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Abstract
Convolutional Neural Networks (CNNs) have
made significant strides in the field of image pro-
cessing over the last decade. Different approaches
have been taken and improvements have been sug-
gested. This paper looks at a newer novelty to neu-
ral networks for image counting, which is based
on single-pixel center localization instead of the
traditional bounding boxes. This neural network’s
loss function is the weighted average Hausdorff dis-
tance, which does not only take into account the
number of misclassified points but also the dis-
tance between predicted points and ground truth
values. The paper aims to compare the accuracy of
the single-pixel center neural network on original
training images of wheat heads as compared to fil-
tered images. The filtered images have had a band
pass filter applied to them, that is constructed by
looking at the average frequency of wheat heads.
It filters out certain lower and higher frequencies
up to a threshold, and its aim is to reduce back-
ground noise and accentuate the wheat heads. Re-
sults showed that there was no significant and at-
tributable improvement in the performance of the
object counter when trained on images with filtered
frequency information. A discussion of the unex-
pected results then carries out, with the aim of ra-
tionalizing the insignificant improvement in perfor-
mance of the neural network on filtered images. As
part of the discussion and conclusion, a recommen-
dation is also made, giving insights into determin-
ing if this single-pixel center neural network is ap-
propriate for a given dataset of images.

1 Introduction
State-of-the-art convolutional neural networks (CNNs) for
object counting and localization are trained on images that
are labeled using bounding boxes. In these images, a rectan-
gular box is placed around each object of interest. However,
there are certain drawbacks associated with using bounding
boxes for image labeling. For example, accurate labeling of
objects in image datasets using bounding boxes takes an aver-
age of 88 seconds per image [1], making image annotation a

tedious and costly process. Moreover, a bounding box around
an object of interest might not always be the most appropriate
labeling method; crowded, overlapping and relatively small
objects could be better represented by single-pixel points that
indicate their center. For example, single-pixel labels of peo-
ple’s heads would be more appropriate than bounding boxes
when trying to estimate the crowd of a concert hall. This pa-
per aims to test this benefit brought by center-based object
locators on a dataset of images of wheat heads.

1.1 Research description
Ribera et. al in [2] proposed a neural network that uses a set
of single-pixel points to denote the centers of objects in an
image instead of bounding boxes. In order for the neural net-
work to train and evaluate its loss, the distance between two
sets of points in the x-y plane of an image has to be computed;
one set being the set of predicted points, and the other being
the set actual of points. As a loss function, [2] used a modi-
fication of the average Hausdorff distance, which they called
the weighted Hausdorff distance. The average Hausdorff dis-
tance dAH(X,Y ) between two sets of points X and Y, which
this modification is based on, is defined as follows:

dAH(X,Y ) =
1

|X|
∑
x∈X

min
y∈Y

d(x, y) +
1

|Y |
∑
y∈Y

min
x∈X

d(x, y)

where |X| is the numer of points in X, |Y | is the number of
points in Y, and d(x,y) is the Euclidean distance between two
points x and y.

This is especially useful because unlike other loss mea-
sures, the weighted Hausdorff distance does not only take into
account misplaced and miscounted points, but also the dis-
tance between predicted points and actual points. The neu-
ral network based on this loss proposed by [2] was shown
to outperform state-of-the-art neural networks on datasets of
images of people’s heads, images of pupils and aerial images
of wheat fields. The objects of interest in these images only
spanned a few pixels in size, and were identical in terms of
orientation and color. This paper aims to test this neural net-
work on a dataset of noisier images with larger objects, in
order to evaluate its generality on more troublesome images.

Some datasets of images can pose problems such as noise,
blur and overlapping elements. The Kaggle Global Wheat
Detection (KGWD) dataset is a collection of images of wheat
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heads that are labeled using bounding boxes [3]. These im-
ages suffer from the same aforementioned problems, such
as blur caused by wind and overlapping wheat heads. The
dataset was picked for the purpose of the research because it
allows us to evaluate the neural network on conditions that
are unlike the ones it was previously evaluated on; instead of
images with small and similar objects, the wheat heads in this
dataset are larger and different in size, shape and orientation.
Such problems can be seen in Figure 1, which shows an ex-
ample image from the dataset containing 47 wheat heads to
be detected.

