those observed in physical-model
tests is verified. The parameters wave height, wave period, stone diameter and the
initial slope were varied, while the other parameters were kept constant.

In Van Gent (1993-c, 1995-b) several figures based on the results of this parametric
study are given. Figure 7.4 shows an example of the influence of variations in the
wave height. It is clearly shown that an increased wave height leads to longer
reshaped profiles. This was also observed in physical-model tests described by Van
der Meer (1988). The same trend occurs for longer wave periods. This trend also
occurs in the numerical simulations. Figure 7.5 shows an example of reshaped
profiles with variations of the wave periods.

The stone diameter was also varied. Figure 7.6 shows reshaped profiles after 500
waves with H. = 0.24 m and T,, = 1.8 s and an initial slope of /:3. The figure
shows that with smaller material the effects on the slope are greater. This was also
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observed in the physical-model tests. The simulations show that smaller material
leads to more accretion below the still-water level. For two stone sizes, the initial
slope has been varied as well. Initial slopes of /.5, /:3 and /:1.5 were used. Figure
7.7 shows an example of such a comparison. The figure shows that reshaped profile
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1.2 INFLUENCE STONE DIAMETER
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near the still-water ’shoreline’ is hardly influenced by the initial slope. This was
also observed in physical-model tests. Further upward or downward, the reshaped
profiles evolve more towards the initial slope.
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It can be concluded that the simulations described in this section show that the
variation of the parameters wave height, wave period, stone diameter and initial
slope show the same trends as observed in physical-model tests with gravel beaches.

7.4.2  Profile development of berm breakwaters

Most of the computations described in the previous section were performed with
relatively high values of H/AD,;, which represent gravel beaches. Although some
reshaped profiles from calculations are similar to those of berm breakwaters, no
validation was described for berm breakwaters where the initial slope contained a
horizontal berm. Two additional verifications with berm breakwaters will be
discussed, one for the small-scale model and one for a prototype breakwater.

BERM BREAKWATER — SMALL SCALE
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Fig.7.8 Comparison of measured and calculated profiles.

First, the berm breakwater from the physical-model tests described in Chapter 6 is
treated. In these computations, unlike all others, regular waves rather than irregular
waves were generated. In the physical-model tests, the reshaped profile was formed
after four series of regular waves where the effect on the reshaped seaward slope
increased for each subsequent series. In the computation, the last wave series which
determined the final reshaped profile, has been used; H=0.29 m and 7=2.2 s. The
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numerical model! cannot deal with two layers with different properties of the porous
media. Therefore, the structure must be regarded as homogeneous or as a structure
with an impermeable core. Here, the berm breakwater was modelled as
homogeneous since the permeability of the core material is close to the permeability
of the material in the cover layer.

In the physical-model tests, as well as in the computation, the reshaped profile
became dynamically stable after a limited number of waves. In the computations this
was after approximately 70 waves. Figure 7.8 shows the comparison of the
measured profile and the simulated profile where for the friction coefficient f the
value 0.3 was taken above SWL and 0./ below SWL. The increase in crest height as
observed in the measurements is underestimated. This increase is larger if for the
friction coefficient f=0.1 (Eq.4.3 with tan6,=0.2 and R=0.25 m) is used also above
SWL, but then the computational results show a slightly less accurate fit in the
region of the berm. Although the value of the friction coefficient affects the
numerically reshaped profile, the reshaping process is represented rather well; the
comparison shows good agreement.
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Fig.7.9 Comparison of measured and calculated reshaped
seaward slopes for the berm breakwater at Racine.

For the second computation, the prototype berm breakwater in Racine (USA) was
used. Montgomery et al. (1988) presented two measured reshaped profiles (dashed
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lines in Fig.7.9) after a storm characterised by H,=5.5 m; T,=11.2 5 and SSL=8.7
m. These parameters were determined with a hindcast method using measured storm
wind data. The structure, with stones with a D,;, of 0.68 m, was modelled as
homogeneous. For the friction coefficient f, the value 0.4 was used. Figure 7.9
shows the two measured profiles and the calculated profile. The figure shows fair
agreement.

