
Fakhar Anjam

Run-time Adaptable VLIW Processors

Resources, Performance, Power Consumption, and Reliability
Trade-offs

Run-time Adaptable VLIW Processors
Resources, Performance, Power Consumption, and Reliability

Trade-offs

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen

op dinsdag 27 augustus 2013 om 15:00 uur

door

Fakhar ANJAM

Master of Science in Information Technology
Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad

geboren te Karak, Pakistan

Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. K.L.M. Bertels

Copromotor:
Dr. ir. J.S.S.M. Wong

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. K.L.M. Bertels Technische Universiteit Delft, promotor
Dr. ir. J.S.S.M. Wong Technische Universiteit Delft, copromotor
Prof. dr. E. Charbon Technische Universiteit Delft
Prof. dr. L. Carro Universidade Federal do Rio Grande do Sul,Brazilië
Prof. Dr.-Ing. H. Blume Leibniz Universität Hannover, Duitsland
Prof. Dr.-Ing. M. Hübner Ruhr-Universität Bochum, Duitsland
Prof. dr. ir. G.N. Gaydadjiev Chalmers University of Technology, Zweden
Prof. dr. G.J.T. Leus Technische Universiteit Delft, reservelid

This thesis has been completed in partial fulfillment of the requirements of the Delft
University of Technology (Delft, The Netherlands) for the award of PhD degree.
The research described in this thesis was supported in partsby: (1) CE Lab. Delft
University of Technology, (2) HEC Pakistan.

Published and distributed by: Fakhar Anjam Email: imfakhar@gmail.com

ISBN: 978-94-6186-191-7

Keywords: Computer Architecture, Parallel Execution, Softcore Processors, VLIW
Processors, Run-time Reconfiguration, Fault Tolerance, Customization, Parametriza-
tion, FPGAs, Trade-offs

Cover page designed by Hanike (www.hanike.nl).

Copyright c© 2013 Fakhar Anjam

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without permission of the author.

Printed in The Netherlands

To my father and all other members of my family

Summary

In this dissertation, we propose to combine programmability with reconfig-
urability by implementing an adaptable programmable VLIW processor in a
reconfigurable hardware. The approach allows applicationsto be developed at
high-level (C language level), while at the same time, the processor organiza-
tion can be adapted to the specific requirements (both staticand dynamic) of
different applications.

Our proposed customizable VLIW processor calledρ-VEX can be adapted at
design-time as well as at run-time. Its instruction set architecture (ISA) is
based on the VEX ISA and a toolchain (parametrized C compilerand sim-
ulator) is publicly available from Hewlett Packard (HP) forarchitectural ex-
ploration and code generation. The design-time parametersinclude the pro-
cessor’s issue-width, the type of different functional units (FUs) and their la-
tencies, the type and size of multiported register files, degree of pipelining,
size of instruction and data memories, type of interrupt andexception systems,
selection of default custom operations, datapath sharing.If the behavior of
applications is not known at design-time or an application has different phases
with distinct requirements, a fixed processor may not perform efficiently for
all the applications/phases. To this end, we propose a run-time reconfigurable
processor that can adapt its organization dynamically during execution. The
run-time parameters include the processor’s issue-width,the type and number
of different FUs, and the register file size. Additionally, we propose config-
urable fault tolerance techniques for theρ-VEX processor. The designer can
choose to include or exclude the fault tolerance in the processor at design-time.
When the fault tolerance is included, it can be made permanently enabled or
enabled/disabled at run-time. All these options enable users to trade-off be-
tween hardware area/resources, performance, power/energy consumption, and
reliability. The processor is available as open-source.

i

Samenvatting

In dit proefschrift stellen we voor om programmeerbaarheidte combineren
met reconfigureerbaarheid door het implementeren van een aanpasbare pro-
grammeerbare VLIW processor in herconfigureerbare hardware. De aanpak
staat het ontwikkelen van toepassingen op hoog niveau (C programmeer taal-
niveau) toe, terwijl op hetzelfde moment de processor organisatie kan worden
aangepast aan de specifieke eisen (zowel statisch als dynamisch) van verschil-
lende toepassingen.

Onze voorgestelde aanpasbare VLIW processor, genaamdρ-VEX, kan tijdens
design-time evenals tijdens run-time aangepast worden. Deinstructie set archi-
tectuur (ISA) is gebaseerd op de VEX ISA en een toolchain (geparametriseerde
C compiler en simulator) is publiek beschikbaar gesteld door Hewlett Packard
(HP) voor architectuur exploratie en code generatie. De design-time parame-
ters omvatten de processor issue-breedte, de aard van verschillende functionele
eenheden (FU’s) en hun latencies, het type en grootte van multiported regis-
ter files, de mate van pipelining, de grootte van instructie en data geheugens,
het type interrupt en exceptie systemen, selectie van standaard aangepaste bew-
erkingen, het delen van het datapad. Indien het gedrag van applicaties niet bek-
end is tijdens design-time of wanneer een applicatie verschillende fases kent
met verschillende eisen, kan het zijn dat een vaste processor niet efficiënt is in
het uitvoeren van alle applicaties/fasen. Daartoe stellenwe een run-time her-
configureerbare processor voor die zijn organisatie tijdens het berekenen dy-
namisch kan aanpassen. De run-time parameters omvatten de processor issue-
breedte, het type en aantal verschillende FUs, en het register bestandsgrootte.
Daarnaast stellen we voor deρ-VEX processor herconfigureerbare fouttoler-
antie technieken voor. De ontwerper kan kiezen voor wel of geen fouttolerantie
in de processor tijdens design-time. Wanneer fouttolerantie is inbegrepen,
kan deze permanent ingeschakeld worden of ingeschakeld/uitgeschakeld tij-
dens run-time. Al deze opties geven de gebruikers de mogelijkheid om een
afweging te maken tussen hardware area/resources, prestatie, stroom/energie
verbruik en betrouwbaarheid. De processor is als open-source beschikbaar.

ii

Prepositions

1. All hardware and software should be reconfigurable.

2. Hardwired multiported memories are a must for the efficient implemen-
tation of parallel hardware in FPGA.

3. Software comes from heaven when you have good hardware. (Ken
Olsen)

4. The distinction between VLIW and superscalar processorsis vanishing.

5. Normal life starts after the PhD study.

6. A good idea means nothing by itself; a good implementationis equally
important.

7. Will is more important than competence to achieve something.

8. You are not doing research when you know what you are doing.

9. “Freedom of expression” should not be considered as unlimited.

10. Without improving the primary education system in Pakistan, spending
billions in higher education is of little use.

11. Tolerance is the only thing the Pakistani nation needs nowadays.

12. A good way to learn new things is to be unlucky.

These propositions are regarded as opposable and defendable, and have been
approved as such by the promotor Prof. dr. K.L.M. Bertels.

iii

Stellingen

1. Alle hardware en software zou herconfigureerbaar moeten zijn.

2. Hardwired multiported geheugens zijn een vereiste voor het efficiënt im-
plementeren van parallel hardware op FPGA.

3. Software komt van de hemel wanneer je goede hardware hebt.(Ken
Olsen)

4. Het verschil tussen VLIW en superscalar processoren is aan het verdwi-
jnen.

5. Het normale leven starts na de PhD studie.

6. Een goede idee betekent opzichzelfstaand niets, een goede implemen-
tatie is even belangrijk.

7. Wil hebben is belangrijker dan competentie om iets te bereiken.

8. Je bent geen onderzoek aan het doen als je weet wat je aan hetdoen bent.

9. "Vrijheid van meningsuiting" moet niet als onbeperkt worden
beschouwd.

10. Zonder het verbeteren van het primair onderwijs in Pakistan is het uit-
geven van miljarden in hoger onderwijs van weinig nut.

11. Vandaag de dag is tolerantie het enige dat de Pakistaansenatie nodig
heeft.

12. Een goede manier om nieuwe dingen te leren is om een pechvogel te
zijn.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zo-
danig goedgekeurd door de promotor Prof. dr. K.L.M. Bertels.

iv

Acknowledgments

Here comes the end to my formal student life. That was a fun by itself. Find-
ing this opportunity, I would like to express my gratitude toall those who
contributed directly or indirectly to the work reported in this thesis.

First of all, I would like to thank my supervisor Stephan Wongwho provided
me the opportunity to perform research in the Computer Engineering (CE) Lab.
His guidance and consistent involvement in all phases of my PhD research
project is truly remarkable. We had many brainstorming sessions and long
technical meetings that helped me a lot in my work. Special thanks go to the
promotor of my thesis Koen Bertels. He always offered his help through out
my stay at the university. I am also very grateful to all the faculty members of
CE who provided me help and guidance from time to time.

The members of my PhD committee also deserve appreciation. Ithank them
for devoting some of their time to read my thesis, providing me their valuable
comments, and traveling to Delft for the public defense of this dissertation.
Special thanks go to Luigi Carro for his discussion and collaboration through
out the research project.

The Higher Education Commission (HEC) of Pakistan partially sponsored the
research reported in this thesis. I would like to thank all the staff at HEC who
was always available whenever I needed their help. I am also very grateful to
my former boss Saif shb and colleagues Atif shb, Sajid shb andYaseen shb for
their encouragement and help. In the Netherlands, the NUFFIC and CICAT
deserve appreciation. I am very grateful to Loes, Charlene and all other staff
at NUFFIC for providing their support. Franca from CICAT deserves special
thanks for taking care of my visa related and financial issues.

Appreciation goes to Roel Seedorf, Anthony, Arash, Roel Meuws, Catalin,
Dimitri, Yi Lu, Thomas, Zaidi and all other colleagues at theCE Lab for the
long discussions we had. I thank them for providing a friendly and research
conducive environment. Special thanks go to Motaqi for translating the prepo-
sitions and summary of this thesis. Mota! You are a great person, always

v

ready for help. High appreciation goes to the technical and administrative sup-
port provided by Bert, Erik, Eef, Lidwina and Monique. I really enjoyed all
the social events that are an integral part of life at the CE Lab. Thanks to the
organizing members.

I was lucky to have so many Pakistanis around during my stay inDelft. With
them I never felt away from home. These include Mehfooz, Hamayun, Laiq,
Mazhar, Nadeem, Husnul Amin, Yahya, Hamid, Usama, Umer Ijaz, Saleem,
Zubair, Tariq, Hisham, Rafi, Sharif, Umer Naeem, Adeel, Hanan, Fahim, Shah,
Rajab, Tabish and all other whose names are not mentioned. Special thanks go
to Cheema, Atif, Bilal, Dev, Faisal Kareem, Sandilo, Faisaland Seyab for
my early day’s help out. We had a very good company living in Poptahof,
gossiping and playing cards the whole nights. Great appreciation goes to Imran
for his delicious cooking. The social events and get together that we had will
always be remembered. Special thanks go to all friends who arrange to play
cricket every weekend.

Back in Pakistan, there were many people who encouraged me and prayed for
my success. Thank you all. My family deserves great appreciation. Although
my mother has been very sick in my absence, but she always prayed for me. I
wish she get well soon. My brothers and sisters, cousins and all other family
members have supported me well in their capacity. Whenever Ispoke to them
on phone, I felt myself more energetic. Uneeza, Abru, Manahil, Dua, Fateh,
Momin, Aman and Mateen! You kept me alive whenever I spoke to you and
visited you. Bushra deserves very special recognition for being very support-
ive. After she came in my life, fortune has favored me. She always stood with
me and that is why I have never let her feel alone. I thank her for her under-
standing and cooperation whenever I got busy and had little time for her. We
have had a very memorable time together. My love and prays arealways for
her. I would not forget to mention my father here. He is the source of all my
inspirations. It was his vision that today I have completed my PhD thesis.

Finally, I would offer my thanks to the Dutch Society in general. People are
very friendly and supportive. I really enjoyed my stay in thefree and open
environment. Going for long biking trips was a fun. Staying at Delft was a
fantastic time. I will always remember it.

Fakhar Anjam

Delft,

Eid-ul-fitr, August 08, 2013

vi

Table of Contents

Summary . i

Propositions . iii

Acknowledgments . v

Table of Contents .viii

List of Figures . xii

List of Tables .xvi

List of Acronyms and Symbols .xviii

1 Introduction . 1
1.1 Background . 2

1.1.1 General-purpose and Embedded Processors 2
1.1.2 Processor Design Architectures 2
1.1.3 Different Forms of Processor Parallelism 4
1.1.4 Architectures to Exploit ILP 5
1.1.5 Programmability and Reconfigurability Together . . . 6

1.2 Scope . 8
1.3 Open Questions . 10
1.4 Methodology . 12
1.5 Dissertation Organization . 13

2 Background . 15
2.1 Adaptable VLIW Processor 16

2.1.1 Motivations . 16
2.1.2 The VEX System . 19
2.1.3 The Initial Design ofρ-VEX VLIW Processor 20

2.2 Related Work . 23
2.2.1 Configurable RISC Softcore Processors 23

viii

2.2.2 Configurable VLIW Softcore Processors 24
2.2.3 Fixed Hardwired VLIW Processors 29
2.2.4 Our Proposal . 31

2.3 Summary . 32

3 Design-time Configurable Processor 33
3.1 Design-time Configurableρ-VEX VLIW Processor 34
3.2 Multiported Register Files 37

3.2.1 Register Files with FPGA’s Configurable Resources . . 38
3.2.2 Register Files with FPGA’s Embedded BRAMs 40
3.2.3 Evaluation of the Register File Designs 44

3.3 Support for Interruptability 45
3.3.1 Interrupt Handling System 46
3.3.2 Implementation Styles for the Interrupt Controller .. . 48
3.3.3 Interrupt Latency and Response Time 49
3.3.4 Exceptions Handling System 51
3.3.5 Implementation Results 52

3.4 Instruction Encoding Scheme 53
3.4.1 Design of the New Encoding Scheme 53
3.4.2 Borrowing Scheme and Instruction Mapping 54

3.5 ISA Extension Support . 55
3.5.1 Binary Code Generation for Custom Operations 56
3.5.2 Methodology to Extend the ISA 58
3.5.3 Design-time Selectable Custom Operations 59

3.6 Datapath Sharing . 62
3.6.1 Dual-processor System 62
3.6.2 Datapath-shared Dual-processor System 63
3.6.3 Implementation Results 64
3.6.4 Related Work . 65

3.7 Summary . 66

4 Run-time Reconfigurable Processor 67
4.1 Run-time Reconfigurable/Adaptable Processor 68

4.1.1 Reconfiguration Flows 69
4.1.2 Design of the Run-time Reconfigurable Processors . . 70
4.1.3 Memory System . 75
4.1.4 Mechanism for Issue-width Adjustment 77
4.1.5 Implementation Results 77

ix

4.1.6 Related Work . 79
4.2 Run-time Reconfigurable Register File 80

4.2.1 Case Study for 4-issueρ-VEX Processor 81
4.3 Run-time Task Migration . 82

4.3.1 Design of the Task Migration Scheme 83
4.3.2 Implementation Results 85
4.3.3 Related Work . 87

4.4 Simultaneous Reconfiguration of Issue-width and Instruction
Cache . 88
4.4.1 Related Work . 89
4.4.2 Characteristics of the Reconfigurable Processor90
4.4.3 Characteristics of the Reconfigurable Instruction Cache 91
4.4.4 Energy Estimation 92

4.5 Summary . 93

5 Configurable Fault Tolerance . 95
5.1 Introduction and Motivations 96
5.2 Related Work . 97
5.3 The Baseρ-VEX Processor 98
5.4 The Fault-Tolerantρ-VEX Processor 98

5.4.1 Instruction Memory 99
5.4.2 Data Memory . 99
5.4.3 GR Register File . 100
5.4.4 TMR Approach for all Flip-Flops 102
5.4.5 Working of the Configurable Fault-Tolerant System . . 102
5.4.6 Fault Coverage and Test Methodology 104

5.5 Implementation Results and Discussion 106
5.5.1 Hardware Resources/Area and Critical Path Delay . . 106
5.5.2 Dynamic Power Consumption 109

5.6 Summary . 111

6 Results and Analysis .113
6.1 2-4-issue Processor . 114
6.2 2-4-8-issue Processor . 116

6.2.1 Dynamic Power Consumption 118
6.3 Power Consumption for Stand-aloneρ-VEX Processors 119
6.4 Run-time Task Migration Support 120

6.4.1 Dynamic Power Consumption 123

x

6.5 Simultaneous Reconfiguration of Issue-width and Instruction
Cache . 123
6.5.1 Experimental Setup and Benchmark Applications . . . 124
6.5.2 Results and Analysis 125

6.6 Multiport Data Memory/Cache Analysis 134
6.6.1 Local Data Memory 134
6.6.2 Data Cache . 136

6.7 Summary . 137

7 Conclusions .139
7.1 Summary . 139
7.2 Main Contributions . 143
7.3 Future Research Directions 144

Bibliography .147

List of Publications .160

Curriculum Vitae .163

xi

List of Figures

2.1 4-issue non-pipelinedρ-VEX VLIW Processor. 21

3.1 Methodology to generate an instance of theρ-VEX processor. 36

3.2 Hardware results for different versions of the64×32-bit GR
register files with different ports. In addition to the mentioned
resources, version3 of the 2W4R, 4W8R, and 8W16R reg-
ister files also utilize8, 32, and128 RAMB18s, respectively.
Similarly, version4 of the 2W4R, 4W8R, and 8W16R register
files utilize2, 8, and32 RAMB18s, respectively. 39

3.3 Implementation results for multi-issue pipelinedρ-VEX pro-
cessors with different versions of the GR register files. In ad-
dition to the mentioned resources, version3 of the 2-issue,
4-issue, and8-issue processors also utilize8, 32, and 128
RAMB18s, respectively. Similarly, version4 of the 2-issue,
4-issue, and8-issue processors utilize2, 8, and32 RAMB18s,
respectively. The2-issue,4-issue, and8-issue processors also
utilize 4, 4, and8 DSPs modules, respectively. 41

3.4 A single-pumped 4W8R ports BRAM-based register file. . . .42

3.5 A 4-issueρ-VEX processor with the interrupter. 47

3.6 Dataflow and FSM in the interrupter. 48

3.7 Implementation results for the4 types of interrupt system
with 4-issueρ-VEX processor (3 with ρ-VEX type ’a’ and
1 with type ’b’) for a Virtex-6 FPGA. Eachρ-VEX processor
(with/without interrupts) also utilizes4 DSP48E1 modules. . . 52

3.8 Prototypes for the _asm() intrinsics [1].58

3.9 The _asm() usage example for implementing a division (DIV)
function and its VEX assembly code for a2-issueρ-VEX pro-
cessor. 58

xii

3.10 Methodology/Flowchart for implementing a custom operation. 60

3.11 Implementation results for the custom operations listed in Ta-
ble 3.7 for a4-issueρ-VEX processor with4 ALU, 2 MUL,
and1 MEM units for the Virtex-6 FPGA. The processor also
requires32 RAMB18s and4 DSP48E1s modules. 61

3.12 VLIW dual-processor systems. 63

3.13 Implementation results (slices) for the base4-issue non-
pipelined ρ-VEX processor’s modules for the Virtex-II Pro
FPGA. The complete processor requires14561 slices and14
MULT18X18s. The register file is64×32-bit. 64

3.14 Implementation results for the dual-processor system(shared
and non-shared) for a Virtex-II Pro FPGA. Apart from the
slices, the datapath-shared and non-shared dual-processor sys-
tems also require14 and28 MULT18X18s, respectively. The
BRAM-based design also utilizes64 RAMB18s. 65

4.1 Execution cycles for matrix multiplication, SHA, and Qsort
applications. 69

4.2 Execution units in different issue-slots. 70

4.3 General view of the run-time reconfigurable issue-slotspro-
cessor. 71

4.4 256×32-bit 8W16R ports register file for the2-4-8-issue pro-
cessor. 74

4.5 Instruction and data memories for the2-4-8-issue processor. . 76

4.6 Design and hardware resource utilization for the2-4-issue re-
configurable processor for the Xilinx Virtex-II Pro XC2VP30-
7FF896 FPGA. 78

4.7 Virtex-II Pro FPGA’s slice utilization for64×32-bit 4W8R
ports register file and4-issue non-pipelinedρ-VEX processor. 81

4.8 Design and hardware resource utilization for the dynamically
reconfigurableρ-VEX processor. Apart from the slices, the
static region also utilizes14 MULT18X18s, and some BRAMs
for instruction and data memories. 82

4.9 A task migration example. 83

xiii

4.10 The2-4-8-issue adaptable processor with the task migration
support. 84

4.11 Mechanism for task migration in the2-4-8-issue adaptable
processor. 86

4.12 Instructions per cycle (IPC) for different applications [2] [3]. . 89

5.1 Two approaches used for TMR. 103

5.2 Implementation results for theρ-VEX processors for the Xil-
inx Virtex-6 FPGA. In addition to the mentioned resources,
the 2-issue, 4-issue, and8-issue cores utilize4, 4, and 8

DSP48E1s modules,4, 16, and64 RAMB36s (GR register
file version3), and1, 4, and32 RAMB36s (GR register file
version4), respectively. 107

5.3 Synthesis results for theρ-VEX processors for90 nm technol-
ogy. 108

5.4 Dynamic power consumption per MHz for theρ-VEX proces-
sors. 110

5.5 Percent dynamic power reduction for theD4 designs com-
pared toD2. 111

6.1 Speedup for the2-4-issue processor normalized to 4-issue core. 115

6.2 Speedup for the2-4-8-issue processor normalized to2-issue
core. 117

6.3 Execution cycles normalized to the four2-issue cores for the
Rijndael encryption/decryption algorithms. 118

6.4 Dynamic power consumption for the2-4-8-issue processor. . . 119

6.5 Dynamic power consumption for the stand-aloneρ-VEX pro-
cessor with different issue-widths and different types of regis-
ter files. 120

6.6 Execution cycles normalized to a2-issue core with1
load/store (LS) unit. 122

6.7 Dynamic power consumption for the2-4-8-issue processor
with task migration support. 123

xiv

6.8 Impact of simultaneous reconfiguration of issue-width and I-
cache; execution cycles, energy, and EDP normalized to2-
issue and 1W8KB16B I-cache. 126

6.9 Impact of simultaneous reconfiguration of issue-width and I-
cache; execution cycles, energy, and EDP for2-issue,4-issue,
and 8-issue cores with varying I-cache normalized to own
issue-width with the base I-cache in each set. 127

6.10 I-cache configurations for which execution cycles remain the
same but energy consumption and EDP vary. 128

6.11 Percentage variation in energy, execution cycles, andEDP for
4-issue core compared to2-issue core with different I-caches. . 129

6.12 Percentage variation in energy, cycles, and EDP for4-issue
and8-issue cores compared to2-issue core with different I-
caches for the Rijndael encode. 130

6.13 Execution cycles, energy consumption, and EDP for the4-
issue and8-issue cores normalized to2-issue core (all with
their best I-caches). 132

6.14 2R2W ports data memory configuration implemented with
BRAMs. 135

6.15 Number of BRAMs (Xilinx RAMB18s) required to imple-
ment 1-way data cache memory (data store + tag store) with
multiple read/write ports. 136

xv

List of Tables

1.1 Relative characteristics of ASICs, RISC (single-issue), CISC,
VLIW, and Superscalar processors. 3

1.2 Differences between superscalar and VLIW processors [4]. . . 6

3.1 Implementation types for GR register files 38

3.2 Implementation results for64×32-bit 4W8R ports register file
with register renaming and4-issueρ-VEX VLIW processor. . 44

3.3 Implementation version, interrupt response time, and the
worst-case interrupt latencies for the four types of interrupt
system for theρ-VEX processor. 50

3.4 The old and the new encoding schemes. IMM is flag for im-
mediate types. Short IMM and long IMM are the values of
the short and long immediates, respectively. S_F means Syl-
lable_Follow custom operation. 54

3.5 Position of FUs, borrowing scheme for long IMM, and in-
struction mapping for the2-issue and4-issueρ-VEX proces-
sors. Here, AU, MU, MM, CT, S, and L mean ALU, MUL,
MEM, CTRL, short, and long, respectively. 56

3.6 Positions of FUs, borrowing scheme for long IMM, and in-
struction mapping for the8-issue and2-4-8-issueρ-VEX pro-
cessors. Here, AU, MU, MM, CT, S, and L mean ALU, MUL,
MEM, CTRL, short, and long, respectively. 57

3.7 List of design-time available custom operations. 61

4.1 Distribution of registers and ports for the256×32-bit 8W16R
ports GR register file for the2-4-8-issue processor. 75

4.2 Implementation results for the2-4-8-issue processor for the
Virtex-6 XC6VLX240T-1FF1156FPGA. 79

xvi

4.3 Implementation results for the2-4-8-issue adaptable multi-
core processor with the task migration support for the Virtex-6
XC6VLX240T-1-FF1156FPGA. 87

4.4 Typical instruction cache parameters for some famous VLIW
processors. 89

5.1 Implementation types for GR register files 101

6.1 Number of BRAMs required for M Kbytes of data memory. . . 135

xvii

List of Acronyms and Symbols

ALU Arithmetic Logic Unit
ASIC Application Specific Integrated Circuit
BRAM Block Random Access Memory
DLP Data Level Parallelism
FF Flip-Flop
FPGA Field Programmable Gate Array
FSM Finite State Machine
FU Functional Unit
GPP General Purpose Processor
HDL Hardware Description Language
ILP Instruction Level Parallelism
IPC Instruction Per Cycle
ISA Instruction Set Architecture
ISE Integrated Software Environment
ISR Interrupt Service Routine
LUT Look-Up Table
MT Multi-threading
PE Processing Element
RFI Return From Interrupt
RISC Reduced Instruction Set Computer
SEU Single Event Upset
SMT Simultaneous Multi-threading
SIMD Single Instruction Multiple Data
TLP Task Level Parallelism
TMR Tripple Modular Redundancy
UART Universal Asynchronous Receiver Transmitter
VEX VLIW Example
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuits
VLIW Very Long Instruction Word

xviii

1
Introduction

I n the current-day world, fixed processors (which cannot change their hard-
ware functionality after fabrication) are the mainstream and are made pro-

grammable in order to adapt to a large number of applications. As a conse-
quence, they perform adequately over a wide range of applications, but not ef-
ficiently in terms of performance or energy consumption. Application-specific
integrated circuits (ASICs) are designed according to the specific requirements
of an application, therefore, they are the most efficient implementation and
consume very low power. The major problem with an ASIC is thatit cannot be
adapted for a different application and has a longer and quite expensive de-
velopment cycle. Reconfigurable hardware, such as field-programmable gate
arrays (FPGA) can modify their hardware structure. Hence, efficient systems
can be implemented in FPGAs due to the flexibility they offer.In general, FP-
GAs are programmed using hardware description languages (HDLs), which
require the every-day programmers to have intricate knowledge of hardware.
Even the use of language translation tools may require rewriting of code lead-
ing to longer development time. Now given reconfigurable hardware, can we
combine the flexibility of programmable processors with thereconfigurability
of FPGAs? Can we design reconfigurable programmable processors that can
adapt their functionality to the applications? Can we make designs that can
even adapt themselves during run-time? In this dissertation, we try to answer
such questions.

The remainder of the chapter is organized as follows. Section 1.1 presents
some basic concepts required to understand the questions raised in the disser-
tation. The scope of the dissertation is discussed in Section 1.2. Some open
research questions are formulated in Section 1.3, which arelater on answered
in the dissertation. Section 1.4 presents the steps that arefollowed in order
to answer the research questions raised in the chapter. Finally, Section 1.5
provides the organization and structure of the dissertation.

1

2 CHAPTER 1. INTRODUCTION

1.1 Background

In this section, we provide some background knowledge on programmable pro-
cessors. We present different processor design architectures, describe different
forms of processor parallelism, and then discuss processorarchitectures that
exploit instruction-level parallelism (ILP). Later on, wehighlight the benefits
of combining programmability and reconfigurability in a single hardware.

1.1.1 General-purpose and Embedded Processors

General-purpose processors (GPPs) are designed without considering the re-
quirements of a specific application or task; rather they aredesigned to perform
adequately over a large number of application domains. Their instruction set is
general-purpose rather than specialized for a particular task, therefore, they are
not very efficient in terms of performance, power, cost, area, etc., across some
or all application domains. In addition, they have support for many different
kinds of peripherals. Different software can be put on them and hence can be
used for different purposes. Mostly, they can be found in today’s PCs, tablets,
and servers etc.

Embedded systems include a number of components, where eachsmaller com-
ponent provides a service to the large embedding system. An Embedded pro-
cessor (EP) could be one of the components of the embedded system. EPs
are utilized in a large number of chips found in, for example,cellular phones,
TVs, automotives, biomedical equipments, game consoles, microwaves, and
in many other consumer electronic appliances. Generally, these processors are
smaller in size and are customized for a particular application or a domain of
applications. They can perform the specific tasks more efficiently compared
to a general-purpose processor. The different requirements for embedded pro-
cessing which are equally important for general-purpose processing could be
performance, power consumption, area, cost, cooling system, reliability, de-
pendability, etc.

1.1.2 Processor Design Architectures

A processor (GPP or EP) can be designed according to different architec-
tures/philosophies such as the reduced instruction set computer (RISC), com-
plex instruction set computer (CISC), very long instruction word (VLIW) or
superscalar. A RISC processor has simple and fundamental operations set that

1.1. BACKGROUND 3

operates on simple data kept in registers. The only memory-related operations
are load and store operations. All the operations can be executed in a single
clock cycle. Code size is large and the compiler has more workto do. Nor-
mally, RISC processors can issue a single operation every clock cycle. CISC
uses complex operations in addition to the simple ones. A complex operation
could be a new operation or may be a combination of few fundamental oper-
ations. Astring moveoperation, in which a stream of characters stored at a
location in memory is moved to another location, is an example of a CISC op-
eration. The execution of an operation may take more than oneclock cycles.
The assembly code resembles to the high-level code. The compiler has less
work to do and the code size is smaller compared to a RISC processor. The
Intel x86is an example of the CISC architecture.

VLIW and superscalar processors include multiple parallelexecution units
to exploit instruction level parallelism (ILP). Both theseprocessors can issue
multiple operations in a single clock cycle to increase the performance. The
major difference between a VLIW and a superscalar processoris that a VLIW
processor relies on a compiler to exploit ILP, while a superscalar processor
relies on run-time hardware to exploit ILP. Generally, bothof these proces-
sors have RISC-like instruction set, but superscalar processors with complex
instruction set have also been developed. Examples includethe in-order super-
scalar originalPentiumand the out-of-order superscalarCyrix 6x86. Table 1.1
presents some characteristics of ASICs, RISC (single-issue), CISC, VLIW,
and superscalar processors. Each design philosophy has itsown advantages
and disadvantages.

Table 1.1: Relative characteristics of ASICs, RISC (single-issue), CISC, VLIW, and
Superscalar processors.

Type ASICs RISC CISC VLIW Superscalar

Hardware Complexity Medium/High Medium Higher High Highest

Hardware Area Small/Medium Medium High High Highest

Power Consumption Small Medium Medium/High High Highest

Performance Highest Small/Medium Medium/High High High

Compiler Complexity No Compiler Medium Small/Medium Highest Medium/High

Programmable No Yes Yes Yes Yes

Code-compatible No Yes Yes No/Small Yes

4 CHAPTER 1. INTRODUCTION

1.1.3 Different Forms of Processor Parallelism

In the domain of processors, parallelism refers to the opportunities in a pro-
gram to find independent operations and perform them separately in parallel
instead of performing them sequentially. There are different forms of proces-
sor parallelism which can be thought of as independent of each other. In this
section, we briefly discuss the most widely used among them.

ILP: Instruction level parallelism refers to the existence of independent oper-
ations in a program which can be executed together in a singleclock cycle.
Finding some independent operations in a program or a streamof operations
is the job of a compiler in case of a VLIW processor or run-timecontrol hard-
ware in case of a superscalar processor. ILP can be combined with any other
type of parallelism to further enhance the performance.

DLP: Data Level Parallelism refers to distributing the data across different
parallel computing nodes and executing them in parallel. Inthis case multiple
processing nodes receive a part of the total data and they allexecute the same
operation on this data. The individual results are then finally combined into
a single result. Single instruction multiple data (SIMD) isa form of DLP.
SIMD operations operate on the standard registers, but treat them as smaller
sub-registers. For example, four8-bit operations can be performed in a single
32-bit operation in1 clock cycle which would otherwise require4 clock cycles.

TLP: Task Level Parallelism refers to executing multiple threads of an appli-
cation on the different processors of a multiprocessor system. A multiproces-
sor system consists of multiple similar (homogeneous) or different (heteroge-
neous) processing elements. A program is split into multiple, relatively inde-
pendent small sub-programs which are executed at the same time on different
processors to achieve parallelism. The individual processors may or may not
be able to exploit ILP. Programming and compiling for multiprocessors are
becoming very complex due to the large number of cores available in today’s
multiprocessor systems.

MT: Multi-threading refers to a technique where different programs or parts
of a program (called threads) are executed one by one on a single hardware to
show progress on multiple programs or parts of programs. Threads are very
light-weight (in terms of state) and pose less serious problems when they are
switched. Different policies can be implemented for the sharing the single
hardware, such as round-robin, priority-based, FIFO-based, etc. The shared
hardware may also be able to exploit ILP in the individual threads.

1.1. BACKGROUND 5

SMT: Simultaneous Multi-threading is a special type of multi-threading avail-
able in the superscalar processors. A superscalar processor which does not
have support for SMT can issue multiple instructions from a single thread ev-
ery clock cycle. In case of the SMT, the superscalar processor can issue in-
structions from multiple threads every clock cycle, thus exploiting parallelism
available across multiple threads. An example of a processor system which
utilizes the SMT technique is graphic processing unit (GPU).

1.1.4 Architectures to Exploit ILP

VLIW and superscalar processors can be used to increase the performance
beyond normal RISC architectures. While RISC architectures only take ad-
vantage of temporal parallelism (by using pipelining), VLIW and superscalar
architectures can additionally take advantage of the spatial parallelism by using
multiple functional units (FUs) to execute several operations simultaneously.
ILP is determined by considering data dependence in a program and resource
availability in hardware. In a superscalar processor, a special control hardware
determines the data dependence and resource availability at run-time and then
enables the dynamic scheduling of operations. On the other hand, for a VLIW
processor, a compiler determines the data dependence and resource availability
and statically schedules the operations. In a superscalar processor, the num-
ber of issued operations is determined dynamically by the hardware, while the
number of issued operations in a VLIW processor is determined statically by
the compiler. The window of execution is limited in a superscalar processor
which limits the capacity to detect the potentially parallel operations. In case
of a VLIW processor, the problem of limited size of executionwindow does
not exist. The compiler of a VLIW processor can potentially analyze the whole
program in order to detect parallel operations, hence, increasing the opportu-
nities for finding parallelism. Compared to a VLIW processor, the hardware of
a superscalar processor is very complex, larger in size, consumes more power,
requires larger design efforts, and hence, becomes costly.According to [5],
for the same technology and issue-width, the scheduling logic of a superscalar
processor alone consumes more power than the entire VLIW processor. That
is why a superscalar processor is less attractive for small embedded applica-
tions which require small and energy efficient devices. The hardware of a
VLIW processor is relatively simple, and can be easily and quickly adapted
from product to product at the expense of a complex compiler.

VLIW processors are designed such that the hardware detailsare more ex-
posed to the compiler and ILP is made visible in the machine-level program.

6 CHAPTER 1. INTRODUCTION

ILP cannot be seen in the program that is offered to a superscalar processor;
rather the hardware can arrange parallelism at run-time even though it is not
exposed in the code itself. One of the advantages of a superscalar processor is
that a compiled code for a single-issue scalar RISC processor can be executed
on a superscalar processor with the same instruction set architecture (ISA).
Hence, different superscalar implementations of the same ISA are object-code
compatible. That is why superscalar processors are mostly utilized for general-
purpose desktops and servers. Because the ILP is exposed in the program it-
self, to execute the same application on a VLIW processor, the original source
code has to be recompiled for a new implementation/organization of the pro-
cessor with the same ISA. Table 1.2 presents the major differences between a
superscalar and a VLIW processor as described in [4].

1.1.5 Programmability and Reconfigurability Together

ASICs are designed to match exactly the requirements of the target appli-
cations. They have the highest-level of performance and consume very low
power. When an application changes, for example, a new standard or protocol
appears, or certain features need to be enhanced, an ASIC hasto be redesigned
for the new application. Normally, the development cycle isvery long. Few
tape-outs are required in order to fully test the complete application and all its
requirements, thereby, increasing the development time and cost.

Type Superscalar VLIW

Instruction
Stream

Instructions are issued
from a sequential stream

of scalar operations

Instructions are issued
from a sequential stream
of multiple operations

Instruction
Issue and

Scheduling

Issued instructions are
dynamically scheduled

by the hardware

Issued instructions are
statically scheduled by

the compiler
Issue Width The hardware determines

the number of issued
instructions dynamically

The compiler determines
the number of issued
instructions statically

Instruction
Ordering

Dynamic scheduling
allows in-order and
out-of-order issue

Static scheduling allows
only in-order issue

Table 1.2: Differences between superscalar and VLIW processors [4].

1.1. BACKGROUND 7

Programmability is an important feature and it enhances theproductivity of
a processing element. It is also referred to as flexibility, i.e., how flexible
a processing element is to adapt to a new application. Processors, whether
general-purpose or embedded, are made programmable in order to provide
maximum flexibility. A processor is designed with a basic instruction set,
which it needs to support in hardware. Mostly, programmableprocessors are
made fixed and cannot change their organizations after fabrication. A high-
level compiler translates an application written in a high-level language (such
as C) to the machine language of a processor. Hence, when an application
changes, it is only a matter of compiling the new applicationand the hardware
remains the same. This avoids the required lengthy development cycles and
high costs. The major deficiencies of programmable processors include lower
performance and higher power consumption compared to a dedicated ASIC.

FPGAs provide design-time as well as run-time configurability. They need
to be programmed in HDLs such as VHDL or Verilog. Any kind of digital
processing system can be quickly implemented with FPGAs. Initially, FPGAs
were small in area/size, slow in speed, and mostly used for prototyping. With
the advancement in technology, FPGAs have improved both in area and speed
and have become very cheap. Modern FPGAs provide mechanismsto dynam-
ically reconfigure some portions while others are still operational. Compared
to ASICs, FPGA-based designs require very short development time, hence,
minimizing the overall cost. Unlike ASICs, the developmentof FPGA-based
designs can be immediately started, quickly implemented and shipped to the
users. They can be updated in the field by downloading a new bitstream. Feed-
back from the early design shipments can be used to optimize the final product.

FPGA development requires the knowledge of digital circuits and somewhat
low-level HDLs. Most of the high-level language developers/programmers do
not have the knowledge of hardware and HDLs. Hence, it is difficult for these
developers to design for FPGAs. Nowadays, different language conversion
tools are available which convert programs written in a subset of a higher-
level language to the HDLs. For example, Handel-C [6] is a subset of C lan-
guage and the Celoxica DK design tools [7] can convert a program written in
Handel-C to a VHDL description, which can then be synthesized for an FPGA
or ASIC. The problem with Handel-C type languages is that they are not ex-
actly the same as their higher-level language counter-parts. Hence, programs
written in a high-level language first need to be converted manually to these
languages, which increases the development time and cost. Additionally, these
commercial tools are very costly.

8 CHAPTER 1. INTRODUCTION

Reconfigurability can also be used in conjunction with programmability. A
programmable processor (e.g., a VLIW processor) can be implemented in an
FPGA and made reconfigurable. VLIW processors have simple hardware de-
sign, consume low power, and can provide high performance. Different param-
eters of the processor such as issue-width, the number and type of execution
units, the type and size of register file, degree of pipelining, size of instruction
and data memories, cache parameters, fault tolerance, peripherals implemen-
tation, etc., can be made configurable and selectable at design-time. Hence, an
optimized processor in terms of performance, area, power/energy consump-
tion, and reliability can be quickly implemented for each application. Addi-
tionally, the processor can also be made run-time reconfigurable, where, after
the implementation in hardware, certain parameters of the processor can be
configured in order to target performance vs. power consumption trade-offs.

1.2 Scope

We foresee that combining programmability with reconfigurability by imple-
menting a reconfigurable programmable VLIW processor in an FPGA will
have several advantages such as high design flexibility and rapid application
development. This approach allows applications to be developed in a high-
level language, such as C, while at the same time, the processor organization
can be adapted to the specific requirements of different applications both at
design-time as well as at run-time. This dissertation proposes the scheme to
combine programmability and reconfigurability which can bemore precisely
stated as:

We investigate an approach in (but not limited to) the embedded processor
design that combines programmability and reconfigurability by implementing
a programmable processor on a reconfigurable hardware, where the proces-
sor can reconfigure its organization for performance, area,power/energy con-
sumption, and reliability trade-offs.

Consequently, our approach will distinguish itself from other approaches by
the following points:

• reconfigurable programmable VLIW processor:In order to merge pro-
grammability with reconfigurability, we propose a programmable VLIW
processor that can be configured/tuned at design-time and/or at run-time.

1.2. SCOPE 9

Statically-scheduled VLIW processors offer improved performance, re-
duced area footprint, and reduced power consumption compared to a
superscalar processor.

• parametrized design and toolchain:The design of the proposed VLIW
processor is very simple, made parametrized, and can be easily adapted
for different applications. The parametrization of the design eliminates
the lengthy manual development cycles or the costly C-to-VHDL tools.
The availability of the free parametrized compiler-simulator toolchain
[1] provides quick design space exploration and code generation.

• design-time and run-time configurability:With the proposed scheme,
highly-optimized implementations can be generated for individual appli-
cations. Additionally, processors can be implemented which can adapt
themselves at run-time for performance vs. power consumption trade-
offs for different applications or different parts of an application.

• use as stand-alone processor or co-processor:The VLIW processor can
be used as a stand-alone processor or can be coupled as a co-processor
with another processing module (e.g., as in MOLEN paradigm [8]) for
off-loading compute-intensive kernels.

• configurable fault tolerance:In order to mitigate single event upset
(SEU) errors, configurable level of fault tolerance can be implemented.
Fault tolerance can be included or excluded at design-time,and enabled
or disabled at run-time.

The following assumptions further define the scope of the research described
in this dissertation:

• We mainly focus on hardware design and its optimization for perfor-
mance, hardware area, power/energy consumption, and reliability.

• Both the development toolchain and the processor design aremade
parametrized. The parametrized compiler can generate optimized code
for our configurable VLIW processor. In this thesis, we only consider
certain defined values for the different types of parameters.

• We consider FPGAs as the reconfigurable hardware in this thesis. In
some cases (Chapter 5 and Chapter 6), we also present implementation
results for a standard ASIC technology to show trends in power/energy
consumption and hardware area.

10 CHAPTER 1. INTRODUCTION

• Support for partial reconfiguration is available in some modern FPGAs.
We expect that the advances in technology will further simplify partial
reconfigurable designs and reduce the reconfiguration times. Further-
more, the proposed design scheme does not necessarily depend on par-
tial reconfiguration. Run-time reconfiguration can also be achieved with
virtual reconfiguration schemes, i.e., by re-arranging (turning ON/OFF
or multiplexing) the available resources at run-time.

• Custom or user-defined operations can be added to the hardware design
and the compiler can generate binary code for them. Currently, the hard-
ware design for user-defined operations has to be developed manually.

1.3 Open Questions

In this thesis, we present one possible approach to merge programmability with
reconfigurability. The approach provides opportunity to trade-off between per-
formance, area, power/energy consumption, and reliability for different appli-
cations, and hence, optimized solutions can be generated. For the successful
merging, the following open questions have to be addressed:

• Can FPGAs be programmed without knowing HDLs?

As mentioned earlier, FPGA development requires the knowledge of digital
circuits and HDLs. C-to-VHDL tools can be utilized to convert programs
written in C to a VHDL description, which can then be implemented in FP-
GAs. The problems with these tools are that mostly, these arecommer-
cial, costly, and not very efficient. In most cases, code re-writing is needed
when utilizing these tools, which again restricts their usability. Providing a
parametrized/customizable design, where changing certain parameters results
in different implementations is one way of avoiding the users to learn HDLs.
In this thesis, we will investigate how efficient FPGA designs (programmable
processors) can be implemented without knowing much about hardware design
and HDLs.

• Can we design flexible and reconfigurable processors which can
adapt their functionality to the requirements of applications?