Figure 1: An example wheat head image from the Kaggle
Gloabl Wheat Detection Dataset. It contains 47 wheat heads
of different sizes and inclinations. The image is also noisy,

and overlapping wheat heads can be seen.

To tackle the problem of noise, we can pre-process the
data by filtering out frequencies of the input images using
a frequency filter. This is done by performing a discrete Fast
Fourier Transform (FFT) on the input images, then filtering
out certain frequencies using a frequency mask, which will
reduce noise in the image and emphasize the wheat heads.
It will also make the neural network less invariant to varia-
tions in the color of the wheat heads. The potential improve-
ments to the accuracy of a neural network based on single-
pixel point labeling using frequency information has yet to be
evaluated, and this is most likely due to the neural network al-
ready performing sufficiently well on unfiltered images. If it
can be shown that using a frequency filter improves the accu-
racy of a center-based object locator, this pre-processing tech-
nique could be employed in the case where it doesn’t perform
well enough on unfiltered images.

1.2 Contributions
The aim of this paper is to evaluate the single-pixel label neu-
ral network on the Kaggle Global Wheat Detection dataset,
first using original, unfiltered images then using images fil-
tered in the frequency domain. The difference in the accu-
racy of the neural network in these two scenarios will be used
to determine if using frequency information improves the ac-
curacy of the neural network. What is evaluated is not the

absolute performance of the neural network under both con-
ditions, but the relative difference in accuracy when trained
on original images as compared to filtered images. We found
that contrary to expectations, applying a frequency filter to
training images did not improve the performance of the neu-
ral network. There are many possible reasons, the most prob-
able being related to properties of the Kaggle Global Wheat
Dataset, which makes it unsuited for this type of neural net-
work. The key contributions of the paper are as follows:

• The results of running an object locator based on the
weighted Hausdorff distance are evaluated, using multi-
ple metrics, on original training images and filtered im-
ages in the frequency domain.

• Rationalizations of the obtained results, and hypotheses
regarding why these results were obtained.

• A modification of the weighted Hausdorff distance is
suggested, that it less distance-sensitive as it takes into
account the size of the object

The paper is organized in the following way: section 2 dis-
cusses related works in the field of single-pixel neural net-
works and frequency analysis in imaging tasks, and how our
study differs. Section 3 gives a high-level overview of the
methodology employed in the experiment. Section 4 goes
over the process of constructing the bandpass filter and how
its parameters were determined. Section 5 outlines the con-
figuration of the neural network that was used in both sce-
narios, as well as the results obtained. Section 6 is a brief
note regarding how reproducibility of the research is main-
tained throughout the experiment, and section 7 offers a dis-
cussion surrounding the results. Section 8 summarizes the
method and results of the research, outlines the limitations of
the project and suggests topics for future research related to
the research question.

2 Related Work
The domain of single-point center-based object locators has
been explored by recent studies that have shown promising
results. Likewise, frequency information has improved both
the accuracy and training time of neural networks in multi-
ple studies. The use of frequency information to improve a
center-based object locator has yet to be studied. This sec-
tion discusses different related works, possible reasons be-
hind this topic not being studied, and differences between re-
lated works and our contributions.

