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Summary

In this dissertation, we propose to combine programmgbiliith reconfig-
urability by implementing an adaptable programmable VLIY@gessor in a
reconfigurable hardware. The approach allows applicatiobe developed at
high-level (C language level), while at the same time, tfee@ssor organiza-
tion can be adapted to the specific requirements (both statladynamic) of
different applications.

Our proposed customizable VLIW processor calledEX can be adapted at
design-time as well as at run-time. Its instruction set iéecture (ISA) is
based on the VEX ISA and a toolchain (parametrized C compite sim-
ulator) is publicly available from Hewlett Packard (HP) farchitectural ex-
ploration and code generation. The design-time parametelsde the pro-
cessor’s issue-width, the type of different functionaltsirfFUs) and their la-
tencies, the type and size of multiported register files rae@f pipelining,
size of instruction and data memories, type of interrupteption systems,
selection of default custom operations, datapath sharifithe behavior of
applications is not known at design-time or an applicatias tifferent phases
with distinct requirements, a fixed processor may not parfefficiently for
all the applications/phases. To this end, we propose aimm+econfigurable
processor that can adapt its organization dynamicallynduexecution. The
run-time parameters include the processor’s issue-widéhtype and number
of different FUs, and the register file size. Additionallye wropose config-
urable fault tolerance techniques for th&/EX processor. The designer can
choose to include or exclude the fault tolerance in the @m®meat design-time.
When the fault tolerance is included, it can be made pernignenabled or
enabled/disabled at run-time. All these options enablesusetrade-off be-
tween hardware area/resources, performance, powenjeoemgumption, and
reliability. The processor is available as open-source.



Samenvatting

In dit proefschrift stellen we voor om programmeerbaarhteidcombineren
met reconfigureerbaarheid door het implementeren van egragbare pro-
grammeerbare VLIW processor in herconfigureerbare hasiwBe aanpak
staat het ontwikkelen van toepassingen op hoog niveau (grgaroneer taal-
niveau) toe, terwijl op hetzelfde moment de processor asgéie kan worden
aangepast aan de specifieke eisen (zowel statisch als dyaignaan verschil-
lende toepassingen.

Onze voorgestelde aanpasbare VLIW processor, genaawiitX, kan tijdens
design-time evenals tijJdens run-time aangepast wordemddrictie set archi-
tectuur (ISA) is gebaseerd op de VEX ISA en een toolchainggepetriseerde
C compiler en simulator) is publiek beschikbaar gesteld ¢tewlett Packard
(HP) voor architectuur exploratie en code generatie. D&ddsme parame-
ters omvatten de processor issue-breedte, de aard vahilersite functionele
eenheden (FU’s) en hun latencies, het type en grootte vatiporséd regis-
ter files, de mate van pipelining, de grootte van instructialata geheugens,
het type interrupt en exceptie systemen, selectie vanataddangepaste bew-
erkingen, het delen van het datapad. Indien het gedrag ydicaes niet bek-
end is tijdens design-time of wanneer een applicatie véisctie fases kent
met verschillende eisen, kan het zijn dat een vaste procastcefficiént is in
het uitvoeren van alle applicaties/fasen. Daartoe stelieren run-time her-
configureerbare processor voor die zijn organisatie t§deet berekenen dy-
namisch kan aanpassen. De run-time parameters omvattenasgor issue-
breedte, het type en aantal verschillende FUs, en het eedfisstandsgrootte.
Daarnaast stellen we voor @geVEX processor herconfigureerbare fouttoler-
antie technieken voor. De ontwerper kan kiezen voor wel ehdgeuttolerantie
in de processor tijdens design-time. Wanneer fouttoleraistinbegrepen,
kan deze permanent ingeschakeld worden of ingeschakeglkekchakeld tij-
dens run-time. Al deze opties geven de gebruikers de mkigelj om een
afweging te maken tussen hardware area/resources, @estabom/energie
verbruik en betrouwbaarheid. De processor is als operesdgschikbaar.



Prepositions

1. All hardware and software should be reconfigurable.

2. Hardwired multiported memories are a must for the effidieplemen-
tation of parallel hardware in FPGA.

3. Software comes from heaven when you have good hardwaren (K
Olsen)

4. The distinction between VLIW and superscalar processoranishing.
5. Normal life starts after the PhD study.

6. A good idea means nothing by itself; a good implementasagually
important.

7. Will is more important than competence to achieve somgthi
8. You are not doing research when you know what you are doing.
9. “Freedom of expression” should not be considered as itelin

10. Without improving the primary education system in Pikis spending
billions in higher education is of little use.

11. Tolerance is the only thing the Pakistani nation needsdays.

12. A good way to learn new things is to be unlucky.

These propositions are regarded as opposable and defendalll have been
approved as such by the promotor Prof. dr. K.L.M. Bertels.



Stellingen

1. Alle hardware en software zou herconfigureerbaar moéjien z

2. Hardwired multiported geheugens zijn een vereiste vebefficiént im-
plementeren van parallel hardware op FPGA.

3. Software komt van de hemel wanneer je goede hardware libn
Olsen)

4. Het verschil tussen VLIW en superscalar processoremifieiaverdwi-
jnen.

5. Het normale leven starts na de PhD studie.

6. Een goede idee betekent opzichzelfstaand niets, eere gogiemen-
tatie is even belangrijk.

7. Wil hebben is belangrijker dan competentie om iets teikene
8. Je bent geen onderzoek aan het doen als je weet wat je adoehdient.

9. "Vrijheid van meningsuiting” moet niet als onbeperkt dem
beschouwd.

10. Zonder het verbeteren van het primair onderwijs in Raiiss het uit-
geven van miljarden in hoger onderwijs van weinig nut.

11. Vandaag de dag is tolerantie het enige dat de Pakistamatieenodig
heetft.

12. Een goede manier om nieuwe dingen te leren is om een ppaihieo

zijn.

Deze stellingen worden opponeerbaar en verdedigbaar tgeadijn als zo-
danig goedgekeurd door de promotor Prof. dr. K.L.M. Bertels
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Introduction

n the current-day world, fixed processors (which cannot changé thard-
ware functionality after fabrication) are the mainstreamdsare made pro-
grammable in order to adapt to a large number of applicatioAs a conse-
guence, they perform adequately over a wide range of agmits, but not ef-
ficiently in terms of performance or energy consumption.lidgfon-specific
integrated circuits (ASICs) are designed according to {hectfic requirements
of an application, therefore, they are the most efficientlémgntation and
consume very low power. The major problem with an ASIC isitltainnot be
adapted for a different application and has a longer and gu@ixpensive de-
velopment cycle. Reconfigurable hardware, such as fielgramomable gate
arrays (FPGA) can modify their hardware structure. Hendéicient systems
can be implemented in FPGAs due to the flexibility they difegeneral, FP-
GAs are programmed using hardware description languagdaL@), which
require the every-day programmers to have intricate kndgdeof hardware.
Even the use of language translation tools may require tavgriof code lead-
ing to longer development time. Now given reconfigurablelvare, can we
combine the flexibility of programmable processors withréwnfigurability
of FPGAs? Can we design reconfigurable programmable procedhat can
adapt their functionality to the applications? Can we maksigns that can
even adapt themselves during run-time? In this disseratiee try to answer
such questions.

The remainder of the chapter is organized as follows. Seid presents
some basic concepts required to understand the questidsexdki the disser-
tation. The scope of the dissertation is discussed in S€dfid. Some open
research questions are formulated in Secfion 1.3, whicHatez on answered
in the dissertation. Sectidn 1.4 presents the steps thafadimved in order

to answer the research questions raised in the chapter. Illyingection 1.6

provides the organization and structure of the dissertatio
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1.1 Background

In this section, we provide some background knowledge ograromable pro-
cessors. We present different processor design archigsctdescribe different
forms of processor parallelism, and then discuss processbitectures that
exploit instruction-level parallelism (ILP). Later on, viaghlight the benefits
of combining programmability and reconfigurability in agle hardware.

1.1.1 General-purpose and Embedded Processors

General-purpose processors (GPPs) are designed withosideang the re-
quirements of a specific application or task; rather theylasigned to perform
adequately over a large number of application domains.ri&iuction set is
general-purpose rather than specialized for a particatd, therefore, they are
not very efficient in terms of performance, power, cost, aeéa, across some
or all application domains. In addition, they have supportrhany different
kinds of peripherals. Different software can be put on thewh lzence can be
used for different purposes. Mostly, they can be found imyslPCs, tablets,
and servers etc.

Embedded systems include a number of components, wherseatler com-
ponent provides a service to the large embedding system.nimeBded pro-
cessor (EP) could be one of the components of the embeddezrsy&Ps
are utilized in a large number of chips found in, for exampkglular phones,
TVs, automotives, biomedical equipments, game consolésowaves, and
in many other consumer electronic appliances. Generblgd processors are
smaller in size and are customized for a particular apdinatr a domain of
applications. They can perform the specific tasks more effilyi compared
to a general-purpose processor. The different requiresrienembedded pro-
cessing which are equally important for general-purposegssing could be
performance, power consumption, area, cost, cooling systeliability, de-
pendability, etc.

1.1.2 Processor Design Architectures

A processor (GPP or EP) can be designed according to ditfenemitec-
tures/philosophies such as the reduced instruction sepatem(RISC), com-
plex instruction set computer (CISC), very long instruativord (VLIW) or
superscalar. A RISC processor has simple and fundamergedtopns set that
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operates on simple data kept in registers. The only menaayed operations
are load and store operations. All the operations can beugeedn a single
clock cycle. Code size is large and the compiler has more wodo. Nor-
mally, RISC processors can issue a single operation eveck dycle. CISC
uses complex operations in addition to the simple ones. Apbexroperation
could be a new operation or may be a combination of few fundémheper-
ations. Astring moveoperation, in which a stream of characters stored at a
location in memory is moved to another location, is an exanpbh CISC op-
eration. The execution of an operation may take more tharclwoi cycles.
The assembly code resembles to the high-level code. Theilgwrhps less
work to do and the code size is smaller compared to a RISC ggoce The
Intel x86is an example of the CISC architecture.

VLIW and superscalar processors include multiple parabecution units
to exploit instruction level parallelism (ILP). Both thepeocessors can issue
multiple operations in a single clock cycle to increase teggymance. The
major difference between a VLIW and a superscalar processbat a VLIW
processor relies on a compiler to exploit ILP, while a supees processor
relies on run-time hardware to exploit ILP. Generally, boffthese proces-
sors have RISC-like instruction set, but superscalar gsmrs with complex
instruction set have also been developed. Examples inthed@-order super-
scalar originaPentiumand the out-of-order superscalayrix 6x86 Table 1.1
presents some characteristics of ASICs, RISC (single)ss0ISC, VLIW,
and superscalar processors. Each design philosophy hawntadvantages
and disadvantages.

Table 1.1: Relative characteristics of ASICs, RISC (single-issuéj@ VLIW, and
Superscalar processors.

Type ASICs RISC ‘ CIsC ‘ VLIW ‘ Superscalar
Hardware Complexity [ Medium/High Medium Higher High Highest
Hardware Area Small/Medium Medium High High Highest
Power Consumption Small Medium Medium/High High Highest
Performance Highest Small/Medium Medium/High High High
Compiler Complexity No Compiler Medium Small/Medium Highest Medium/High
Programmable No Yes Yes Yes Yes
Code-compatible No Yes Yes No/Small Yes
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1.1.3 Different Forms of Processor Parallelism

In the domain of processors, parallelism refers to the dppdies in a pro-
gram to find independent operations and perform them sabaiat parallel
instead of performing them sequentially. There are diffeferms of proces-
sor parallelism which can be thought of as independent df e#fter. In this
section, we briefly discuss the most widely used among them.

ILP: Instruction level parallelism refers to the existence ofependent oper
ations in a program which can be executed together in a siigék cycle.
Finding some independent operations in a program or a steéaperations
is the job of a compiler in case of a VLIW processor or run-ticoatrol hard-
ware in case of a superscalar processor. ILP can be combiiie@my other
type of parallelism to further enhance the performance.

DLP: Data Level Parallelism refers to distributing the data ssrdifferent
parallel computing nodes and executing them in parallethisicase multiple
processing nodes receive a part of the total data and theyedlute the same
operation on this data. The individual results are thenlfir@mbined into

a single result. Single instruction multiple data (SIMD)aiform of DLP.
SIMD operations operate on the standard registers, butttreen as smaller
sub-registers. For example, fogubit operations can be performed in a single
32-bit operation int clock cycle which would otherwise requideclock cycles.

TLP: Task Level Parallelism refers to executing multiple theeaflan appli-

cation on the different processors of a multiprocessoresystA multiproces-
sor system consists of multiple similar (homogeneous) fberdint (heteroge-
neous) processing elements. A program is split into meltiptlatively inde-

pendent small sub-programs which are executed at the sama®ti different

processors to achieve parallelism. The individual pramsssiay or may not
be able to exploit ILP. Programming and compiling for multgessors are
becoming very complex due to the large number of cores dlaila today’s

multiprocessor systems.

MT: Multi-threading refers to a technique where different pamgs or parts
of a program (called threads) are executed one by one on le siagdware to

show progress on multiple programs or parts of programsedds are very
light-weight (in terms of state) and pose less serious problwhen they are
switched. Different policies can be implemented for theristgathe single

hardware, such as round-robin, priority-based, FIFOthast. The shared
hardware may also be able to exploit ILP in the individuaé#us.
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SMT: Simultaneous Multi-threading is a special type of multietding avail-
able in the superscalar processors. A superscalar procebsch does not
have support for SMT can issue multiple instructions fronmgle thread ev-
ery clock cycle. In case of the SMT, the superscalar processo issue in-
structions from multiple threads every clock cycle, thugleiting parallelism
available across multiple threads. An example of a procesgstem which
utilizes the SMT technique is graphic processing unit (GPU)

1.1.4 Architectures to Exploit ILP

VLIW and superscalar processors can be used to increaseetf@mance
beyond normal RISC architectures. While RISC architestunely take ad-
vantage of temporal parallelism (by using pipelining), W.and superscalar
architectures can additionally take advantage of thealpadrallelism by using
multiple functional units (FUSs) to execute several operatisimultaneously.
ILP is determined by considering data dependence in a progral resource
availability in hardware. In a superscalar processor, aigpeontrol hardware
determines the data dependence and resource availabilitp-ime and then
enables the dynamic scheduling of operations. On the o#red,Hor a VLIW
processor, a compiler determines the data dependencesanuoige availability
and statically schedules the operations. In a superscedaegsor, the num-
ber of issued operations is determined dynamically by theviare, while the
number of issued operations in a VLIW processor is deterchgtatically by
the compiler. The window of execution is limited in a supatac processor
which limits the capacity to detect the potentially patdatiperations. In case
of a VLIW processor, the problem of limited size of executiwmdow does
not exist. The compiler of a VLIW processor can potentiallgze the whole
program in order to detect parallel operations, hencegasing the opportu-
nities for finding parallelism. Compared to a VLIW processbe hardware of
a superscalar processor is very complex, larger in sizesuroas more power,
requires larger design efforts, and hence, becomes costgording to [5],
for the same technology and issue-width, the schedulinig lafga superscalar
processor alone consumes more power than the entire VLI\3epsor. That
is why a superscalar processor is less attractive for smatkeelded applica-
tions which require small and energy efficient devices. ThamlWware of a
VLIW processor is relatively simple, and can be easily anitidy adapted
from product to product at the expense of a complex compiler.

VLIW processors are designed such that the hardware detalsnore ex-
posed to the compiler and ILP is made visible in the machenet program.
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ILP cannot be seen in the program that is offered to a sudarsgacessor;
rather the hardware can arrange parallelism at run-timae thaugh it is not
exposed in the code itself. One of the advantages of a sgh@rfrocessor is
that a compiled code for a single-issue scalar RISC processobe executed
on a superscalar processor with the same instruction seitexiure (ISA).
Hence, different superscalar implementations of the s&@Aeake object-code
compatible. That is why superscalar processors are mdsied for general-
purpose desktops and servers. Because the ILP is expodes imagram it-
self, to execute the same application on a VLIW processerptiyinal source
code has to be recompiled for a new implementation/orgtaizaf the pro-
cessor with the same ISA. Taljle 1.2 presents the major eliféers between a
superscalar and a VLIW processor as described|in [4].

1.1.5 Programmability and Reconfigurability Together

ASICs are designed to match exactly the requirements ofafget appli-

cations. They have the highest-level of performance andwuae very low

power. When an application changes, for example, a newatdruat protocol

appears, or certain features need to be enhanced, an ASt€lmsedesigned
for the new application. Normally, the development cycledsy long. Few

tape-outs are required in order to fully test the complefdiegtion and all its

requirements, thereby, increasing the development tirdeast.

\ Type | Superscalar \ VLIW \
Instruction Instructions are issued | Instructions are issued
Stream from a sequential stream from a sequential strean
of scalar operations of multiple operations
Instruction Issued instructions are| Issued instructions are
Issue and dynamically scheduled | statically scheduled by
Scheduling by the hardware the compiler
Issue Width | The hardware determines The compiler determines
the number of issued the number of issued
instructions dynamically| instructions statically
Instruction Dynamic scheduling Static scheduling allows
Ordering allows in-order and only in-order issue
out-of-order issue

Table 1.2: Differences between superscalar and VLIW processors [4].
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Programmability is an important feature and it enhancesptbductivity of
a processing element. It is also referred to as flexibility,, ihow flexible
a processing element is to adapt to a new application. Psorgswhether
general-purpose or embedded, are made programmable in torgeovide
maximum flexibility. A processor is designed with a basictrinstion set,
which it needs to support in hardware. Mostly, programmalteessors are
made fixed and cannot change their organizations afterckion. A high-
level compiler translates an application written in a higel language (such
as C) to the machine language of a processor. Hence, whenpfinasipn
changes, it is only a matter of compiling the new applicatiod the hardware
remains the same. This avoids the required lengthy devedopeycles and
high costs. The major deficiencies of programmable procgssolude lower
performance and higher power consumption compared to aatedi ASIC.

FPGAs provide design-time as well as run-time configurgbiliThey need
to be programmed in HDLs such as VHDL or Verilog. Any kind ogitl
processing system can be quickly implemented with FPGAsally, FPGAS
were small in area/size, slow in speed, and mostly used @toyping. With
the advancement in technology, FPGAs have improved bottemand speed
and have become very cheap. Modern FPGAs provide mechatostigaam-
ically reconfigure some portions while others are still @tienal. Compared
to ASICs, FPGA-based designs require very short developiimar, hence,
minimizing the overall cost. Unlike ASICs, the developmehEPGA-based
designs can be immediately started, quickly implementetisiiipped to the
users. They can be updated in the field by downloading a netvdédim. Feed-
back from the early design shipments can be used to optimméezinal product.

FPGA development requires the knowledge of digital ciscaild somewhat
low-level HDLs. Most of the high-level language developgrsgrammers do
not have the knowledge of hardware and HDLs. Hence, it iscdifffor these
developers to design for FPGAs. Nowadays, different lagguzonversion
tools are available which convert programs written in a stlo$ a higher-
level language to the HDLs. For example, Handel-C [6] is essubf C lan-
guage and the Celoxica DK design todls [7] can convert a prageritten in
Handel-C to a VHDL description, which can then be synthekfoe an FPGA
or ASIC. The problem with Handel-C type languages is thay #re not ex-
actly the same as their higher-level language countespaténce, programs
written in a high-level language first need to be converteaiuaty to these
languages, which increases the development time and cadditiénally, these
commercial tools are very costly.
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Reconfigurability can also be used in conjunction with paogmability. A
programmable processor (e.g., a VLIW processor) can beciimgahted in an
FPGA and made reconfigurable. VLIW processors have simphbnzaie de-
sign, consume low power, and can provide high performandéerBnt param-
eters of the processor such as issue-width, the number pedfyexecution
units, the type and size of register file, degree of pipefjngize of instruction
and data memories, cache parameters, fault toleranc@hpeais implemen-
tation, etc., can be made configurable and selectable gtrdtgie. Hence, an
optimized processor in terms of performance, area, ponemy consump-
tion, and reliability can be quickly implemented for eactplagation. Addi-
tionally, the processor can also be made run-time recomfier where, after
the implementation in hardware, certain parameters of thegssor can be
configured in order to target performance vs. power consiomptade-offs.

1.2 Scope

We foresee that combining programmability with reconfiglity by imple-
menting a reconfigurable programmable VLIW processor in BGA will
have several advantages such as high design flexibility apid application
development. This approach allows applications to be deeel in a high-
level language, such as C, while at the same time, the prmcesganization
can be adapted to the specific requirements of differenticgtjgins both at
design-time as well as at run-time. This dissertation psepdhe scheme to
combine programmability and reconfigurability which canrbere precisely
stated as:

We investigate an approach in (but not limited to) the embddgrocessor
design that combines programmability and reconfigurapitiy implementing
a programmable processor on a reconfigurable hardware, e/liee proces-
sor can reconfigure its organization for performance, agayer/energy con-
sumption, and reliability trade-offs.

Consequently, our approach will distinguish itself fronmext approaches by
the following points:

e reconfigurable programmable VLIW processadn: order to merge pro-
grammability with reconfigurability, we propose a prograaiie VLIW
processor that can be configured/tuned at design-time iaaictian-time.
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Statically-scheduled VLIW processors offer improved perfance, re-
duced area footprint, and reduced power consumption cadpara
superscalar processor.

e parametrized design and toolchaiithe design of the proposed VLIW
processor is very simple, made parametrized, and can Hg adapted
for different applications. The parametrization of theigeliminates
the lengthy manual development cycles or the costly C-td\/Hbols.
The availability of the free parametrized compiler-sintokatoolchain
[1] provides quick design space exploration and code génara

e design-time and run-time configurabilityVith the proposed scheme,
highly-optimized implementations can be generated fariddal appli-
cations. Additionally, processors can be implemented lwban adapt
themselves at run-time for performance vs. power consamptade-
offs for different applications or different parts of an &pation.

e use as stand-alone processor or co-proces3dre VLIW processor can
be used as a stand-alone processor or can be coupled as@essur
with another processing module (e.g., as in MOLEN paradi@mfpr
off-loading compute-intensive kernels.

e configurable fault tolerance:In order to mitigate single event upset
(SEU) errors, configurable level of fault tolerance can bplémented.
Fault tolerance can be included or excluded at design-@meé enabled
or disabled at run-time.

The following assumptions further define the scope of thears$ described
in this dissertation:

e We mainly focus on hardware design and its optimization fenfqy-
mance, hardware area, power/energy consumption, andiligjia

e Both the development toolchain and the processor desigmmacke
parametrized. The parametrized compiler can generatmiagti code
for our configurable VLIW processor. In this thesis, we onbnsider
certain defined values for the different types of parameters

e We consider FPGAs as the reconfigurable hardware in thissthés
some cases (Chapfer 5 and Chapter 6), we also present inmégime
results for a standard ASIC technology to show trends in parergy
consumption and hardware area.
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e Support for partial reconfiguration is available in some srad-PGAs.
We expect that the advances in technology will further sifppartial
reconfigurable designs and reduce the reconfiguration tirkesther-
more, the proposed design scheme does not necessarilyddepgrar-
tial reconfiguration. Run-time reconfiguration can also ¢l@eved with
virtual reconfiguration schemes, i.e., by re-arrangingnitg ON/OFF
or multiplexing) the available resources at run-time.

e Custom or user-defined operations can be added to the hardi@sign
and the compiler can generate binary code for them. Cuyréh# hard-
ware design for user-defined operations has to be developadatty.

1.3 Open Questions

In this thesis, we present one possible approach to mergegrmonability with
reconfigurability. The approach provides opportunity &wl&-off between per-
formance, area, power/energy consumption, and reliplidit different appli-
cations, and hence, optimized solutions can be generatadth& successful
merging, the following open questions have to be addressed:

e Can FPGAs be programmed without knowing HDLs?

As mentioned earlier, FPGA development requires the kraydeof digital
circuits and HDLs. C-to-VHDL tools can be utilized to conv@rograms
written in C to a VHDL description, which can then be implenezhin FP-
GAs. The problems with these tools are that mostly, thesecamemer-
cial, costly, and not very efficient. In most cases, code riging is needed
when utilizing these tools, which again restricts theirhiltg. Providing a
parametrized/customizable design, where changing ngreameters results
in different implementations is one way of avoiding the sgerlearn HDLs.
In this thesis, we will investigate how efficient FPGA desidprogrammable
processors) can be implemented without knowing much atzdidare design
and HDLs.

e Can we design flexible and reconfigurable processors which oa
adapt their functionality to the requirements of applications?

Most of the available embedded programmable processomhade fixed in
implementation and cannot change their hardware afteicttion. Many dif-
ferent applications exist which require different chagastics of the process-
ing elements for efficient execution. A single fixed impleragion cannot
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perform well for all applications across different dimemws such as perfor-
mance, power/energy consumption, area, code size, etaislthesis, we will
investigate how we can design flexible processors which eagabily adapted
to match the requirements of different applications.

e Can we make these designs dynamic so that they can adapt them-
selves during run-time?

With design-time configurability, optimized instance-sifie implementations
can be generated. However, when the number of applicatiortse texe-
cuted is large or an application consists of several suliegpiens, generat-
ing, implementing, and maintaining a large number of hardwanfigurations
each tuned to a particular application becomes difficultvemeimpossible.
In this thesis, we will investigate how we can create haréwagsigns that
provide sufficient performance and reduced power/energguooption for a
large number of applications by reconfiguring their orgations at run-time
to match the requirements of the applications.

e Can we develop simple techniques for core-morphing and runiime
code migration among different cores?

Multi-core systems have multiple cores which can be usedffierent config-
urations. To exploit thread level parallelism, multipleghds of an application
or multiple independent applications can be run on the idda cores. Some
multi-core systems allow combining certain cores togethexploit ILP. Sim-
ilarly, power can be reduced by turning off the un-used coteghis thesis,
we will investigate, how multiple cores in a multi-core pessor can be com-
bined/split at run-time and how a task running on a core camigeated to a
different core for performance improvement or power reiunct

e What is the impact on performance and energy consumption whe
both the instruction cache and the processor’s issue-widtlare si-
multaneously reconfigured?

Memory system plays an important role in the performance @ovder con-
sumption of a processor system. When the processor is rgooedi (e.g.,
issue-width is changed), the memory (caches) may also ndedreconfigured
for improved performance or reduced power consumptionhigthesis, for
a run-time adaptable processor, we will investigate thecefhf simultaneous
reconfiguration of the issue-width and instruction cacheshe performance,
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dynamic energy consumption, and energy-delay product jE&Rifferent
benchmark applications.

e Are the implemented designs easily extendable?

User-defined operations can increase the performanceranditcce the power
consumption of a processor. Before implementing a custoenadipn, a sim-
ple method of profiling and simulation to measure its perfamoe is necessary.
Because processors are implemented using HDLs, adding@caperation
requires the knowledge of hardware and HDLs. Providingratipof different
design-time selectable custom operations and a simpleothatbgy to imple-
ment additional custom operations increase the prodtictivi this thesis, we
will investigate how custom operations can be profiled amiifated at higher
level (C language), added to a processor hardware desidrihatbinary code
generated for them.

e Can we implement fault tolerance techniques that are desigtime
as well as run-time configurable?

In general, hardware-based fault tolerance techniquéseutidditional hard-
ware to detect and correct faults. This result in increased, ancreased power
consumption, and reduced performance. In order to optithizee character-
istics, a processor should be able to include/exclude dylefthsable fault tol-
erance when required. In this thesis, we will investigater lage can develop
hardware-based configurable fault tolerance techniquesub configurable
processor for hardware area, performance, and power cqatsumirade-offs.

1.4 Methodology

In this section, we propose the different steps needed tdbiraprogramma-
bility with reconfigurability to achieve a trade-off betwelardware resources,
performance, power/energy consumption, and reliabilityese steps are:

¢ Investigate and propose a parametrizable/customizable d&gn of a
programmable VLIW processor that can be configured at design
time to match the specific requirements of each application.Im-
plementing such a processor in a reconfigurable hardwach, asiFP-
GAs means that applications can still be written in a higieldan-
guage, while taking advantages of the reconfigurabilityiged by an
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FPGA. Multiple parameters and their implementation inedi#int mech-
anisms allow a trade-off between hardware resources, peaftce, and
power/energy consumption. Utilizing a parametrizedfaoszable de-
sign avoids to use any C-to-VHDL tool, provides high desigmibility
and rapid application development.

¢ Investigate and propose the parameters for the proposed VIW pro-
cessor that can be reconfigured at run-time to match the spefic re-
quirements of a running application. Parameters such as issue-width,
number and type of different FUs, register file size, etdeatfthe per-
formance, hardware area requirement, and power/energsuogstion
of an application. We will investigate and propose run-timehniques
that allow running tasks to migrate from one core to anottwe ¢n
order to improve performance or power consumption chargtits at
run-time. Additionally, we will investigate the effect ofnsultaneous
reconfiguration of issue-width and instruction cache ontbleavior of
different applications.

e Investigate and propose configurable fault tolerance techiques for
the proposed VLIW processor in order to mitigate SEU errors. We
will investigate and propose hardware-based techniquashwddlow
fault tolerance in a processor to be included/excluded sigdeime
and/or enabled/disabled at run-time in order to trade-efivieen hard-
ware resources, performance, power consumption, anditilia

1.5 Dissertation Organization

The remainder of this dissertation is organized in sevdrapters. Following,
we present a brief summary of each chapter.

Chapter 2 — Background

Chapter 2 presents the background and motivations for thptalle VLIW
processor system needed for combining programmabilityraconfigurabil-
ity. The chapter highlights the VEX system which includes YYEX ISA, the
VEX C compiler, and the VEX simulator. An earlier design of &lW pro-
cessor is presented and its limitations are listed, whieHaer on, addressed
in the thesis. Finally, the chapter presents some previauk related to the
state-of-the-art in reconfigurable processors.
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Chapter 3 — Design-time Configurable Processor

Chaptef B presents the design and implementation of a paiaeteand con-
figurable VLIW processor based on the VEX ISA. The parameteiside the

processor’s issue-width, the type and number of differéig,Fype and size of
register files, etc. These parameters can be configuredicizstld at design-
time before implementing the processor in hardware.

Chapter 4 — Run-time Reconfigurable Processor

When the characteristics of an application are not knowneatiesign-time, ef-
ficient processor’s organization may not be selected foestlting in reduced
performance and/or increased power consumption. In Chdptee extend
the processor design presented in Chdpgter 3 to make itmenrgconfigurable
in order to meet the requirements of the running applicésion

Chapter 5 — Configurable Fault Tolerance

Chaptef 5 presents hardware-based configurable faulataertechniques for
our configurable processor. At design-time, users can ehoeisveen the stan-
dard non fault-tolerant design, a fault-tolerant desigrretthe fault tolerance
is permanently enabled, and a fault-tolerant design wherdault tolerance
can be enabled and disabled at run-time. These optionsecaalsler to trade-
off between hardware resources, performance, power cqigumand relia-

bility characteristics.

Chapter 6 — Experimental Results

Chapter 6 evaluates the effectiveness of our (re)confifpiqatmcessors pre-
sented in the previous chapters. The hardware area/resoand the critical
path delay (maximum clock frequency) were evaluated indtdspters. In
this chapter, different metrics such as, performance (et cycles, IPC),
power/energy consumption, and EDP are utilized for difiemnfigurations
of the proposed processors and different benchmark afiphsa

Chapter 7 — Conclusions

Chapte ¥ summarizes the work presented in this dissartatin describes
the main contributions of the research. Finally, severaogsues and future
work directions are listed.



Background

I n Chapter 1, we discussed the advantages and disadvantages of VLIW and

superscalar processors in detail. Both processors havdiphellparallel
execution units to exploit ILP. In case of a VLIW processarpanpiler is re-
sponsible to find independent operations in a program angisisem together
in a single clock cycle. For a superscalar processor, hambvdetermines
operation dependence and resource availability at ruretinTherefore, the
design of a VLIW processor is simpler compared to that of @sgalar pro-
cessor at the expense of a complex compiler. Because a sala@rgrocessor
requires larger die size and consumes more power, it is ntdtde for embed-
ded systems which require area and power consumption ag ampbssible.
Building a production-quality, high-performance optiing VLIW compiler
requires large effort, therefore, when considering thecgpaf possible VLIW
processor designs, it is always recommended to start wittvaiable ISA and
compiler, not the available hardware. Based on this, wetsethour research
by utilizing one available compiler toolchain rather thaniloling a new one.
In this chapter, we provide some background informatiorttierwork carried
out in this dissertation.

The remainder of the chapter is organized as follows. Sef&id presents the
motivations for an adaptable VLIW processor, discusse¥ B system, intro-
duces an initial design of the-VEX processor and lists its limitations. Some
previous work related to the state-of-the-art in softconel @onfigurable/fixed
processors is presented in Secfion 2.2. Finally, Se€ti@ic@cludes the chap-
ter with a summary.