Most of the available embedded programmable processors aremade fixed in
implementation and cannot change their hardware after fabrication. Many dif-
ferent applications exist which require different characteristics of the process-
ing elements for efficient execution. A single fixed implementation cannot

1.3. OPEN QUESTIONS 11

perform well for all applications across different dimensions such as perfor-
mance, power/energy consumption, area, code size, etc. In this thesis, we will
investigate how we can design flexible processors which can be easily adapted
to match the requirements of different applications.

• Can we make these designs dynamic so that they can adapt them-
selves during run-time?

With design-time configurability, optimized instance-specific implementations
can be generated. However, when the number of applications to be exe-
cuted is large or an application consists of several sub-applications, generat-
ing, implementing, and maintaining a large number of hardware configurations
each tuned to a particular application becomes difficult or even impossible.
In this thesis, we will investigate how we can create hardware designs that
provide sufficient performance and reduced power/energy consumption for a
large number of applications by reconfiguring their organizations at run-time
to match the requirements of the applications.

• Can we develop simple techniques for core-morphing and run-time
code migration among different cores?

Multi-core systems have multiple cores which can be used in different config-
urations. To exploit thread level parallelism, multiple threads of an application
or multiple independent applications can be run on the individual cores. Some
multi-core systems allow combining certain cores togetherto exploit ILP. Sim-
ilarly, power can be reduced by turning off the un-used cores. In this thesis,
we will investigate, how multiple cores in a multi-core processor can be com-
bined/split at run-time and how a task running on a core can bemigrated to a
different core for performance improvement or power reduction.

• What is the impact on performance and energy consumption when
both the instruction cache and the processor’s issue-widthare si-
multaneously reconfigured?

Memory system plays an important role in the performance andpower con-
sumption of a processor system. When the processor is reconfigured (e.g.,
issue-width is changed), the memory (caches) may also need to be reconfigured
for improved performance or reduced power consumption. In this thesis, for
a run-time adaptable processor, we will investigate the effect of simultaneous
reconfiguration of the issue-width and instruction caches on the performance,

12 CHAPTER 1. INTRODUCTION

dynamic energy consumption, and energy-delay product (EDP) for different
benchmark applications.

• Are the implemented designs easily extendable?

User-defined operations can increase the performance and/or reduce the power
consumption of a processor. Before implementing a custom operation, a sim-
ple method of profiling and simulation to measure its performance is necessary.
Because processors are implemented using HDLs, adding a custom operation
requires the knowledge of hardware and HDLs. Providing a library of different
design-time selectable custom operations and a simple methodology to imple-
ment additional custom operations increase the productivity. In this thesis, we
will investigate how custom operations can be profiled and simulated at higher
level (C language), added to a processor hardware design, and the binary code
generated for them.

• Can we implement fault tolerance techniques that are design-time
as well as run-time configurable?

In general, hardware-based fault tolerance techniques utilize additional hard-
ware to detect and correct faults. This result in increased area, increased power
consumption, and reduced performance. In order to optimizethese character-
istics, a processor should be able to include/exclude or enable/disable fault tol-
erance when required. In this thesis, we will investigate how we can develop
hardware-based configurable fault tolerance techniques for our configurable
processor for hardware area, performance, and power consumption trade-offs.

1.4 Methodology

In this section, we propose the different steps needed to combine programma-
bility with reconfigurability to achieve a trade-off between hardware resources,
performance, power/energy consumption, and reliability.These steps are:

• Investigate and propose a parametrizable/customizable design of a
programmable VLIW processor that can be configured at design-
time to match the specific requirements of each application.Im-
plementing such a processor in a reconfigurable hardware, such as FP-
GAs means that applications can still be written in a high-level lan-
guage, while taking advantages of the reconfigurability provided by an

1.5. DISSERTATION ORGANIZATION 13

FPGA. Multiple parameters and their implementation in different mech-
anisms allow a trade-off between hardware resources, performance, and
power/energy consumption. Utilizing a parametrized/customizable de-
sign avoids to use any C-to-VHDL tool, provides high design flexibility
and rapid application development.

• Investigate and propose the parameters for the proposed VLIW pro-
cessor that can be reconfigured at run-time to match the specific re-
quirements of a running application. Parameters such as issue-width,
number and type of different FUs, register file size, etc., effect the per-
formance, hardware area requirement, and power/energy consumption
of an application. We will investigate and propose run-timetechniques
that allow running tasks to migrate from one core to another core in
order to improve performance or power consumption characteristics at
run-time. Additionally, we will investigate the effect of simultaneous
reconfiguration of issue-width and instruction cache on thebehavior of
different applications.

• Investigate and propose configurable fault tolerance techniques for
the proposed VLIW processor in order to mitigate SEU errors. We
will investigate and propose hardware-based techniques which allow
fault tolerance in a processor to be included/excluded at design-time
and/or enabled/disabled at run-time in order to trade-off between hard-
ware resources, performance, power consumption, and reliability.

1.5 Dissertation Organization

The remainder of this dissertation is organized in several chapters. Following,
we present a brief summary of each chapter.

Chapter 2 – Background

Chapter 2 presents the background and motivations for the adaptable VLIW
processor system needed for combining programmability andreconfigurabil-
ity. The chapter highlights the VEX system which includes the VEX ISA, the
VEX C compiler, and the VEX simulator. An earlier design of a VLIW pro-
cessor is presented and its limitations are listed, which are later on, addressed
in the thesis. Finally, the chapter presents some previous work related to the
state-of-the-art in reconfigurable processors.

14 CHAPTER 1. INTRODUCTION

Chapter 3 – Design-time Configurable Processor

Chapter 3 presents the design and implementation of a parametrized and con-
figurable VLIW processor based on the VEX ISA. The parametersinclude the
processor’s issue-width, the type and number of different FUs, type and size of
register files, etc. These parameters can be configured/customized at design-
time before implementing the processor in hardware.

Chapter 4 – Run-time Reconfigurable Processor

When the characteristics of an application are not known at the design-time, ef-
ficient processor’s organization may not be selected for it,resulting in reduced
performance and/or increased power consumption. In Chapter 4, we extend
the processor design presented in Chapter 3 to make it run-time reconfigurable
in order to meet the requirements of the running application(s).

Chapter 5 – Configurable Fault Tolerance

Chapter 5 presents hardware-based configurable fault tolerance techniques for
our configurable processor. At design-time, users can choose between the stan-
dard non fault-tolerant design, a fault-tolerant design where the fault tolerance
is permanently enabled, and a fault-tolerant design where the fault tolerance
can be enabled and disabled at run-time. These options enable a user to trade-
off between hardware resources, performance, power consumption, and relia-
bility characteristics.

Chapter 6 – Experimental Results

Chapter 6 evaluates the effectiveness of our (re)configurable processors pre-
sented in the previous chapters. The hardware area/resources and the critical
path delay (maximum clock frequency) were evaluated in these chapters. In
this chapter, different metrics such as, performance (execution cycles, IPC),
power/energy consumption, and EDP are utilized for different configurations
of the proposed processors and different benchmark applications.

Chapter 7 – Conclusions

Chapter 7 summarizes the work presented in this dissertation and describes
the main contributions of the research. Finally, several open issues and future
work directions are listed.

2
Background

I n Chapter 1, we discussed the advantages and disadvantages of VLIW and
superscalar processors in detail. Both processors have multiple parallel

execution units to exploit ILP. In case of a VLIW processor, acompiler is re-
sponsible to find independent operations in a program and issue them together
in a single clock cycle. For a superscalar processor, hardware determines
operation dependence and resource availability at run-time. Therefore, the
design of a VLIW processor is simpler compared to that of a superscalar pro-
cessor at the expense of a complex compiler. Because a superscalar processor
requires larger die size and consumes more power, it is not suitable for embed-
ded systems which require area and power consumption as small as possible.
Building a production-quality, high-performance optimizing VLIW compiler
requires large effort, therefore, when considering the space of possible VLIW
processor designs, it is always recommended to start with anavailable ISA and
compiler, not the available hardware. Based on this, we started our research
by utilizing one available compiler toolchain rather than building a new one.
In this chapter, we provide some background information forthe work carried
out in this dissertation.

The remainder of the chapter is organized as follows. Section 2.1 presents the
motivations for an adaptable VLIW processor, discusses theVEX system, intro-
duces an initial design of theρ-VEX processor and lists its limitations. Some
previous work related to the state-of-the-art in softcore and configurable/fixed
processors is presented in Section 2.2. Finally, Section 2.3 concludes the chap-
ter with a summary.

15

16 CHAPTER 2. BACKGROUND

2.1 Adaptable VLIW Processor

An adaptable processor can adapt its organization according to the require-
ments of an application. This adaptability can be achieved at design-time, i.e.,
before an application starts execution or even at run-time when the application
is running on the processor. In this thesis, we present an adaptable VLIW pro-
cessor and highlight its benefits. The processor is based on the VEX ISA [4]
and a toolchain [1] (C compiler and simulator) is freely available for archi-
tectural exploration and code generation. The processor combines both the
programmability and reconfigurability to achieve high flexibility and high per-
formance at the same time. It provides opportunities to compare performance,
hardware resources, power/energy consumption, and reliability trade-offs.

2.1.1 Motivations

As discussed in Chapter 1, our proposal for combining programmability and
reconfigurability requires an adaptable/reconfigurable VLIW processor. In-
stead of the other design philosophies mentioned in Section1.1.2, we chose a
VLIW processor as the starting point because of the following advantages:

• increased performance:Compared to a single-issue RISC processor, a
VLIW processor can provide improved performance by exploiting ILP.
While RISC architectures can only benefit from temporal parallelism by
utilizing pipelining, VLIW architectures can additionally benefit from
spatial parallelism by utilizing multiple FUs concurrently. A VLIW pro-
cessor can potentially provide more performance compared to a same-
issue superscalar processor due to the larger room for compiler opti-
mizations.

• reduced power consumption:Because a superscalar processor utilizes
complex control hardware for run-time scheduling of instructions, it
consumes more power than a VLIW processor. According to an estimate
by [5], the scheduling logic of a superscalar processor alone consumes
more power than an entire VLIW processor of the same issue-width.

• simple hardware: The compiler takes care of all the dependencies and
scheduling in case of a VLIW processor, while a run-time hardware does
the same job for a superscalar processor. Therefore, the hardware of a
VLIW processor is very simple and straight-forward at the expense of

2.1. ADAPTABLE VLIW PROCESSOR 17

a complex compiler, and hence, can achieve higher clock frequencies to
further improve the performance.

• availability of existing tools: The compiler for a VLIW processor is
very complex and requires significant efforts and time to develop from
scratch. Fortunately, for the VEX ISA, a toolchain is freelyavailable
from HP. The VEX toolchain [1] includes a parametrized C compiler
and simulator which can be used for design space explorationand code
generation for different implementations of the VEX processor. Other
open-source compilation frameworks such as Trimaran [9] etc., could
also be easily adapted.

• no need for language translations:As stated earlier, designing for FP-
GAs requires the knowledge of hardware and HDLs. Most of the high-
level language programmers do not have this knowledge. High-level-to-
HDL translation tools are used, which place some restrictions on high-
level languages and in most cases code rewriting is requiredwhen using
such tools. With VLIW processor and its toolchain, programscan still
be written in high-level languages (such as C), while takingadvantages
of the reconfigurability provided by an FPGA.

Apart from these basic advantages of a VLIW processor, following are the
reconfigurability-specific benefits:

• static reconfigurability: Static reconfigurability means that the proces-
sor can be customized for a particular application before itis imple-
mented in hardware. With the help of the simulator, processor param-
eters most suited for the targeted application(s) can be evaluated and
determined. Hence, optimized designs can be implemented for each ap-
plication.

• dynamic reconfigurability: Dynamic reconfigurability allows the pro-
cessor to adapt its organization after it is implemented in hardware.
When multiple applications need to be run, or the application’s precise
characteristics are not known at design-time, a single implementation
cannot be optimized for them. In this case, the processor canbe designed
such that it can change some of its parameters (e.g., issue-width, number
of registers and different execution units, cache size, etc.) at run-time to
match the specific requirements of the running application(s).

The fixed nature of traditional VLIW architectures has certain intrinsic dis-
advantages which prevented them to become mainstream processors. These

18 CHAPTER 2. BACKGROUND

disadvantages can be mitigated by implementing a VLIW processor on recon-
figurable hardware. In the following, we highlight the most important prob-
lems that arise from the fixed design of a VLIW processor and their solutions:

• different instruction lengths: As stated earlier, different applications
have different level of parallelism, and require differentinstruction word
widths for efficient execution. A fixed processor may not exploit differ-
ent level of parallelism very efficiently. This problem can be dealt with
by implementing a parametrized and reconfigurable VLIW processor.
Different instruction decoders can be instantiated/configured to provide
different instruction word widths by either reconfiguring the issue-slots
or sharing the unused issue-slots among other cores.

• high number of NOPs: A fixed VLIW processor may not meet the
requirements of an application parallelism, and hence, a large number of
NOPs may be scheduled. This scenario results in under-utilization of the
available hardware resources. A parametrized/reconfigurable processor
can adapt its organization/issue-slots to match the requirements of the
application and avoid this under-utilization.

• unavailable FUs per issue-slots:NOPs are scheduled when issue-slots
do not have the required FUs, thus increasing the under-utilization. With
reconfigurable implementation, the required FUs can be added per ap-
plication basis or even per phase of an application.

• backward compatibility: Code recompilation is needed when new ver-
sions of a VLIW processor is released. The reason could be a new
organization of the FUs or a different set of added instructions. Back-
ward compatibility can be relaxed by providing dedicated organizational
features in the reconfigurable hardware for particular already-compiled
code. Similarly, rarely used instructions can be instantiated when needed
to support a legacy code.

Having stated how a parametrized and reconfigurable VLIW design can over-
come the traditional shortcomings of a VLIW processor, in the following, we
present the two most likely used scenarios for such a processor:

1. stand-alone processor:In this scenario, complete applications are com-
piled and they (or their threads) run on the VLIW processor. The pro-
cessor can be configured at design-time to suit a particular application.
Additionally, it can be reconfigured at run-time to suit multiple applica-
tions or multiple code portions of an application.

2.1. ADAPTABLE VLIW PROCESSOR 19

2. application-specific co-processor: In this scenario, only compute-
intensive kernels are compiled to the VLIW processor while the remain-
ing part of the application runs on another type of processing element.
Hence, there is no need for code rewriting, complex tools such as C-to-
VHDL translators, and manual design of accelerators, as in the case of a
MOLEN processor [8].

2.1.2 The VEX System

The VEX (VLIW Example) system is developed by Hewlett-Packard (HP). It
includes three basic components: (1) the VEX ISA, (2) the VEXC compiler,
and (3) the VEX simulation system. A VEX software toolchain including the
compiler and simulator is made freely available by the HP [1].

The VEX Instruction Set Architecture The VEX ISA is a scalable and
customizable32-bit clustered VLIW ISA [4]. It is modeled on the ISA of
HP/ST Lx (ST200) family of successful VLIW embedded processors [10]. The
VEX ISA is scalable because different parameters of the processor such as the
number of clusters, issue-width per cluster, the number andtype of different
FUs and their latencies, and the number of read/write ports and size of register
file, etc., can be changed. The ISA is customizable because special-purpose
instructions can be defined in a structured way. It includes many features for
compiler flexibility and optimization.

The VEX C Compiler The VEX C compiler [1] is derived from the
Lx/ST200 C compiler, which itself is derived from theMultiflow C compiler
[11], and includes high-level optimization algorithms based ontrace schedul-
ing [12]. It has the robustness of an industrial compiler, has a command line
interface and is available as closed source (binary form). Because the VEX
ISA is scalable and customizable, the compiler also supports the scalability
and customizability. A flexible machine model determines the target architec-
ture, which is provided as input to the compiler in the form ofmachine model
configuration (fmm)file. Hence, without the need to recompile the compiler,
architectural exploration of the VEX ISA is possible with the compiler and
simulator. To add a custom operation, the application code is annotated with
pragmas. Different compiler pragmas and optimization options are available
for performance improvement [4]. Applications can be compiled withprofiling
flags, and theGNU gprof can also be utilized to visualize the profiled data.

20 CHAPTER 2. BACKGROUND

The VEX Simulation System The VEX simulator [1] is an architectural-
level simulator that usescompiled simulatortechnology to achieve faster ex-
ecution. With this simulator, C programs compiled for a VEX configuration
can be simulated on a host workstation for performance analysis and architec-
tural exploration. The VEX simulator first translates the VEX binaries to C,
and then using the host C compiler generates a host executable. The simulator
provides a set of POSIX-likelibc andlibm libraries (based on the GNUnewlib
libraries), a simple built-in cache simulator (level-1 cache only) and an appli-
cation program interface (API) that enables user-defined memory interfaces
and other plug-ins for modeling the memory system [4]. To model L1 instruc-
tion and data caches, a cache simulation library is provided, which can also be
replaced by a user-defined library. After simulation, the simulator generates a
log file with different statistics such as the number of execution cycles, stall
cycles, total executed operations, IPC, total branches (taken and not taken),
total memory accesses, total misses, total NOPs, etc.

2.1.3 The Initial Design ofρ-VEX VLIW Processor

The ρ-VEX is a 32-bit 4-issue softcore VLIW processor based on the VEX
ISA [4]. The processor is implemented in VHDL language and has a Harvard
architecture employing separate memories for instructions and data. It has
two different versions, namely, thenon-pipelined[13] [14] and thepipelined
[15] versions. Both versions have the same general featuressuch as the issue-
width of 4 and the same number of FUs and register files. The processor
has1 branch unit (CTRL), 1 memory or load/store unit (MEM), 4 arithmetic
logic units (ALUs), 2 multipliers (MULs), a64×32-bit 4-write-8-read (4W8R)
portsgeneral register file (GR)and an8×1-bit 4W4R portsbranch register
file (BR). The BR register file is used to store branch conditions, predicate
values, and the carries from arithmetic operations. In the non-pipelined design,
a new instruction is fetched only when the previous instruction is completely
executed and the results written back to the target registerfile. For the pipelined
design, a new instruction can be fetched every clock cycle while the previous
instructions are in-flight and even not yet completely executed. Hence, each
unit/stage is active at every clock cycle and working towards the completion
of different instructions, making the overall program execution faster.

The non-pipelined design has4 stages calledfetch, decode, executeandwrite-
back, while the pipelined design consists of5 stages calledfetch, decode, ex-
ecute 0, execute 1andwriteback. For the non-pipelined design, each stage is
implemented as a finite state machine (FSM). The fetch stage is responsible for

2.1. ADAPTABLE VLIW PROCESSOR 21

address generation and instruction fetching from the attached instruction mem-
ory. A fetched long instruction is passed on to the decode stage, which splits it
into four 32-bit syllables and decodes them in parallel. The decode stage also
fetches the required operands for the operations from register files. Branch and
other control related operations are performed by the branch unit. The actual
operations (ALU, MUL, and load/store) are performed in the execute stages
depending upon the latency of the operations. A32×32-bit MUL operation
is performed by two16×32-bit MUL operations and then adding the partial
products. All write activities are performed in the writeback stage to ensure
that all targets are written back at the same time. Differentwrite targets are the
GR and BR register files (both designs), as well as the data memory and the
PC for the non-pipelined design. The4-issue non-pipelinedρ-VEX processor
is depicted in Figure 2.1. The VEX compiler is used to compilea C applica-
tion and generate VEX binaries, which are then assembled by an assembler to
generate VHDL instruction ROM and an initialized data memory.

Limitations The initial design ofρ-VEX processor suffers from the follow-
ing limitations, which are addressed in this dissertation.

1. Different parameters for extensibility (such as issue-width, type of GR
register file, etc.) are not explored/implemented. These parameters for
evaluating the performance, hardware area, and power/energy consump-
tion trade-offs.

2. The GR register file design requires considerable area (FPGA’s config-
urable resources such as slices, LUTs, flip-flops) for its implementation.

Instruction
Memory

Data
Memory

PC

DecodeFetch WritebackExecute

A

GR CTRL

BR MEM

A

A

A

M

M

Figure 2.1: 4-issue non-pipelinedρ-VEX VLIW Processor.

22 CHAPTER 2. BACKGROUND

Efficient register file (BRAM-based and run-time reconfigurable register
file) designs are missing.

3. The execution units (ALUs, MULs) having considerable area are under-
utilized in the non-pipelined design. This area may be shared among
other instances of the processor to improve the under-utilization and
power consumption.

4. The current design of the multiplier (MUL) unit requires large area
(slices or hardwired DSP modules) when implemented in FPGAs. Area
and performance optimized multiplier (MUL) design is missing.

5. Although both designs utilize multiple execution units but they are
single-core in the control-flow. Multi-core systems can be implemented
and different units may be shared to reduce area and improve perfor-
mance by exploiting both fine-grained and coarse-grained parallelism.

6. There is no mechanism to provide run-time reconfigurationof the pa-
rameters such as issue-width, GR register file size, increasing/decreasing
the number of different execution units etc. This is important to adapt
the hardware to a running application and optimize performance and/or
power/energy consumption at run-time.

7. There is no support for interrupts and exceptions handling. These are
important building blocks on a processor and provide an advanced level
of control to applications and operating systems.

8. There is no support for run-time task migration among the different cores
in the ρ-VEX based multi-core system. This is important to trade-off
between performance and power consumption at run-time. It can also
be used for fault tolerance.

9. Cache reconfiguration analysis regarding different issue-width for per-
formance and energy consumption is missing. This is important
to determine specific configurations to optimize performance and/or
power/energy consumption. The statistics can be provided to the run-
time reconfiguration algorithms to optimize these parameters.

10. The opcode space is very tight due to the utilized instruction encoding
scheme. There is hardly any available free opcode left. Thismeans
that user-defined or custom operations could not be added restricting the
processor’s extensibility.

2.2. RELATED WORK 23

11. A systematic way of adding a custom operation is missing.Because
there is no free opcode available, it is not possible to add a custom in-
struction. Providing a simple methodology for implementing a custom
operation will increase the productivity.

12. Any mechanism to enhance the reliability and dependability of the pro-
cessor is missing. Apart from providing fault tolerance, the processor
should be able to turn off the circuit in case the applicationdoes not re-
quire fault tolerance at some point in time. This can result in huge power
savings at run-time.

2.2 Related Work

In this section, we highlight several approaches that have been proposed in
literature for designing programmable processors that areconfigurable to some
extent as well. Some processors (with multi-issue support)which target high
performance are unfortunately fixed in nature and cannot be reconfigured. We
discuss configurable softcores (RISC and VLIW) and some hard-wired cores
(adaptable and fixed).

2.2.1 Configurable RISC Softcore Processors

Soft means the processor core is not fixed in silicon, rather available in a syn-
thesizable form and can be implemented in any technology (FPGA or ASIC).
For some softcore processors, certain parameters can be configured at design-
time, and hence, can be easily adapted for different applications. These are
single-issue cores and an issue-width wider than one is architecturally not sup-
ported, hence, restricting higher performance.

MicroBlaze: MicroBlaze [16] is a32-bit RISC softcore processor from Xilinx
Inc. Parameters such as3-stage or5-stage design, implementing hardwired
multiplier and divider units, cache parameters, and connection to different pe-
ripherals can be configured at design-time utilizing the Xilinx Embedded De-
velopment Kit (EDK) software. The IBM CoreConnect [17] processor local
bus (PLB) architecture is used for connecting peripherals to the MicroBlaze.
A fully featured application development toolchain is available from Xilinx.
The MicroBlaze is offered as closed-source, requires a license to use, and can
only be implemented in Xilinx FPGAs.

24 CHAPTER 2. BACKGROUND

Nios-II: Nios-II [18] is a32-bit RISC softcore from Altera Inc., and has simi-
lar features like the MicroBlaze. Altera provides the Nios-II Embedded Design
Suite (EDS) software development tools including the GNU C/C++ toolchain.
Parameters such as implementing hardwired multiplier/divider units, cache pa-
rameters, and connection to different peripherals can be customized at design-
time utilizing the EDS. The Nios-II is offered as closed-source, requires a li-
cense to use, and can only be implemented in Altera FPGAs.

LatticeMicro32: LatticeMico32 [19] is a32-bit Harvard, RISC softcore mi-
croprocessor, freely available from Lattice Semiconductor Inc., with an open
IP core licensing agreement. The processor provides the visibility, flexibil-
ity, and portability that can be expected in an open source hardware design.
The Lattice Semiconductor provides software development tools (LatticeMi-
cro System) and evaluation boards with FPGAs for developingsystems with
the processor. Different WISHBONE [20] compatible peripheral components
can be integrated with the core in order to accelerate the development of mi-
croprocessor systems.

LEON: LEON [21] is a 32-bit synthesizable processor core based on the
SPARC V8 architecture, and is managed by the Aeroflex GaislerInc. Caches
can be configured for the5-stage,7-stage, and radiation-hardened designs.
The LEON processor is distributed as part of the GRLIB IP library (an in-
tegrated set of reusable IP cores) designed for system-on-a-chip (SoC) de-
velopment. The bus architecture used in the LEON processor is the AMBA
AHB/APB [22]. Aeroflex Gaisler provides a complete development toolchain
for the LEON project.

OpenRISC 1200: OpenRISC 1200 is a32-bit, 5-stage open source scalar
RISC softcore processor [23]. It has special units such as multiply-accumulate
(MAC) unit and configurable caches. The processor is designed with emphasis
on performance, simplicity, low power requirements, scalability and versatil-
ity. The processor supports WISHBONE SoC Interconnection Rev. B [20]
compliant interface for connection to peripherals.

2.2.2 Configurable VLIW Softcore Processors

The processors mentioned in this section are VLIW processors having support
for issue-width larger than one. In literature, very few VLIW softcore proces-
sors with complete toolchain can be found. In most cases the issue-width is
fixed and the extensibility is not very comprehensive. The absence of com-
plete toolchain restricted the usability of some designs. Because most of the

2.2. RELATED WORK 25

designs do not have a specific name in literature, we refer them by their inven-
tor’s/designer’s names.

Spyder: Spyder [24] [25] is the first reported VLIW softcore processor found
in existing literature. Spyder had three reconfigurable execution units. A com-
piler toolchain was available, which was used to decide about the configura-
tions of the execution units. Custom configurations could also be added to
the library base. The Spyder marked the beginning of more (reconfigurable)
VLIW softcore processor designs. It did not evolve extensively because both
the processor architecture as well as the compiler was designed from scratch.
The designers had to work on the development and improvements of both the
architecture and the toolchain which were time-consuming.

Brost VLIW: In [26], a customizable design of a VLIW processor is presented
by Brost et al. Certain parameters of the processor architecture could be con-
figured in a modular fashion. Algorithms are programmed in C as if they were
to be executed on a DSP processor and compiled with a VLIW DSP compiler.
The code is analyzed automatically, and an optimal DSP VHDL model with a
variable instruction set is generated, which can be implemented in hardware.
The DSP model utilized is the Texas Instruments (TI) TMS320C6201 [27],
which is an8-issue VLIW processor. The presented design is an instance-
specific implementation of a DSP processor, and hence, does not represent a
general VLIW processor system.

Lodi VLIW: A VLIW processor with a reconfigurable instruction set is pre-
sented in [28] by Lodi et al. The XiRisc, which is a5-stage pipelined2-issue
VLIW processor, is tightly coupled with a pipelined run-time configurable dat-
apath (PiCo gate array, or PiCoGA). Regular FUs perform typical DSP calcu-
lations such as32-bit MAC, SIMD ALU operations, etc. The reconfigurable
PiCoGA is utilized to extend the processor instruction set with application-
specific multi-cycle instructions. The processor instruction set has been ex-
tended with two types of instructions; one to reconfigure thePiCoGA, and the
second to execute the configured function. A GNU gcc toolchain is available
for programming and benchmarking. The complete system is implemented in
a0.18-µm CMOS technology.

Jones VLIW: An FPGA-based design of a VLIW softcore processor is pre-
sented in [29] by Jones et al. The processor is based on an ISA that is binary-
code compatible with the Altera Nios-II ISA [18]. The compilation scheme
consists of Trimaran [9] as the front-end and the extended Nios-II as the back-
end. An application is profiled and compute-intensive kernels are selected.
The kernels are translated to VHDL and the remaining code is compiled for

26 CHAPTER 2. BACKGROUND

the VLIW processor. The kernels are implemented in hardwareand attached
in parallel with the regular FUs. Utilizing multiplexers, the register file ports
are shared between the hardware kernels and the regular FUs.Due to the li-
censed Nios-II core and ISA, this VLIW design is not much flexible, and the
parametric extensibility is not possible.

Grabbe VLIW: An instance specific VLIW processor for elliptic curve cryp-
tography is presented in [30]. The processor can perform basic field operations
in parallel as well as complex instructions needed for the specific application.
In order for the instruction set to be easily modified or extended, the control
path is microcoded. The modular datapath structure and the FPGA-optimized
design facilitate the adaptation to various requirements of different applica-
tions. The presented design is a direct implementation of a specific application,
and does not represent a general VLIW processor.

Koester VLIW: In [31], a hardware compilation flow to generate instance-
specific VLIW cores is presented by Koester et al. The application is described
in ANSI C and then translated to a VLIW-style hardware targeting ILP. The
front-end consists of the VEX compiler [1] which translatesa sequential C
program to the VEX assembly. The back-end consists of the Celoxica DK
Design Suite [7], which converts a Handel-C [6] descriptionto a synthesiz-
able VHDL description. The AS2HCC tool converts the code generated by the
VEX compiler to the Handel-C description, which is translated to VHDL code
by the DK Design Suite. Hence, instance-specific optimized VLIW cores can
be generated. The disadvantages of the design are that it requires commercial
C-to-VHDL tools, the generated architectures are instance-specific, and it does
not represent a general VLIW processor.

Saghir VLIW: In [32], the architecture and micro-architecture of a customiz-
able soft VLIW processor is presented by Saghir et al. The processor executes
a basic set of integer operations that resemble MIPS R2000 instructions [33].
The datapath is configurable and can include16, 32, or 64-bit regular FUs as
well as custom computational units (CCUs) to execute user-defined operations.
The processor has three configurable distributed register files instead of a sin-
gle unified multiported register file. Processor specifications and an assembly
program are provided to a tool which generates the VHDL model. There is
no compiler for any high-level language, and hence, applications have to be
written in assembly which restricts the usability of the processor design.

EPIC: Based on the Explicitly Parallel Instruction Computing (EPIC) ISA
[34], a design of a customizable2-stage pipelined VLIW processor is pre-
sented in [35]. The EPIC architecture can exploit ILP by issuing multiple op-

2.2. RELATED WORK 27

erations per clock cycle. Possible customizations includevarying the number
of issues, registers, and FUs; all of which are specified at compile-time. De-
velopment tools include a compiler and an assembler based onthe Trimaran
framework [9] and a commercial C-to-VHDL tool. The processor is described
in Handel-C language [6], which is then translated to VHDL description by
the Celoxica C-to-VHDL tool [7].

Seshasayanan VLIW: In [36], a design of a low-power16-bit, 6-issue VLIW
test processor supporting a small number of operations is presented by Se-
shasayanan et al. For64-point pipelined fast Fourier transform (FFT), the
processor employs four radix-4 processing elements (PEs) in each stage. Both
floating-point and fixed-point operations are supported. The system has two
modules; one is the VLIW processor and the other is a hybrid dynamic volt-
age scaling (DVS) module. The hybrid DVS module is used to quickly adjust
the processor’s operating voltage or frequency at run-time, while maintaining
the minimum level of performance an application requires. In this way, the
application energy efficiency can be maximized. Main limitations of the pro-
cessor are the absence of a rich set of instructions and a compiler toolchain.
Additionally, there is no parametric extensibility available for the processor.

ADRES: The ADRES (architecture for dynamically reconfigurable embedded
system) [37] couples a VLIW processor with a coarse-grain-array (CGA) ac-
celerator, through a shared central register-file. This architecture has many
advantages such as improved performance, a simplified programming model,
reduced communication costs, and substantial resource sharing. The reconfig-
urable FUs are used to accelerate certain compute-intensive kernels, while the
VLIW processor is used to improve the performance of the remaining part of
the code by exploiting ILP. ADRES is supported by the DRESC compiler [38],
which includes an XML architecture template to describe thefunctionality of
the CGA accelerator, and to define the communication topology, supported
operation set, resource allocation, and timing of the target architecture. The
compiler generates a machine code to be executed on the ADRESprocessor,
a simulation file for cycle-accurate simulation, and a synthesizable VHDL file
for hardware implementation.

XIMD: The variable instruction multiple data (XIMD) [39] architecture struc-
turally resembles VLIW architecture and can dynamically partition its re-
sources to support concurrent execution of multiple instruction streams. The
number of streams can vary from cycle to cycle to best suit each portion of an
application. When all the sequencers read from the same location in the in-
struction memory, a XIMD processor operates exactly like a VLIW processor.

28 CHAPTER 2. BACKGROUND

It can exploit both the instruction level as well as data parallelism. Although
the XIMD provides interesting features, the architecture did not evolve exten-
sively because of the absence of a good compiler.

OptimoDE: The ARM OptimoDE [40] technology is a system for analyzing
and generating optimized instance-specific architecturesfor high-performance
embedded signal processing applications. The technology is licensable intel-
lectual property and is offered with an associated tool environment, which can
be used for configuration and customization of the datapath resources. It al-
lows a user to customize instructions per application basisinstead of using a
standardized ISA. It analyzes an application source code and then finds and
selects optimal configurations (issue-width, FUs, storagesizes, interconnect
topology, etc.) of the architecture. Custom units if any have to be generated
manually by the user, while the standard FUs are inserted by the tools.

Tensilica Xtensa LX4: The Tensilica’s Xtensa LX4 [41] is a configurable and
extensible processor template. The major difference between the OptimoDE
and the Xtensa LX4 is that the former allows a user to fully customize the
instructions, while the latter uses a standardized ISA as well as user-defined
functions. The template can be configured as a multi-issue VLIW processor
with user-selectable5- or 7-stage pipeline depth. Using the provided tools,
customized solutions can be generated with a wide range of options including
DSP units, local memories, I/Os etc.

CLAW: The clustered length-adaptive word (CLAW) processor is an8-issue,
4-cluster VLIW processor [5], where each cluster has two issues. The issue-
width of the processor can be configured at design-time as well as at run-time.
The clustered approach scales down the resources when the issue-width is in-
creased. Instead of having a large global register file, eachcluster has its own
local register file. Special channels and instructions are provided for inter-
cluster communication. The compiler is used to capture ILP at compile-time
and provide hints for the processor to shutoff certain clusters to reduce un-
wanted power consumption at run-time. The shutoff is done bya software
instruction with a small latency. The processor is implemented in Verilog. The
parametric extensibility with machine model parameters isabsent. A multi-
cluster organization although efficient in resource scaling is in-efficient in per-
formance compared to a single-cluster VLIW processor [10].Inter-cluster
communication channels increase the critical path and inter-cluster copy op-
erations reduce the performance and increase the code size.

KAHRISMA: The KAHRISMA architecture [42] utilizes different coarse-
grained and fine-grained FUs and a run-time adaptable inter-communication

2.2. RELATED WORK 29

network. An application is partitioned, different operations are selected and
implemented in the FUs, and the independent code-sections are compiled to
a RISC or a fixed-issue-width VLIW processor, and at run-time, connections
can be adapted to configure these two different modes. Instruction- , data-,
and thread-level parallelism can be exploited. Inter-cluster communication is
required between different clusters, as there is no global shared register file.
KAHRISMA enables out-of-order execution, due to which it utilizes extra
hardware. It uses the dynamic operation execution model, i.e., all operations
of one instruction need not be issued at the same time [43]. The KAHRISMA
ISA is comparable to clustered-VLIW processors, but its micro-architecture
is similar to superscalar architectures with dynamic scheduling but without a
dispatcher. In contrast to a VLIW program, a KAHRISMA program has unit-
assumed latencies (UAL), and the latencies are not exposed to the compiler.

MOVE32INT: Transport triggered architecture (TTA) [44] is a class of stat-
ically programmed ILP architectures, and is programmed by specifying data
transports instead of operations. A program specifies only the data transports
to be performed by the interconnection network and operations occur as “side-
effect” of the transports. Operands enter FUs through portsand one of the
ports acts as a trigger. An operation is executed, whenever data is moved to the
trigger port. The architecture can be tailored by adding or removing resources
(FUs, registers, interconnects, etc.) and is particularlysuited for application-
specific purposes. MOVE32INT [45] is an instance of the TTA architecture
which is implemented in a2.0µ CMOS Sea of Gates technology. It is a32-bit
pipelined processor running at80 MHz, with several FUs operating concur-
rently. Up to four concurrent data transports per clock cycle are possible.

2.2.3 Fixed Hardwired VLIW Processors

This section presents some widely used industrial hardwired VLIW processors.
The distinguishing factors among them include the number and type of FUs
and register files, the way in which the global control flow is maintained, and
the amount of on-chip memory and/or caches. These processors are fixed in
nature and cannot change their organizations/architectures.

STMicroelectronics ST231: ST231 [46] is a32-bit 4-issue VLIW processor
from STMicroelectronics. The processor is a single clusterimplementation of
the Lx architecture [10], and is used in several successful consumer electronics
products. It is a5-stage pipelined integer VLIW processor with multiple FUs
and a multiported register file. The processor has a32 Kbyte direct mapped L1
instruction cache and a32 Kbyte 4-way set associative L1 data cache. Due to

30 CHAPTER 2. BACKGROUND

simple logic, the processor consumes very low power. A complete toolchain
including C compiler, debugger, etc., is available for application development.

Philips Trimedia TM1000: TM1000 [47] is a32-bit 5-issue VLIW processor
specially designed for real-time multimedia processing. It has27 FUs split
over 5 issue-slots, a16 Kbyte data cache, and a32 Kbyte instruction cache.
Operations requiring more than two inputs and producing more than one out-
puts are supported by combining two issue-slots together. The processor has a
very rich instruction set and supports up to four8-bit or two16-bit partitioned
operations. Programmers can specify such operations at high-level with spe-
cific library calls and the compiler takes care of the rest. A complete toolchain
(compiler, debugger, etc.) is available for application development.

Fujitsu FR500: FR500 [48] is a32-bit 4-issue VLIW processor from Fujitsu
Limited. There are two integer units, two floating-point units, a general regis-
ter file, and a floating-point register file. The floating-point unit also performs
MAC operations with40-bit accumulation and partitioned arithmetic opera-
tions on16-bit data. Both the instruction and data caches for the processor are
16 Kbyte4-way set associative.

Texas Instruments TMS320C6211: TMS320C6211 [49] is a32-bit 8-issue
VLIW DSP architecture. The processor has2 clusters, each with4 FUs and
a multiported register file. Each register file provides an additional read port
for inter-cluster communication. It has a rich instructionset especially suited
to target DSP algorithms. Up to two16-bit partitioned operations are sup-
ported in some ALUs. To handle I/O data transfers, the processor features a
programmable direct memory access (DMA) controller combined with two32
Kbyte on-chip data memory blocks. A complete toolchain including compiler,
debugger, etc., is available from the Texas Instruments.

Hitachi/Equator Technologies MAP1000: MAP1000 [50] is a32-bit, 2-
cluster4-issue VLIW processor. Both clusters are similar, each having an
integer ALU (IALU), an integer floating-point graphics ALU (IFGALU), 64
general registers,16 predicate registers, and a pair of128-bit registers. The
IFGALU can perform advanced operations such as64-bit partitioned opera-
tions, sigma operations on128-bit registers, various formatting operations, and
floating-point operations including division and square root. The processor has
an on-chip programmable DMA controller, a16 Kbyte 4-way set-associative
data cache, a16 Kbyte2-way set-associative instruction cache. The data cache
can also be used as on-chip memory. A complete toolchain is available for ap-
plication development.

2.2. RELATED WORK 31

Transmeta’s Crusoe TM5400: TM5400 [51] is the only known VLIW proces-
sor targeted to be used in general-purpose PCs and workstations. The32-bit
4-issue processor when used in conjunction with the Transmeta’s x86 code
morphing software, provides x86-compatible software execution utilizing a
technique called dynamic binary code translation. The processor together with
the code morphing software can execute all standard x86-compatible operating
systems and applications, including the Microsoft Windowsand Linux. The
processor has a64 Kbyte 16-way set-associative L1 data cache, a64 Kbyte
8-way set associative L1 instruction cache, a256 Kbyte L2 cache, and a PCI
port. The processor’s control logic is kept simple and instruction scheduling
is controlled by the running software. The processor has a7-stage integer
pipeline and a10-stage floating-point pipeline. It consumes very low power
compared to superscalar processors.

2.2.4 Our Proposal

In this thesis, we present a adaptable softcore VLIW processor called ρ-
VEX. The processor is based on the VEX ISA developed by HP. A toolchain
(parametrized C compiler and cycle-accurate simulator) ispublicly available
from HP, which can be used for architectural exploration andcode genera-
tion. Theρ-VEX processor can be customized and different parameters such
as issue-width, number of FUs, register file size, etc., can be selected at design-
time to match the specific requirements of an application. Different types of
multiported register files, interrupt systems, and custom operations are eval-
uated and can be selected for implementation depending uponthe available
hardware resources/area. A design methodology is presented to implement the
processor with any required functionalities. Custom operations can be eas-
ily added to the hardware design and the compiler can generate binary code
for them. Additional to the static features, theρ-VEX processor is run-time
reconfigurable. Parameters such as issue-width, number of FUs, register file
size, etc., can be adapted at run-time to target performancevs. power con-
sumption trade-offs. Multiple smaller issue-width cores can be combined/split
at run-time to target ILP/TLP. Running tasks can be migratedfrom one core to
another. The effect simultaneous reconfiguration of issue-width and instruc-
tion cache is evaluated to optimize the design. Hardware-based fault tolerance
techniques are implemented for the processor which can be included/excluded
at design-time and enabled/disable at run-time. All these options allow users
to trade-off between hardware area, performance, power/energy consumption,
and reliability. Theρ-VEX processor is publicly available as open-source.

32 CHAPTER 2. BACKGROUND

2.3 Summary

After defining the goal of the thesis as to implement a programmable VLIW
processor on a reconfigurable hardware for performance vs. power/energy con-
sumption trade-offs in Chapter 1, this chapter highlightedthe available tech-
niques and tools for programmable and configurable processors. The chapter
discussed the motivations behind an adaptable VLIW processor and the VEX
system which includes the VEX ISA, the VEX C compiler, and theVEX sim-
ulator. An initial design of theρ-VEX VLIW processor was presented and
its limitations listed, which are later on, addressed in thethesis. The chap-
ter ends with presenting state-of-the-art in configurable and/or programmable
RISC and VLIW processors.

3
Design-time Configurable Processor

This chapter presents an open-source design-time configurable soft-
core VLIW processor calledρ-VEX. The processor design is made

parametrized and can be easily adapted for different applications before it
is implemented in hardware. The parameters include the processor’s issue-
width, the type and number of different execution units and their latencies,
the type and size of register files and the number of read/write ports, size of
instruction and data memories, type of interrupt and exception systems, selec-
tion of default custom operations, datapath sharing, etc. The chapter presents
a methodology to implement and utilize the processor. Applications have to
be profiled and simulated to determine the suitable parameters for the proces-
sor. The parameters can be set in a configuration file before the processor is
synthesized. Program binaries can be generated by utilizing the VEX com-
piler. Hence, trade-off between performance, hardware resource utilization,
and power consumption can be easily made, and optimized solutions can be
generated. Following are the contributions of the chapter:

• An open-source parametrized softcore VLIW processor is presented that
can be configured before implemented in hardware. The synthesizable
VHDL design is made parametrized, and hence, optimized solutions can
be generated without using any C-to-VHDL tools. Applications can be
developed in C, while taking advantages of the reconfigurability pro-
vided by an FPGA.

• Different types of multiported register files are implemented in order to
optimize the hardware utilization and dynamic power consumption.

• Different types of interrupt handling systems are implemented to trade-
off between hardware resources and interrupt response time.

• An optimized instruction encoding scheme is implemented toincrease

33

34 CHAPTER 3. DESIGN-TIME CONFIGURABLE PROCESSOR

the available opcode space. A methodology to extend the instruction set
of the processor is presented.

• A datapath sharing mechanism is implemented to share the hardware
resources between multiple instances of the processor.