7.4.3  Profile development of reef-type structures

Reef-type structures can be described as piles of stones which undergo reshaping
due to wave action. The initial crest is above the still-water level but severe wave
action causes reshaping of the structure, which usually leads to lowering of the crest
height to a level which is permanently below the still-water level.

Wave transmission over such low-crested or submerged structures has been studied
by means of the one-dimensional hydraulic model (Fig.4.12) while the reshaping of
this type of structure can also be modelled numerically by applying the approach
described in this chapter. For this type of structure some experiments with small-
scale models by Ahrens (1987) have been used to validate the model. Irregular
waves were generated on a depth of about 0.50 m, travelling over a 7:15 slope
before reaching the structure positioned on a horizontal bottom in a depth of about
0.25 m. Under these normally incident waves the structures reshaped to form a new
dynamically stable profile of which the new crest height was measured as well as
the damaged area of the structure. The wave transmission coefficients were also
determined.

Four experiments with a relatively large deformation of the structure have been used
for comparison with numerical model results. Figure 7.10 shows the initial cross-
section of the structures and the numerically reshaped cross-section after reaching
a dynamically stable profile. Based on measured wave parameters, irregular wave
trains were generated representing a TMA-spectrum. In the computation these waves
were generated about /.0 m in front of the structure while an open boundary was
used 0.5 m behind the structure. In the physical-model tests the structure was
positioned about 30 m from the wave generator. As a result of this difference in
model set-up, differences occurred between the wave fields in the physical-model
tests and numerical model tests, e.g., the wave set-up.
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Computations with two types of rubble mound material were performed. The two
upper graphs in Figure 7.10 had material with a D, ;, of 0.0/8 m and a porosity of
n=0.45. In the computations a friction factor of f=0.20 was used in these two
computations (Eq.4.3 with fan 6,=1:1.5 and R=H,). The wave trains were
characterised by H,=0.153 m and 7,=3.0 5 on a depth of sWL=0.25 m. Two
computations were performed with slightly larger material, D,;,=0.030 m, and a
porosity of n=0.44. The friction factor was set at f=0.25 for these two
computations. The results are shown in the two lower graphs of Figure 7.10. The
bottom left computation had waves with H,=0./58 m and 7,=3.6 s on a depth of
SWL=0.25 m; the bottom right computation had a wave train with H,=0./76 m and
T,=3.3 s on a depth of SWL=0.30 m. For all four computations the angle of internal
friction was u=30°, the grid size was Ax=0.02 m and the time-step Ar=0.005 s
while approximately 300 waves were computed.
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Fig. 710 Computations with reef-type structures, initial profiles and reshaped
profiles (stable) after approximately 300 waves.
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Figure 7.10 shows that in all four computations a relatively large lowering of the
crest occurred (from 4.=0.257 m to h,=0.169 m; from h’=0.350 m to h,=0.210
m; from h.=0.314 m to ©h.=0.233 m and from h'=0.316 m to h.=0.258 m
respectively). The difference between measured and computed crest heights after
reshaping is smaller than 5%. In all computations the damage to the initial cross-
section was lower than those in the measurements (in average about 20% too low).
The wave transmission in all four computations was significantly lower than that
obtained from the measurements (on average about 25% too low). Although the
wave transmission is underestimated, the reshaping of the structures seems to be
represented accurately.

7.5 Conclusions

A numerical model for simulating both individual waves and the time-dependent
response of dynamic structures has been developed. Although the formulations for
simulating waves and wave loads and the formulations for simulating the response
of the structure are rather simple, the computations indicate that these
simplifications do not make such an approach unrealistic. A qualitative validation
of the integrated model showed that the influence of variations of physical
parameters are reproduced properly. A quantitative validation showed that for highly
dynamic slopes such as gravel beaches (large H/AD), differences that might be
expected for such a relatively simple model occur. Comparisons with measured
properties of less dynamic slopes like those of berm breakwaters and reef-type
structures show fair agreement.