15
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2.1 Adaptable VLIW Processor

An adaptable processor can adapt its organization aceptdirthe require-
ments of an application. This adaptability can be achieve®sign-time, i.e.,
before an application starts execution or even at run-titnenthe application
is running on the processor. In this thesis, we present gotalole VLIW pro-
cessor and highlight its benefits. The processor is basedeoWEX ISA [4]
and a toolchain[]1] (C compiler and simulator) is freely &fale for archi-
tectural exploration and code generation. The processmbires both the
programmability and reconfigurability to achieve high flekiy and high per-
formance at the same time. It provides opportunities to @mperformance,
hardware resources, power/energy consumption, andifit¢yigtade-offs.

2.1.1 Motivations

As discussed in Chaptet 1, our proposal for combining pragrability and
reconfigurability requires an adaptable/reconfigurabldWlprocessor. In-
stead of the other design philosophies mentioned in SetibR, we chose a
VLIW processor as the starting point because of the follgwadvantages:

e increased performance:Compared to a single-issue RISC processor, a
VLIW processor can provide improved performance by explgitLP.
While RISC architectures can only benefit from temporal ipelism by
utilizing pipelining, VLIW architectures can additionalbenefit from
spatial parallelism by utilizing multiple FUs concurrgntA VLIW pro-
cessor can potentially provide more performance comparedsame-
issue superscalar processor due to the larger room for temypti-
mizations.

e reduced power consumption:Because a superscalar processor utilizes
complex control hardware for run-time scheduling of instians, it
consumes more power than a VLIW processor. According to tmaie
by [5], the scheduling logic of a superscalar processoreatmmsumes
more power than an entire VLIW processor of the same issdéawi

e simple hardware: The compiler takes care of all the dependencies and
scheduling in case of a VLIW processor, while a run-time tere does
the same job for a superscalar processor. Therefore, tlgvaee of a
VLIW processor is very simple and straight-forward at thpense of
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a complex compiler, and hence, can achieve higher clockiémecjes to
further improve the performance.

o availability of existing tools: The compiler for a VLIW processor is
very complex and requires significant efforts and time toetigy from
scratch. Fortunately, for the VEX ISA, a toolchain is frealailable
from HP. The VEX toolchain[]1] includes a parametrized C ciemp
and simulator which can be used for design space exploratidrcode
generation for different implementations of the VEX pramas Other
open-source compilation frameworks such as Trimaran [@] ebuld
also be easily adapted.

¢ no need for language translations:As stated earlier, designing for FP-

GAs requires the knowledge of hardware and HDLs. Most of igh-h
level language programmers do not have this knowledge. -tdiggi-to-
HDL translation tools are used, which place some restristion high-
level languages and in most cases code rewriting is requihesh using
such tools. With VLIW processor and its toolchain, prograras still
be written in high-level languages (such as C), while talddgantages
of the reconfigurability provided by an FPGA.

Apart from these basic advantages of a VLIW processor, atig are the
reconfigurability-specific benefits:

e static reconfigurability: Static reconfigurability means that the proces-
sor can be customized for a particular application befoiig imple-
mented in hardware. With the help of the simulator, procepasam-
eters most suited for the targeted application(s) can bliaesl and
determined. Hence, optimized designs can be implementaxhfd ap-
plication.

e dynamic reconfigurability: Dynamic reconfigurability allows the pro
cessor to adapt its organization after it is implemented ardvare.
When multiple applications need to be run, or the applicegiprecise
characteristics are not known at design-time, a single emphtation
cannot be optimized for them. In this case, the processdnedesigned
such that it can change some of its parameters (e.g., isglik;wumber
of registers and different execution units, cache size) ataun-time to
match the specific requirements of the running applicagjon(

The fixed nature of traditional VLIW architectures has dertatrinsic dis-
advantages which prevented them to become mainstreamsporyse These
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disadvantages can be mitigated by implementing a VLIW @saeon recon-
figurable hardware. In the following, we highlight the masipiortant prob-
lems that arise from the fixed design of a VLIW processor aed golutions:

o different instruction lengths: As stated earlier, different applications
have different level of parallelism, and require differgrstruction word
widths for efficient execution. A fixed processor may not ekgliffer-
ent level of parallelism very efficiently. This problem cam dhealt with
by implementing a parametrized and reconfigurable VLIW pssor.
Different instruction decoders can be instantiated/coméd to provide
different instruction word widths by either reconfigurirtgtissue-slots
or sharing the unused issue-slots among other cores.

e high number of NOPs: A fixed VLIW processor may not meet the
requirements of an application parallelism, and hencega laumber of
NOPs may be scheduled. This scenario results in undezaitdn of the
available hardware resources. A parametrized/reconfiteif@ocessor
can adapt its organization/issue-slots to match the reopgints of the
application and avoid this under-utilization.

e unavailable FUs per issue-slotsNOPs are scheduled when issue-slots
do not have the required FUs, thus increasing the undezaitdn. With
reconfigurable implementation, the required FUs can becgde ap-
plication basis or even per phase of an application.

e backward compatibility: Code recompilation is needed when new ver-
sions of a VLIW processor is released. The reason could beva ne
organization of the FUs or a different set of added instamsti Back-
ward compatibility can be relaxed by providing dedicategboizational
features in the reconfigurable hardware for particularaalyecompiled
code. Similarly, rarely used instructions can be instéstiavhen needed
to support a legacy code.

Having stated how a parametrized and reconfigurable VLIVifdesan over-
come the traditional shortcomings of a VLIW processor, & fbllowing, we
present the two most likely used scenarios for such a process

1. stand-alone processorin this scenario, complete applications are com-
piled and they (or their threads) run on the VLIW processdre pro-
cessor can be configured at design-time to suit a particplalication.
Additionally, it can be reconfigured at run-time to suit njpli applica-
tions or multiple code portions of an application.
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2. application-specific co-processor: In this scenario, only compute-
intensive kernels are compiled to the VLIW processor whikeremain-
ing part of the application runs on another type of processiement.
Hence, there is no need for code rewriting, complex toolé sscC-to-
VHDL translators, and manual design of accelerators, dsicase of a
MOLEN processor[8].

2.1.2 The VEX System

The VEX (VLIW Example) system is developed by Hewlett-Padk@HP). It
includes three basic components: (1) the VEX ISA, (2) the \EEompiler,
and (3) the VEX simulation system. A VEX software toolchaigluding the
compiler and simulator is made freely available by the HP [1]

The VEX Instruction Set Architecture The VEX ISA is a scalable and
customizable32-bit clustered VLIW ISA [4]. It is modeled on the ISA of
HP/ST Lx (ST200) family of successful VLIW embedded prooes$10]. The
VEX ISA is scalable because different parameters of thegqasar such as the
number of clusters, issue-width per cluster, the numbertygoe of different
FUs and their latencies, and the number of read/write podsseze of register
file, etc., can be changed. The ISA is customizable becawesgaspurpose
instructions can be defined in a structured way. It includasyrfeatures for
compiler flexibility and optimization.

The VEX C Compiler The VEX C compiler [1] is derived from the
Lx/ST200 C compilerwhich itself is derived from th&ultiflow C compiler
[11], and includes high-level optimization algorithms éd®ntrace schedul-
ing [12]. It has the robustness of an industrial compiler, hasrarnand line
interface and is available as closed source (binary forngcaBse the VEX
ISA is scalable and customizable, the compiler also suppbg scalability
and customizability. A flexible machine model determinestdrget architec-
ture, which is provided as input to the compiler in the formraichine model
configuration (fmmfJile. Hence, without the need to recompile the compiler,
architectural exploration of the VEX ISA is possible witretbompiler and
simulator. To add a custom operation, the application cedgnotated with
pragmas. Different compiler pragmas and optimizationardiare available
for performance improvemeriti[4]. Applications can be cdetpivith profiling
flags and theGNU gprof can also be utilized to visualize the profiled data.
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The VEX Simulation System The VEX simulator [[1] is an architectural-
level simulator that usesompiled simulatotechnology to achieve faster ex-
ecution. With this simulator, C programs compiled for a VEXhfiguration
can be simulated on a host workstation for performance aisand architec-
tural exploration. The VEX simulator first translates theX/Binaries to C,
and then using the host C compiler generates a host exeeufidi# simulator
provides a set of POSIX-likidoc andlibm libraries (based on the GNkewlib
libraries), a simple built-in cache simulator (level-1 lsamnly) and an appli-
cation program interface (API) that enables user-definethong interfaces
and other plug-ins for modeling the memory systeim [4]. To eddd instruc-
tion and data caches, a cache simulation library is proyidddth can also be
replaced by a user-defined library. After simulation, thewdator generates a
log file with different statistics such as the number of execucycles, stall
cycles, total executed operations, IPC, total branché®iftand not taken),
total memory accesses, total misses, total NOPs, etc.

2.1.3 The Initial Design ofp-VEX VLIW Processor

The p-VEX is a 32-bit 4-issue softcore VLIW processor based on the VEX
ISA [4]. The processor is implemented in VHDL language ansl d&larvard
architecture employing separate memories for instrustiand data. It has
two different versions, namely, theon-pipelined[13] [14] and thepipelined
[15] versions. Both versions have the same general featuidsas the issue-
width of 4 and the same number of FUs and register files. The processor
has1 branch unit (CTRL)1 memory or load/store unit (MEMX arithmetic
logic units (ALUs) 2 multipliers (MULS) a 64 x 32-bit 4-write-8-read (4W8R)
ports general register file (GRand angx 1-bit 4W4R portsbranch register
file (BR) The BR register file is used to store branch conditions, ipadel
values, and the carries from arithmetic operations. In trepipelined design,

a new instruction is fetched only when the previous instoucis completely
executed and the results written back to the target redilteFor the pipelined
design, a new instruction can be fetched every clock cycligewihe previous
instructions are in-flight and even not yet completely exedu Hence, each
unit/stage is active at every clock cycle and working towatte completion

of different instructions, making the overall program exgun faster.

The non-pipelined design hasstages callefetch decode executeandwrite-
back while the pipelined design consists ®&tages calledetch decode ex-
ecute 0, execute dndwriteback For the non-pipelined design, each stage is
implemented as a finite state machine (FSM). The fetch stagsponsible for
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address generation and instruction fetching from the lagghnstruction mem-
ory. A fetched long instruction is passed on to the decodgestahich splits it
into four 32-bit syllables and decodes them in parallel. The decode stk
fetches the required operands for the operations fromtegdikes. Branch and
other control related operations are performed by the lbramtt. The actual
operations (ALU, MUL, and load/store) are performed in theceite stages
depending upon the latency of the operations32 32-bit MUL operation
is performed by twal6 x 32-bit MUL operations and then adding the patrtial
products. All write activities are performed in the writekastage to ensure
that all targets are written back at the same time. Diffenatit targets are the
GR and BR register files (both designs), as well as the dataamyeamnd the
PC for the non-pipelined design. Thdssue non-pipeline@-VEX processor
is depicted in Figure 211. The VEX compiler is used to compilé applica-
tion and generate VEX binaries, which are then assembled lagsembler to
generate VHDL instruction ROM and an initialized data meynor

Limitations The initial design ofp-VEX processor suffers from the follow-
ing limitations, which are addressed in this dissertation.

1. Different parameters for extensibility (such as issuéthy type of GR
register file, etc.) are not explored/implemented. Thesamaters for
evaluating the performance, hardware area, and powegienensump-
tion trade-offs.

2. The GR register file design requires considerable are@AsRconfig-
urable resources such as slices, LUTS, flip-flops) for itd@mgntation.

v v
4——‘ PC ‘ ‘ GR ‘ CTRL
- L [A] 1»
: (Al [M]|
Instruction g Fetch Decode Execute Writeback [1#| Data
Memory (] Memory
—» —» [A] Jb
‘ BR ‘ ’_t‘ MEM

Figure 2.1: 4-issue non-pipelinegd-VEX VLIW Processor.



22

CHAPTER 2. BACKGROUND

10.

Efficient register file (BRAM-based and run-time reconfidilearegister
file) designs are missing.

. The execution units (ALUs, MULS) having considerableazage under-

utilized in the non-pipelined design. This area may be sharaong
other instances of the processor to improve the underafidin and
power consumption.

. The current design of the multiplier (MUL) unit requirearde area

(slices or hardwired DSP modules) when implemented in FR G#sa
and performance optimized multiplier (MUL) design is miggi

. Although both designs utilize multiple execution unitst bthey are

single-core in the control-flow. Multi-core systems canig@lemented
and different units may be shared to reduce area and imprexferp
mance by exploiting both fine-grained and coarse-graineallphsm.

. There is no mechanism to provide run-time reconfiguratibthe pa-

rameters such as issue-width, GR register file size, incrg/adecreasing
the number of different execution units etc. This is impoatt® adapt
the hardware to a running application and optimize perforceaand/or
power/energy consumption at run-time.

. There is no support for interrupts and exceptions hagdlifhese are

important building blocks on a processor and provide anrcha level
of control to applications and operating systems.

. There is no support for run-time task migration among tfiereént cores

in the p-VEX based multi-core system. This is important to trade-of
between performance and power consumption at run-timeantatso
be used for fault tolerance.

. Cache reconfiguration analysis regarding differentassidth for per-

formance and energy consumption is missing. This is importa
to determine specific configurations to optimize perforneaaad/or
power/energy consumption. The statistics can be providgtid run-
time reconfiguration algorithms to optimize these pararsete

The opcode space is very tight due to the utilized insbmencoding
scheme. There is hardly any available free opcode left. ieans
that user-defined or custom operations could not be add#itties the
processor’s extensibility.
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11. A systematic way of adding a custom operation is missiBgcause
there is no free opcode available, it is not possible to addstom in-
struction. Providing a simple methodology for implemegtan custom
operation will increase the productivity.

12. Any mechanism to enhance the reliability and depenitiabil the pro-
cessor is missing. Apart from providing fault toleranceg grocessor
should be able to turn off the circuit in case the applicators not re-
quire fault tolerance at some point in time. This can resulfiLige power
savings at run-time.

2.2 Related Work

In this section, we highlight several approaches that haen lproposed in
literature for designing programmable processors that@mégurable to some
extent as well. Some processors (with multi-issue suppdutyh target high
performance are unfortunately fixed in nature and cannoétenfigured. We
discuss configurable softcores (RISC and VLIW) and some-tvned cores
(adaptable and fixed).

2.2.1 Configurable RISC Softcore Processors

Soft means the processor core is not fixed in silicon, rathetedle in a syn-
thesizable form and can be implemented in any technolog@&8r ASIC).
For some softcore processors, certain parameters can igured at design-
time, and hence, can be easily adapted for different agjgitea These are
single-issue cores and an issue-width wider than one igtectirally not sup-
ported, hence, restricting higher performance.

MicroBlaze: MicroBlaze [16] is a32-bit RISC softcore processor from Xilinx
Inc. Parameters such &sstage ors-stage design, implementing hardwired
multiplier and divider units, cache parameters, and cadioreto different pe-
ripherals can be configured at design-time utilizing thenXiEmbedded De-
velopment Kit (EDK) software. The IBM CoreConneCt [17] pessor local
bus (PLB) architecture is used for connecting periphe@ihe MicroBlaze.
A fully featured application development toolchain is dable from Xilinx.
The MicroBlaze is offered as closed-source, requires adied¢o use, and can
only be implemented in Xilinx FPGAs.
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Nios-I1: Nios-11 [18] is a32-bit RISC softcore from Altera Inc., and has simi-
lar features like the MicroBlaze. Altera provides the NibEmbedded Design
Suite (EDS) software development tools including the GNG-€f toolchain.
Parameters such as implementing hardwired multiplieddivunits, cache pa-
rameters, and connection to different peripherals can b®iguzed at design-
time utilizing the EDS. The Nios-ll is offered as closed+sm) requires a li-
cense to use, and can only be implemented in Altera FPGAs.

LatticeMicro32: LatticeMico32 [19] is a32-bit Harvard, RISC softcore mi-
croprocessor, freely available from Lattice Semicondutito., with an open
IP core licensing agreement. The processor provides thigiliys flexibil-
ity, and portability that can be expected in an open sourcdweare design.
The Lattice Semiconductor provides software developmauis t(LatticeMi-
cro System) and evaluation boards with FPGAs for developiyatems with
the processor. Different WISHBONE [20] compatible perigh&omponents
can be integrated with the core in order to accelerate thelolement of mi-
croprocessor systems.

LEON: LEON [21] is a 32-bit synthesizable processor core based on the
SPARC V8 architecture, and is managed by the Aeroflex GdisterCaches
can be configured for the-stage,7-stage, and radiation-hardened designs.
The LEON processor is distributed as part of the GRLIB IPdliigr(an in-
tegrated set of reusable IP cores) designed for systemetiipa(SoC) de-
velopment. The bus architecture used in the LEON processthrei AMBA
AHB/APB [22]. Aeroflex Gaisler provides a complete devel@mntoolchain

for the LEON project.

OpenRISC 1200: OpenRISC 1200 is &2-bit, 5-stage open source scalar
RISC softcore processoar [23]. It has special units such dsptysaccumulate
(MAC) unit and configurable caches. The processor is dedigiith emphasis
on performance, simplicity, low power requirements, doitityg and versatil-
ity. The processor supports WISHBONE SoC Interconnectien. RBB [20]
compliant interface for connection to peripherals.

2.2.2 Configurable VLIW Softcore Processors

The processors mentioned in this section are VLIW procedsaving support
for issue-width larger than one. In literature, very few W.koftcore proces-
sors with complete toolchain can be found. In most casesstheeiwidth is
fixed and the extensibility is not very comprehensive. Theeabe of com-
plete toolchain restricted the usability of some designecaBise most of the
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designs do not have a specific name in literature, we refan thetheir inven-
tor's/designer’s names.

Spyder: Spyder [24][[25] is the first reported VLIW softcore proceskmnd
in existing literature. Spyder had three reconfigurableetien units. A com-
piler toolchain was available, which was used to decide atimiconfigura-
tions of the execution units. Custom configurations coulb dde added to
the library base. The Spyder marked the beginning of mokm(figurable)
VLIW softcore processor designs. It did not evolve exteglgibecause both
the processor architecture as well as the compiler was mediffom scratch.
The designers had to work on the development and improvenoéioth the
architecture and the toolchain which were time-consuming.

Brost VLIW: In [26], a customizable design of a VLIW processor is preseént

by Brost et al. Certain parameters of the processor ar¢hreecould be con-
figured in a modular fashion. Algorithms are programmed irs@ they were

to be executed on a DSP processor and compiled with a VLIW &ipiter.

The code is analyzed automatically, and an optimal DSP VHDdehwith a
variable instruction set is generated, which can be impig¢etkin hardware.
The DSP model utilized is the Texas Instruments (T1) TMS32BTL [27],
which is an8-issue VLIW processor. The presented design is an instance-
specific implementation of a DSP processor, and hence, duagpresent a
general VLIW processor system.

Lodi VLIW: A VLIW processor with a reconfigurable instruction set is-pre
sented in[[28] by Lodi et al. The XiRisc, which iscastage pipeline@-issue
VLIW processor, is tightly coupled with a pipelined run-emonfigurable dat-
apath (PiCo gate array, or PiCoGA). Regular FUs perfornciddSP calcu-
lations such as2-bit MAC, SIMD ALU operations, etc. The reconfigurable
PiCoGA is utilized to extend the processor instruction sih @pplication-
specific multi-cycle instructions. The processor insinrctset has been ex-
tended with two types of instructions; one to reconfigureRI@oGA, and the
second to execute the configured function. A GNU gcc tooftimavailable
for programming and benchmarking. The complete system fgeimented in
a0.18-um CMOS technology.

Jones VLIW: An FPGA-based design of a VLIW softcore processor is pre-
sented in[[20] by Jones et al. The processor is based on arhegAstbinary-
code compatible with the Altera Nios-Il ISA]18]. The corgiibn scheme
consists of Trimaran [9] as the front-end and the extended-Nias the back-
end. An application is profiled and compute-intensive kisraee selected.
The kernels are translated to VHDL and the remaining codenspded for
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the VLIW processor. The kernels are implemented in hardwarckattached
in parallel with the regular FUs. Utilizing multiplexerd)d register file ports
are shared between the hardware kernels and the regularigsto the li-

censed Nios-Il core and ISA, this VLIW design is not much téj and the
parametric extensibility is not possible.

Grabbe VLIW: An instance specific VLIW processor for elliptic curve cryp-
tography is presented in [B0]. The processor can performe Gakl operations
in parallel as well as complex instructions needed for trexifiec application.
In order for the instruction set to be easily modified or edtssh the control
path is microcoded. The modular datapath structure andRIig@-optimized
design facilitate the adaptation to various requiremeftdiferent applica-
tions. The presented design is a direct implementation péeiic application,
and does not represent a general VLIW processor.

Koester VLIW: In [31], a hardware compilation flow to generate instance-
specific VLIW cores is presented by Koester et al. The apfphicas described
in ANSI C and then translated to a VLIW-style hardware targetLP. The
front-end consists of the VEX compiler!|[1] which translatesequential C
program to the VEX assembly. The back-end consists of thex@al DK
Design Suite[[7], which converts a Handel{C [6] descriptiora synthesiz-
able VHDL description. The AS2HCC tool converts the codeagated by the
VEX compiler to the Handel-C description, which is transthto VHDL code
by the DK Design Suite. Hence, instance-specific optimizetWW cores can
be generated. The disadvantages of the design are thatiiteggommercial
C-to-VHDL tools, the generated architectures are instapeeific, and it does
not represent a general VLIW processor.

Saghir VLIW: In [32], the architecture and micro-architecture of a cosi
able soft VLIW processor is presented by Saghir et al. Thegesor executes
a basic set of integer operations that resemble MIPS R2G@fuations [[33].
The datapath is configurable and can inclu8e32, or 64-bit regular FUs as
well as custom computational units (CCUSs) to execute uséingd operations.
The processor has three configurable distributed registsrifistead of a sin-
gle unified multiported register file. Processor specificatiand an assembly
program are provided to a tool which generates the VHDL moddlere is
no compiler for any high-level language, and hence, apiidica have to be
written in assembly which restricts the usability of theqassor design.

EPIC: Based on the Explicitly Parallel Instruction Computing (EPISA
[34], a design of a customizablestage pipelined VLIW processor is pre-
sented in[[3b]. The EPIC architecture can exploit ILP byiisgunultiple op-
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erations per clock cycle. Possible customizations inckatging the number
of issues, registers, and FUs; all of which are specified aipile-time. De-
velopment tools include a compiler and an assembler basdkeofrimaran
framework [9] and a commercial C-to-VHDL tool. The proceasisadescribed
in Handel-C language [6], which is then translated to VHDIsattion by
the Celoxica C-to-VHDL tool[7].

Seshasayanan VLIW: In [36], a design of a low-powet6-bit, 6-issue VLIW
test processor supporting a small number of operationseisepted by Se-
shasayanan et al. F@r-point pipelined fast Fourier transform (FFT), the
processor employs four radixprocessing elements (PESs) in each stage. Both
floating-point and fixed-point operations are supportede $ystem has two
modules; one is the VLIW processor and the other is a hybrichoc volt-
age scaling (DVS) module. The hybrid DVS module is used taldyiadjust
the processor’s operating voltage or frequency at run;timigle maintaining
the minimum level of performance an application requiras.this way, the
application energy efficiency can be maximized. Main litnitas of the pro-
cessor are the absence of a rich set of instructions and aileortgolchain.
Additionally, there is no parametric extensibility availa for the processor.

ADRES: The ADRES (architecture for dynamically reconfigurable edded
system)[[37] couples a VLIW processor with a coarse-graiaya(CGA) ac-
celerator, through a shared central register-file. Thikitacture has many
advantages such as improved performance, a simplifiedgrogmg model,
reduced communication costs, and substantial resourcmgh@he reconfig-
urable FUs are used to accelerate certain compute-inteksinels, while the
VLIW processor is used to improve the performance of the neimg part of
the code by exploiting ILP. ADRES is supported by the DRESQuiter [38],
which includes an XML architecture template to describeftimetionality of
the CGA accelerator, and to define the communication togplsgpported
operation set, resource allocation, and timing of the taagehitecture. The
compiler generates a machine code to be executed on the APRESssor,
a simulation file for cycle-accurate simulation, and a sgstkable VHDL file
for hardware implementation.

XIMD: The variable instruction multiple data (XIMD) [39] architeire struc-
turally resembles VLIW architecture and can dynamicallytipan its re-
sources to support concurrent execution of multiple ision streams. The
number of streams can vary from cycle to cycle to best suh paction of an
application. When all the sequencers read from the samédaca the in-
struction memory, a XIMD processor operates exactly likd #W processor.
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It can exploit both the instruction level as well as data [eliam. Although
the XIMD provides interesting features, the architectucerubt evolve exten-
sively because of the absence of a good compiler.

OptimoDE: The ARM OptimoDE [[40] technology is a system for analyzing
and generating optimized instance-specific architectiordsigh-performance
embedded signal processing applications. The technobtigensable intel-
lectual property and is offered with an associated toolremvnent, which can
be used for configuration and customization of the datapeghurces. It al-
lows a user to customize instructions per application basigad of using a
standardized ISA. It analyzes an application source codettzam finds and
selects optimal configurations (issue-width, FUs, storsiges, interconnect
topology, etc.) of the architecture. Custom units if anyentw be generated
manually by the user, while the standard FUs are insertetidotobls.

Tensilica Xtensa LX4: The Tensilica’s Xtensa LX4 [41] is a configurable and
extensible processor template. The major difference laivilee OptimoDE
and the Xtensa LX4 is that the former allows a user to fullytoosze the
instructions, while the latter uses a standardized ISA dbaseuser-defined
functions. The template can be configured as a multi-issuB\Wrocessor
with user-selectabl®- or 7-stage pipeline depth. Using the provided tools,
customized solutions can be generated with a wide rangetimingpincluding
DSP units, local memories, 1/Os etc.

CLAW: The clustered length-adaptive word (CLAW) processor iS-assue,

4-cluster VLIW processot [5], where each cluster has twodssiThe issue-
width of the processor can be configured at design-time dsawealt run-time.
The clustered approach scales down the resources wherstigevigdth is in-

creased. Instead of having a large global register file, eladter has its own
local register file. Special channels and instructions ao®iged for inter-

cluster communication. The compiler is used to capture ILEompile-time

and provide hints for the processor to shutoff certain ekssto reduce un-
wanted power consumption at run-time. The shutoff is done lspftware

instruction with a small latency. The processor is impletednn Verilog. The

parametric extensibility with machine model parameterabisent. A multi-

cluster organization although efficient in resource sgalknin-efficient in per-

formance compared to a single-cluster VLIW procesSsor [1Biter-cluster

communication channels increase the critical path and-ohister copy op-
erations reduce the performance and increase the code size.

KAHRISMA: The KAHRISMA architecture[[42] utilizes different coarse-
grained and fine-grained FUs and a run-time adaptable ¢cot@munication



2.2. RELATED WORK 29

network. An application is partitioned, different opeoais are selected and
implemented in the FUs, and the independent code-sectiensompiled to
a RISC or a fixed-issue-width VLIW processor, and at run-ticenections
can be adapted to configure these two different modes. tistnd , data-,
and thread-level parallelism can be exploited. Intertelusommunication is
required between different clusters, as there is no glofiatesl register file.
KAHRISMA enables out-of-order execution, due to which itlizés extra
hardware. It uses the dynamic operation execution mode)},all operations
of one instruction need not be issued at the same time [43.KKHRISMA
ISA is comparable to clustered-VLIW processors, but itsror@rchitecture
is similar to superscalar architectures with dynamic salied but without a
dispatcher. In contrast to a VLIW program, a KAHRISMA prograas unit-
assumed latencies (UAL), and the latencies are not expogbe compiler.

MOVE32INT: Transport triggered architecture (TTA) [44] is a class e@it-st
ically programmed ILP architectures, and is programmedgdgcifying data
transports instead of operations. A program specifies drydata transports
to be performed by the interconnection network and operaticur as “side-
effect” of the transports. Operands enter FUs through paomts one of the
ports acts as a trigger. An operation is executed, whenatarsimoved to the
trigger port. The architecture can be tailored by addingeoraving resources
(FUs, registers, interconnects, etc.) and is particulsuiyed for application-
specific purposes. MOVE32INT [45] is an instance of the TTéh#tecture
which is implemented in 2.0 CMOS Sea of Gates technology. It igz-bit
pipelined processor running 80 MHz, with several FUs operating concur-
rently. Up to four concurrent data transports per clock&ysk possible.

2.2.3 Fixed Hardwired VLIW Processors

This section presents some widely used industrial hardwWitd W processors.
The distinguishing factors among them include the numbdrtgpe of FUs
and register files, the way in which the global control flow igimtained, and
the amount of on-chip memory and/or caches. These proceaseifixed in
nature and cannot change their organizations/architestur

STMicroelectronics ST231: ST231 [46] is a32-bit 4-issue VLIW processor
from STMicroelectronics. The processor is a single clustglementation of
the Lx architecture [10], and is used in several successfudamer electronics
products. It is &-stage pipelined integer VLIW processor with multiple FUs
and a multiported register file. The processor has Kbyte direct mapped L1
instruction cache and# Kbyte 4-way set associative L1 data cache. Due to
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simple logic, the processor consumes very low power. A cetegdoolchain
including C compiler, debugger, etc., is available for aggilon development.

Philips Trimedia TM1000: TM1000 [47] is a32-bit 5-issue VLIW processor
specially designed for real-time multimedia processinghas27 FUs split
over5 issue-slots, a6 Kbyte data cache, and3 Kbyte instruction cache.
Operations requiring more than two inputs and producingentizan one out-
puts are supported by combining two issue-slots together.pfocessor has a
very rich instruction set and supports up to f@dpit or two 16-bit partitioned
operations. Programmers can specify such operations latldwgl with spe-
cific library calls and the compiler takes care of the restofplete toolchain
(compiler, debugger, etc.) is available for applicatiomedepment.

Fujitsu FR500: FR500 [48] is a32-bit 4-issue VLIW processor from Fujitsu
Limited. There are two integer units, two floating-pointtana general regis-
ter file, and a floating-point register file. The floating-gaimit also performs
MAC operations with40-bit accumulation and partitioned arithmetic opera-
tions on16-bit data. Both the instruction and data caches for the gsmreare
16 Kbyte 4-way set associative.

Texas Instruments TMS320C6211: TMS320C6211[[49] is &2-bit 8-issue
VLIW DSP architecture. The processor haslusters, each witd FUs and
a multiported register file. Each register file provides adittahal read port
for inter-cluster communication. It has a rich instructiet especially suited
to target DSP algorithms. Up to twts-bit partitioned operations are sup-
ported in some ALUs. To handle 1/O data transfers, the psmefeatures a
programmable direct memory access (DMA) controller coratiwith two32
Kbyte on-chip data memory blocks. A complete toolchainudaig compiler,
debugger, etc., is available from the Texas Instruments.

Hitachi/Equator Technologies MAP1000: MAP1000 [50] is a32-bit, 2-
cluster4-issue VLIW processor. Both clusters are similar, eachrwan
integer ALU (IALU), an integer floating-point graphics ALURGALU), 64
general registers}6 predicate registers, and a pair 1f8-bit registers. The
IFGALU can perform advanced operations sucléasit partitioned opera-
tions, sigma operations dr28-bit registers, various formatting operations, and
floating-point operations including division and squaretrd he processor has
an on-chip programmable DMA controller,1& Kbyte 4-way set-associative
data cache, &6 Kbyte 2-way set-associative instruction cache. The data cache
can also be used as on-chip memory. A complete toolchairaitable for ap-
plication development.
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Transmeta’s Crusoe TM5400: TM5400 [51] is the only known VLIW proces-
sor targeted to be used in general-purpose PCs and wookstafl he32-bit
4-issue processor when used in conjunction with the TraremeB6 code
morphing software, provides x86-compatible software atien utilizing a
technique called dynamic binary code translation. Thegssar together with
the code morphing software can execute all standard x8gatibhe operating
systems and applications, including the Microsoft Windams Linux. The
processor has 64 Kbyte 16-way set-associative L1 data caches4aKbyte
8-way set associative L1 instruction caches® Kbyte L2 cache, and a PCI
port. The processor’s control logic is kept simple and ungion scheduling
is controlled by the running software. The processor hasstage integer
pipeline and aL0-stage floating-point pipeline. It consumes very low power
compared to superscalar processors.

2.2.4 Our Proposal

In this thesis, we present a adaptable softcore VLIW pracesalled p-
VEX. The processor is based on the VEX ISA developed by HP.olkclain
(parametrized C compiler and cycle-accurate simulatopuldicly available
from HP, which can be used for architectural exploration eade genera-
tion. Thep-VEX processor can be customized and different parametets s
as issue-width, number of FUs, register file size, etc., essetected at design-
time to match the specific requirements of an applicatiorffeBint types of
multiported register files, interrupt systems, and cust@rations are eval-
uated and can be selected for implementation depending tiygoavailable
hardware resources/area. A design methodology is presentemplement the
processor with any required functionalities. Custom ofp@na can be eas-
ily added to the hardware design and the compiler can genbérasry code
for them. Additional to the static features, the/EX processor is run-time
reconfigurable. Parameters such as issue-width, numbedsf fegister file
size, etc., can be adapted at run-time to target performesceower con-
sumption trade-offs. Multiple smaller issue-width coraa be combined/split
at run-time to target ILP/TLP. Running tasks can be migréteih one core to
another. The effect simultaneous reconfiguration of isgigth and instruc-
tion cache is evaluated to optimize the design. Hardwased#ult tolerance
techniques are implemented for the processor which canchedied/excluded
at design-time and enabled/disable at run-time. All thggens allow users
to trade-off between hardware area, performance, powarggrconsumption,
and reliability. Thep-VEX processor is publicly available as open-source.
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2.3 Summary

After defining the goal of the thesis as to implement a prognaivie VLIW
processor on a reconfigurable hardware for performanceoveenpenergy con-
sumption trade-offs in Chaptét 1, this chapter highlighteel available tech-
niques and tools for programmable and configurable procgs3de chapter
discussed the motivations behind an adaptable VLIW processd the VEX
system which includes the VEX ISA, the VEX C compiler, and ¥eX sim-
ulator. An initial design of thep-VEX VLIW processor was presented and
its limitations listed, which are later on, addressed intthesis. The chap-
ter ends with presenting state-of-the-art in configurablé/@ programmable
RISC and VLIW processors.