2.1 Center-based object counting
Recent advances in object counting model an object as a sin-
gle point instead of a bounding box. Object locators that are
based on single-point centers and have no notion of bound-
ing boxes were pioneered [2], and this domain was later ex-
tended by neural networks that first find an object’s center
then regress its bounding box [4]. Both of these approaches
showed results that are either inline with or superior to state-
of-the-art approaches such as FasterRCNN or YOLOv3, but
other studies showed that the Average Hausdorff Distance
was not an effective loss function for image processing tasks



such as classification [5]. The object locator used in this re-
search is the one implemented by [2]. It was chosen because
it was consistently shown to perform well on images with
small, similar elements, as opposed to [4] which was tested
on multi-class images with larger objects. Unlike the past
works we mention, we test the accuracy of the object locator
on both original and filtered images in the frequency domain,
in order to see if filtering frequencies in training images can
possibly improve its accuracy. Previous implementations of
center-based neural networks were most likely only tested on
original images because their performance was good enough
on the test set. Contrary to findings discussed in [2] and [4],
the neural network showed very low accuracy when trained
images from the Kaggle Global Wheat Dataset; this is later
rationalized in Section 7.

2.2 Image classification in the frequency domain
Image classification tasks using Fourier analysis have been
tested in many works, with notable improvements in accu-
racy [6; 7; 8]. FFT-based convolutional neural networks were
shown to improve training time [6], and the superiority of
learning in the frequency domain was demonstrated ”for a
variety of tasks, including classification, detection and seg-
mentation” [7]. Notable improvements in the accuracy of a
deep neural network on image processing tasks were also re-
ported [8], using a ”slicing procedure that allow the network
to learn both global and local features from the frequency-
domain representation of the image blocks”. The research
carried by [8] used the cross-entropy loss function, which
does not offer the benefits of a distance-sensitive loss like the
Hausdorff distance. This field is widely explored, but evaluat-
ing a center-based object locator on images in the frequency
domain has yet to be done. This is most likely because the
emergence of such neural networks is recent and their accu-
racy was evaluated on original images to benchmark against
state-of-the-art approaches. Our contribution is an evaluation
of the center-based object locator proposed and implemented
in [2], which unlike previous studies did not result in a signif-
icant improvement in performance. In section 7, we explain
why this unexpected result is not representative of the impact
of Fourier analysis in image processing tasks, but rather due
to the unsuitable nature of the dataset for the type of neural
network used in this study.

3 Methodology
The labels of the dataset are first converted from bounding
boxes to single-pixel points, which is done by taking the cen-
ter pixel of the bounding box. The center of the bounding
box as a point label is the most logical approach to single-
pixel annotation. It also complements recent approaches to
regressing the bounding box of an object from a single point,
which use the center as a reference [4].

The Global Wheat Dataset includes labelled images in the
form [xmin, ymin, width, height], with the dimensions of the
bounding box around each wheat head being xmin + width,
ymin + height. Taking the center of the bounding box as the
single-pixel label, the data has been rearranged to xcenter,

ycenter, with
xcenter = xmin + (

w

2
)

and
ycenter = ymin + (

h

2
),

where h and w represent the height and width of the bounding
box respectively. Figure 2 shows an example image of wheat
heads being represented by both bounding boxes and single-
pixel centers derived from those bounding boxes.

Figure 2: An example wheat head image, with the original
bounding boxes around each wheat head in blue and their
respective centers in red. Looking at the figure, using the

center of the bounding box as the single-pixel denotation of
a wheat head is an accurate representation.

A filter mask is then applied to training images in the fre-
quency domain in order to generate a dataset of filtered im-
ages used to train the object locator. The thresholds for the
frequency mask have to be methodically chosen; [8] pre-
scribes ”trainable frequency filters that boost discriminative
components in the spectrum”. Filtering based on the power
spectra of wheat heads and background patches aims to re-
duce noise in the image and accentuate wheat heads. The goal
is to exploit the difference between the frequency information
of wheat heads and the frequency information of the rest of
the image to improve the accuracy of the object locator.

The object locator employs the U-Net architecture [9]. The
visual depiction of its architecture can be found in appendix
A.1.