The remainder of the chapter is organized as follows. Section 3.1 presents the
design-time configurableρ-VEX processor and its implementation methodol-
ogy. Different types of FPGA-based multiported register files for theρ-VEX
processor are presented in Section 3.2. Interrupt support for theρ-VEX pro-
cessor is discussed in Section 3.3. A new instruction encoding scheme to opti-
mize the opcode space and remove certain compatibility issues is presented in
Section 3.4. Section 3.5 provides a design methodology to extend the instruc-
tion set of theρ-VEX processor. A datapath sharing technique to optimize the
hardware resource utilization among multiple instances oftheρ-VEX proces-
sor is discussed in Section 3.6. Finally, the chapter is concluded by presenting
a summary in Section 3.7.

3.1 Design-time Configurableρ-VEX VLIW Processor

In this section, we present a parametrized, extensible, anddesign-time con-
figurable softcore VLIW processor called theρ-VEX. The processor is based
on the VEX ISA [4] and has been implemented in VHDL. The technology-
independent implementation allows the processor to be synthesized for any
FPGA or ASIC technology. The processor is made parametrizedand different
parameters and constants can be provided in a configuration file before syn-
thesizing the processor. The5 stages/units of the processor arefetch, decode,
execute 0, execute 1, andwriteback. The fetch stage generates the instruc-
tion memory addresses and fetches a long instruction which is passed onto
the decode stage. In the decode stage, operations are decoded in parallel and
operands are fetched from the register files. Branch/control related operations
are handled by the CTRL unit. The ALU, MUL, and load/store operations
take place in the execute stages. The writeback stage ensures that all the write
targets are written back together at the same time. The processor has a64×32-
bit multiported general-purpose (GR) register file and an8×1-bit multiported
branch (BR) register file. The BR registers are used to store branch condi-
tions, predicate values, and carries from arithmetic operations. The number
of the GR and BR registers can be decreased from64 and 8, respectively,

3.1. DESIGN-TIME CONFIGURABLE ρ-VEX VLIW P ROCESSOR 35

at design-time. Different types of GR register files can be selected to opti-
mized the hardware area/resources, performance, and powerconsumption. An
interrupt handling system has been implemented for the processor in four dif-
ferent mechanisms offering trade-offs between hardware resources/area, per-
formance, and power consumption. The processor can be interrupted, its state
saved, and an interrupt service routine (ISR) can be executed. Exceptions can
also be handled with the help of the interrupt system. An optimized instruction
encoding scheme has been implemented to increase the opcodespace which
can be utilized for extending the instruction set of the processor. A VEX devel-
opment toolchain [1] including a parametrized C compiler and a cycle-accurate
simulator is free available from Hewlett-Packard that can be used for architec-
tural exploration and code generation. Details about the VEX system can be
found in Section 2.1.2. Following we discuss a methodology to generate an
instance of theρ-VEX processor and generate binary code for it.

Methodology to Generate aρ-VEX VLIW Processor Figure 3.1 depicts
the methodology/steps required to generate and utilize theρ-VEX processor.
The process starts with a C application which is simulated and profiled to gen-
erate different statistics. The VEX simulator reads a machine configuration file
(created by the user/designer) describing the processor’sconfiguration param-
eters such as the number of clusters, the issue-width per cluster, the type and
number of different FUs (ALUs, MULs, MEMs, and custom units), latencies
for different FUs, and the size of the GR and BR register files.It simulates
the application on the configured/desired processor and then generates a de-
tailed log file with different statistics, such as executioncycles, total executed
operations, total branches (executed and not executed), stall cycles, memory
operations (total accesses, total misses), instruction per cycle (IPC), and other
function profiles. Custom or user-defined operations if any can also be speci-
fied at C language level, and the simulator is able to simulatethem. The process
can be repeated until an optimized processor configuration is obtained.

The optimized processor parameters are then utilized to generate a synthesiz-
able VHDL description for the processor. We do not use any commercial tools
for VHDL generation; rather we have a parametrized VHDL description for
the ρ-VEX processor. The parameters passed to the compiler/simulator are
described in a separate file called “Processor Core Description” as depicted in
Figure 3.1. Based on these parameters the compiler generates assembly code
when compiling an application. Another set of parameters isdescribed in a dif-
ferent file called “Processor Core Optimization”. These parameters include the
types of GR register file as discussed in Section 3.2, the types of interrupts and

36 CHAPTER 3. DESIGN-TIME CONFIGURABLE PROCESSOR

H.P. VEX toolchain:
Parameterized C

compiler and cycle-
accurate simulator

C
application

VEX
Executable

Synthesizable
VHDL

Instruction and
data memories

Custom
Operations

VLIW Processor
Generation

Parameterized
Processor

Assembler, Linker,
Memory initializer

Simulation
Statistics

Parameters:
Execution cycles
Stall cycles
Executed operations
Total branches
Memory accesses
Total misses
IPC

Processor Core
Description

Parameters:
No. of clusters
Issue-width
No. of ALUs
No. of MULs
No. of MEMs
FU Latencies
Register file size

Processor Core
Optimization

Parameters:
Register files
Interrupt systems
Exceptions
Custom operations
Size of memories
Pipelined/non-pipelined
Forward/non-forward

Instru
ction
Mem
ory

Data
Mem
ory

Deco
de

Fetch Write
back

GR CTRL

BR MEM

PC

Execute 0/1

A M

A M

Figure 3.1: Methodology to generate an instance of theρ-VEX processor.

exception systems as discussed in Section 3.3, types of default custom opera-
tions as discussed in Section 3.5, size of instruction and data memories, and the
options for pipelined, non-pipelined, forwarding, and non-forwarding. These
parameters can be used to optimize the selected processor core design. Both
of the configuration files are included with the processor design files when
the processor is being synthesized and implemented. Although, the processor
design can be extended for any arbitrary configuration, the current version of
ρ-VEX can be configured in issue-width to be2, 4, and8 only. Additionally,
we consider only single-cluster implementations. Custom operations (other
than those provided as default) require an additional step,and have to be added
manually to the design. A simple methodology is provided which can be used
to implement a custom operation for theρ-VEX processor. The VEX compiler
can generate code for custom operations (See Section 3.5). The processor can

3.2. MULTIPORTED REGISTERFILES 37

be implemented in FPGAs or ASIC. The compiler is also provided with the
same processor description file (Processor Core Description) and it generates
code for the application to be executed on theρ-VEX processor. The compiler
generated code is passed through the low-level developmenttools (assembler,
linker, etc.) to generate/initialize the instruction and data memories for the
ρ-VEX processor. Hence, an optimized processor for an application can be
implemented in an FPGA very quickly, shortening the development time and
reducing the associated costs. In the following, we discussdifferent types of
register files, different implementations of interrupt systems and the supported
exceptions, methodology for adding custom operations, anddatapath sharing
for the ρ-VEX processor. All of these are design-time parameters forthe ρ-
VEX processor and can be used to trade-off between hardware resources/area,
performance, and power consumption.

3.2 Multiported Register Files

The shared multiported register file is one of the most resource-consuming
modules of a VLIW processor, and its resource requirement grows exponen-
tially with increasing the issue-width. Since different issue-width processors
require register files with different number of read and write ports, this sec-
tion explores different register files, especially targeted for different types of
FPGAs. As the current state-of-the-art FPGAs do not providemultiport mem-
ories, therefore, multiported register files are created with the FPGA’s config-
urable resources such as look-up tables (LUTs), slices, andflip-flops (FFs)
as well as the configurable resources plus the hardwired BRAMs. The2-
issue,4-issue, and8-issueρ-VEX processors require multiported GR register
files with2-write-4-read (2W4R), 4W8R, and 8W16R ports, respectively. For
this section, each processor has a64×32-bit multiported GR register file, an
8×1-bit multiported BR register file, and a single MEM unit. The number
of ALUs is same as the processor issue-width. The2-issue,4-issue, and8-
issue processors utilize2, 2, and4 MUL units, respectively. We utilized the
Xilinx ISE release version13.2 and the Virtex-4XC4VFX100-11FF1152and
Virtex-6 XC6VLX240T-1FF1156FPGAs for the implementation. The Virtex-
4 and Virtex-6 FPGAs have4-input and6-input LUTs, respectively. Table 3.1
presents the details of the GR register files that we have implemented for our
multi-issueρ-VEX processors. These designs are evaluated in Section 3.2.3.

38 CHAPTER 3. DESIGN-TIME CONFIGURABLE PROCESSOR

Table 3.1: Implementation types for GR register files

Version Implementation detail

1 Straight-forward behavioral implementation requiring large
combinational address decoders, and multiplexers/de-multiplexers
utilizing LUTs + FFs.

2 Utilizes distributed memory (LUTRAMs) instead of BRAMs as in
version 3, and LUTs + FFs.

3 Implemented utilizing banking and replication with BRAMs,and
LUTs + FFs.

4 Similar to version 3, but running the internal ports of the BRAMs at
twice high the frequency of the external ports.

5 Similar to version 3, but avoiding the use of the Direction table. The
conflicts associated with the write ports are resolved by compile-time
register renaming in the executable code.

3.2.1 Register Files with FPGA’s Configurable Resources

In this case, the GR register files for theρ-VEX processors are implemented
utilizing the FPGA’s configurable LUTs, slices, and flip-flops, and the dis-
tributed memory called LUTRAMs. The size of all register files is config-
urable, but here we consider a64×32-bit size. Each register can be accessed
by each FU of the processor. In general, each of the regular FUs has1 write
port to access the register file for storing a data in a register and2 read ports to
read data from two different registers at the same clock cycle.

Register File Version 1 This is a simple and straight-forward design of the
register file. Within the register file, there is a write address decoder, a read ad-
dress decoder, and two read ports for each FU. It utilizes large combinational
multiplexers/de-multiplexers and encoders/decoders to support multiple ports.
These components are implemented utilizing LUTs with flip-flops as the stor-
age elements. Due to its design, the distributed memory available in the FPGAs
cannot be used, hence the 4-input LUTs usage becomes large compared to the
6-input LUTs. Figure 3.2 and Figure 3.3 depict the hardware implementation
results for the different GR register files and multi-issueρ-VEX processors,
respectively, for the Virtex-4 and Virtex-6 FPGAs. It can beobserved from the
figures that less number of LUTs are required to implement theregister files
and the processors when the number of inputs on the LUTs increases.

3.2. MULTIPORTED REGISTERFILES 39

0

10000

20000

30000

40000

1 2 3 4 1 2 3 4 1 2 3 4

2W4R 4W8R 8W16R
Register file version and number of ports

F
lip

-f
lo

p
s

an
d

 L
U

T
s

44451 158395Flip-flops 4-input LUTs

(a) Virtex-4 FPGA (4-input LUTs)

0

2000

4000

6000

8000

10000

12000

1 2 3 4 1 2 3 4 1 2 3 4

2W4R 4W8R 8W16R

Register file version and number of ports

F
lip

-f
lo

p
s,

 L
U

T
s,

 a
n

d
 L

U
T

R
A

M
s

21653Flip-flops 6-input LUTs LUTRAMs

(b) Virtex-6 FPGA (6-input LUTs)

Figure 3.2: Hardware results for different versions of the64×32-bit GR register files
with different ports. In addition to the mentioned resources, version3 of the 2W4R,
4W8R, and 8W16R register files also utilize8, 32, and128 RAMB18s, respectively.
Similarly, version4 of the 2W4R, 4W8R, and 8W16R register files utilize2, 8, and
32 RAMB18s, respectively.

Register File Version 2 Here, banking and replication technique is used to
implement the register file. A64×32-bit base register file with 1W1R ports
is implemented, which is then banked multiple times for the number of write
ports and replicated inside each bank for the number of read ports. The product
of the number of read and number of write ports on the actual register file
determines the number of times the base register file is replicated. A small
direction table keeps track of the write port number for eachlocation of the
register file which is implemented with the base register file. The table is

40 CHAPTER 3. DESIGN-TIME CONFIGURABLE PROCESSOR

itself implemented utilizing FPGA’s configurable resources and has the same
number of ports and depth as the actual multiported registerfile. Figure 3.2
and Figure 3.3 depict the hardware implementation results for the different GR
register files and multi-issueρ-VEX processors, respectively, for the Virtex-
4 and Virtex-6 FPGAs. As can be observed from the figures, compared to
version1, the version2 register files utilize more flip-flops and LUTs in case
of the Virtex-4 FPGAs. Considering the Virtex-6 FPGA, the version2 register
files utilize far less flip-flops and LUTs compared to the version1 register files.
The reason is that in case of the Virtex-6 FPGAs, the base64×32-bit 1W1R
register file is mapped to the distributed memory available in the FPGA. Some
of the LUTs in almost all of the Xilinx FPGAs can be configured to be used as
memory called the distributed memory or LUTRAMs. The base register file in
our case has simple dual port (SDP) mode. In case of the Virtex-4 FPGAs, the
available distributed memory can not be used as an SDP memory, therefore,
the version 2 register files are implemented on standard LUTsin the Virtex-
4 FPGA. In case of the Virtex-5 and latest FPGAs, the available distributed
memory can be configured in the SDP mode, therefore, for the Virtex-6, the
base register file in our case is mapped to the LUTRAMs, hence reducing the
number of LUTs and flip-flips for the version 2 register files.

3.2.2 Register Files with FPGA’s Embedded BRAMs

As stated in Section 3.2.1, increasing the number of ports ona register file
increases the resources (LUTs and flip-flops) and reduces thefrequency. To
avoid this problem, multiported register files can be implemented utilizing the
configurable resources plus the dual-ported BRAMs available in large num-
bers in the modern FPGAs. Following we discuss few such designs that we
implemented for theρ-VEX processors.

Register File Version 3 Register file version follows similar design to ver-
sion 2. Instead of implementing the base register file with 1W1R ports with
configurable resources, it is implemented with the fixed BRAMs. This design
is also called as the single-pumped design, where the register file utilizes the
same clock frequency as that of the processor. It utilizes BRAMs in order to
reduce the utilization of configurable resources (flip-flops, LUTs, and slices)
without using the register renaming technique as in the caseof the version5
register file. The implementation is based on the designs presented in [52] [53],
which utilize a mechanism of port indirection. A table keepstrack of the write
port number for each location of the multiported memory thatis implemented

3.2. MULTIPORTED REGISTERFILES 41

0

10000

20000

30000

40000

50000

60000

1 2 3 4 1 2 3 4 1 2 3 4

2-issue 4-issue 8-issue

Register filer version and Issue-width

F
lip

-f
lo

p
s

an
d

 L
U

T
s

0

2

4

6

8

10

12

14

16

18

20

C
ri

ti
ca

l p
at

h
 d

el
ay

 (
n

s)

167915Flip-flops 4-input LUTs Critical path delay

(a) Virtex-4 FPGA (4-input LUTs)

0

5000

10000

15000

20000

25000

30000

1 2 3 4 1 2 3 4 1 2 3 4

2-issue 4-issue 8-issue

Register file version and Issue-width

F
lip

-f
lo

p
s

an
d

 L
U

T
s

0

2

4

6

8

10

12

14

16

18

C
ri

ti
ca

l p
at

h
 d

el
ay

 (
n

s)

Flip-flops 6-input LUTs Critical path delay

(b) Virtex-6 FPGA (6-input LUTs)

Figure 3.3: Implementation results for multi-issue pipelinedρ-VEX processors with
different versions of the GR register files. In addition to the mentioned resources,
version3 of the 2-issue,4-issue, and8-issue processors also utilize8, 32, and128
RAMB18s, respectively. Similarly, version4 of the2-issue,4-issue, and8-issue pro-
cessors utilize2, 8, and32 RAMB18s, respectively. The2-issue,4-issue, and8-issue
processors also utilize4, 4, and8 DSPs modules, respectively.

utilizing BRAMs. The table is itself implemented utilizingFPGA’s config-
urable resources and has the same number of ports and depth asthe actual
multiported memory. Figure 3.4 depicts the organization ofa4W8R ports reg-
ister file. Here, each BRAM is configured as a64×32-bit 1W1R ports memory
block. For a register width of32-bit, each BRAM can provide up to512 such
registers. To support multiple ports, the BRAMs are organized into banks and
data is duplicated across various BRAMs within each bank. The number of

42 CHAPTER 3. DESIGN-TIME CONFIGURABLE PROCESSOR

write ports defines the number of banks and the number of read ports defines
the number of BRAMs per bank. Each bank holds a separate writeport to up-
date all the BRAMs in that bank, each of which can then be read by a separate
read port. In this manner, different registers can be read from different BRAMs
simultaneously. Multiplexers driven by the direction table outputs are utilized
to provide access to the registers stored within each register bank. Figure 3.2
and Figure 3.3 depict the hardware implementation results for the different GR
register files and multi-issueρ-VEX processors, respectively, for the Virtex-4
and Virtex-6 FPGAs. From the figures, we can observe that the single-pumped
BRAM-based register file design considerably reduces the flip-flops and LUTs
utilization at the expense of BRAMs. The maximum clock frequency remains
the same for both designs.

Register File Version 4 A single-pumped register file (version3) runs at the
same clock frequency as that of the processor. ForW write andR read ports,
a single-pumped multiported register file requiresW×R BRAMs. In order to
reduce the number of BRAMs for the multiported register files, we designed
a register file where the internal ports run at twice higher frequency than the
external ports. This means that the register file has to be runat twice the clock
frequency of the processor. Basically, it is a multi-pumpeddesign with mul-
tiplexing. A similar design for a quad-port memory is presented in [54]. The

B
R

A
M

0

B
R

A
M

1

B
R

A
M

7

B
R

A
M

0

B
R

A
M

1

B
R

A
M

B
R

A
M

017

B
ank-0

B
ank-1

B
ank-3

W
rite P

ort 0

W
rite P

ort 1

W
rite P

ort 3

R
ead P

ort 0

R
ead P

ort 1

R
ead P

ort 7

B
R

A
M

B
R

A
M

1

D
irection T

able

A
ll W

rite P
orts

A
ll R

ead P
orts

77

Figure 3.4: A single-pumped 4W8R ports BRAM-based register file.

3.2. MULTIPORTED REGISTERFILES 43

double-pumped design reduces the number of BRAMs by a quarter compared
to the single-pumped design. A double-pumped register file with W write and
R read ports requires1/4×W×R BRAMs instead ofW×R BRAMs. Imple-
mentation results for the different GR register files and multi-issueρ-VEX
processors are depicted in Figure 3.2 and Figure 3.3, respectively. From the
figures, it can be observed that the double-pumped register file design reduces
the required number of BRAMs by a quarter compared to the single-pumped
register file design.

Register File Version 5 Multiported memories implemented utilizing
BRAMs in banking and replication [55] have inherent conflicts associated with
the write ports, and hence cannot be utilized as true multiported memories un-
less a technique calledregister renaming[56] [57] is applied, or additional
hardware logic is utilized for port indirection. In this section, we present a
register renaming technique that is applied at compile (assemble) time. The
register file is implemented utilizing BRAMs based on the design presented
in [55]. We implemented a register renaming technique to avoid write port
conflicts and save considerable resources [58]. As a case study, we imple-
mented a register renaming technique for a4-issueρ-VEX processor.

In order to support multiple ports, multiple BRAMs (with 1W1R ports) are or-
ganized into banks and data is duplicated across various BRAMs within each
bank. For a register file with 4W8R ports,32 BRAMs are distributed across
4 banks with8 BRAMs per bank. Here, the number of write ports defines the
number of banks and the number of read ports defines the numberof BRAMs
per bank. For a32-bit register, each BRAM can provide up to512 such reg-
isters. Because register banks hold mutually exclusive sets of registers, they
can be updated independently. Each register bank holds a separate write port,
which can write to the registers dedicated to that bank. In order to provide
multiple read ports, multiple BRAMs are utilized within each register bank to
store duplicate copies of the corresponding register subset.

A limitation of this design is that instructions cannot be scheduled to execute
in parallel if they produce results in registers that belongto the same register
bank. Hence, in any given instruction only one of the registers from a given
bank can be written. We remove this limitation by applyingregister renaming
technique at software level, after the code is generated by the compiler. The
advantage is that it does not involve any hardware cost or compiler modifi-
cation. All data dependencies are handled by the compiler and only register
scattering needs to be done to avoid the write ports conflicts.

44 CHAPTER 3. DESIGN-TIME CONFIGURABLE PROCESSOR

Each bank provides64 registers that are logically renamed per bank, hence,
the total number of registers is256. This representation guarantees that we
always have free registers to rename. Based on the application (data and con-
trol dependencies, and the available ILP), for a4-issueρ-VEX processor, the
VEX compiler can generate an assembly code with4, 3, 2, or 1 operation(s)
per instruction. The register renaming ensures that withinany instruction, no
two operations should write to registers from a single register bank. The com-
piler utilizes64 registers to generate the code, but our register file provides
256 registers with64 registers per bank.

We developed a register renaming tool using C language. It takes the VEX
assembly code as input and generates a register-renamed VEXassembly as
output. Multiple passes are made in order to cover all possible conflicting
conditions. The tool reads an instruction and parses its operations. It searches
for the source and destination registers for all the operations of an instruction.
It renames the destination registers for different operations in an instruction
such that each operation could write to a separate register bank. A source
register is renamed in a following instruction only, if thatsame register was
renamed in an earlier instruction. While renaming the registers, the algorithm
takes care of the different conflict conditions that result from the number and
position of the different FUs and the compiler generated VLIW instructions.

Table 3.2 presents the hardware utilization for the64×32-bit 4W8R ports reg-
ister file with register renaming and the4-issueρ-VEX processor for the same
Virtex-4 FPGA. Compared to the design presented in Section 3.2.1, this design
requires considerably less number of flip-flops and LUTs at the expense of32
BRAMs, while the frequency remains the same.

3.2.3 Evaluation of the Register File Designs

In the previous sections, we presented different implementation styles for
multiported register files. These designs utilize specific hardware resources
in FPGA. We selected two different families of the Xilinx FPGAs which

Table 3.2: Implementation results for64×32-bit 4W8R ports register file with regis-
ter renaming and4-issueρ-VEX VLIW processor.

Module Flip-flops LUTs BRAMs DSPs
Register file 521 477 32 0
Processor 3208 6514 32 4

3.3. SUPPORT FORINTERRUPTABILITY 45

are Virtex-4 (XC4VFX100-11FF1152) and Virtex-6 (XC6VLX240T-1FF1156).
The Virtex-4 and Virtex-6 FPGAs have4-input and6-input LUTs, respec-
tively. They have different number/quantity of flip-flops, LUTs, BRAMs, and
distributed memory (LUTRAMs).

The designs (version,3, 4, and5) which utilize BRAMs for their implementa-
tion produce similar results for both the considered FPGAs.Version4 reduces
the number of BRAMs by1/4, compared to the version3 and version5 de-
signs, but it requires two different clock frequencies for its operation. The
number of the required BRAMs remains the same for both the considered FP-
GAs. The number of required LUTs is different merely becauseof the size
of the LUTs in the two families. When considering the version1 and version
2 register files for the two types of FPGAs, there is a big difference in the
hardware utilization. These designs are implemented utilizing Flips-flops and
LUTs only and no hardwired BRAMs. In Virtex-6, the version2 design can
be efficiently mapped to LUTRAMs instead of implementing on the general
LUTs. Therefore, the hardware utilization for this design is very small com-
pared to the version1 design. The critical path delay is also smaller. Because
the LUTRAMs in the Virtex-4 family cannot be configured to be used in sim-
ple dual port (SDP) mode, both the version1 and version2 designs are mapped
on to the general LUTs. Due to specific design, version2 utilizes large number
of LUTs compared to version1 for the Virtex-4 FPGA. The critical path delay
for version2 is also longer compared to version1 design.

Hence, given an FPGA, the designer has two multiple choices for efficient
implementation of the register file and theρ-VEX processor by considering
the different versions that we presented. If there are more available BRAMs,
the designer can choose to implement a BRAM-based design (version3, 4 or
5). If multiple clock sources are available, version4 is a better option as its
requires less number of BRAMs. If there is limited number of BRAMs, the
designer can choose to implement a LUT-based design (version 1 or 2). For the
Virtex-5, Virtex-6, and other recent families, version2 is a better option as it
can be mapped more area efficiently on the available distributed memory. For
the Virtex-4 and older families, version1 is a better option due to its efficient
implementation on the general LUTs.

3.3 Support for Interruptability

Certain critical tasks require that the processor should respond to them within
a certain time limit. With an interrupt system, a processor can be interrupted,

46 CHAPTER 3. DESIGN-TIME CONFIGURABLE PROCESSOR

its execution state saved, and a different task can be executed. The excep-
tion handling system ensures that the computed result is correct. The interrupt
and exception handling systems are important building blocks on a proces-
sor for running an operating system on it. Features like multi-tasking, multi-
threading, and task migration are facilitated by an interrupt system. In this
section, we present the design and implementation of interrupt and exception
handling systems [59] [60] for theρ-VEX processor. The interrupt system is
made parametrized and implemented in four different mechanisms with respect
to interrupt latency, hardware utilization, and stress on the compiler and/or re-
lated toolchain. The exception handling system utilizes the interrupt system
for its implementation.

3.3.1 Interrupt Handling System

The interrupt system that we implemented is called theinterrupter and can
be easily plugged in and out of theρ-VEX core. Figure 3.5 depicts the inter-
rupter embedded into a4-issue pipelinedρ-VEX processor. The interrupter
receives input signals from interrupt pins and then generates control signals to
the fetch stage to reschedule instructions such that aninterrupt service routine
(ISR)could be executed. At the same time, the necessary context isstored in
the data memory. When areturn from interrupt (RFI)instruction is decoded,
a signal is passed to the interrupter to indicate the end of anISR. After that,
the context is restored back to the core which then resumes the original exe-
cution. To generate a software interrupt, theINT_SOFTcustom operation is
implemented. TheINT_MASKcustom operation is implemented to enable and
disable the individual interrupts. Following we discuss two sub modules of the
interrupter called theinterrupt schedulerand theinterrupt controller.

Interrupt Scheduler The interrupt scheduler is configurable and the follow-
ing parameters can be configured at design-time: (1) number of interrupt vec-
tors, (2) interrupt priority for each vector, and (3) ISR location address in the
instruction memory. The interrupt scheduler is responsible for: (1) receiving
interrupt input signals from different sources, (2) scheduling different tasks
into the task queue, and (3) enabling interrupt requests to the interrupt con-
troller when priority of the requested task is higher than the current task. The
interrupt scheduler dataflow is depicted in Figure 3.6(a). There are two inputs
for the interrupt scheduler: externalinterrupt insignals from outside world and
the internalclear interruptflag signal from the interrupt controller. The former
adds tasks to the task queue while the latter removes it. Based on the interrupt

3.3. SUPPORT FORINTERRUPTABILITY 47

Instruction
Memory Data

Memory
DecodeFetch Writeback

BRCTRL MEM

PC

GR

Interrupt
Scheduler

Interrupt
Controller

Interrupt
Signal

Clear
Interrupt

signal Interrupter
Interrupts

Execute0/1

A

A

A

A

M

M

Figure 3.5: A 4-issueρ-VEX processor with the interrupter.

priority, the scheduler decides whether to raise an interrupt to the interrupt con-
troller or not. Only if an interrupt with higher priority comes in, or a higher
priority task is finished, a waiting task can then become active. The interrupt
vector table records all information that is necessary for scheduling different
tasks. These include interrupt vectors (type of interrupts) and their priorities,
interrupt flags which show the status of each interrupt request, ISR address
(predefined or user defined), and interrupt enable bits to mask the interrupts.

Interrupt Controller The interrupt controller is responsible for context
switching and ISR execution. It’s main jobs are: (1) receiving interrupt re-
quest signals from the interrupt scheduler, (2) storing thecontext, (3) loading
the ISR address, (4) restoring the context, and (5) restarting the main program
again from the point where it was left before the interrupt. The efficiency of
the control logic determines the length of interrupt latency. Unlike the inter-
rupt scheduler, the interrupt controller cannot be designed pipelined, since the
next state at each clock cycle is determined by the previous state. We designed
the interrupt controller as one finite state machine (FSM) which is depicted in
Figure 3.6(b). The input (i.e., interrupt request or RFI) signal determines the
next state based on the current one. The interrupt system is pre-emptive and a
currently executing ISR can be preempted to start a new one based on its pri-
ority. An interrupt queue is implemented to record information, such as, ISR
addresses, return addresses, and interrupt vectors received from the interrupt
scheduler along with the interrupt request signal.

48 CHAPTER 3. DESIGN-TIME CONFIGURABLE PROCESSOR

Interrupt
Flag
List

Interrupt in

Clear
interrupt

signal

Update
Interrupt
Flag List

Compare
with

current
state

Interrupt
Flag
List

Search
for high
interrupt
priority

Output
interrupt
request
(or not)

Update
task

queue

Highest
interrupt
priority

(a) Interrupt scheduler dataflow

IDLE
Executing
foreground

program

STORE
Context

switching

Interrupt request

RUN
Executing

ISR

F
in

ish
 co

n
text sw

itch In
te

rr
u

p
t

re
q

u
es

t

LOAD
Context

switching

RFI instruction

Pre-empted ISR

F
in

ish
 co

n
text sw

itch

(b) Interrupt controller FSM

Figure 3.6: Dataflow and FSM in the interrupter.

3.3.2 Implementation Styles for the Interrupt Controller

We implemented the interrupt controller in four different methods in order
to match different application requirements and hardware resource utilization.
These implementations differ by the way the context (the GR and the BR
registers) is stored and restored. The first3 methods utilize theρ-VEX pro-
cessor whose register file is implemented with the FPGA’s configurable re-
sources (slice registers and slice LUTs), called hereρ-VEX type ’a’. The4th

method utilizes theρ-VEX processor whose register file is implemented with
the FPGA’s embedded BRAMs, called hereρ-VEX type ’b’.

Directly Switching Context Method: In this method, the context is
stored/restored through dedicated paths without utilizing the processor
pipeline. Here, the GR registers, the BR registers, and the data/shared memory
are directly connected to the interrupt controller for context switching. Extra

3.3. SUPPORT FORINTERRUPTABILITY 49

multiplexers are utilized to select the path from either thepipeline or the in-
terrupt controller to the register files and data memory. Theadvantage is that
the ISR code becomes smaller, as instructions for context switching are not
needed in the ISR.

Hardware Instructions Switching Context Method: Instead of using ded-
icated paths, this method utilizes the processor pipeline for context switch-
ing. The instructions needed for context switching are generated by the in-
terrupt controller hardware and inserted into the pipeline. The advantage is
that the ISR code becomes smaller, as instructions for context switching are
not required in the ISR. Additionally, a hardwaremonitor is introduced which
records the maximum index of registers at run-time in order to reduce the size
of the context to be stored.

Software Instructions Switching Context Method: Here, the processor
pipeline is utilized, and the instructions needed for context switching are gener-
ated in software. Hence, the complexity is shifted from hardware to software.
Additional hardware for context switching is not required,however, we lose
the possibility of only switching a subset of registers at run-time, as the in-
structions for context switching are fixed after compilation. Additionally, this
method introduces extra overhead for the size of the ISR code.

Page-able Register File Method: Instead of storing/restoring the context,
here, the page of the register file is switched before/after executing an ISR.
Here, we utilized theρ-VEX processor whose register file is implemented with
BRAMs (ρ-VEX type ’b’ instead of theρ-VEX type ’a’ as in the first3 meth-
ods). Aρ-VEX processor requires a64×32-bit register file. Multiple BRAMs
are utilized to implement the register file as discussed in Section 3.2. The
18 Kbits BRAM-based register file can provide up to512×32-bit registers or
up to8 copies/pages of64×32-bit register file. We modified the register file
design to exploit the unused registers as multiple sets of the register file.

3.3.3 Interrupt Latency and Response Time

The following key metrics determine the performance of an interrupt system:
Interrupt latency - The time from when an interrupt is first generated to when
the processor responds to the interrupt, i.e., the time whenthe processor is
ready to start storing the context.Interrupt response time - The time from
when an interrupt is first generated to when the processor runs the first in-
struction in an ISR. It includes the interrupt latency plus the time required for
context storing and calling an ISR. Table 3.3 lists the implementation types,

50 CHAPTER 3. DESIGN-TIME CONFIGURABLE PROCESSOR

Table 3.3: Implementation version, interrupt response time, and the worst-case inter-
rupt latencies for the four types of interrupt system for theρ-VEX processor.

Version Description Response time Latency

1 Directly switching context 76 cycles 5 cycles

2 Hardware instructions switching context17 – 76 cycles 5 cycles

3 Software instructions switching context 76 – 78 cycles 5 cycles

4 Page-able register file 2 – 6 cycles 2 cycles

the interrupt response time, and the worst-case interrupt latencies for the four
types of our interrupt system withρ-VEX processor.

In the ρ-VEX architecture, the GR register number0 ($r0.0) is hardwired to
value zero, therefore, it is not stored during context store. For version1 of the
interrupter, the interrupt response time of76 cycles includes4 cycles for com-
pleting the currently fetched instruction and stopping thepipeline,1 cycle for
scheduling the interrupt,63 cycles for moving the GR registers and8 cycles
for moving the BR registers. For version2, a hardware monitor records the
maximum index of the registers used in a running program before the proces-
sor is interrupted. Therefore, the interrupt response timedepends on when the
currently executing program is interrupted. The worst casecould be76 cycles.
The best case could be17 cycles (4 cycles for completing the currently fetched
instruction and stopping the pipeline,1 cycle for scheduling the interrupt,12
cycles for moving the GR registers ($r0.1 to $r0.11, and$r0.63)). These regis-
ters have special purposes in the ISA and are mostly utilizedin a program [4].
For version3, the interrupt response time is pre-determined at compile time.
Still, there could be two scenarios. First, when the contextstoring routine is
placed within the body of the ISR, the interrupt response time is 76 cycles.
Second, when the context storing routine is placed at a separate location and
is called from within the ISR, the interrupt response time is78 cycles, as there
would be an extra2 cycles branch latency. In the latter case, the size of the ISR
code is reduced. The interrupt response time for version4 of the interrupter is
2 clock cycles. One cycle for scheduling the interrupt and another for switch-
ing the register file page. When implementing this method, the first and the
last4 instructions in the ISR should not read and write data from/to registers,
respectively, in order to allow the currently fetched instruction to be passed
through the pipeline. This is reasonable because at the beginning of a program
(ISR), variables are normally initialized first before theycan be read, and at the
end of a program, the already computed data is consumed or spilled to memory
instead of generating new data (writing to registers). If this assumption is not

3.3. SUPPORT FORINTERRUPTABILITY 51

valid then some NOP instructions (maximum4) should be added at the start
of the ISR code. In this case, the interrupt response time ranges from2 to 6,
depending upon how many NOP instructions are added to the code.

3.3.4 Exceptions Handling System

The difference between interrupts and exceptions is that interrupts are utilized
to handle external events (serial ports, buttons etc.) while exceptions are used
to handle internal instruction faults (arithmetic overflow, illegal opcode etc.)
The exceptions handling system mainly relies on the interrupts system for
its implementation. Unlike the interrupts which can occur asynchronously,
exceptions occur synchronously when an instruction is decoded or executed.
Different conditions are tested at decode and execute stages and internal inter-
rupt is raised whenever there is an exception. Following we discuss different
exceptions implemented for theρ-VEX processor. The system can be easily
extended with other types of exceptions.

Arithmetic Overflow: Arithmetic overflow occurs when the result of an arith-
metic/multiplication operation becomes larger than the size of the register used
to hold it. Because these operations takes place in the execute stage, therefore,
the overflow exception is detected in the execute stage. For an arithmeticop-
eration, the maximum result of two32-bit operands can be33-bit, therefore,
we can simply test the leftmost bit as the overflow flag and use it as an excep-
tion signal. Similarly, formultiplicationoperations of32×16-bit, the leftmost
16 bits are tested for the overflow condition. When an overflow exception oc-
curs, an internal interrupt is raised to the interrupter andan exception handling
routine can thus be called.

Invalid Opcode: When a non-supported opcode is fetched into the processor
pipeline, it triggers an invalid/illegal opcode exception. This condition can be
detected in the decode stage as opcodes are decoded here. Theopcode is tested
in all issue lanes and then exception signals are generated to the interrupter, and
an exception handling routine can thus be called.

Unavailable Hardware Unit: Different executions units are distributed over
different issue lanes in aρ-VEX processor, therefore, not all the operations
can be executed in every lane. If an operation is assigned to alane, which
does not have the hardware unit to execute it, an exception signal is generated
to the interrupter, and an exception handling routine can thus be called. This
exception is also detected in the decode stage.

52 CHAPTER 3. DESIGN-TIME CONFIGURABLE PROCESSOR

3.3.5 Implementation Results

Figure 3.7 depicts the hardware utilization for the4 types of interrupt sys-
tem with4-issueρ-VEX processor (3 with ρ-VEX type ’a’ and1 with ρ-VEX
type ’b’). We utilized the Xilinx ISE release version13.2 and the Virtex-6
XC6VLX240T-1FF1156FPGA for the synthesis and implementation. Theρ-
VEX processor has4 ALUs, 2 MULs, and1 MEM unit, and can run up to100
MHz in the Virtex-6 FPGA. A RAMB36E1 is equal to two RAMB18 BRAMs
in the Virtex-6 FPGA. As can be observed from the figure, each implementa-
tion method of the interrupter requires different amount ofhardware resources.
The first3 version of the interrupter are implemented for theρ-VEX type ’a’.
Compared to theρ-VEX without interrupter, theρ-VEX with interrupter ver-
sion 1 requires15.82% more registers and8.56% more LUTs, theρ-VEX
with interrupter version2 requires17.26% more registers and10.66% more
LUTs, and theρ-VEX with interrupter version3 requires5.76% more regis-
ters and3.62% more LUTs. The version4 of the interrupter is implemented
for theρ-VEX type ’b’. Compared to this version of theρ-VEX without inter-
rupter, theρ-VEX with interrupter version4 requires75.75% more registers
and45.16% more LUTs. As the multiported register file for the type ’b’ has
8 copies of the register set (512×32-bit in total), the direction table becomes
large, and hence requires more slice registers of the FPGA for its implementa-
tion. The number of BRAMs remains the same. Remember that theVirtex-6
XC6VLX240T-1FF1156FPGA has301440 slice registers and150720 LUTs,
and that all our designs utilize only a small portion of the device.

0
2000

6000

10000

14000

18000

�-VEX without
interrupts

R
eg

isters

L
U

T
s

B
R

A
M

s

1 2 3 4

R
eg

isters

L
U

T
s

B
R

A
M

s

R
eg

isters

L
U

T
s

B
R

A
M

s

R
eg

isters

L
U

T
s

B
R

A
M

s

Interrupt version

�-VEX with interrupts 3624 17300 0 3668 17634 0 3309 16513 0 1768 8627 16

3129 15936 0 3129 15936 0 3129 15936 0 1006 5943 16

type ‘b’type ‘a’ type ‘a’ type ‘a’�-VEX type

Figure 3.7: Implementation results for the4 types of interrupt system with4-issue
ρ-VEX processor (3 with ρ-VEX type ’a’ and1 with type ’b’) for a Virtex-6 FPGA.
Eachρ-VEX processor (with/without interrupts) also utilizes4 DSP48E1 modules.

3.4. INSTRUCTION ENCODING SCHEME 53

3.4 Instruction Encoding Scheme

The issue-width of theρ-VEX processor can be statically or dynamically se-
lected to be2, 4, or 8. A 2-issue,4-issue, or8-issue processor can execute
2, 4, or 8 operations per clock cycle, respectively. An operation is encoded in
32 bits, and multiple operations make a VLIW instruction whichcan be issued
in a single clock cycle. Each operation is executed by an available FU in an
issue-slot. Addresses of6-bit and3-bit are required to access the GR and BR
registers, respectively. The regular FUs are ALUs, MULs, CTRL, and MEM.
Eachρ-VEX processor can utilize a different mix and number of these FUs,
except the CTRL, which is only one per processor. Increasingthe number of
these FUs increases the hardware resources, but simplifies the sorting of op-
erations in the low-level development tools (assembler). Each FU requires at
maximum two32-bit inputs and generates one32-bit output. Both of the input
operands could be register values or one of them could be a register value and
the second one animmediate (IMM)value. A short IMM (up to9-bit) is en-
coded in the same32-bit operation. When there is a long IMM (up to32-bit),
it cannot be encoded in the same operation. Hence, an additional operation
space or issue-slot is required to carry the long IMM. For theρ-VEX proces-
sor, a custom operation calledSyllable_Follow (S_F)is implemented to carry
a long IMM value for an operation. Hence, long immediates arehandled in
the same instruction utilizing multiple issue-slots. We designed a new encod-
ing scheme for theρ-VEX processors to increase the available opcodes from
128 to 256 which can be utilized for ISA extension. Additionally, the new
encoding scheme defines proper positions for the regular FUswhich makes
the assembler tool simpler and uniform. With these positions, code generated
for any of the2-issue,4-issue, or8-issue standaloneρ-VEX processors can be
executed correctly on the2-4-8-issue run-time reconfigurable processor pre-
sented in Chapter 4.

3.4.1 Design of the New Encoding Scheme

Table 3.4 presents the old [14] [15] and the new encoding schemes for theρ-
VEX processor. The first2 bits of the32-bit operation encoding are reserved
for multi-clustering and NOP-folding purposes. The ISA [4]includes opera-
tions which require two source and one destination GR registers and one BR
register at the same time, therefore, the next21 bits are needed for these reg-
isters addressing. In the old encoding scheme,2 bits are utilized to encode the
IMM type (“00” is no IMM, “01” is short IMM, and “1x” is long IMM). The

54 CHAPTER 3. DESIGN-TIME CONFIGURABLE PROCESSOR

Table 3.4: The old and the new encoding schemes. IMM is flag for immediatetypes.
Short IMM and long IMM are the values of the short and long immediates, respec-
tively. S_F means Syllable_Follow custom operation.

31 25 24 23 22 17 16 11 10 5 4 2 1 0

Opcode Old IMM Old Dest. GR address Src1 GR address Src2 GR address BR address - -

Opcode Old IMM Old Dest. GR address Src1 GR address Short IMM / Long IMM-1 (9-bit) - -

Opcode New IMM New Dest. GR address Src1 GR address Src2 GR address BR address - -

Opcode New IMM New Dest. GR address Src1 GR address Short IMM / Long IMM-1 (9-bit) - -

S_F Old Long IMM-2 (23-bit) Old - -

1 0 0 0 * * * * Long IMM-2 (23-bit) New - -

Opcode Old Branch offset (20-bit) Old - -

Opcode New Branch offset (19-bit) New - -

last7 bits are left for opcode encoding, and hence, only128 different opera-
tions could be implemented. Short IMM operands (up to9-bit) are encoded
in the same operation. When an operand is a long IMM, the first9 bits of the
IMM are carried by the same operation and the last23 bits are carried by the
S_Foperation in a different issue-slot. Hence, an operation with a long IMM
requires two issue-slots. With the old encoding scheme, there was hardly any
free opcode left to extend the ISA.

The new encoding scheme utilizes8 bits for opcodes and a single bit for the
IMM type. “0” for IMM means no immediate operand, while “1” means an
immediate operand, whose type (short or long) is determinedby theS_Fop-
code in the same instruction as discussed in Section 3.4.2. With the new en-
coding scheme the opcode space is increased from128 to 256. It utilizes an
uniform approach for sorting operations for the2-issue,4-issue, and8-issue
stand-alone processors, and the2-4-8-issue run-time reconfigurable processor
(presented in Chapter 4), makes the assembler tool simple and uniform, and
solves the problem of code versioning.

3.4.2 Borrowing Scheme and Instruction Mapping

Borrowing refers to the issue-slot, on which an operation can find the last23
bits of its long IMM. Although, the number, type, and position of the regular
FUs per issue-slot is a design-time configurable parameter,here, we consider
a default number of FUs for each type of theρ-VEX processor. For every type
of the processor, we consider one CTRL unit, one MEM unit, andthe same
number of ALUs as the issue-width. We consider the number of MULs for

3.5. ISA EXTENSION SUPPORT 55

the stand-alone2-issue,4-issue, and8-issue processors to be2, 2, and4, re-
spectively. These numbers provide enough performance without exceeding the
hardware resources. The2-4-8-issue run-time reconfigurableρ-VEX proces-
sor utilizes8 MULs. In general, the more the number of the individual FUs,
the simpler the borrowing scheme becomes.