Design-time Configurable Processor

his chapter presents an open-source design-time configurable soft-

core VLIW processor callegp-VEX. The processor design is made
parametrized and can be easily adapted for different apgitics before it
is implemented in hardware. The parameters include thegaear's issue-
width, the type and number of different execution units dmadr tlatencies,
the type and size of register files and the number of readdvmiirts, size of
instruction and data memories, type of interrupt and exoapsystems, selec-
tion of default custom operations, datapath sharing, etee hapter presents
a methodology to implement and utilize the processor. Aafiins have to
be profiled and simulated to determine the suitable pararadbe the proces-
sor. The parameters can be set in a configuration file befaegptbcessor is
synthesized. Program binaries can be generated by utjliie VEX com-
piler. Hence, trade-off between performance, hardwareuese utilization,
and power consumption can be easily made, and optimizetismucan be
generated. Following are the contributions of the chapter:

e An open-source parametrized softcore VLIW processor sgoted that
can be configured before implemented in hardware. The syintige
VHDL design is made parametrized, and hence, optimizedicotucan
be generated without using any C-to-VHDL tools. Applicati@an be
developed in C, while taking advantages of the reconfiglitalpro-
vided by an FPGA.

¢ Different types of multiported register files are impleneehin order to
optimize the hardware utilization and dynamic power constimn.

o Different types of interrupt handling systems are implet@éno trade-
off between hardware resources and interrupt response time

e An optimized instruction encoding scheme is implementédctease

33



34 CHAPTER 3. DESIGN-TIME CONFIGURABLE PROCESSOR

the available opcode space. A methodology to extend theidtisin set
of the processor is presented.

e A datapath sharing mechanism is implemented to share thdwzae
resources between multiple instances of the processor.

The remainder of the chapter is organized as follows. Se&id presents the
design-time configurable-VEX processor and its implementation methodol-
ogy. Different types of FPGA-based multiported registesfilor thep-VEX
processor are presented in Sectfon]3.2. Interrupt supmortiHe p-VEX pro-
cessor is discussed in Sectlon]3.3. A new instruction engatiheme to opti-
mize the opcode space and remove certain compatibilitessupresented in
Sectior 3.4. Sectidn 3.5 provides a design methodologytéaaxhe instruc-
tion set of thep-VEX processor. A datapath sharing technique to optimige th
hardware resource utilization among multiple instanceshefp-VEX proces-
sor is discussed in Sectibn B.6. Finally, the chapter is kated by presenting

a summary in Sectidn 3.7.

3.1 Design-time Configurableo-VEX VLIW Processor

In this section, we present a parametrized, extensible,das@n-time con-
figurable softcore VLIW processor called the/EX. The processor is based
on the VEX ISA [4] and has been implemented in VHDL. The tedbgg-
independent implementation allows the processor to bensgized for any
FPGA or ASIC technology. The processor is made parametanddifferent
parameters and constants can be provided in a configuralkéohefiore syn-
thesizing the processor. Thestages/units of the processor &&ch decode
execute Pexecute landwriteback The fetch stage generates the instruc-
tion memory addresses and fetches a long instruction wisiggassed onto
the decode stage. In the decode stage, operations are ddénquirallel and
operands are fetched from the register files. Branch/corgtated operations
are handled by the CTRL unit. The ALU, MUL, and load/store ragiens
take place in the execute stages. The writeback stage sribateall the write
targets are written back together at the same time. The ggoclas &4 x 32-
bit multiported general-purpose (GR) register file andari-bit multiported
branch (BR) register file. The BR registers are used to stoaach condi-
tions, predicate values, and carries from arithmetic djggre. The number
of the GR and BR registers can be decreased fédnand 8, respectively,
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at design-time. Different types of GR register files can Hected to opti-
mized the hardware area/resources, performance, and ponsumption. An
interrupt handling system has been implemented for thegssmr in four dif-
ferent mechanisms offering trade-offs between hardweaseurees/area, per-
formance, and power consumption. The processor can beupted, its state
saved, and an interrupt service routine (ISR) can be exgctieceptions can
also be handled with the help of the interrupt system. Amojgid instruction
encoding scheme has been implemented to increase the opgade which
can be utilized for extending the instruction set of the pesor. A VEX devel-
opment toolchain [1] including a parametrized C compilet amrycle-accurate
simulator is free available from Hewlett-Packard that caubed for architec-
tural exploration and code generation. Details about thX g#&stem can be
found in Sectiori 2.1]2. Following we discuss a methodolaggenerate an
instance of the-VEX processor and generate binary code for it.

Methodology to Generate ap-VEX VLIW Processor Figure[3.1 depicts
the methodology/steps required to generate and utilize¥EX processor.

The process starts with a C application which is simulatetpaofiled to gen-

erate different statistics. The VEX simulator reads a mabonfiguration file

(created by the user/designer) describing the processamfsguration param-
eters such as the number of clusters, the issue-width pstecluhe type and
number of different FUs (ALUs, MULs, MEMSs, and custom unitisencies

for different FUs, and the size of the GR and BR register filksimulates

the application on the configured/desired processor anddkeerates a de-
tailed log file with different statistics, such as executoycles, total executed
operations, total branches (executed and not executedl) cgtles, memory
operations (total accesses, total misses), instructiooyme (IPC), and other
function profiles. Custom or user-defined operations if ey &lso be speci-
fied at C language level, and the simulator is able to simtiti®. The process
can be repeated until an optimized processor configuratiobtained.

The optimized processor parameters are then utilized tergana synthesiz-
able VHDL description for the processor. We do not use anyraeraial tools
for VHDL generation; rather we have a parametrized VHDL detion for
the p-VEX processor. The parameters passed to the compileléionuare
described in a separate file calldérbcessor Core Descriptidras depicted in
Figure[3.1. Based on these parameters the compiler ges@sgembly code
when compiling an application. Another set of parametedesribed in a dif-
ferent file called Processor Core OptimizatidnThese parameters include the
types of GR register file as discussed in Sedtioh 3.2, thestgpmterrupts and
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Figure 3.1: Methodology to generate an instance of tAR¢EX processor.

exception systems as discussed in Se¢tioh 3.3, types afldefstom opera-
tions as discussed in Sectionl3.5, size of instruction atalrdamories, and the
options for pipelined, non-pipelined, forwarding, and fforwarding. These
parameters can be used to optimize the selected processodesign. Both
of the configuration files are included with the processoigiefiles when
the processor is being synthesized and implemented. Ajthahe processor
design can be extended for any arbitrary configuration, tineent version of
p-VEX can be configured in issue-width to Be4, and8 only. Additionally,
we consider only single-cluster implementations. Custqrarations (other
than those provided as default) require an additional sieghave to be added
manually to the design. A simple methodology is providedoktian be used
to implement a custom operation for the/EX processor. The VEX compiler
can generate code for custom operations (See Séctibn :i&yrbcessor can



3.2. MULTIPORTED REGISTERFILES 37

be implemented in FPGAs or ASIC. The compiler is also pradiddth the
same processor description filerocessor Core DescriptiQrand it generates
code for the application to be executed on théEX processor. The compiler
generated code is passed through the low-level developtoelst(assembler,
linker, etc.) to generate/initialize the instruction armtad memories for the
p-VEX processor. Hence, an optimized processor for an agijic can be
implemented in an FPGA very quickly, shortening the develept time and
reducing the associated costs. In the following, we disdifésrent types of
register files, different implementations of interruptteyss and the supported
exceptions, methodology for adding custom operations,datapath sharing
for the p-VEX processor. All of these are design-time parametergHer-
VEX processor and can be used to trade-off between hardesoeirces/area,
performance, and power consumption.

3.2 Multiported Register Files

The shared multiported register file is one of the most resaonsuming
modules of a VLIW processor, and its resource requiremeswsgjiexponen-
tially with increasing the issue-width. Since differenéug-width processors
require register files with different number of read and evpbrts, this sec-
tion explores different register files, especially targefier different types of
FPGAs. As the current state-of-the-art FPGAs do not promid#iport mem-
ories, therefore, multiported register files are createti thie FPGA's config-
urable resources such as look-up tables (LUTS), slices,flappflops (FFs)
as well as the configurable resources plus the hardwired BRANhe 2-
issue,4-issue, and-issuep-VEX processors require multiported GR register
files with 2-write-4-read (2W4R), 4W8R, and 8W16R ports, respectively. For
this section, each processor hag4a< 32-bit multiported GR register file, an
8x 1-bit multiported BR register file, and a single MEM unit. Thenmber
of ALUs is same as the processor issue-width. PHssue,4-issue, ancs-
issue processors utilize 2, and4 MUL units, respectively. We utilized the
Xilinx ISE release versioni3.2 and the Virtex-4XC4VFX100-11FF1152nd
Virtex-6 XC6VLX240T-1FF1156PGAs for the implementation. The Virtex-
4 and Virtex-6 FPGAs havé-input ands-input LUTSs, respectively. Table 3.1
presents the details of the GR register files that we havecimgnhted for our
multi-issuep-VEX processors. These designs are evaluated in Sécfidh 3.2
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Table 3.1: Implementation types for GR register files

Version | Implementation detail ‘

1 Straight-forward behavioral implementation requiringyia
combinational address decoders, and multiplexers/déiptexers
utilizing LUTs + FFs.

2 Utilizes distributed memory (LUTRAMS) instead of BRAMSs as i
version 3, and LUTs + FFs.

3 Implemented utilizing banking and replication with BRAMs)d
LUTs + FFs.
4 Similar to version 3, but running the internal ports of the/B&s at

twice high the frequency of the external ports.

5 Similar to version 3, but avoiding the use of the Directidpl¢éa The
conflicts associated with the write ports are resolved bypgitaytime
register renaming in the executable code.

3.2.1 Register Files with FPGA's Configurable Resources

In this case, the GR register files for theVEX processors are implemented
utilizing the FPGA's configurable LUTSs, slices, and flip-fiopand the dis-
tributed memory called LUTRAMSs. The size of all register dilis config-
urable, but here we considerca x 32-bit size. Each register can be accessed
by each FU of the processor. In general, each of the regulartfadl write
port to access the register file for storing a data in a reggsté2 read ports to
read data from two different registers at the same clockecycl

Register File Version 1 This is a simple and straight-forward design of the
register file. Within the register file, there is a write addrdecoder, a read ad-
dress decoder, and two read ports for each FU. It utilizeglaombinational
multiplexers/de-multiplexers and encoders/decoderspgpat multiple ports.
These components are implemented utilizing LUTs with flge4l as the stor-
age elements. Due to its design, the distributed memorniadlaiin the FPGAs
cannot be used, hence the 4-input LUTs usage becomes largeoed to the
6-input LUTs. Figuré 3J2 and Figuke 8.3 depict the hardwamglémentation
results for the different GR register files and multi-issy¥EX processors,
respectively, for the Virtex-4 and Virtex-6 FPGAs. It candieserved from the
figures that less number of LUTs are required to implementehester files
and the processors when the number of inputs on the LUTsagese
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Figure 3.2: Hardware results for different versions of tbéex 32-bit GR register files
with different ports. In addition to the mentioned resogtaeersion3 of the 2W4R,

4W8R, and 8W16R register files also utilize32, and128 RAMB18s, respectively.
Similarly, version4 of the 2W4R, 4W8R, and 8W16R register files utilizes, and

32 RAMB18s, respectively.

Register File Version 2 Here, banking and replication technique is used to
implement the register file. A4 x32-bit base register file with IW1R ports
is implemented, which is then banked multiple times for tbenber of write
ports and replicated inside each bank for the number of regd.prhe product

of the number of read and number of write ports on the actugitter file
determines the number of times the base register file iscagptl. A small
direction table keeps track of the write port number for eladation of the
register file which is implemented with the base register. filhe table is
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itself implemented utilizing FPGA's configurable resow@nd has the same
number of ports and depth as the actual multiported regiigéer Figure[3.2
and Figuré 3.3 depict the hardware implementation resoitthé different GR
register files and multi-issug-VEX processors, respectively, for the Virtex-
4 and Virtex-6 FPGAs. As can be observed from the figures, epatpto
versioni, the versiore register files utilize more flip-flops and LUTs in case
of the Virtex-4 FPGAs. Considering the Virtex-6 FPGA, thesien 2 register
files utilize far less flip-flops and LUTs compared to the vamdi register files.
The reason is that in case of the Virtex-6 FPGAS, the lsdse32-bit IW1R
register file is mapped to the distributed memory availablihé FPGA. Some
of the LUTs in almost all of the Xilinx FPGAs can be configurede used as
memory called the distributed memory or LUTRAMSs. The baggster file in
our case has simple dual port (SDP) mode. In case of the VirfeRGAS, the
available distributed memory can not be used as an SDP methergfore,
the version 2 register files are implemented on standard LibTise Virtex-

4 FPGA. In case of the Virtex-5 and latest FPGAs, the avalaltributed
memory can be configured in the SDP mode, therefore, for thexv6, the
base register file in our case is mapped to the LUTRAMSs, hesatecing the
number of LUTs and flip-flips for the version 2 register files.

3.2.2 Register Files with FPGA's Embedded BRAMs

As stated in Sectioh 3.2.1, increasing the number of porta oegister file
increases the resources (LUTs and flip-flops) and reduceseeency. To
avoid this problem, multiported register files can be immabaed utilizing the
configurable resources plus the dual-ported BRAMs avalabllarge num-
bers in the modern FPGAs. Following we discuss few such dsdigat we
implemented for the-VEX processors.

Register File Version 3 Register file version follows similar design to ver-
sion 2. Instead of implementing the base register file with 1W1Rgwith
configurable resources, it is implemented with the fixed BRANhis design
is also called as the single-pumped design, where the eedit utilizes the
same clock frequency as that of the processor. It utilizeAM®Rin order to
reduce the utilization of configurable resources (flip-fldpdTs, and slices)
without using the register renaming technique as in the oa#ge versions
register file. The implementation is based on the desigrsepted in[[52][53],
which utilize a mechanism of port indirection. A table ke@pgk of the write
port number for each location of the multiported memory thatnplemented
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Figure 3.3: Implementation results for multi-issue pipelined/EX processors with
different versions of the GR register files. In addition te thentioned resources,
version3 of the 2-issue,4-issue, and-issue processors also utilizge 32, and128
RAMB18s, respectively. Similarly, versiohof the 2-issue 4-issue, and-issue pro-
cessors utilize, 8, and32 RAMB18s, respectively. The-issue 4-issue, an@-issue
processors also utilizg 4, ands DSPs modules, respectively.

utilizing BRAMSs. The table is itself implemented utilizingPGA's config-
urable resources and has the same number of ports and defttd astual
multiported memory. Figuiie 3.4 depicts the organizatioa #fV8R ports reg-
ister file. Here, each BRAM is configured as4x 32-bit 1IW1R ports memory
block. For a register width a§2-bit, each BRAM can provide up t®12 such
registers. To support multiple ports, the BRAMs are orgedhimto banks and
data is duplicated across various BRAMs within each banke fditmber of
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write ports defines the number of banks and the number of redd gefines
the number of BRAMSs per bank. Each bank holds a separate paitdo up-
date all the BRAMs in that bank, each of which can then be rgamideparate
read port. In this manner, different registers can be read flifferent BRAMs
simultaneously. Multiplexers driven by the direction ®@blutputs are utilized
to provide access to the registers stored within each ezdisink. Figuré 312
and Figuré 3.3 depict the hardware implementation resoitthé different GR
register files and multi-issueVEX processors, respectively, for the Virtex-4
and Virtex-6 FPGAs. From the figures, we can observe thattiggespumped
BRAM-based register file design considerably reduces thdlfips and LUTs
utilization at the expense of BRAMs. The maximum clock frelgcy remains
the same for both designs.

Register File Version 4 A single-pumped register file (versi@) runs at the
same clock frequency as that of the processor. Warrite andR read ports,
a single-pumped multiported register file requi¥sR BRAMSs. In order to
reduce the number of BRAMSs for the multiported register filge designed
a register file where the internal ports run at twice highegfiency than the
external ports. This means that the register file has to batrtwice the clock
frequency of the processor. Basically, it is a multi-pumpledign with mul-
tiplexing. A similar design for a quad-port memory is preasenin [54]. The
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Figure 3.4: A single-pumped 4W8R ports BRAM-based register file.
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double-pumped design reduces the number of BRAMSs by a quamepared
to the single-pumped design. A double-pumped register file W write and
R read ports require$/4xWxR BRAMs instead oWxR BRAMs. Imple-
mentation results for the different GR register files andtmistue p-VEX
processors are depicted in Figlrel 3.2 and Figure 3.3, riagglgc From the
figures, it can be observed that the double-pumped regikatdsign reduces
the required number of BRAMs by a quarter compared to thdesipgmped
register file design.

Register File Version 5 Multiported memories implemented utilizing
BRAMs in banking and replication [55] have inherent condliassociated with
the write ports, and hence cannot be utilized as true mutdgdanemories un-
less a technique callegtgister renamindg56] [57] is applied, or additional
hardware logic is utilized for port indirection. In this $sien, we present a
register renaming technique that is applied at compileetabte) time. The
register file is implemented utilizing BRAMs based on theiglegpresented
in [5]. We implemented a register renaming technique tdadawite port
conflicts and save considerable resources [58]. As a cadg, stie imple-
mented a register renaming technique fdriasuep-VEX processor.

In order to support multiple ports, multiple BRAMSs (with 1\RJports) are or-
ganized into banks and data is duplicated across variousNBR#&ithin each
bank. For a register file with 4W8R port32 BRAMSs are distributed across
4 banks with8 BRAMSs per bank. Here, the number of write ports defines the
number of banks and the number of read ports defines the nwwhB&AMs
per bank. For &2-bit register, each BRAM can provide up $a2 such reg-
isters. Because register banks hold mutually exclusive afetegisters, they
can be updated independently. Each register bank holdsasasepvrite port,
which can write to the registers dedicated to that bank. deioto provide
multiple read ports, multiple BRAMs are utilized within éaegister bank to
store duplicate copies of the corresponding register subse

A limitation of this design is that instructions cannot béeduled to execute
in parallel if they produce results in registers that belemghe same register
bank. Hence, in any given instruction only one of the regssteom a given
bank can be written. We remove this limitation by applyiegister renaming
technique at software level, after the code is generatedhdogdmpiler. The
advantage is that it does not involve any hardware cost ompgemmodifi-
cation. All data dependencies are handled by the compilgroaty register
scattering needs to be done to avoid the write ports conflicts



44 CHAPTER 3. DESIGN-TIME CONFIGURABLE PROCESSOR

Each bank provides4 registers that are logically renamed per bank, hence,
the total number of registers #6. This representation guarantees that we
always have free registers to rename. Based on the appfic@tata and con-
trol dependencies, and the available ILP), far-ssuep-VEX processor, the
VEX compiler can generate an assembly code witB, 2, or 1 operation(s)
per instruction. The register renaming ensures that wahiyninstruction, no
two operations should write to registers from a single tegisank. The com-
piler utilizes 64 registers to generate the code, but our register file previde
256 registers withe4 registers per bank.

We developed a register renaming tool using C language.késstéhe VEX
assembly code as input and generates a register-renamedas$exnbly as
output. Multiple passes are made in order to cover all ptssibnflicting
conditions. The tool reads an instruction and parses iteatipas. It searches
for the source and destination registers for all the opmmatof an instruction.
It renames the destination registers for different openatiin an instruction
such that each operation could write to a separate registdt. bA source
register is renamed in a following instruction only, if tretme register was
renamed in an earlier instruction. While renaming the tegss the algorithm
takes care of the different conflict conditions that resudtf the number and
position of the different FUs and the compiler generatedWIihstructions.

Table[3.2 presents the hardware utilization forahe 32-bit 4W8R ports reg-
ister file with register renaming and thadssuep-VEX processor for the same
Virtex-4 FPGA. Compared to the design presented in SeCtion|3.2s1déisign
requires considerably less number of flip-flops and LUTsaetkpense a2
BRAMs, while the frequency remains the same.

3.2.3 Evaluation of the Register File Designs

In the previous sections, we presented different impleatemt styles for
multiported register files. These designs utilize specificdtvare resources
in FPGA. We selected two different families of the Xilinx FR& which

Table 3.2: Implementation results fa@4 x 32-bit 4AW8R ports register file with regis-
ter renaming and-issuep-VEX VLIW processor.

Module Flip-flops | LUTs | BRAMs | DSPs
Register file 521 477 32 0
Processor 3208 6514 32 4
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are Virtex-4 KC4VFX100-11FF1152and Virtex-6 KC6VLX240T-1FF1156

The Virtex-4 and Virtex-6 FPGAs have-input andé-input LUTS, respec-
tively. They have different number/quantity of flip-flopsJLs, BRAMs, and
distributed memory (LUTRAMS).

The designs (versio, 4, and5) which utilize BRAMs for their implementa-
tion produce similar results for both the considered FPGAssion4 reduces
the number of BRAMs byl/4, compared to the versio® and versions de-
signs, but it requires two different clock frequencies fisr operation. The
number of the required BRAMs remains the same for both theidered FP-
GAs. The number of required LUTs is different merely becanifsthe size
of the LUTs in the two families. When considering the versioand version
2 register files for the two types of FPGAs, there is a big défee in the
hardware utilization. These designs are implementedzimi)i Flips-flops and
LUTs only and no hardwired BRAMs. In Virtex-6, the versi@rdesign can
be efficiently mapped to LUTRAMs instead of implementing be general
LUTs. Therefore, the hardware utilization for this desigrvery small com-
pared to the versiom design. The critical path delay is also smaller. Because
the LUTRAMs in the Virtex-4 family cannot be configured to beed in sim-
ple dual port (SDP) mode, both the versiband versior2 designs are mapped
on to the general LUTs. Due to specific design, vergiotilizes large number
of LUTs compared to version for the Virtex-4 FPGA. The critical path delay
for version2 is also longer compared to versiardesign.

Hence, given an FPGA, the designer has two multiple choicefficient
implementation of the register file and theVEX processor by considering
the different versions that we presented. If there are meadadle BRAMS,
the designer can choose to implement a BRAM-based desigsidues, 4 or
5). If multiple clock sources are available, versigns a better option as its
requires less number of BRAMs. If there is limited number &t/A\s, the
designer can choose to implement a LUT-based design (mersip2). For the
Virtex-5, Virtex-6, and other recent families, versions a better option as it
can be mapped more area efficiently on the available dis&tbmemory. For
the Virtex-4 and older families, versianis a better option due to its efficient
implementation on the general LUTSs.

3.3 Support for Interruptability

Certain critical tasks require that the processor showddared to them within
a certain time limit. With an interrupt system, a processor be interrupted,
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its execution state saved, and a different task can be eddcuthe excep-
tion handling system ensures that the computed result iscoiThe interrupt
and exception handling systems are important buildingKslaan a proces-
sor for running an operating system on it. Features like inagking, multi-
threading, and task migration are facilitated by an infgrsystem. In this
section, we present the design and implementation of uggeand exception
handling systems [59] [60] for the-VEX processor. The interrupt system is
made parametrized and implemented in four different mash@with respect
to interrupt latency, hardware utilization, and stresstendompiler and/or re-
lated toolchain. The exception handling system utilizesitiierrupt system
for its implementation.

3.3.1 Interrupt Handling System

The interrupt system that we implemented is calledittierrupter and can
be easily plugged in and out of theVEX core. Figurd 3.6 depicts the inter-
rupter embedded into «issue pipelined-VEX processor. The interrupter
receives input signals from interrupt pins and then geasrebntrol signals to
the fetch stage to reschedule instructions such thaittarrupt service routine
(ISR)could be executed. At the same time, the necessary contstdred in
the data memory. Whenraturn from interrupt (RFl)instruction is decoded,
a signal is passed to the interrupter to indicate the end ¢ERn After that,
the context is restored back to the core which then resungesribinal exe-
cution. To generate a software interrupt, thE_SOFTcustom operation is
implemented. Th&NT_MASKcustom operation is implemented to enable and
disable the individual interrupts. Following we discus® sub modules of the
interrupter called thanterrupt scheduleand theinterrupt controller.

Interrupt Scheduler The interrupt scheduler is configurable and the follow-
ing parameters can be configured at design-time: (1) nunfhetesrupt vec-
tors, (2) interrupt priority for each vector, and (3) ISRadtion address in the
instruction memory. The interrupt scheduler is respoesibt: (1) receiving
interrupt input signals from different sources, (2) schedudifferent tasks
into the task queue, and (3) enabling interrupt requestheadnterrupt con-
troller when priority of the requested task is higher tham ¢hrrent task. The
interrupt scheduler dataflow is depicted in Figure 3.6(der€ are two inputs
for the interrupt scheduler: exterriaterrupt insignals from outside world and
the internaklear interruptflag signal from the interrupt controller. The former
adds tasks to the task queue while the latter removes it.dBarséhe interrupt
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Figure 3.5: A 4-issuep-VEX processor with the interrupter.

priority, the scheduler decides whether to raise an inp¢tauthe interrupt con-
troller or not. Only if an interrupt with higher priority coms in, or a higher
priority task is finished, a waiting task can then becomevactihe interrupt
vector table records all information that is necessary éhreduling different
tasks. These include interrupt vectors (type of interfuatsl their priorities,
interrupt flags which show the status of each interrupt rejU&R address
(predefined or user defined), and interrupt enable bits tdi thasinterrupts.

Interrupt Controller  The interrupt controller is responsible for context
switching and ISR execution. It's main jobs are: (1) recwivinterrupt re-
quest signals from the interrupt scheduler, (2) storingcthr@ext, (3) loading
the ISR address, (4) restoring the context, and (5) restattie main program
again from the point where it was left before the interrupheefficiency of
the control logic determines the length of interrupt latendnlike the inter-
rupt scheduler, the interrupt controller cannot be desigipelined, since the
next state at each clock cycle is determined by the previats. Ve designed
the interrupt controller as one finite state machine (FSMigtvis depicted in
Figure[3.6(b). The input (i.e., interrupt request or RFgnsil determines the
next state based on the current one. The interrupt systere-srpptive and a
currently executing ISR can be preempted to start a new osedban its pri-
ority. An interrupt queue is implemented to record inforimat such as, ISR
addresses, return addresses, and interrupt vectors eddeom the interrupt
scheduler along with the interrupt request signal.
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Figure 3.6: Dataflow and FSM in the interrupter.

3.3.2 Implementation Styles for the Interrupt Controller

We implemented the interrupt controller in four differenetimods in order
to match different application requirements and hardwaseurce utilization.
These implementations differ by the way the context (the GR the BR
registers) is stored and restored. The farshethods utilize the-VEX pro-
cessor whose register file is implemented with the FPGAdigarable re-
sources (slice registers and slice LUTSs), called heWEX type 'a’. The4ts
method utilizes the-VEX processor whose register file is implemented with
the FPGA's embedded BRAMSs, called her&/EX type 'b’.

Directly Switching Context Method: In this method, the context is
stored/restored through dedicated paths without utdizhe processor
pipeline. Here, the GR registers, the BR registers, anddteshared memory
are directly connected to the interrupt controller for esiswitching. Extra
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multiplexers are utilized to select the path from either pipeline or the in-
terrupt controller to the register files and data memory. ddheantage is that
the ISR code becomes smaller, as instructions for conteittlang are not
needed in the ISR.

Hardware Instructions Switching Context Method: Instead of using ded-
icated paths, this method utilizes the processor pipelmecéntext switch-
ing. The instructions needed for context switching are gerd by the in-
terrupt controller hardware and inserted into the pipelii@e advantage is
that the ISR code becomes smaller, as instructions for xpbatgtching are
not required in the ISR. Additionally, a hardwarenitoris introduced which
records the maximum index of registers at run-time in ordeetuce the size
of the context to be stored.

Software Instructions Switching Context Method: Here, the processor
pipeline is utilized, and the instructions needed for ceirdevitching are gener-
ated in software. Hence, the complexity is shifted from teu to software.
Additional hardware for context switching is not requirdmwever, we lose
the possibility of only switching a subset of registers ai-tine, as the in-
structions for context switching are fixed after compilatiddditionally, this
method introduces extra overhead for the size of the ISR.code

Page-able Register File Method:Instead of storing/restoring the context,
here, the page of the register file is switched before/aftec@ing an ISR.
Here, we utilized the-VEX processor whose register file is implemented with
BRAMSs (p-VEX type 'b’ instead of thep-VEX type 'a’ as in the firs8 meth-
ods). Ap-VEX processor requires i x 32-bit register file. Multiple BRAMs
are utilized to implement the register file as discussed icti@®[3.2. The
18 Kbits BRAM-based register file can provide upao2 x 32-bit registers or
up to 8 copies/pages a#4 x 32-bit register file. We modified the register file
design to exploit the unused registers as multiple setseofdpister file.

3.3.3 Interrupt Latency and Response Time

The following key metrics determine the performance of dariipt system:
Interrupt latency - The time from when an interrupt is first generated to when
the processor responds to the interrupt, i.e., the time viherprocessor is
ready to start storing the contextterrupt response time - The time from
when an interrupt is first generated to when the processa thm first in-
struction in an ISR. It includes the interrupt latency pllas time required for
context storing and calling an ISR. Talple]3.3 lists the imq@atation types,
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Table 3.3: Implementation version, interrupt response time, and thiestacase inter-
rupt latencies for the four types of interrupt system for g(RéEX processor.

Version Description | Response timg Latency
1 Directly switching context 76 cycles 5 cycles
2 Hardware instructions switching context17 — 76 cycles| 5 cycles
3 Software instructions switching context 76 — 78 cycles| 5 cycles
4 Page-able register file 2-6cycles | 2 cycles

the interrupt response time, and the worst-case interatpnties for the four
types of our interrupt system wiiitVEX processor.

In the p-VEX architecture, the GR register numbe($r0.0) is hardwired to
value zero, therefore, it is not stored during context stbar versioni of the
interrupter, the interrupt response timerefcycles includeg cycles for com-
pleting the currently fetched instruction and stoppingphmline, 1 cycle for
scheduling the interrupg3 cycles for moving the GR registers aBdtycles
for moving the BR registers. For versian a hardware monitor records the
maximum index of the registers used in a running programrbefee proces-
sor is interrupted. Therefore, the interrupt response tepends on when the
currently executing program is interrupted. The worst cased be76 cycles.
The best case could b& cycles & cycles for completing the currently fetched
instruction and stopping the pipelinecycle for scheduling the interrupt2
cycles for moving the GR register$rQ.1to $r0.11, and$r0.63). These regis-
ters have special purposes in the ISA and are mostly utilizedorogram/([4].
For version3, the interrupt response time is pre-determined at comipile.t
Still, there could be two scenarios. First, when the conséatting routine is
placed within the body of the ISR, the interrupt responseetiai7é cycles.
Second, when the context storing routine is placed at a atphcation and
is called from within the ISR, the interrupt response timed<xycles, as there
would be an extra cycles branch latency. In the latter case, the size of the ISR
code is reduced. The interrupt response time for vergiofithe interrupter is
2 clock cycles. One cycle for scheduling the interrupt andtaerofor switch-
ing the register file page. When implementing this method,fifst and the
last4 instructions in the ISR should not read and write data frormggisters,
respectively, in order to allow the currently fetched iostion to be passed
through the pipeline. This is reasonable because at thartiagiof a program
(ISR), variables are normally initialized first before tren be read, and at the
end of a program, the already computed data is consumedledspi memory
instead of generating new data (writing to registers). i #ssumption is not
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valid then some NOP instructions (maximuhshould be added at the start
of the ISR code. In this case, the interrupt response timgesfrom2 to 6,
depending upon how many NOP instructions are added to the cod

3.3.4 Exceptions Handling System

The difference between interrupts and exceptions is thetrirpts are utilized
to handle external events (serial ports, buttons etc.)endxceptions are used
to handle internal instruction faults (arithmetic overf]dlkegal opcode etc.)
The exceptions handling system mainly relies on the inptsrigystem for
its implementation. Unlike the interrupts which can occayra&chronously,
exceptions occur synchronously when an instruction is dedmr executed.
Different conditions are tested at decode and executestageinternal inter-
rupt is raised whenever there is an exception. Following iseuss different
exceptions implemented for theVEX processor. The system can be easily
extended with other types of exceptions.