4 Construction of the Bandpass Filter
Both original and filtered training images are evaluated in the
scope of this researched, in order to measure the potential im-
provements a frequency filter can bring to the accuracy of the
neural network. The filtered training images will first have a
Discrete Fast-Fourier Transform (FFT) applied to them, in or-
der to represent them in the frequency domain. A frequency
mask will then be applied, which will filter out both low fre-
quencies and high frequencies up to certain thresholds. This



Figure 3: The process used to transform an original image into a filtered image. The input is an original image from the
Kaggle Global Wheat Dataset. The image is then translated to the frequency domain using the Discrete Fast Fourier

Transform. A frequency mask is applied to the resulting image, which is shown in the third step. Finally, the Inverse Fourier
Transform is applied to the third image to convert it back to its original domain.

type of mask is called a band pass filter, and it is used with
the goal to reduce noise in the image and accentuate wheat
heads.

For the low pass filter, frequencies above 120 are cut. This
value is a constant that is set from the beginning. The aim of
this low pass filter is to reduce the noise in image. For the
high pass filter, a meta-analysis of 115 images is used to de-
termine an appropriate threshold. For these 115 images, the
average frequency within bounding boxes, where the wheat
heads reside is calculated. Also aggregated is the average fre-
quency of the entire image. The difference of the these two
is then taken, and if the difference in frequencies is above a
fixed threshold of 0.2 * 10e-7, their value is included in the
mask. The reason for this method instead of manually pick-
ing a parameter value for the high pass filter is because too
much frequency information could be cut from the image if
the threshold is too high, and having a value that is too low
would not optimally reduce noise in the image. Using this
newfound threshold for the high pass filter, the mask is ap-
plied to all 3373 images in the training set. These images are
then converted back to their original domain using the Inverse
Fourier Transform. Figure 3 shows a pipeline describing the
process of transforming an input image, given that the filter
parameters are already calculated.

5 Experimental Setup and Results
Although the focus of the study is related to the relative im-
provement in performance of the object counter with filtered
images and not its absolute performance in the two scenarios,
the parameters of the neural network were changed to better
suit the problem. It is important to note that the configuration
that is described below has been applied, with no modifica-
tions, to the object counter when run on both filtered and un-
filtered data. This was done to ensure that the object locator
acts as a control, and that no difference in accuracy can be
attributed to different neural network configurations. Explic-
itly listing the parameters of the neural network also ensures
that the experiment is more easily reproducible, which will
be more extensively discussed in section 6.

The object locator CNN was run with the following con-
figuration:

Figure 4: Training and validation loss of the neural network
when trained on original and filtered images. The loss de-
creases over 10 epochs, but settles around 110. There is not a
significant difference between the validation loss of the neu-
ral network when trained on original images as compared to
filtered images.

• Dataset split: 80 percent of the images were used for
training epochs, 10 percent for validation after each
epoch, and 10 percent for testing.

• Image size: 512x512 (original image size being
1024x1024)

• Batch size: 8
• Epochs: 10. Early test runs showed that after 7 to 10

epochs, the drop in both training and validation loss were
insignificant.

• Learning rate: 1e-3
• No data augmentation.

Figure 4 shows the average loss over each of the 10 epochs
when the neural network is run on original images and fil-
tered images. It shows that the training loss and validation
loss of the neural network decreases over the course of 10
epochs when trained on unfiltered and filtered images. Both
the training and validation loss decrease over the epochs in



both scenarios, but never below 110 which is a relatively high
loss value. Although the losses of the neural network are
lower with filtered images, the difference is minor; the last
validation epoch shows a loss of 118 for original images and
113.4 for filtered images, a percentage difference of 3.98%.