Tables 3.5 and 3.6 present the positions of different FUs andborrowing
schemes for the2-issue,4-issue,8-issue, and2-4-8-issueρ-VEX processors,
and their instruction mapping schemes. The left-most column presents the pos-
sible combination of operations (with/without long immediates) making differ-
ent VLIW instructions. Mapping scheme presents the possible instructions and
how they can be accommodated in the available issue-slots. ALU operations
are not considered as an ALU is available in every issue-slot. Branch imme-
diate is restricted to19-bit maximum and requires a single issue-slot with the
CTRL unit. An operation with a short IMM is scheduled on a single conflict-
free issue-slot, while that with a long IMM is scheduled on two issue-slots.
The first9 bits of the long IMM are carried by the operation slot, while the
last23 bits are carried by anS_Foperation scheduled on a different issue-slot.
TheS_Fis a custom operation with the new opcode of:1000−−−− (8-bit),
utilizing a space of16 opcodes. Bit0 of theS_Fopcode is used to carry the
last bit of a long IMM (bit32). Bits 3 to 1 of the S_F opcode represent the
number of the issue-slot for which theS_F operation is carrying the last23
bits of the long IMM. Because theS_Fopcode reserves16 opcodes, the total
number of additional free opcodes provided by the new encoding scheme is
128 - 16 = 112.

3.5 ISA Extension Support

In this section, we provide a design methodology to extend the instruction set
and generate binary code for user-defined/custom operations for theρ-VEX
processor. With the new encoding scheme, there are112 free opcodes that can
be utilized to extend the ISA. The VEX compiler can generate binary code for
custom operations that are defined in a C application. Following our method-
ology, it is very easy to implement the hardware for a custom operation for the
ρ-VEX processor. Additionally, users can select to add certain common cus-
tom operations (e.g.,abs, differentsub-word operations, etc.) at design time
to theρ-VEX processor.

56 CHAPTER 3. DESIGN-TIME CONFIGURABLE PROCESSOR

Table 3.5:Position of FUs, borrowing scheme for long IMM, and instruction mapping
for the2-issue and4-issueρ-VEX processors. Here, AU, MU, MM, CT, S, and L mean
ALU, MUL, MEM, CTRL, short, and long, respectively.

Slot number 1 0

Functional units AU

MU

MM

AU

MU

CT

Borrowing scheme 0 1

Mapping scheme for instructions

MU L MU L S_F(1)

MM L MM L S_F(1)

MU1 S , MU2 S MU2 S MU1 S

MU S , MM S MM S MU S

MU S , CT MU S CT

MM S , CT MM S CT

(a) 2-issueρ-VEX processor

Slot number 3 2 1 0

Functional units AU

MM

AU

MU

AU

MU

AU

CT

Borrowing scheme 0 , 2 3 , 1 2 , 0 1 , 3

Mapping scheme for instructions

MU1 L , MU2 L S_F(2) MU2 L MU1 L S_F(1)

MU1 L , MM L MM L S_F(3) MU1 L S_F(1)

MU1 L , MM S , CT MM S MU1 L S_F(2) CT

MU1 L , MU2 S , MM S MM S MU2 S MU1 L S_F(1)

MU1 L , MU2 S , CT S_F(2) MU1 L MU2 S CT

MU1 S , MU2 S , MM L MM L MU1 S MU2 S S_F(3)

MU1 S , MU2 S , MM S , CT MM S MU1 S MU2 S CT

MU1 S , MM L , CT MM L S_F(3) MU1 S CT

(b) 4-issueρ-VEX processor

3.5.1 Binary Code Generation for Custom Operations

The VEX compiler has support for user-defined operations at Clanguage level
with the help of special intrinsic called_asm(). When a call is inserted to
_asm() in a C program with proper parameters, the operation is scheduled and
registers are allocated by the compiler. Hence, C variablesfor operands and
destinations can be referred. Calls to _asm() are interpreted in a special way.
The “vexasm.h” header file [1] includes the implicit function prototypes for
the _asm() intrinsics, as presented in Figure 3.8.

The opcode argument is a numeric identifier for the operation. Operations
defined with _asm() intrinsic can have up to8 optional arguments after opcode
that represent the values read by the operation. These operations can have
no or up to4 return values. Taking the address of an _asm*() function is
illegal. Figure 3.9 presents an example of the _asm() usage implementing a
division (DIV) function and its VEX assembly code for a2-issue processor.
In this example, the intrinsic0x01implements the division of two numbers. It
is called with two arguments and stores its result in a third variable. This is
the simplest implementation for a DIV operation and cannot handle the case
when a division by zero occurs. This example is just for illustration purpose to

3
.5

.
IS

A
E

X
T

E
N

S
IO

N
S

U
P

P
O

R
T

57
Table 3.6: Positions of FUs, borrowing scheme for long IMM, and instruction mapping for the8-issue and2-4-8-issueρ-VEX proces-
sors. Here, AU, MU, MM, CT, S, and L mean ALU, MUL, MEM, CTRL, short, and long, respectively.

Slot number 7 6 5 4 3 2 1 0

Functional units AU , MM AU , MUL AU , MUL AU AU AU , MUL AU , MUL AU , CT

Borrowing scheme 4 , 6 7 , 5 6 , 4 5 , 3 4 , 2 3 , 1 2 , 0 1 , 3

Mapping scheme for instructions

MUL1 L , MUL2 L , MUL3 L , MUL4 L S_F(6) MUL4 L MUL3 L S_F(5) S_F(2) MUL2 L MUL1 L S_F(1)

MUL1 L , MUL2 L , MUL3 L , MM L MM L S_F(7) MUL3 L S_F(5) S_F(2) MUL2 L MUL1 L S_F(1)

MUL1 L , MUL2 L , MUL3 S , MUL4 S , MM L MM L MUL4 S MUL3 S S_F(7) S_F(2) MUL2 L MUL1 L S_F(1)

MUL1 L , MUL2 L , MUL3 S , CT , MM L MM L S_F(5) MUL2 L S_F(7) S_F(2) MUL1 L MUL3 S CT

MUL1 L , MUL2 S , MUL3 S , MUL4 S , CT , MM L MM L MUL4 S MUL3 S S_F(7) S_F(2) MUL1 L MUL2 S CT

MUL1 S , MUL2 S , MUL3 S , MUL4 S , MM L , AU L MM L MUL4 S MUL3 S S_F(7) S_F(0) MUL2 S MUL1 S AU L

MUL1 L , MUL2 L , MUL3 S , MUL4 S , MM S , CT MM S MUL4 S MUL2 L S_F(5) S_F(2) MUL1 L MUL3 S CT

MUL1 S , MUL2 S , MUL3 S , MUL4 S , MM L , CT , AU S MM L MUL4 S MUL3 S S_F(7) AU S MUL2 S MUL1 S CT

(a) 8-issueρ-VEX processor

Slot number (2-issue) 1 0 1 0 1 0 1 0

Slot number (4-issue) 3 2 1 0 3 2 1 0

Slot number (8-issue) 7 6 5 4 3 2 1 0

Functional units AU , MUL , MM AU , MUL , CT AU , MUL , MM AU , MUL , CT AU , MUL , MM AU , MUL , CT AU , MUL , MM AU , MUL , CT

Borrowing scheme Same as for 2-issue, 4-issue, and 8-issue. Any issue-width code will execute correctly.

Mapping scheme Same as for 2-issue, 4-issue, and 8-issue. Any issue-width code will execute correctly.

(b) 2-4-8-issueρ-VEX processor

58 CHAPTER 3. DESIGN-TIME CONFIGURABLE PROCESSOR

 /* From “<vex>/usr/include/vexasm.h” */

 typedef unsigned int __vexasm1;
 typedef struct {unsigned int n0, n1;} __vexasm2;
 typedef struct {unsigned int n0, n1, n2;} __vexasm3;
 typedef struct {unsigned int n0, n1, n2, n3;} __vexasm4;

 void _asm0 (int opcode, ...);
 __vexasm1 _asm1 (int opcode, ...);
 __vexasm2 _asm2 (int opcode, ...);
 __vexasm3 _asm3 (int opcode, ...);
 __vexasm4 _asm4 (int opcode, ...);

Figure 3.8: Prototypes for the _asm() intrinsics [1].

show how a user-defined operation can be defined and compiled with the VEX
compiler. The compiler schedules the code around the intrinsic call _asm()
and operates the usual optimizations and register allocation tasks. The_asm
intrinsic is distinguished by the opcode, which is1 in this example. The latency
and the number of occupied issue-slots for an_asm()operation can be set in
the machine configuration file which is provided to the compiler.

3.5.2 Methodology to Extend the ISA

Custom operations are defined at the C language level in the source code. The
modified C source code with the custom operations can be simulated with the
VEX simulator [1] for performance analysis. Figure 3.10 depicts a methodol-
ogy/flowchart that can be used to implement a custom operation for theρ-VEX

 #include <vexasm.h>
 #define DIV(x, y) ((int)_asm1(0x01, (x), (y)))

 void main () {
int x, y, z;
x = 2 ; y = 4;
z = DIV(x, y); }

;;
c0 mov $r0.3 = $r0.0
c0 mov $r0.2 = 2
;;
c0 asm,1 $r0.2 = $r0.2, 4
c0 return $r0.1 = $r0.1, (0x0), $l0.0
;;

Figure 3.9: The _asm() usage example for implementing a division (DIV) function
and its VEX assembly code for a2-issueρ-VEX processor.

3.5. ISA EXTENSION SUPPORT 59

processor. First of all select an opcode from the available unused opcodes and
add it to the opcode_pkg.vhd file. This package file contains the opcode con-
stants and parameters. After this, determine whether the only decoding the
new operation is enough or execution is also needed. If execution is also re-
quired determine which of the available FUs (ALU, MUL, CTRL,or MEM)
will execute the new operation. In the selected FU, add code to select the re-
sult based on the new operation. This will mainly comprise ofadding anelsif
statementto the selected FU design file (e.g., for ALU, this file is the alu.vhd).
Also add the prototypes and the function definitions relatedto the functionality
of the new operation to the package file for the selected FU (e.g., for ALU, this
file is alu_operations.vhd). Finally, adjust the decoder (decode.vhd) by adding
the decode logic and elsif statement to generate and select the required signals
and values for the new operation. For operations which only require decoding
(such as an operation for masking an interrupt), there is no need to update the
execute unit. Modifying the decoder is enough to generate the required signals.
Instead of adding to the already available standard FUs, operations can also be
added as separate custom FUs. In this case, the custom FU is placed in a lane
in parallel to the standard FUs. The final result is selected either from the cus-
tom FU or the regular FUs depending upon the signals from the decoder. A
custom operation requiring more than two inputs and/or generating more than
one output can be expanded over multiple execute lanes. One execute lane can
execute an operation with at maximum two inputs and one output. The opcode
will be decoded by the selected decode lanes simultaneous each accessing a
different set of registers for the operation expanded over multiple lanes.

3.5.3 Design-time Selectable Custom Operations

We provide some commonly used operations that are not part ofthe VEX
ISA as design-time custom operation for theρ-VEX processor, as listed in
Table 3.7. These operations can be enabled to be included in aprocessor by
setting a bit in the rVEX_package at design time. Sub-word operations utilize
a32-bit operation slot for either two16-bit operations or four8-bit operations.
These operations are very common, especially in multimediaapplications such
as pixel manipulation. Utilizing these sub-word operations, the throughput
for operations operating on bytes and double-bytes can be increased. Figure
3.11 presents the hardware results for these operations fora 4-issue pipelined
ρ-VEX processor with4 ALU, 2 MUL, and 1 MEM units. The operations
are included in the regular/default ALU. In Figure 3.11, theReferencedesign
represents the base4-issueρ-VEX processor, to which the custom operations

60 CHAPTER 3. DESIGN-TIME CONFIGURABLE PROCESSOR

Start

Determine which FU (ALU ,
MUL, CTRL, MEM) will

execute the new operation
or it will only be decoded

From the available opcodes,
select an unused opcode for

the new operation

Add the new opcode to the
opcode_pkg.vhd which

contains opcode constants

In the selected FU, e.g.,
ALU.vhd, add code (elsif

statement) to select the result
based on the new opcode

Add functions and prototypes
to the file which defines the

functionalities for the selected
FU, e.g., alu_operations.vhd

Adjust the decoder to
generate signals and values

for the new operation (add
elsif statement and decode
logic to the decode.vhd file)

End

Figure 3.10: Methodology/Flowchart for implementing a custom operation.

are then added. These operations reduce the maximum clock frequency in
the range of3% to 14%, and utilize moderate hardware resources depending
upon the number of ALUs containing the operations. With the help of the
VEX simulator, the total gain (in terms of executions cycles) due to adding
a custom operation to the design can be determined in advance. If the clock
cycle reduction is more than the degradation due to the critical path increase,
the designer can choose to add the custom operation by setting a bit in the
rVEX_pkg.vhd file.

3.5. ISA EXTENSION SUPPORT 61

Table 3.7: List of design-time available custom operations.

Custom operation Description

VECT2ADD16 two 16-bit additions in a single 32-bit slot

VECT4ADD8 four 8-bit additions in a single 32-bit slot

VECT2SUB16 two 16-bit subtractions in a single 32-bit slot

VECT4SUB8 four 8-bit subtractions in a single 32-bit slot

VECT2SHR16 two 16-bit shift left in a single 32-bit slot

VECT4SHR8 four 8-bit shift left in a single 32-bit slot

VECT2SHL16 two 16-bit shift right in a single 32-bit slot

VECT4SHL8 four 8-bit shift right in a single 32-bit slot

PACK16HIGH packs the higher 16 bits of two operands

PACK16LOW packs the lower 16 bits of two operands

ABS absolute of a 32-bit number

VECT2ABS16 two 16-bit absolute in a single 32-bit slot

VECT4ABS8 four 8-bit absolute in a single 32-bit slot

0

1000

2000

3000

4000

5000

6000

7000

Ref
er

en
ce

VECT2A
DD16

VECT4A
DD8

VECT2S
UB16

VECT4S
UB8

VECT2S
HR16

VECT4S
HR8

VECT2S
HL16

VECT4S
HL8

PACK16
HIG

H

PACK16
LOW

ABS

VECT2A
BS16

VECT4A
BS8

S
lic

e
R

eg
is

te
rs

 a
n

d
 L

U
T

s

115

120

125

130

135

140

F
re

q
u

en
cy

 (
M

H
z)

Slice Registers Slice LUTs Slice LUTs (1 ALU) Frequency

Figure 3.11: Implementation results for the custom operations listed inTable 3.7 for
a 4-issueρ-VEX processor with4 ALU, 2 MUL, and1 MEM units for the Virtex-6
FPGA. The processor also requires32 RAMB18s and4 DSP48E1s modules.

62 CHAPTER 3. DESIGN-TIME CONFIGURABLE PROCESSOR

3.6 Datapath Sharing

The higher performance of VLIW processors does not come for free as their
resources do not scale well. As stated previously in the Section 3.2, the hard-
ware/area requirement for a multiported register file is directly proportional
to the number of read and write ports, and these parameters donot scale to
a large extent. To reduce the pressure on the number of read and write ports
of the register file, aclusteredarchitecture is used. A cluster is a collection
of a register file and a set of tightly coupled FUs. A multi-cluster processor
has multiple clusters, but a single execution thread, whilea multiprocessor
has multiple processors and may have multiple execution threads. Clustered
VLIW processors do not scale well in terms of performance dueto the inter-
cluster communication. The delay resulting from inter-cluster communication
reduces the machine performance. For example, a16-unit/2-cluster proces-
sor performs roughly like a12-unit/1-cluster processor and an8-unit/2-cluster
processor like a6-unit/1-cluster processor [10].

To avoid this problem, we designed a dual-processor system utilizing the non-
pipelinedρ-VEX processor as its base. Parameters for each base processor
such as the issue-width, the number and type of FUs, supported instructions,
type and size of register file, etc., can be selected at design-time. The base
processor has a multi-cycle design and consists offetch, decode, execute, and
writebackstages/units. During execution of a code, only one unit of the base
processor is active per clock cycle, hence, FUs can be sharedamong different
instances of the processor. A VLIW multiprocessor system (where each pro-
cessor is a VLIW processor) can exploit both fine-grain (instruction level) as
well as coarse-grain (data level) parallelism.

3.6.1 Dual-processor System

Figure 3.12(a) depicts a dual-processor system implemented with two non-
pipelined4-issueρ-VEX processors. Each base processor can access its own
instruction and data memories. The dual-processor system can target TLP or
DLP, while the individual processor can exploit ILP. For example, if we need to
encrypt100 Kbytes of data according to advanced encryption standard (AES)
algorithm, we run the application code on both processors each encrypting50
Kbytes of data and then combine the result.Thus,we can achieve almost twice
the performance of a single-processor system.

3.6. DATAPATH SHARING 63

Instruction
Memory 0

Data
Memory 0

CTRL 0

Decode 0Fetch 0 Write
back 0

GR 0 BR 0 MEM 0

Execute 0

A

A

A

A

M

M

Instruction
Memory 1

Data
Memory 1Decode 1Fetch 1 Write

back 1
Execute 1

A

A

A

A

M

M

MEM 1

UART

CTRL 1 GR 1 BR 1

PC 0

PC 1

(a) Non-shared datapath

Instruction
Memory 0

Data
Memory 0Decode 0Fetch 0 Write

back 0

GR 0CTRL 0 MEM 0

UARTExecute

A

A

A

A

M

M

Resource
Controller

BR 0

BR 1

Instruction
Memory 1

Data
Memory 1Decode 1Fetch 1 Write

back 1

MEM 1GR 1CTRL 1

PC 0

PC 1

(b) Shared datapath

Figure 3.12:VLIW dual-processor systems.

3.6.2 Datapath-shared Dual-processor System

Figure 3.13 presents the implementation results (FPGA slices) for the base
processor for the Virtex-II ProXC2VP30-7FF896FPGA. As can be observed
from the figure, theexecuteunit and the GR register file version1 (64 reg-
isters) require35.50% and59.02% slices, respectively, of the total proces-
sor slices. Apart from the slices, the processor/execute unit also utilizes14
MULT18X18s. We modified the design of the dual-processor system presented
in Section 3.6.1. Instead of implementing an execute unit ineach base proces-
sor, we developed a scheme to share it [61]. Because the base processor has
a non-pipelined design, we can share the execute unit between two proces-
sors. In a non-pipelined processor, a new instruction is only fetched when the
older one gets executed and results written back. Hence, theexecute unit is
not active all the time and can be utilized by the second processor. Both pro-
cessors execute their own threads sharing a single execute unit, thus reducing
hardware area and power consumption. In the current design of ρ-VEX, only
two cores can share a single execute unit. If a larger multiprocessor is needed,
e.g., a quad-processor system, two dual-processor systemseach with a sin-
gle execute unit can be combined. Figure 3.12(b) depicts ourdatapath-shared
dual-processor system.

We designed aResource Controllerunit for the datapath-shared dual-processor
system to share the singleexecuteunit. It takes inputs from thedecodeunits
of the two processor cores, resolves some conflicts, multiplexes, and provides
these inputs periodically to the single execute unit. Output from the shared ex-
ecute unit are supplied to thewritebackunits of both the cores at the same time.

64 CHAPTER 3. DESIGN-TIME CONFIGURABLE PROCESSOR

Fetch; 97; 0.67%
Decode; 296; 2.03%

Execute; 5024; 35.50%
Writeback; 172; 1.18%

CTRL; 68; 0.47%

MEM; 146; 1.00%

BR; 62; 0.43%

GR; 8594; 59.02%

Figure 3.13: Implementation results (slices) for the base4-issue non-pipelinedρ-
VEX processor’s modules for the Virtex-II Pro FPGA. The complete processor re-
quires14561 slices and14 MULT18X18s. The register file is64×32-bit.

The intended writeback unit writes the results based on the input signals from
its corresponding decode unit. TheResource Controllerutilizes 1606 slices
and runs at a maximum frequency of168.87 MHz. It reduces the critical path
by avoiding the logic and connections of the additional execute unit, thereby,
increasing the clock frequency of the datapath-shared system compared to the
non-shared datapath system.

3.6.3 Implementation Results

Figure 3.14 presents the implementation for our dual-processor systems
(shared and non-shared) for the same Virtex-II Pro FPGA. Although theρ-
VEX processor is parametrized, the base processor used in the dual-processor
systems has4 issue-slots with4 ALUs, 2 MULs, 1 MEM unit, a 64×32-
bit 4W8R ports GR register file, and an8×1-bit 4W4R ports BR register file.
From Figure 3.13 and Figure 3.14, we can observe that the hardware utilization
becomes double for the dual-processor system compared to a single-process
system, as expected. The datapath-shared dual-processor system reduces this
hardware utilization by sharing the execute unit between two processor cores.
We can observe a similar trend in hardware resources, when the number of
multiported registers is increased from8 to64. To reduce the resources utilized
by the register file version1 (which requires more than59% of the total base
processor slices), we utilized the BRAM-based register fileversion5 (register
renaming) presented in Section 3.2.2. The results for the dual-processor sys-
tems (shared and non-shared) with the BRAM-based register file are depicted
in Figure 3.14. Compared to the version1 register file, the dual-processor

3.6. DATAPATH SHARING 65

0

5000

10000

15000

20000

25000

30000

35000

8 16 24 32 64 up to 512
Number of registers

N
u

m
b

er
 o

f
F

P
G

A
 S

lic
es

0

10

20

30

40

50

60

70

80

90

F
re

q
u

en
cy

 (
M

H
z)

Register file utilizing the FPGA slices (version 1)

Register file utilizing
the FPGA BRAMs

(version 5)

Non-shared-design-Slices Shared-design-Slices

Non-shared-design-Frequency Shared-design-Frequency

Figure 3.14: Implementation results for the dual-processor system (shared and non-
shared) for a Virtex-II Pro FPGA. Apart from the slices, the datapath-shared and non-
shared dual-processor systems also require14 and28 MULT18X18s, respectively.
The BRAM-based design also utilizes64 RAMB18s.

systems with version5 register file considerably reduces the slice utilization
at the expense of BRAM utilization. Consequently, we have two alternate
designs for the dual-processor systems. If the designer hasextra area/slices,
he/she can instantiate the slice-based design. If slices are limited, the designer
can instantiate the BRAM-based design. The datapath-shared dual-processor
system runs at higher clock frequency compared to the non-shared-datapath
dual-processor system.

3.6.4 Related Work

Softcore multiprocessor systems as found in literature aremostly based on
either the MicroBlaze or the Nios-II softcore processors. Altera provides a
tutorial [62] for creating a multiprocessor system utilizing the Nios-II pro-
cessor. The tutorial provides a complete design flow from hardware building
to software programming. A design of a symmetric multiprocessing on pro-
grammable chips utilizing the Nios-II softcore as the basicbuilding block is
presented in [63]. Similarly, different designs of MicroBlaze-based multipro-
cessor systems are available [64] [65] [66] [67] [68]. The main drawback
of all these designs is that they are using proprietary softcores which are not
open-source. Additionally, the Nios-II and the MicroBlazeare single-issue
processor cores and cannot exploit ILP like a VLIW processor.

66 CHAPTER 3. DESIGN-TIME CONFIGURABLE PROCESSOR

3.7 Summary

In this chapter, we presented a methodology to implement an instance of the
open-source design-time configurableρ-VEX processor. Configuration files
describing different types of parameters for theρ-VEX processor, such as
issue-width, types of FUs, register file size, etc., are utilized for architec-
tural exploration. These files are provided to the VEX compiler/simulator
for performance analysis and code generation. The same filesprovide in-
put to the parametrized VHDL description for aρ-VEX processor generation.
Hence, without having any knowledge of the HDLs, a user can generate a de-
sired/optimizedρ-VEX processor. The compiler generated code is assembled
into instruction and data memory files which can be synthesized together with
the rest of the processor design files. The chapter furthers by presenting dif-
ferent types of multiported register files and different types of interrupt and
exception systems to match different application requirements. Additionally,
a new instruction encoding scheme and a methodology to add user-defined
operations to aρ-VEX processor has been presented. In the end, a datapath
sharing mechanism has been explored in a dual-processor system to reduce its
hardware utilization.

Note.

The content of this chapter is partially based on the following papers:

F. Anjam , S. Wong, and M.F. Nadeem. A Multiported Register File with Reg-
ister Renaming for Configurable Softcore VLIW Processors. In International
Conference on Field Programmable Technology (FPT), pp. 403–408, 2010.

F. Anjam , S. Wong, and M.F. Nadeem. A shared Reconfigurable VLIW Mul-
tiprocessor System. InInternational Parallel and Distributed Processing Sym-
posium (IPDPS-RAW), pp. 1–8, 2010.

F. Anjam , Q. Kong, R.A.E. Seedorf, and S. Wong. A Run-time Task Migration
Scheme for an Adjustable Issue-slots Multi-core Processor. In International
Symposium on Applied Reconfigurable Computing (ARC), pp. 102–113, 2012.

F. Anjam , Q. Kong, R.A.E. Seedorf, and S. Wong. On the Implementation
of Traps for a Softcore VLIW Processor. InHiPEAC Workshop on Reconfig-
urable Computing (WRC), 2012.

4
Run-time Reconfigurable Processor

I ssue-width is an important parameter for a VLIW processor. Increasing the
issue-width can improve the performance of an application by exploiting

the increased ILP. On the other hand, larger issue-width processors consume
more power due to increased datapath. Therefore, VLIW processors whose
datapath can be reconfigured at run-time are needed to targetperformance
vs. power consumption trade-offs. In Chapter3, we presented a design-time
configurable VLIW processor that could change its organization before it is
implemented in hardware. In this chapter, we extend that design to make it run-
time reconfigurable. The run-time reconfigurable processorutilizes multiple2-
issueρ-VEX cores each of which can run independently. If not in use,each core
can be taken to a lower power mode by gating off its source clock. Multiple2-
issue cores can be combined at run-time to form a variety of configurations of
VLIW processors. The run-time reconfigurable parameters include the issue-
width, the number and type of FUs, and the size of the general register file.
The processor can target a variety of applications having instruction and/or
data level parallelism. Following are the contributions ofthe chapter:

• A run-time reconfigurable multi-core processor is presented. The
smaller cores can be utilized independently to exploit thread level paral-
lelism or can be combined at run-time to form larger issue-width cores
to exploit ILP. Performance vs. power consumption trade-offs can be
achieved at run-time.

• A mechanism for run-time task migration among different cores of the
multi-core processor is implemented to improve the performance or re-
duce the power consumption of the processor at run-time.

• A setup for analysis of simultaneous reconfiguration of issue-width and
instruction cache for the run-time reconfigurable processor is presented.

67

68 CHAPTER 4. RUN-TIME RECONFIGURABLE PROCESSOR

The remainder of the chapter is organized as follows. Section 4.1 presents the
design and implementation of our run-time reconfigurable processor. The de-
sign of a dynamically reconfigurable register file is discussed in Section 4.2.
Section 4.3 presents a run-time task migration scheme to shift a task running
on one type of core to another for performance improvement orpower reduc-
tion. Section 4.4 presents a setup to analyze the effect of simultaneous recon-
figuration of issue-width and instruction cache on performance improvement
and energy consumption of the run-time reconfigurable processor. Finally, the
chapter is concluded by presenting a summary in Section 4.5.

4.1 Run-time Reconfigurable/Adaptable Processor

Figure 4.1 depicts the execution cycles normalized to an8-issue core forma-
trix multiplication, secure hash algorithm (SHA), andquick sort (Qsort)ap-
plications. It can be observed from the figure that increasing the issue-width
from 2 to 4 and8 increases the performance considerably for the matrix mul-
tiplication. For the SHA, the change in issue-width from2 to 4 or 2 to 8

increases the performance considerably, but going from4 to 8-issue only pro-
duces a small10% increase in performance. For the Qsort, there is almost
no change for different issue-widths. All these three applications have differ-
ent ILP, and hence, a specific issue-width processor can provide the maximum
possible performance at reasonable power budget. For a non-reconfigurable
VLIW processor, the configuration and issue-width of the processor are fixed
at design time. Therefore, the issue-width cannot be adjusted to suit a different
set of applications after fabrication.

Utilizing the design presented in Chapter 3, we implementedtwo versions
of run-time reconfigurable/adaptable/adjustable issue-slots VLIW processors
called2-4-issue[69] and2-4-8-issue[70] processors. The issue-width and the
number and type of FUs in these processors can be reconfiguredat run-time
while the processor is active and running. The2-4-issue processor has two2-
issueρ-VEX cores, which can be used independently or combined together to
form a4-issue processor at run-time. The processor is implementedutilizing
the Xilinx partial reconfiguration flow. With the help of a small set of external
control signals and loading a small partial bitstream, the processor issue-width
can be reconfigured. The2-4-8-issue processor has four2-issueρ-VEX cores,
which can be used independently or multiple2-issue cores can be combined
together to form larger issue-width processors at run-time. The processor is
implemented utilizing the virtual reconfiguration flow. A set of external sig-

4.1. RUN-TIME RECONFIGURABLE/ADAPTABLE PROCESSOR 69

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Matrix_multiplication SHA Qsort

E
xe

cu
ti

o
n

 c
yc

le
s

n
o

rm
al

iz
ed

 t
o

 8
-i

ss
u

e
co

re

2-issue 4-issue 8-issue

Figure 4.1: Execution cycles for matrix multiplication, SHA, and Qsortapplications.

nals controls the configuration of the issue-width, and there is no need for par-
tial bitstream. If not in use, each2-issue core in the2-4-issue and2-4-8-issue
processors can be taken to a lower power mode by gating off thesource clock,
and hence, the total power consumption of the processors canbe reduced at
run-time. Before an application starts execution, the machine’s organization
can be adjusted to suit the application requirements. Applications with more
fine-grain (instruction level) parallelism can be run on thelarger issue-width
cores for better performance, while applications with morecoarse-grain (data
level) parallelism can be run on multiple2-issue cores with the data divided
among the cores for faster execution. Performance vs. powerconsumption
trade-offs can be achieved for different applications at run-time.

4.1.1 Reconfiguration Flows

In this section, we discuss the two reconfiguration flows thatare utilized to
design the2-4-issue and2-4-8-issue reconfigurable processors.

Virtual Reconfiguration Flow In virtual reconfiguration, all the hardware
resources required for a design implementation are made available. The design
is pre-placed and the reconfiguration is provided by utilizing different multi-
plexers and turning certain modules ON and OFF. External/internal signals
driven by configuration register bits control the reconfiguration/re-adjustment
of the running system. Designs with virtual reconfigurationflow are simple
to implement and require only few cycles for reconfiguration. The disadvan-
tage is that all the required resources have to be made available all the time
even when those are not in use. Our2-4-8-issue reconfigurable processor is
implemented utilizing the virtual reconfiguration flow.

70 CHAPTER 4. RUN-TIME RECONFIGURABLE PROCESSOR

Partial Reconfiguration Flow Partial reconfiguration is utilized to time
share certain hardware resources among different modules of a design at run-
time. According to the Xilinxearly access partial reconfiguration (EAPR)de-
sign methodology [71], a design is split intostaticandreconfigurableregions.
The static region contains those parts of the design which donot require run-
time reconfiguration. The reconfigurable region contains the modules which
require run-time reconfiguration. The communication between the static and
reconfigurable regions is provided by special modules called bus macros. Sep-
arate bitstreams are generated and downloaded to an FPGA at run-time in order
to change the functionality of a reconfigurable region. Our2-4-issue processor
is designed according to the partial reconfiguration flow, although it also uti-
lizes the virtual reconfiguration flow for some parts of the design. The advan-
tage of partial reconfiguration flow is that resources/area can be shared among
different modules. The disadvantage is that it takes longer(in the range of
milliseconds) to reconfigure a module in the current FPGA technology.

4.1.2 Design of the Run-time Reconfigurable Processors

In this section, we present the design of the2-4-issue and2-4-8-issue recon-
figurable processors. Each processor consists of multiple2-issue baseρ-VEX
cores. The base processor is pipelined consisting offetch, decode, execute0,
execute1/memory,andwritebackstages/units. Figure 4.2 depicts the FUs avail-
able per issue-slot in the2-4-issue and2-4-8-issue processors. Each2-issue
base core has two ALUs, two MULs, a MEM and a CTRL unit. Therefore,
every issue-slot in the2-4-issue and2-4-8-issue processors has an ALU and
a MUL, while MEM and CTRL units are available in alternate issue-slots. A
4-issue core has double the resources of a2-issue core except that only one of
the CTRL units is utilized when the two2-issue cores are combined. Similarly,
an8-issue core has double the resources of a4-issue core except that only one
of the CTRL units is active when multiple2-issue cores are combined.

ALU
MUL
MEM

ALU
MUL
CTRL

ALU
MUL
MEM

ALU
MUL
CTRL

(a) The2-4-issue processor.

ALU
MUL
MEM

ALU
MUL
CTRL

ALU
MUL
MEM

ALU
MUL
CTRL

ALU
MUL
MEM

ALU
MUL
CTRL

ALU
MUL
MEM

ALU
MUL
CTRL

(b) The2-4-8-issue processor.

Figure 4.2: Execution units in different issue-slots.

4.1. RUN-TIME RECONFIGURABLE/ADAPTABLE PROCESSOR 71

A signal calledissue_ctrlmanages the issue-width reconfiguration/adjustment.
The signal is controlled by dedicated bits in the configuration registers of
the processors. The2-4-issue processor utilizes a single bitissue_ctrlsig-
nal. When this signal is at logiclow, the two2-issue cores can be utilized
independently. When this signal is at logichigh, the two2-issue cores are
combined and they behave like a single4-issue core with double the resources
of a 2-issue core. The2-4-8-issue processor utilizes a two-bitissue_ctrlsig-
nal. When theissue_ctrlbits are “00”, the system behaves as four independent
2-issue cores, when “01”, the system behaves as two2-issue and one4-issue
cores, when “10”, the system behaves as two4-issue cores, and when “11”,
the system behaves as an8-issue core. After these bits are written into the
configuration register, the configuration and the issue-width are changed in a
single cycle. The unused FUs and parts of the processors are clock gated to
reduce the dynamic power consumption. Both the2-4-issue and2-4-8-issue
processors consist of different units, namelyfetch, decode, execute, andwrite-
back. In order to make the processors run-time reconfigurable, wecombined
these units into two modules calledfrontendandbackend. Figure 4.3 depicts
the general views of the2-4-issue and2-4-8-issue processors.

Frontend The frontend of the2-4-issue and2-4-8-issue processors requires
reconfiguration/adjustment for changing the configurationand issue-width at
run-time. It consists of the fetch and decode units, and the GR and the BR
register files. For the2-4-issue processor, the decode unit is the only mod-
ule that is reconfigured by loading a partial bitstream to switch between two
2-issue cores to one4-issue core or vice versa. The other modules are con-
trolled by theissue_ctrlsignal, and they do not require a partial bitstream for

4-issue core

2-issue core

2-issue core

Instruction
memory

Data
memory

(a) The2-4-issue processor.

4-issue core

2-issue core

2-issue core

8-issue core

4-issue core

2-issue core

2-issue core

Instruction
memory

Data
memory

(b) The2-4-8-issue processor.

Figure 4.3: General view of the run-time reconfigurable issue-slots processor.

72 CHAPTER 4. RUN-TIME RECONFIGURABLE PROCESSOR

reconfiguration. This is done in order to minimize the numberof resources
to be reconfigured and hence, minimize the size of the partialbitstream. This
resulted in reduced configuration time as well as reduced memory storage for
the partial bitstreams. The2-4-8-issue processor utilizes virtual reconfigura-
tion and does not require a partial bitstream for reconfiguration. All modules
in the frontend are reconfigured utilizing theissue_ctrlsignal and all the re-
sources for the processor are already available and pre-placed. It is only a
matter of turning ON and OFF some of the resources in order to change the
processor configuration. Following we discuss all modules of the frontend for
both the2-4-issue and2-4-8-issue processors.

Fetch Unit A 2-issue fetch unit splits an incoming long instruction into two
syllables (operations for individual execution units), and then passes them to
the decode unit. Therefore, multiple2-issue fetch units can be combined to-
gether to form a combined fetch unit to behave like a larger issue (up to4-issue
for the 2-4-issue processor and up to8-issue for the2-4-8-issue processor)
fetch unit. Every2-issue fetch unit has aprogram counter (PC), which gen-
erates the next address for the instruction memory. The onlymodule of the
fetch unit that needs to be reconfigured is the PC. If multiplefetch units are
combined to form a larger issue-width core, only one of the PCs is running
and other PCs in that specific larger issue-width core are stopped. The signal
issue_ctrlis utilized for this purpose.

Decode Unit Multiple 2-issue decode units can be combined together to
form a decode unit for a larger issue-width processor. Thebranch/CTRLunit
which calculates the offset and the branch target addressesis included in ev-
ery 2-issue decode unit, but only one branch unit is working when multiple
2-issue decode units are combined. Each2-issue decode unit decodes its own
long instruction (64-bit) and raises high its owndonesignal when the last
VLIW instruction in the program (STOPinstruction) is executed and the last
result is written back. When a core is configured as a larger issue-width core,
the combined decode unit provides only one branch unit and one donesignal.
The otherdonesignals are tied to logic low. The signalissue_ctrlcontrols the
mechanism. For the2-4-issue processor, the decode unit is reconfigured by
loading a partial bitstream. Separate bitstreams are utilized to switch the two
2-issue cores to one4-issue core or vice versa.

4.1. RUN-TIME RECONFIGURABLE/ADAPTABLE PROCESSOR 73

General-Purpose Register File We implemented the GR register files for
the2-4-issue and2-4-8-issue processors utilizing BRAMs. The register files
can provide access to multiple configurations of our reconfigurable processors.
For the2-4-issue processor, the register file is designed such that thesingle
register file can provide access to a4-issue core or two2-issue cores at the
same time. Register file for the2-4-8-issue processor is depicted in Figure 4.4.
It can provide access to an8-issue core or two4-issue cores or one4-issue and
two 2-issue cores or four2-issue cores at the same time.

The register files are based on the version3 design presented in Section 3.2.2,
utilizing the18 Kbits embedded BRAMs. Each BRAM is configured in sim-
ple dual port (SDP) mode with1W1R port. In order to provide multiple ports,
the BRAMs are organized into multiple banks and data is duplicated across
various BRAMs. The register file for the2-4-8-issue processor has 8W16R
ports utilizing128 BRAMs each providing256 registers of32 bits each. The
distribution of the registers and ports for the different types of cores is pre-
sented in Table 4.1. Each of the active processor requires a maximum of64
multiported registers requiring6-bit address, but the combined register file has
to have256 registers requiring8-bit address. Each BRAM in the register file
has8-bit address to provide256 registers. The signalissue_ctrland a small
control logic are utilized inside the register file to generate the7th and8th

bits of the BRAM addresses. The GR register file for the2-4-issue processor
has 4W8R ports utilizing32 BRAMs each providing128 registers of32 bit
each. If the processor is configured as a4-issue core, all of the ports and the
lower 64 registers are utilized. If the processor is configured as two2-issue
cores, half of the ports are utilized by the first core and the second half by the
other core. The lower64 registers are utilized by one core and the upper64 by
the other core. Each of the active processor requires a maximum of 64 mul-
tiported registers requiring6-bit address, but the combined register file has to
have128 registers requiring7-bit address. Each BRAM in the register file has
7-bit address to provide128 registers. The signalissue_ctrlis utilized inside
the register file to generate the7th bit for the BRAM addresses. By utilizing
this mechanism, we avoided the register files to be reconfigured by loading the
partial bitstreams and hence, reduced the size of the partial bitstreams required
to alter the organization of the processors.

Branch Register File The VEX ISA specifies a1-bit 8-element multiported
BR register file for a multi-issue VLIW processor. The2-issue,4-issue, and
8-issueρ-VEX processors require BR register files with 2W2R ports, 4W4R
ports, and 8W8R ports, respectively. Since the size of this register file is small,

74 CHAPTER 4. RUN-TIME RECONFIGURABLE PROCESSOR

R
0 -R

255
0

R
0 -R

255
1

R
0 -R

25515

R
0 -R

255
0

R
0 -R

255
1

R
0 -R

255

R
0 -R

255
017

B
ank-0

B
ank-1

B
ank-7

W
rite P

ort 0

W
rite P

ort 1

W
rite P

ort 7

R
ead P

ort 0

R
ead P

ort 1

R
ead P

ort 15

R
0 -R

255

R
0 -R

255

1

D
irection T

able

A
ll W

rite P
orts

A
ll R

ead P
orts

issue_ctrl

1515

C
ontol Logic

Figure 4.4: 256×32-bit 8W16R ports register file for the2-4-8-issue processor.

it is implemented utilizing the FPGA’s slice flip-flops and slice LUTs instead
of BRAMs. For the2-4-issue processor, we implemented a16×1-bit BR reg-
ister file with 4W4R ports. Utilizing theissue_ctrlsignal, we partition the
register file among the configured cores. When the processor is configured as
one4-issue core, all of the ports and the lower8 registers are utilized. When
the processor is configured as two2-issue cores, half of the ports and the lower
8 registers make the BR register file for one core and the other half ports and
the upper8 registers make the BR register file for the second core. The signal
issue_ctrlcontrols this mechanism. For the2-4-8-issue processor, we imple-
mented a32×1-bit BR register file with 8W8R ports. The signalissue_ctrlis
used to share the register file among the configured cores. Thedistribution of
registers and ports for the register file is similar to that ofthe GR register file.

Backend The backend of the2-4-issue and2-4-8-issue adaptable processors
remains fixed and does not change when the issue-width is changed. It consists
of the execute and writeback units. Multiple2-issue writeback units (four for
the 2-4-8-issue processor and two for the2-4-issue processor) are combined
together. Each writeback unit can serve a2-issue core and multiple writeback
units can make a writeback unit for a larger issue-width core. Each lane of
the writeback unit can write to its corresponding port on theGR and BR reg-
ister files. Since these register files can handle the processor’s issue-width by

4.1. RUN-TIME RECONFIGURABLE/ADAPTABLE PROCESSOR 75

Table 4.1: Distribution of registers and ports for the256×32-bit 8W16R ports GR
register file for the2-4-8-issue processor.

Processor configuration Write ports Read ports Registers

One 8-issue 0 - 7 0 - 15 0 - 63

Two 4-issue
0 - 3
4 - 7

0 - 7
8 - 15

0 - 63
64 - 127

One 4-issue and two 2-issue
0 - 3
4 - 5
6 - 7

0 - 7
8 - 11
12 - 15

0 - 63
64 - 127
128 - 191

Four 2-issue

0 - 1
2 - 3
4 - 5
6 - 7

0 - 3
4 - 7
8 - 11
12 - 15

0 - 63
64 - 127
128 - 191
192 - 255

themselves, the writeback unit does not need to take care of that, and hence,
does not need reconfiguration/adjustment in order to combine or split the issue-
slots. Additionally, the backend consists of all the execution units which are
distributed across different issue-slots. For the2-4-8-issue processor,8 ALUs,
8 MULs, and4 MEM/LS units make up the backend, while the backend for
the2-4-issue processor consists of4 ALUs, 4 MULs, and2 MEM/LS units.

4.1.3 Memory System

In this section, we explain how the instruction and data memories for our run-
time adaptable processors can be set and reconfigured. Here,we only consider
instruction memories that are locally connected to the cores. We do not discuss
caches here. We discuss the memory system for the2-4-8-issue processor
only, while the2-4-issue processor follows similar organization. Figure 4.5
depicts the memory organization for the2-4-8-issue processor. Every2-issue
core has its own instruction memory to provide a64-bit instruction per clock
cycle. To generate the next address for an instruction memory, every2-issue
core has aPC in the fetch unit. If multiple2-issue cores are combined to
form a larger issue-width core, only one of the PCs is runningand other PCs
in that specific larger issue-width core are stopped. Theaddress generation
unit (AGU)receives input from all the PCs, and based on theissue_ctrlsignal,
generates the next addresses for all the instruction memories. The AGU keeps
the next addresses for all the instruction memories in synchand drives them in
lockstep according to the desired configuration scheme of the processor.

76 CHAPTER 4. RUN-TIME RECONFIGURABLE PROCESSOR

4-issue core

2-issue corePC0 LS0

2-issue corePC1 LS1

8-issue core

4-issue core

2-issue corePC2 LS2

2-issue corePC3 LS3

A
d

d
re

ss
 G

en
er

at
io

n
 U

n
it

Instruction
memory 0

Instruction
memory 1

Instruction
memory 2

Instruction
memory 3

Data
memory 0

Data
memory 1

Data
memory 2

Data
memory 3

A
d

d
re

ss
 G

en
er

at
io

n
 U

n
it

Figure 4.5: Instruction and data memories for the2-4-8-issue processor.