The model can be improved by implementing more physical processes and by
making a clear distinction between initiation of stone movement in the cover layer
and stones moving along the slope. This, however, also requires more coefficients
through calibration or through physical-model testing, both of which might appear
to be rather difficult. A few phenomena that have not been implemented but that
may play an important role are three-dimensional effects, segregation, grading,
settling of the porous medium, the inertia of moving stones and the interlocking of
stones. It is possible that improvements to the model could also be achieved through
a more accurate modelling of the wave motion. For instance, in the present model
a more appropriate expression for the friction factor f might improve the simulation
of the wave motion. The concept of the response model can also be used in
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combination with other wave models, including the model described in Chapter 5.
To make optimal use of a wave model with more information on the flow field,
such a model must also be more accurate and require a manageable computational
time. Reducing computing time of the model described in Chapter 5 is necessary,
especially if again a concept is used where both the wave motion and the response
of the structure are simulated in the time-domain by simulating individual waves
and displacements of individual stones.

Although some improvements to the model presented might be envisaged, it can
already be used as a complementary design tool, especially for conditions for which
no empirical relations for describing the reshaping process exist. This is, for
instance, the case for reef-type structures or for dynamic structures with large
immovable components such as seawalls or crown-walls. A two-dimensional model
(2DH), also based on shallow-water wave equations and the same concept for
reshaping of the structure, might also be quite useful as a complementary design
tool for studying effects of oblique wave attack such as longshore transport of
material along dynamic structure.



Chapter 8

8. Conclusions and recommendations

In this thesis essential aspects of the performance and analysis of laboratory
experiments, and the development and validation of predictive numerical models for
wave interaction with permeable coastal structures are described. Here, specific
conclusions concerning these investigations are highlighted and recommendations
for further research are given.

In order to describe the hydraulic and structural response of permeable coastal
structures under wave attack, phenomena associated with porous media flow were
studied. Theoretical investigations indicated that friction coefficients which describe
the resistance by porous media to wave motion could depend on the flow field. To
verify this and to determine the importance of possible dependencies on the flow
field, characterised by parameters like the Reynolds-number (Re) and the Keulegan-
Carpenter number (KC), laboratory measurements were performed. By studying the
differences between stationary and oscillatory porous media flow it was concluded
that the friction coefficients in a conventional description of the resistance are higher
for an oscillatory wave motion than for a stationary flow. As expected, this
increased friction depends on the flow field; the friction due to turbulence,
proportional to the velocity squared, appears to depend on the KC-number. Based
on these experiments, new formulations for porous media flow, which could be
implemented in two predictive numerical models, were derived. It is, nevertheless,
recommended that the dependency of friction coefficients on parameters like
grading, shape, aspect ratio and orientation of stones with respect to the mean flow
direction, should be studied to obtain a more accurate description of porous media
flow.
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Predictive numerical models are developed to simulate wave interaction with
permeable structures in the time-domain. These models include the simulation and
effects of porous media flow. A numerical model based on the shallow-water wave
equations for normally incident waves on various types of structures was made. The
wave motion outside structures and the flow inside the permeable regions are
modelled simultaneously. In contrast with other existing models, the method used
to connect the external wave motion and the internal wave motion allows the free
surface and the phreatic surface to move independently, i.e., in the one-dimensional
model the free surface can be disconnected from the phreatic surface. This permitted
the implementation of phenomena like infiltration and seepage. Although many
phenomena have been implemented in a rather simple way, validation against
analytical solutions and results from physical-model tests showed that the present
model provides accurate results. It is concluded that the coupling of a hydraulic
wave model to a porous media flow model was successful. For instance accurate
results were obtained by using the model for the parameter run-up. For parameters
which do not show sufficient correspondence with values obtained from physical-
model tests, variations resulting from changes in hydraulic and structural properties
show the same trends as those observed in physical-model tests; the model can be
used in a qualitative way to estimate the influence of variations of hydraulic and
structural parameters on required output parameters. It can be concluded that the
model can be used as an engineering and research tool for a rather wide range of
types of structures and a wide range of hydraulic conditions.