Both trained models of the neural network were saved as
checkpoints. After each validation epoch, the average val-
idation loss was calculated for this epoch, and the model
was only saved if the loss was the lowest so far. They were
then evaluated based on the precision, recall and Root Mean
Square Error (RSME) metrics. Precision is defined as

TP

TP + FP

where TP is the number of true positives and FP is the number
of false positives. This is a measure of the ratio of positive
identifications that were correct. Recall is defined as

TP

TP + FN

where TP is the number of true postives and FN is the number
of false negatives. This is a measure of the ratio of actual pos-
itives that were correctly identified. Finally, the Root Mean
Square Error (RMSE) is calculated as follows:√√√√ 1

N

N∑
i=1

|Ĉi − Ci|2

where N is the number of images, Ci is the true count of
wheat heads in the image, and Ĉi is the trained model’s wheat
head count estimate.

The results of evaluating the saved models on these met-
rics on a test subset of 10% of the dataset are shown in Table
1. The object locator was configured to consider any point
within 10 pixels of the ground truth values to be considered
a true positive. The table shows that the filtered training im-
ages led to very slightly better accuracy on the test set. How-
ever, the object locator performed abysmally under both con-
ditions, and the improvement in performance is insignificant.
Filtering frequencies of training images did not improve the
performance of the object locator sufficiently enough, despite
the parameters for the bandpass filter being carefully chosen
after running an analysis over training images.

Unfortunately, the results shown in figure 4 and table 1 can-
not be simply disregarded as issues related to neural network
hyper-parameters. Early test runs performed with varying
batch sizes, learning rates and image sizes produced similar
results. The neural network’s architecture was even modi-
fied by removing the 5 central layers, to no avail. A discus-
sion listing possible reasons for both the poor absolute per-
formance of the object locator and its lack of improvement
using filtered images follows in section 7.

6 Responsible Research
When performing research on image processing tasks, repro-
ducibility is crucial. Researchers who wish to run a convo-
lutional neural network on filtered data in the frequency do-
main must be able to easily replicate the steps taken in this

Precision (%) Recall (%) RMSE
Original images 16.57 18.26 9.11
Filtered images 18.11 18.30 9.02

Table 1: The precision, recall and root mean square error of
the object locator, trained on original and filtered training im-
ages, when evaluated on a test set of 337 images. The r value
used is r=10, meaning that any point within 10 pixels of a
ground truth point is considered a true positive. A very slight
improvement in precision, recall and RMSE can be attributed
to training the data on filtered images.

paper. All the steps outlined in the first three sections of this
paper can be reproduced to arrive to similar results. Both
the Kaggle Global Wheat dataset and the Locating Objects
Without Bounding Boxes neural network are open access [2;
3].

Outlining all the configuration of the object locator in Sec-
tion 3 was another step taken to ensure reproducibility. The
goal was to leave as little uncertainty with regards to the pa-
rameters that were used to run the experiment.

There are still, however, some problems with the repro-
ducibility of the experiment. For instance, running the neural
network on unfiltered and filtered images over 10 epochs is
very computationally expensive, and would not be able to be
done were it not for the access to High Performance Com-
puting (HPC) clusters. Without access to high-performance
GPUs, the process would still be possible to replicate but
would take much longer. However, because the goal of the
research was to evaluate the relative performance of an object
counter when run on unfiltered and filtered training images,
the experiment can still be run on a simplified neural network
if computational capacity is an issue.

One of the first steps taken was to convert the la-
bels from bounding boxes to single-center points. In
the spirit of promoting reproducibility, I have made the
code for this step accessible in the form of a Jupyter
Notebook file, and it can be found at https://github.com/
dtronmans/bounding-boxes-to-centers/tree/main. The code
for finding the average width and height of bounding boxes
for the entire dataset, which I mention in the upcom-
ing section, can be found at https://github.com/dtronmans/
average-width-height-bbox.