Arithmetic Overflow: Arithmetic overflow occurs when the result of an arith-
metic/multiplication operation becomes larger than tke sif the register used
to hold it. Because these operations takes place in the &exstage, therefore,
the overflow exception is detected in the execute stage. riraritameticop-
eration, the maximum result of twge-bit operands can b&s-bit, therefore,
we can simply test the leftmost bit as the overflow flag and uas an excep-
tion signal. Similarly, formultiplication operations oB2 x 16-bit, the leftmost
16 bits are tested for the overflow condition. When an overflosegtion oc-
curs, an internal interrupt is raised to the interrupter améxception handling
routine can thus be called.

Invalid Opcode: When a non-supported opcode is fetched into the processor
pipeline, it triggers an invalid/illegal opcode exceptidrhis condition can be
detected in the decode stage as opcodes are decoded heopcole is tested

in all issue lanes and then exception signals are genexatkd interrupter, and

an exception handling routine can thus be called.

Unavailable Hardware Unit: Different executions units are distributed over
different issue lanes in a-VEX processor, therefore, not all the operations
can be executed in every lane. If an operation is assignedanea which
does not have the hardware unit to execute it, an excepomrlsis generated
to the interrupter, and an exception handling routine cas tie called. This
exception is also detected in the decode stage.
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3.3.5 Implementation Results

Figure[3.T depicts the hardware utilization for theypes of interrupt sys-
tem with4-issuep-VEX processor § with p-VEX type 'a’ and1 with p-VEX
type 'b’). We utilized the Xilinx ISE release versiarg.2 and the Virtex-6
XC6VLX240T-1FF1156PGA for the synthesis and implementation. The
VEX processor hag ALUs, 2 MULs, and1 MEM unit, and can run up t®¢00
MHz in the Virtex6 FPGA. A RAMB36E1 is equal to two RAMB18 BRAMs
in the Virtex-6 FPGA. As can be observed from the figure, eagblementa-
tion method of the interrupter requires different amourttafdware resources.
The first3 version of the interrupter are implemented for tRREX type 'a’.
Compared to the-VEX without interrupter, thep-VEX with interrupter ver-
sion 1 requires15.82% more registers andél.56% more LUTS, thep-VEX
with interrupter versior2 requiresi7.26% more registers ant . 66% more
LUTSs, and thep-VEX with interrupter versiors requiress . 76% more regis-
ters and3.62% more LUTs. The version of the interrupter is implemented
for the p-VEX type 'b’. Compared to this version of the VEX without inter-
rupter, thep-VEX with interrupter versiort requires75.75% more registers
and45.16% more LUTs. As the multiported register file for the type ’laish
8 copies of the register set{2x32-bit in total), the direction table becomes
large, and hence requires more slice registers of the FPGifsfimplementa-
tion. The number of BRAMs remains the same. Remember thafitlex-6
XC6VLX240T-1FF1156PGA has301440 slice registers and50720 LUTS,
and that all our designs utilize only a small portion of theide.
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3.4 Instruction Encoding Scheme

The issue-width of the-VEX processor can be statically or dynamically se-
lected to be2, 4, or 8. A 2-issue,4-issue, 0Or8-issue processor can execute
2, 4, or 8 operations per clock cycle, respectively. An operatiomisogled in
32 bits, and multiple operations make a VLIW instruction whazn be issued
in a single clock cycle. Each operation is executed by arnaai FU in an
issue-slot. Addresses 6fbit and3-bit are required to access the GR and BR
registers, respectively. The regular FUs are ALUs, MULsRCTand MEM.
Eachp-VEX processor can utilize a different mix and number of ¢h€dJs,
except the CTRL, which is only one per processor. Increagieghumber of
these FUs increases the hardware resources, but simptiesotting of op-
erations in the low-level development tools (assemblegchE-U requires at
maximum two32-bit inputs and generates o@g2-bit output. Both of the input
operands could be register values or one of them could besieegalue and
the second one ammediate (IMM)value. A short IMM (up to9-bit) is en-
coded in the sam&2-bit operation. When there is a long IMM (up &2-bit),

it cannot be encoded in the same operation. Hence, an additiperation
space or issue-slot is required to carry the long IMM. Fordh&éEX proces-
sor, a custom operation call&yllable_Follow (S_Fjs implemented to carry

a long IMM value for an operation. Hence, long immediateshaedled in
the same instruction utilizing multiple issue-slots. Wsigeed a new encod-
ing scheme for the-VEX processors to increase the available opcodes from
128 to 256 which can be utilized for ISA extension. Additionally, thewn
encoding scheme defines proper positions for the regularvitish makes
the assembler tool simpler and uniform. With these possticode generated
for any of the2-issue 4-issue, o8-issue standalongVEX processors can be
executed correctly on the-4-8-issue run-time reconfigurable processor pre-
sented in Chaptéd 4.

3.4.1 Design of the New Encoding Scheme

Table[3.4 presents the old |14] [15] and the new encodingmsekdor thep-
VEX processor. The firs? bits of the32-bit operation encoding are reserved
for multi-clustering and NOP-folding purposes. The ISA jd¢ludes opera-
tions which require two source and one destination GR rgisind one BR
register at the same time, therefore, the rieixbits are needed for these reg-
isters addressing. In the old encoding scheergts are utilized to encode the
IMM type (“00” is no IMM, “01” is short IMM, and “1x” is long IMM). The
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Table 3.4: The old and the new encoding schemes. IMM is flag for immedyates.
Short IMM and long IMM are the values of the short and long indilmtes, respec-

tively. S_F means Syllable_Follow custom operation.

31 25 24 23 22 17 16 11 10 5 4 2
Opcode Old IMM Old Dest. GR address| Srcl GR address| Src2 GR address| BR address
Opcode Old IMM Old Dest. GR address| Srcl GR address| Short IMM /Long IMM-1 (9-bit)

Opcode New IMM New Dest. GR address| Srcl GR address| Src2 GR address| BR address
Opcode New IMM New Dest. GR address| Srcl GR address| Short IMM /Long IMM-1 (9-bit)
S_FOld Long IMM-2 (23-bit) Old
1000%** * Long IMM-2 (23-bit) New
Opcode Old Branch offset (20-bit) Old
Opcode New ‘ Branch offset (19-bit) New

last 7 bits are left for opcode encoding, and hence, arlg different opera-
tions could be implemented. Short IMM operands (up4bit) are encoded
in the same operation. When an operand is a long IMM, thedilsts of the
IMM are carried by the same operation and the fsbits are carried by the
S_Foperation in a different issue-slot. Hence, an operatidh wilong IMM
requires two issue-slots. With the old encoding schemegtivas hardly any
free opcode left to extend the ISA.

The new encoding scheme utilizesits for opcodes and a single bit for the
IMM type. “0” for IMM means no immediate operand, while “1” raes an
immediate operand, whose type (short or long) is determinyethe S_F op-
code in the same instruction as discussed in Settion| 3.4ith tié new en-
coding scheme the opcode space is increased frizgrto 256. It utilizes an
uniform approach for sorting operations for thessue,4-issue, and-issue
stand-alone processors, and fheé-8-issue run-time reconfigurable processor
(presented in Chaptéf 4), makes the assembler tool simgleiiform, and
solves the problem of code versioning.

3.4.2 Borrowing Scheme and Instruction Mapping

Borrowing refers to the issue-slot, on which an operatiam foad the last23
bits of its long IMM. Although, the number, type, and positiof the regular
FUs per issue-slot is a design-time configurable parametee, we consider
a default number of FUs for each type of h&/EX processor. For every type
of the processor, we consider one CTRL unit, one MEM unit, tiedsame
number of ALUs as the issue-width. We consider the number OLMfor
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the stand-alone-issue,4-issue, an®-issue processors to e 2, and4, re-
spectively. These numbers provide enough performanceutitxceeding the
hardware resources. Tle4-8-issue run-time reconfigurabjeVEX proces-
sor utilizess MULs. In general, the more the number of the individual FUs,
the simpler the borrowing scheme becomes.

Tables[3.b and_3l6 present the positions of different FUs lammowing
schemes for the-issue,4-issue,8-issue, and-4-8-issuep-VEX processors,
and their instruction mapping schemes. The left-most colpresents the pos-
sible combination of operations (with/without long immaigis) making differ-
ent VLIW instructions. Mapping scheme presents the possistructions and
how they can be accommodated in the available issue-sldttl dperations
are not considered as an ALU is available in every issue-8ainch imme-
diate is restricted td9-bit maximum and requires a single issue-slot with the
CTRL unit. An operation with a short IMM is scheduled on a $ngonflict-
free issue-slot, while that with a long IMM is scheduled orotissue-slots.
The first9 bits of the long IMM are carried by the operation slot, white t
last23 bits are carried by aB_Foperation scheduled on a different issue-slot.
TheS_Fis a custom operation with the new opcode 1§00 — — — — (8-bit),
utilizing a space ofi6 opcodes. BiD of theS_Fopcode is used to carry the
last bit of a long IMM (bit32). Bits 3 to 1 of the S_F opcode represent the
number of the issue-slot for which tl& F operation is carrying the la$3
bits of the long IMM. Because th® Fopcode reservess opcodes, the total
number of additional free opcodes provided by the new emgpdcheme is
128 -16 =112.

3.5 ISA Extension Support

In this section, we provide a design methodology to exterdrihktruction set
and generate binary code for user-defined/custom opesatwnhe p-VEX
processor. With the new encoding scheme, thera s2dree opcodes that can
be utilized to extend the ISA. The VEX compiler can generataty code for
custom operations that are defined in a C application. Follpwur method-
ology, itis very easy to implement the hardware for a custperation for the
p-VEX processor. Additionally, users can select to add aetammon cus-
tom operations (e.gabs differentsub-word operationsetc.) at design time
to the p-VEX processor.
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Table 3.5: Position of FUs, borrowing scheme for long IMM, and instiaotmapping
for the2-issue and-issuep-VEX processors. Here, AU, MU, MM, CT, S, and L mean
ALU, MUL, MEM, CTRL, short, and long, respectively.

Slot number 3 2 1 0
Slot number 1 0
Functional units AU AU AU AU
Functional units AU AU
MM MU MU CT
MU MU
Borrowing scheme 0,2 3,1 2,0 1,3
MM CT
Mapping scheme for instructions
Borrowing scheme 0 1
MU1L,MU2L S_F(2) MuU2 L MUl L S_F(1)
Mapping scheme for instructions
MULL,MML MM L S_F(3) MUl L S_F(1)
MU L MU L S_F(1)
MU1L,MMS,CT MM S MU1L S_F(2) CT
MM L MM L S_F(1)
MUL1L,MU2S, MM S MM S MU2 S MUl L S_F(1)
MU1S,MU2 S MU2 S MUl S
MU1lL,MU2S,CT S_F(2) MU1L MU2 S CT
MUS,MMS MM S MU S
MU1S,MU2S, MM L MM L MUl S MU2 S S_F(3)
MUS,CT MU S CT
MU1S,MU2S,MMS,CT | MMS MUl S MU2 S CT
MMS, CT MM S CT

MUlS,MML,CT MM L S_F(3) MULl S CcT

(a) 2-issuep-VEX processor :
(b) 4-issuep-VEX processor

3.5.1 Binary Code Generation for Custom Operations

The VEX compiler has support for user-defined operationslah@uage level
with the help of special intrinsic calledasm() When a call is inserted to
_asm() in a C program with proper parameters, the operatienhieduled and
registers are allocated by the compiler. Hence, C varidblesperands and
destinations can be referred. Calls to _asm() are integrieta special way.
The “vexasm.h” header file [1] includes the implicit functiprototypes for
the _asm() intrinsics, as presented in Fidguré 3.8.

The opcode argument is a numeric identifier for the operati@perations
defined with _asm() intrinsic can have upgtoptional arguments after opcode
that represent the values read by the operation. Thesetigmsraan have
no or up to4 return values. Taking the address of an _asm*() function is
illegal. Figure 3.9 presents an example of the _asm() usag&ementing a
division (DIV) function and its VEX assembly code for2aissue processor.

In this example, the intrinsi@x0limplements the division of two numbers. It
is called with two arguments and stores its result in a thadable. This is
the simplest implementation for a DIV operation and canraotdhe the case
when a division by zero occurs. This example is just for thatson purpose to



Table 3.6: Positions of FUs, borrowing scheme for long IMM, and instimt mapping for the-issue and-4-8-issuep-VEX proces-
sors. Here, AU, MU, MM, CT, S, and L mean ALU, MUL, MEM, CTRL, aft, and long, respectively.

Slot number 7 6 5 4 3 2 1 0
Functional units AU, MM AU, MUL AU, MUL AU AU AU, MUL AU, MUL AU, CT
Borrowing scheme 4,6 7,5 6,4 5,3 4,2 3,1 2,0 1,3
Mapping scheme for instructions
MUL1L,MUL2L,MUL3L,MUL4 L S_F(6) MUL4 L MUL3 L S_F(5) | S_F(2) MUL2 L MUL1 L S_F(1)
MUL1L,MUL2L,MUL3L,MML MM L S_F(7) MUL3 L S_F(5) | S_F(2) MUL2 L MUL1 L S_F(1)
MULL1L,MUL2L,MUL3S ,MUL4S MM L MM L MUL4 S MUL3 S S_F(7) | S_F(2) MUL2 L MUL1 L S_F(1)
MUL1L,MUL2L,MUL3S,CT,MML MM L S_F(5) MUL2 L S F(7) | S_F@) MUL1 L MUL3 S cT
MUL1L,MUL2S,MUL3S,MUL4S,CT,MML MM L MUL4 S MUL3 S S_F(7) S_F(2) MUL1 L MUL2 S CT
MUL1S,MUL2S,MUL3S,MUL4AS , MM L,AUL MM L MUL4 S MUL3 S S_F(7) S_F(0) MUL2 S MULL1 S AU L
MUL1L,MUL2L,MUL3S, MUL4S ,MMS,CT MM S MUL4 S MUL2 L S_F(5) S_F(2) MUL1 L MUL3 S CT
MUL1S,MUL2S ,MUL3S,MUL4S ,MML,CT,AUS MM L MUL4 S MUL3 S S_F(7) AU S MUL2 S MUL1S CT

(a) 8-issuep-VEX processor

Slot number (2-issue) 1 0 1 0 1 0 1 0
Slot number (4-issue) 3 2 1 0 3 2 1 0
Slot number (8-issue) 7 6 5 4 3 2 1 0

Functional units AU, MUL , MM AU, MUL, CT AU, MUL , MM AU, MUL, CT AU, MUL , MM AU, MUL, CT AU, MUL , MM AU, MUL, CT

Borrowing scheme Same as for 2-issue, 4-issue, and 8-issue. Any issue-wadi will execute correctly.

Mapping scheme Same as for 2-issue, 4-issue, and 8-issue. Any issue-wadi will execute correctly.

(b) 2-4-8-issuep-VEX processor

'G'E
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[* From “<vex>/usr/include/vexasm.h” */

typedef unsigned int __vexasml;
typedef struct {unsigned int n0, n1;} __vexasmz;
typedef struct {unsigned int n0, n1, n2;} __vexasma3;

typedef struct {unsigned int n0, n1, n2, n3;} __ vexasm4;

void _asmo (int opcode, ...);
__vexasml _asml (int opcode, ..
__vexasm2 _asm2 (int opcode, ..

D
D)
D
)

__vexasm3 _asma3 (int opcode,
__vexasm4 _asm4 (int opcode,

Figure 3.8: Prototypes for the _asm() intrinsi¢< [1].

show how a user-defined operation can be defined and compiledhe VEX
compiler. The compiler schedules the code around the gitricall _asm()
and operates the usual optimizations and register altotatisks. The asm
intrinsic is distinguished by the opcode, which im this example. The latency
and the number of occupied issue-slots for asm()operation can be set in
the machine configuration file which is provided to the compil

3.5.2 Methodology to Extend the ISA

Custom operations are defined at the C language level in tireesoode. The
modified C source code with the custom operations can be aietlilvith the
VEX simulator [1] for performance analysis. Figlre 3.10 idepa methodol-
ogy/flowchart that can be used to implement a custom operfdidhe p-VEX

#include <vexasm.h> 5

#define DIV(x, y) ((int)_asm21(0x01, (x), (y)))| ¢O0 mov $r0.3 = $r0.0
cO mov $r0.2 =2
void main () { n

intx,y, z; c0 asm,1 $r0.2 = $r0.2, 4
X=2;y=4 c0 return $r0.1 = $r0.1, (0x0), $10.C
z=DIV(x, y); } 5

Figure 3.9: The _asm() usage example for implementing a division (Di\jction
and its VEX assembly code foraissuep-VEX processor.
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processor. First of all select an opcode from the availabiesed opcodes and
add it to the opcode_pkg.vhd file. This package file contdiesopcode con-
stants and parameters. After this, determine whether thedstoding the
new operation is enough or execution is also needed. If ¢éxecis also re-
quired determine which of the available FUs (ALU, MUL, CTRir, MEM)
will execute the new operation. In the selected FU, add codelect the re-
sult based on the new operation. This will mainly comprisadding arelsif
statemento the selected FU design file (e.g., for ALU, this file is the.ahd).
Also add the prototypes and the function definitions relédate functionality
of the new operation to the package file for the selected Ry, fer ALU, this
file is alu_operations.vhd). Finally, adjust the decodecdie.vhd) by adding
the decode logic and elsif statement to generate and ské&ertdquired signals
and values for the new operation. For operations which aetyire decoding
(such as an operation for masking an interrupt), there iseal to update the
execute unit. Modifying the decoder is enough to generatedfuired signals.
Instead of adding to the already available standard FUsatipes can also be
added as separate custom FUs. In this case, the custom Fatégiph a lane
in parallel to the standard FUs. The final result is selectibeiefrom the cus-
tom FU or the regular FUs depending upon the signals from doeder. A
custom operation requiring more than two inputs and/or ggimg more than
one output can be expanded over multiple execute lanes. Xaoate lane can
execute an operation with at maximum two inputs and one oulie opcode
will be decoded by the selected decode lanes simultanemiisaggessing a
different set of registers for the operation expanded ovdtipte lanes.

3.5.3 Design-time Selectable Custom Operations

We provide some commonly used operations that are not patieoWVEX
ISA as design-time custom operation for the/EX processor, as listed in
Table[3.T. These operations can be enabled to be includegrnocassor by
setting a bit in the r'VEX_package at design time. Sub-worgaions utilize
a 32-bit operation slot for either twa6-bit operations or foug-bit operations.
These operations are very common, especially in multimagoidications such
as pixel manipulation. Utilizing these sub-word operasgiothe throughput
for operations operating on bytes and double-bytes candredrsed. Figure
[3.13 presents the hardware results for these operatiorssfssue pipelined
p-VEX processor witd ALU, 2 MUL, and 1 MEM units. The operations
are included in the regular/default ALU. In Figure 3.11, Beferencalesign
represents the bageissuep-VEX processor, to which the custom operations
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From the available opcodes,
select an unused opcode for
the new operation

!

Add the new opcode to the
opcode_pkg.vhd which
contains opcode constants

!

Determine which FU (ALU,
MUL, CTRL, MEM) will
execute the new operation
or it will only be decoded

A
In the selected FU, e.g., Add functions and prototypes
ALU.vhd, add code (elsif to the file which defines the
statement ) to select the result functionalities for the selected
based on the new opcode FU, e.g., alu_operations.vhd
! v y
A

Adjust the decoder to
generate signals and values
for the new operation (add
elsif statement and decode
logic to the decode.vhd file)

Y

End

Figure 3.10: Methodology/Flowchart for implementing a custom openatio

are then added. These operations reduce the maximum clegkeincy in

the range of3% to 14%, and utilize moderate hardware resources depending
upon the number of ALUs containing the operations. With tbé hof the
VEX simulator, the total gain (in terms of executions cykldse to adding

a custom operation to the design can be determined in advéinde clock
cycle reduction is more than the degradation due to thecatipath increase,
the designer can choose to add the custom operation bygsettit in the
r'VEX_pkg.vhd file.
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Table 3.7: List of design-time available custom operations.

Custom operatiod Description
VECT2ADD16 two 16-bit additions in a single 32-bit slot
VECT4ADDS8 four 8-bit additions in a single 32-bit slot
VECT2SUB16 | two 16-bit subtractions in a single 32-bit slot
VECT4SUBS four 8-bit subtractions in a single 32-bit slqgt
VECT2SHR16 two 16-bit shift left in a single 32-bit slot
VECT4SHRS8 four 8-bit shift left in a single 32-hit slot
VECT2SHL16 two 16-bit shift right in a single 32-bit slot
VECT4SHLS8 four 8-bit shift right in a single 32-bit slot
PACK16HIGH packs the higher 16 bits of two operands|
PACK16LOW packs the lower 16 bits of two operands
ABS absolute of a 32-bit number
VECT2ABS16 two 16-bit absolute in a single 32-bit slot
VECT4ABS8 four 8-bit absolute in a single 32-bit slot

=== Slice Registers

mmm Slice LUTs 3 Slice LUTs (1 ALU) —e— Frequency

7000

6000

5000 1

4000 -

3000 -

2000

Slice Registers and LUTs

1000+

Frequency (MHz)

Figure 3.11: Implementation results for the custom operations listetaible[3.7 for
a 4-issuep-VEX processor witht ALU, 2 MUL, and 1 MEM units for the Virtex-6
FPGA. The processor also requigssRAMB18s and4a DSP48E1s modules.
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3.6 Datapath Sharing

The higher performance of VLIW processors does not comerém &s their
resources do not scale well. As stated previously in thei®@€8t2, the hard-
ware/area requirement for a multiported register file igaly proportional
to the number of read and write ports, and these parametenstdecale to
a large extent. To reduce the pressure on the number of rehdrte ports
of the register file, alusteredarchitecture is used. A cluster is a collection
of a register file and a set of tightly coupled FUs. A multistkr processor
has multiple clusters, but a single execution thread, wailaultiprocessor
has multiple processors and may have multiple executicaty. Clustered
VLIW processors do not scale well in terms of performance tduthe inter-
cluster communication. The delay resulting from interstdwm communication
reduces the machine performance. For exampleg-anit/2-cluster proces-
sor performs roughly like &2-unit/1-cluster processor and &nunit/2-cluster
processor like &-unit/1-cluster processor [10].

To avoid this problem, we designed a dual-processor systiiring the non-
pipelined p-VEX processor as its base. Parameters for each base mpcess
such as the issue-width, the number and type of FUs, sugpirs¢ructions,
type and size of register file, etc., can be selected at déisign The base
processor has a multi-cycle design and consistetoh decode executeand
writebackstages/units. During execution of a code, only one unit efttase
processor is active per clock cycle, hence, FUs can be shanedg different
instances of the processor. A VLIW multiprocessor systetnefe each pro-
cessor is a VLIW processor) can exploit both fine-grain (ington level) as
well as coarse-grain (data level) parallelism.

3.6.1 Dual-processor System

Figure[3.12(a) depicts a dual-processor system implementi#h two non-
pipelined4-issuep-VEX processors. Each base processor can access its own
instruction and data memories. The dual-processor syssentacget TLP or
DLP, while the individual processor can exploit ILP. For exade, if we need to
encrypt100 Kbytes of data according to advanced encryption standa&SjA
algorithm, we run the application code on both processarh eacryptings0
Kbytes of data and then combine the restilius,we can achieve almost twice

the performance of a single-processor system.
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Figure 3.12: VLIW dual-processor systems.

3.6.2 Datapath-shared Dual-processor System

Figure[3.IB presents the implementation results (FPGASs)ifor the base
processor for the Virtex-11 PriXC2VP30-7FF896-PGA. As can be observed
from the figure, theexecuteunit and the GR register file versian(64 reg-
isters) require35.50% and59.02% slices, respectively, of the total proces-
sor slices. Apart from the slices, the processor/executiealso utilizes14
MULT18X18s We modified the design of the dual-processor system pregent
in Sectior 3.6.11. Instead of implementing an execute uréaich base proces-
sor, we developed a scheme to share it [61]. Because the basespor has
a non-pipelined design, we can share the execute unit bettvee proces-
sors. In a non-pipelined processor, a new instruction ig f@thed when the
older one gets executed and results written back. Hencesxiheute unit is
not active all the time and can be utilized by the second msmre Both pro-
cessors execute their own threads sharing a single exeaiitéhws reducing
hardware area and power consumption. In the current de$ign/&X, only
two cores can share a single execute unit. If a larger maltgssor is needed,
e.g., a quad-processor system, two dual-processor systaohswith a sin-
gle execute unit can be combined. Figure B.12(b) depictslatapath-shared
dual-processor system.

We designed &esource Controlleunit for the datapath-shared dual-processor
system to share the singéxecuteunit. It takes inputs from thdecodeunits

of the two processor cores, resolves some conflicts, mexisl, and provides
these inputs periodically to the single execute unit. Oufiigum the shared ex-
ecute unit are supplied to theitebackunits of both the cores at the same time.
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0O Writeback; 172; 1.18%
B CTRL; 68; 0.47%

O MEM; 146; 1.00%

Execute; 5024; 35.50% O

Decode; 296; 2.03% g B BR; 62; 0.43%

Fetch; 97;0.67% 0O

O GR; 8594; 59.02%

Figure 3.13: Implementation results (slices) for the baséssue non-pipelineg-
VEX processor’s modules for the Virtex-1l Pro FPGA. The cdetg processor re-
quires14561 slices andi4 MULT18X18s. The register file i§4 x 32-bit.

The intended writeback unit writes the results based onrtpetisignals from
its corresponding decode unit. TResource Controlleutilizes 1606 slices
and runs at a maximum frequency1#8 .87 MHz. It reduces the critical path
by avoiding the logic and connections of the additional exeanit, thereby,
increasing the clock frequency of the datapath-share@msysbmpared to the
non-shared datapath system.

3.6.3 Implementation Results

Figure [3.14 presents the implementation for our dual-mE®me systems
(shared and non-shared) for the same Virtex-1l Pro FPGAhqAgh thep-
VEX processor is parametrized, the base processor used auti-processor
systems hag issue-slots witd ALUs, 2 MULs, 1 MEM unit, a 64x32-
bit 4AW8R ports GR register file, and &rx 1-bit 4W4R ports BR register file.
From Figuré 3.113 and Figure 3114, we can observe that thevaaedutilization
becomes double for the dual-processor system comparedihgla-process
system, as expected. The datapath-shared dual-procgssemseduces this
hardware utilization by sharing the execute unit betweempgrocessor cores.
We can observe a similar trend in hardware resources, whenumber of
multiported registers is increased fr@to 64. To reduce the resources utilized
by the register file versio (which requires more thaso% of the total base
processor slices), we utilized the BRAM-based registenBisions (register
renaming) presented in Section 312.2. The results for tladphocessor sys-
tems (shared and non-shared) with the BRAM-based regitearg depicted
in Figure[3.I4. Compared to the versiarregister file, the dual-processor



3.6. DATAPATH SHARING 65

=== Non-shared-design-Slices mmm Shared-design-Slices
Non-shared-design-Frequency =~ —>— Shared-design-Frequency
35000 90
.
1%} 4
@ 30000+ : X 80
ﬁ Register file utilizing the FPGA slices (version 1) —‘ ' 70
< 25000 1 : §
% ! Register file utilizing | 60 3
a2 50000 ' egister file utilizing =
w \ the FPGABRAMs T 50 >
© H version 5, e
5 15000 1 E ( ) w0 £
=
=] H 30 o
E 10000+ ' °
' [
= 5000 : 20
' 10
'
0 - 0

8 16 24 32 64 up to 512
Number of registers

Figure 3.14: Implementation results for the dual-processor systenréshand non-
shared) for a Virtex-ll Pro FPGA. Apart from the slices, tleapath-shared and non-
shared dual-processor systems also requirand 28 MULT18X18s, respectively.
The BRAM-based design also utilizés RAMB18s.

systems with versiols register file considerably reduces the slice utilization
at the expense of BRAM utilization. Consequently, we have alMernate
designs for the dual-processor systems. If the designeextes area/slices,
he/she can instantiate the slice-based design. If slieelinaited, the designer
can instantiate the BRAM-based design. The datapath-dithral-processor
system runs at higher clock frequency compared to the naredkdatapath
dual-processor system.

3.6.4 Related Work

Softcore multiprocessor systems as found in literaturenaostly based on
either the MicroBlaze or the Nios-Il softcore processordtera provides a
tutorial [62] for creating a multiprocessor system utiigithe Nios-Il pro-

cessor. The tutorial provides a complete design flow frongiware building

to software programming. A design of a symmetric multipssiteg on pro-
grammable chips utilizing the Nios-1l softcore as the bdmidding block is

presented in [63]. Similarly, different designs of MicreBe-based multipro-
cessor systems are available |[64]/[65]1[66]/[67]![68]. Theimadrawback

of all these designs is that they are using proprietary sggcwhich are not
open-source. Additionally, the Nios-Il and the MicroBlaaee single-issue
processor cores and cannot exploit ILP like a VLIW processor
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3.7 Summary

In this chapter, we presented a methodology to implemenhstance of the
open-source design-time configurakld/EX processor. Configuration files
describing different types of parameters for th& EX processor, such as
issue-width, types of FUs, register file size, etc., arazetd for architec-
tural exploration. These files are provided to the VEX coewimulator

for performance analysis and code generation. The samepfiteéde in-

put to the parametrized VHDL description fopa/EX processor generation.
Hence, without having any knowledge of the HDLs, a user careigde a de-
sired/optimizedp-VEX processor. The compiler generated code is assembled
into instruction and data memory files which can be syntleelsiagether with

the rest of the processor design files. The chapter furthepdsenting dif-
ferent types of multiported register files and differentaymf interrupt and
exception systems to match different application requinetsi Additionally,

a new instruction encoding scheme and a methodology to agiddegined
operations to @-VEX processor has been presented. In the end, a datapath
sharing mechanism has been explored in a dual-procesdensisreduce its
hardware utilization.

Note.
The content of this chapter is partially based on the foltmypapers:

F. Anjam, S. Wong, and M.F. Nadeem. A Multiported Register File widgR
ister Renaming for Configurable Softcore VLIW Processondnternational
Conference on Field Programmable Technology (FRp) 403—408, 2010.

F. Anjam, S. Wong, and M.F. Nadeem. A shared Reconfigurable VLIW Mul-
tiprocessor System. lmternational Parallel and Distributed Processing Sym-
posium (IPDPS-RAWpp. 1-8, 2010.

F. Anjam, Q. Kong, R.A.E. Seedorf, and S. Wong. A Run-time Task Migrat
Scheme for an Adjustable Issue-slots Multi-core Proceskomternational
Symposium on Applied Reconfigurable Computing (AR€)102-113, 2012.

F. Anjam, Q. Kong, R.A.E. Seedorf, and S. Wong. On the Implementation
of Traps for a Softcore VLIW Processor. HiIPEAC Workshop on Reconfig-
urable Computing (WRCY012.



Run-time Reconfigurable Processor

ssue-width is an important parameter for a VLIW processor. Increasing the

issue-width can improve the performance of an applicatigrexploiting
the increased ILP. On the other hand, larger issue-widthcpssors consume
more power due to increased datapath. Therefore, VLIW psmrs whose
datapath can be reconfigured at run-time are needed to tgogeiormance
vs. power consumption trade-offs. In ChafBemwe presented a design-time
configurable VLIW processor that could change its orgamrabefore it is
implemented in hardware. In this chapter, we extend thagdes make it run-
time reconfigurable. The run-time reconfigurable processiizes multiple2-
issuep-VEX cores each of which can run independently. If not in eaeh core
can be taken to a lower power mode by gating off its sourcekclglultiple 2-
issue cores can be combined at run-time to form a variety ofigorations of
VLIW processors. The run-time reconfigurable parameteckide the issue-
width, the number and type of FUs, and the size of the genegaster file.
The processor can target a variety of applications havirgruction and/or
data level parallelism. Following are the contributionstbé chapter:

e A run-time reconfigurable multi-core processor is presdnte The
smaller cores can be utilized independently to exploitatinevel paral-
lelism or can be combined at run-time to form larger issudttvicores
to exploit ILP. Performance vs. power consumption trade-ofn be
achieved at run-time.

e A mechanism for run-time task migration among differenesasf the
multi-core processor is implemented to improve the peréorce or re-
duce the power consumption of the processor at run-time.

e A setup for analysis of simultaneous reconfiguration ofassidth and
instruction cache for the run-time reconfigurable process@resented.

67
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The remainder of the chapter is organized as follows. Seflid presents the
design and implementation of our run-time reconfigurablecpssor. The de-
sign of a dynamically reconfigurable register file is disags Section 4]12.
Sectiorl 4.8 presents a run-time task migration scheme fbaskask running

on one type of core to another for performance improvemeparer reduc-

tion. Sectiori 44 presents a setup to analyze the effectnoiltsineous recon-
figuration of issue-width and instruction cache on perfont& improvement
and energy consumption of the run-time reconfigurable meae Finally, the

chapter is concluded by presenting a summary in SeCtidn 4.5.