The numerical model provides accurate results although many phenomena have been
modelled in a rather simple way. To improve the numerical model results, for some
of these phenomena more sophisticated modelling can be implemented. Physical-
model tests showed that the internal pressures can deviate considerably from
hydrostatic pressures. In the numerical model, however, pressures are assumed to
be hydrostatic. Therefore, it is recommended to study whether an alternative
modelling of the pressure gradients leads to a higher accuracy of the model. To
obtain better results it is also recommended to improve the modelling of phenomena
related to infiltration and seepage. The empirical relation for estimating the bottom
friction coefficient is also rather simple; more sophisticated estimates lead to a better
applicability and to more accurate results.

The above mentioned hydraulic mode! is combined with a procedure to compute the
time-dependent response of dynamic structures such as gravel beaches, berm
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breakwaters and reef-type structures (wave load - response model). A qualitative
validation of this integrated model showed that although both the waves and stone
displacements are modelled in a rather simple way, the influence of variations of
physical parameters, e.g., wave height, wave period or stone diameter, are
reproduced properly. A quantitative validation showed that for highly dynamic
slopes such as gravel beaches (large H/AD), differences occur that might be expected
for such a relatively simple model. Comparisons with measured properties of less
dynamic slopes as for instance those of berm breakwaters and reef-type structures
show fair agreement. The concept allows also computations with dynamic structures
with large immovable components such as rubble slopes fronting seawalls. Based
on validation of the integrated model it can be concluded that the present model
could be improved, but it can already be used as a complementary design tool. This
is especially the case when studying the qualitative influence of variations of
hydraulic and structural parameters and for conditions for which no empirical
relations to describe the reshaping process exist.

It is likely that the wave load-response model can be improved by implementing
more physical processes. A clear distinction between processes concerning initiation
of motion of stones in the cover layer and processes concerning stones moving
along the slope might lead to better results. Other phenomena that have not been
implemented, but that may be of importance are three-dimensional effects,
segregation, grading, settling of the porous medium, the inertia of moving stones
and the interlocking of stones. Although it can be concluded that the model already
gives valuable results, study of the importance of such phenomena that have not yet
been incorporated is recommended to improve the numerical wave load-response
model. Improvements to the model might also be obtained by more accurate
modelling of the wave motion. For instance, in the present model a more
appropriate relation for the friction factor f might improve the simulation of the
wave motion. By developing a two-dimensional model (2DH) which can also be
based on shallow-water wave equations and on the same concept for reshaping of
the structure, effects of oblique wave attack such as longshore transport of material
along dynamic structures can be studied. It is recommended that such a model
should be developed since this might contribute to greater insight into the processes
and to optimize physical modelling of dynamic structures for specific design-studies.
Furthermore, eventually more accurate modelling of the response of structures can
only be achieved if the wave loads are predicted more accurately. To achieve this,
a two-dimensional model (2DV) is required and, therefore, a response model such

157



158

CHAPTER 8

as the one presented must be combined with such a hydraulic model which is able
to provide better simulations of, for instance, breaking waves.

The above mentioned model solves one-dimensional equations which implies that
wave motions in which the motion in the vertical direction is significant cannot be
modelled accurately. Although the model is easy to apply in many practical
situations, a more sophisticated description of the flow field including breaking
waves is required for many other application. Such a two-dimensional model (2DV)
has been developed, although the present version cannot yet be seen as a fully
operational and sufficiently accurate model for the intended field of application. The
model can simulate normally incident waves breaking on coastal structures,
including permeable structures. Validations with analytical solutions, a validation
with breaking waves on a submerged bar and the realistic impressions of the flow
field for many other flow conditions indicate that the research model is accurate for
specific conditions and widely applicable. However, more sophisticated modelling
of turbulence and the free surface can improve the accuracy of the model. Present
disadvantages, such as the restriction to regular waves can be overcome without
seriously affecting the model descriptions; a treatment to reduce computing-time to
enable computations with irregular waves has been proposed. The wide range of
applicability, however, also requires validations for a wide range of flow conditions.
It can be concluded that the sophisticated research model provides realistic
impressions of the flow field for many applications and for some parameters
provides sufficiently accurate results, but improvements and validations are required
if it is also to serve as a valuable operational model.