Convolutional neural networks are showing steady im-
provement thanks to new novelties such as the single-pixel
center object locator. These advancements can inevitably lead
to neural networks being employed for a variety of unethi-
cal computer vision tasks, such as facial recognition in public
places, tracking and surveillance. In the case of a study on hu-
man behaviour using computer vision, the scenario in which
it is used should be legal, test subjects should be informed
and trust should be established [10]. Most of the tasks related
to human computer interaction through the use of computer
vision techniques involve some degree of ethics that need to
be thoroughly considered, such as unwanted discrimination
of people based on certain characteristics [11] or the ethics
behind creating people-centric datasets [12].

https://github.com/dtronmans/bounding-boxes-to-centers/tree/main
https://github.com/dtronmans/bounding-boxes-to-centers/tree/main
https://github.com/dtronmans/average-width-height-bbox
https://github.com/dtronmans/average-width-height-bbox


7 Discussion
Contradictory to the self-evident hypothesis that running the
object locator on masked training images would improve the
performance of the neural network, section 5 showed that
there were no significant improvements. Two phenomena
have to be discussed. The first is the poor absolute perfor-
mance of the neural network when trained on original and
filtered images; this will also give leads as to why the second
phenomenon occurred, which is the lack of relative improve-
ment in accuracy when the it was trained on filtered images.

7.1 Limitations brought by properties of the
dataset

The most probable reason as to why the neural network per-
formed poorly when run on both original and filtered images
is the nature of the dataset. In [2], Ribera et. al ran the
single-point object locator on images with small objects of
similar size and shape, such as crowd heads or pupils. In
the case where the neural network was tested on pictures of
wheat heads, they were taken aerially by drones and therefore
covered only a few pixels in height and width, making them
better represented by bounding boxes. In contrast, the Global
Wheat dataset contains close-up images of wheat heads of
varying sizes, shapes and orientations. As an example, Fig-
ure 5 shows an example problematic wheat head, with both
its original bounding box annotation and its center. It spans
over 162 pixels in width and 97 pixels in height.

Figure 5: An example problematic wheat head and its
original bounding box annotation. The green and purple

dots, on the top-left and bottom-right corners respectively,
represent possible points that hit the wheat heads but would

still result in high loss when the weighted Hausdorff distance
is used.

In this example, normalizing the top-right corner coordi-
nate of the bounding box as (0, 0), the center is at (81, 49),
indicated by a red dot. However, both the coordinates (5, 20)
in green and (143, 76) in purple also hit the wheat head, at the
top-left and bottom-right extremes respectively. If the object
locator, during its training, predicts a center to be at the ex-
treme (143, 76), this corresponds to a Euclidean distance of

√
(143− 81)2 + (76− 49)2 = 68. As the weighted Haus-

dorff distance employed by [2] is based on the Euclidean dis-
tance, this would lead to a high loss despite the wheat head
being hit, causing the neural network to unnecessarily over-
adjust its weights.

To confirm that this is not only an occurrence for this par-
ticularly problematic wheat head but is reflective of the entire
dataset, the average width and height of the bounding boxes
were aggregated. It was found that bounding boxes had an
average width of 84 pixels, and an average height of 76 pix-
els. Taking the center at (84/2, 76/2) = (42, 38), the aver-
age maximum Euclidean distance the neural network can get
while still correctly predicting a wheat head is

√
422 + 382 =

57. In this scenario, the object locator would believe it has
wrongly predicted the wheat heads, despite hitting it.

With filtered images, the object locator suffers from the
same problem. Although filtering the images reduces back-
ground noise and emphasizes wheat heads, there is still the
problem of high loss despite correctly predicting a point on
the wheat head. The problem then does not reside in the neu-
ral network not being able to locate wheat heads, but in the
fact that it is led to the conclusion that it did not hit wheat
heads when it in fact did. It is therefore difficult to mea-
sure the improvements in performance with filtered training
images, as the flawed training process of the neural network
caused by overestimating errors distorts the results of the ex-
periment.

One tentative fix for this problem would be to increase the
radius r, the maximum distance in pixels to a prediction that
still counts as a true positive. This won’t work because of
the deviation in the sizes of wheat heads. Wheat heads with
smaller than average bounding boxes will count points out-
side the radius as true positives, and wheat heads with larger
than average bounding boxes will not encompass the entire
area.