Every PC can be initialized with a user-defined instruction address value.
When the processor is configured as four2-issue cores, each instruction mem-
ory receives its next address value from its corresponding PC. A program for a
2-issue core can be placed at any desired location in its corresponding instruc-
tion memory. Before executing the program, the PC of that core is loaded with
the starting address of the program, and in the next cycle, the first instruction
of the program is fetched in. When two2-issue cores are combined to form a
4-issue core, the PC of the first core is active while that of thesecond core is
stopped. Based on theissue_ctrlsignal, the address generation unit drives the
input addresses for the two instruction memories in lockstep. The program for
the 4-issue core is split such that the two operations of the long instructions
are placed in the first instruction memory, while the last twooperations in the
second instruction memory for the combined core. The partitioned program
can be placed in the two instruction memories starting at thesame or differ-
ent location addresses. If the programs are placed at the different locations,
the AGU should know the offset in the two addresses. The same technique is
utilized when four2-issue cores are combined to form an8-issue processor.

Every2-issue core has a MEM or load/store (LS) unit and a separate data mem-
ory. When multiple2-issue cores are combined to form larger issue-width
cores, the individual data memories can be combined together to provide a
single larger data memory. The larger issue-width core can also utilize the ad-
ditional LS units to increase the data transport from/to thememory. TheAGU
receives the effective addresses from the individual LS units, and based on the
configuration bits, adapts the connection for the individual data memories.

4.1. RUN-TIME RECONFIGURABLE/ADAPTABLE PROCESSOR 77

4.1.4 Mechanism for Issue-width Adjustment

Each of the2-issue cores has an input signal calledrun. When this signal for
a core is at logichigh, the core starts fetching its VLIW instructions. When
this signal is at logiclow, the PC for that core is stopped. Therun signal
is also utilized to gate the source clock for a core. If a2-issue core is not
executing any application, it can be taken to a lower power mode by gating off
its source clock, and hence, the dynamic power of that core isreduced resulting
in a reduced total power consumption of the system. When a core finishes its
execution, it raises itsdonesignal. Thedonesignal is utilized in order to
schedule new code on a core. The signalissue_ctrlcontrols the organization
and issue-width of the cores. For example, when theissue_ctrlsignal is at
logic low, the 2-4-issue and2-4-8-issue processors behave as two and four
independent2-issue cores, respectively. Theissue_ctrlcontrols the PCs for the
cores that are combined to form a larger issue-width core anddrives them in
lockstep. It additionally controls the organization of theregister files. In order
to group or ungroup certain cores to change the issue-width,the selected cores
are first stopped utilizing theirrun signals. In the next cycle, theissue_ctrl
bits are modified to adjust the issue-width of the resulting core/cores. In the
next cycle, therun signals are asserted and the cores start fetching their VLIW
instructions. For2-4-8-issue processor, only the signalsissue_ctrl, run, and
doneare needed for the processor reconfiguration. For the2-4-issue processor,
apart from controlling the signalsissue_ctrl, run, anddone, a partial bitstream
is also loaded for the processor reconfiguration. The signals issue_ctrl, run,
anddoneare controlled through a configuration register.

4.1.5 Implementation Results

In this section, we present the implementation details and results for the2-4-
issue and2-4-8-issue adaptable processors.

2-4-issue processor The 2-4-issue processor is implemented utilizing the
Xilinx EAPR partial reconfiguration methodology [71]. The design is split
into two regions, calledstaticandreconfigurable, as depicted in Figure 4.6(a).
The processor consists of frontend, backend, instruction memory, data mem-
ory, and a UART module. Except the decode unit in the frontend, all other
modules in the frontend, the backend, memories, and UART areplaced in the
static region as they do not need partial dynamic reconfiguration. The decode
unit is placed in the reconfigurable region. The two regions are connected

78 CHAPTER 4. RUN-TIME RECONFIGURABLE PROCESSOR

Decoder

Reconfigurable
Region

Data
Memory

Write
Back

ExecuteFetch
Instruction

Memory

MEM

CTRL

BR

Static Region

B
M

B
M

GR

PC

UART

(a) Statically and partially reconfigurable regions.

 Region Slices BRAMs

Reconfigurable region 560 0
Bus macros 230 0
Register file 1060 32
Backend 8265 0
Static region 9944 32

(b) Hardware utilization.

Figure 4.6: Design and hardware resource utilization for the2-4-issue reconfigurable
processor for the Xilinx Virtex-II Pro XC2VP30-7FF896 FPGA.

throughbus macros[71]. Figure 4.6(b) presents the implementation results for
the2-4-issue processor. We used the Xilinx ISE version9.2.04i_PR14 and the
Virtex-II Pro XC2VP30-7FF896FPGA for the synthesis and implementation.
The processor can run up to a maximum of70 MHz.

Using the EAPR design methodology, partial bitstreams for the decode units
are generated and downloaded to the FPGA. The partial bitstream size for the
reconfigurable region is59 Kbytes, and is about24 times smaller than the full
bitstream size which is about1415 Kbytes. The width of internal configura-
tion access port (ICAP) in the Virtex-II Pro and Virtex-4 FPGAs is 8 bits and
32 bits, respectively. The maximum frequency for the ICAP in the Virtex-II
Pro and Virtex-4 FPGAs is66 MHz and100 MHz, respectively. The mini-
mum time needed to switch from two2-issue cores to one4-issue core or vice
versa is0.893 and0.148 milliseconds for Virtex-II Pro and Virtex-4 FPGAs,
respectively. These values do not include the time needed for accessing the
memory in which the bitstreams are placed. These represent the time needed
for the SelectMAP or ICAP to configure an FPGA. At50 MHz clock, these
reconfiguration times translate to a total of44650 and7400 clock cycles for
Virtex-II Pro and Virtex-4 FPGAs, respectively. It is to note that the Virtex-
II Pro and Virtex-4 FPGAs have almost similar structure. For the purpose of
illustration, we estimated the reconfiguration time for Virtex-4 FPGAs.

2-4-8-issue processor The 2-4-8-issue processor is implemented utilizing
the virtual reconfiguration flow. All the required resourcesare available, and
with the help of theissue_ctrlsignal, the configuration and issue-width of the

4.1. RUN-TIME RECONFIGURABLE/ADAPTABLE PROCESSOR 79

processor can be adapted. There is no need for downloading partial bitstreams.
Table 4.2 presents the implementation results for the2-4-8-issue processor. We
utilized the Xilinx ISE release version13.2 and the Virtex-6XC6VLX240T-
1FF1156FPGA for the synthesis and implementation. Each2-issue or any
larger issue-width processor in our design can run up to a maximum clock
frequency of110MHz. It is to note that Virtex-II Pro and Virtex-4 FPGAs have
4-input LUTs while Virtex-6 FPGAs have6-input LUTs. The DSPs elements
in Virtex-II Pro and Virtex-4 FPGAs are smaller compared to that in Virtex-6
FPGAs. Additionally, we designed a new MUL unit for theρ-VEX processor,
which is more efficient and requires less hardware resourcescompared to the
old one. We utilized different families of the Xilinx FPGAs (Virtex-II Pro,
Virtex-4 and Virtex-6) to show the effectiveness of our design under different
FPGA families. For example, the register file implementations presented in
Section 3.2 result in different hardware utilization for these different FPGAs.

4.1.6 Related Work

Voltron [72] combines small cores and the on-chip memory to make larger
issue-width cores at run-time to exploit instruction, data, or thread-level paral-
lelism. It exploits VLIW-style ILP by lock-stepping the individual cores like a
multi-clustered VLIW processor. A network for inter-cluster communication
is provided which is orchestrated by the compiler.RAW [73] has a grid of
identical tiles connected through a mesh of scalar operand networks. Each title
is a single-issue core with on-chip caches/memories, and using the operand
network, intermediate register values can be transported.RAW supports in-
struction, data, and thread-level parallelism by using thesoftware-controlled
routing network between the tiles.TRIPS[74] is a reconfigurable architecture
that enables the available out-of-order processing cores and the on-chip mem-
ory system to be configured and combined in different modes for instruction,
data, or thread-level parallelism. TRIPS implements a custom ISA and micro-
architecture, and relies heavily on compiler support for scheduling instructions

Table 4.2: Implementation results for the2-4-8-issue processor for the Virtex-6
XC6VLX240T-1FF1156FPGA.

Module Slice registers Slice LUTs DSP48E1s RAMB18s

Register file 820 5887 0 128

Backend 988 8022 16 0

Processor 3187 16790 16 128

80 CHAPTER 4. RUN-TIME RECONFIGURABLE PROCESSOR

to extract ILP.Core fusion[75] provides mechanisms to combine small out-of-
order cores to make larger issue-width cores at run-time or utilize them as
independent smaller cores. A pair of instructions is used tofuse and split the
available cores in order to exploit ILP and TLP. Core fusion is implemented in
a simulator.Smart memories[76] has many processing tiles, each containing
local memory, local interconnect, and a processor core. Theuser can program
the wires, the memory, and the processor in order to match thearchitecture
to the application. TheM-Machinemultiprocessor system [77] provides di-
rect inter-processor communication channels between the register files of the
available processor cores. By controlling the communication channels, the
M-Machine can be used to exploit ILP and TLP.XIMD [39] is a superset of
VLIW paradigm and can exploit both control flow parallelism as well as data
parallelism. The XIMD architecture can dynamically partition its resources to
support concurrent execution of multiple instruction streams. It has multiple
FUs running in locked step, with each FU controlled by its ownsequencer.
The KAHRISMA architecture [42] utilizes different coarse-grained and fine-
grained FUs. By means of a run-time adaptable inter-communication network,
the FUs can be connected in different manners to emulate different process-
ing modes (e.g. RISC and VLIW). The KAHRISMA ISA is comparable to
clustered-VLIW processors, but its micro-architecture issimilar to superscalar
architectures with dynamic scheduling but without a dispatcher [43].

4.2 Run-time Reconfigurable Register File

Data in [29] show that increasing the number of read/write ports or increasing
the issue-width of the VLIW processor results in an exponential increase in re-
sources. Similarly, in [78], the design and implementationof a3-issue VLIW
microprocessor is presented. The processor datapath is64-bit and it supports
only 16 operations. The multiported register file for the processorcontaining
16, 64-bit registers each having 3W6R ports require7172 Logic Cells of the
Altera StratixEP1S25F1020CFPGA, which is more than the area taken by the
rest of the design. Figure 4.7 presents the hardware utilization (FPGA slices)
for a4-issue non-pipelinedρ-VEX processor (4 ALUs, 2 MUL, 1 MEM unit)
and 4W8R ports register file version1 for the Virtex-II ProXC2VP30FPGA.
From the figure, we can observe that when the number of registers is64, the
total number of slices utilized by the register file exceeds the total slices taken
by all other modules of the processor. Because not all applications require64
registers, implementing64 registers for aρ-VEX processor would mean a lot

4.2. RUN-TIME RECONFIGURABLE REGISTER FILE 81

0

2000

4000

6000

8000

10000

12000

14000

16000

8 16 24 32 64
Number of registers

F
P

G
A

 s
lic

es
Register file Processor

Figure 4.7: Virtex-II Pro FPGA’s slice utilization for64×32-bit 4W8R ports register
file and4-issue non-pipelinedρ-VEX processor.

of wasted resources as well as wasted power. On the other hand, implementing
a smaller number of registers, for example,8 would require less resources, but
may degrade the performance of an application, as memory swapping (through
load/store) may then be needed more frequently. We designeda run-time
reconfigurable register file [79] and aρ-VEX processor that supports partial
dynamic reconfiguration allowing the creation of dedicatedregister files for
different applications. Therefore, valuable area can be freed and shared with
other implementations (such as timers, UARTs, anotherρ-VEX core, etc.) on
the same FPGA when not all of the64 multiported registers are needed. Power
consumption can be reduced by not configuring the un-necessary registers.

4.2.1 Case Study for 4-issueρ-VEX Processor

For the 4-issue non-pipelinedρ-VEX processor, the total number of in-
puts/outputs (I/Os) of the register file is460. Each register is32-bit, having
4W8R ports. We utilized the Xilinx EAPR methodology [71] fordesigning our
partial reconfigurable processor. For partial reconfiguration, we split the pro-
cessor into two regions:staticandreconfigurableas depicted in Figure 4.8(a).
To simplify the design and quickly verify the idea of dynamically reconfig-
urable registers, we restrict the total number of registersto be32, divided in4
smaller register files or groups. The number of I/Os for each smaller register
file is 424 that would cross the boundary between static and reconfigurable
portions on the FPGA, and would requirebus macros[71]. Four reconfig-
urable regions for register banks are connected to static region of the processor
using asynchronous bus macros. The static region contains all of the processor
modules namely,fetch, decode, execute, writeback, memory unit, control unit,
branch registers, instruction anddata memories, except the general-purpose
register file, which is implemented in the reconfigurable region. The granu-

82 CHAPTER 4. RUN-TIME RECONFIGURABLE PROCESSOR

P
R
R
1

B
M

B
M

P
R
R
2

B
M

B
M

P
R
R
3

B
M

B
M

P
R
R
4

B
M

B
M

Reconfigurable Region

Data
Memory

Write
Back

ExecuteFetch
Instruction

Memory

Enable
Select

Decoder

Mux

MEM CTRL BR

Static Region

(a) Statically and partially reconfigurable regions.

 Region Slices

Bank of 8 registers 924
Bus macros 848
Static region 5727

(b) Hardware utilization.

Figure 4.8: Design and hardware resource utilization for the dynamically recon-
figurableρ-VEX processor. Apart from the slices, the static region also utilizes14
MULT18X18s, and some BRAMs for instruction and data memories.

larity level is8 for the reconfigurable register file, i.e., registers can be added
in the increments of8 up to maximum of32 registers. Using the EAPR de-
sign methodology, partial bitstreams for the register banks are generated and
can be downloaded to the FPGA. An application can be profiled with the VEX
toolchain and the optimum number of registers can be determined. This in-
formation can then be communicated to the decoder by means ofa custom
instruction, which can be used to direct the reconfigurationcontroller to recon-
figure the required number of registers before the application starts execution.

Figure 4.8(b) presents the hardware utilization for our reconfigurable proces-
sor. For implementation, we used the Xilinx Virtex-II ProXC2VP30FPGA
and the ISE release version9.2.04i_PR14. The size of the partial bitstream for
a reconfigurable bank of8 registers and the full bitstream are85 Kbytes and
1415 Kbytes, respectively. The time needed to configure a bank of8 registers
is 1.29 milliseconds, while that for the full bitstream is21.44 milliseconds.
The reconfiguration time mentioned does not include the timeneeded for ac-
cessing the memory in which the bitstreams are stored. It is the time needed
for theSelectMAPor ICAP to configure the FPGA.

4.3 Run-time Task Migration

Building on the interrupt system presented in Section 3.3, we developed a run-
time task migration scheme [60] for the2-4-8-issue multi-core processor. With
the task migration scheme, a code running on a core can be shifted at run-time

4.3. RUN-TIME TASK M IGRATION 83

to a larger or a smaller issue-width core for increasing the performance or
reducing the power consumption of the whole system, respectively. The cores
can be combined or split even when they are not idle. All the cores can be
utilized in an efficient manner, as a core needed for a specificjob can be freed
at run-time by shifting its running code to another core. Figure 4.9 depicts the
timeline for a task migration example. At a time instance,core1, a2-issue core
is runningtask1and requires timet1 to finish the task.Core2, which is a4-
issue core is runningtask2and requires timet2 to finish the task. Att2, core2
is free, and in a time∆t, task1can be migrated fromcore1 to core2. Since
core2 is a larger issue-width core, it can boost the performance and hence,
finish task1at t3 < t1. Similarly, shifting from a larger issue-width core to a
smaller issue-width core at run-time and turning off the larger issue-width core
can reduce the power consumption.

4.3.1 Design of the Task Migration Scheme

We implemented a run-time task migration scheme for the2-4-8-issue adapt-
able multi-core processor as depicted in Figure 4.10. The methodology utilized
in Section 4.1 is that cores can only be combined or split whenthey are idle
(i.e., have finished their current execution). In this section, we present another
level of control for the2-4-8-issue adjustable processor with the development
of interrupt system. Every2-issue core or the combined larger issue-width
cores can now be individually interrupted. Each core is now able to pass on
its environment (execution state) to another core of the same or different type.
We can now combine or split cores that are even not idle. We implemented
an environment shifting or task migration mechanism for thecores utilizing
the interrupt system. The environment shifting is needed indifferent situa-
tions. For example, if a larger issue-width core becomes available, it might be
needed to switch an application running on a smaller issue-width core to the
larger issue-width core for performance reasons. Similarly, one might need
to switch a code running on a larger issue-width core to a smaller issue-width

t10

0

0

t2

t3

core1 (2-issue) task1

core2 (4-issue)
task2

core2 (4-issue)

task1

core1 (2-issue)

task1

migration time

�t

time

Figure 4.9: A task migration example.

84 CHAPTER 4. RUN-TIME RECONFIGURABLE PROCESSOR

4-issue core

2-issue core

2-issue core

8-issue core

4-issue core

2-issue core

2-issue core

Instruction
memory

Data
memory

Interrupter

Interrupter

Interrupter

Interrupter

Scheduler Configuration
Register

Figure 4.10:The2-4-8-issue adaptable processor with the task migration support.

core and turn the larger issue-width core off to reduce the dynamic power con-
sumption of the whole system at run-time.

The issue-width or the organization of the2-4-8-issue processor can be
changed by writing dedicated bits to the configuration register of the processor.
This register can be accessed by decoding a custom instruction on the proces-
sor. This instruction can be manually placed at the specific points in the exe-
cutable code, where an issue-width change is required. The configuration reg-
ister can also be implemented in the global space accessibleto other dedicated
hardware/software controllers. In this case, the reconfiguration process can be
initiated by some external agents/controllers based on certain run-time met-
rics such as hardware utilization, power/energy considerations, arrival of other
tasks, cache related statistics, We utilized thegeneric binariesscheme [80] to
generate the binary code for our variable issue-width processor. In this scheme,
an application is compiled such that the same binary code canbe executed
correctly on different issue-width VLIW processors with some performance
degradation. The advantage is that the same binaries can be utilized when
switching the processor issue-width and there is no need forloading/accessing
multiple binaries. More information about the generic binaries scheme can be
found in Section 6.4.

Figure 4.11 depicts the mechanism for migrating a task from one type of core
to another (sayρ-VEX1 to ρ-VEX2) in the 2-4-8-issue adaptable processor.
Hereρ-VEX1 andρ-VEX2 could be any issue-width cores (2-issue,4-issue, or
8-issue). A hardware scheduler controls the process of task migration. When
shifting a code running onρ-VEX1 to ρ-VEX2, the scheduler performs the
following steps as depicted in Figure 4.11:

4.3. RUN-TIME TASK M IGRATION 85

• generate an interrupt onρ-VEX1 core

• a special ISR is called and executed onρ-VEX1 that stores the context
into the data memory (shared memory accessible to all cores), and the
PC address with respect to a defined switching point where thecurrently
running program was stopped is recorded

• reconfigure the issue-width of the core (merge or split cores) if required
(now calledρ-VEX2) by changing the configuration register values

• generate an interrupt onρ-VEX2 core

• a special ISR is called and executed onρ-VEX2 that restores the context
from the data memory

• load the PC address intoρ-VEX2

• startρ-VEX2 to resume execution of the remaining code

Here, we only store/restore the content of the GR and the BR register files. We
implement the stack in the data memory accessible to both cores and hence,
do not store/restore the stack while moving the task from onecore to another.
The cores should know the address in the data memory where thestack is
implemented, and it is done at compile/assemble time. This reduces the task
migration time between different cores.

4.3.2 Implementation Results

Table 4.3 presents the implementation results for the2-4-8-issue processor
with the task migration support. We utilized the Xilinx ISE release version
13.2 and the Virtex-6XC6VLX240T-1-FF1156FPGA for the synthesis and
implementation. The maximum frequency is110 MHz. We utilized version
3 of the interrupts system (software instructions switchingcontext method)
presented in Section 3.3.2. This is the most standard version, requires minimal
hardware changes, and has an interrupt response time of76 cycles. The task
migration from one core to another requires a total of155 cycles (76 cycles
for storing the first core’s context,1 cycle for accessing it’s PC,1 cycle for
reconfiguring the issue-width,76 cycles for restoring the stored context to the
newly configured core, and1 cycle for loading it’s PC).

86 CHAPTER 4. RUN-TIME RECONFIGURABLE PROCESSOR

‘stop’ & get PC
address

Scheduler

i-
mem

�-VEX1

�-VEX2

d-
mem

Scheduler

i-
mem

�-VEX1

�-VEX2

d-
mem

load PC address to
�-VEX2

Scheduler

i-
mem

�-VEX1

�-VEX2

d-
mem

Scheduler

i-
mem

�-VEX1

�-VEX2

d-
mem

interrupt

Scheduler

i-
mem

�-VEX1

�-VEX2

d-
mem

context
store

context
load

time

(a) Fromρ-VEX1 to ρ-VEX2, whereρ-VEX2 is idle.

‘stop’ & get PC
address

Scheduler

i-
mem

�-VEX1

�-VEX2

d-
mem

Scheduler

i-
mem

�-VEX1

�-VEX2

d-
mem

load PC address to
�-VEX2

Scheduler

i-
mem

�-VEX1

�-VEX2

d-
mem

Scheduler

i-
mem

�-VEX1

�-VEX2

d-
mem

interrupt

Scheduler

i-
mem

�-VEX1

�-VEX2

d-
mem

context
store

time

interrupt

context
store

context
store

context
store

context
store

(b) Fromρ-VEX1 to ρ-VEX2, whereρ-VEX2 is not idle.

‘stop’ & get PC
address

Scheduler

i-
mem

�-VEX
d-

mem

Scheduler

i-
mem

�-VEX d-
mem

Merge and load PC
address to �-VEX

Scheduler

i-
mem

�-VEX1

�-VEX2

d-
mem

Scheduler

i-
mem

�-VEX1

�-VEX2

d-
mem

interrupt

Scheduler

i-
mem

�-VEX1

�-VEX2

d-
mem

context
store

context
load

time

(c) Fromρ-VEX1 to ρ-VEX, where theρ-VEX is formed by mergingρ-VEX1 andρ-VEX2.

‘stop’ & get PC
address

Scheduler

i-
mem

d-
mem

Scheduler

i-
mem

d-
mem

Split and load PC
address to �-VEX1

Scheduler

i-
mem

�-VEX
d-

mem

Scheduler

i-
mem

�-VEX
d-

mem

interrupt

Scheduler

i-
mem

�-VEX
d-

mem

context
store

context
load

time

�-VEX1

�-VEX2

�-VEX1

�-VEX2

(d) Fromρ-VEX to ρ-VEX1, whereρ-VEX1 andρ-VEX2 are formed by splitting theρ-VEX.

Figure 4.11:Mechanism for task migration in the2-4-8-issue adaptable processor.

4.3. RUN-TIME TASK M IGRATION 87

Table 4.3: Implementation results for the2-4-8-issue adaptable multi-core processor
with the task migration support for the Virtex-6XC6VLX240T-1-FF1156FPGA.

2-4-8-issue processor Slice registers Slice LUTs DSP48E1s RAMB18s

Without task migration 3187 16790 16 128

With task migration 3754 17520 16 128

4.3.3 Related Work

Task migration is used in multi-core systems to balance workload and network
congestion. An unbalanced workload can result in excessivepower consump-
tion and thermal hot-spots and unbalanced network congestion can result in
missed deadlines. Different task or process migration mechanisms and algo-
rithms are presented in [81] [82]. The authors in [83] discuss different policies
for real-time task migration in embedded multi-core architectures. The impact
of task migration on embedded soft real-time streaming multimedia applica-
tions is assessed in [84]. Here, a middleware infrastructure at operating sys-
tem (OS) level supporting dynamic task allocation for non-uniform memory
architectures (NUMA) is presented. A context-aware run-time adaptive task
migration mechanism to reduce the task migration latency inmulti-core archi-
tectures is presented in [85]. A task migration between two cores results in
cache warm-up overheads on the target core, which can resultin missed dead-
lines for tight real-time schedules. A micro-architectural support for migrating
cache lines that enables real-time tasks to meet their deadlines in the presence
of task migration is proposed in [86].

Policies for task migration to control the thermal characteristics in multi-core
systems are presented in [87] [88]. Energy-efficient real-time task scheduling
and migration in multiprocessor systems is discussed in [89] [90]. The authors
in [91] discuss the impact of task migration in network-on-chip based MPSoCs
for soft real-time systems. Techniques to selectively migrate the code/data to
reduce communication energy in embedded MPSoCs are presented in [92].
The authors in [93] discuss a fault-and-migrate mechanism for asymmetric
multi-core architectures which traps a fault when a core executes an unsup-
ported instruction, migrates the faulting thread to a core that supports the in-
struction, and allows the operating system to migrate it back when load bal-
ancing is necessary.

88 CHAPTER 4. RUN-TIME RECONFIGURABLE PROCESSOR

4.4 Simultaneous Reconfiguration of Issue-width and
Instruction Cache

Applications with higher ILP perform better when run on a larger issue-width
processor. Figure 4.12 depicts the IPC for some applications from different
benchmark suites (MiBench [2], PowerStone [3]) for2-issue,4-issue, and8-
issue VLIW processors with a single load/store unit. As depicted in the fig-
ure, the IPC increases with the issue-width for applications with more ILP.
Specializing a cache for a processor may improve the performance or energy
consumption for one benchmark, but may perform poorly across others [94].
Studies have shown that more than half of the chip die is reserved for the
on-chip caches and that the energy consumption in cache systems accounts
for more than50% of the total energy consumption [3] [95] [96] [97] [98].
Table 4.4 presents the instruction cache (I-cache) parameters for some com-
mercial/research VLIW processors. As can be observed, there is a wide varia-
tion across different cache parameters (associativity, cache size, and line size).
Compared to having a fixed cache, reconfiguring the cache for aprocessor at
run-time can reduce the execution time and/or power/energyconsumption for
different benchmarks [94] [96] [98] [99] [100] [101] [102].Compared to re-
configuring only the cache, reconfiguring the “issue-width +I-cache" together
can further improve the execution time, energy consumption, and/or EDP.

In this section, we present a setup to analyze the effect of simultaneous recon-
figuration of issue-width and I-cache for the2-4-8-issue reconfigurable proces-
sor [103]. Notice that if different “issue-width + I-cache"configurations have
the same execution times, but reduced energy consumptions or vice versa, it
may be beneficial to reconfigure the core issue-width, the cache, or both. The
2-4-8-issue processor can be configured to be2-issue,4-issue, or8-issue at
run-time. The unused issue-slots are clock-gated to reducedynamic power
consumption of the processor. We considered an instructioncache that can be
reconfigured in terms ofassociativity, total cache size, andline size. We uti-
lized the VEX simulator [1] to simulate different “issue-width + L1 I-cache"
configurations. For energy calculation, we utilized the CACTI 6.5 [104] and
theSynopsis Design Compiler(Synthesis-E-2010.12-SP1) and targeted90 nm
technology. We utilized the MiBench [2], PowerStone [3], and custom (16
small applications/kernels from different domains) benchmark suites. The re-
sults of the analysis in terms of performance, dynamic energy consumption,
and EDP are presented in Chapter 6. In this section, we only discuss the char-
acteristics of the simultaneously reconfigurable system.

4.4. SIMULTANEOUS RECONFIGURATION OFISSUE-WIDTH AND

INSTRUCTION CACHE 89

0
0.5

1
1.5

2
2.5

3

Bitcount Susan
smoothing

Rijndael
encode

Rijndael
decode

SHA ADPCM
decode

DES Pocsag Hamming Moving
filter

IP
C

2-issue 4-issue 8-issue

Figure 4.12: Instructions per cycle (IPC) for different applications [2] [3].

4.4.1 Related Work

The impact of cache parameters such as total size, line size,associativity, re-
placement policies, etc., on performance and energy consumption for different
levels of caches (L1 and L2) has been widely reported. A reconfigurable cache
memory with heterogeneous banks to reduce the cache size andhence the
power consumption at run-time is presented in [109]. Reconfigurable aspects
of the cache system for the TMS320C6211 processor are discussed in [110].
The4-way unified L2 cache can be used as either mapped RAM or as1, 2, 3,
or 4 ways cache. Each way or bank is16 Kbytes. A reconfigurable data cache
design with a hardware-adaptive line size for miss rate and memory traffic re-
duction is presented in [99]. The paper does not discuss energy consumption.

Selective cache ways [96] provides the ability to disable a subset of the ways in
a set-associative cache to reduce the energy consumption for little performance
overhead. A mechanism for tuning cache ways and voltage scaling for em-
bedded system platforms to reduce energy consumption is presented in [111].
Way predictive set-associative caches [101] [112] providethe ability to reduce
energy consumption at the expense of longer average access time. The design

Table 4.4: Typical instruction cache parameters for some famous VLIW processors.

Processor Issues Assoc. Size (Kbytes) Line size (bytes)

TriMedia TM32A [105] 5 8 32 64

TriMedia TM3270 [105] 5 8 64 128

TMS320C6211 [49] 8 1 4 64

ST231 [46] 4 1 32 64

ST240 [106] 4 4 32 64

Transmeta TM5400 [51] 5 8 64 -

Fujitsu FR450 [107] 2 2 32 32

CoreVA [108] 4 1 16 64

90 CHAPTER 4. RUN-TIME RECONFIGURABLE PROCESSOR

presented in [102] dynamically divides the cache arrays into multiple partitions
that can be used for different processor activities to increase the performance.
A novel set and way management cache architecture for efficient run-time re-
configuration (Smart cache) is presented in [113], providing reconfigurability
across cache size and associativity. A hybrid selective-sets-and-ways cache
organization is proposed in [114] that always offers equal or better resizing
granularity than both the selective-sets and selective-ways organizations. The
impact of line size on energy consumption and performance for instruction and
data caches is presented in [100]. Designs of configurable caches where all the
three parameters (associativity, cache size, and line size) can be configured are
presented in [98] [115]. It must be noted that all these papers present results
for cache configurations with fixed issue-width processors.

The commonly used commercial VLIW processors such as theTriMediaseries
from NXP,ST231from STMicroelectronics,TMS320C611from Texas Instru-
ments,Crusoefrom Transmeta, and theFRxxxseries from Fujitsu all utilize
a fixed issue-width. Reconfiguring the issue-width at run-time improves the
performance of applications with higher ILP.Core fusion[75], TRIPS[74]
andVoltron [72] combine small cores and the on-chip memory to make larger
issue-width cores at run-time to exploit the instruction, data, or thread-level
parallelism. Smart memories[76] is a reconfigurable architecture capable of
merging in-order RISC cores to form a VLIW machine. These studies focus
only performance/speedup results for the available configurations of the sys-
tem but do not discuss the energy consumption or EDP.

4.4.2 Characteristics of the Reconfigurable Processor

Figure 4.3(b) depicts the general view of the2-4-8-issue adaptable VLIW pro-
cessor. The processor can be configured to be2-issue,4-issue, or8-issue with
different number of MEM/LS units, but for this analysis, we kept the number
of MEM units to be1 for every type of the processor issue-width. This is done
in order to keep the data cache same for every type of processor issue-width.
The issue-width is changed in a single cycle after the reconfiguration bits are
written to aconfiguration register. Additionally, these bits are also utilized
to clock-gate the unused FUs and parts of the processor system to reduce the
dynamic power consumption. For this analysis, the processor supports only
single-tasking computation. Multitasking or multi-threading support is not
available. When an application starts executing, it is allowed to finish com-
pletely and then a new application is started. Hence, we do not need any com-
plex mechanisms for task pre-emption, and the design becomes very simple.

4.4. SIMULTANEOUS RECONFIGURATION OFISSUE-WIDTH AND

INSTRUCTION CACHE 91

The reconfiguration is needed per application basis. The request to change
issue-width remains pending until the currently running application finishes
execution. The request to change issue-width for a new application can be
communicated by decoding a custom instruction that can be placed at the end
of the currently running code or at the start of the new application’s code. The
custom operation writes the required bits to the configuration register which
triggers the process of reconfiguration.

4.4.3 Characteristics of the Reconfigurable Instruction Cache

Our instruction cache architecture is based on [115] and includes three param-
eters: cache associativity, cache size, and line size. The cache reconfigura-
tion is done in a single cycle after thecache configuration registeris written.
Because the processor does not support multi-tasking, the cache reconfigura-
tion is required only when application changes. There is no need for run-time
methods/policies, no cache flushing, no reconfiguration overhead, and hence,
the cache reconfiguration time is reduced. Information about the best config-
uration (issue-width + I-cache) can be stored in the programexecutable and
written to the issue-width and cache configuration registers before the applica-
tion starts execution. According to Table 4.4, there is a wide variation across
the cache parameters, therefore, we utilized the followingparameters for our
reconfigurable cache.

• Cache associativity:1/2/4/8 ways

• Cache size:4/8/16/32 Kbytes

• Cache line size:16/32/64 bytes

The total cache (in all parameters) is available to all typesof the configured
issue-width cores. Following are the reconfiguration methods for the consid-
ered cache parameters.

• Cache Associativity; Way Concatenation: For reconfiguration of
cache associativity, the way concatenation technique is used [115]. The
base cache includes8 banks that can operate as8 ways. By writing to the
cache configuration register, the ways can be effectively concatenated,
resulting in a4-way,2-way, or1-way (direct-mapped)32 Kbytes cache.

• Cache Size; Way Shutdown:For reconfiguration of cache size, the way
shutdown technique is used. With way shutdown, the32 Kbytes8-way

92 CHAPTER 4. RUN-TIME RECONFIGURABLE PROCESSOR

cache can be reconfigured as a16 Kbytes cache that can be either4-way,
2-way or direct mapped, an8 Kbytes cache that can be either2-way or
direct mapped, or a4 Kbytes direct mapped cache.

• Cache Line Size; Line Concatenation:For reconfiguration of line size
a base physical line size of16 bytes is implemented, with larger line
sizes implemented logically as multiple physical lines [115]. By writing
to the cache configuration register, line size can be reconfigured as either
16, 32, or 64 bytes.

Based on the previous three mentioned methods, there are only 30 cache con-
figurations possible that are practically implementable. The remaining cache
configurations are not possible due to the hardware design limitations. Hence,
our cache configuration space is30.

4.4.4 Energy Estimation

The following equation is utilized to estimate the total dynamic energy
consumption of the I-cache including both the hit and miss energies.

Cache_Energy = Accesses ∗ Energy/access + Misses ∗

Energy/miss

= Accesses ∗ Energy/access + Misses ∗

Kmiss ∗ Energy/access

= (Accesses + Kmiss ∗ Misses) ∗

Energy/access (4.1)

Kmissis a factor representing a multiple of the cache hit energy consumption.
According to [115] which takes into account the energy consumption from
the complete instruction memory hierarchy including the external memory,
the value ofKmissranges from50 to 200. Here, we consider theKmissto be
50. For our analysis, there are30 I-cache configurations and3 issue-width
configurations; hence, the total search space for each application is 90

“issue-width + I-cache" configurations. Each application is simulated90
times utilizing the VEX toolchain [1] to generatetotal memory accesses,
cache hits, cache misses, and execution cyclesstatistics. Using equation
4.1, we calculated the I-cache energy consumption for each application with
90 different configurations. The cache energy per access is obtained from

4.5. SUMMARY 93

CACTI 6.5 [104]. For calculating the processor energy consumption, we
utilized theSynopsis Design Compiler(Synthesis-E-2010.12-SP1) to get the
average power consumption for90 nm technology. We then calculated the
processor energy consumption for all applications with thefollowing equation.

Processor_Energy = Power_consumed ∗ Cycle_time ∗

Execution_cycles (4.2)

The total energy consumption and EDP are calculated as follows.

Total_Energy = Processor_Energy + Cache_Energy (4.3)

EDP = Total_Energy ∗ Execution_cycles (4.4)

Execution_cycles, Total_Energy, and EDP for each benchmark application
with 90 different “issue-width + I-cache" configurations are calculated and
then analyzed in Section 6.5.

4.5 Summary

In this chapter, we presented the design and implementationof two run-time
adjustable issue-slots multi-core processors. The processors have multiple
(two for the2-4-issue processor and four for the2-4-8-issue processor)2-issue
cores, each of which can run independently. If not in use, each core can be
taken to a lower power mode by gating off its source clock. Multiple 2-issue
cores can be combined at run-time to form larger issue-widthVLIW cores.
Other than the issue-width, the type and number of differentFUs, and the size
of the multiported GR register file can also be configured at run-time. The
processors can target a variety of applications having instruction and/or data
level parallelism. Additionally, the chapter presented a run-time task migra-
tion scheme for the2-4-8-issue processor. With the task migration, the cores
can be utilized more efficiently. A task running on a core can be migrated to
a larger or a smaller issue-width core to increase the performance or reduce
the power consumption, respectively. Finally, we presented a system for the
simultaneous reconfiguration of issue-width and instruction cache for the2-
4-8-issue processor, where along with the issue-width (2/4/8), the instruction
cache can be reconfigured in terms of associativity, cache size, and line size.

94 CHAPTER 4. RUN-TIME RECONFIGURABLE PROCESSOR

Note.

The content of this chapter is partially based on the following papers:

S. Wong,F. Anjam , and M.F. Nadeem. Dynamically Reconfigurable Regis-
ter File for a Softcore VLIW Processor. InDesign, Automation, and Test in
Europe Conference (DATE), pp. 969–972, 2010.

F. Anjam , M. Nadeem, and S. Wong. A VLIW Softcore Processor with Dy-
namically Adjustable Issue-slots. InInternational Conference on Field Pro-
grammable Technology (FPT), pp. 393–398, 2010.

F. Anjam , M. Nadeem, and S. Wong. Targeting Code Diversity with Run-time
Adjustable Issue-slots in a Chip Multiprocessor. InDesign, Automation and
Test in Europe Conference (DATE), pp. 1358–1363, 2011.

F. Anjam , Q. Kong, R.A.E. Seedorf, and S. Wong. A Run-time Task Migration
Scheme for an Adjustable Issue-slots Multi-core Processor. In International
Symposium on Applied Reconfigurable Computing (ARC), pp. 102–113, 2012.

F. Anjam , Q. Kong, R.A.E. Seedorf, and S. Wong. On the Implementation
of Traps for a Softcore VLIW Processor. InHiPEAC Workshop on Reconfig-
urable Computing (WRC), 2012.

F. Anjam , L. Carro, S. Wong, G.L. Nazar, and M.B. Rutzig. Simultaneous
Reconfiguration of Issue-width and Instruction Cache for a VLIW Processor.
In International Conference on Embedded Computer Systems: Architecture
Modeling and Simulation (SAMOS), pp. 183–192, 2012.

5
Configurable Fault Tolerance

H igh reliability and dependability of processing systems require the imple-
mentation of fault tolerance techniques. Fault tolerance can be achieved

utilizing hardware, software, or hybrid approaches. In this chapter, we present
configurable fault tolerance mechanisms for theρ-VEX processor. Separate
techniques are employed to protect different modules of theprocessor from
single event upsets (SEU) errors. Parity checking is utilized to detect errors in
the instruction and data memories and the GR register file, while triple modu-
lar redundancy (TMR) approach is employed for all the synchronous flip-flops
(FFs). At design-time, a user can choose between the standard non fault-
tolerant design, a fault-tolerant design where the fault tolerance is perma-
nently enabled, and a fault-tolerant design where the faulttolerance can be
enabled and disabled at run-time. These options enable a user to trade-off be-
tween hardware resources, performance, power consumption, and reliability.
Following is the contribution of the chapter.

• A hardware-based configurable fault tolerance technique ispresented
for theρ-VEX processor. The fault tolerance can be included/excluded
in the processor at design-time and/or enabled/disabled atrun-time.

The remainder of the chapter is organized as follows. Section 5.1 presents
the introduction and motivations. Section 5.2 discusses the related work. The
base processor is briefly introduced in Section 5.3. The fault-tolerant design
of theρ-VEX processor is presented in Section 5.4. Experimental results are
discussed in Section 5.5. Finally, the chapter is summarized in Section 5.6.

95

96 CHAPTER 5. CONFIGURABLE FAULT TOLERANCE

5.1 Introduction and Motivations

When the data path of a processor gets larger and complex, theprobability of
errors (such as radiation-induced soft errors) also increases. Because VLIW
processors can provide high performance at low power, they are gaining wide-
spread utilization not only in general-purpose embedded systems but also in
safety-critical systems such as biomedical, space, military, communication,
industrial, and automotive systems. Therefore, it is important to employ fault-
tolerant techniques in order to guarantee high reliabilityand dependability of
the safety-critical systems. Run-time detection plays an important role in de-
pendable systems, where it is needed that the computed data is either correct
or an error signal is generated whenever there is a possible error.

In this chapter, we present configurable fault-tolerant techniques [116] for the
ρ-VEX processor. The processor is implemented in VHDL and thefault tol-
erance techniques are implemented at hardware level. The processor employs
different fault tolerance techniques such as parity checking and TMR to in-
crease the reliability and dependability of the system. Theprocessor is im-
plemented in a Xilinx Virtex-6 FPGA as well as synthesized to90 nm ASIC
technology. Apart from the general parameters such as the issue-width, num-
ber of FUs, etc., the fault tolerance is also configurable. Atdesign-time, users
can choose to implement a processor with no fault tolerance,a processor with
the fault tolerance permanently enabled, or run-time reconfigurable. The per-
manently enabled and the run-time reconfigurable designs consume almost
similar dynamic power. The advantage of the latter design isthat the fault
tolerance can be disabled at run-time, resulting in reduceddynamic power
consumption. The fault tolerance can be enabled/disabled by executing an
instruction on the processor. For applications which can tolerate some bit flips
such as audio/video decoding, the fault tolerance can be disabled at run-time
to reduce the dynamic power consumption. On the other hand, applications
which are susceptible to even a single bit flip such as sending/receiving DTMF
tones on a mobile device or doing some security related processing can enable
the fault tolerance at run-time to temporally increase the reliability. The con-
figurable processor provides a trade-off for hardware resources, performance,
power consumption, and reliability.

Since one of the main purposes of this chapter is to evaluate power consump-
tion for different fault-tolerant designs, therefore, we include results for ASIC
implementation as well. In case of ASIC, the change in area and power con-
sumption can be observed very clearly when a circuit is triplicated for the TMR
scheme. Area and power consumption increase almost linearly with triplicat-

5.2. RELATED WORK 97

ing a circuit. When a circuit is triplicated in FPGA, the require area (Slices,
LUTs, etc.) and power consumption may not increase linearlybecause some
part of the circuit may also be accommodated in the already utilized area for
the base circuit.

5.2 Related Work

Recently, fault tolerance for microprocessor systems is gaining increasing im-
portance. Transient errors are considered as the main source of errors in
processor systems. Different on-line detection and mitigation techniques are
proposed to detect and correct transient error faults. These techniques are
mainly based on redundancy approaches. Here, instructionsare replicated,
re-computed, and then results are compared for checking errors. Mainly, there
are two approaches for redundancy; software-based and hardware-based.

A software-based redundancy approach utilizes a compiler to dupli-
cate/triplicate instructions. This increases code size and power consumption
and reduces performance [117]. The advantage is that no hardware modifica-
tion is needed. Compiler-based software redundancy schemes with increased
code size and performance degradation are presented in [118] [119]. Sim-
ilar techniques for VLIW and superscalar processors are discussed in [120]
[121] [122]. A software method to detect transient and common-mode faults
in statically-scheduled VLIW processor in presented in [123].

A hardware-based redundancy approach requires changes to the architecture
and additional hardware for managing replication, re-computation, and com-
paring results to detect errors. The advantage is that thereis no need to change
the code or the compiler, and that there is little or no performance degradation
and no code size overhead. At the hardware level, one solution is to replicate
the complete processor system and then implement a majorityvoter to select
between the three results [124] [125]. In this case, there isno need to change
the processor architecture, with the disadvantage that a fine-grain control over
instruction-level checking is not possible. Another solution is to modify the
architecture, implement additional FUs and other control hardware to perform
the execution of replicated instructions [126] [127] [128]. A technique that
utilizes additional FUs to detect and correct transient errors in combinational
logic is presented in [129]. The author in [130] triplicatesthe sequential el-
ements in the processor to detect and correct SEU errors. Recently, hybrid
approaches (software and hardware) for error detection andcorrection were
presented in [129] [131].