Comparisons between the measured and simulated surface elevations above a berm
breakwater slope indicated that both numerical models provide a good impression
of the wave action until breaking. The resemblance is much weaker in the area
where air is captured. Unlike the two-dimensional model, the one-dimensional
model provides accurate estimates of the run-up levels. The reduction in wave
height during breaking in the two-dimensional model is overestimated which
produces run-up levels that are too low. The present version of the two-dimensional
model is therefore not suitable to predict accurate run-up levels. Pore-pressures as
well as velocities in the area just before breaking were accurately predicted by the
two-dimensional numerical model.
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The effect of the lay-out of the core of a berm breakwater was studied. Numerical
analysis of both the hydrodynamics and the reshaping process indicated that the
permeability of the core influences the processes; in particular the differences
between a berm breakwater with an impermeable core and a homogeneous berm
breakwater are significant. The lay-out of the core, however, is less significant; its
extension into the berm has relatively little effect on the hydrodynamics and the
reshaping process. Since core material, for which in practise quarry-run is used, is
relatively cheap compared to material in the cover layer, such an extension of the
core reduces construction costs.

In general, it can be concluded that two valuable predictive numerical models have
been developed. The two-dimensional (2DV) model was set up in close cooperation
with Delft Hydraulics. Both models have already been used for engineering and
research purposes. Basic research results in the field of porous media flow has been
directly applied in these two models. Furthermore, a combined wave load-response
model has been developed to serve as a complementary design tool to predict the
response of dynamic coastal structures.
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Notation

Roman letters:

‘cb lb b :b

Eb

dimensional porous friction coefficient (s/m).

wave orbital amplitude outside boundary layer (m).

vertical amplitude at the shoreline ().

non-dimensional number for acceleration, for a porous medium: Ac=U/inTg) (-).
dimensional porous friction coefficient (s°/m’).

dimensional coefficient in the extended Forchheimer equation (s°/m).

wave celerity (m/s).

coefficient for added mass (-).

drag coefficient (-).

lift coefficient (-).

inertia coefficient (-).

pressure coefficient (-).

particle size (m).

equivalent sphere diameter defined as the Dy, =(6M;, /xp, )" (m).

diameter (based on weight) of a sample, exceeded by 85% of the material (m).
diameter (based on weight) of a sample, exceeded by 50% of the material (m).
diameter (based on weight) of a sample, exceeded by 15% of the material (m).
sieve diameter, 90% of the material is smaller (m).

growth-rate of wave component per time-step by discretisation (-).

coefficient in numerical damping term (-).

coefficient in numerical damping term (-).

friction coefficient for the external wave motion (-).

code for resistance caused by inertia (-).

code for resistance caused by the laminar contribution (-).

code for resistance caused by the turbulence contribution (-).

fluid fraction in a computational cell (-).

freeboard, crest height above still-water level (m).

relative freeboard (F'=F/(HgT,/2x)"”) (-).

drag force (N).
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inertia force ().

lift force (N).

force caused by a pressure gradient (V).

gravitational acceleration (m/s7).

gravitational acceleration in x-direction (m/s%).
gravitational acceleration in z-direction (m/s%).
water-depth (m).

crest level relative to seabed before exposure to waves (m).
crest level relative to seabed after exposure to waves (m).
depth at the toe of a structure at still water (m2).

wave height (m).

wave height of incident waves ().

wave height of reflected waves (m).

significant wave height (m).

wave height of transmitted waves ().

root-mean-square wave height (m).

non-dimensional hydraulic gradient (-).

source term in momentum equation (m/s°).

wave number (#1'').