4.1 Run-time Reconfigurable/Adaptable Processor

Figure[4.1 depicts the execution cycles normalized t8-i8sue core foma-

trix multiplication, secure hash algorithm (SHAxNnd quick sort (Qsort)ap-
plications. It can be observed from the figure that increpgie issue-width
from 2 to 4 and8 increases the performance considerably for the matrix mul-
tiplication. For the SHA, the change in issue-width fr@rto 4 or 2 to 8
increases the performance considerably, but going #dam8-issue only pro-
duces a small0% increase in performance. For the Qsort, there is almost
no change for different issue-widths. All these three appibns have differ-
ent ILP, and hence, a specific issue-width processor camdartive maximum
possible performance at reasonable power budget. For aemonfigurable
VLIW processor, the configuration and issue-width of thecpasor are fixed

at design time. Therefore, the issue-width cannot be asijustsuit a different
set of applications after fabrication.

Utilizing the design presented in Chaplér 3, we implemeriteal versions
of run-time reconfigurable/adaptable/adjustable is$ois-&/LIW processors
called2-4-issud69] and2-4-8-issu€/0] processors. The issue-width and the
number and type of FUs in these processors can be reconfiguread-time
while the processor is active and running. Theé-issue processor has tvee
issuep-VEX cores, which can be used independently or combinedtegéo
form a4-issue processor at run-time. The processor is implemauritiézing
the Xilinx partial reconfiguration flow. With the help of a slinget of external
control signals and loading a small partial bitstream, ttoe@ssor issue-width
can be reconfigured. The4-8-issue processor has fopHissuep-VEX cores,
which can be used independently or multigléssue cores can be combined
together to form larger issue-width processors at run-tiffilee processor is
implemented utilizing the virtual reconfiguration flow. Atse external sig-
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Figure 4.1: Execution cycles for matrix multiplication, SHA, and Qsapplications.

nals controls the configuration of the issue-width, andeti€no need for par-
tial bitstream. If not in use, eackrissue core in the-4-issue and-4-8-issue
processors can be taken to a lower power mode by gating ofidinee clock,
and hence, the total power consumption of the processorbeaaduced at
run-time. Before an application starts execution, the nmech organization
can be adjusted to suit the application requirements. Aafiins with more
fine-grain (instruction level) parallelism can be run on lgger issue-width
cores for better performance, while applications with nuarse-grain (data
level) parallelism can be run on multipieissue cores with the data divided
among the cores for faster execution. Performance vs. poamesumption
trade-offs can be achieved for different applications attime.

4.1.1 Reconfiguration Flows

In this section, we discuss the two reconfiguration flows #ratutilized to
design the2-4-issue an®-4-8-issue reconfigurable processors.

Virtual Reconfiguration Flow In virtual reconfiguration, all the hardware
resources required for a design implementation are madalalea The design
is pre-placed and the reconfiguration is provided by utizdifferent multi-
plexers and turning certain modules ON and OFF. Externaifial signals
driven by configuration register bits control the reconfegiom/re-adjustment
of the running system. Designs with virtual reconfiguratftmw are simple
to implement and require only few cycles for reconfiguratidme disadvan-
tage is that all the required resources have to be made laleaddl the time
even when those are not in use. (@44-8-issue reconfigurable processor is
implemented utilizing the virtual reconfiguration flow.
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Partial Reconfiguration Flow Partial reconfiguration is utilized to time
share certain hardware resources among different modtieeg@sign at run-
time. According to the Xilinxearly access partial reconfiguration (EAP&-
sigh methodology [71], a design is split indtaticandreconfigurableregions.
The static region contains those parts of the design whichodeequire run-
time reconfiguration. The reconfigurable region contaimsrtodules which
require run-time reconfiguration. The communication betwte static and
reconfigurable regions is provided by special modules @¢élls macrosSep-
arate bitstreams are generated and downloaded to an FPGaA@ine in order
to change the functionality of a reconfigurable region. @drissue processor
is designed according to the partial reconfiguration flothaalgh it also uti-
lizes the virtual reconfiguration flow for some parts of theige. The advan-
tage of partial reconfiguration flow is that resources/asrabe shared among
different modules. The disadvantage is that it takes lofgethe range of
milliseconds) to reconfigure a module in the current FPGAnetogy.

4.1.2 Design of the Run-time Reconfigurable Processors

In this section, we present the design of the-issue and-4-8-issue recon-
figurable processors. Each processor consists of muftiijgeue base-VEX
cores. The base processor is pipelined consistinfgtofy decode executeO,
executel/memorgndwritebackstages/units. Figute 4.2 depicts the FUs avail-
able per issue-slot in the-4-issue and2-4-8-issue processors. Eacekissue
base core has two ALUs, two MULs, a MEM and a CTRL unit. Themefo
every issue-slot in the-4-issue an-4-8-issue processors has an ALU and
a MUL, while MEM and CTRL units are available in alternateuissslots. A
4-issue core has double the resources 2fissue core except that only one of
the CTRL units is utilized when the twazissue cores are combined. Similarly,
ang-issue core has double the resources #fissue core except that only one
of the CTRL units is active when multipleissue cores are combined.

ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU
MuL MuL MUL MUL MuL MuL MUL MuL MuL MuL MUL MuL
MEM CTRL MEM CTRL MEM CTRL MEM CTRL MEM CTRL MEM CTRL

(a) The2-4-issue processor. (b) The2-4-8-issue processor.

Figure 4.2: Execution units in different issue-slots.
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A signal calledssue_ctrimanages the issue-width reconfiguration/adjustment.
The signal is controlled by dedicated bits in the configoratiegisters of
the processors. The-4-issue processor utilizes a single Esue_ctrlsig-

nal. When this signal is at logilow, the two2-issue cores can be utilized
independently. When this signal is at lodigh, the two 2-issue cores are
combined and they behave like a singl&ssue core with double the resources
of a 2-issue core. Th@-4-8-issue processor utilizes a two-lssue_ ctrlsig-

nal. When thaessue_ctrlbits are “00”, the system behaves as four independent
2-issue cores, when “01”, the system behaves as2higsue and oné-issue
cores, when “10”, the system behaves as twissue cores, and when “11”,
the system behaves as anissue core. After these bits are written into the
configuration register, the configuration and the issudiwitte changed in a
single cycle. The unused FUs and parts of the processordaaie gated to
reduce the dynamic power consumption. Both 2h&-issue and2-4-8-issue
processors consist of different units, namielich decode executeandwrite-
back In order to make the processors run-time reconfigurablecamgbined
these units into two modules callé@ntendandbackend Figure[4.3 depicts
the general views of the-4-issue an®-4-8-issue processors.

Frontend The frontend of the-4-issue an®-4-8-issue processors requires
reconfiguration/adjustment for changing the configuradod issue-width at
run-time. It consists of the fetch and decode units, and tRea@d the BR
register files. For th@-4-issue processor, the decode unit is the only mod-
ule that is reconfigured by loading a partial bitstream tacwbetween two
2-issue cores to oné-issue core or vice versa. The other modules are con-
trolled by theissue_ctrisignal, and they do not require a partial bitstream for

2issue core Instruction
mer

Instruction 4 Data
memory ! -issue core > oy

2issue core

(a) The2-4-issue processor. (b) The2-4-8-issue processor.

Figure 4.3: General view of the run-time reconfigurable issue-slote@ssor.
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reconfiguration. This is done in order to minimize the numbleresources
to be reconfigured and hence, minimize the size of the pduitstream. This
resulted in reduced configuration time as well as reducedonesiorage for
the partial bitstreams. The4-8-issue processor utilizes virtual reconfigura-
tion and does not require a partial bitstream for reconfigoma All modules

in the frontend are reconfigured utilizing tiesue_ctrisignal and all the re-
sources for the processor are already available and pceglalt is only a
matter of turning ON and OFF some of the resources in ordehamge the
processor configuration. Following we discuss all modufdb®frontend for
both the2-4-issue an@®-4-8-issue processors.

Fetch Unit A 2-issue fetch unit splits an incoming long instruction intamt
syllables (operations for individual execution units)dahen passes them to
the decode unit. Therefore, multipleissue fetch units can be combined to-
gether to form a combined fetch unit to behave like a largardgup tot-issue
for the 2-4-issue processor and up &issue for the2-4-8-issue processor)
fetch unit. Every2-issue fetch unit has program counter (PG)which gen-
erates the next address for the instruction memory. The malgule of the
fetch unit that needs to be reconfigured is the PC. If multipteh units are
combined to form a larger issue-width core, only one of thes BCrunning
and other PCs in that specific larger issue-width core amgpsth The signal
issue_ctrlis utilized for this purpose.

Decode Unit Multiple 2-issue decode units can be combined together to
form a decode unit for a larger issue-width processor. Ala@ch/CTRLunit
which calculates the offset and the branch target addressesluded in ev-
ery 2-issue decode unit, but only one branch unit is working wheitipie
2-issue decode units are combined. Eadbsue decode unit decodes its own
long instruction 64-bit) and raises high its owdone signal when the last
VLIW instruction in the program§TOPiInstruction) is executed and the last
result is written back. When a core is configured as a largeweisvidth core,
the combined decode unit provides only one branch unit aedlonesignal.
The otherdonesignals are tied to logic low. The signiakue_ctricontrols the
mechanism. For the-4-issue processor, the decode unit is reconfigured by
loading a partial bitstream. Separate bitstreams areedilto switch the two
2-issue cores to org-issue core or vice versa.
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General-Purpose Register File We implemented the GR register files for
the 2-4-issue and-4-8-issue processors utilizing BRAMs. The register files
can provide access to multiple configurations of our recondigle processors.
For the2-4-issue processor, the register file is designed such thatirigée
register file can provide access tolassue core or tw@-issue cores at the
same time. Register file for the4-8-issue processor is depicted in Figure 4.4.
It can provide access to @&jissue core or twd-issue cores or ongissue and
two 2-issue cores or fouz-issue cores at the same time.

The register files are based on the versiatesign presented in Sectibn 312.2,
utilizing the 18 Kbits embedded BRAMs. Each BRAM is configured in sim-
ple dual port (SDP) mode withw1R port. In order to provide multiple ports,
the BRAMSs are organized into multiple banks and data is dafg#d across
various BRAMs. The register file for the-4-8-issue processor has 8W16R
ports utilizing 128 BRAMSs each providin@®56 registers of32 bits each. The
distribution of the registers and ports for the differentdyg of cores is pre-
sented in Table 4l1. Each of the active processor requireaxintam of 64
multiported registers requiringrbit address, but the combined register file has
to have256 registers requiring-bit address. Each BRAM in the register file
hassg-bit address to provideseé registers. The signassue_ctrland a small
control logic are utilized inside the register file to generate & and 8*2
bits of the BRAM addresses. The GR register file for 2h&-issue processor
has 4W8R ports utilizingg2 BRAMs each providingL28 registers of32 bit
each. If the processor is configured a&-gsue core, all of the ports and the
lower 64 registers are utilized. If the processor is configured asavissue
cores, half of the ports are utilized by the first core and geosd half by the
other core. The lowes4 registers are utilized by one core and the upgieby
the other core. Each of the active processor requires a nuaxiof 64 mul-
tiported registers requiring-bit address, but the combined register file has to
have128 registers requiring-bit address. Each BRAM in the register file has
7-bit address to provide28 registers. The signassue_ctrlis utilized inside
the register file to generate thé? bit for the BRAM addresses. By utilizing
this mechanism, we avoided the register files to be recomftby loading the
partial bitstreams and hence, reduced the size of the paitsaeams required
to alter the organization of the processors.

Branch Register File The VEX ISA specifies a-bit 8-element multiported
BR register file for a multi-issue VLIW processor. Thassue,4-issue, and
8-issuep-VEX processors require BR register files with 2W2R ports,4RN
ports, and 8W8R ports, respectively. Since the size of dysster file is small,
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Figure 4.4: 256 x 32-bit BW16R ports register file for the-4-8-issue processor.

it is implemented utilizing the FPGA's slice flip-flops andcsl LUTs instead
of BRAMSs. For the2-4-issue processor, we implementedéax 1-bit BR reg-
ister file with 4W4R ports. Utilizing théssue_ctrlsignal, we partition the
register file among the configured cores. When the processmmifigured as
one4-issue core, all of the ports and the lowgregisters are utilized. When
the processor is configured as t@xssue cores, half of the ports and the lower
8 registers make the BR register file for one core and the othiéipbrts and
the uppers registers make the BR register file for the second core. Tgreabi
issue_ctricontrols this mechanism. For tl2e4-8-issue processor, we imple-
mented &2 x 1-bit BR register file with 8W8R ports. The signiasue_ctrlis
used to share the register file among the configured coresdi$trdution of
registers and ports for the register file is similar to thathef GR register file.

Backend The backend of the-4-issue an@®-4-8-issue adaptable processors
remains fixed and does not change when the issue-width igetait consists
of the execute and writeback units. Multigteéssue writeback units (four for
the 2-4-8-issue processor and two for the4-issue processor) are combined
together. Each writeback unit can serve-ssue core and multiple writeback
units can make a writeback unit for a larger issue-width cdfach lane of
the writeback unit can write to its corresponding port on@# and BR reg-
ister files. Since these register files can handle the procedssue-width by



4.1. RUN-TIME RECONFIGURABLEADAPTABLE PROCESSOR 75

Table 4.1: Distribution of registers and ports for ti#56 x 32-bit 8W16R ports GR
register file for the2-4-8-issue processor.

Processor configuration | Write ports Read ports | Registers

One 8-issue 0-7 0-15 0-63
Two 4-issue 0-3 0-7 0-63
4-7 8-15 64 - 127
0-3 0-7 0-63
One 4-issue and two 2-issye  4-5 8-11 64 -127
6-7 12-15 128 -191
0-1 0-3 0-63
Four 2-issue 2-3 4-7 64 -127
4-5 8-11 128 -191
6-7 12-15 192 - 255

themselves, the writeback unit does not need to take cateagfdnd hence,
does not need reconfiguration/adjustment in order to coentnisplit the issue-
slots. Additionally, the backend consists of all the ex@Egutinits which are
distributed across different issue-slots. For2hg-8-issue processog ALUS,

8 MULs, and4 MEM/LS units make up the backend, while the backend for
the 2-4-issue processor consistsdALUs, 4 MULs, and2 MEM/LS units.

4.1.3 Memory System

In this section, we explain how the instruction and data ntmesdor our run-
time adaptable processors can be set and reconfigured. iHeomly consider
instruction memories that are locally connected to thesdriée do not discuss
caches here. We discuss the memory system forthes-issue processor
only, while the2-4-issue processor follows similar organization. Figure 4.5
depicts the memory organization for thet-8-issue processor. Evepyissue
core has its own instruction memory to providébit instruction per clock
cycle. To generate the next address for an instruction mgragery 2-issue
core has &C in the fetch unit. If multiple2-issue cores are combined to
form a larger issue-width core, only one of the PCs is runmingd other PCs
in that specific larger issue-width core are stopped. dthdress generation
unit (AGU)receives input from all the PCs, and based orniskae_ ctrisignal,
generates the next addresses for all the instruction memofhe AGU keeps
the next addresses for all the instruction memories in samchdrives them in
lockstep according to the desired configuration schemeeoptbcessor.
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Figure 4.5: Instruction and data memories for thet-8-issue processor.

Every PC can be initialized with a user-defined instructioldrass value.
When the processor is configured as fatissue cores, each instruction mem-
ory receives its next address value from its correspond@gAprogram for a
2-issue core can be placed at any desired location in itssoraling instruc-
tion memory. Before executing the program, the PC of thag loaded with
the starting address of the program, and in the next cyaefiitst instruction
of the program is fetched in. When tvsissue cores are combined to form a
4-issue core, the PC of the first core is active while that ofstaeond core is
stopped. Based on thigsue_ctrlsignal, the address generation unit drives the
input addresses for the two instruction memories in logkstde program for
the 4-issue core is split such that the two operations of the |lmsgructions
are placed in the first instruction memory, while the last tyerations in the
second instruction memory for the combined core. The a8t program
can be placed in the two instruction memories starting as#dme or differ-
ent location addresses. If the programs are placed at tfexatif locations,
the AGU should know the offset in the two addresses. The santigue is
utilized when four2-issue cores are combined to form&issue processor.

Every2-issue core has a MEM or load/store (LS) unit and a separsaamzm-
ory. When multiple2-issue cores are combined to form larger issue-width
cores, the individual data memories can be combined togéthprovide a
single larger data memory. The larger issue-width core tsnudilize the ad-
ditional LS units to increase the data transport from/tontteenory. TheAGU
receives the effective addresses from the individual L&uand based on the
configuration bits, adapts the connection for the individizda memories.
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4.1.4 Mechanism for Issue-width Adjustment

Each of thez-issue cores has an input signal calted. When this signal for
a core is at logicigh, the core starts fetching its VLIW instructions. When
this signal is at logidow, the PC for that core is stopped. Then signal

is also utilized to gate the source clock for a core. E-&ssue core is not
executing any application, it can be taken to a lower powedtartay gating off
its source clock, and hence, the dynamic power of that casslisced resulting
in a reduced total power consumption of the system. Whenafaushes its
execution, it raises itslonesignal. Thedonesignal is utilized in order to
schedule new code on a core. The sigeale_ctrlcontrols the organization
and issue-width of the cores. For example, wheni$see_ctrilsignal is at
logic low, the 2-4-issue and2-4-8-issue processors behave as two and four
independene-issue cores, respectively. Tiasue_ctricontrols the PCs for the
cores that are combined to form a larger issue-width coredainds them in
lockstep. It additionally controls the organization of tiegister files. In order
to group or ungroup certain cores to change the issue-witthselected cores
are first stopped utilizing thenun signals. In the next cycle, thesue_ctrl
bits are modified to adjust the issue-width of the resultingefcores. In the
next cycle, theun signals are asserted and the cores start fetching their VLIW
instructions. For-4-8-issue processor, only the signédsue_ctr] run, and
doneare needed for the processor reconfiguration. Foptréssue processor,
apart from controlling the signalssue_ctr] run, anddone a partial bitstream
is also loaded for the processor reconfiguration. The sigealie_ctr] run,
anddoneare controlled through a configuration register.

4.1.5 Implementation Results

In this section, we present the implementation details asdlts for the2-4-
issue an®-4-8-issue adaptable processors.

2-4-issue processor The 2-4-issue processor is implemented utilizing the
Xilinx EAPR partial reconfiguration methodology [71]. Thesign is split
into two regions, calledtaticandreconfigurable as depicted in Figufe 4.6(a).
The processor consists of frontend, backend, instructiemany, data mem-
ory, and a UART module. Except the decode unit in the frontetidother
modules in the frontend, the backend, memories, and UARPlaced in the
static region as they do not need partial dynamic reconfiguraThe decode
unit is placed in the reconfigurable region. The two regiores @nnected
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Figure 4.6: Design and hardware resource utilization for fhé-issue reconfigurable
processor for the Xilinx Virtex-Il Pro XC2VP30-7FF896 FPGA

throughbus macro$71]]. Figure4.6(b) presents the implementation results fo
the2-4-issue processor. We used the Xilinx ISE vergdano4i_PR14 and the
Virtex-1l Pro XC2VP30-7FF896-PGA for the synthesis and implementation.
The processor can run up to a maximunvofMHz.

Using the EAPR design methodology, partial bitstreamstierdecode units
are generated and downloaded to the FPGA. The partialdatstisize for the
reconfigurable region 89 Kbytes, and is about4 times smaller than the full
bitstream size which is abou#t15 Kbytes. The width of internal configura
tion access port (ICAP) in the Virtex-ll Pro and Virtex-4 FR&Is 8 bits and
32 bits, respectively. The maximum frequency for the ICAP ia Wirtex-I|
Pro and Virtex4 FPGAs is66 MHz and 100 MHz, respectively. The mini-
mum time needed to switch from twissue cores to org-issue core or vice
versa i0.893 ando. 148 milliseconds for Virtex-l1l Pro and Virtext FPGAs,
respectively. These values do not include the time neededdwessing the
memory in which the bitstreams are placed. These reprelseriinie needed
for the SelectMAP or ICAP to configure an FPGA. 8@ MHz clock, these
reconfiguration times translate to a total4#650 and 7400 clock cycles for
Virtex-1l Pro and Virtex4 FPGAS, respectively. It is to note that the Virtex-
Il Pro and Virtex4 FPGAs have almost similar structure. For the purpose of
illustration, we estimated the reconfiguration time fortéfi<4 FPGAs.

2-4-8-issue processor The 2-4-8-issue processor is implemented utilizing
the virtual reconfiguration flow. All the required resoureee available, and
with the help of thassue_ctrisignal, the configuration and issue-width of the
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processor can be adapted. There is nho need for downloaditigl pitstreams.
Table[4.2 presents the implementation results fobthes-issue processor. We
utilized the Xilinx ISE release version3.2 and the Virtex-6XC6VLX240T-
1FF1156 FPGA for the synthesis and implementation. Eaeilssue or any
larger issue-width processor in our design can run up to armar clock
frequency oft 10 MHz. Itis to note that Virtex-Il Pro and Virtex-4 FPGAs have
4-input LUTs while Virtex-6 FPGAs haveé-input LUTs. The DSPs elements
in Virtex-1l Pro and Virtex-4 FPGAs are smaller comparedHhattin Virtex-6
FPGAs. Additionally, we designed a new MUL unit for the/EX processor,
which is more efficient and requires less hardware resouwaegpared to the
old one. We utilized different families of the Xilinx FPGAYiftex-1l Pro,
Virtex-4 and Virtex-6) to show the effectiveness of our desunder different
FPGA families. For example, the register file implementaipresented in
Sectior 3.2 result in different hardware utilization foesle different FPGAs.

4.1.6 Related Work

Voltron [72] combines small cores and the on-chip memory to makeetarg
issue-width cores at run-time to exploit instruction, datathread-level paral-
lelism. It exploits VLIW-style ILP by lock-stepping the inddual cores like a
multi-clustered VLIW processor. A network for inter-clastcommunication
is provided which is orchestrated by the compil&@AW [73] has a grid of
identical tiles connected through a mesh of scalar operatwianks. Each title
is a single-issue core with on-chip caches/memories, amd) ke operand
network, intermediate register values can be transpor®8WV supports in-
struction, data, and thread-level parallelism by usingsibiware-controlled
routing network between the tile$RIPS[[74] is a reconfigurable architecture
that enables the available out-of-order processing corédlee on-chip mem-
ory system to be configured and combined in different modem&ruction,
data, or thread-level parallelism. TRIPS implements actudSA and micro-
architecture, and relies heavily on compiler support fxesttiling instructions

Table 4.2: Implementation results for the-4-8-issue processor for the Virtex-6
XC6VLX240T-1FF1156PGA.

Module Slice register# Slice LUTs | DSP48E1s| RAMB18s
Register file 820 5887 0 128
Backend 988 8022 16 0
Processor 3187 16790 16 128
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to extract ILPCore fusion[75] provides mechanisms to combine small out-of-
order cores to make larger issue-width cores at run-timetibzaithem as
independent smaller cores. A pair of instructions is usddide and split the
available cores in order to exploit ILP and TLP. Core fus®implemented in
a simulator.Smart memorief/6] has many processing tiles, each containing
local memory, local interconnect, and a processor core.uEkecan program
the wires, the memory, and the processor in order to matclartigtecture
to the application. ThéM-Machinemultiprocessor system |77] provides di-
rect inter-processor communication channels betweenetyister files of the
available processor cores. By controlling the commuricatthannels, the
M-Machine can be used to exploit ILP and TLRMD [39] is a superset of
VLIW paradigm and can exploit both control flow parallelissaell as data
parallelism. The XIMD architecture can dynamically paofitits resources to
support concurrent execution of multiple instruction atns. It has multiple
FUs running in locked step, with each FU controlled by its aeguencer.
The KAHRISMA architecture[[42] utilizes different coargeained and fine-
grained FUs. By means of a run-time adaptable inter-comeation network,
the FUs can be connected in different manners to emulaterelift process-
ing modes (e.g. RISC and VLIW). The KAHRISMA ISA is compamlib
clustered-VLIW processors, but its micro-architectursinsilar to superscalar
architectures with dynamic scheduling but without a dispet [43].

4.2 Run-time Reconfigurable Register File

Data in [29] show that increasing the number of read/writéspor increasing
the issue-width of the VLIW processor results in an expaaéiricrease in re-
sources. Similarly, in[78], the design and implementatba 3-issue VLIW
microprocessor is presented. The processor datapathbg and it supports
only 16 operations. The multiported register file for the processmtaining
16, 64-bit registers each having 3W6R ports requiter2 Logic Cells of the
Altera StratixEP1S25F1020EPGA, which is more than the area taken by the
rest of the design. Figute 4.7 presents the hardware tiilizdFPGA slices)
for a4-issue non-pipeline@-VEX processor4 ALUs, 2 MUL, 1 MEM unit)
and 4W8R ports register file versianfor the Virtex-Il ProXC2VP30FPGA.
From the figure, we can observe that when the number of regjisté4, the
total number of slices utilized by the register file excedustotal slices taken
by all other modules of the processor. Because not all agipits requires4
registers, implementing4 registers for e-VEX processor would mean a lot
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Figure 4.7: Virtex-ll Pro FPGA's slice utilization foB4 x 32-bit 4W8R ports register
file and4-issue non-pipelined-VEX processor.

of wasted resources as well as wasted power. On the otheringsldmenting

a smaller number of registers, for examg@eayould require less resources, but
may degrade the performance of an application, as memony@ag(through
load/store) may then be needed more frequently. We designeth-time
reconfigurable register filé [Y9] and@aVEX processor that supports partial
dynamic reconfiguration allowing the creation of dedicategister files for
different applications. Therefore, valuable area can bedrand shared with
other implementations (such as timers, UARTS, anotR¥EX core, etc.) on
the same FPGA when not all of tlhé multiported registers are needed. Power
consumption can be reduced by not configuring the un-negessgisters.

4.2.1 Case Study for 4-issup-VEX Processor

For the 4-issue non-pipelined»-VEX processor, the total number of in-
puts/outputs (I/0s) of the register file 460. Each register i82-bit, having
4AW8R ports. We utilized the Xilinx EAPR methodology [71] fbesigning our
partial reconfigurable processor. For partial reconfigomatwe split the pro-
cessor into two regionsstatic andreconfigurableas depicted in Figuiie 4.8(a).
To simplify the design and quickly verify the idea of dynaalig reconfig-
urable registers, we restrict the total number of regidtetse 32, divided in4
smaller register files or groups. The number of 1/Os for eawhller register
file is 424 that would cross the boundary between static and reconbgura
portions on the FPGA, and would requibeis macroq71]. Four reconfig-
urable regions for register banks are connected to stafior®f the processor
using asynchronous bus macros. The static region contihivftlae processor
modules namelyfetch decode executewriteback memory unitcontrol unit,
branch registersinstruction and data memoriesexcept the general-purpose
register file, which is implemented in the reconfigurableiorg The granu-
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Figure 4.8: Design and hardware resource utilization for the dynaryiacacon-
figurablep-VEX processor. Apart from the slices, the static regiom allizes 14
MULT18X18sand some BRAMs for instruction and data memories.

larity level is8 for the reconfigurable register file, i.e., registers candued
in the increments 08 up to maximum of32 registers. Using the EAPR de-
sign methodology, partial bitstreams for the register saaule generated and
can be downloaded to the FPGA. An application can be profilgutive VEX
toolchain and the optimum number of registers can be detewchi This in-
formation can then be communicated to the decoder by meaascastom
instruction, which can be used to direct the reconfiguratimmtroller to recon-
figure the required number of registers before the apptinagtarts execution.

Figure[4.8(b) presents the hardware utilization for oupndigurable proces-
sor. For implementation, we used the Xilinx Virtex-1l PKC2VP30FPGA
and the ISE release versiorp.04i_PR14. The size of the partial bitstream for
a reconfigurable bank & registers and the full bitstream a86 Kbytes and
1415 Kbytes, respectively. The time needed to configure a barkregisters
is 1.29 milliseconds, while that for the full bitstream 2 . 44 milliseconds.
The reconfiguration time mentioned does not include the tisexled for ac-
cessing the memory in which the bitstreams are stored. hieiditne needed
for the SelectMAPRor ICAP to configure the FPGA.

4.3 Run-time Task Migration

Building on the interrupt system presented in Sedfioh 3e83daveloped a run-
time task migration schemie [60] for the4-8-issue multi-core processor. With
the task migration scheme, a code running on a core can hedhifrun-time
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to a larger or a smaller issue-width core for increasing tdgpmance or
reducing the power consumption of the whole system, resject The cores
can be combined or split even when they are not idle. All thesgan be
utilized in an efficient manner, as a core needed for a spgaffican be freed
at run-time by shifting its running code to another core .uFé4.9 depicts the
timeline for a task migration example. At a time instar@gel, a2-issue core
is runningtaskland requires timel to finish the task.Core2 which is a4-
issue core is runnintask2and requires timé to finish the task. At2, core2
is free, and in a timet, tasklcan be migrated frongcorelto core2 Since
core2is a larger issue-width core, it can boost the performanck hemce,
finishtasklatt3 < tl. Similarly, shifting from a larger issue-width core to a
smaller issue-width core at run-time and turning off thgdaiissue-width core
can reduce the power consumption.

4.3.1 Design of the Task Migration Scheme

We implemented a run-time task migration scheme for4es-issue adapt-
able multi-core processor as depicted in Figurel4.10. Thbaodelogy utilized

in Section 4.11 is that cores can only be combined or split whewg are idle
(i.e., have finished their current execution). In this settive present another
level of control for the2-4-8-issue adjustable processor with the development
of interrupt system. Everg-issue core or the combined larger issue-width
cores can now be individually interrupted. Each core is nble & pass on
its environment (execution state) to another core of theesandifferent type.
We can now combine or split cores that are even not idle. Wéeim@nted
an environment shifting or task migration mechanism for ¢bees utilizing
the interrupt system. The environment shifting is neededifferent situa-
tions. For example, if a larger issue-width core becometdadola, it might be
needed to switch an application running on a smaller issd#aveore to the
larger issue-width core for performance reasons. Singjlahe might need
to switch a code running on a larger issue-width core to alemiasue-width

taskl

» I I corel (2-issue) ‘I t1

I
o wl 2 I
task2 I I I
R e
|
|

_corel (2-issue) | At | core2 (4-issue)
taskl | | taskl
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Figure 4.9: A task migration example.
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Figure 4.10: The2-4-8-issue adaptable processor with the task migration support

core and turn the larger issue-width core off to reduce thadhic power con-
sumption of the whole system at run-time.

The issue-width or the organization of tl#®4-8-issue processor can be
changed by writing dedicated bits to the configuration tegisf the processor.
This register can be accessed by decoding a custom instuarni the proces-
sor. This instruction can be manually placed at the spedifictp in the exe-
cutable code, where an issue-width change is required. diifiiggaration reg-
ister can also be implemented in the global space accessibtber dedicated
hardware/software controllers. In this case, the recordigan process can be
initiated by some external agents/controllers based dmicerun-time met-
rics such as hardware utilization, power/energy consitters, arrival of other
tasks, cache related statistics, We utilizeddbaeric binariesscheme[[80] to
generate the binary code for our variable issue-width @sme In this scheme,
an application is compiled such that the same binary codebeaexecuted
correctly on different issue-width VLIW processors withhs® performance
degradation. The advantage is that the same binaries catilibeduwhen
switching the processor issue-width and there is no nedddoding/accessing
multiple binaries. More information about the generic bies scheme can be
found in Section 64.

Figure[4.11 depicts the mechanism for migrating a task framtgpe of core
to another (sayp-VEX1 to p-VEX2) in the 2-4-8-issue adaptable processor.
Herep-VEX1 andp-VEX2 could be any issue-width corez-{ssue 4-issue, or
8-issue). A hardware scheduler controls the process of tagkation. When
shifting a code running op-VEX1 to p-VEX2, the scheduler performs the
following steps as depicted in Figure 4.11:
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e generate an interrupt grVEX1 core

e a special ISR is called and executed®NEX1 that stores the context
into the data memory (shared memory accessible to all comes)the
PC address with respect to a defined switching point whereutrently
running program was stopped is recorded

e reconfigure the issue-width of the core (merge or split gdfesquired
(now calledp-VEX2) by changing the configuration register values

e generate an interrupt grVEX2 core

e aspecial ISR is called and executedm®WEX2 that restores the context
from the data memory

e load the PC address ineVEX2

e startp-VEX2 to resume execution of the remaining code

Here, we only store/restore the content of the GR and the BRtes files. We
implement the stack in the data memory accessible to bo#scamd hence,
do not store/restore the stack while moving the task fromcmme to another.
The cores should know the address in the data memory wherstdbk is
implemented, and it is done at compile/assemble time. Husaes the task
migration time between different cores.

4.3.2 Implementation Results

Table[4.B presents the implementation results for2fes-issue processor
with the task migration support. We utilized the Xilinx ISEl@ase version
13.2 and the Virtex-6XC6VLX240T-1-FF1156-PGA for the synthesis and
implementation. The maximum frequency1is0 MHz. We utilized version
3 of the interrupts system (software instructions switchimgtext method)
presented in Sectign 3.3.2. This is the most standard venrgquires minimal
hardware changes, and has an interrupt response time ofcles. The task
migration from one core to another requires a total & cycles {6 cycles
for storing the first core’s context, cycle for accessing it's PQ, cycle for
reconfiguring the issue-widtlT6 cycles for restoring the stored context to the
newly configured core, anticycle for loading it's PC).
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Figure 4.11: Mechanism for task migration in the4-8-issue adaptable processor.
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Table 4.3: Implementation results for the4-8-issue adaptable multi-core processor
with the task migration support for the Virtex)8C6VLX240T-1-FF1156PGA.