98 CHAPTER 5. CONFIGURABLE FAULT TOLERANCE

5.3 The Baseρ-VEX Processor

As discussed in Chapter 3, different parameters of theρ-VEX processor such
as the issue-width, the number and type of different FUs, supported instruc-
tions, memory-bandwidth, register file size etc., can be chosen at design time.
The processor is a5-stage pipelined processor consisting offetch, decode, ex-
ecute0, execute1/memory, andwritebackstages. The base processor utilized
for this chapter can be configured to be2-issue,4-issue, or8-issue. Each type
of core has a single load/store (MEM) unit and the same number ofALUsas
the issue-width. The2-issue,4-issue, and8-issue cores have2, 2, and4 MUL
units. The processor has a64×32-bit multiported GR register file and an8×1-
bit multiported BR register file. As discussed in Section 3.2, the GR register
file is one of the most complex and resource consuming modules, therefore,
it is implemented in three different mechanisms to evaluateresource utiliza-
tion, performance, and power consumption characteristics. For ASIC, it is
implemented with FFs and other combinational resources, while for FPGA, it
is implemented with dual-port synchronous BRAMs, as well aswith look-up
tables (LUTs) and FFs.

5.4 The Fault-Tolerant ρ-VEX Processor

Single event upset (SEU) errors effect a memory cell or FF. Itis a bit flip caused
by a charged particle. The noise induced by some radiation when exceeds the
threshold voltage, a bit flip may occur. Due to wire process shrinking, the
threshold voltage is decreasing, and hence, electronic systems are becoming
more susceptible to SEUs. When an SEU occurs in a memory (storage or con-
figuration), it is called aspermanent error. When it occurs in a flip-flop, it is
referred to as atransient error. To recover from the permanent error, recon-
figuration or re-loading of the configuration data to the configuration memory
is required. For a memory used as a general storage (e.g., instruction mem-
ory), the permanent error could be checked and corrected by parity checking
and some error correcting code (ECC). TMR technique is used widely to re-
cover from a transient error. When TMR mitigation techniques are adopted,
the same circuit is triplicated and a majority voter is implemented between the
three computed results. Hence, a single fault occurring in one part of the TMR
circuit is protected as the result is obtained from the othertwo circuits.

For this chapter, we consider SEU errors that occur due to a direct hit in a FF
or a memory element used as a general storage (instruction and data memories,

5.4. THE FAULT-TOLERANT ρ-VEX PROCESSOR 99

and the GR register file). We do not consider the FPGA configuration memory,
and assume that it is protected by other techniques. According to [132], the
probability that SEU errors in combinational logic can propagate to a register
on a clock is very low, therefore, we do not consider such permanent SEU
errors in combinational logic. Theρ-VEX processor utilizes two types of se-
quential cells for its implementation: synchronous BRAMs for instruction/data
memories and the GR register file (FPGA implementation), andFFs used for
other storage such as general registers, pipeline registers, state machines, and
status/control functions. We employ different SEU protection techniques for
BRAMs and FFs. The hardwired BRAMs in the Xilinx and Altera FPGAs pro-
vide an extra bit per byte of data which can be used as a parity bit. Hence, for
a32-bit word, up to4 parity bits are available and can be used without increas-
ing the number of BRAMs. In case of an ASIC, additional area isrequired to
implement parity bits in instruction and data memories. Following, we discuss
different modules of the fault-tolerantρ-VEX processor which utilize different
error protection techniques.

5.4.1 Instruction Memory

For theρ-VEX processor, each operation called syllable is encoded in a 32-
bit word. Multiple syllables are combined to make a long instruction which is
executed every clock cycle. The instruction width for a2-issue,4-issue, and8-
issueρ-VEX processor is64-bit, 128-bit, and256-bit, respectively. Our design
provides configurable number of parity bits (1, 2, or 4) per32-bit instruction
(syllable). Hence, for every8 bits of instruction, a parity bit is available. The
parity bits are statically calculated byXORoperations in the assembler tool and
stored along with the instructions in the dedicated parity bits of the memory.
Instructions are read and passed through the fetch stage to the decode stage.
The parity bits are checked in the decode stage in parallel with instruction
decoding to minimize the timing overhead. If a parity error is detected for an
instruction, the fetch and decode stages are flushed, and thepipeline is halted.
The correct instruction can then be copied from the higher level memory (Flash
card, on-board memory, etc.) to the local instruction memory, and the pipeline
can then be restarted.

5.4.2 Data Memory

The data width of theρ-VEX processor is32-bit whatever the issue-width
may be. The data memory is implemented with BRAMs. Additional bits are

100 CHAPTER 5. CONFIGURABLE FAULT TOLERANCE

utilized as parity bits. Because the ISA has memory operations that can operate
on words, half-words, and bytes, therefore, we utilized1 parity bit per byte of
the data. Initially, parity bits are generated statically in the assembler tool
and placed along with data in the external memory. During initialization, the
data and the parity bits are copied from the external memory to the local data
memory. During a store operation, the parity bits are calculated and written to
the data memory together with the new data. The parity bits are generated in
the MEM unit which resides in the execute0 stage. During a load operation, a
data word is read from the data memory along with the parity bits. The parity
of the data word is checked in the writeback stage before writing the word to
the GR register file. If there is a parity error, a data error trap is generated
and the pipeline is halted. The simplest method to recover from this error is to
reload the whole data memory for the program from the external memory and
start the program from the beginning. Other complex error recovery methods
such as roll back to the instruction which modified the data location may also
be considered but implementing such methods are out of scopeof this thesis.

5.4.3 GR Register File

As discussed in Chapter 3, the2-issue,4-issue, and8-issueρ-VEX processors
require GR register files with 2W4R ports, 4W8R ports, and 8W16R ports,
respectively. In Section 3.2, we presented different implementations for the
register file in order to evaluate resource utilization, performance, and power
consumption. Table 5.1 presents the details of these implementations. GR
register file version1 is a direct behavioral implementation and utilizes the
FPGA’s configurable LUTs and FFs. It implements large multiplexers to pro-
vide multiple read and write ports. For ASIC, it is implemented with FFs and
other combinational resources. The hardware resource requirement for version
1 register files grows largely with issue-width, therefore, the version3 is im-
plemented with BRAMs as discussed in Chapter 3. Each BRAM is configured
in simple dual port mode with 1W1R port. For multiple ports, the BRAMs are
organized into multiple banks and data is duplicated acrossvarious BRAMs.
Here, the number of banks is equal to the number of write ports, and the num-
ber of BRAMs per bank is equal to the number of read ports. Thedirection
table is a small register table having the same number of ports as the original
register file. For the 2W4R, 4W8R, and 8W16R ports register files, the width
of the direction table is1, 2, and3 bit(s), respectively, and its depth is the same
as that of the GR register file itself. The direction table is implemented with
LUTs + FFs. The GR register file version3 is implemented only for FPGAs.

5.4. THE FAULT-TOLERANT ρ-VEX PROCESSOR 101

Table 5.1: Implementation types for GR register files

Version Implementation detail

1 Straight-forward behavioral implementation. Utilizes LUTs +
FFs for FPGA, and FFs for ASIC.

2 Same design as version 3. Utilizes LUTRAMs + LUTs + FFs for
FPGA, and FFs for ASIC.

3 Banking and replication with BRAMs. Utilizes BRAMs + LUTs
+ FFs for FPGA. Not implemented for ASIC.

4 Similar to version 3, but running the internal ports of the BRAMs
at twice high the frequency of the external ports. Utilizes
BRAMs + LUTs + FFs for FPGA. Not implemented for ASIC.

Figure 3.4 depicts the register file for a4-issueρ-VEX processor. Each write
port is associated with a bank and all the BRAMs in a bank are simultaneously
updated. Each BRAM is organized in a32-bit wide aspect ratio and parity bits
are design-time configurable (1, 2, or 4 for each32-bit word). The parity bits
are generated in the writeback stage and written together with the data. The
register data is accessed in the decode stage but the parity check is done in the
execute0 stage to avoid the timing overhead. If a parity error is detected on
the read data on a register file port, the pipeline is flushed and the error cor-
rection procedure is started. We implemented a simple mechanism to correct
the corrupted data. For each write port, the written data is already duplicated
in multiple BRAMs each associated with a read port (4, 8, and16 BRAMs for
2-issue,4-issue, and8-issue processors, respectively). When a parity error is
detected in a data on a read port, the same data is read on another port from
a different BRAM in the same bank. The parity for this data is also checked.
If the parity is correct, it is assumed that this data is correct. This data is then
written to all the BRAMs in the bank where the corrupted data was present
in a BRAM. The pipeline is then restarted at the point of the failing instruc-
tion and normal execution resumes. Currently, we check onlyone neighbor
BRAM for the correct data instead of all the BRAMs in a bank to simplify the
design. If a data word cannot be corrected by the employed technique (e.g., if
the same location in all the BRAMs in a bank is corrupted at thesame time),
an unrecoverable error trap is generated.

The register file version2 design is similar to version3. The only difference
is that instead of using BRAMs, the required memory blocks are implemented
with the distributed memory (LUTRAMs) + LUTs + FFs in FPGA. For ASIC,
it is implemented with FFs and other combinational resources.

102 CHAPTER 5. CONFIGURABLE FAULT TOLERANCE

The design of the GR register file version4 is similar to that of the version3.
The main difference is that the internal ports of the register file are clocked at
twice the frequency of the external ports. This emulates a quad-port BRAM,
and hence reduces the required number of BRAMs by one-fourthcompared to
the version3 design. The fault detection and recovery techniques are similar
to that of the version3 design. The GR register file version4 is implemented
only for FPGAs.

5.4.4 TMR Approach for all Flip-Flops

In the ρ-VEX processor, flip-flops are used for different purposes such as
data holding registers, status registers, pipelines latches/registers, state ma-
chine registers, etc. The VEX ISA specifies a1-bit 8-element multiported BR
register file for a multi-issue VLIW processor. For2-issue,4-issue, and8-
issueρ-VEX processors, the ISA requires BR register files with 2W2Rports,
4W4R ports, and 8W8R ports, respectively. The BR and link register (LR)
files for the processors are implemented with FFs. For both FPGA and ASIC
implementations, TMR approach is utilized to protect against the SEU errors
in all the FFs used in the processors. Each FF is triplicated and a majority
voter is implemented for it, and hence, an SEU error in a single FF can be
tolerated. Because the FFs are continuously clocked, any SEU error can be re-
moved within one clock cycle with the output of the voter providing the correct
(glitch-free) value.

5.4.5 Working of the Configurable Fault-Tolerant System

We implemented fault tolerance techniques that can be customized at design-
time and enabled/disabled at run-time. Designers can specify to include or
not include the fault tolerance in a processor as well as specify whether the
included fault tolerance is permanently enabled or can be enabled/disabled at
run-time. Figure 5.1(a) depicts the TMR scheme and the majority voter for the
permanently enabled fault-tolerant design. If an application requires that fault
tolerance should always be enabled, this design has the advantage of requiring
less hardware resources, consuming less dynamic power, andrunning at higher
clock frequency compared to the case where the fault tolerance is run-time
configurable (enable/disable).

On the other hand, there could be scenarios in which the application requires
fault tolerance only at specific instances of time but not always. For example,
certain specific portion of a code needs protection but not all or the device

5.4. THE FAULT-TOLERANT ρ-VEX PROCESSOR 103

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

D

clk

EN

clk

EN

clk

EN

QFT

All Flip-flops and
Majority Voter

always enabled

(a) Permanently enabled TMR approach

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

D

clk

EN0

clk

EN1

clk

QFT

Two Flip-flops and
Majority Voter can be

enabled/disabled

(b) Run-time enabled/disabled TMR approach

Figure 5.1: Two approaches used for TMR.

has to be used in an increased radiations environment. In this case, the sys-
tem should be able to turn off the fault tolerance circuit to avoid consuming
the additional dynamic power due to the triplication of FFs.In our run-time
reconfigurable design, the fault-tolerant circuit can be enabled and disabled
at run-time. The reconfiguration can be controlled by decoding a custom in-
struction on the processor. This instruction can be placed at different points
in the code where the fault-tolerant circuit needs to enabled or disabled. The
reconfiguration process can also be initiated from higher level by the user. In
this case, the processor can be interrupted and an ISR executed that enables or
disables the fault-tolerant circuit. Figure 5.1(b) depicts the TMR scheme and
the majority voter for the run-time reconfigurable fault-tolerant design. In this
case, the additional two FFs and the majority voter can be enabled/disabled
by controlling theEN1signal. This design slightly increases the hardware re-
sources and critical path compared to the design in which thefault-tolerant
circuit is always enabled. The advantage is that dynamic power consumption

104 CHAPTER 5. CONFIGURABLE FAULT TOLERANCE

can be reduced at run-time if an application does not requirefault tolerance at
some point in time. Detailed analysis is presented in Section 5.5.

5.4.6 Fault Coverage and Test Methodology

Fault coverage refers to the percentage of specific type of faults that can be de-
tected with an employed fault tolerance technique. A specific technique may
not cover all types of faults, therefore, different techniques are utilized to in-
crease fault coverage of a system. We define adetectable erroras an error
that can be detected by the employed fault detection technique, i.e., the error
is within the fault coverage range. Acorrectable erroris an error which can
be detected and corrected by the employed fault detection and correction tech-
niques.Non-correctable errorsare those errors which are either not detected
or detected but cannot be corrected by the employed technique. Following we
discuss the fault coverage of the different techniques thatwe utilized for error
detection and protection.

In the previous sections, we discussed the fault tolerance techniques that are
employed to protect different modules of theρ-VEX processor. We utilized
even parityscheme to detect errors in the instruction and data memoriesand
the GR register files (only for version3 and4). The parity scheme is simple,
fast, and requires less hardware for implementation (only XOR gates needed)
compared other advanced error detection codes. Although the parity bits per
32-bit word are design-time configurable (1, 2, or 4 bits) in our case, the pre-
sented results in Section 5.5 are for4 bits of parity per32-bit word. Hence,1
parity bit is available for every8-bit of data/instruction. In this case, the error
correction technique only needs to correct or recover only8 bits instead of32
bits. Whatever the number of data bits that are associated a parity bit, there is a
common limitation to parity schemes. A parity bit is only guaranteed to detect
an odd number of bit errors. If an even number of bits has errors, the parity bit
records the correct number of ones, even though the data is corrupt. A parity
bit can only detect all single bit errors and all multiple biterrors where the
number of errors is odd. This makes the fault coverage of the parity scheme
to be at best around50%. Techniques which detect/correct multiple bit errors
where the number of errors is not odd are out of scope of this thesis.

Apart from the instruction and data memories and the GR register files (only
for version3 and4), all other modules of the processor are protected against
SEU errors utilizing TMR scheme. Each FF is triplicated and amajority voter
is implemented for it. In this manner, a bit flip occurring in asingle FF of a
TMR section can be tolerated as the final result is obtained from the other two

5.4. THE FAULT-TOLERANT ρ-VEX PROCESSOR 105

FFs. As all the FFs are continuously clocked, any SEU error can be removed
within one clock cycle. Hence, for a single bit error per TMR section, the fault
coverage of the TMR technique is100%. If there are more than 1 errors per
TMR section, this technique cannot detect the errors. Both of the permanently
enabled and run-time enabled/disabled TMR circuits as presented in Section
5.4.5 have the same fault coverage. These circuits can protect only against
SEU errors in a single FF per TMR section. Techniques protecting against
SEU errors in multiple FFs per TMR section are out of scope of this thesis.

To test our designs, we utilized the simulation-based fault-injection method
[133] which does not require any hardware setup. The method allows fast and
easy implementation of the fault injection platform but limits the number of
experiments due to its high computational requirements andlong simulation
time. With the VHDL description of theρ-VEX processor and utilizing the
ModelSim simulation tool (version 64-bit SE 6.6e), we performed realistic fault
emulation and detailed system monitoring.

We have written special non-synthesizable routines that generate faults in dif-
ferent regions of the processor at different clock edges, and then record the
results. Bit errors are induced in the pipeline registers and other sequential
elements of the processors. Injecting errors in FFs does notrequire stalling
a processor and the execution can continue as normal. To inject errors in the
GR register file (FPGA implementation) of a processor or the instruction or
data memory requires stalling the processor. We injected3000 1-bit and2-bit
errors in each of the2-issue,4-issue, and8-issueρ-VEX processors running
matrix multiplicationandsorting applications. These errors were injected in
two different manners. In the first case, errors were continuously inserted in
different modules of a processor after fixed number of clock cycles when an
application started execution. In the second case, errors were injected in dif-
ferent modules of a processor randomly distributed over theduration of an
application execution.

To test the TMR circuits, errors were injected in FFs. We observed that errors
affecting a single FF of a TMR section were automatically corrected. These
are called as correctable errors. Errors that effected morethan one FFs of a
TMR section went undetected, were not corrected, and hence,the results were
wrong. These are called as non-correctable errors.

To test the parity scheme, errors were injected in the instruction and data mem-
ories and the GR register files (version3 and version4 only) of the processor.
All 1-bit errors in the instruction and data memories were detected and the pro-
cessor was stopped to correct them, while the2-bit errors went undetected.

106 CHAPTER 5. CONFIGURABLE FAULT TOLERANCE

For the GR register file version3 and version4 which are implemented using
BRAMs and protected with parity bit, the behavior remains the same as that
for the instruction and data memories. All1-bit errors were detected and the
processor was stopped to correct them (correctable errors), while the2-bit er-
rors went undetected (non-correctable errors). All of the correctable errors in
this case were corrected (see Section 5.4.3). The non-correctable errors which
include errors in all of the BRAMs in a bank generated a trap halting the pro-
cessor execution.

5.5 Implementation Results and Discussion

In this section, we evaluate the implementation results forthe different fault-
tolerant designs of theρ-VEX processor. For FPGA implementation, we uti-
lized theXilinx ISE (version 13.3)and the Virtex-6XC6VLX240T-1FF1156
FPGA, whereas for ASIC implementation, we utilized theSynopsis Design
Compiler (version G-2012.06-SP2)and targeted90 nm technology. The GR
and BR register files in all cases are64×32-bit and8×1-bit, respectively. The
2-issue,4-issue, and8-issue cores have2, 4, and8 ALUs, and2, 2, and4
MULs, respectively. Each type of core has a single load/store (MEM) unit.
The parity bits are design-time configurable, i.e.,1, 2, or 4 bits per32-bit of
word. The results presented in this chapter are for4 bits of parity per32-
bit word, i.e.,1 bit per byte of data. We represent the base non fault-tolerant
by D1 and the permanently enabled fault-tolerant design byD2. D3 andD4
(both having same area in terms of hardware resources) represent the proces-
sor design in which fault tolerance can be enabled/disabledat run-time. D3
represents the fault tolerance enabled scenario, whileD4 represents the fault
tolerance disabled scenario.

5.5.1 Hardware Resources/Area and Critical Path Delay

Figure 5.2 and Figure 5.3 depict the hardware resources/area and critical path
delay results for the base and the fault-tolerantρ-VEX processors with differ-
ent types of register files and without instruction and data memories.

5.5. IMPLEMENTATION RESULTS AND DISCUSSION 107

0

20000

40000

60000

80000

S
lic

e
R

eg
is

te
rs

 a
n

d
 L

U
T

s

0

5

10

15

20

25

30

35

C
ri

ti
ca

l p
at

h
 d

el
ay

 (
n

s)

0

10000

20000

30000

40000

0

2

4

6

8

10

12

14

0

5000

10000

15000

20000

25000

0

2

4

6

8

10

12
14

S
lic

e
R

eg
is

te
rs

 a
n

d
 L

U
T

s
S

lic
e

R
eg

is
te

rs
 a

n
d

 L
U

T
s

C
ri

ti
ca

l p
at

h
 d

el
ay

 (
n

s)
C

ri
ti

ca
l p

at
h

 d
el

ay
 (

n
s)

GR register file version 3

GR register file version 2

GR register file version 4

GR register file version 1

0

4000

8000

12000

16000

20000

D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4

2-issue 4-issue 8-issue

0

2

4

6

8

10

12

S
lic

e
R

eg
is

te
rs

 a
n

d
 L

U
T

s

C
ri

ti
ca

l p
at

h
 d

el
ay

 (
n

s)

Slice Registers Slice LUTs Critical path delay

 D1 – Base non fault-tolerant design
 D2 – Permanently enabled fault-tolerant design
 D3 – Run-time configurable fault-tolerant design with the fault tolerance enabled
 D4 – Run-time configurable fault-tolerant design with the fault tolerance disabled

Figure 5.2: Implementation results for theρ-VEX processors for the Xilinx Virtex-6
FPGA. In addition to the mentioned resources, the2-issue,4-issue, and8-issue cores
utilize 4, 4, and8 DSP48E1s modules,4, 16, and64 RAMB36s (GR register file
version3), and1, 4, and32 RAMB36s (GR register file version4), respectively.

As can be observed from Figure 5.2 and Figure 5.3, adding fault tolerance to a
processor requires more hardware resources especially theFFs (which are trip-
licated due to TMR approach) and the additional logic gates for implementing

108 CHAPTER 5. CONFIGURABLE FAULT TOLERANCE

0

0.2

0.4

0.6

0.8

1

1.2

A
re

a
(s

q
. m

m
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
ri

ti
ca

l p
at

h
 d

el
ay

 (
n

s)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4

2-issue 4-issue 8-issue

A
re

a
(s

q
. m

m
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
ri

ti
ca

l p
at

h
 d

el
ay

 (
n

s)

Area Critical path delay

 D1 – Base non fault-tolerant design
 D2 – Permanently enabled fault-tolerant design
 D3 – Run-time configurable fault-tolerant design with the fault tolerance enabled
 D4 – Run-time configurable fault-tolerant design with the fault tolerance disabled

GR register file version 2

GR register file version 1

Figure 5.3: Synthesis results for theρ-VEX processors for90 nm technology.

majority voters. For the FPGA implementation, the number ofBRAMs for the
GR register file version3 and version4 and instruction and data memories re-
main the same because we utilize the available extra parity bits in the BRAMs.
GR register file version3 and version4 are only available for FPGA imple-
mentation. For ASIC, the area required for implementing additional parity bits
for instruction and data memories increases. In terms of bits increase, it is1, 2,
or 4 bits per32-bit of word depending upon the desired number of parity bits.
DesignsD3/D4 utilize slightly more hardware resources and run at less fre-
quency compared toD2. The logic gates utilized for majority voters inD3/D4
may be accommodated in the already utilized LUTs (FPGA implementation),
therefore, the critical path delay remains almost the same as that forD2. For
ASIC, the increase in critical path delay can be clearly observed when moving
from D1 to D2 to D3/D4due to the additional logic gates in the path (majority
voters). In the FPGA implementation, theD3/D4designs for8-issue core with
GR register file version1 become very large and complex. The Xilinx tool

5.5. IMPLEMENTATION RESULTS AND DISCUSSION 109

could only map the designs, while the router failed to route them even after
running for a long time (more than5 days). Therefore, the critical path delays
could not be calculated for these designs.

5.5.2 Dynamic Power Consumption

We utilized the Xilinx XPower Analyzertool and the Synopsis Design
Compiler to measure the dynamic power consumption per MHz for the
XC6VLX240T-1FF1156FPGA and the90 nm technology, respectively, as pre-
sented in Figure 5.4. Dynamic power is calculated utilizingthe equation:

Dynamic Power = ACV 2f (5.1)

In this equation,A is the switching activity,C is the total capacitive load,V
is the voltage, andf is the frequency. Increasing the frequencyf increases
the dynamic power consumption. The capacitive loadC is calculated by the
FPGA and the ASIC tools from the implemented designs. The voltageV is
constant for the specific FPGA and the specific ASIC gate technology that we
are using. The switching activityA can be adjusted by the designer. BecauseA
is a linear term in equation5.1, therefore, any value ofA will result in a linear
change in power consumption. Since our purpose is to show therelative power
consumption of the different designs of our processor, we can choose any pos-
sible value forA. The absolute value of power consumption may change but
the trends will remain the same whenA is changed. For all our dynamic power
estimation in this thesis, we assumeA to be0.1 (i.e.,10% switching activity).

As can be observed from Figure 5.4, implementing fault tolerance in the pro-
cessors increases the dynamic power consumption due to increased hardware
resources. DesignsD2 andD3 (fault tolerance enabled) consume almost simi-
lar dynamic power, whileD4 (fault tolerance disabled) consumes considerably
less power compared toD2 designs. For the FPGA implementation, the power
consumption results are not available for the8-issueD3/D4 designs with GR
register file version1, as the designs could not be routed by the Xilinx tools.

Figure 5.5 depicts the percentage dynamic power reduction for theD4 designs
compared toD2 designs. In case of the FPGA implementation, theD4 designs
with GR register file version1 consume12.73% and44.32% less dynamic
power compared to the2-issue and4-issueD2 designs, respectively. For the
GR register file version2, the2-issue,4-issue, and8-issueD4 designs con-
sume13.33%, 30.77%, and31.54% less dynamic power compared to the

110 CHAPTER 5. CONFIGURABLE FAULT TOLERANCE

0

2

4

6

8

10

12

D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4

2-issue 4-issue 8-issue

D
yn

am
ic

 p
o

w
er

 (
m

W
/M

H
z)

GR version 1 GR version 3GR version 2 GR version 4

D1 – Base non fault-tolerant design
D2 – Permanently enabled fault-tolerant design
D3 – Run-time configurable fault-tolerant design
 with the fault tolerance enabled
D4 – Run-time configurable fault-tolerant design
 with the fault tolerance disabled

(a) Xilinx Virtex-6 FPGA

GR version 1 GR version 2

0

20

40

60

80

100

D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4

2-issue 4-issue 8-issue

D
yn

am
ic

 p
o

w
er

 (
u

W
/M

H
z)

D1 – Base non fault-tolerant design
D2 – Permanently enabled fault-tolerant design
D3 – Run-time configurable fault-tolerant design
 with the fault tolerance enabled
D4 – Run-time configurable fault-tolerant design
 with the fault tolerance disabled

(b) 90 nm ASIC technology

Figure 5.4: Dynamic power consumption per MHz for theρ-VEX processors.

D2 designs, respectively. Looking at the GR register file version3, we can ob-
serve that the2-issue,4-issue, and8-issueD4 designs are25.93%, 12.43%,
and5.56% more power efficient compared to theD2 designs, respectively.
Similarly, for the GR register file version4, we can observe that the2-issue,
4-issue, and8-issueD4 designs consume19.48%, 23.56%, and18.81%
less dynamic power compared to theD2 designs, respectively. For the larger
issue-width cores, the GR register file version3 requires increased number of
BRAMs due to the additional number of ports. In FPGAs, BRAMs contribute
more to dynamic power compared to FFs, therefore, for the8-issue proces-
sors with GR register file version3, the dynamic power consumption does not
reduce considerably when moving fromD2 to D4. This is not visible in the
ASIC results, as the GR register files are implemented using FFs, not BRAMs.

For the ASIC implementation, theD4 designs with GR register file version1
consume65.92%, 67.30%, and70.22% less dynamic power compared to

5.6. SUMMARY 111

P
er

ce
n

t
p

o
w

er
 r

ed
u

ct
io

n

0

10

20

30

40

50

2-issue 4-issue 8-issue

GR version 1 GR version 3GR version 2 GR version 4

(a) Xilinx Virtex-6 FPGA

P
er

ce
n

t
p

o
w

er
 r

ed
u

ct
io

n

GR version 1 GR version 2

60

62

64

66

68

70

72

2-issue 4-issue 8-issue

(b) 90 nm ASIC technology

Figure 5.5: Percent dynamic power reduction for theD4 designs compared toD2.

the2-issue,4-issue, and8-issueD2 designs, respectively. Considering the GR
register file version2, we can observe that the2-issue,4-issue, and8-issueD4
designs are71.67%, 64.78%, and68.87% more power efficient compared
to theD2 designs, respectively. This is considerable power saving,and if fault
tolerance is not required at some point in time, it can be turned off to reduce
the dynamic power consumption.

5.6 Summary

In this chapter, we presented hardware-based configurable fault-tolerant de-
signs for theρ-VEX VLIW processor. The designs can detect and correct SEU
errors. Parity checking is utilized to detect errors in the instruction and data
memories, and the general register files (FPGA implementation). For all other
sequential elements, the TMR approach with majority votingis implemented.
Different designs for fault tolerance scheme such as permanently enabled at

112 CHAPTER 5. CONFIGURABLE FAULT TOLERANCE

design-time or with run-time options for enabling and disabling, were pre-
sented. These options enable a user to trade-off between hardware resources,
performance, power consumption, and reliability.

Note.

The content of this chapter is partially based on the following paper:

F. Anjam and S. Wong. Configurable Fault-Tolerance for a Configurable
VLIW Processor. InInternational Symposium on Applied Reconfigurable
Computing (ARC), pp. 167–178, 2013.

6
Results and Analysis

AVLIW processor that can be adapted/reconfigured at design-time as well
as at run-time can target applications with diverse requirement of area,

performance, and power/energy consumption. In Chapter 3, we presented a
design-time configurable VLIW processor that can be adaptedin different pa-
rameters before it is implemented in hardware. The parameters include the
processor’s issue-width, the type and number of different FUs and their laten-
cies, type and size of multiported register files, size and width of instruction
and data memories, type of interrupt system, and type of default custom oper-
ations. Hence, for each particular application, an optimized processor can be
generated targeting area, performance, and power consumption characteris-
tics. If the behavior of an application is not known beforehand, the application
has different phases with distinct requirements, or a number of different appli-
cations need to be executed, a fixed processor may not performwell for all
the phases/applications. In Chapter 4, we presented a run-time reconfigurable
processor that can change its organization after its realization in hardware.
The run-time parameters include the processor’s issue-width, the type and
number of different FUs, the size of the multiported register file, and size and
width of instruction and data memories. The previous chapters provided the
implementation (area/hardware) results for the design-time and run-time re-
configurable processors. The current chapter is dedicated to the performance
and power/energy consumption analysis of these designs. Following are the
contributions of this chapter:

• Performance and power consumption results are presented for different
issue-width processors.

• The effectiveness of run-time task migration among different cores in the
2-4-8-issue processor is evaluated.

113

114 CHAPTER 6. RESULTS AND ANALYSIS

• The impact of simultaneous reconfiguration of issue-width and instruc-
tion cache on performance, energy consumption, and EDP is analyzed.

• The effect of increasing the read/write ports (load/store units) on the
hardware resources and capacity of data memory/cache is studied.

The remainder of the chapter is organized as follows. Performance and power
consumption results for the 2-4-issue and 2-4-8-issue processors are presented
in Section 6.1 and Section 6.2, respectively. Section 6.3 presents the power
consumption results for the 2-issue, 4-issue, and 8-issue stand-aloneρ-VEX
processors with different types of register files presentedin Chapter 3. Sec-
tion 6.4 discusses the task migration support for the 2-4-8-issue processor and
presents the performance and power consumption results. Ananalysis for the
simultaneous reconfiguration of issue-width and instruction cache is presented
in Section 6.5. Section 6.6 presents an analysis for the sizeand required hard-
ware resources for multiport data memory/cache or multipleload/store (LS)
units. Finally, Section 6.7 summarizes the chapter.

6.1 2-4-issue Processor

The2-4-issue processor has two2-issue cores, which can be utilized indepen-
dently or combined together to form a4-issue core. We consider two appli-
cation scenarios for the processor. The first scenario exploits instruction level
parallelism while the second data level parallelism.

Application Scenario1 This scenario corresponds to applications or kernels
with large ILP such as a matrix multiplication program or a discrete Fourier
transform (DFT) kernel. Generally, these kernels are part of some larger ap-
plications like MPEG video, etc., and these kernels are repeated many times
while the application is running. Therefore, running such applications/kernels
on a larger issue-width core can provide more performance ascompared to a
smaller issue-width core. Hence, in our case we can combine the two2-issue
cores to form one4-issue core and exploit the available ILP. We executed a
100-by-100 matrix multiplication program and a DFT kernel on a single2-
issue core and the combined4-issue core. Figure 6.1 depicts the speedup for
these applications/kernels normalized to the4-issue core. In this figure,Is-
sue_2_1means that the application is running on one of the two2-issue cores,
and Issue_4means that the application is running on the combined4-issue

6.1. 2-4-ISSUE PROCESSOR 115

core. It can be observed from the figure, that running these applications/kernels
on a larger issue-width core can improve the performance of these applica-
tions/kernels. On the other hand, running these applications on a single2-issue
core can benefit from the lower power consumption as the other2-issue core
can be taken to a lower power mode by gating of its source clock.

Application Scenario2 In this scenario, the application is such that its data
set can be easily divided and run on more than one cores with the data di-
vided among the cores. This scenario corresponds to applications with large
data level parallelism such as the advanced encryption standard (AES) encryp-
tion/decryption. The AES algorithm takes an input data of128 bits and a key
of 128, 196 or 256 bits and produces an encrypted output data of128 bits.
For decryption the same key is utilized as used in the encryption process. We
utilized a128 bit key version of the AES algorithm. We encrypted and de-
crypted a text of1024 bytes. For the single4-issue core, the C program for the
encryption and decryption are compiled and assembled with the input data of
1024 bytes. For the two2-issue cores, the input data is split into two sets each
of 512 bytes. Each core is provided its own data set and the same program for
encryption/decryption runs on it. Figure 6.1 depicts the speedup normalized
to the combined4-issue core. In this figure,Issue_2_2means the applica-
tion is running on both of the two2-issue cores with the data divided among
the cores, andIssue_4means that the application is running on the combined
4-issue core. It can be observed from the figure that theIssue_2_2system
completed the execution of the application in almost half time compared to the
singleIssue_4system.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Matrix
multiplication

DFT AES Encrypt AES Decrypt

S
p

ee
d

u
p

Issue_2_1

Issue_4

Issue_2_2

Figure 6.1: Speedup for the2-4-issue processor normalized to 4-issue core.

116 CHAPTER 6. RESULTS AND ANALYSIS

6.2 2-4-8-issue Processor

The2-4-8-issue processor has four2-issue cores, which can be utilized inde-
pendently or combined together to form a variety of configurations. We uti-
lized theMiBenchbenchmark suite [2] and acustombenchmark suite. The
MiBench is suite of different embedded applications divided into six cate-
gories, which includes Automotive and Industrial Control,Consumer Devices,
Office Automation, Networking, Security, and Telecommunications. The cus-
tom benchmark suite is a collection of different applications/kernels consist-
ing of the following9 embedded applications: finite impulse response (FIR)
filter, integer division, factorial, Fibonacci series, Floyd-Warshall graph, ma-
trix transpose, matrix multiplication, integer square root, and a DFT kernel.
We consider two application scenarios for the2-4-8-issue processor. The first
scenario exploits instruction level parallelism while thesecond data level par-
allelism. If an application can be split into multiple independent threads that
can be run on multiple cores, the performance can be improved. If an applica-
tion cannot be split into multiple independent threads, it can be run on a larger
issue-width core to exploit ILP.

Application Scenario 1 In this case, the available ILP can be exploited by
executing the application/kernel as a whole on larger issue-width cores instead
of dividing it into multiple threads. Generally, these kernels are part of some
larger applications like H.264/MPEG audio/video, etc., and these kernels are
executed multiple times while the application is running. Therefore, running
such applications/kernels on a larger issue-width core canprovide more perfor-
mance compared to a smaller issue-width core. By combining multiple 2-issue
cores to form a larger issue-width core (4-issue or8-issue), we can exploit the
available ILP in a better manner. We executed the MiBench andour custom
benchmark suites with three different configurations of the2-4-8-issue proces-
sor, i.e.,2-issue,4-issue, and8-issue cores. Figure 6.2 depicts the speedup for
the three types of the processor cores normalized to that fora 2-issue core for
the two benchmark suites. Here, the2-issue,4-issue, and8-issue cores utilize
local data memories with1, 2, and4 load/store units, respectively. It can be
observed from the figure, that running these applications/kernels on a larger
issue-width core can improve the performance of these applications/kernels.
On the other hand, running these applications on smaller issue-width cores can
benefit from lower power consumption as the other2-issue cores can be taken
to a lower power mode by turning them off.

6.2. 2-4-8-ISSUE PROCESSOR 117

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Bas
icm

at
h

Bitc
ount

Qso
rt

Susa
n

co
rn

er
s

Susa
n

ed
ges Susa

n

sm
ooth

in
g

JP
EG

dec
ode

JP
EG

en
co

de

Tiff
2b

w

Tiff
2r

gba

Tiff
dith

er

Tiff
m

ed
ian

Dijk
st

ra

Pat
ric

ia

S
p

ee
d

u
p

0

0.5

1

1.5

2
2.5

Stri
ng

se
ar

ch

Blo
wfis

h

dec
ode

Blo
wfis

h

en
co

de
Rijn

dae
l

dec
ode

Rijn
dae

l

en
co

de SHA

ADPCM

dec
ode

ADPCM

en
co

de
CRC32 FFT

IF
FT

GSM

dec
ode

GSM

en
co

de

S
p

ee
d

u
p

2-issue 4-issue 8-issue

(a) MiBench benchmark suite

0

0.5
1

1.5
2

2.5

3
3.5

4

FIR
 fi

lte
r

Div
isi

on

Fac
to

ria
l

Fib
onac

ci

Flo
yd

-

W
ar

sh
all

Mat
rix

tra
nsp

ose

M
at

rix

m
ulti

plic
at

io
n

Squar
e

ro
ot DFT

ke
rn

el

S
p

ee
d

u
p

2-issue 4-issue 8-issue

(b) Custom benchmark suite

Figure 6.2: Speedup for the2-4-8-issue processor normalized to2-issue core.

Application Scenario 2 n this case, the application is such that its data set
can be easily divided and run on multiple independent cores.This scenario
corresponds to applications with large data level parallelism such as the Ri-
jndael encryption/decryption algorithm. We utilized a128 bits key version of
this algorithm. We encrypted and decrypted back a text of2048 bytes using the
Rijndael encryption/decryption algorithms. Initially, we run the application as
a whole with2048 bytes on a single8-issue core. We then run the same appli-
cation on two4-issue cores with the data divided among the two cores. Each
core encrypts/decrypts its own1024 bytes of data. In the third experiment, we
run the same applications on four2-issue cores providing512 bytes of data
to each core. The individual encrypted/decrypted data is then combined into
a single result. Figure 6.3 depicts the execution cycles forthe three types of

118 CHAPTER 6. RESULTS AND ANALYSIS

0

0.5
1

1.5

2
2.5

3

3.5
4

Rijndael encrypt Rijndael decrypt

N
o

rm
al

iz
ed

ex

ec
u

ti
o

n
 c

yc
le

s
Four 2-issue cores Two 4-issue cores One 8-issue core

Figure 6.3: Execution cycles normalized to the four2-issue cores for the Rijndael
encryption/decryption algorithms.

the processor system normalized to that for the four2-issue cores. It can be
observed from the figure, that applications with larger datalevel parallelism
execute faster when run on multiple smaller issue-width cores with the input
data distributed among them compared to running the application on one larger
issue-width core with all the input data. A matrix multiplication program can
also be executed over multiple independent cores with the data is distributed
over them. For example, one of the matrices is provided to every core, while
the rows of the other matrix are distributed over all the cores. Each core per-
forms it own part of the calculation, which is then combined and re-arranged
into the final result.

6.2.1 Dynamic Power Consumption

In the2-4-8-issue processor, the clock input for each2-issue core is driven by
a separate controlled buffer [134]. The clock buffer for a core is controlled
by therun signal of that core. If therun signal for a core is at logic low, the
clock to that core is gated off. We used the XilinxXPower Analyzertool, the
ISE release version13.2, and the Virtex-6XC6VLX240T-1FF1156FPGA for
the power consumption analysis. We utilized the typical operating conditions
with 10% switching activity. According to equation5.1, the switching activ-
ity A is a linear term in the equation for dynamic power estimation, therefore,
any value ofA will result in a linear change in power consumption. Since our
purpose is to show the relative power consumption of the different versions of
our processor, we can choose any possible value forA. The absolute value of
power consumption may change but the trends will remain the same whenA
is changed. For all our dynamic power estimation in this chapter, we assume

6.3. POWER CONSUMPTION FORSTAND-ALONE ρ-VEX PROCESSORS119

A to be0.1 (i.e.,10% switching activity). The frequencyf is fixed at1 MHz.
Increasing the frequency increases the dynamic power consumption for any
number of the active2-issue cores. When more cores are turnedon, the net ca-
pacitive load increases, and hence, the dynamic power consumption increases.
The capacitive loadC is calculated by the XilinxXPower Analyzertool from
the placed and routed design of our processor. The voltageV is constant for
the specific FPGA that we are using. Figure 6.4 depicts the dynamic power
consumption per MHz for the2-4-8-issue processor. It can be observed from
the figure that turning offone, two, or three2-issue cores reduces the dynamic
power consumption of the whole system by34%, 60%, or82%, respectively.
Hence, if any of the2-issue cores is not active, it can be turnedoff and the
system can be taken to a lower power mode.

6.3 Power Consumption for Stand-aloneρ-VEX Pro-
cessors

In Section 3.2, we presented different types of register fileimplementations
for theρ-VEX processor. Depending upon the choice and/or the available re-
sources in the FPGA, aρ-VEX processor can be implemented utilizing any of
these register files. When the number of ports on a register file increases, its
area and resource requirement increases, and hence, the register file starts in-
creasing the critical path delay of the processor. Different implementations of
the register files utilize different types of FPGA resourcesresulting in different
critical path length of the processor. In this section, we present the dynamic
power consumption per MHz of the2-issue,4-issue, and8-issue stand-alone
ρ-VEX processors with the different types of register files presented in Sec-

0

1

2

3

4

5

6

7

8

9

One Two Three Four

D
yn

am
ic

 p
o

w
er

 (
m

W
/M

H
z)

Number of active 2-issue cores

Figure 6.4: Dynamic power consumption for the2-4-8-issue processor.

120 CHAPTER 6. RESULTS AND ANALYSIS

tion 3.2. We used the XilinxXPower Analyzertool, the ISE release version
13.2, and the Virtex-6XC6VLX240T-1FF1156FPGA for the power consump-
tion analysis. We utilized the typical operating conditions with10% switching
activity. Figure 6.5 depicts the dynamic power consumptionper MHz for the
stand-aloneρ-VEX processor with different issue-widths and different types of
register files. As can be observed from the figure, compared tothe register file
version1, processors utilizing the register file version2 consume less dynamic
power. The reason is that the register file version2 is mapped to LUTRAMs
resulting in a compact design while version1 could not be mapped to LU-
TRAMs, and hence utilizes more LUTs. Processors with register file version3
utilize more BRAMs (by order of4×) and more signal paths for routing com-
pared to the version4, therefore they consume more power than the processors
with register file version4. On the other hand, the register file version4 runs at
double frequency compared to the version3, therefore the power consumption
for the processors utilizing register file version4 also increase.

6.4 Run-time Task Migration Support

As mentioned in Section 4.3, task migration from one core to another requires
a total of155 cycles. Out of these155 cycles,76 cycles are required for storing
the context of the first core,1 cycle for accessing the program counter (PC) of
the first core,1 cycle for reconfiguring the issue-width,76 cycles for restoring
the context to the newly configured core, and1 cycle for loading PC of that
core. This means that switching a running application from one type of core

0

2

4

6

8

1 2 3 4 1 2 3 4 1 2 3 4

2-issue 4-issue 8-issue
Register file version and Issue-width

D
yn

am
ic

 p
o

w
er

 (
m

W
/M

H
z)

Figure 6.5: Dynamic power consumption for the stand-aloneρ-VEX processor with
different issue-widths and different types of register files.

6.4. RUN-TIME TASK M IGRATION SUPPORT 121

to another core requires155 extra cycles, but then the execution time or power
consumption for the remaining part of the application can bereduced. The
issue-width or the organization of the2-4-8-issue processor can be changed
by writing dedicated bits to the configuration register of the processor. The
configuration register can be accessed by decoding a custom instruction on the
processor. This instruction can be placed at the specific points in the executable
code, where an issue-width change is required. In a more global scenario, the
configuration register can be implemented in the global space accessible to
other dedicated hardware/software controllers. In this case, there is no need for
designing the custom operation for the processor. The reconfiguration process
can be initiated by some external agents/controllers basedon certain run-time
metrics such as hardware utilization, power/energy considerations, arrival of
other tasks, cache related statistics, etc.