There are two solutions to the problem of objects being two
large for a single-pixel object locator, aside from the trivial
solution to opt instead for a bounding box-based neural net-
work like YoLo v5. The first solution is to use a loss function
that is not distance-sensitive; one example would be to use
cross-entropy, where we can avoid the problem of high losses
despite correctly predicting a wheat head’s locator. Another
solution would be to modify the weighted Hausdorff distance
proposed by [2], by normalizing for the size of the bounding
box. The ground truth file for the dataset would then take the
form filename, counts, locations, bboxes, where bboxes is the
size of the bounding box around the wheat head. The average
Hausdorff distance would then be modified, to be:

dAH(X,Y ) =
1

|X|
∑
x∈X

min
y∈Y

d(x, y)

Ax
+

1

|Y |
∑
y∈Y

min
x∈X

d(x, y)

Ay

where Am is the area of the bounding box around a wheat
head m. This would normalize the loss of the predictor ac-
cording to the size of the bounding box, which is a sufficient
work-around to the problem.



7.2 Limitations in the construction of the
bandpass filter

Aside from the nature of the dataset, there are other reasons
as to why the object locator’s accuracy did not improve when
run on filtered training images. These reasons are related to
the construction of the band pass filter.

First, two of the parameters picked for the mask were fixed
and chosen manually. The first is the threshold, which is
the minimum difference between wheat head frequencies and
background frequencies needed to construct the mask. This
value was set at 0.2 and remained unchanged. Similarly, the
exclude parameter was set at 120. This is the parameter used
for the low pass filter, which removed frequencies higher than
120. As a result, the mask may have removed too much
frequency information from the image, hindering the perfor-
mance of the CNN. However, it is unlikely that finding a way
to fine-tune these two parameters to an optimal value would
lead to a much better performance. Informal runs of the neu-
ral network on filtered images using different values for the
threshold and the exclude parameter were run, and these were
shown to have worse results.

The exclude parameter could have been chosen by running
an analysis of frequency information over a subset of training
images, in a similar fashion to the method outlined in section
3. For example, the average lowest frequencies in the bound-
ing boxes of wheat heads could be used as a guiding factor
for a more methodical selection of the exclude parameter.

Finally, looking at frequency information inside bounding
boxes may underestimate the difference between the frequen-
cies of wheat heads and the frequencies of the entire im-
age. This is because a bounding box often covers not only
the wheat head, but also some background patches. Figure
5 shows such an example, where the top-right and bottom-
left portions of the bounding box cover background patches.
In this case, the estimated average frequency of wheat heads
will be lower than its actual value, because of the background
patches being taken into account. A small constant could be
added to the final estimation of wheat head frequencies to
counter this imbalance.

8 Conclusion and Future Work
The goal of this research was to evaluate the difference in ac-
curacy of an object counter when trained on unfiltered train-
ing images and images with filtered frequencies. The ob-
ject counter had many interesting properties, such as a novel
loss function based on the Hausdorff distance, and the usage
of single-pixel centers to label objects instead of bounding
boxes. The novelty introduced in this neural network turned
out to be the biggest downside to its performance.

8.1 Conclusion
The experiment was carried out by training the neural net-
work on original images of wheat heads, then on filtered im-
ages of wheat heads. The filtered images were generated by
running a band pass filter over them, which was constructed
by looking at the difference between frequencies of wheat
heads and frequencies in the rest of the image.

The results showed that there was no significant and at-
tributable improvement in performance brought by filtered
training images. The training and validation losses of the neu-
ral network were approximately the same under original and
filtered conditions, and settled asymptotically at a high loss
value. The two trained models were saved as checkpoints and
evaluated under the precision, recall and Root Mean Square
Error metrics. The filtered images performed better under all
three metrics, but the improvement was very minor and the
results were poor in an absolute sense under both scenarios.