2-4-8-issue processof Slice registers Slice LUTs | DSP48E1s| RAMB18s

Without task migration 3187 16790 16 128
With task migration 3754 17520 16 128

4.3.3 Related Work

Task migration is used in multi-core systems to balance lwatkand network
congestion. An unbalanced workload can result in exceggiwer consump-
tion and thermal hot-spots and unbalanced network comgestn result in
missed deadlines. Different task or process migration em@sms and algo-
rithms are presented in [B1][82]. The authors in [83] discdifferent policies
for real-time task migration in embedded multi-core amttiires. The impact
of task migration on embedded soft real-time streaming imeltia applica-
tions is assessed in [84]. Here, a middleware infrastracatiroperating sys-
tem (OS) level supporting dynamic task allocation for noifarm memory
architectures (NUMA) is presented. A context-aware rometiadaptive task
migration mechanism to reduce the task migration latenegutti-core archi-
tectures is presented in_[85]. A task migration between tom@s results in
cache warm-up overheads on the target core, which can mesulssed dead-
lines for tight real-time schedules. A micro-architectwapport for migrating
cache lines that enables real-time tasks to meet theirideadh the presence
of task migration is proposed in [B6].

Policies for task migration to control the thermal chargsties in multi-core
systems are presented in [8[7][88]. Energy-efficient rimadttask scheduling
and migration in multiprocessor systems is discussed ih[Bg). The authors
in [91] discuss the impact of task migration in network-drnpcbased MPSoCs
for soft real-time systems. Techniques to selectively atgthe code/data to
reduce communication energy in embedded MPSoCs are pedsi#nf92].
The authors in[[93] discuss a fault-and-migrate mechanismasymmetric
multi-core architectures which traps a fault when a corecetes an unsup-
ported instruction, migrates the faulting thread to a cbeg supports the in-
struction, and allows the operating system to migrate ikbaken load bal-
ancing is necessatry.
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4.4 Simultaneous Reconfiguration of Issue-width and
Instruction Cache

Applications with higher ILP perform better when run on gylarissue-width
processor. Figure 4.12 depicts the IPC for some applicatioom different
benchmark suites (MiBenchl[2], PowerStone [3]) sissue,4-issue, and-
issue VLIW processors with a single load/store unit. As deggai in the fig-
ure, the IPC increases with the issue-width for applicatiaith more ILP.
Specializing a cache for a processor may improve the pedoca or energy
consumption for one benchmark, but may perform poorly acoikers([94].
Studies have shown that more than half of the chip die is vedefor the
on-chip caches and that the energy consumption in cachensysiccounts
for more thans50% of the total energy consumption! [3] [95] [96] [97] [98].
Table[4.4 presents the instruction cache (I-cache) pasamédr some com-
mercial/research VLIW processors. As can be observed: thexr wide varia-
tion across different cache parameters (associativigheaize, and line size).
Compared to having a fixed cache, reconfiguring the cache fpoo@essor at
run-time can reduce the execution time and/or power/engsggumption for
different benchmarks [94] [96] [98] [99] [100] [101] [102Compared to re-
configuring only the cache, reconfiguring the “issue-widtlhcache" together
can further improve the execution time, energy consumpaaod/or EDP.

In this section, we present a setup to analyze the effechuil&aneous recon-
figuration of issue-width and I-cache for thel-8-issue reconfigurable proces-
sor [103]. Notice that if different “issue-width + I-cachetnfigurations have
the same execution times, but reduced energy consumptioviseoversa, it
may be beneficial to reconfigure the core issue-width, theegaar both. The
2-4-8-issue processor can be configured to2kissue,4-issue, org-issue at
run-time. The unused issue-slots are clock-gated to redyoamic power
consumption of the processor. We considered an instructiche that can be
reconfigured in terms dassociativity total cache sizeandline size We uti-
lized the VEX simulator([1] to simulate different “issuedii + L1 I-cache"
configurations. For energy calculation, we utilized the GAB.5 [104] and
the Synopsis Design Compil€¢Bynthesis-E-2010.12-SP1) and targedechm
technology. We utilized the MiBench![2], PowerStoné [3]daustom {6
small applications/kernels from different domains) benalk suites. The re-
sults of the analysis in terms of performance, dynamic gnecgnsumption,
and EDP are presented in Chapter 6. In this section, we ostyss the char-
acteristics of the simultaneously reconfigurable system.
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Figure 4.12: Instructions per cycle (IPC) for different applicatioh$ [2].

4.4.1 Related Work

The impact of cache parameters such as total size, lineaszseciativity, re-
placement policies, etc., on performance and energy cqoisamfor different
levels of caches (L1 and L2) has been widely reported. A regorable cache
memory with heterogeneous banks to reduce the cache sizbeamod the
power consumption at run-time is presented_in [109]. Regardible aspects
of the cache system for the TMS320C6211 processor are disgis [110].
The4-way unified L2 cache can be used as either mapped RAM by 23,

or 4 ways cache. Each way or banklig Kbytes. A reconfigurable data cache
design with a hardware-adaptive line size for miss rate aechany traffic re-
duction is presented in [99]. The paper does not discusggreensumption.

Selective cache ways [06] provides the ability to disablelsst of the ways in
a set-associative cache to reduce the energy consumptilittiégperformance
overhead. A mechanism for tuning cache ways and voltagéngctr em-

bedded system platforms to reduce energy consumption semied in[[111].
Way predictive set-associative caches [101][112] protigeability to reduce
energy consumption at the expense of longer average a@resshihe design

Table 4.4: Typical instruction cache parameters for some famous VLFd¢pssors.

Processor | Issues | Assoc. | Size (Kbytes) | Line size (bytes)|
TriMedia TM32A [105] | 5 8 32 64
TriMedia TM3270 [105] 5 8 64 128

TMS320C6211([49] 8 1 4 64
ST231[46] 4 1 32 64
ST240[106] 4 4 32 64

Transmeta TM5400[51] 5 8 64 -
Fujitsu FR450[107] | 2 2 32 32
CoreVA [108] 4 1 16 64
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presented ir [102] dynamically divides the cache arraysmmiltiple partitions
that can be used for different processor activities to meethe performance.
A novel set and way management cache architecture for efficim-time re-
configuration (Smart cache) is presented_in [113], progdiconfigurability
across cache size and associativity. A hybrid selectiteaed-ways cache
organization is proposed in_[1114] that always offers equdbeiter resizing
granularity than both the selective-sets and selectiwswaganizations. The
impact of line size on energy consumption and performancetruction and
data caches is presentedlin [100]. Designs of configurableesavhere all the
three parameters (associativity, cache size, and ling cadzebe configured are
presented in [98] [115]. It must be noted that all these papeesent results
for cache configurations with fixed issue-width processors.

The commonly used commercial VLIW processors such asriivedia series
from NXP,ST231from STMicroelectronicsTMS320C61%from Texas Instru-
ments,Crusoefrom Transmeta, and theRxxxseries from Fujitsu all utilize

a fixed issue-width. Reconfiguring the issue-width at rametimproves the
performance of applications with higher ILore fusion[75], TRIPS[74]
andVoltron [72] combine small cores and the on-chip memory to make larger
issue-width cores at run-time to exploit the instructioatag or thread-level
parallelism. Smart memorief/6] is a reconfigurable architecture capable of
merging in-order RISC cores to form a VLIW machine. Theselistifocus
only performance/speedup results for the available cordtguns of the sys-
tem but do not discuss the energy consumption or EDP.

4.4.2 Characteristics of the Reconfigurable Processor

Figure[4.3(b) depicts the general view of thd-8-issue adaptable VLIW pro-
cessor. The processor can be configured t2-lssue 4-issue, org-issue with
different number of MEM/LS units, but for this analysis, wepk the number
of MEM units to bel for every type of the processor issue-width. This is done
in order to keep the data cache same for every type of processe-width.
The issue-width is changed in a single cycle after the regardtion bits are
written to aconfiguration register Additionally, these bits are also utilized
to clock-gate the unused FUs and parts of the processomsysteeduce the
dynamic power consumption. For this analysis, the processpports only
single-tasking computation. Multitasking or multi-thdé@g support is not
available. When an application starts executing, it isvedid to finish com-
pletely and then a new application is started. Hence, we tloe®d any com-
plex mechanisms for task pre-emption, and the design bexosry simple.



4.4, SMULTANEOUS RECONFIGURATION OFISSUEWIDTH AND
INSTRUCTION CACHE 91

The reconfiguration is needed per application basis. Theestqo change
issue-width remains pending until the currently runninglegation finishes
execution. The request to change issue-width for a new egijgh can be
communicated by decoding a custom instruction that candmeeplat the end
of the currently running code or at the start of the new apfili’s code. The
custom operation writes the required bits to the configonategister which
triggers the process of reconfiguration.

4.4.3 Characteristics of the Reconfigurable Instruction Cahe

Our instruction cache architecture is based on[[115] arlddes three param-
eters: cache associativitycache sizeandline size The cache reconfigura-
tion is done in a single cycle after tlwache configuration registés written.
Because the processor does not support multi-tasking,attieecreconfigura-
tion is required only when application changes. There isagdrfor run-time
methods/policies, no cache flushing, no reconfiguratiomrmazl, and hence,
the cache reconfiguration time is reduced. Information abmibest config-
uration (issue-width + I-cache) can be stored in the progeaetutable and
written to the issue-width and cache configuration regidiefore the applica-
tion starts execution. According to Talblel4.4, there is aawidriation across
the cache parameters, therefore, we utilized the follovpagameters for our
reconfigurable cache.

e Cache associativityt/2/4/8 ways
e Cache size4/8/16/32 Kbytes

e Cache line size16/32/64 bytes

The total cache (in all parameters) is available to all typiethe configured
issue-width cores. Following are the reconfiguration meshior the consid-
ered cache parameters.

e Cache Associativity; Way Concatenation: For reconfiguration of
cache associativity, the way concatenation techniqueeid (15]. The
base cache includ@&dbanks that can operate &ways. By writing to the
cache configuration register, the ways can be effectivehcatenated,
resulting in ad-way, 2-way, or1-way (direct-mapped32 Kbytes cache.

e Cache Size; Way Shutdown¥or reconfiguration of cache size, the way
shutdown technique is used. With way shutdown,3d&bytess-way
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cache can be reconfigured aséaKbytes cache that can be eitieway,
2-way or direct mapped, a® Kbytes cache that can be eitievay or
direct mapped, or & Kbytes direct mapped cache.

e Cache Line Size; Line Concatenation:or reconfiguration of line size
a base physical line size d6 bytes is implemented, with larger line
sizes implemented logically as multiple physical linesgjL By writing
to the cache configuration register, line size can be reamfibas either
16, 32, or 64 bytes.

Based on the previous three mentioned methods, there aréd@ohche con-
figurations possible that are practically implementablbe Temaining cache
configurations are not possible due to the hardware desigtations. Hence,
our cache configuration space3g.

4.4.4 Energy Estimation

The following equation is utilized to estimate the total dgric energy
consumption of the I-cache including both the hit and missgies.

Cache_Energy = Accesses * Energy/access + Misses x
Energy /miss
= Accesses * Energy/access + Misses x
Kmiss * Energy/access
= (Accesses + Kmiss % Misses) x

Energy /access (4.1)

Kmissis a factor representing a multiple of the cache hit energnsomption.
According to [115] which takes into account the energy comstion from
the complete instruction memory hierarchy including théemal memory,
the value ofkKmissranges fronb0 to 200. Here, we consider thikmissto be
50. For our analysis, there as® I-cache configurations angl issue-width
configurations; hence, the total search space for eachcafiph is 90
“issue-width + I-cache" configurations. Each applicatiensimulated90
times utilizing the VEX toolchain[]1] to generat®tal memory accesses
cache hits cache missegsand execution cyclestatistics. Using equation
4.1, we calculated the I-cache energy consumption for eachicapipin with
90 different configurations. The cache energy per access anaut from
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CACTI 6.5[104]. For calculating the processor energy consumptioa, w
utilized the Synopsis Design CompilésSynthesis-E-2010.12-SP1) to get the
average power consumption foo nm technology. We then calculated the
processor energy consumption for all applications withHféilewing equation.

Processor_Energy = Power_consumed * Cycle_time x

Execution_cycles (4.2)

The total energy consumption and EDP are calculated asvgllo
Total_Energy = Processor_Energy + Cache_Energy (4.3)

EDP = Total Energy * Execution_cycles (4.4

Execution_cycles, Total Energy, and EDP for each bendkrapplication
with 90 different “issue-width + I-cache" configurations are céded and
then analyzed in Sectidn 6.5.

4.5 Summary

In this chapter, we presented the design and implementafibmo run-time
adjustable issue-slots multi-core processors. The psocgshave multiple
(two for the2-4-issue processor and four for thel-8-issue processoprissue
cores, each of which can run independently. If not in useh eace can be
taken to a lower power mode by gating off its source clock. thld 2-issue
cores can be combined at run-time to form larger issue-wNldthW cores.
Other than the issue-width, the type and number of diffeFésd, and the size
of the multiported GR register file can also be configured attime. The
processors can target a variety of applications havinguosbn and/or data
level parallelism. Additionally, the chapter presentedua-time task migra-
tion scheme for th@-4-8-issue processor. With the task migration, the cores
can be utilized more efficiently. A task running on a core camtigrated to
a larger or a smaller issue-width core to increase the peeoce or reduce
the power consumption, respectively. Finally, we prestrtsystem for the
simultaneous reconfiguration of issue-width and instamcttache for the-
4-8-issue processor, where along with the issue-width/g), the instruction
cache can be reconfigured in terms of associativity, cacee and line size.
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Configurable Fault Tolerance

H igh reliability and dependability of processing systems require the imple-
mentation of fault tolerance techniques. Fault toleranae be achieved
utilizing hardware, software, or hybrid approaches. Instichapter, we present
configurable fault tolerance mechanisms for #W/EX processor. Separate
techniques are employed to protect different modules optheessor from
single event upsets (SEU) errors. Parity checking is eilito detect errors in
the instruction and data memories and the GR register filédevtiple modu-
lar redundancy (TMR) approach is employed for all the syaobus flip-flops
(FFs). At design-time, a user can choose between the stdnutam fault-
tolerant design, a fault-tolerant design where the fauletance is perma-
nently enabled, and a fault-tolerant design where the feal#irance can be
enabled and disabled at run-time. These options enableraas@ade-off be-
tween hardware resources, performance, power consumiwh reliability.

Following is the contribution of the chapter.

e A hardware-based configurable fault tolerance techniquprésented
for the p-VEX processor. The fault tolerance can be included/exadud
in the processor at design-time and/or enabled/disabledi@time.

The remainder of the chapter is organized as follows. Se@id presents
the introduction and motivations. Section]5.2 discussesdlated work. The
base processor is briefly introduced in Secfiod 5.3. The-faldrant design
of the p-VEX processor is presented in Section 5.4. Experimensailte are
discussed in Sectidn 5.5. Finally, the chapter is summaiiiz&ection 5.6.

95
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5.1 Introduction and Motivations

When the data path of a processor gets larger and complegrdabability of

errors (such as radiation-induced soft errors) also isgeaBecause VLIW
processors can provide high performance at low power, treegaining wide-
spread utilization not only in general-purpose embeddetesys but also in
safety-critical systems such as biomedical, space, mylitcommunication,
industrial, and automotive systems. Therefore, it is ingrurto employ fault-
tolerant techniques in order to guarantee high reliabditg dependability of
the safety-critical systems. Run-time detection playsnapoirtant role in de-
pendable systems, where it is needed that the computedsdeitiiér correct
or an error signal is generated whenever there is a possitoe e

In this chapter, we present configurable fault-tolerartinéques([116] for the
p-VEX processor. The processor is implemented in VHDL andféiogdt tol-
erance techniques are implemented at hardware level. Toegsor employs
different fault tolerance techniques such as parity chmerclkind TMR to in-
crease the reliability and dependability of the system. ploeessor is im-
plemented in a Xilinx Virtex-6 FPGA as well as synthesize®®onm ASIC
technology. Apart from the general parameters such as she-&idth, num-
ber of FUs, etc., the fault tolerance is also configurabledesign-time, users
can choose to implement a processor with no fault toleraanpeocessor with
the fault tolerance permanently enabled, or run-time riigorable. The per-
manently enabled and the run-time reconfigurable designsucee almost
similar dynamic power. The advantage of the latter desigias the fault
tolerance can be disabled at run-time, resulting in redwbhgthmic power
consumption. The fault tolerance can be enabled/disabjedxbcuting an
instruction on the processor. For applications which céerate some bit flips
such as audio/video decoding, the fault tolerance can lableéid at run-time
to reduce the dynamic power consumption. On the other hgplications
which are susceptible to even a single bit flip such as sefrdicgjving DTMF
tones on a mobile device or doing some security related psiog can enable
the fault tolerance at run-time to temporally increase #ilility. The con-
figurable processor provides a trade-off for hardware ness,| performance,
power consumption, and reliability.

Since one of the main purposes of this chapter is to evaluatepconsump-
tion for different fault-tolerant designs, therefore, welude results for ASIC
implementation as well. In case of ASIC, the change in arebpanver con-
sumption can be observed very clearly when a circuit isitiégpéd for the TMR
scheme. Area and power consumption increase almost yne#h triplicat-
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ing a circuit. When a circuit is triplicated in FPGA, the réguarea (Slices,
LUTSs, etc.) and power consumption may not increase lindagause some
part of the circuit may also be accommodated in the alreaitiyad area for

the base circuit.

5.2 Related Work

Recently, fault tolerance for microprocessor systemsiisigguincreasing im-

portance. Transient errors are considered as the mainesadrerrors in

processor systems. Different on-line detection and ntitbgatechniques are
proposed to detect and correct transient error faults. dleshniques are
mainly based on redundancy approaches. Here, instructicnseplicated,
re-computed, and then results are compared for checkingseiviainly, there

are two approaches for redundancy; software-based andaiadased.

A software-based redundancy approach utilizes a compiterdapli-
cate/triplicate instructions. This increases code sizk@ower consumption
and reduces performance [117]. The advantage is that nevaeednodifica-
tion is needed. Compiler-based software redundancy scheiritie increased
code size and performance degradation are presentéd ih [[I%. Sim-
ilar techniques for VLIW and superscalar processors areudised in[[120]
[121] [122]. A software method to detect transient and comimmde faults
in statically-scheduled VLIW processor in presented ir8]12

A hardware-based redundancy approach requires changks &rdhitecture
and additional hardware for managing replication, re-cotaon, and com-
paring results to detect errors. The advantage is that thaneed to change
the code or the compiler, and that there is little or no penémmce degradation
and no code size overhead. At the hardware level, one soligito replicate
the complete processor system and then implement a mayartiéy to select
between the three resulis [124][125]. In this case, then®iseed to change
the processor architecture, with the disadvantage thaeagfiain control over
instruction-level checking is not possible. Another siolutis to modify the
architecture, implement additional FUs and other contantitvare to perform
the execution of replicated instructioris [126] [12[7] [12& technique that
utilizes additional FUs to detect and correct transientrerin combinational
logic is presented in_[129]. The author in_[130] triplicatee sequential el-
ements in the processor to detect and correct SEU errorsengchybrid
approaches (software and hardware) for error detectioncanéction were
presented in [129][131].
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5.3 The Basep-VEX Processor

As discussed in Chaptel 3, different parameters ofpthVEX processor such
as the issue-width, the number and type of different FUspetged instruc-
tions, memory-bandwidth, register file size etc., can besehat design time.
The processor is &-stage pipelined processor consistingeith decode ex-
ecuteQ executememory andwritebackstages. The base processor utilized
for this chapter can be configured to béssue 4-issue, orB-issue. Each type
of core has a single load/stor®IEM) unit and the same number AL Usas
the issue-width. The-issue 4-issue, an@-issue cores have, 2, and4 MUL
units. The processor hasax 32-bit multiported GR register file and &x 1-
bit multiported BR register file. As discussed in Secfion 312 GR register
file is one of the most complex and resource consuming modtiessfore,
it is implemented in three different mechanisms to evaluas®urce utiliza-
tion, performance, and power consumption characteristiesr ASIC, it is
implemented with FFs and other combinational resourcesievidr FPGA, it
is implemented with dual-port synchronous BRAMs, as welvith look-up
tables (LUTs) and FFs.

5.4 The Fault-Tolerant p-VEX Processor

Single event upset (SEU) errors effect a memory cell or k&abit flip caused
by a charged particle. The noise induced by some radiatianweliceeds the
threshold voltage, a bit flip may occur. Due to wire procesin&ing, the
threshold voltage is decreasing, and hence, electrontersgsare becoming
more susceptible to SEUs. When an SEU occurs in a memona@&tar con-
figuration), it is called apermanent error When it occurs in a flip-flop, it is
referred to as @ransient error To recover from the permanent error, recon-
figuration or re-loading of the configuration data to the aunfation memory
is required. For a memory used as a general storage (e.gydtsn mem-
ory), the permanent error could be checked and correcteditity ghecking
and some error correcting code (ECC). TMR technique is udddlyto re-
cover from a transient error. When TMR mitigation technigjaee adopted,
the same circuit is triplicated and a majority voter is inmpénted between the
three computed results. Hence, a single fault occurringienpart of the TMR
circuit is protected as the result is obtained from the otvercircuits.

For this chapter, we consider SEU errors that occur due teeatdiit in a FF
or a memory element used as a general storage (instructibdedia memories,
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and the GR register file). We do not consider the FPGA configuranemory,
and assume that it is protected by other techniques. Aauprdi [132], the
probability that SEU errors in combinational logic can mgate to a register
on a clock is very low, therefore, we do not consider such peent SEU
errors in combinational logic. The-VEX processor utilizes two types of se-
guential cells for its implementation: synchronous BRAMIsinstruction/data
memories and the GR register file (FPGA implementation), EiRsl used for
other storage such as general registers, pipeline regist|te machines, and
status/control functions. We employ different SEU pratectechniques for
BRAMs and FFs. The hardwired BRAMs in the Xilinx and Altera@&Rs pro-
vide an extra bit per byte of data which can be used as a patitiiénce, for

a 32-bhit word, up to4 parity bits are available and can be used without increas-
ing the number of BRAMS. In case of an ASIC, additional areedgiired to
implement parity bits in instruction and data memoriesldvahg, we discuss
different modules of the fault-toleraptVEX processor which utilize different
error protection techniques.

5.4.1 Instruction Memory

For thep-VEX processor, each operation called syllable is encodeal32-
bit word. Multiple syllables are combined to make a longnnstion which is
executed every clock cycle. The instruction width fa-essue 4-issue, and-
issuep-VEX processor i$4-bit, 128-bit, and256-bit, respectively. Our design
provides configurable number of parity bits @, or 4) per 32-bit instruction
(syllable). Hence, for ever$ bits of instruction, a parity bit is available. The
parity bits are statically calculated B§ORoperations in the assembler tool and
stored along with the instructions in the dedicated party @f the memory.
Instructions are read and passed through the fetch stage tetode stage.
The parity bits are checked in the decode stage in paralldd wstruction
decoding to minimize the timing overhead. If a parity erdetected for an
instruction, the fetch and decode stages are flushed, arpipibléene is halted.
The correct instruction can then be copied from the highesl iImemory (Flash
card, on-board memory, etc.) to the local instruction mesremd the pipeline
can then be restarted.

5.4.2 Data Memory

The data width of the»-VEX processor is32-bit whatever the issue-width
may be. The data memory is implemented with BRAMs. Additidrits are
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utilized as parity bits. Because the ISA has memory oparstilbat can operate
on words, half-words, and bytes, therefore, we utilizghrity bit per byte of
the data. Initially, parity bits are generated staticaliythe assembler tool
and placed along with data in the external memory. Duringgiigation, the
data and the parity bits are copied from the external menwtlyd local data
memory. During a store operation, the parity bits are catewal and written to
the data memory together with the new data. The parity bdéganerated in
the MEM unit which resides in the executeO stage. During d tmzeration, a
data word is read from the data memory along with the parisy. Gihe parity
of the data word is checked in the writeback stage beforengrthe word to
the GR register file. If there is a parity error, a data erraptis generated
and the pipeline is halted. The simplest method to recoesn this error is to
reload the whole data memory for the program from the extenesnory and
start the program from the beginning. Other complex errcovery methods
such as roll back to the instruction which modified the datation may also
be considered but implementing such methods are out of safdpés thesis.

5.4.3 GR Register File

As discussed in Chaptel 3, thassue 4-issue, an@-issuep-VEX processors
require GR register files with 2W4R ports, 4W8R ports, and 8R/ports,
respectively. In Section 3.2, we presented different irmeletations for the
register file in order to evaluate resource utilization f@@nance, and power
consumption. Table 5.1 presents the details of these ingl@ations. GR
register file versiont is a direct behavioral implementation and utilizes the
FPGA's configurable LUTs and FFs. It implements large mldkprs to pro-
vide multiple read and write ports. For ASIC, it is implemsshivith FFs and
other combinational resources. The hardware resourcéreegent for version

1 register files grows largely with issue-width, therefole tersion3 is im-
plemented with BRAMs as discussed in Chapter 3. Each BRAMIdigured

in simple dual port mode with 1W1R port. For multiple porte BRAMs are
organized into multiple banks and data is duplicated acvassus BRAMS.
Here, the number of banks is equal to the number of write pand the num-
ber of BRAMs per bank is equal to the number of read ports. dihextion
tableis a small register table having the same number of portseasribinal
register file. For the 2W4R, 4W8R, and 8W16R ports registes fithe width

of the direction table ig, 2, and3 bit(s), respectively, and its depth is the same
as that of the GR register file itself. The direction tablenipiemented with
LUTs + FFs. The GR register file versi@ns implemented only for FPGAs.
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Table 5.1: Implementation types for GR register files

| Version | Implementation detail \

1 Straight-forward behavioral implementation. Utilizes T8+
FFs for FPGA, and FFs for ASIC.

2 Same design as version 3. Utilizes LUTRAMs + LUTs + FFs ffor
FPGA, and FFs for ASIC.

3 Banking and replication with BRAMSs. Utilizes BRAMs + LUT
+ FFs for FPGA. Not implemented for ASIC.

4 Similar to version 3, but running the internal ports of the/BW&s
at twice high the frequency of the external ports. Utilizes
BRAMs + LUTs + FFs for FPGA. Not implemented for ASIC.

[72)

Figure[3.4 depicts the register file fodaissuep-VEX processor. Each write
port is associated with a bank and all the BRAMSs in a bank anellsaneously
updated. Each BRAM is organized ir82-bit wide aspect ratio and parity bits
are design-time configurable,(2, or 4 for each32-bit word). The parity bits
are generated in the writeback stage and written togethibrtive data. The
register data is accessed in the decode stage but the gt s done in the
execute0 stage to avoid the timing overhead. If a parityraésraetected on
the read data on a register file port, the pipeline is flusheltlag error cor-
rection procedure is started. We implemented a simple nmigiinato correct
the corrupted data. For each write port, the written datédrémdy duplicated
in multiple BRAMSs each associated with a read partg, and16 BRAMs for
2-issue,4-issue, and-issue processors, respectively). When a parity error is
detected in a data on a read port, the same data is read oreapoti from
a different BRAM in the same bank. The parity for this datal&ahecked.
If the parity is correct, it is assumed that this data is amirr@his data is then
written to all the BRAMs in the bank where the corrupted dates ywresent
in a BRAM. The pipeline is then restarted at the point of thénfg instruc-
tion and normal execution resumes. Currently, we check onk neighbor
BRAM for the correct data instead of all the BRAMSs in a bankitoify the
design. If a data word cannot be corrected by the employduhigae (e.g., if
the same location in all the BRAMSs in a bank is corrupted atstime time),
an unrecoverable error trap is generated.

The register file version design is similar to versiod. The only difference
is that instead of using BRAMSs, the required memory blocksimplemented
with the distributed memory (LUTRAMS) + LUTs + FFs in FPGA.IfASIC,
it is implemented with FFs and other combinational resairce
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The design of the GR register file versians similar to that of the versioa.
The main difference is that the internal ports of the regiite are clocked at
twice the frequency of the external ports. This emulatesadquort BRAM,
and hence reduces the required number of BRAMSs by one-faorttpared to
the version3 design. The fault detection and recovery techniques argasim
to that of the versior® design. The GR register file versidnis implemented
only for FPGAs.

5.4.4 TMR Approach for all Flip-Flops

In the p-VEX processor, flip-flops are used for different purposeshsas
data holding registers, status registers, pipelines dafcbgisters, state ma-
chine registers, etc. The VEX ISA specifies-hit 8-element multiported BR
register file for a multi-issue VLIW processor. Fpiissue,4-issue, ands-
issuep-VEX processors, the ISA requires BR register files with 2WiRs,
4AWA4R ports, and 8W8R ports, respectively. The BR and linksteg (LR)
files for the processors are implemented with FFs. For botAABnd ASIC
implementations, TMR approach is utilized to protect agiaihe SEU errors
in all the FFs used in the processors. Each FF is triplicated camajority
voter is implemented for it, and hence, an SEU error in a sitfif# can be
tolerated. Because the FFs are continuously clocked, ablyeBi®r can be re-
moved within one clock cycle with the output of the voter pdavg the correct
(glitch-free) value.

5.4.5 Working of the Configurable Fault-Tolerant System

We implemented fault tolerance techniques that can be mustol at design-
time and enabled/disabled at run-time. Designers can fgpiecinclude or

not include the fault tolerance in a processor as well asifspetether the

included fault tolerance is permanently enabled or can lbled/disabled at
run-time. Figuré 5J1(a) depicts the TMR scheme and the ritajater for the

permanently enabled fault-tolerant design. If an appbicatequires that fault
tolerance should always be enabled, this design has thatadyeaof requiring
less hardware resources, consuming less dynamic powenyaniehg at higher
clock frequency compared to the case where the fault taterds run-time

configurable (enable/disable).

On the other hand, there could be scenarios in which thecgtiglh requires
fault tolerance only at specific instances of time but notgtsv For example,
certain specific portion of a code needs protection but Hobrathe device
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(b) Run-time enabled/disabled TMR approach

Figure 5.1: Two approaches used for TMR.

has to be used in an increased radiations environment. drcése, the sys-
tem should be able to turn off the fault tolerance circuit ¥oid consuming
the additional dynamic power due to the triplication of Fs.our run-time
reconfigurable design, the fault-tolerant circuit can babded and disabled
at run-time. The reconfiguration can be controlled by dewpdi custom in-
struction on the processor. This instruction can be platetiffarent points
in the code where the fault-tolerant circuit needs to emhbledisabled. The
reconfiguration process can also be initiated from highegl Iy the user. In
this case, the processor can be interrupted and an ISR exrebait enables or
disables the fault-tolerant circuit. Figure 5.1(b) depitte TMR scheme and
the majority voter for the run-time reconfigurable faulletant design. In this
case, the additional two FFs and the majority voter can béledalisabled
by controlling theEN1signal. This design slightly increases the hardware re-
sources and critical path compared to the design in whicHabk-tolerant
circuit is always enabled. The advantage is that dynamiocep@ensumption
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can be reduced at run-time if an application does not redairk tolerance at
some point in time. Detailed analysis is presented in Se&ib.

5.4.6 Fault Coverage and Test Methodology

Fault coverage refers to the percentage of specific typeutitfthat can be de-
tected with an employed fault tolerance technique. A spetithnique may
not cover all types of faults, therefore, different techusg are utilized to in-
crease fault coverage of a system. We defirdetectable erroras an error
that can be detected by the employed fault detection teaknicg., the error
is within the fault coverage range. @orrectable erroris an error which can
be detected and corrected by the employed fault detectidic@mection tech-
niques. Non-correctable errorare those errors which are either not detected
or detected but cannot be corrected by the employed teahni€pllowing we
discuss the fault coverage of the different techniqueswvieattilized for error
detection and protection.