To show the effectiveness of our run-time task migration capable hardware,
we utilized thegeneric binariesscheme [80] to generate the binary code for
our variable issue-width processor. In the generic binaries scheme, an appli-
cation is compiled such that the same binary code can be executed correctly
on different issue-width VLIW processors with some performance degrada-
tion. Here, an application is compiled for an8-issue core. Then the assembly
code is parsed and the operations are re-arranged accordingto a specific format
such that the same instruction can be executed by a4-issue or a2-issue core
in multiple clock cycles. In this case, there is a performance degradation of
9% to30% for the4-issue and2-issue cores when executing the generic bina-
ries compared to the binaries compiled for specific issue-widths. Utilizing the
generic binaries, the processor issue-width can be reconfigured at any point
during execution without needing to introduce checkpoints. This avoids the
use of complex algorithms and hardware to ensure the application is restarted
at the same point in a different version of the code. The advantage is that
the same binaries can be utilized when switching the processor issue-width
and there is no need for loading/accessing multiple binaries. This reduces the
required storage space for instructions and data, their loading time, and the
power consumption related to loading a new code. More detailabout generic
binaries can be found in [80].

We considered the following benchmark applications/kernels: Sobel filter, FIR
filter, data encryption standard (DES), secure hash algorithm (SHA), Huffman
compression, and Rijndael encode. Generally, these applications/kernels are
part of some large applications such as H.264, and are repeated continuously
or at least many times. Figure 6.6 depicts the overall execution cycles nor-
malized to a2-issue core with1 LS unit for different benchmarks when the

122 CHAPTER 6. RESULTS AND ANALYSIS

Percent of total execution cycles for 2-issue-1-LS core at which migration takes place

N
o

rm
al

iz
ed

ex

ec
u

ti
o

n
 c

yc
le

s
N

o
rm

al
iz

ed

ex
ec

u
ti

o
n

 c
yc

le
s

N
o

rm
al

iz
ed

ex

ec
u

ti
o

n
 c

yc
le

s
N

o
rm

al
iz

ed

ex
ec

u
ti

o
n

 c
yc

le
s

0% 20% 40% 60% 80%

8-issue-1-LS core

0.2

0.4

0.6

0.8

1

4-issue-2-LS core

0.2

0.4

0.6

0.8

1

8-issue-4-LS core

0.2

0.4

0.6

0.8

1

4-issue-1-LS core

0.2

0.4

0.6

0.8

1

Sobel FIR_filter DES SHA Huffman_comp Rijndael_encode

Figure 6.6: Execution cycles normalized to a2-issue core with1 load/store (LS) unit.

applications are migrated from this core to a larger issue-width core at dif-
ferent percentage of the total execution cycles for the2-issue-1-LScore. The
maximum performance is at0% of execution time, i.e., when the application
has just started on the2-issue-1-LScore. Hence, reduction in execution cycles
is more when the migration is done in the beginning of an application execu-
tion. As depicted in Figure 6.6, the compiler is able to extract more ILP for the
different applications. In our2-4-8-issue processor, each of the four2-issue
cores has1 LS unit. When multiple2-issue cores are combined, the result-
ing larger issue-width core can also utilize the additionalLS units to increase
the data input (provided the data memory has multiple ports)and hence, can
further reduce the execution cycles for different applications.

6.5. SIMULTANEOUS RECONFIGURATION OFISSUE-WIDTH AND

INSTRUCTION CACHE 123

6.4.1 Dynamic Power Consumption

We calculated the dynamic power consumption for the2-4-8-issue processor
with the interrupt system and task migration support. When acode running on
a larger issue-width core is shifted to a smaller issue-width core (e.g., from an
8-issue to a2-issue), the unused2-issue cores can be clock gated to reduce the
dynamic power consumption of the system. We used the XilinxXPower Ana-
lyzer tool, ISE release version13.2, and the Virtex-6XC6VLX240T-1FF1156
FPGA for the power consumption analysis. Instead of measuring the dynamic
power consumption for a particular application, we utilized 10% switching
activity to measure the dynamic power consumption at typical operation con-
ditions. Figure 6.7 depicts the dynamic power consumption per MHz for the
2-4-8-issue processor with task migration support. It can be observed from
the figure that turning offone, two, or three2-issue cores reduces the dynamic
power consumption of the whole system by33%, 59%, or81%, respectively.

6.5 Simultaneous Reconfiguration of Issue-width and
Instruction Cache

As stated earlier, increasing the issue-width of a VLIW processor increases
the performance for applications with inherent ILP. Studies have shown that
more than half of the chip die is reserved for the on-chip caches and that the
energy consumption in cache systems accounts for more than50% of the to-
tal energy consumption. Instruction cache (I-cache) reconfiguration plays an
important role in the performance, energy consumption, and/or energy-delay

0

1

2

3

4

5

6

7

8

9

One Two Three Four

D
yn

am
ic

 p
o

w
er

 (
m

W
/M

H
z)

Number of active 2-issue cores

Figure 6.7: Dynamic power consumption for the2-4-8-issue processor with task mi-
gration support.

124 CHAPTER 6. RESULTS AND ANALYSIS

product (EDP) for different applications. Instead of reconfiguring only the I-
cache, reconfiguring both the “issue-width + I-cache" can further improve the
performance, energy consumption, and/or the EDP. In this section, we study
the effect of I-cache reconfiguration on the performance, dynamic energy con-
sumption, and the EDP for a reconfigurable issue-width VLIW processor. We
define EDP as the product of energy consumed and the total execution cycles
per application. When issue-width is changed, a different schedule is followed
by the compiler and a different request for instructions anddata is generated.
In this section, we analyze how this request can be better fulfilled by tuning
the available I-cache.

6.5.1 Experimental Setup and Benchmark Applications

We utilized the VEX toolchain [1] which includes a parametrized C compiler
and a simulator. The compiler reads a machine configuration file and then
compiles and schedules the code according to the machine specifications. As
mentioned in Section 4.4, there are30 I-cache configurations (cache associa-
tivity: 1/2/4/8 ways, cache size:4/8/16/32 Kbytes, cache line size:16/32/64
bytes) and3 issue-width configurations (2-issue,4-issue,8-issue; all with sin-
gle load/store unit); hence the total search space for each application is90
“issue-width + I-cache" configurations. The simulator generates a log file con-
taining different information such as total memory accesses, total misses, exe-
cution cycles, stall cycles, function profiles etc. For energy calculation of ASIC
implementation, we utilizedCACTI 6.5[104] andSynopsis Design Compiler
(Synthesis-E-2010.12-SP1) and targeted90 nm technology. We calculated the
energy consumption for each configuration as mentioned in Section 4.4.4. We
utilized theMiBench [2], PowerStone[3], and custombenchmark suites for
the analysis. The custom benchmark suite includes the following 16 small ap-
plications/kernels from different domains: discrete cosine transform (DCT),
discrete Fourier transform (DFT), finite impulse response filters (FIR), Floyd-
Warshall graph, Hamming distance, Huffman compression anddecompres-
sion, inverse discrete cosine transform (IDCT), matrix multiply, moving filter,
run length encoding (RLE), different sorting applicationssuch as bubblesort,
quicksork, radixsort, and shellsort. In Section 6.2, we also utilized applica-
tions from the same benchmark suites but excluding the effect of caches. For
the study in the current section, we include the I-cache results as well.

6.5. SIMULTANEOUS RECONFIGURATION OFISSUE-WIDTH AND

INSTRUCTION CACHE 125

6.5.2 Results and Analysis

As stated earlier, when the issue-width is changed, a different schedule is fol-
lowed by the compiler and a different request for instructions and data is gen-
erated. Configuring the I-cache for a fixed issue-width affects the memory
accesses and miss/hit rates. The miss/hit rate directly impacts an application’s
performance and energy consumption as well as EDP. Similarly, configuring
the issue-width for a fixed I-cache also impacts memory accesses. As dis-
cussed in Section 6.5.1, we consider a large number of applications and I-cache
and issue-width configurations. Due to limited space, we cannot discuss all of
the results. We present some of the interesting and motivating results showing
the importance of reconfiguring both the issue-width and I-cache together.

Figure 6.8 depicts an analysis for three applications; Basicmath, ADPCM de-
code (D-adpcm), and Rijndael encode (E-rijndael) for the three configurations
of our processor issue-width with varying the I-cache configurations. Here,
1W8KB16Bmeans a cache with1 way associativity,8 Kbytes total size, and
16 bytes line size. This is the base cache. We vary the cache in all its three
parameters, i.e., doubling the size, the line size, and the associativity. The first
graph in Figure 6.8 depicts the execution cycles normalizedto “2-issue core
+ 1W8KB16B I-cache" configuration. Focusing at the Basicmath application,
we can observe that there is no effect of changing the issue-width; hence, for
all issue-widths, the execution cycles remain the same at different I-cache con-
figurations. We can observe that for any issue-width configuration, varying
the I-cache configuration does vary the performance as well as the energy con-
sumption, but this change remains same across all the issue-widths. When ei-
ther of the execution cycles or energy consumption changes,the EDP changes
accordingly. Focusing at the D-adpcm application, we can observe that vary-
ing the I-cache configurations has no effect on the performance for different
issue-width configurations. The performance increases only with the issue-
width reconfiguration. On the other hand, the energy consumption varies with
the issue-width and hence the EDP. Considering the Rijndaelencode applica-
tion, we can observe that both the issue-width and the I-cache configurations
impact the performance and energy consumption. The “8-issue + 1W8KB32B
I-cache" results in the highest performance, the least energy consumption, and
hence, the least EDP. This shows that both the issue-width and I-cache recon-
figuration together can bring the most optimized result.

In the previous example, we considered a small variation in cache configu-
rations. In the next example, we considered a wider variation in the cache
parameters for the three types of the issue-widths. Figure 6.9 depicts the im-

126 CHAPTER 6. RESULTS AND ANALYSIS

ba
si

cm
at

h

D-
ad

pc
m

E-
rij

nd
ae

l

ba
si

cm
at

h

D-
ad

pc
m

E-
rij

nd
ae

l

ba
si

cm
at

h

D-
ad

pc
m

E-
rij

nd
ae

l

ba
si

cm
at

h

D-
ad

pc
m

E-
rij

nd
ae

l

1W8KB16B 1W16KB16B 1W8KB32B 2W8KB16B

No
rm

al
ize

d
ED

P
No

rm
al

ize
d

cy
cl

es
No

rm
al

ize
d

en
er

gy

0
0.2
0.4
0.6
0.8

1

0
0.5

1
1.5

2
2.5

3

0
0.2

0.6

1

1.4

1.8

2-issue 4-issue 8-issue

Figure 6.8: Impact of simultaneous reconfiguration of issue-width and I-cache; exe-
cution cycles, energy, and EDP normalized to2-issue and 1W8KB16B I-cache.

pact of I-cache configuration for the different issue-widths for Patricia and
Pocsag applications. We consider an I-cache of1W32KB16Bthat is varied in
different dimensions. The first, second, and third cache sets are 1W(4-8-16-
32)KB16B (varying cache size), 1W32KB(16-32-64)B (varying line size) and
(1-2-4)W32KB16B (varying the associativity), respectively. The base caches
of the three sets are: 1W4KB16B, 1W32KB16, and 1W32KB16B. The execu-
tion cycles, energy, and EDP for each issue-width configuration are normalized
to that of the “own issue-width + the base I-cache in each set"configuration.

Considering the Patricia application, when the cache is varied for each type of
the issue-width in the first cache set, the execution cycles,energy consump-
tion, and EDP are improved compared to that of the same issue-width with
1W4KB16B I-cache. When the cache is varied in the second and third sets,
there is a small variation in the performance, but there is a big variation in
energy consumption. It must be noted that the performance does not change
with the issue-width; rather it only changes with varying the cache. In case
of the Pocsag application, performance and energy consumption only change
with varying the I-cache in the first and second cache sets foreach issue-width.
There is no effect for the third cache set, meaning that the associativity has al-
most no effect on the execution cycles, energy consumption and EDP for any
issue-width for this application. This example shows that both the issue-width
and I-cache reconfiguration are important to achieve optimal results in terms
of performance or energy consumption.

Different I-cache configurations results in different execution cycles and en-

6.5. SIMULTANEOUS RECONFIGURATION OFISSUE-WIDTH AND

INSTRUCTION CACHE 127

1W
4K

B1
6B

1W
8K

B1
6B

1W
16

KB
16

B

1W
32

KB
16

B

1W
32

KB
16

B

1W
32

KB
32

B

1W
32

KB
64

B

1W
32

KB
16

B

2W
32

KB
16

B

4W
32

KB
16

B

1W
4K

B1
6B

1W
8K

B1
6B

1W
16

KB
16

B

1W
32

KB
16

B

1W
32

KB
16

B

1W
32

KB
32

B

1W
32

KB
64

B

1W
32

KB
16

B

2W
32

KB
16

B

4W
32

KB
16

B

Patricia Pocsag

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6
0.8

1
1.2

0
0.2

0.4
0.6
0.8

1
1.2

No
rm

ali
ze

d
ED

P
No

rm
ali

ze
d

cy
cle

s
No

rm
ali

ze
d

en
er

gy

2-issue 4-issue 8-issue

Figure 6.9: Impact of simultaneous reconfiguration of issue-width and I-cache; ex-
ecution cycles, energy, and EDP for2-issue,4-issue, and8-issue cores with varying
I-cache normalized to own issue-width with the base I-cachein each set.

ergy consumption. It is possible that for a particular application, there are
different cache configurations resulting in same executioncycles but different
energy consumption. In the following, we present few such cases to show the
importance of the simultaneous reconfiguration of I-cache and issue-width.

Figure 6.10 depicts different I-cache configurations for the Rijndael encode
and ADPCM decode applications, for which the execution cycles remain the
same while the energy consumption and EDP vary. The execution cycles, en-
ergy consumption and EDP are normalized to that of the2-issue core. Here, the
execution cycles decrease with increasing the issue-width, but remains con-
stant for all the considered caches. Considering Figure 6.10(a) for the Rijndael
encode application, the2-issue core consumes less energy at every point com-
pared to the4-issue and8-issue cores. As the execution cycles for the8-issue
core are less than that for the2-issue core, the EDP for the8-issue is lower than
that for the2-issue core at some points. The4-issue core behaves somewhere
in between the2-issue and8-issue cores. For the ADPCM decode application
in Figure 6.10(b), the2-issue core consumes less energy at every point com-
pared to the4-issue and8-issue cores. As the execution cycles for the8-issue
core are less than that for the2-issue core, the EDP for the8-issue core is
equal to or less than that for the2-issue core at some points. The4-issue core
consumes more energy and requires much less execution cycles compared to
the2-issue core, therefore its EDP is lower than that for the2-issue core. Sim-
ilarly, the 4-issue core consumes less energy compared to the8-issue core,
while there is a small difference in the execution cycles, therefore, its EDP is

128 CHAPTER 6. RESULTS AND ANALYSIS

16 32 16 32 32 16 32 32 32
16 32 64 16 32 16

2 4 8

Cache size (Kbytes), line size (bytes), and ways

0
0.2

0.4
0.6

0.8
1

0
0.5

1
1.5

2
2.5

0

0.4

0.8

1.2

1.6

N
or

m
al

iz
ed

ED
P

N
or

m
al

iz
ed

cy

cl
es

N
or

m
al

iz
ed

en

er
gy

2-issue 4-issue 8-issue

(a) Rijndael encode

4 8 8 16 16 16 32 32 32 8 16 16 32 32 32 16 32 32 32

16 32 16 32 64 16 32 64 16 32 16 32 64 16 32 16

1 2 4 8
Cache size (Kbytes), line size (bytes), and ways

0
0.2

0.4

0.6

0.8
1

0
0.5

1
1.5

2
2.5

3

0
0.2

0.6

1

1.4
1.8

No
rm

al
iz

ed
ED

P
No

rm
al

iz
ed

cy

cl
es

No
rm

al
iz

ed

en
er

gy

2-issue 4-issue 8-issue

(b) ADPCM decode

Figure 6.10: I-cache configurations for which execution cycles remain the same but
energy consumption and EDP vary.

also lower than the8-issue core. Hence, if low power is required, the2-issue
core can be selected, and if high performance is required, the 8-issue core can
be selected. For lower EDP, the4-issue core can be selected.

We can also optimize the configuration process by considering the percentage
variations in energy consumption, execution cycles, and EDP for an applica-
tion when the issue-width is varied from2-issue to4-issue and8-issue with
different I-caches. By plotting these configurations, we can easily spot the
optimal points. Figure 6.11 depicts the percentage variations in energy con-
sumption, execution cycles, and EDP for the Dijkstra, Tiffmedian, and GSM
encode applications when the issue-width is changed from2-issue to4-issue

6.5. SIMULTANEOUS RECONFIGURATION OFISSUE-WIDTH AND

INSTRUCTION CACHE 129
P

er
ce

n
t

va
ri

at
io

n

Cache size (Kbytes), line size (bytes), and ways

Energy Cycles EDP

-20

-10

0

10

20

30

8 16 32 8 16 32 16 32 32 16 32 32 16 32 32 32

16 32 64 16 32 64 16 32 16

1 2 4 8

(a) Dijkstra

Cache size (Kbytes), line size (bytes), and ways

P
er

ce
nt

 v
ar

ia
ti

o
n

-40

-30

-20

-10

0

10

20

30

4 8 16 32 8 16 32 8 16 32 16 32 16 32 32 32

16 32 16 32 16 32 16

1 2

4

8

Energy Cycles EDP

(b) Tiffmedian

Cache size (Kbytes), line size (bytes), and ways

P
er

ce
n

t
va

ri
at

io
n

-30

-20

-10

0

10

20

30

40

4 8 16 32 8 16 32 16 32 8 16 32 16 32 32 16 32 32 32

16 32 64 16 32 64 16 32 16

1 2 4 8

Energy Cycles EDP

(c) GSM encode

Figure 6.11: Percentage variation in energy, execution cycles, and EDP for 4-issue
core compared to2-issue core with different I-caches.

130 CHAPTER 6. RESULTS AND ANALYSIS

with different I-caches. Considering Figure 6.11(a) for the Dijkstra applica-
tion, when the issue-width is increased from2-issue to4-issue, there is a15%
reduction in execution cycles for almost each cache configuration. The energy
consumption varies from1% to 30% and the EDP from -15% to 9%. For the
Tiffmedian application in Figure 6.11(b), when the issue-width is increased
from 2-issue to4-issue, there is a27% reduction in execution cycles for al-
most each cache configuration. The energy consumption varies from -9% to
19% and the EDP from -34% to -13%. Similarly, for the GSM encode ap-
plication in Figure 6.11(c), when the issue-width is increased from2-issue to
4-issue, there is a20% reduction in execution cycles for almost each cache
configuration. The energy consumption varies from -8% to 39% and the EDP
from -24% to12%.

Figure 6.12 depicts the percentage variations in energy consumption, execution
cycles, and EDP for the Rijndael encode application when theissue-width is
changed from2-issue to4-issue and8-issue with different I-caches. Here, the
continuous lines are drawn only for clarity purpose; otherwise, the values are
only at discrete points. When the issue-width is changed from 2-issue to4-
issue, the execution cycles vary from -30% to -2%, the energy consumption
changes from2% to 34%, and the EDP from -26% to 7%. When the issue-
width is increased from2-issue to8-issue, the execution cycles vary from -45%
to 0.4%, the energy consumption changes from -33% to 144%, and the EDP
from -63% to145%.

All of the previous mentioned example show that the simultaneous reconfig-

Cache size (Kbytes), line size (bytes), and ways

P
er

ce
n

t
va

ri
at

io
n

-100

-50

0

50

100

150

4 8 16 32 8 16 32 16 32 8 16 32 16 32 32

16 32 64 16 32 64

1 2

Energy-4 Cycles-4 EDP-4 Energy-8 Cycles-8 EDP-8

Figure 6.12: Percentage variation in energy, cycles, and EDP for4-issue and8-issue
cores compared to2-issue core with different I-caches for the Rijndael encode.

6.5. SIMULTANEOUS RECONFIGURATION OFISSUE-WIDTH AND

INSTRUCTION CACHE 131

uration of issue-width and I-cache increases the search space for finding the
optimal energy consumption, execution cycles, and EDP compared to recon-
figuring either the issue-width or the I-cache alone. If energy is the main con-
cern, the issue-width + I-cache resulting in lower energy consumption can be
selected. If performance is the prime concern, the issue-width + I-cache with
the lower execution cycles can be selected.

Because of the limited space, we cannot show similar resultsfor all of the
considered benchmark applications. In the following, we show and discuss re-
sults for the complete set of benchmark applications by considering their “best
I-caches”. The best I-cache with a particular issue-width for an application
could be the one resulting in the highest performance, the least energy con-
sumption or the least EDP. For the following discussion, we consider the best
I-cache for each issue-width and each application as the onewhich results in
minimum energy with reasonable performance (not less than20% of the max-
imum performance). Our assumption is based on the fact that mostly the main
purpose of cache reconfiguration is considered as the energyreduction.

Instead of comparing to a fixed “issue-width + I-cache", we compare the results
for the2-issue,4-issue, and8-issue cores with their best I-caches (as explained
in the previous paragraph) for all of the benchmark applications. In this man-
ner, we can optimize the performance, dynamic energy consumption, and the
EDP for each application. Figure 6.13 depicts the executioncycles, dynamic
energy consumption, and the EDP for the4-issue and8-issue cores with their
best I-caches normalized to that of the2-issue core with its best I-cache for
the MiBench, PowerStone, and the custom benchmark suites. In general, we
observed that switching from8-issue core to4-issue or2-issue core reduces
energy consumption. The main reason is that the8-issue core reads a longer
instruction (256 bits) per access from the cache while the4-issue and2-issue
cores read shorter instructions (128 bits and64 bits, respectively) per cache
access. Additionally, the8-issue core utilizes more functional units compared
to 4-issue and2-issue cores. On the other side, switching from2-issue core
to 4-issue or8-issue core increases the performance as more operations can
be executed in parallel. In the following, we briefly discussthese results (per-
formance, energy consumption, and EDP) for the different issue-widths. The
purpose of this discussion is to evaluate effectiveness of the simultaneous re-
configuration of the I-cache and the issue-width for the different benchmark
applications. The best I-cache for a particular issue-width and a particular ap-
plication can only be selected when the cache hardware is able to reconfigure
as is the issue-width.

132 CHAPTER 6. RESULTS AND ANALYSIS
Cy

cl
es

, E
ne

rg
y,

 a
nd

 E
DP

no

rm
al

iz
ed

 to
 2

-is
su

e

Bas
icmath

Blowfis
h dec

ode

Blowfis
h en

code

Rijn
dae

l d
eco

de

Rijn
dael e

nco
de

ADPCM dec
ode

ADPCM en
code

0

0.5

1

1.5

2

2.5

3

Dijk
stra

Patri
cia

Stri
ng se

arch
SHA

CRC32 FFT
IFFT

GSM dec
ode

GSM enco
de

0

0.5

1

1.5

2

Bitc
ount

Qsort

Susa
n corn

ers

Susan edges
Susan

smooth
ing

JPEG dec
ode

JPEG en
code

Tiff2
bw

Tiff2
rg

ba

Tiffd
ith

er

Tiffm
edian

C
yc

le
s,

 E
ne

rg
y,

 a
nd

 E
D

P
no

rm
al

iz
ed

 to
 2

-is
su

e

Cycles-4 Cycles-8 Energy-4 Energy-8 EDP-4 EDP-8

(a) MiBench benchmarks

0

0.5

1

1.5

2

2.5

ADPCM
Bcnt

Blit

Compre
ss

CRC
DES

Engin
e

FIR
G3fa

x
JPEG

Pocsa
g

Qurt
V42

C
yc

le
s,

 E
ne

rg
y,

 a
nd

 E
D

P

no
rm

al
iz

ed
 to

 2
-is

su
e

3.34
3.01

Cycles-4 Cycles-8 Energy-4 Energy-8 EDP-4 EDP-8

(b) PowerStone benchmarks

0

0.5

1

1.5

2

2.5

DCT
DFT

FIR
 Typ

e1

FIR
 Typ

e2

Floyd
war

sh
all

Ham
ming

Huffm
an

 co
mp

Huffm
an

 dec
omp

ID
CT

Matr
ix

multip
ly

Movin
g fil

te
r

RLE

Bubbles
ort

Quick
so

rt

Rad
ixs

ort

Shell
so

rtC
yc

le
s,

 E
ne

rg
y,

 a
nd

 E
D

P

no
rm

al
iz

ed
 to

 2
-is

su
e

Cycles-4 Cycles-8 Energy-4 Energy-8 EDP-4 EDP-8

(c) Custom benchmarks

Figure 6.13: Execution cycles, energy consumption, and EDP for the4-issue and
8-issue cores normalized to2-issue core (all with their best I-caches).

6.5. SIMULTANEOUS RECONFIGURATION OFISSUE-WIDTH AND

INSTRUCTION CACHE 133

From Figure 6.13, we can observe that there are some applications/kernels
such as Bitcount, Tiffmedian, ADPCM decode, DES, DCT, Hamming dis-
tance, IDCT, Moving filter, where the EDP for the8-issue core with its best
I-cache is less than or equal to that of the2-issue core with its best I-cache.
For these applications switching from2-issue to8-issue core increases the
performance more than the energy consumption and hence reduces the EDP.
The largest reduction in the EDP is for the DES application, which is about
30%. There are some applications such as Susan smoothing, Rijndael decode,
Rijndael encode, SHA, JPEG, Pocsag, FIR Type1, Floyd-Warshall, Huffman
compression, RLE, shellsort, where, for a small increase inEDP, one can get
more performance when the issue-width is changed from2-issue to8-issue.

Similarly, considering the4-issue and2-issue cores with their best I-caches, we
can observe that there are many applications, where the EDP for the4-issue
core is less than or equal to that of the2-issue core. These applications are;
11 in MiBench: Bitcount, Susan smoothing, JPEG encode, Tiffdither, Tiffme-
dian, Blowfish decode, Rijndael encode and decode, SHA, ADPCM decode,
and GSM encode,6 in PowerStone: ADPCM, Compress, DES, G3fax, JPEG,
and Pocsag, and12 in custom benchmark suite: DCT, DFT, FIR type1, Floyd-
Warshall, Hamming, Huffman compression, IDCT, matrix multiply, moving
filter, RLE, radixsort, and shellsort. This means that for these applications,
switching from2-issue to4-issue core increases the performance more than
increasing the energy consumption and hence, reduces the EDP. Compared
to “2-issue + the best I-cache", “4-issue + best I-cache" reduces the EDP for
Tiffmedian, Rijndael decode, and DES by about30%,36%, and41%, respec-
tively. Additionally, there are some applications, where,with a small increase
in EDP, one can get more performance when the issue-width is changed from
the2-issue to the4-issue.

Considering the energy consumption with the best I-caches for every issue-
width, there is no case in the considered benchmarks, where the8-issue core
consumes less energy than the2-issue or4-issue core. The main reason is that
the8-issue core consumes more power compared to the smaller issue-widths.
There are some applications such as Bitcount, Tiffmedian, Rijndael decode,
DES, Hamming distance, where the4-issue core consumes less energy than
that of the2-issue core, both with their best/optimal I-caches. Tiffmedian and
DES consume11% and6% less energy, respectively, on a4-issue core com-
pared to a2-issue core both with their best I-caches. There are many applica-
tions such as Susan smoothing, JPEG encode, Tiffdither, Blowfish decode, Ri-
jndael decode, SHA, ADPCM decode, GSM encode, Compress, G3fax, JPEG,
Pocsag, DCT, DFT, FIR Type1, Floyd-Warshall, Huffman compression, IDCT,

134 CHAPTER 6. RESULTS AND ANALYSIS

matrix multiply, moving filter, RLE, shellsort, where, by switching from a2-
issue to a4-issue core (both with their best I-caches) results in a large perfor-
mance gain with a small energy increase.

Considering the execution cycles with the best I-caches forevery issue-width,
all the considered benchmark applications perform better with the8-issue and
4-issue cores compared to the2-issue core. Switching from2-issue to8-issue
core (both with their best caches) reduces the execution cycles for Hamming
distance, ADPCM decode, and DES by about36%, 40%, and46%, respec-
tively. The largest reduction in execution cycles when switching from a2-
issue to4-issue core (both with their best caches) is for the Rijndaeldecode
application which is about37%.

6.6 Multiport Data Memory/Cache Analysis

Multiple load/store (LS) units can increase the performance for some data in-
tensive applications. Multiple LS units mean multiple read/write ports on the
data memory/cache. In this section, we evaluate the cost of multiple LS units or
multiple read/write ports on the data memory/cache. In FPGAs, large amount
embedded synchronous memory is available in the form of BRAMs. The data
memory (local or cache) is implemented with BRAMs. In the Xilinx Virtex-6
XC6VLX240TFPGA, there are832 BRAMs. Each BRAM provides18 Kbits
or 2 Kbytes of data storage. Each BRAM provides one read and one write
(1R1W) port.

6.6.1 Local Data Memory

Consider we needM Kbytes of data memory to be implemented using BRAMs.
When the data memory is local,N = ceil(M/2) BRAMs can store and pro-
vide the data to a single LS unit. When the LS units increase, multiple of
N BRAMs are needed in order to provide the sameM Kbytes of memory.
BRAMs are arranged in different banks where each bank is associated with a
write port. Multiple BRAMs are utilized inside a bank where each BRAM is
associated with a read port. Figure 6.14 depicts a 2R2W portsdata memory
configuration implemented using BRAMs. TheDirection Tableis a multiport
memory implemented with the FPGA’s configurable LUTs/slices. The depth
of the Direction Tableis the same as that of the data memory and its width
depends on the number of write ports (log 2 of the number of write ports).
The hardware utilization and the latency of theDirection Tableand the asso-

6.6. MULTIPORT DATA MEMORY/CACHE ANALYSIS 135

Bank-0Write
Port 0

BRAM

BRAM

Bank-1Write
Port 1

BRAM

BRAM

Read
Port 0

Read
Port 1

Direction Table
All Write Ports

All Read Ports

Figure 6.14: 2R2W ports data memory configuration implemented with BRAMs.

ciated multiplexers grow with the size of the data memory. Table 6.1 presents
the number of BRAMs required to provideM Kbytes of data memory with
multiple read/write ports or LS units. As can be observed from the table, the
resource requirement or area increases exponentially withincreasing the LS
units. Compared to a single LS unit, keeping the area/resources same for the
data memory, providing two, three, and four read/write ports reduces the data
storage of the memory by1/4, 1/9, and1/16, respectively.

Table 6.1: Number of BRAMs required for M Kbytes of data memory.

Load/store units Read/Write ports Total BRAMs

1 1R1W N = ceil(M/2)
2 2R2W 2×2×N
3 3R3W 3×3×N
4 4R4W 4×4×N

136 CHAPTER 6. RESULTS AND ANALYSIS

6.6.2 Data Cache

In FPGAs, cache memory is also implemented using BRAMs. Providing mul-
tiple LS units or multiple read/write ports complicates thecache controller
design as well as increases the cache memory area. We performed an analysis
for the area requirement (total number of BRAMs) of the data cache with mul-
tiple read/write ports. We did not include the hardware resources required to
implement the cache controllers. We only present results regarding the cache
memory. The data cache memory has mainly two components:data storeand
tag store. Both are implemented with BRAMs. The size of the data store is
determined by the cache size, and the size of the tag store is determined by
the line size as well as the cache size. The cache associativity also affects
the size of the tag store. Figure 6.15 depicts the total number of BRAMs re-
quired to implement a 1-way data cache memory (data store + tag store) with
multiple read/write ports and varying cache parameters. The cache size varies
from 4, 8, 16, to 32 Kbytes, and line size varies from16, 32, to 64 bytes. It
can be observed from the figure that keeping the cache parameters the same,
the number of BRAMs increases exponentially with increasing the number of
read/write ports. This consideration is important when designing a VLIW pro-
cessor with multiple LS units. Although, increasing the LS units may improve
the performance of some applications, but the designer has to keep in mind
the related hardware cost. For example, the designer has to consider whether
he/she needs more memory size (in Kbytes) with less number ofread/write
ports or less memory size with more read/write ports given the same number
of BRAMs.

0

50

100

150

200

250

300

350

4 8 16 32 4 8 16 32 4 8 16 32
16 16 16 16 32 32 32 32 64 64 64 64

Cache size (Kbytes) and line size (bytes)

T
o

ta
l n

u
m

b
er

 o
f

B
R

A
M

s 1R1W ports
2R2W ports
3R3W ports
4R4W ports

Figure 6.15: Number of BRAMs (Xilinx RAMB18s) required to implement 1-way
data cache memory (data store + tag store) with multiple read/write ports.

6.7. SUMMARY 137

6.7 Summary

In this chapter, we evaluated our reconfigurable processor designs presented in
the previous chapters in terms of performance and power/energy consumption.
The 2-4-issue and2-4-8-issue adaptable processors are utilized in different
configurations (2-issue,4-issue, and8-issue). For performance analysis, we
utilized different application benchmark suites (MiBench, PowerStone, and a
custom-made benchmark suite). For power consumption analysis, we utilized
the Xilinx XPower Analyzer tool for FPGAs. We discussed the effectiveness of
the run-time task migration among different cores for the2-4-8-issue proces-
sor. With the task migration scheme, performance can be improved or power
consumption can be reduced at run-time. Additionally, we presented an anal-
ysis (performance, dynamic energy consumption, and EDP) onthe simulta-
neous reconfiguration of the issue-width (2, 4, and8) and instruction cache
(associativity, cache size, and line size) for the2-4-8-issue processor. Finally,
we analyzed the effect of increasing the number of read/write ports (LS units)
on the data memory/cache in terms of total storage capacity and hardware area.

Note.

The content of this chapter is partially based on the following papers:

F. Anjam , M. Nadeem, and S. Wong. A VLIW Softcore Processor with Dy-
namically Adjustable Issue-slots. InInternational Conference on Field Pro-
grammable Technology (FPT), pp. 393–398, 2010.

F. Anjam , M. Nadeem, and S. Wong. Targeting Code Diversity with Run-time
Adjustable Issue-slots in a Chip Multiprocessor. InDesign, Automation and
Test in Europe Conference (DATE), pp. 1358–1363, 2011.

F. Anjam , Q. Kong, R.A.E. Seedorf, and S. Wong. On the Implementation
of Traps for a Softcore VLIW Processor. InHiPEAC Workshop on Reconfig-
urable Computing (WRC), 2012.

138 CHAPTER 6. RESULTS AND ANALYSIS

F. Anjam , Q. Kong, R.A.E. Seedorf, and S. Wong. A Run-time Task Migration
Scheme for an Adjustable Issue-slots Multi-core Processor. In International
Symposium on Applied Reconfigurable Computing (ARC), pp. 102–113, 2012.

F. Anjam , L. Carro, S. Wong, G.L. Nazar, and M.B. Rutzig. Simultaneous
Reconfiguration of Issue-width and Instruction Cache for a VLIW Processor.
In International Conference on Embedded Computer Systems: Architecture
Modeling and Simulation (SAMOS), pp. 183–192, 2012.

7
Conclusions

We have argued in this dissertation that the combination of programma-
bility with reconfigurability by implementing a reconfigurable pro-

grammable VLIW processor in an FPGA will bring several advantages such as
improved performance, reduced power/energy consumption,design flexibility,
and rapid application development. Because FPGA development requires the
knowledge of HDLs, to this end, we presented an open-source customizable
design of a VLIW processor. A complete development toolchain including a
parametrized compiler and a simulator is publicly available. Applications can
be developed in a high-level language, such as C, while at thesame time, the
processor organization can be adapted to the specific requirements of different
applications both at design-time as well as at run-time. In this dissertation, we
presented different optimization techniques for the proposed VLIW processor
and evaluated its effectiveness.

In this final chapter, we summarize the main conclusions and present the ma-
jor contributions of the thesis, and list some possible future research directions.
The remainder of the chapter is organized as follows. Section 7.1 summarizes
the main conclusions of this dissertation. Section 7.2 lists the major contri-
butions described in this dissertation. Finally, Section 7.3 highlights several
possible future research directions.

7.1 Summary

In Chapter 1, we have highlighted the importance of programmability and re-
configurability. Programmability refers to reordering theexisting instructions
to perform different tasks. The instruction set is fixed and different programs
make use of the instructions to execute different tasks on the processor. Pro-
grammability means how flexible a processing element is to adapt to a new

139

140 CHAPTER 7. CONCLUSIONS

application. Generally, programmable processors cannot change their organi-
zations after fabrication, and have lower performance and higher power con-
sumption compared to a dedicated ASIC. On the other hand, reconfigurability
refers to the ability to change the functionality of instructions themselves, i.e.,
the instruction set can be redefined. A (re)configurable processor can adapt its
instruction set as well as its hardware organization. For example, the issue-
width can be changed when required by an application for improved perfor-
mance or reduced power consumption.

In order to take advantage of both, we have proposed to combine programma-
bility with reconfigurability by implementing a programmable VLIW proces-
sor in a reconfigurable hardware such as FPGA. A VLIW processor has sim-
ple hardware design, consumes low power, and can provide high performance.
Different parameters of the processor such as issue-width,the number and type
of execution units, register file size, degree of pipelining, cache parameters,
fault tolerance, peripherals implementation, etc., can bemade configurable
and selectable at design-time. Hence, an optimized processor in terms of per-
formance, area, power/energy consumption, and reliability can be quickly im-
plemented for each application. Additionally, the processor is made run-time
reconfigurable, where, after the implementation in hardware, certain parame-
ters of the processor can be adapted in order to target performance vs. power
consumption trade-offs.

After discussing the advantages and disadvantages of VLIW and superscalar
processors in Chapter 1, we have argued in Chapter 2 to focus on a VLIW
processor rather than a superscalar processor. Both processors utilize multi-
ple parallel execution units to exploit ILP. For a VLIW processor, a compiler
extracts the ILP, where as for a superscalar processor, a run-time hardware
determines the number of operations to be issued in parallel. This makes the
design of a VLIW processor simpler and more power efficient compared to
a superscalar processor at the expense of a complex compiler. We presented
different motivational scenarios why we chose to start withthe available ISA
and toolchain. We discussed the VEX ISA based on which we havedeveloped
our adaptable VLIW processor. The VEX toolchain is used for architectural
exploration and code generation. In the end, we surveyed thestate-of-the-art
in configurable softcore processors.

In Chapter 3, we presented an open-source design-time customizable softcore
VLIW processor calledρ-VEX. We presented a methodology to implement
and utilize the processor. Applications written in C language can be profiled
and simulated with the VEX toolchain to determine the suitable parameters

7.1. SUMMARY 141

for the processor. The parameters include the processor’s issue-width, the type
and number of different execution units and their latencies, the type and size
of register files and the number of read/write ports, size of instruction and
data memories, type of interrupt and exception systems, selection of default
custom operations, datapath sharing, etc. These parameters are placed in two
configuration files which are input to our synthesizable VHDLcode during the
processor implementation. Hence, without knowing the HDLs, the designer
can generate a desired/optimizedρ-VEX processor. The same parameters are
provided to the C compiler to generate the VEX assembly code for the appli-
cation. This code is passed through a custom assembler to generate binaries
for the application. Instruction and data memories can be initialized from the
binaries. Using this methodology, trade-off between performance, hardware
resource utilization, and power consumption can be made fordifferent applica-
tions, and hence, optimized implementations can be generated. The following
has been achieved in relation to the open questions posed in Section 1.3:

• By implementing a VLIW processor in an FPGA, we have combined
programmability with reconfigurability. To this end, we have proposed
a softcore VLIW processor that can be customized in different param-
eters before implemented in hardware. Applications can be profiled to
determine the suitable processor organization for it, which can then be
implemented in hardware. Hence, the processor can be tuned to match
the particular requirements of each application.

• The synthesizable VHDL design for the VLIW processor has been made
parametrized, and hence, optimized solutions can be generated without
using any C-to-VHDL tools. Applications can be developed inC, while
taking advantages of the reconfigurability provided by an FPGA.

• An optimized instruction encoding scheme has been proposedto in-
crease the available opcode space. A methodology to extend the instruc-
tion set of the processor has been presented. Different sub-word custom
operations have been implemented that could be added to the processor
at design-time.

In Chapter 4, we extended the design-time configurable processor presented
in Chapter 3 to make it run-time reconfigurable. The processors have mul-
tiple (two for the2-4-issue processor and four for the2-4-8-issue processor)
2-issue cores, each of which can run independently. If not in use, each core can
be taken to a lower power mode by gating off its source clock. Multiple 2-issue
cores can be combined at run-time to form larger issue-widthVLIW cores and

142 CHAPTER 7. CONCLUSIONS

a variety of other multi-core configurations. The run-time reconfigurable pa-
rameters include the issue-width, the number and type of execution units, and
the register file size. The processors can target a variety ofapplications having
instruction, data, and task level parallelism. Based on theinterrupt system pre-
sented in Section 3.3, we developed a run-time task migration scheme for the
2-4-8-issue processor. With this scheme, cores can be utilized more efficiently.
A task running on a core can be migrated to a larger or a smallerissue-width
core for performance improvement or power reduction, respectively. Addi-
tionally, we discussed the simultaneous reconfiguration ofissue-width and in-
struction cache for the2-4-8-issue processor to target performance, dynamic
energy consumption, and EDP. The following has been achieved in relation to
the open questions posed in Section 1.3:

• In order to target performance vs. power consumption trade-offs at run-
time, dynamically reconfigurable multi-core processors comprising of
multiple 2-issueρ-VEX cores have been proposed and implemented.
The smaller cores could be utilized independently to exploit DLP/TLP
or could be combined at run-time for making larger issue-width cores
to exploit ILP. The cores could only be combined or split whenthey are
idle, i.e., not executing any application.

• A mechanism for run-time task migration among different cores of a
multi-core processor has been proposed to improve the performance or
reduce the power consumption of the processor at run-time. With the
task migration scheme, cores could be combined or split evenwhen they
are not idle, and hence, could be utilized more efficiently.

• A system with reconfigurable issue-width and instruction cache has been
proposed in order to analyze the effect of simultaneous reconfiguration
of issue-width and instruction cache on the performance, dynamic en-
ergy consumption, and EDP for different applications.

When the datapath of a processor gets larger and complex, theprobability of
errors (such as radiation-induced soft errors) also increases. Therefore, it is be-
comes necessary to employ fault-tolerant techniques in order to guarantee high
reliability and dependability of the safety-critical systems. Run-time detection
plays an important role in dependable systems, where it is needed that the com-
puted data is either correct or an error signal is generated whenever there is a
possible error. In Chapter 5, we presented hardware-based configurable fault
tolerance mechanisms for our configurable processors. Separate techniques
are employed to protect different modules of the processor from single event

7.2. MAIN CONTRIBUTIONS 143

upset errors. Parity checking is utilized to detect errors in the instruction and
data memories and the general register file, while triple modular redundancy
approach is employed for all the synchronous flip-flops. At design-time, a user
can specify to include or exclude the fault tolerance in the processor designs.
Additionally, the user can choose to implement a design in which fault toler-
ance is always enabled or run-time reconfigurable. In the later case, the fault
tolerance can be enabled and disabled at run-time to optimize power consump-
tion whenever fault tolerance is not needed. These options enable a user to
trade-off between hardware resources, performance, powerconsumption, and
reliability. The following has been achieved in relation tothe open questions
posed in Section 1.3:

• Hardware-based configurable fault tolerance techniques have been pro-
posed and implemented for theρ-VEX processor to mitigate single event
upset errors. The fault tolerance can be included/excludedin the proces-
sor at design-time and/or enabled/disabled at run-time.

In Chapter 6, we evaluated our reconfigurable processor designs presented in
the previous chapters in terms of performance and power/energy consumption.
We utilized the2-4-issue and2-4-8-issue processors in different configura-
tions (2-issue,4-issue, and8-issue) and used different application benchmark
suites (MiBench, PowerStone, and a custom-made benchmark suite). We eval-
uated the effectiveness of the run-time task migration among different cores for
the2-4-8-issue processor. Additionally, we analyzed the effect of simultane-
ous reconfiguration of issue-width and instruction cache onthe performance,
dynamic energy consumption, and EDP for different benchmark applications.
Finally, we evaluated how increasing the number of read/write ports on data
memory/cache affects its capacity and the required hardware resources.

7.2 Main Contributions

In this section, we highlight the main contributions of our research that is de-
scribed in this dissertation:

• In order to merge programmability with reconfigurability, we proposed a
programmable VLIW processor implemented in a reconfigurable hard-
ware, such as FPGA. The processor can be adapted to the specific re-
quirements (static and dynamic) of different applications.