It was found that the nature of the dataset was a big limiting
factor to both the absolute performance of the neural network
and its relative improvement using filtered images. This is
because although the neural network would correctly predict
a point on the wheat head during its training, its loss would
be high if that point was far away from the center, despite
hitting the wheat head. To confirm this, the average width and
height of wheat head bounding boxes were aggregated, and it
was found that they had an average width of 84 pixels and an
average height of 76 pixels. In contrast, the datasets used to
train the single-pixel center object locator so far consisted of
images with targets that spanned only a few pixels in height
and width.

The problem mentioned above hinders the performance of
the neural network with both original and filtered images.
Therefore, it is more accurate to say that the potential for
the relative improvement of filtered images is inconclusive.
The solutions proposed in section 7 aim to work around this
problem; adopting them and testing the neural network under
these modifications would give a clearer image of the differ-
ent Fourier analysis brings.

The domain of single-pixel centers as image annotations
could replace bounding boxes in a variety of scenarios, and
its benefits are clear. However, neural networks relying on
the center of an object should be trained on images where the
target objects are small and similar, such as crowd heads in
a mall. The results of the experiment therefore lead to the
recommendation to check the average height and width of
objects when considering training such a neural network on
them. This is to ensure that the training process is not hin-
dered by the nature of the objects in the dataset.

8.2 Future Work
Researchers trying to extend the work done on this task could
follow the recommendation outlined in section 7 and find a
more robust and methodical approach to picking the thresh-
old parameter and the exclude parameter. This might not only
lead to better results when running the neural network on fil-
tered images, but the results would also be a more accurate
representation of the extent to which masking frequencies
in the image improve the performance of the object locator.
They could also look into running the same experiment on
[4], an object locator of similar nature that ”uses keypoint es-
timations to find center points and regress to all other object
properties, such as size, 3D location, orientation, and even
pose”.

Another improvement would be to have images with four
channels in the training set. Unfiltered images contained the
three Red, Green and Blue (RGB) channels, and filtered im-



ages were only compromised of one (FFT channel). Con-
catenating RGB with FFT would give a four channel input,
which could be converted to a three channel input by adding
convolutional layers. This would ensure that wheat head with
higher frequencies are accentuated and that noise is reduced,
without filtering out too much frequency information.

More and more approaches towards counting crowded and
overlapping objects are being developed, and it is worthwhile
to look at their potential potential for improvements when
trained on filtered images in the frequency domain. For exam-
ple, TasselNet is a recent deep convolutional neural network-
based approach that ”can achieve good adaptability to in-
field variations via modelling the local visual characteristics
of field images and regressing the local counts of maize tas-
sels” [13]. There are also methods based on Bayesian loss for
crowd count estimation with point supervision [14], whose
performance could also be evaluated when run on filtered
training images.
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A Appendix
A.1 Neural Network Architecture
The neural network architecture is a U-Net, and is shown in
Figure 6 below. Note that the image was taken directly from
[2], and that no modifications have been done to the architec-
ture of the neural network, except during informal test runs
where the five central layers were removed.

Figure 6: Architecture of the neural network used for this
research, taken directly from Ribera et. al’s paper ”Locating

Objects Without Bounding Boxes” [2]
.

A.2 Changes to code
The code for Ribera et. al’s ”Locating Objects Without
Bounding Boxes” divides the training loss by 3, but does not
do the same for the validation loss. As a result, using this
neural network would give the impression that the validation
loss is much higher than the training loss. This was fixed, by
changing line 206 under object-locator/train.py from

iter train.set postfix(running avg=f’round(running avg.avg/3,
1)’)

to
iter train.set postfix(running avg=f’round(running avg.avg,

1)’)


	Introduction
	Research description
	Contributions

	Related Work
	Center-based object counting
	Image classification in the frequency domain

	Methodology
	Construction of the Bandpass Filter
	Experimental Setup and Results
	Responsible Research
	Discussion
	Limitations brought by properties of the dataset
	Limitations in the construction of the bandpass filter

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix
	Neural Network Architecture
	Changes to code