In the previous sections, we discussed the fault toleramdeniques that are
employed to protect different modules of the/EX processor. We utilized
even parityscheme to detect errors in the instruction and data memanigs
the GR register files (only for versiahand4). The parity scheme is simple,
fast, and requires less hardware for implementation (ofiDRXgates needed)
compared other advanced error detection codes. Althougpdhty bits per
32-bit word are design-time configurable, @, or 4 bits) in our case, the pre-
sented results in Sectién 5.5 are #obits of parity per32-bit word. Hence,l
parity bit is available for everg-bit of data/instruction. In this case, the error
correction technigue only needs to correct or recover 8rits instead oB2
bits. Whatever the number of data bits that are associatadts pit, there is a
common limitation to parity schemes. A parity bit is only gasteed to detect
an odd number of bit errors. If an even number of bits has grtbe parity bit
records the correct number of ones, even though the datarigptoA parity
bit can only detect all single bit errors and all multiple bitors where the
number of errors is odd. This makes the fault coverage of #nigypscheme
to be at best arouns0%. Techniques which detect/correct multiple bit errors
where the number of errors is not odd are out of scope of tesigh

Apart from the instruction and data memories and the GR texgiges (only
for version3 and4), all other modules of the processor are protected against
SEU errors utilizing TMR scheme. Each FF is triplicated amdagority voter
is implemented for it. In this manner, a bit flip occurring irsiagle FF of a
TMR section can be tolerated as the final result is obtain@u the other two
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FFs. As all the FFs are continuously clocked, any SEU ermrearemoved
within one clock cycle. Hence, for a single bit error per TM&Rt$on, the fault
coverage of the TMR technique i90%. If there are more than 1 errors per
TMR section, this technique cannot detect the errors. Bbtheopermanently
enabled and run-time enabled/disabled TMR circuits asepted in Section
[£.4.3 have the same fault coverage. These circuits cancpromdy against
SEU errors in a single FF per TMR section. Technigues prioig@gainst
SEU errors in multiple FFs per TMR section are out of scopédisfthesis.

To test our designs, we utilized the simulation-based Hiajgction method

[133] which does not require any hardware setup. The methodsafast and

easy implementation of the fault injection platform butitisnthe number of
experiments due to its high computational requirementslamgl simulation

time. With the VHDL description of the-VEX processor and utilizing the
ModelSim simulation tool (version 64-bit SE 6.68¢ performed realistic fault
emulation and detailed system monitoring.

We have written special non-synthesizable routines thagigeée faults in dif-
ferent regions of the processor at different clock edged,than record the
results. Bit errors are induced in the pipeline registers @imer sequential
elements of the processors. Injecting errors in FFs doeseaplire stalling
a processor and the execution can continue as normal. T Ejeors in the
GR register file (FPGA implementation) of a processor or tigtruction or
data memory requires stalling the processor. We injegt@d 1-bit and2-bit
errors in each of the-issue,4-issue, an®-issuep-VEX processors running
matrix multiplicationand sorting applications. These errors were injected in
two different manners. In the first case, errors were contisly inserted in
different modules of a processor after fixed number of cloades when an
application started execution. In the second case, errers imjected in dif-
ferent modules of a processor randomly distributed overdiimation of an
application execution.

To test the TMR circuits, errors were injected in FFs. We olesstthat errors
affecting a single FF of a TMR section were automaticallyrected. These
are called as correctable errors. Errors that effected niare one FFs of a
TMR section went undetected, were not corrected, and hédmeeesults were
wrong. These are called as non-correctable errors.

To test the parity scheme, errors were injected in the iostm and data mem-
ories and the GR register files (versidmand versiort only) of the processor.
All 1-bit errors in the instruction and data memories were detkahd the pro-
cessor was stopped to correct them, while 2Hgit errors went undetected.
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For the GR register file versiahand versiord which are implemented using
BRAMs and protected with parity bit, the behavior remains same as that
for the instruction and data memories. #lbit errors were detected and the
processor was stopped to correct them (correctable erminde the2-bit er-
rors went undetected (non-correctable errors). All of theactable errors in
this case were corrected (see Sedfion 5.4.3). The nonetalie errors which
include errors in all of the BRAMSs in a bank generated a trdfirftathe pro-
cessor execution.

5.5 Implementation Results and Discussion

In this section, we evaluate the implementation resultgterdifferent fault-
tolerant designs of the-VEX processor. For FPGA implementation, we uti-
lized theXilinx ISE (version 13.3and the Virtex-6XC6VLX240T-1FF1156
FPGA, whereas for ASIC implementation, we utilized Bgnopsis Design
Compiler (version G-2012.06-SPapd targete®0 nm technology. The GR
and BR register files in all cases &@#x 32-bit and8 x 1-bit, respectively. The
2-issue,4-issue, and-issue cores have, 4, and8 ALUs and2, 2, and4
MULSs, respectively. Each type of core has a single load/stibtEN) unit.
The parity bits are design-time configurable, if.2, or 4 bits per32-bit of
word. The results presented in this chapter are4ftnits of parity per32-
bit word, i.e.,1 bit per byte of data. We represent the base non fault-taleran
by D1 and the permanently enabled fault-tolerant desigibBy D3 and D4
(both having same area in terms of hardware resources)seyirthe proces-
sor design in which fault tolerance can be enabled/disastadin-time. D3
represents the fault tolerance enabled scenario, vidldleepresents the fault
tolerance disabled scenario.

5.5.1 Hardware Resources/Area and Critical Path Delay

Figure[5.2 and Figurie 5.3 depict the hardware resources#aré critical path
delay results for the base and the fault-toleraMEX processors with differ-
ent types of register files and without instruction and daganories.
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Figure 5.2: Implementation results for the VEX processors for the Xilinx Virtex-6
FPGA. In addition to the mentioned resources,2kissue 4-issue, an@-issue cores
utilize 4, 4, and8 DSP48E1s moduled, 16, and64 RAMB36s (GR register file
version3), and1, 4, and32 RAMB36s (GR register file versiof), respectively.

As can be observed from Figure b.2 and Fidguré 5.3, addingtfalelance to a
processor requires more hardware resources especialiyFth@vhich are trip-
licated due to TMR approach) and the additional logic gategfiplementing
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Figure 5.3: Synthesis results for the VEX processors fo#0 nm technology.

majority voters. For the FPGA implementation, the numbeBRAMSs for the
GR register file versios and versiort and instruction and data memories re-
main the same because we utilize the available extra pariyntthe BRAMSs.
GR register file versior3 and versiord are only available for FPGA imple-
mentation. For ASIC, the area required for implementingtaafthl parity bits
for instruction and data memories increases. In terms sifirease, itig, 2,

or 4 bits per32-bit of word depending upon the desired number of parity. bits
DesignsD3/D4 utilize slightly more hardware resources and run at less fre
guency compared tb2. The logic gates utilized for majority voters B3/D4
may be accommodated in the already utilized LUTs (FPGA impgletation),
therefore, the critical path delay remains almost the sasribat forD2. For
ASIC, the increase in critical path delay can be clearly ples®ewhen moving
from D1to D2 to D3/D4 due to the additional logic gates in the path (majority
voters). In the FPGA implementation, tB&/D4 designs foig-issue core with
GR register file version become very large and complex. The Xilinx tool
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could only map the designs, while the router failed to robtnt even after
running for a long time (more thamdays). Therefore, the critical path delays
could not be calculated for these designs.

5.5.2 Dynamic Power Consumption

We utilized the Xilinx XPower Analyzertool and the Synopsis Design
Compiler to measure the dynamic power consumption per MHz for the
XC6VLX240T-1FF1156PGA and thed0 nm technology, respectively, as pre-
sented in Figure 5l4. Dynamic power is calculated utilizimg equation:

Dynamic Power = ACV2f (5.1)

In this equation A is the switching activityC is the total capacitive load/

is the voltage, and is the frequency. Increasing the frequerfcincreases
the dynamic power consumption. The capacitive |@a$ calculated by the
FPGA and the ASIC tools from the implemented designs. TheagelV is
constant for the specific FPGA and the specific ASIC gate oy that we
are using. The switching activi can be adjusted by the designer. Becaise
is a linear term in equatio®. 1, therefore, any value & will result in a linear
change in power consumption. Since our purpose is to shorveléiiive power
consumption of the different designs of our processor, wecb@ose any pos-
sible value forA. The absolute value of power consumption may change but
the trends will remain the same wharis changed. For all our dynamic power
estimation in this thesis, we assuéo be0. 1 (i.e., 10% switching activity).

As can be observed from Figure 5.4, implementing fault &siee in the pro-
cessors increases the dynamic power consumption due tasent hardware
resources. Desigri32 andD3 (fault tolerance enabled) consume almost simi-
lar dynamic power, whil®4 (fault tolerance disabled) consumes considerably
less power compared @2 designs. For the FPGA implementation, the power
consumption results are not available for thisssueD3/D4 designs with GR
register file version, as the designs could not be routed by the Xilinx tools.

Figure[5.5 depicts the percentage dynamic power reduabtiothé D4 designs
compared td2 designs. In case of the FPGA implementation, Bedesigns
with GR register file versiorl consumet2.73% and44.32% less dynamic
power compared to the-issue andi-issueD2 designs, respectively. For the
GR register file versiorz, the 2-issue,4-issue, and-issueD4 designs con-
sume13.33%, 30.77%, and31.54% less dynamic power compared to the
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Figure 5.4: Dynamic power consumption per MHz for theVEX processors.

D2 designs, respectively. Looking at the GR register file wersi we can ob-
serve that the-issue 4-issue, an@-issueD4 designs ar@5.93%, 12.43%,
and5.56% more power efficient compared to thbe designs, respectively.
Similarly, for the GR register file versiofy, we can observe that tieissue,
4-issue, and-issueD4 designs consume9.48%, 23.56%, and18.81%
less dynamic power compared to th@ designs, respectively. For the larger
issue-width cores, the GR register file versbrequires increased number of
BRAMSs due to the additional number of ports. In FPGAs, BRAMatcibute
more to dynamic power compared to FFs, therefore, forgtigsue proces-
sors with GR register file versiah the dynamic power consumption does not
reduce considerably when moving frdd® to D4. This is not visible in the
ASIC results, as the GR register files are implemented udhsy ot BRAMS.

For the ASIC implementation, the4 designs with GR register file versian
consumess. 92%, 67.30%, and70.22% less dynamic power compared to
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the 2-issue 4-issue, an@-issueD2 designs, respectively. Considering the GR
register file versior2, we can observe that tiissue 4-issue, an@-issueD4
designs arg1.67%, 64.78%, and68.87% more power efficient compared
to theD2 designs, respectively. This is considerable power sading,if fault
tolerance is not required at some point in time, it can beediroff to reduce
the dynamic power consumption.

5.6 Summary

In this chapter, we presented hardware-based configurabletblerant de-
signs for thep-VEX VLIW processor. The designs can detect and correct SEU
errors. Parity checking is utilized to detect errors in th&tiuction and data
memories, and the general register files (FPGA implemempgtiFor all other
sequential elements, the TMR approach with majority voimignplemented.
Different designs for fault tolerance scheme such as pezntBnenabled at
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design-time or with run-time options for enabling and disa)y were pre-
sented. These options enable a user to trade-off betwedwduar resources,
performance, power consumption, and reliability.

Note.
The content of this chapter is partially based on the foltmypaper:
F. Anjam and S. Wong. Configurable Fault-Tolerance for a Configurable

VLIW Processor. Ininternational Symposium on Applied Reconfigurable
Computing (ARG)pp. 167-178, 2013.



Results and Analysis

VLIW processor that can be adapted/reconfigured at design-tisngedl

as at run-time can target applications with diverse reqmient of area,
performance, and power/energy consumption. In Chdgtere3presented a
design-time configurable VLIW processor that can be adajpteifferent pa-
rameters before it is implemented in hardware. The pararaetelude the
processor’s issue-width, the type and number of differésg &nd their laten-
cies, type and size of multiported register files, size artthnf instruction
and data memories, type of interrupt system, and type ofilefastom oper-
ations. Hence, for each particular application, an optiedzprocessor can be
generated targeting area, performance, and power consomgharacteris-
tics. If the behavior of an application is not known befonethathe application
has different phases with distinct requirements, or a nurobdifferent appli-
cations need to be executed, a fixed processor may not peviethfor all
the phases/applications. In Chaplér 4, we presented aime-teconfigurable
processor that can change its organization after its redlom in hardware.
The run-time parameters include the processor’'s issughwithe type and
number of different FUs, the size of the multiported regifite, and size and
width of instruction and data memories. The previous chrappeovided the
implementation (area/hardware) results for the designetiand run-time re-
configurable processors. The current chapter is dedicateitie¢ performance
and power/energy consumption analysis of these designfowkiog are the
contributions of this chapter:

e Performance and power consumption results are presentedifferent
issue-width processors.

e The effectiveness of run-time task migration among diffezeres in the
2-4-8-issue processor is evaluated.

113
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e The impact of simultaneous reconfiguration of issue-wictth imstruc-
tion cache on performance, energy consumption, and EDPdb/aad.

e The effect of increasing the read/write ports (load/storgts) on the
hardware resources and capacity of data memory/cache iSextu

The remainder of the chapter is organized as follows. Perforce and power
consumption results for the 2-4-issue and 2-4-8-issuegaars are presented
in Section 6.1 and Sectidn 6.2, respectively. Section &8emts the power
consumption results for the 2-issue, 4-issue, and 8-issrelsalonep-VEX
processors with different types of register files preseie@hapter[ 3. Sec-
tion[6.4 discusses the task migration support for the 2igs8e processor and
presents the performance and power consumption resultanalysis for the
simultaneous reconfiguration of issue-width and instarctache is presented
in Sectior 6.b. Sectidn 6.6 presents an analysis for theasideequired hard-
ware resources for multiport data memory/cache or multipkd/store (LS)
units. Finally, Sectioh 617 summarizes the chapter.

6.1 2-4-issue Processor

The 2-4-issue processor has tveissue cores, which can be utilized indepen-
dently or combined together to form4aissue core. We consider two appli-
cation scenarios for the processor. The first scenario gspitstruction level
parallelism while the second data level parallelism.

Application Scenario1 This scenario corresponds to applications or kernels
with large ILP such as a matrix multiplication program or acdete Fourier
transform (DFT) kernel. Generally, these kernels are plasbme larger ap-
plications like MPEG video, etc., and these kernels areatggemany times
while the application is running. Therefore, running supplieations/kernels

on a larger issue-width core can provide more performana®@apared to a
smaller issue-width core. Hence, in our case we can comh@éno 2-issue
cores to form one-issue core and exploit the available ILP. We executed a
100-by-100 matrix multiplication program and a DFT kernel on a single
issue core and the combinaeissue core. Figure 6.1 depicts the speedup for
these applications/kernels normalized to thissue core. In this figurds-
sue_2_ Imeans that the application is running on one of the 2wssue cores,
and Issue_4means that the application is running on the combiaagsue
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core. It can be observed from the figure, that running thegkcagions/kernels
on a larger issue-width core can improve the performancdedga applica-
tions/kernels. On the other hand, running these applicatim a singl@-issue
core can benefit from the lower power consumption as the @tiesue core
can be taken to a lower power mode by gating of its source clock

Application Scenario2 In this scenario, the application is such that its data
set can be easily divided and run on more than one cores wathidla di-
vided among the cores. This scenario corresponds to apphsawith large
data level parallelism such as the advanced encryptionlatd{AES) encryp-
tion/decryption. The AES algorithm takes an input data 28 bits and a key

of 128, 196 or 256 bits and produces an encrypted output datd 2# bits.

For decryption the same key is utilized as used in the enonygrocess. We
utilized a 128 bit key version of the AES algorithm. We encrypted and de-
crypted a text of. 024 bytes. For the singlé-issue core, the C program for the
encryption and decryption are compiled and assembled héthinput data of
1024 bytes. For the tw@-issue cores, the input data is split into two sets each
of 512 bytes. Each core is provided its own data set and the sameapndgr
encryption/decryption runs on it. Figure 6.1 depicts theeslup normalized

to the combined-issue core. In this figurdssue_2_ 2means the applica-
tion is running on both of the twa-issue cores with the data divided among
the cores, antssue_4means that the application is running on the combined
4-issue core. It can be observed from the figure thatl$see 2 2system
completed the execution of the application in almost haietcompared to the
singlelssue_4system.

2 — _
18 O Issue_2 1 1
16 B Issue_4 ]
L4 ol 22 N
ssue
S12 = |
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a
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O .
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Figure 6.1: Speedup for the-4-issue processor normalized to 4-issue core.
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6.2 2-4-8-issue Processor

The 2-4-8-issue processor has fogfissue cores, which can be utilized inde-
pendently or combined together to form a variety of confiars. We uti-
lized theMiBenchbenchmark suite [2] and eustombenchmark suite. The
MiBench is suite of different embedded applications didideto six cate-
gories, which includes Automotive and Industrial Cont@bnsumer Devices,
Office Automation, Networking, Security, and Telecommatiiens. The cus-
tom benchmark suite is a collection of different applicasifkernels consist-
ing of the following9 embedded applications: finite impulse response (FIR)
filter, integer division, factorial, Fibonacci series, yeWarshall graph, ma-
trix transpose, matrix multiplication, integer squaretrand a DFT kernel.
We consider two application scenarios for the-8-issue processor. The first
scenario exploits instruction level parallelism while 8ezond data level par-
allelism. If an application can be split into multiple indsment threads that
can be run on multiple cores, the performance can be imprd¥ad applica-
tion cannot be split into multiple independent threadsait be run on a larger
issue-width core to exploit ILP.

Application Scenario 1 In this case, the available ILP can be exploited by
executing the application/kernel as a whole on larger isgidéh cores instead
of dividing it into multiple threads. Generally, these kelshare part of some
larger applications like H.264/MPEG audio/video, etcd dimese kernels are
executed multiple times while the application is runnindnefiefore, running
such applications/kernels on a larger issue-width corgooavide more perfor-
mance compared to a smaller issue-width core. By combiniuigjpte 2-issue
cores to form a larger issue-width coeei§sue org-issue), we can exploit the
available ILP in a better manner. We executed the MiBenchamd:ustom
benchmark suites with three different configurations of2Hes-issue proces-
sor, i.e.,2-issue 4-issue, and-issue cores. Figufe 6.2 depicts the speedup for
the three types of the processor cores normalized to thatfessue core for
the two benchmark suites. Here, théssue 4-issue, and-issue cores utilize
local data memories with, 2, and4 load/store units, respectively. It can be
observed from the figure, that running these applicati@ma®ds on a larger
issue-width core can improve the performance of these @ihs/kernels.
On the other hand, running these applications on smalleeigsdth cores can
benefit from lower power consumption as the othassue cores can be taken
to a lower power mode by turning them off.
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Figure 6.2: Speedup for the-4-8-issue processor normalized2dssue core.

Application Scenario 2 n this case, the application is such that its data set
can be easily divided and run on multiple independent cofiéss scenario
corresponds to applications with large data level paisitelsuch as the Ri-
jndael encryption/decryption algorithm. We utilized 28 bits key version of
this algorithm. We encrypted and decrypted back a te20aB bytes using the
Rijndael encryption/decryption algorithms. Initiallyewun the application as

a whole with2048 bytes on a singlé-issue core. We then run the same appli-
cation on two4-issue cores with the data divided among the two cores. Each
core encrypts/decrypts its ow924 bytes of data. In the third experiment, we
run the same applications on fop¥issue cores providing12 bytes of data

to each core. The individual encrypted/decrypted datads ttombined into

a single result. Figure 8.3 depicts the execution cyclesgherthree types of
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Figure 6.3: Execution cycles normalized to the fotissue cores for the Rijndael
encryption/decryption algorithms.

the processor system normalized to that for the fpissue cores. It can be
observed from the figure, that applications with larger dewal parallelism
execute faster when run on multiple smaller issue-widtlesavith the input
data distributed among them compared to running the apigiican one larger
issue-width core with all the input data. A matrix multigieon program can
also be executed over multiple independent cores with tkee idalistributed
over them. For example, one of the matrices is provided toyes@re, while
the rows of the other matrix are distributed over all the sofeach core per-
forms it own part of the calculation, which is then combined ae-arranged
into the final result.

6.2.1 Dynamic Power Consumption

In the 2-4-8-issue processor, the clock input for eazlssue core is driven by
a separate controlled buffer [134]. The clock buffer for aecis controlled
by therun signal of that core. If theun signal for a core is at logic low, the
clock to that core is gated off. We used the XiliKPower Analyzetool, the
ISE release versiomn3.2, and the Virtex-6XC6VLX240T-1FF1156PGA for
the power consumption analysis. We utilized the typicalrafyeg conditions
with 10% switching activity. According to equatids. 1, the switching activ-
ity Ais a linear term in the equation for dynamic power estimattbarefore,
any value ofA will result in a linear change in power consumption. Since ou
purpose is to show the relative power consumption of thedifit versions of
our processor, we can choose any possible valud.fdthe absolute value of
power consumption may change but the trends will remain dneeswherA
is changed. For all our dynamic power estimation in this trapve assume
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Ato be0.1 (i.e., 10% switching activity). The frequendyis fixed at1 MHz.
Increasing the frequency increases the dynamic power ogotgan for any
number of the active-issue cores. When more cores are turagdhe net ca-
pacitive load increases, and hence, the dynamic power ogitgan increases.
The capacitive load is calculated by the XilinXXPower Analyzetool from
the placed and routed design of our processor. The volaigeconstant for
the specific FPGA that we are using. Figlrel 6.4 depicts thermyn power
consumption per MHz for the-4-8-issue processor. It can be observed from
the figure that turning ofbne two, or three2-issue cores reduces the dynamic
power consumption of the whole system %426, 60%, or 82%, respectively.
Hence, if any of the2-issue cores is not active, it can be turraftl and the
system can be taken to a lower power mode.

6.3 Power Consumption for Stand-alonep-VEX Pro-
cessors

In Section[ 3.2, we presented different types of registeriffilplementations
for the p-VEX processor. Depending upon the choice and/or the dlaile-
sources in the FPGA, @VEX processor can be implemented utilizing any of
these register files. When the number of ports on a regiseeimnfireases, its
area and resource requirement increases, and hence, igterréite starts in-
creasing the critical path delay of the processor. Diffenemplementations of
the register files utilize different types of FPGA resounassilting in different
critical path length of the processor. In this section, wespnt the dynamic
power consumption per MHz of theissue,4-issue, an®-issue stand-alone
p-VEX processors with the different types of register fileegamted in Sec-

Dynamic power (mW/MHz)
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One Two Three Four
Number of active 2-issue cores

Figure 6.4: Dynamic power consumption for tie4-8-issue processor.
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tion[3.2. We used the XilinxXPower Analyzetool, the ISE release version
13.2, and the Virtex-eXC6VLX240T-1FF1156PGA for the power consump-
tion analysis. We utilized the typical operating condiamith 10% switching
activity. Figure 6.5 depicts the dynamic power consumpgien MHz for the
stand-alone-VEX processor with different issue-widths and differerges of
register files. As can be observed from the figure, compar#uetoegister file
versioni, processors utilizing the register file versnonsume less dynamic
power. The reason is that the register file versias mapped to LUTRAMs
resulting in a compact design while versiarcould not be mapped to LU-
TRAMSs, and hence utilizes more LUTs. Processors with regifie version3
utilize more BRAMSs (by order of x) and more signal paths for routing com-
pared to the versiof, therefore they consume more power than the processors
with register file versior. On the other hand, the register file versioruns at
double frequency compared to the versipherefore the power consumption
for the processors utilizing register file versigmlso increase.

6.4 Run-time Task Migration Support

As mentioned in Sectidn 4.3, task migration from one corentuttzer requires
atotal of155 cycles. Out of thes&55 cycles,76 cycles are required for storing
the context of the first corg, cycle for accessing the program counter (PC) of
the first core cycle for reconfiguring the issue-widthé cycles for restoring
the context to the newly configured core, andycle for loading PC of that
core. This means that switching a running application frara type of core

o

[N}

Dynamic power (mMW/MHz)
D

il

1‘2‘3‘4

DDQ

[ 2]

o

2-issue 4-issue
Register file version and Issue-width

1‘2‘3‘4

8-issue

Figure 6.5: Dynamic power consumption for the stand-algn¥EX processor with
different issue-widths and different types of registersfile
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to another core requirelss extra cycles, but then the execution time or power
consumption for the remaining part of the application carrdukiced. The
issue-width or the organization of tl#e4-8-issue processor can be changed
by writing dedicated bits to the configuration register & ffrocessor. The
configuration register can be accessed by decoding a cusgtradtion on the
processor. This instruction can be placed at the specifitpwoi the executable
code, where an issue-width change is required. In a morasaenario, the
configuration register can be implemented in the global s@acessible to
other dedicated hardware/software controllers. In théecthere is no need for
designing the custom operation for the processor. The figemation process
can be initiated by some external agents/controllers basexbrtain run-time
metrics such as hardware utilization, power/energy cemattbns, arrival of
other tasks, cache related statistics, etc.

To show the effectiveness of our run-time task migrationabdg hardware,
we utilized thegeneric binariesscheme[[80] to generate the binary code for
our variable issue-width processor. In the generic bisasEheme, an appli-
cation is compiled such that the same binary code can be &xkcarrectly
on different issue-width VLIW processors with some perfante degrada-
tion. Here, an application is compiled for &rissue core. Then the assembly
code is parsed and the operations are re-arranged acctodirgpecific format
such that the same instruction can be executed dbysaue or &-issue core

in multiple clock cycles. In this case, there is a perforreadegradation of
9% to 30% for the4-issue an-issue cores when executing the generic bina-
ries compared to the binaries compiled for specific isswdthgi Utilizing the
generic binaries, the processor issue-width can be recoafigat any point
during execution without needing to introduce checkpoirthis avoids the
use of complex algorithms and hardware to ensure the afiplics restarted

at the same point in a different version of the code. The adganis that
the same binaries can be utilized when switching the processue-width
and there is no need for loading/accessing multiple bisafidis reduces the
required storage space for instructions and data, thetlingatime, and the
power consumption related to loading a new code. More debailit generic
binaries can be found in [80].

We considered the following benchmark applications/kistn®obel filter, FIR
filter, data encryption standard (DES), secure hash algor{SHA), Huffman
compression, and Rijndael encode. Generally, these afiplis/kernels are
part of some large applications such as H.264, and are expeantinuously
or at least many times. Figute 6.6 depicts the overall ei@tudycles nor-
malized to a2-issue core witht LS unit for different benchmarks when the
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Figure 6.6: Execution cycles normalized tazaissue core with load/store (LS) unit.

applications are migrated from this core to a larger issigthacore at dif-
ferent percentage of the total execution cycles fordhssue-1-LSore. The
maximum performance is @ of execution time, i.e., when the application
has just started on thzissue-1-LSore. Hence, reduction in execution cycles
is more when the migration is done in the beginning of an apptin execu-
tion. As depicted in Figurle 6.6, the compiler is able to esttraore ILP for the
different applications. In ou2-4-8-issue processor, each of the fauissue
cores hasl LS unit. When multiple2-issue cores are combined, the result-
ing larger issue-width core can also utilize the additido@lunits to increase
the data input (provided the data memory has multiple pauts) hence, can
further reduce the execution cycles for different appidrad.
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6.4.1 Dynamic Power Consumption

We calculated the dynamic power consumption for 2h&e-8-issue processor
with the interrupt system and task migration support. Wheade running on

a larger issue-width core is shifted to a smaller issuetwidire (e.g., from an
8-issue to a&-issue), the unuseztissue cores can be clock gated to reduce the
dynamic power consumption of the system. We used the XKiRawer Ana-
lyzertool, ISE release versions.2, and the Virtex-6XC6VLX240T-1FF1156
FPGA for the power consumption analysis. Instead of meaguhie dynamic
power consumption for a particular application, we utiize0% switching
activity to measure the dynamic power consumption at tymiparation con-
ditions. Figurd 6.7 depicts the dynamic power consumptienNtHz for the
2-4-8-issue processor with task migration support. It can be rebsefrom
the figure that turning ofbne two, or three2-issue cores reduces the dynamic
power consumption of the whole system 3826, 59%, or 81%, respectively.

6.5 Simultaneous Reconfiguration of Issue-width and
Instruction Cache

As stated eatrlier, increasing the issue-width of a VLIW pssDr increases
the performance for applications with inherent ILP. Stadiave shown that
more than half of the chip die is reserved for the on-chip eadnd that the
energy consumption in cache systems accounts for moresttanof the to-

tal energy consumption. Instruction cache (I-cache) riégoration plays an
important role in the performance, energy consumption/arehergy-delay

Dynamic power (mW/MHz)
O P N W Hd U1 O N 0O ©

One Two Three Four
Number of active 2-issue cores

Figure 6.7: Dynamic power consumption for tt#e4-8-issue processor with task mi-
gration support.
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product (EDP) for different applications. Instead of refoguring only the I-
cache, reconfiguring both the “issue-width + I-cache" cathfr improve the
performance, energy consumption, and/or the EDP. In tliSose we study
the effect of I-cache reconfiguration on the performanceadyic energy con-
sumption, and the EDP for a reconfigurable issue-width VLIM¢cpssor. We
define EDP as the product of energy consumed and the totaltexecycles
per application. When issue-width is changed, a differehedule is followed
by the compiler and a different request for instructions dath is generated.
In this section, we analyze how this request can be bettéiiédl by tuning
the available I-cache.

6.5.1 Experimental Setup and Benchmark Applications

We utilized the VEX toolchain [1] which includes a paramstd C compiler
and a simulator. The compiler reads a machine configuratierafid then
compiles and schedules the code according to the machicdisgions. As
mentioned in Section 4.4, there &e I-cache configurations (cache associa-
tivity: 1/2/4/8 ways, cache sizet/8/16/32 Kbytes, cache line sizet6/32/64
bytes) and issue-width configuration2{issue 4-issue 8-issue; all with sin-
gle load/store unit); hence the total search space for epglication is90
“issue-width + I-cache" configurations. The simulator gates a log file con-
taining different information such as total memory accest#al misses, exe-
cution cycles, stall cycles, function profiles etc. For ggeralculation of ASIC
implementation, we utilize@ ACTI 6.5[104] andSynopsis Design Compiler
(Synthesis-E-2010.12-SP1) and targedédhm technology. We calculated the
energy consumption for each configuration as mentioned dtic®é4.4.4. We
utilized theMiBench[2], PowerStond3], and custombenchmark suites for
the analysis. The custom benchmark suite includes theafimitp16 small ap-
plications/kernels from different domains: discrete nesiransform (DCT),
discrete Fourier transform (DFT), finite impulse responiser§ (FIR), Floyd-
Warshall graph, Hamming distance, Huffman compression deabmpres-
sion, inverse discrete cosine transform (IDCT), matrixtiply, moving filter,
run length encoding (RLE), different sorting applicatiageh as bubblesort,
quicksork, radixsort, and shellsort. In Sectlon] 6.2, we alslized applica-
tions from the same benchmark suites but excluding thetaffetaches. For
the study in the current section, we include the I-cacheltseas well.
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6.5.2 Results and Analysis

As stated earlier, when the issue-width is changed, a difteschedule is fol-
lowed by the compiler and a different request for instrutdiand data is gen-
erated. Configuring the I-cache for a fixed issue-width a$féhe memory
accesses and miss/hit rates. The miss/hit rate directlgdis@n application’s
performance and energy consumption as well as EDP. Sigileohfiguring
the issue-width for a fixed I-cache also impacts memory aeses As dis-
cussed in Sectidn 6.5.1, we consider a large number of apipis and I-cache
and issue-width configurations. Due to limited space, wacotdiscuss all of
the results. We present some of the interesting and matgyatisults showing
the importance of reconfiguring both the issue-width anddhe together.

Figure[6.8 depicts an analysis for three applications; @aath, ADPCM de-
code (D-adpcm), and Rijndael encode (E-rijndael) for thedltonfigurations
of our processor issue-width with varying the I-cache camfgjons. Here,
1W8KB16Bmeans a cache with way associativityg Kbytes total size, and
16 bytes line size. This is the base cache. We vary the caché its #ghree
parameters, i.e., doubling the size, the line size, andgbecaativity. The first
graph in Figuré 618 depicts the execution cycles normalieet@-issue core
+ 1W8KB16B I-cache" configuration. Focusing at the Basidnagiplication,
we can observe that there is no effect of changing the issd#nwhence, for
all issue-widths, the execution cycles remain the samdfateint I-cache con-
figurations. We can observe that for any issue-width cordipm, varying
the I-cache configuration does vary the performance as wétleenergy con-
sumption, but this change remains same across all the vesities. When ei-
ther of the execution cycles or energy consumption charige€.DP changes
accordingly. Focusing at the D-adpcm application, we cesent that vary-
ing the I-cache configurations has no effect on the perfoomdar different
issue-width configurations. The performance increaseg with the issue-
width reconfiguration. On the other hand, the energy consiomparies with
the issue-width and hence the EDP. Considering the Rijretaede applica-
tion, we can observe that both the issue-width and the lecaohfigurations
impact the performance and energy consumption. BhRssue + 1W8KB32B
I-cache" results in the highest performance, the leasggramsumption, and
hence, the least EDP. This shows that both the issue-width-aache recon-
figuration together can bring the most optimized result.

In the previous example, we considered a small variationache configu-
rations. In the next example, we considered a wider vanaiothe cache
parameters for the three types of the issue-widths. Figi@&elépicts the im-
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Figure 6.8: Impact of simultaneous reconfiguration of issue-width agddhe; exe-
cution cycles, energy, and EDP normalize@issue and 1W8KB16B I-cache.

pact of I-cache configuration for the different issue-widfor Patricia and
Pocsag applications. We consider an I-cach&Wwf32KB16Bhat is varied in
different dimensions. The first, second, and third cache @&t 1\W(4-8-16-
32)KB16B (varying cache size), 1W32KB(16-32-64)B (vagyiime size) and
(1-2-4)W32KB16B (varying the associativity), respectiveThe base caches
of the three sets are: 1W4KB16B, 1W32KB16, and 1W32KB16B: &kecu-
tion cycles, energy, and EDP for each issue-width configamatre normalized
to that of the “own issue-width + the base I-cache in eachamifiguration.