144 CHAPTER 7. CONCLUSIONS

• Different optimizations have been presented for the proposed processor.
These include the different type of the multiported register file, differ-
ent implementation styles for the interrupt system, a datapath sharing
mechanism, the hardware multiplier, etc.

• An optimized instruction encoding scheme has been proposedin order
to increase the available opcode space. A methodology to extend the
instruction set of the processor has been presented. A set ofdifferent
sub-word custom operations have been implemented that could be in-
cluded at design-time.

• Dynamically reconfigurable multi-core processors comprising of multi-
ple smaller cores have been proposed to target performance and power
consumption characteristics at run-time. The processor can be used to
exploit ILP, DLP, and TLP.

• A scheme for run-time task migration among different cores of the
multi-core processor has been proposed for performance improvement
or power reduction at run-time. With this scheme, cores can be com-
bined or split even when they are not idle, and hence, can be utilized
more efficiently.

• Hardware-based configurable fault tolerance techniques have been pre-
sented to mitigate SEU errors in the proposed processors. The fault
tolerance in the processor can be included/excluded at design-time.
The included fault tolerance can be made permanently enabled or en-
abled/disabled at run-time.

• The impact of simultaneous reconfiguration of issue-width and instruc-
tion cache on performance, energy consumption, and EDP havebeen
evaluated. The results showed that instead of reconfiguringeither the
issue-width or the instruction cache alone, reconfiguring both together
has more potential to improve the performance, energy consumption,
and/or EDP.

7.3 Future Research Directions

In this dissertation, we have proposed an adaptable processor that can be tuned
to the requirements of different applications both at design-time as well as at
run-time. The proposed approach combines the benefits of programmability

7.3. FUTURE RESEARCHDIRECTIONS 145

and reconfigurability. Following are some possible future research directions
in which the introduced approach could progress:

• Currently, theρ-VEX processor has5 stages. In order to increase the
clock frequency, the number of processor stages can be increased. For
example, the decode stage can be split into a decode stage andoperands
read stage. The execution stages can also be split over multiple stages.
Increasing the number of processor stages complicates the design of
the forwarding network. The situation becomes worse with increasing
the issue-width of the processor. The advantage in our case is that we
can simulate the application with different latencies for the execution
units. Hence, based on the required criteria (performance,hardware
area, power consumption, etc.), we can select to implement apartial
forwarding network in order to balance its complexity and performance
making the design highly customizable.

• The ρ-VEX processor implements the complete VEX instruction set.
Because the instruction set is very rich, implementing all of the defined
operations increases the hardware area as well as power consumption. In
order to generate optimize application-specific processors, the inclusion
of the hardware for the required-only operations can be madedesign-
time selectable. The application can be profiled to determine the used
operations in the program. This information can then be usedto select
only the required operations when implementing the processor.

• In FPGAs, the standard clock gating techniques are not efficient and can-
not avoid the power consumed in the clock networks which accounts for
a considerable amount of the total consumed power. Partial reconfigura-
tion based structural clock-gating technique [135] can be implemented
for theρ-VEX processor. The technique is based on the dynamic partial
reconfiguration of the configuration memory frames related to the clock
routing resources in FPGA. A small hardware controller can be imple-
mented to perform the reconfiguration process which can be controlled
by decoding a special instruction on the processor.

• The2-4-8-issue processor consists of multiple2-issue cores which can
be used in different configurations. Run-time algorithms can be imple-
mented to schedule different tasks on the processor. The algorithms can
use compile-time and run-time information (such as performance, power
consumption, etc.) to properly configure the available cores depending
upon the tasks in the task queue. Hence, the cores can be efficiently

146 CHAPTER 7. CONCLUSIONS

utilized and performance and power consumption can be optimized at
run-time. The algorithms can be implemented in a special hardware or
in software executing on a core.

• In this dissertation, we have analyzed the effect of simultaneous recon-
figuration of issue-width and instruction cache on the performance, en-
ergy consumption, and EDP. A similar analysis can be performed for
the data cache. Both the instruction and data caches can be included
in the analysis to extend the scope. Because increasing the number
of load/store units can increase the performance, therefore, data caches
with multiple read/write ports can be considered in the analysis. Run-
time algorithms can be implemented to perform the reconfiguration of
the caches and the issue-width when required depending upondifferent
parameters gathered at run-time or compile-time.

• In a different project, the AMBA AHB/APB bus protocol has been im-
plemented for theρ-VEX processor. This setup can be extended to im-
plement aρ-VEX based complete system-on-chip (SoC). With the bus
implementation, it becomes simple to integrate different peripheral com-
ponents, such as caches, interrupt system, UARTs, timers, and other I/O
components. Memory management unit (MMU), direct memory access
(DMA) unit, and other advanced components can be implemented in or-
der to run an operating system on the processor. This could lead to the
development of a multi-core based high-performance SoC.

• Support for adding custom operations at run-time by means ofpar-
tial reconfiguration could be investigated. With partial reconfigu-
ration, hardware resources can be shared among different function-
alities/implementations. Hardware accelerators or even large co-
processors can be defined and connected to the processor at run-time
to off-load compute-intensive tasks.

• Hybrid (software and hardware) approaches for fault detection and re-
covery can be explored. The2-4-8-issue processor can be configured
to run a code in duplicate (two4-issue cores) or triplicate (three2-issue
cores). With a slight modification in the micro-architecture, the results
can be compared for error detection. With the task migrationscheme
presented in Section 4.3 and the generic binaries [80], the running code
can be migrated from a faulty core to a non-faulty core.

Bibliography

[1] Hewlett-Packard Laboratories. VEX Toolchain.
http://www.hpl.hp.com/downloads/vex/.

[2] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T.Mudge, and
R.B. Brown. MiBench: A Free, Commercially Representative Embed-
ded Benchmark Suite. InInternational Workshop on Workload Charac-
terization (WWC), pages 3–14, 2001.

[3] A. Malik, B. Moyer, and D. Cermak. A Low Power Unified Cache
Architecture Providing Power and Performance Flexibility. In Interna-
tional Symposium on Low Power Electronics and Design (ISLPED),
pages 241–243, 2000.

[4] J. Fisher, P. Faraboschi, and C. Young. Embedded Computing: A VLIW
Approach to Architecture, Compilers and Tools.Morgan Kaufmann,
2005, ISBN: 1558607668.

[5] B.V. Iyer, "Length Adaptive Processors: A Solution for the En-
ergy/Performance Dilemma in Embedded Systems.Ph.D. Thesis, North
Carolina State University, 2009.

[6] Celoxica Inc. Handel-C Language Overview,
http://www.celoxica.com/.

[7] Celoxica Inc. DK Design Suite 5. http://www.celoxica.com/.

[8] S. Vassiliadis, S. Wong, G.N. Gaydadjiev, K.L.M. Bertels, G.K. Kuz-
manov, and E. M. Panainte. The MOLEN Ploymorphic Processor.IEEE
Transactions on Computers, 53(11):1363–1375, 2004.

[9] Trimaran: An Infrastructure for Research in Backend Compilation and
Architecture Exploration. http://www.trimaran.org/.

[10] P. Faraboschi, G. Brown, J.A. Fisher, G. Desoli, and F. Homewood.
Lx: A Technology Platform for Customizable VLIW Embedded Pro-
cessing. InInternational Symposium on Computer Architecture (ISCA),
pages 203–213, 2000.

[11] P.G. Lowney, S.M. Freudenberger, T.J. Karzes, W.D. Lichtenstein, R.P.
Nix, J.S. O’Dondell, and J.C. Ruttenberg. The Multiflow Trace Schedul-
ing Compiler.Journal of Supercomputing, 7:51–142, 1993.

147

148 BIBLIOGRAPHY

[12] J. Fisher. Trace Scheduling: A Technique for Global Microcode Com-
paction.IEEE Transactions on Computers, C-30(7):478–490, 1981.

[13] S. Wong and F. Anjam. The Delft Reconfigurable VLIW Processor.
In International Conference on Advanced Computing and Communi-
cations (ADCOM), pages 242–251, 2009.

[14] S. Wong, T.V. As, and G. Brown.ρ-VEX: A Reconfigurable and Exten-
sible Softcore VLIW Processor. InInternational Conference on Field
Programmable Technologies (FPT), pages 369–372, 2008.

[15] R.A.E. Seedorf, F. Anjam, A.A.C. Brandon, and S. Wong. Design
of a Pipelined and Parameterized VLIW Processor:ρ-VEX v.2.0. In
HiPEAC Workshop on Reconfigurable Computing (WRC), 2012.

[16] Xilinx Inc. MicroBlaze Processor Reference Guide.
http://www.xilinx.com/.

[17] IBM CoreConnect. http://www-3.ibm.com/chips/products/coreconnect/.

[18] Altera Inc. Nios-II Processor Reference Handbook.
http://www.altera.com/.

[19] Lattice Semiconductore Inc. LatticeMico32 Processor.
http://www.latticesemi.com/mico32/.

[20] WISHBONE System-on-Chip (SoC) Interconnection Architecture for
Portable IP Cores. http://www.opencores.org/.

[21] Aeroflex Gaisler Inc. LEON Synthesizable Processors.
http://www.gaisler.com/cms/.

[22] ARM Ltd. AMBA Open Specifications.
http://www.arm.com/products/system-ip/amba/amba-open-
specifications.php/.

[23] D. Lampret. OpenRISC 1200 IP Core Specification, 2001.
http://www.opencores.org/.

[24] C. Iseli and E. Sanchez. Spyder: A Reconfigurable VLIW Processor
using FPGAs. InFPGAs for Custom Computing Machines (FCCM),
pages 17–24, 1993.

[25] C. Iseli and E. Sanchez. Spyder: A SURE (SUperscalar andREconfig-
urable) Processor.Journal of Supercomputing, 9(3):231–52, 1995.

BIBLIOGRAPHY 149

[26] V. Brost, F. Yang, and M. Paindavoine. A Modular VLIW Proces-
sor. In International Symposium on Circuits and Systems (ISCAS),
pages 3968–3971, 2007.

[27] Texas Instruments. TMS320C6201 Fixed-point Digital Signal Proces-
sor. SPRS051H, 2004.

[28] A. Lodi, M. Toma, F. Campi, A. Cappelli, and R. Canegallo. A VLIW
Processor with Reconfigurable Instruction Set for EmbeddedApplica-
tions.IEEE Journal on Solid-State Circuits, 38(11):1876–1886, 2003.

[29] A.K. Jones, R. Hoare, D. Kusic, J. Fazekas, and J. Foster. An FPGA-
based VLIW Processor with Custom Hardware Execution. InInter-
national Symposium on Field Programmable Gate Arrays (FPGA),
pages 107–117, 2005.

[30] C. Grabbe, M. Bednara, J.V.Z. Gathen, J. Shokrollahi, and J. Teich.
A High Performance VLIW Processor for Finite Field Arithmetic. In
International Parallel and Distributed Processing Symposium (IPDPS),
pages 189.2, 2003.

[31] M. Koester, W. Luk, and G. Brown. A Hardware CompilationFlow For
Instance-Specific VLIW Cores. InInternational Conference on Field
Programmable Logic and Applications (FPL), pages 619–622, 2008.

[32] M.A.R. Saghir, M. El-Majzoub, and P. Akl. Customizing the Dat-
apath and ISA of Soft VLIW Processors. InHigh Performance
Embedded Architectures and Compilers (HiPEAC), LNCS 4367,
pages 276-290, 2007.

[33] D.A. Patterson and J.L. Hennessey. Computer Organization and Design:
The Hardware/Software Interface.Morgan Kaufmann, Third Edition,
2005, ISBN: 1558606041.

[34] M. Schlansker and B. Rau. EPIC: Explicitly Parallel Instruction Com-
puting.IEEE Computer, 33(2):37–45, 2000.

[35] W. Chu, R. Dimond, S. Perrott, S. Seng, and W. Luk. Customisable
EPIC Processor: Architecture and Tools. InDesign, Automation, and
Test in Europe Conference (DATE), pages 236–241, 2004.

[36] R. Seshasayanan and S.K. Srivatsa. A Novel Architecture for
VLIW Processor.Academic Open Internet Journal, vol. 21, 2007,
ISSN: 1311-4360.

150 BIBLIOGRAPHY

[37] B. Mei, S. Vernalde, D. Verkest, H.D. Man, and R. Lauwereins.
ADRES: An Architecture with Tightly Coupled VLIW Processorand
Coarse-Grained Reconfigurable Matrix. InField Programmable Logic
and Applications (FPL), LNCS 2778, pages 61–70, 2003.

[38] B. Mei, S. Vernalde, D. Verkest, H.D. Man, and R. Lauwereins.
DRESC: A Retargetable Compiler for Coarse-grained Reconfigurable
Architectures. InInternational Conference on Field Programmable
Technology (FPT), pages 166–173, 2002.

[39] A. Wolfe and J.P. Shen. A Variable Instruction Stream Extension to the
VLIW Architecture. In Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 2–14, 1991.

[40] N. Clark, H. Zhong, K. Fan, S. Mahlke, K. Flautner, and K.V. Nieuwen-
hove. OptimoDE: Programmable Accelerator Engines throughRetar-
getable Customization. InHot Chips, 2004.

[41] Tensilica Inc. Xtensa LX4 Customizable DPU.
http://http://www.tensilica.com/.

[42] R. Koenig, T. Stripf, J. Heisswolf, and J. Becker. A Scalable Microar-
chitecture Design that Enables Dynamic Code Execution for Variable-
Issue Clustered Processors. InInternational Parallel and Distributed
Processing Symposium (IPDPS-RAW), pages 150–157, 2011.

[43] T. Stripf, R. Koenig, P. Rieder, and J. Becker. A Compiler Back-End for
Reconfigurable, Mixed-ISA Processors with Clustered Register Files. In
International Parallel and Distributed Processing Symposium (IPDPS-
RAW), pages 462–469, 2012.

[44] H. Corporaal. Microprocessor Architectures: From VLIW to TTA. John
Wiley & Sons, 1997, ISBN: 047197157X.

[45] H. Corporaal and P. van der Arend. MOVE32INT, a Sea of Gates real-
ization of a high performance Transport Triggered Architecture.Micro-
processing and Microprogramming, 38(1-5):53–60, 1993.

[46] ST200 VLIW Series - ST231 Core and Instruction Set Architecture
Manual, 2004. http://www.st.com/.

[47] S. Rathnam and G. Slavenburg. Processing the New World of Interactive
Media. The Trimedia VLIW CPU Architecture.IEEE Signal Processing
Magazine, 15(2):108–117, 1998.

BIBLIOGRAPHY 151

[48] A. Suga and K. Matsunami. Introducing the FR500 Embedded Micro-
processor.IEEE Micro, 20(4):21–27, 2000.

[49] Texas Instruments. TMS320C6211, Fixed-point DigitalDignal Proces-
sor, SPRS073, 1998.

[50] C. Basoglu, R.J. Gove, K. Kojima, and J. O’Donnell. A Single-chip Pro-
cessor for Media Applications: The MAP1000.International Journal of
Imaging Systems and Technology, 10:96–106, 1999.

[51] L. Greppert and T.S. Perry. Transmeta’s Magic Show.IEEE Spectrum,
37(5):26–33, 2000.

[52] Altera Inc. Advanced Synthesis Cookbook: A Design Guide for Stratix
II, Stratix III, and Stratix IV Devices. 2009. http://www.altera.com.

[53] C.E. LaForest and J.G. Steffan. Efficient Multi-portedMemories for FP-
GAs. In International Symposium on Field Programmable Gate Arrays
(FPGA), pages 41–50, 2010.

[54] Xilinx Inc. Quad-Port Memories in Virtex Devices.Application Note
XAPP228, 2002. http://www.xilinx.com.

[55] M.A.R. Saghir and R. Naous. A Configurable Multi-portedRegis-
ter File Architecture for Soft Processor Cores. InInternational Sym-
posium on Applied Reconfigurable Computing (ARC), LNCS 4419,
pages 14–25, 2007.

[56] Steven Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997, ISBN: 1558603204.

[57] J.L. Hennessy and D.A. Petterson. Computer Architecture: A
Quantitative Approach.Morgan Kaufmann, Third Edition, 2002,
ISBN: 1558605967.

[58] F. Anjam, S. Wong, and M.F. Nadeem. A Multiported Register File
with Register Renaming for Configurable Softcore VLIW Processors.
In International Conference on Field Programmable Technology (FPT),
pages 403–408, 2010.

[59] F. Anjam, Q. Kong, R.A.E. Seedorf, and S. Wong. On the Implementa-
tion of Traps for a Softcore VLIW Processor. InHiPEAC Workshop on
Reconfigurable Computing (WRC), 2012.

152 BIBLIOGRAPHY

[60] F. Anjam, Q. Kong, R.A.E. Seedorf, and S. Wong. A Run-time Task Mi-
gration Scheme for an Adjustable Issue-slots Multi-core Processor. In
International Symposium on Applied Reconfigurable Computing (ARC),
pages 102–113, 2012.

[61] F. Anjam, S. Wong, and M.F. Nadeem. A shared Reconfigurable VLIW
Multiprocessor System. InInternational Parallel and Distributed Pro-
cessing Symposium (IPDPS-RAW), pages 1–8, 2010.

[62] Altera Inc. Tutorial: Creating Multiprocessor Nios IISystems. 2007.
http://www.altera.com.

[63] A. Hung, W. Bishop, and A. Kennings. Symmetric Multiprocessing on
Programmable Chips Made Easy. InDesign, Automation, and Test in
Europe Conference (DATE), pages 240–245, 2005.

[64] G.G. Mplemenos and I. Papaefstathiou. MPLEM: An 80-processor
FPGA Based Multiprocessor System. InInternational Symposium
on Field-Programmable Custom Computing Machines (FCCM),
pages 273–274, 2008.

[65] S. Xu and H.P. Smith. A Multi-MicroBlaze Based SOC System: From
SystemC Modeling to FPGA Prototyping. InInternational Symposium
on Rapid System Prototyping (RSP), pages 121–127, 2008.

[66] K. Ravindran, N. Satish, Y. Jin, and K. Keutzer. An FPGA-Based Soft
Multiprocessor System for IPv4 Packet Forwarding. InInternational
Conference on Field Programmable Logic and Applications (FPL),
pages 487–492, 2005.

[67] M. Hubner, K. Paulsson, and J. Becker. Parallel and Flexible Mul-
tiprocessor System-On-Chip for Adaptive Automotive Applications
based on Xilinx MicroBlaze Soft-Cores. InInternational Parallel
and Distributed Processing Symposium (IPDPS), workshop 3, vol. 4,
pages 149a, 2005.

[68] P. Huerta, J. Castillo, J.I. Martinez, and V. Lopez. A MicroBlaze Based
Multiprocessor SoC.WSEAS Transactions on Circuits and Systems,
4(5):423–430, 2005.

[69] F. Anjam, S. Wong, and M.F. Nadeem. A VLIW Softcore Processor
with Dynamically Adjustable Issue-slots. InInternational Conference
on Field Programmable Technology (FPT), pages 393–398, 2010.

BIBLIOGRAPHY 153

[70] F. Anjam, M. Nadeem, and S. Wong. Targeting Code Diver-
sity with Run-time Adjustable Issue-slots in a Chip Multiproces-
sor. In Design, Automation, and Test in Europe Conference (DATE),
pages 1358–1363, 2011.

[71] Xilinx Inc. Early Access Partial Reconfiguration User Guide. User
Guide UG208, 2006. http://www.xilinx.com.

[72] H. Zhong, S. A. Lieberman, and S. A. Mahlke. Extending Multicore Ar-
chitectures to Exploit Hybrid Parallelism in Single-thread Applications.
In International Symposium on High Performance Computer Architec-
ture (HPCA), pages 25–36, 2007.

[73] M.B. Taylor et al. Evaluation of the Raw Microprocessor: An Exposed-
wire-delay Architecture for ILP and Streams. InInternational Sympo-
sium on Computer Architecture (ISCA), pages 2–13, 2004.

[74] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. R. Moore. Exploiting ILP, TLP, and DLP with
the Polymorphous TRIPS Architecture. InInternational Symposium on
Computer Architecture (ISCA), pages 422–433, 2003.

[75] E. Ipek, M. Kirman, N. Kirman, and J.F. Martinez. Core Fusion:
Accommodating Software Diversity in Chip Multiprocessors. ACM
SIGARCH Computer Architecture News, 35(2):186–197, 2007.

[76] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M.
Horowitz. Smart Memories: A Modular Reconfigurable Architec-
ture. In International Symposium on Computer Architecture (ISCA),
pages 161–171, 2000.

[77] M. Fillo et al. The M-Machine Multicomputer. InInternational Sympo-
sium on Microarchitecture (Micro), pages 146–156, 1995.

[78] W.F. Lee. VLIW Microprocessor Hardware Design For ASICs and
FPGA.McGraw-Hill, 2007, ISBN: 0071497021.

[79] S. Wong, F. Anjam, and M.F. Nadeem. Dynamically Reconfigurable
Register File for a Softcore VLIW Processor. InDesign, Automation,
and Test in Europe Conference (DATE), pages 969–972, 2010.

[80] A. Brandon and S. Wong. Support for Dynamic Issue Width in VLIW
Processors using Generic Binaries. InDesign, Automation, and Test in
Europe Conference (DATE), pages 827–832, 2013.

154 BIBLIOGRAPHY

[81] J.M. Smith. A Survey of Process Migration Mechanisms.ACM SIGOPS
Operating Systems Review, 22(3):29–40, 1988.

[82] M. Richmond and M. Hitchens. A New Process Migration Algorithm.
ACM SIGOPS Operating Systems Review, 31(1):31–42, 1997.

[83] K.M. Katre, H. Ramaprasad, A. Sarkar, and F. Mueller. Policies for Mi-
gration of Real-Time Tasks in Embedded Multi-Core Systems.In Real-
Time Systems Symposium (RTSS), pages 17–20, 2009.

[84] A. Acquaviva, A. Alimonda, S. Carta, and M. Pittau. Assessing Task
Migration Impact on Embedded Soft Real-Time Streaming Multimedia
Applications.EURASIP Journal on Embedded Systems, 9:1–15, 2008.

[85] J. Jahn, M.A.A. Faruque, and J. Henkel. CARAT: Context-Aware Run-
time Adaptive Task Migration for Multi Core Architectures.In Design,
Automation, and Test in Europe Conference (DATE), pages 1–6, 2011.

[86] A. Sarkar, F. Mueller, H. Ramaprasad, and S. Mohan. Push-Assisted
Migration of Real-Time Tasks in Multi-Core Processors. In emphCon-
ference on Languages, Compilers, and Tools for Embedded Systems
(LCTES), pages 80–89, 2009.

[87] D. Cuesta, J.L. Ayala, J.I. Hidalgo, D. Atienza, A. Acquaviva,
and E. Macii. Adaptive Task Migration Policies for Thermal Con-
trol in MPSoCs. In International Symposium on VLSI (ISVLSI),
pages 110–115, 2010.

[88] Y. Ge, P. Malani, and Q. Qiu. Distributed Task Migrationfor Thermal
Management in Many-Core Systems. InDesign Automation Conference
(DAC), pages 579–584, 2010.

[89] L. Zheng. A Task Migration Constrained Energy-Efficient Scheduling
Algorithm for Multiprocessor Real-time Systems. InInternational Con-
ference on Wireless Communications, Networking and MobileComput-
ing (WiCom), pages 3055–3058, 2007.

[90] E. Seo, J. Jeong, S. Park, and J. Lee. Energy Efficient Scheduling of
Real-Time Tasks on Multicore Processors. emphTransactions on Paral-
lel and Distributed Systems, 19(11):1540–1552, 2008.

[91] E.W. Briao, D. Barcelos, F. Wronski, and F.R. Wagner. Impact of Task
Migration in NoC-based MPSoCs for Soft Real-time Applications. In
International Conference on VLSI-SoC, pages 296-299, 2007.

BIBLIOGRAPHY 155

[92] O. Ozturk, M. Kandemir, S.W. Son, and M. Karakoy. Selective
Code/Data Migration for Reducing Communication Energy in Em-
bedded MpSoC Architectures. InGreat Lakes Symposium on VLSI
(GLSVLSI), pages 386–391, 2006.

[93] T. Li, P. Brett, B. Hohlt, R. Knauerhase, S. McElderry, and S. Hahn.
Operating System Support for Shared-ISA Asymmetric Multi-core Ar-
chitectures. InWorkshop on the Interaction between Operating Systems
and Computer Architecture (WIOSCA), pages 19–26, 2008.

[94] R. Balasubramonian, D.H. Albonesi, A. Buyuktosunoglu, and S.
Dwarkadas. Memory Hierarchy Reconfiguration for Energy andPer-
formance in General-purpose Processor Architectures. InInternational
Symposium on Microarchitecture (Micro), pages 245–257, 2000.

[95] J. Yang, R. Gupta, and J.F. Martinez. Energy Efficient Frequent Value
Data Cache Design. InInternational Symposium on Microarchitecture
(Micro), pages 197–207, 2002.

[96] D.H. Albonesi. Selective Cache Ways: On Demand Cache Resource
Allocation. In International Symposium on Microarchitecture (Micro),
pages 248–259, 1999.

[97] S. Segars. Low Power Design Techniques for Microprocessors. InIn-
ternational Solid-State Circuits Conference (ISSCC) - Tutorial, 2001.

[98] C. Zhang, F. Vahid, and W. Najjar. A Highly Configurable Cache Ar-
chitecture for Embedded Systems. InInternational Symposium on Com-
puter Architecture (ISCA), pages 136–146, 2003.

[99] A.V. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji. Adapting
Cache Line Size to Application Behavior. InInternational Conference
on Supercomputing (SC), pages 145–154, 1999.

[100] C. Zhang, F. Vahid, and W. Najjar. Energy Benefits of a Configurable
Line Size Cache for Embedded Systems. InInternational Symposium
on VLSI (ISVLSI), pages 87–91, 2003.

[101] K. Inoue, T. Ishihara, and K. Murakami. Way-Predictive Set-
Associative Cache for High Performance and Low Energy Consump-
tion. In International Symposium On Low Power Electronics and De-
sign (ISLPED), pages 273–275, 1999.

156 BIBLIOGRAPHY

[102] P. Ranganathan, S. Adve, and N.P. Jouppi. Reconfigurable Caches and
Their Application to Media Processing. InInternational Symposium on
Computer Architecture (ISCA), pages 214–224, 2000.

[103] F. Anjam, L. Carro, S. Wong, G.L. Nazar, and M.B. Rutzig. Si-
multaneous Reconfiguration of Issue-width and InstructionCache
for a VLIW Processor. InInternational Conference on Embedded
Computer Systems: Architecture Modeling and Simulation (SAMOS),
pages 183–192, 2012.

[104] CACTI: An Integrated Cache and Memory Access Time,
Cycle Time, Area, Leakage, and Dynamic Power Model.
http://www.hpl.hp.com/research/cacti/.

[105] NXP Semiconductor. TriMedia Processor Series. http://www.nxp.com/.

[106] ST240 Core and Instruction Set Architecture Manual.
http://www.st.com/.

[107] Fujitsu Ltd. FR450 Series VLIW Embedded Microprocessor.
http://www.fujitsu.com/.

[108] T. Jungeblut, R. Dreesen, M. Porrmann, U. Ruckert, andU. Hachmann.
Design Space Exploration for Resource Efficient VLIW-Processors. In
University Booth of the Design, Automation, and Test in Europe Con-
ference (DATE), 2008.

[109] D. Benitez, J.C. Moure, D. Rexachs, and E. Luque. A Reconfigurable
Cache Memory with Heterogeneous Banks. InDesign, Automation, and
Test in Europe Conference (DATE), pages 825–830, 2010.

[110] Texas Instruments. TMS320C6211 Cache Analysis.Application Report
SPRA472, 1998.

[111] T. Givargis and F. Vahid. Tuning of Cache Ways and Voltage for Low-
Energy Embedded System Platforms.Journal of Design Automation for
Embedded Systems, 7(1–2):35–51, 2002.

[112] M. Powell, A. Agarwal, T.N. Vijaykumar, B. Falsafi, andK. Roy. Re-
ducing Set-associative Cache Energy via Way-prediction and Selective
Direct-mapping. InInternational Symposium on Microarchitecture (Mi-
cro), pages 54–65, 2001.

BIBLIOGRAPHY 157

[113] K.T. Sundararajan, T.M. Jones, and N. Topham. A Reconfigurable
Cache Architecture for Energy Efficiency. InInternational Conference
on Computing Frontiers (CF), no. 9, pages 1–2, 2011.

[114] S.H. Yang, M.D. Powell, B. Falsafi, and T.N. Vijaykumar. Ex-
ploiting Choice in Resizable Cache Design to Optimize Deep-
Submicron Processor Energy-Delay. InInternational Confer-
ence on High-Performance Computer Architecture (HPCA),
pages 151–161, 2002.

[115] C. Zhang, F. Vahid, and R. Lysecky. A Self-Tuning CacheArchitecture
for Embedded Systems.ACM Transactions on Embedded Computing
Systems, 3(2):407–425, 2004.

[116] F. Anjam and S. Wong. Configurable Fault-Tolerance fora Config-
urable VLIW Processor. InInternational Symposium on Applied Re-
configurable Computing (ARC), pages 167–178, 2013.

[117] J.B. Nickle and A.K. Soman. REESE: A Method of Soft Error Detec-
tion in Microprocessors. InInternational Conference on Dependable
Systems and Networks (DSN), pages 401–410, 2001.

[118] C. Bolchini. A Software Methodology for Detecting Hardware
Faults in VLIW Data Paths.IEEE Transactions on Reliability,
52(4):458–468, 2003.

[119] J.S. Hu, F. Li, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and M.J.
Irwin. Compiler-Directed Instruction Duplication for Soft Error Detec-
tion. In Design, Automation, and Test in Europe Conference (DATE),
pages 1056–1057, 2005.

[120] J.G. Holm and P. Banerjee. Low Cost Concurrent Error Detection in a
VLIW Architecture using Replicated Instructions. InInternational Con-
ference on Parallel Processing (ICPP), pages 192–195, 1992.

[121] D.M. Blough and A. Nicolau. Fault Tolerance in Super-scalar and
VLIW Processors. InIPDPS Workshop on Fault-Tolerant Parallel and
Distributed Systems, pages 193–200, 1992.

[122] N. Oh, P.P. Shirvani, and E.J. McCluskey. Error Detection by Duplicated
Instructions in Super-scalar Processors.IEEE Transactions on Reliabil-
ity, 51(1):63–75, 2002.

158 BIBLIOGRAPHY

[123] L. Sterpone, D. Sabena, S. Campagna, and M.S. Reorda. Fault Injection
Analysis of Transient Faults in Clustered VLIW Processors.In Interna-
tional Symposium on Design and Diagnostics of Electronic Circuits and
Systems (DDECS), pages 207–212, 2011.

[124] Y. Ichinomiya, S. Tanoue, T. Ishida, M. Amagasaki, M. Kuga, and T.
Sueyoshi. Memory Sharing Approach for TMR Softcore Processor. In
International Conference on Applied Reconfigurable Computing (ARC),
pages 268–274, 2009.

[125] V. Vasudevan, P. Waldeck, H. Mehta, and N. Bergmann. Implementation
of Triple Modular Redundant FPGA based Safety Critical System for
Reliable Software Execution. InSCS Australian Workshop on Safety-
Related Programmable Systems, pages 113–119, 2006.

[126] M. Franklin. A Study of Time Redundant Fault ToleranceTechniques
for Superscalar Processors. InInternational Workshop on Defect and
Fault Tolerance in VLSI Systems (DFT), pages 207–215, 1995.

[127] F. Rashid, K.K. Saluja and P.A. Ramanathan. Fault Tolerance Through
Re-execution in Multiscalar Architecture. InInternational Conference
on Dependable Systems and Networks (DSN), pages 482–491, 2000.

[128] T. Sato and I. Arita. Evaluating Low-cost Fault-tolerance Mecha-
nism for Microprocessors on Multimedia Applications. InPacific
Rim International Symposium on Dependable Computing (PRDC),
pages 225–232, 2001.

[129] Y.Y. Chen and K.L. Leo. Reliable Data Path Design of VLIW Processor
Cores with Comprehensive Error-coverage Assessment.Microproces-
sors and Microsystems, 34:49–61, 2010.

[130] J. Gaisler. A Portable and Fault-Tolerant Microprocessor Based on the
SPARC V8 Architecture. InInternational Conference on Dependable
Systems and Networks (DSN), pages 409–415, 2002.

[131] M. Scholzel and S. Mulleri. Combining Hardware- and Software-Based
Self-Repair Methods for Statistically Scheduled Data Paths. In Inter-
national Symposium on Defect and Fault Tolerance in VLSI Systems
(DFT), pages 90–98, 2010.

[132] P. Liden, P. Dahlgren, R. Johansson, and J. Karlsson. On Latching Prob-
ability of Particles Induced Transients in Combinational Networks. In

BIBLIOGRAPHY 159

International Symposium on Fault-Tolerant Computing (FTCS), pages
340–349, 1994.

[133] E. Touloupis, J.A. Flint, V.A. Chouliaras, and D.D. Ward. Study of the
Effects of SEU-Induced Faults on a Pipeline-Protected Microprocessor.
IEEE Transactions on Computers, 56(12):1585–1596, 2007.

[134] Xilinx Inc. Virtex-6 FPGA Clocking Resources.User Guide UG362,
2010. http://www.xilinx.com.

[135] L. Sterpone, L. Carro, D. Matos, S. Wong, and F. Anjam. ANew Re-
configurable Clock-gating Technique for Low Power SRAM-based FP-
GAs. In Design, Automation, and Test in Europe Conference (DATE),
pages 1–6, 2011.

List of Publications

International Journals

1. F. Anjam , Q. Kong, R.A.E. Seedorf, and S. Wong. A Task Migration
Scheme for a Run-time Adjustable Issue-slots Multi-core Processor.
Submitted toElsevier Journal of Systems Architecture (JSA).

2. S. Wong,F. Anjam , A.A.C. Brandon, R.A.E. Seedorf, L. Carro, D.
Matos, R. Giorgi, A. Scionti, S. Kavvadias, G. Keramidas, C.Scordino,
S.A. McKee, B. Goel, and F. Papariello. ERA: An Integrated Dynam-
ically Adaptive Platform. Submitted toIEEE Micro (Special Issue on
Reconfigurable Computing).

International Conferences/Workshops

1. G. Keramidas, S. Wong,F. Anjam , A.A.C. Brandon, R.A.E. Seedorf, C.
Scordino, L. Carro, D. Matos, R. Giorgi, S. Kavvadias, S.A. McKee, B.
Goel, and V. Spiliopoulos. Embedded Reconfigurable Computing: the
ERA Approach. To appear inInt. Conference on Industrial Informatics
(INDIN), Bochum, Germany, July 2013.

2. F. Anjam and S. Wong. Configurable Fault-tolerance for a Configurable
VLIW Processor. InInt. Symposium on Applied Reconfigurable Com-
puting (ARC), pages 167–178, Los Angeles, USA, March 2013.

3. F. Anjam , L. Carro, S. Wong, G.L. Nazar, and M.B. Rutzig. Simul-
taneous Reconfiguration of Issue-width and Instruction Cache for a
VLIW Processor. InInt. Conference on Embedded Computer Systems:
Architecture Modeling and Simulation (SAMOS), pages 183–191,
Samos, Greece, July 2012.

4. F. Anjam, Q. Kong, R.A.E. Seedorf, and S. Wong. A Run-time Task
Migration Scheme for an Adjustable Issue-slots Multi-coreProcessor.
In Int. Symposium on Applied Reconfigurable Computing (ARC),
pages 102–113, Hong Kong, March 2012.

5. F. Anjam, Q Kong, R.A.E. Seedorf, and S. Wong. On the Implementa-
tion of Traps for a Softcore VLIW Processor. InHiPEAC Workshop on
Reconfigurable Computing (WRC), Paris, France, January 2012.

160

L IST OF PUBLICATIONS 161

6. R.A.E. Seedorf,F. Anjam , A.A.C. Brandon, and S. Wong. Design
of a Pipelined and Parameterized VLIW Processor:ρ-VEX v.2.0.
In HiPEAC Workshop on Reconfigurable Computing (WRC), Paris,
France, January 2012.

7. S. Wong, A.A.C. Brandon,F. Anjam , R.A.E. Seedorf, R. Giorgi,
N. Puzovic, S. McKee, L. Carro, and G. Keramidas. Early Results
from ERA – Embedded Reconfigurable Architectures. InInt. Con-
ference on Industrial Informatics (INDIN), pages 816–822, Lisbon,
Portugal, July 2011.

8. F. Anjam , M. Nadeem, and S. Wong. Targeting Code Diversity with
Run-time Adjustable Issue-slots in a Chip Multiprocessor.In Design,
Automation and Test in Europe Conference (DATE), pages 1358–1363,
Grenoble, France, March 2011.

9. F. Anjam , M. Nadeem, and S. Wong. A VLIW Softcore Processor
with Dynamically Adjustable Issue-slots. InInt. Conference on Field
Programmable Technology (FPT), pages 393–398, Beijing, China,
December 2010.

10. F. Anjam , S. Wong, and M.F. Nadeem. A Multiported Register File
with Register Renaming for Configurable Softcore VLIW Processors.
In Int. Conference on Field Programmable Technology (FPT), pages
403–408, Beijing, China, December 2010.

11. S. Wong,F. Anjam , and M.F. Nadeem. Dynamically Reconfigurable
Register File for a Softcore VLIW Processor. InDesign, Automation
and Test in Europe Conference (DATE), pages 969–972, Dresden,
Germany, March 2010.

12. S. Wong andF. Anjam . The Delft Reconfigurable VLIW Processor.
In Int. Conference on Advanced Computing and Communications
(ADCOM), pages 244–251, Bangalore, India, December 2009.

162 L IST OF PUBLICATIONS

Other Publications (International Conferences/Workshops)

1. P.C. Santos, G.L. Nazar,F. Anjam , S. Wong, D. Matos, L. Carro. A
Fully Dynamic Reconfigurable NoC-based MPSoC: The Advantages of
Total Reconfiguration. In HiPEAC Workshop on Reconfigurable Com-
puting (WRC), Berlin, Germany, January 2013.

2. P.C. Santos, G.L. Nazar,F. Anjam , S. Wong, D. Matos, L. Carro. A
Fully Dynamic Reconfigurable NoC-based MPSoC: The Advantages of
a Multi-Level Reconfiguration. InHiPEAC Workshop on Design Tools
and Architectures for Multi-Core Embedded Computing Platforms (DI-
TAM), Berlin, Germany, January 2013.

3. P.C. Santos, G.L. Nazar,F. Anjam , S. Wong, and L. Carro. Adapting
Communication for Adaptable Processors: A Multi-Axis Reconfigura-
tion Approach. InInt. Conference on ReConFigurable Computing and
FPGAs (ReConFig), pages 1–6, Cancun, Mexico, December 2012.

4. L. Sterpone, D. Matos, L. Carro, S. Wong, andF. Anjam . A New
Reconfigurable Clock-gating Technique for Low Power SRAM-based
FPGAs. InDesign, Automation and Test in Europe Conference (DATE),
pages 1–6, Grenoble, France, March 2011.

5. M.F. Nadeem,F. Anjam , S. A. Ostadzadeh, M. Ahmadi, and S. Wong.
Towards the Utilization of Reconfigurable Processors in Grid Networks.
In Workshop on Circuits, Systems and Signal Processing (ProRISC),
Veldhoven, The Netherlands, November 2010.

6. M. Nadeem, S. Wong, G. Kuzmanov, M. Shabbir,F. Anjam , and
M.F. Nadeem. Low-power, High-throughput Deblocking Filter for
H.264/AVC. InInt. Symposium on System-on-Chip (SoC), pages 93–98,
Tampere, Finland, September 2010.

Curriculum Vitae

Fakhar Anjam was born on February 05, 1978 in
Karak, Pakistan. He did his B.Sc. in Electrical and
Electronic Engineering from N.W.F.P University of En-
gineering and Technology, Peshawar, Pakistan in 2002.
He graduated with M.Sc. in Information Technology
(IT) from Pakistan Institute of Engineering and Applied
Sciences (PIEAS), Islamabad, Pakistan in 2004. From
2004 to 2008, he worked as a system and hardware de-
veloper in a research and development (R&D) organiza-
tion in Pakistan. He was responsible for R&D of real-

time embedded systems mainly related to various communication, industrial
monitoring and control applications. In 2008, he joined theComputer Engi-
neering Lab, in EEMCS faculty at Delft University of Technology (TU Delft)
for pursuing his PhD. His research project was funded by the Higher Educa-
tion Commission (HEC) Pakistan and TU Delft. His research interests include
computer architecture, reconfigurable computing, softcore processors, VLIW
processors, and FPGA design and development. During his stay at TU Delft,
he has worked for the EU FP7 ERA (Embedded Reconfigurable Architectures)
project, co-supervised several student projects and reviewed various interna-
tional scientific journals and conference papers. He has presented several sci-
entific papers in international conferences. Two of his submitted journal papers
are currently under review. The research conducted by him ispresented in this
thesis. Fakhar enjoys walking, biking, long driving, exploring new places,
swimming, playing cricket and of course watching TV.

163

164 L IST OF PUBLICATIONS

8619177894619

ISBN 978-94-6186-191-7

	Summary
	Propositions
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms and Symbols
	Introduction
	Background
	General-purpose and Embedded Processors
	Processor Design Architectures
	Different Forms of Processor Parallelism
	Architectures to Exploit ILP
	Programmability and Reconfigurability Together

	Scope
	Open Questions
	Methodology
	Dissertation Organization

	Background
	Adaptable VLIW Processor
	Motivations
	The VEX System
	The Initial Design of -VEX VLIW Processor

	Related Work
	Configurable RISC Softcore Processors
	Configurable VLIW Softcore Processors
	Fixed Hardwired VLIW Processors
	Our Proposal

	Summary

	Design-time Configurable Processor
	Design-time Configurable -VEX VLIW Processor
	Multiported Register Files
	Register Files with FPGA's Configurable Resources
	Register Files with FPGA's Embedded BRAMs
	Evaluation of the Register File Designs

	Support for Interruptability
	Interrupt Handling System
	Implementation Styles for the Interrupt Controller
	Interrupt Latency and Response Time
	Exceptions Handling System
	Implementation Results

	Instruction Encoding Scheme
	Design of the New Encoding Scheme
	Borrowing Scheme and Instruction Mapping

	ISA Extension Support
	Binary Code Generation for Custom Operations
	Methodology to Extend the ISA
	Design-time Selectable Custom Operations

	Datapath Sharing
	Dual-processor System
	Datapath-shared Dual-processor System
	Implementation Results
	Related Work

	Summary

	Run-time Reconfigurable Processor
	Run-time Reconfigurable/Adaptable Processor
	Reconfiguration Flows
	Design of the Run-time Reconfigurable Processors
	Memory System
	Mechanism for Issue-width Adjustment
	Implementation Results
	Related Work

	Run-time Reconfigurable Register File
	Case Study for 4-issue -VEX Processor

	Run-time Task Migration
	Design of the Task Migration Scheme
	Implementation Results
	Related Work

	Simultaneous Reconfiguration of Issue-width and Instruction Cache
	Related Work
	Characteristics of the Reconfigurable Processor
	Characteristics of the Reconfigurable Instruction Cache
	Energy Estimation

	Summary

	Configurable Fault Tolerance
	Introduction and Motivations
	Related Work
	The Base -VEX Processor
	The Fault-Tolerant -VEX Processor
	Instruction Memory
	Data Memory
	GR Register File
	TMR Approach for all Flip-Flops
	Working of the Configurable Fault-Tolerant System
	Fault Coverage and Test Methodology

	Implementation Results and Discussion
	Hardware Resources/Area and Critical Path Delay
	Dynamic Power Consumption

	Summary

	Results and Analysis
	2-4-issue Processor
	2-4-8-issue Processor
	Dynamic Power Consumption

	Power Consumption for Stand-alone -VEX Processors
	Run-time Task Migration Support
	Dynamic Power Consumption

	Simultaneous Reconfiguration of Issue-width and Instruction Cache
	Experimental Setup and Benchmark Applications
	Results and Analysis

	Multiport Data Memory/Cache Analysis
	Local Data Memory
	Data Cache

	Summary

	Conclusions
	Summary
	Main Contributions
	Future Research Directions

	Bibliography
	List of Publications
	Curriculum Vitae