Nikuradse’s sand grain roughness (m).

volume shape factor (-).

area shape factor (-).

permeability coefficient (K=1/a) (m/s).

wave reflection coefficient, K, =H,/H, (-).

wave transmission coefficient, K,=H,/H, (-).
Keulegan-Carpenter number, for a porous medium: XC =UT/(nD) (-).
length of the longest axis of a particle (m).

aspect ratio (-).

wavelength (m).

average mass of a rock grading, determined by the 50% value on the mass distribution
curve (kg).

porosity (-).

number of computational points per wavelength (-).
pressure (kg/ms®).

pressure, P=p/p (m’/s°).

flow from permeable part to free surface region (m/s).

x-component of the velocity of g (m/s).
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overtopping discharge (//s/m).

parameter for describing an average value of u at open boundary (-).
parameter for describing an average value of 5 at open boundary (-).
run-up level above still-water level, in vertical direction (m).

level of the crest above the still-water level ().

Reynolds-number, for a porous medium: UD/(n») (-).

slope, s=tan ..

wave steepness (-).

storm surge level (m).

still-water level (m).

time (s).

length of the smallest axis perpendicular to the longest axis of a particle (m);
oscillation/wave period (s).

mean wave period (s).

peak period (s).

velocity vector.

turbulence components of velocities (deviations from ensemble-averaged values).
velocity of incident wave (m/s).

velocity of reflected wave (m/s).

horizontal velocity; for a porous medium the filter velocity (m/s).
pore velocity (m/s).

Ursell-number, U=HL*/SWL’ (-).

amplitude of the velocity (m/s).

vertical velocity; for a porous medium the filter velocity (m/s).
submerged weight of a particle (V).

coordinate, mostly in the horizontal direction (m).

coordinate, mostly in the vertical direction (m).

slope elevation with respect to the horizontal axis (m).

elevation of impermeable layer with respect to the horizontal axis (m).



174

NOTATION

Greek letters:

o

coefficient in the expression for a (-).

a-Dgy:
a-D,s:

a_DnSO:

o calculated with Dy, as the representative stone diameter in the expression
for a (-).
a calculated with D,,; as the representative stone diameter in the

expression for a (-).
a calculated with D, as the representative stone diameter in the

expression for a (-).

Riemann-invariant (m/s).

coefficient in the expression for b (-).

B
Bo:

B
B-Dpy:
B-D,,s:

B-D,s5:

coefficient in the expression for b, derived from stationary flow tests (-).
coefficient in the expression for b for the implementation of the orientation
of stones, derived from stationary flow tests (-).

coefficient taking the extra resistance, caused by non-stationary motion,
into account (-).

B calculated with Dy, as the representative stone diameter in the expression
for b (-).

B calculated with D,,; as the representative stone diameter in the
expression for & (-).

8 calculated with D,; as the representative stone diameter in the

expression for b (-).

Riemann-invariant (m/s).

upwind fraction in partial upwind discretisation (-).

coefficient in the expression for ¢ (-).

p/(p-1) (-).
minimum water depth at the shoreline (m).

time-step (s).

grid size in x-direction (m).

grid size in z-direction (m).

coefficient in numerical damping term (-).

coefficient in numerical damping term (-).

free surface elevation, n=0 at still-water level (m).

surface elevation by incident wave (m1).

surface elevation by reflected wave (m).

angle of the slope of the core.

angle of the slope of the structure.
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scaling factor (-).

CFL-number, p=c-At/A x (-).

angle of internal friction.

kinematic viscosity (m’/s).

turbulence viscosity, eddy viscosity (m’/s).

wave/surf similarity parameter, £,=tan(6,)/V'(2xH/gT?) (-).
density of water (kg/m’).

density of material (kg/m°).

density of stone material (kg/m’).

bottom shear stress (kgm/s°).

local slope angle.

minimum angle between the mean-flow direction and the direction of the longest axis
of stones.

angular celerity (s).
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