Considering the Patricia application, when the cache igddor each type of
the issue-width in the first cache set, the execution cy@esrgy consump-
tion, and EDP are improved compared to that of the same isgilil-with
1W4KB16B I-cache. When the cache is varied in the second land sets,
there is a small variation in the performance, but there iggavariation in
energy consumption. It must be noted that the performanes dot change
with the issue-width; rather it only changes with varying ttache. In case
of the Pocsag application, performance and energy consumgtly change
with varying the I-cache in the first and second cache setsdch issue-width.
There is no effect for the third cache set, meaning that thectivity has al-
most no effect on the execution cycles, energy consumptidrEDP for any
issue-width for this application. This example shows ttahtihe issue-width
and I-cache reconfiguration are important to achieve optiesults in terms
of performance or energy consumption.

Different I-cache configurations results in different extan cycles and en-
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ergy consumption. It is possible that for a particular aggilon, there are
different cache configurations resulting in same executiates but different
energy consumption. In the following, we present few sudesdo show the
importance of the simultaneous reconfiguration of I-cactkissue-width.

Figure[6.10 depicts different I-cache configurations fa Rijndael encode
and ADPCM decode applications, for which the executioneyckemain the
same while the energy consumption and EDP vary. The execayicles, en-
ergy consumption and EDP are normalized to that atdissue core. Here, the
execution cycles decrease with increasing the issue-withremains con-
stant for all the considered caches. Considering Figui@&) for the Rijndael
encode application, theissue core consumes less energy at every point com-
pared to thel-issue andB-issue cores. As the execution cycles for $hissue
core are less than that for thassue core, the EDP for tl&issue is lower than
that for the2-issue core at some points. Thassue core behaves somewhere
in between the-issue and-issue cores. For the ADPCM decode application
in Figure[6.10(b), the-issue core consumes less energy at every point com-
pared to thel-issue and-issue cores. As the execution cycles for $aissue
core are less than that for ti¥eissue core, the EDP for th&issue core is
equal to or less than that for tl2eissue core at some points. Thdssue core
consumes more energy and requires much less executiors @aiepared to
the2-issue core, therefore its EDP is lower than that forthssue core. Sim-
ilarly, the 4-issue core consumes less energy compared t@-ikeue core,
while there is a small difference in the execution cyclesrdfore, its EDP is
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Figure 6.10: I-cache configurations for which execution cycles remasmgame but
energy consumption and EDP vary.

also lower than th@&-issue core. Hence, if low power is required, thessue
core can be selected, and if high performance is require-tbsue core can
be selected. For lower EDP, thdssue core can be selected.

We can also optimize the configuration process by consigéhia percentage
variations in energy consumption, execution cycles, an®® B an applica-
tion when the issue-width is varied fromissue to4-issue and-issue with

different I-caches. By plotting these configurations, wa easily spot the
optimal points. Figur€ 6.11 depicts the percentage variatin energy con-
sumption, execution cycles, and EDP for the Dijkstra, Téttian, and GSM
encode applications when the issue-width is changed frassue to4-issue
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with different I-caches. Considering Figure 6.11(a) fae fhijkstra applica-
tion, when the issue-width is increased fr@assue tod-issue, there is 45%
reduction in execution cycles for almost each cache cordtgur. The energy
consumption varies from% to 30% and the EDP from15% to 9%. For the
Tiffmedian application in Figureé_6.11(b), when the issuettv is increased
from 2-issue to4-issue, there is @7% reduction in execution cycles for al-
most each cache configuration. The energy consumptionsvirden 9% to
19% and the EDP from34% to -13%. Similarly, for the GSM encode ap-
plication in Figurd_6.111(c), when the issue-width is inceg from2-issue to
4-issue, there is @0% reduction in execution cycles for almost each cache
configuration. The energy consumption varies fr@¥-to 39% and the EDP
from -24% to 12%.

Figurd 6.12 depicts the percentage variations in energsuroption, execution
cycles, and EDP for the Rijndael encode application wherishge-width is
changed fronme-issue tod-issue andg-issue with different I-caches. Here, the
continuous lines are drawn only for clarity purpose; othliseythe values are
only at discrete points. When the issue-width is changenh fzeissue to4-
issue, the execution cycles vary fro0% to 2%, the energy consumption
changes fron2% to 34%, and the EDP from26% to 7%. When the issue-
width is increased fror-issue t®B-issue, the execution cycles vary froas%

to 0.4%, the energy consumption changes fr38% to 144%, and the EDP
from -63% to 145%.

All of the previous mentioned example show that the simeltars reconfig-
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Figure 6.12: Percentage variation in energy, cycles, and EDRHmsue and-issue
cores compared te-issue core with different I-caches for the Rijndael encode
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uration of issue-width and I-cache increases the searatedpa finding the
optimal energy consumption, execution cycles, and EDP eoetpto recon-
figuring either the issue-width or the I-cache alone. If ggds the main con-
cern, the issue-width + I-cache resulting in lower energyscmnption can be
selected. If performance is the prime concern, the issui#hwt [-cache with
the lower execution cycles can be selected.

Because of the limited space, we cannot show similar resoitall of the
considered benchmark applications. In the following, wewshnd discuss re-
sults for the complete set of benchmark applications byidenisg their ‘best
I-cache$. The best I-cache with a particular issue-width for an aation
could be the one resulting in the highest performance, thst lenergy con-
sumption or the least EDP. For the following discussion, wes@er the best
I-cache for each issue-width and each application as thewbineh results in
minimum energy with reasonable performance (not less 20é8f of the max-
imum performance). Our assumption is based on the fact thatlyrthe main
purpose of cache reconfiguration is considered as the ensiiggtion.

Instead of comparing to afixed “issue-width + I-cache", weapare the results
for the2-issue 4-issue, an@-issue cores with their best I-caches (as explained
in the previous paragraph) for all of the benchmark appticat In this man-
ner, we can optimize the performance, dynamic energy copsom and the
EDP for each application. Figure 6113 depicts the executiates, dynamic
energy consumption, and the EDP for #héssue and-issue cores with their
best I-caches normalized to that of thessue core with its best I-cache for
the MiBench, PowerStone, and the custom benchmark suitegerieral, we
observed that switching fror@-issue core tal-issue or2-issue core reduces
energy consumption. The main reason is that&hgsue core reads a longer
instruction @56 bits) per access from the cache while thissue and®-issue
cores read shorter instructions2@ bits andé4 bits, respectively) per cache
access. Additionally, the-issue core utilizes more functional units compared
to 4-issue and2-issue cores. On the other side, switching frasissue core

to 4-issue or8-issue core increases the performance as more operations ca
be executed in parallel. In the following, we briefly disctissse results (per-
formance, energy consumption, and EDP) for the differesuaswidths. The
purpose of this discussion is to evaluate effectivenesheoimultaneous re-
configuration of the I-cache and the issue-width for theed#t benchmark
applications. The best I-cache for a particular issuetwadtd a particular ap-
plication can only be selected when the cache hardware éstalseconfigure
as is the issue-width.



132 (HAPTER 6. RESULTS ANDANALYSIS

a @ Cycles-4 @ Cycles-8 [ Energy-4 & Energy-8 ® EDP-4 @ EDP-8
g2
P
w
R
© N 1.5 Tt
= O
>
25 14
g s
W3 05
8 E
g e o T I S P B S
(8] > By & & 2 & & > O T~ S &
& 3 S P> F  &F N <& LS <&
(.7\06‘ > @00 & S o ((/0'2» < <8 &S
&
0 T & > L L
g2 o
2.2 25+—H]
© o
o 277N — H =
23 151 —d——b H —
2 g
G5 1
=
@ £ 4
S & 0.5
=
S o T e e e e P — o T T v
2> S
& & Q,’$<J & c.°é o§ <,°6 @\2\ & o°é Q-(;b & «é c;°6 <,°6
N T F & ¥ & & & o) SEGH
&S LS 2 > RN GIRN NN
8 & & & N O O O% (9%
S o &b &F & &
(a) MiBench benchmarks
@ Cycles-4 m Cycles-8 O Energy-4 @O Energy-8 @ EDP-4 m@m EDP-8 ‘ 3343'01
o 2.5 h
[a N}
w >
s 9 2 I
=
© N
S o 15 1 -
25
[0}
2E o f
_©
E E 0.5+ H
s O
=
rs) 0+ |
KN SIS o O
L Q)cf\ S & & K
© &
s
(b) PowerStone benchmarks
o @ Cycles-4 ® Cycles-8 O Energy-4 O Energy-8 ® EDP-4 @ EDP-8
Qo 25
2
28 2 i
© N
> o 15
o5
Lo 1
g X
@ g 0.5
o =
© © o+EELHE
> < A
[ & &
&

(c) Custom benchmarks

Figure 6.13: Execution cycles, energy consumption, and EDP for4kssue and
8-issue cores normalized missue core (all with their best I-caches).
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From Figure[ 6.13, we can observe that there are some apmiiséernels
such as Bitcount, Tiffmedian, ADPCM decode, DES, DCT, Hangndlis-
tance, IDCT, Moving filter, where the EDP for tl@issue core with its best
I-cache is less than or equal to that of thssue core with its best I-cache.
For these applications switching fromissue to8-issue core increases the
performance more than the energy consumption and henceezdue EDP.
The largest reduction in the EDP is for the DES applicatiohjclv is about
30%. There are some applications such as Susan smoothingaRijdecode,
Rijndael encode, SHA, JPEG, Pocsag, FIR Typel, Floyd-VedrdHuffman
compression, RLE, shellsort, where, for a small increadgeDR, one can get
more performance when the issue-width is changed ftéasue tog-issue.

Similarly, considering tha-issue an-issue cores with their best I-caches, we
can observe that there are many applications, where the BDiRd 4-issue
core is less than or equal to that of théssue core. These applications are;
11 in MiBench: Bitcount, Susan smoothing, JPEG encode, Tif&di Tiffme-
dian, Blowfish decode, Rijndael encode and decode, SHA, AbEIEcode,
and GSM encode; in PowerStone: ADPCM, Compress, DES, G3fax, JPEG,
and Pocsag, antR in custom benchmark suite: DCT, DFT, FIR typel, Floyd-
Warshall, Hamming, Huffman compression, IDCT, matrix njp§t moving
filter, RLE, radixsort, and shellsort. This means that farsth applications,
switching from2-issue to4-issue core increases the performance more than
increasing the energy consumption and hence, reduces the Gidnpared

to “2-issue + the best |-cache"4-issue + best I-cache" reduces the EDP for
Tiffmedian, Rijndael decode, and DES by ab80%6, 36%, and41%, respec-
tively. Additionally, there are some applications, whewith a small increase

in EDP, one can get more performance when the issue-widtmaisged from
the 2-issue to thet-issue.

Considering the energy consumption with the best I-cacbheg\ery issue-
width, there is no case in the considered benchmarks, whei@issue core
consumes less energy than th&ssue or-issue core. The main reason is that
the 8-issue core consumes more power compared to the smallerugdths.
There are some applications such as Bitcount, TiffmediamdRel decode,
DES, Hamming distance, where thdssue core consumes less energy than
that of the2-issue core, both with their best/optimal I-caches. Tiffima and
DES consume 1% and6% less energy, respectively, ortdssue core com-
pared to e-issue core both with their best I-caches. There are manycapp
tions such as Susan smoothing, JPEG encode, TiffdithewfRlo decode, Ri-
jndael decode, SHA, ADPCM decode, GSM encode, CompressxBPEG,
Pocsag, DCT, DFT, FIR Typel, Floyd-Warshall, Huffman coesgion, IDCT,
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matrix multiply, moving filter, RLE, shellsort, where, by gehing from a2-
issue to at-issue core (both with their best I-caches) results in eela@rfor-
mance gain with a small energy increase.

Considering the execution cycles with the best I-caches¥ery issue-width,
all the considered benchmark applications perform betitr tive 8-issue and
4-issue cores compared to thassue core. Switching frorp-issue tog-issue
core (both with their best caches) reduces the executiolexyor Hamming
distance, ADPCM decode, and DES by abdea%o, 40%, and46%, respec-
tively. The largest reduction in execution cycles when ehiitg from a2-
issue to4-issue core (both with their best caches) is for the Rijndaelode
application which is abowg7%.

6.6 Multiport Data Memory/Cache Analysis

Multiple load/store (LS) units can increase the perforneafoc some data in-
tensive applications. Multiple LS units mean multiple reaite ports on the
data memory/cache. In this section, we evaluate the costilbizhe LS units or
multiple read/write ports on the data memory/cache. In FBGa#ge amount
embedded synchronous memory is available in the form of BRAMe data
memory (local or cache) is implemented with BRAMS. In theinkil Virtex-6
XC6VLX240TFPGA, there arg32 BRAMs. Each BRAM provided 8 Kbits

or 2 Kbytes of data storage. Each BRAM provides one read and oite wr
(1R1W) port.

6.6.1 Local Data Memory

Consider we neelfl Kbytes of data memory to be implemented using BRAMSs.
When the data memory is local = ceil(M/2) BRAMs can store and pro-
vide the data to a single LS unit. When the LS units increasdtipte of

N BRAMs are needed in order to provide the saWeKbytes of memory.
BRAMs are arranged in different banks where each bank iscegsd with a
write port. Multiple BRAMs are utilized inside a bank wherach BRAM is
associated with a read port. Figlre 6.14 depicts a 2R2W plates memory
configuration implemented using BRAMs. Thérection Tableis a multiport
memory implemented with the FPGA's configurable LUTs/gic&@he depth
of the Direction Tableis the same as that of the data memory and its width
depends on the number of write portsof, of the number of write ports).
The hardware utilization and the latency of thaection Tableand the asso-
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Figure 6.14: 2R2W ports data memory configuration implemented with BRAMs

ciated multiplexers grow with the size of the data memonpldi®.1 presents
the number of BRAMSs required to providd Kbytes of data memory with
multiple read/write ports or LS units. As can be observediftbe table, the

resource requirement or area increases exponentiallyimgtieasing the LS

units. Compared to a single LS unit, keeping the area/ressusame for the
data memory, providing two, three, and four read/write poetduces the data
storage of the memory by/4, 1/9, and1/16, respectively.

Table 6.1: Number of BRAMs required for M Kbytes of data memory.

| Load/store unit§ Read/Write ports Total BRAMs |
1 1IRIW N = ceil(M/2)
2 2R2W 2x2xN
3 3R3W 3x3xN
4 4R4AW 4x4xN
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6.6.2 Data Cache

In FPGAs, cache memory is also implemented using BRAMSs. iBiray mul-
tiple LS units or multiple read/write ports complicates #eche controller
design as well as increases the cache memory area. We ped@amanalysis
for the area requirement (total number of BRAMS) of the datzhe with mul-
tiple read/write ports. We did not include the hardware weses required to
implement the cache controllers. We only present resuifardeng the cache
memory. The data cache memory has mainly two compondats: storeand
tag store Both are implemented with BRAMs. The size of the data stere i
determined by the cache size, and the size of the tag stotdsniined by
the line size as well as the cache size. The cache assdgialsd affects
the size of the tag store. Figure 6.15 depicts the total nurobBRAMSs re-
quired to implement a 1-way data cache memory (data storg sttee) with
multiple read/write ports and varying cache parameter® CEthe size varies
from 4, 8, 16, to 32 Kbytes, and line size varies froms, 32, to 64 bytes. It
can be observed from the figure that keeping the cache paesibe same,
the number of BRAMs increases exponentially with incregugire number of
read/write ports. This consideration is important whengtesg a VLIW pro-
cessor with multiple LS units. Although, increasing the Liftsimay improve
the performance of some applications, but the designerdhledp in mind
the related hardware cost. For example, the designer hastider whether
he/she needs more memory size (in Kbytes) with less numbezaol/write
ports or less memory size with more read/write ports givensdime number
of BRAMs.

350

O 1R1W ports
O 2R2W ports
@ 3R3W ports
W 4R4W ports

N w
a1 o
o o
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100
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Figure 6.15: Number of BRAMs (Xilinx RAMB18s) required to implement 1-wa
data cache memory (data store + tag store) with multiple/vaétd ports.
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6.7 Summary

In this chapter, we evaluated our reconfigurable processsigds presented in
the previous chapters in terms of performance and poweggiensumption.
The 2-4-issue and2-4-8-issue adaptable processors are utilized in different
configurations Z-issue,4-issue, and-issue). For performance analysis, we
utilized different application benchmark suites (MiBenEtowerStone, and a
custom-made benchmark suite). For power consumption siealye utilized
the Xilinx XPower Analyzer tool for FPGAs. We discussed tffeiveness of
the run-time task migration among different cores for 2k-8-issue proces-
sor. With the task migration scheme, performance can beawegror power
consumption can be reduced at run-time. Additionally, wespnted an anal-
ysis (performance, dynamic energy consumption, and EDRhersimulta-
neous reconfiguration of the issue-width &, and8) and instruction cache
(associativity, cache size, and line size) for #hé-8-issue processor. Finally,
we analyzed the effect of increasing the number of readdvpiitrts (LS units)
on the data memory/cache in terms of total storage capawityardware area.

Note.
The content of this chapter is partially based on the foltmppapers:

F. Anjam, M. Nadeem, and S. Wong. A VLIW Softcore Processor with Dy-
namically Adjustable Issue-slots. International Conference on Field Pro-
grammable Technology (FP,Tpp. 393-398, 2010.

F. Anjam, M. Nadeem, and S. Wong. Targeting Code Diversity with Roret
Adjustable Issue-slots in a Chip Multiprocessor. Dasign, Automation and
Test in Europe Conference (DATBp. 1358-1363, 2011.

F. Anjam, Q. Kong, R.A.E. Seedorf, and S. Wong. On the Implementation
of Traps for a Softcore VLIW Processor. HIPEAC Workshop on Reconfig-
urable Computing (WRC2012.
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F. Anjam, Q. Kong, R.A.E. Seedorf, and S. Wong. A Run-time Task Migrat
Scheme for an Adjustable Issue-slots Multi-core Processpmternational
Symposium on Applied Reconfigurable Computing (AR&)102-113, 2012.

F. Anjam, L. Carro, S. Wong, G.L. Nazar, and M.B. Rutzig. Simultareou
Reconfiguration of Issue-width and Instruction Cache forldW Processor.
In International Conference on Embedded Computer Systenchitécture
Modeling and Simulation (SAMOS$)p. 183-192, 2012.



Conclusions

e have argued in this dissertation that the combination of prograa
bility with reconfigurability by implementing a reconfigia pro-
grammable VLIW processor in an FPGA will bring several adeges such as
improved performance, reduced power/energy consumpdiesign flexibility,
and rapid application development. Because FPGA developrequires the
knowledge of HDLs, to this end, we presented an open-soust®rnizable
design of a VLIW processor. A complete development tosidnaluding a
parametrized compiler and a simulator is publicly avaikebRpplications can
be developed in a high-level language, such as C, while asahee time, the
processor organization can be adapted to the specific requants of different
applications both at design-time as well as at run-time.his tlissertation, we
presented different optimization techniques for the psegloVLIW processor
and evaluated its effectiveness.

In this final chapter, we summarize the main conclusions aademt the ma-
jor contributions of the thesis, and list some possiblerutasearch directions.
The remainder of the chapter is organized as follows. Se@fid summarizes
the main conclusions of this dissertation. Secfion 7.2 lise major contri-

butions described in this dissertation. Finally, SecfioB Righlights several
possible future research directions.

7.1 Summary

In Chaptef L, we have highlighted the importance of progrability and re-

configurability. Programmability refers to reordering #i?dsting instructions
to perform different tasks. The instruction set is fixed arifiéient programs
make use of the instructions to execute different tasks erptbhcessor. Pro-
grammability means how flexible a processing element is &ptatb a new

139
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application. Generally, programmable processors cartrenige their organi-
zations after fabrication, and have lower performance aghen power con-
sumption compared to a dedicated ASIC. On the other handnfigarability
refers to the ability to change the functionality of instians themselves, i.e.,
the instruction set can be redefined. A (re)configurablegesar can adapt its
instruction set as well as its hardware organization. Famgle, the issue-
width can be changed when required by an application for dvgnt perfor-
mance or reduced power consumption.

In order to take advantage of both, we have proposed to censogramma-
bility with reconfigurability by implementing a programmab/LIW proces-
sor in a reconfigurable hardware such as FPGA. A VLIW progelsas sim-
ple hardware design, consumes low power, and can providepgidormance.
Different parameters of the processor such as issue-vifttmumber and type
of execution units, register file size, degree of pipeliningche parameters,
fault tolerance, peripherals implementation, etc., canmagle configurable
and selectable at design-time. Hence, an optimized processerms of per-
formance, area, power/energy consumption, and religlgiéin be quickly im-
plemented for each application. Additionally, the process made run-time
reconfigurable, where, after the implementation in hardweertain parame-
ters of the processor can be adapted in order to target peafae vs. power
consumption trade-offs.

After discussing the advantages and disadvantages of VIddVsaperscalar
processors in Chaptér 1, we have argued in Chapter 2 to fotwas\AIW
processor rather than a superscalar processor. Both porsagilize multi-
ple parallel execution units to exploit ILP. For a VLIW preser, a compiler
extracts the ILP, where as for a superscalar processor, -innenhardware
determines the number of operations to be issued in pardiles makes the
design of a VLIW processor simpler and more power efficiemhjgared to
a superscalar processor at the expense of a complex compléepresented
different motivational scenarios why we chose to start it available ISA
and toolchain. We discussed the VEX ISA based on which we taveloped
our adaptable VLIW processor. The VEX toolchain is used fohiectural
exploration and code generation. In the end, we surveyedtéte-of-the-art
in configurable softcore processors.

In Chaptef B, we presented an open-source design-timencizstiole softcore
VLIW processor calleth-VEX. We presented a methodology to implement
and utilize the processor. Applications written in C langei@an be profiled
and simulated with the VEX toolchain to determine the silé&gimrameters
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for the processor. The parameters include the processstis4width, the type
and number of different execution units and their latendies type and size
of register files and the number of read/write ports, sizensfriiction and
data memories, type of interrupt and exception systemectseh of default
custom operations, datapath sharing, etc. These paranagteplaced in two
configuration files which are input to our synthesizable VHolde during the
processor implementation. Hence, without knowing the HOthe designer
can generate a desired/optimized/EX processor. The same parameters are
provided to the C compiler to generate the VEX assembly codéhe appli-
cation. This code is passed through a custom assembler evagerbinaries
for the application. Instruction and data memories can lialized from the
binaries. Using this methodology, trade-off between pertnce, hardware
resource utilization, and power consumption can be maddifferent applica-
tions, and hence, optimized implementations can be gerterdhe following
has been achieved in relation to the open questions poseztiin§1.3:

e By implementing a VLIW processor in an FPGA, we have combined
programmability with reconfigurability. To this end, we leaproposed
a softcore VLIW processor that can be customized in diffepamam-
eters before implemented in hardware. Applications canrbéled to
determine the suitable processor organization for it, tvisign then be
implemented in hardware. Hence, the processor can be tormedtth
the particular requirements of each application.

e The synthesizable VHDL design for the VLIW processor hasibeade
parametrized, and hence, optimized solutions can be gedenathout
using any C-to-VHDL tools. Applications can be develope@irwhile
taking advantages of the reconfigurability provided by aGRAP

e An optimized instruction encoding scheme has been proptsead-
crease the available opcode space. A methodology to extendsgtruc-
tion set of the processor has been presented. Differentventb-custom
operations have been implemented that could be added toabegsor
at design-time.

In Chaptei’#, we extended the design-time configurable psocepresented
in Chaptei B to make it run-time reconfigurable. The proasskave mul-
tiple (two for the2-4-issue processor and four for the4-8-issue processor)
2-issue cores, each of which can run independently. If nos@& aach core can
be taken to a lower power mode by gating off its source clociltiple 2-issue
cores can be combined at run-time to form larger issue-widihV cores and
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a variety of other multi-core configurations. The run-tireeanfigurable pa-
rameters include the issue-width, the number and type afudixa units, and
the register file size. The processors can target a variggppfcations having
instruction, data, and task level parallelism. Based onrttegrupt system pre-
sented in Section 3.3, we developed a run-time task migratheme for the
2-4-8-issue processor. With this scheme, cores can be utilized afficiently.
A task running on a core can be migrated to a larger or a sriafiee-width
core for performance improvement or power reduction, retsgy. Addi-
tionally, we discussed the simultaneous reconfiguratiossafe-width and in-
struction cache for the-4-8-issue processor to target performance, dynamic
energy consumption, and EDP. The following has been acdthieveelation to
the open questions posed in Secfiod 1.3:

e In order to target performance vs. power consumption tafieat run-
time, dynamically reconfigurable multi-core processorspnsing of
multiple 2-issue p-VEX cores have been proposed and implemented.
The smaller cores could be utilized independently to exfdiP/TLP
or could be combined at run-time for making larger issuethvicbres
to exploit ILP. The cores could only be combined or split wiieey are
idle, i.e., not executing any application.

e A mechanism for run-time task migration among differentesoof a
multi-core processor has been proposed to improve therpsafwe or
reduce the power consumption of the processor at run-timith the
task migration scheme, cores could be combined or split etem they
are not idle, and hence, could be utilized more efficiently.

e A system with reconfigurable issue-width and instructiocheehas been
proposed in order to analyze the effect of simultaneousnfegaration
of issue-width and instruction cache on the performanceadhyc en-
ergy consumption, and EDP for different applications.

When the datapath of a processor gets larger and compleprabeability of

errors (such as radiation-induced soft errors) also isereal herefore, it is be-
comes necessary to employ fault-tolerant techniques raodguarantee high
reliability and dependability of the safety-critical sgsts. Run-time detection
plays an important role in dependable systems, where ieidettthat the com-
puted data is either correct or an error signal is generateshewer there is a
possible error. In Chaptét 5, we presented hardware-bas®dyarable fault

tolerance mechanisms for our configurable processors. r&ep@chniques
are employed to protect different modules of the processwon single event
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upset errors. Parity checking is utilized to detect errorthe instruction and
data memories and the general register file, while triple uteodredundancy
approach is employed for all the synchronous flip-flops. Algietime, a user
can specify to include or exclude the fault tolerance in trec@ssor designs.
Additionally, the user can choose to implement a design iichvFault toler-
ance is always enabled or run-time reconfigurable. In tle [zse, the fault
tolerance can be enabled and disabled at run-time to ogiptwer consump-
tion whenever fault tolerance is not needed. These optioable a user to
trade-off between hardware resources, performance, powesumption, and
reliability. The following has been achieved in relationtbhe open questions
posed in Sectiopn 11.3:

e Hardware-based configurable fault tolerance techniques baen pro-
posed and implemented for the/EX processor to mitigate single event
upset errors. The fault tolerance can be included/exclud#te proces-
sor at design-time and/or enabled/disabled at run-time.

In Chaptef B, we evaluated our reconfigurable processogmegiresented in
the previous chapters in terms of performance and poweggmensumption.
We utilized the2-4-issue and2-4-8-issue processors in different configura-
tions (2-issue,4-issue, anag-issue) and used different application benchmark
suites (MiBench, PowerStone, and a custom-made benchmitek 3Ve eval-
uated the effectiveness of the run-time task migration andifferent cores for
the 2-4-8-issue processor. Additionally, we analyzed the effectimiuttane-
ous reconfiguration of issue-width and instruction cach¢henperformance,
dynamic energy consumption, and EDP for different benchkrapplications.
Finally, we evaluated how increasing the number of reatiwgorts on data
memory/cache affects its capacity and the required haslvegources.

7.2 Main Contributions

In this section, we highlight the main contributions of oasearch that is de-
scribed in this dissertation:

¢ In order to merge programmability with reconfigurabilitye wroposed a
programmable VLIW processor implemented in a reconfiger&alrd-
ware, such as FPGA. The processor can be adapted to the specifi
quirements (static and dynamic) of different applications
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Different optimizations have been presented for the preg@socessor.
These include the different type of the multiported regisite, differ-
ent implementation styles for the interrupt system, a datagharing
mechanism, the hardware multiplier, etc.

An optimized instruction encoding scheme has been proposerter
to increase the available opcode space. A methodology tméxhe
instruction set of the processor has been presented. A shfferfent
sub-word custom operations have been implemented thadl dmuin-
cluded at design-time.

Dynamically reconfigurable multi-core processors conipgi®f multi-
ple smaller cores have been proposed to target performamcpaaver
consumption characteristics at run-time. The processobeaused to
exploit ILP, DLP, and TLP.

A scheme for run-time task migration among different coréshe
multi-core processor has been proposed for performanceirament
or power reduction at run-time. With this scheme, cores @Gacdm-
bined or split even when they are not idle, and hence, canilisedt
more efficiently.

Hardware-based configurable fault tolerance techniques been pre-
sented to mitigate SEU errors in the proposed processore fauit
tolerance in the processor can be included/excluded agriéisie.
The included fault tolerance can be made permanently ethaslen-
abled/disabled at run-time.

The impact of simultaneous reconfiguration of issue-widttl mstruc-
tion cache on performance, energy consumption, and EDP lhese
evaluated. The results showed that instead of reconfiguithgr the
issue-width or the instruction cache alone, reconfiguriath hlogether
has more potential to improve the performance, energy copsan,
and/or EDP.

7.3 Future Research Directions

In this dissertation, we have proposed an adaptable praciss can be tuned
to the requirements of different applications both at desigie as well as at
run-time. The proposed approach combines the benefits gfaraomability
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and reconfigurability. Following are some possible futwesearch directions
in which the introduced approach could progress:

e Currently, thep-VEX processor has stages. In order to increase the
clock frequency, the number of processor stages can beawenle For
example, the decode stage can be split into a decode stagparahds
read stage. The execution stages can also be split oveplaidtages.
Increasing the number of processor stages complicatesetsignd of
the forwarding network. The situation becomes worse witltdasing
the issue-width of the processor. The advantage in our cad&i we
can simulate the application with different latencies toe £xecution
units. Hence, based on the required criteria (performahaejware
area, power consumption, etc.), we can select to implemeuarizal
forwarding network in order to balance its complexity andi@enance
making the design highly customizable.

e The p-VEX processor implements the complete VEX instruction set
Because the instruction set is very rich, implementing flhe defined
operations increases the hardware area as well as powemsptisn. In
order to generate optimize application-specific procesdbe inclusion
of the hardware for the required-only operations can be noedén-
time selectable. The application can be profiled to detesrttie used
operations in the program. This information can then be tsegtlect
only the required operations when implementing the prasess

e In FPGAs, the standard clock gating techniques are notefieind can-
not avoid the power consumed in the clock networks which aaisofor
a considerable amount of the total consumed power. Pagtiahfigura-
tion based structural clock-gating technigue [135] cannbeléemented
for the p-VEX processor. The technique is based on the dynamic partia
reconfiguration of the configuration memory frames relatetthé clock
routing resources in FPGA. A small hardware controller canniple-
mented to perform the reconfiguration process which can beated
by decoding a special instruction on the processor.

e The 2-4-8-issue processor consists of multiplessue cores which can
be used in different configurations. Run-time algorithms lba imple-
mented to schedule different tasks on the processor. Thoetalgs can
use compile-time and run-time information (such as pertoroe, power
consumption, etc.) to properly configure the available saepending
upon the tasks in the task queue. Hence, the cores can bermffici
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utilized and performance and power consumption can be odat
run-time. The algorithms can be implemented in a specialvaare or
in software executing on a core.

In this dissertation, we have analyzed the effect of simmeitais recon-
figuration of issue-width and instruction cache on the gentnce, en-
ergy consumption, and EDP. A similar analysis can be pedrfior
the data cache. Both the instruction and data caches carcloeled
in the analysis to extend the scope. Because increasingutmbar
of load/store units can increase the performance, thexeflata caches
with multiple read/write ports can be considered in the ysial Run-
time algorithms can be implemented to perform the recordigpm of
the caches and the issue-width when required dependingdifferent
parameters gathered at run-time or compile-time.

In a different project, the AMBA AHB/APB bus protocol has Ipeien-
plemented for the-VEX processor. This setup can be extended to im-
plement ap-VEX based complete system-on-chip (SoC). With the bus
implementation, it becomes simple to integrate differemgheral com-
ponents, such as caches, interrupt system, UARTSs, timedpther 1/O
components. Memory management unit (MMU), direct memoogss
(DMA) unit, and other advanced components can be implerdanter-

der to run an operating system on the processor. This coattttethe
development of a multi-core based high-performance SoC.

Support for adding custom operations at run-time by meanpaof
tial reconfiguration could be investigated. With partiataefigu-
ration, hardware resources can be shared among differectidn-
alities/implementations.  Hardware accelerators or ewmgel co-
processors can be defined and connected to the processar-taneu
to off-load compute-intensive tasks.

Hybrid (software and hardware) approaches for fault distecnd re-
covery can be explored. The4-8-issue processor can be configured
to run a code in duplicate (twé-issue cores) or triplicate (threeissue
cores). With a slight modification in the micro-architeetuthe results
can be compared for error detection. With the task migrasicimeme
presented in Sectidn 4.3 and the generic binarie’s [80],uhieimg code
can be migrated from a faulty core to a non-faulty core.
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