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Abstract

Generative Adversarial Networks (GANs) are a
modern solution aiming to encourage public shar-
ing of data, even if the data contains inherently pri-
vate information, by generating synthetic data that
looks like, but is not equal to, the data the GAN was
trained on. However, GANs are prone to remem-
bering samples from the training data, therefore ad-
ditional care is needed to guarantee privacy. Differ-
entially Private (DP) GANs offer a solution to this
problem by protecting user privacy through a math-
ematical guarantee, achieved by adding carefully
constructed noise at specific points in the train-
ing process. A state-of-the-art example of such
a GAN is Gradient Sanitized Wasserstein GAN,
(GS-WGAN), [1]. This model is shown to cre-
ate higher quality synthetic images than other DP
GANs. To extend the applicability of GS-WGAN
we first reproduce and extend the evaluation, veri-
fying that the model outperforms DP-CGAN by an
average of 40% when assessed across three quali-
tative metrics and two datasets. Secondly we pro-
pose improvements to the architecture and training
procedure to make GS-WGAN applicable on time-
series data. The experimental results show that GS-
WGAN is fit for generating synthetic timeseries
through promising experimental results.

1 Introduction
The rise of big and open data is provoking the use of machine
learning models in an ever-growing set of domains [1]. To en-
courage growth and stimulate fast progress there is a need for
data sharing. However, those datasets most valuable for cor-
porations and research frequently contain private data, thus
they cannot be distributed due to various privacy laws (e.g.,
GDPR [2]). A technique proposed to enable sharing of valu-
able datasets without violating users’ privacy is leveraging
Generative Adversarial Networks (GAN) [3] in combination
with Differential Privacy [4] to generate synthetic differen-
tially private data.

GANs have been shown to be effective for numerous
data(set) augmentation tasks like increasing image resolution

and enriching datasets by generating new samples indistin-
guishable from the real data. As a result of this, models
trained on the augmented data will perform better [5]. GANs
achieve this by using two models that train in parallel. The
first is a Generative model G, which aims to capture the
distribution of the data, and the second is a Discriminatory
model D, which tries to differentiate between samples from
the training data and samples generated by G [3]. During the
joint training D gets better at differentiating real from fake
and punishes G if it creates bad samples, thus G will create
more realistic samples over time. Unfortunately GANs are
shown to be susceptible to attacks aiming to recover training
samples [6], making standard GANs unsuitable for usecases
where privacy needs to be guaranteed.

Differential Privacy (DP) is a methodology that preserves
the privacy of a dataset by injecting calibrated statistical noise
[4]. There exists different DP techniques that differ in what
type of noise to inject, and when to inject it, e.g., directly to
the data, or during the learning process. The first approach
works by adding noise to the answers returned by queries
from a database, but using this approach the dataset itself is
not differentially private and therefore cannot be released in
full. In contrast, adding this noise during the learning pro-
cess of a GAN will result in a privatized dataset, which can
be released to the public with no additional privacy loss.

Achieving differentially private GAN training is done by
using a DP Stochastic Gradient Descent algorithm, proposed
by Abadi et. al. in [7], which carefully controls the influence
a single training sample can have during training. DP SGD
preserves privacy by carefully clipping, and adding Gaussian
noise to, the gradients. This gradient descent algorithm is typ-
ically applied only in the discriminator, since this part of the
GAN is trained on real data. But if only the generator, or syn-
thetic data generated by the generator, will be released after
training only the generator can be privately trained [1]. As a
result of only privately training the generator the discrimina-
tor will be more reliable which improves the combined train-
ing process.

Two state of the art examples of GANs capable of gener-
ating synthetic data with DP guarantees are GS-WGAN [1]
and DP-CGAN [8]. Both models use the previously men-
tioned DP SGD algorithm during training. GS-WGAN ap-
plies this algorithm only to the generator, DP-CGAN only
to the discriminator. The second key difference is the loss

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



function used in the two models. DP-CGAN uses a minimax
loss whereas GS-WGAN uses a Wasserstein-1 metric as loss
which generates gradients with norms close to 1 resulting in
less information being lost during gradient clipping.

GS-WGAN and DP-CGAN are both shown to be able to
generate realistic MNIST and FashionMNIST images, GS-
WGAN creating the more realistic samples out of the two [1;
9]. But, sensitive datasets that would benefit from being dis-
tributed in a private manner are rarely MNIST-like images.
Therefore it is interesting to explore GS-WGAN performance
on other types of data. An example of another data type that
would benefit greatly from methods to generate synthetic data
with rigorous privacy guarantees is time series data, e.g., lo-
cation traces, browsing history, or credit card transactions.
These all contain incredibly personal information and are thus
not suited for release to the public, limiting the advance in in-
dustries dealing with these kinds of data. There exists GANs
shown to be capable of generating such timeseries, exam-
ples are RDP-CGAN [10], [11] and [12], all differing slightly
how they apply Differential Privacy during learning and their
model architecture.

In this paper, we ask two research questions: (i) the ex-
haustive quantitative and qualitative difference between DP-
CGAN and GS-WGAN, and (ii) if and how to apply GS-
WGAN on time series data.

i) To fairly compare the performance an exhaustive quanti-
tative and qualitative evaluation on MNIST and Fashion-
MNIST data has been carried out, as is done in [1]. The
quantitivate results show performance by means of the
Inception Score [13], Frechet Inception Distance [14]
and the average classification accuracy of downstream
classifiers. Since quantitative metrics cannot capture all
relative aspects of images a qualitative evaluation is car-
ried out by means of a comparison of the generated sam-
ples.

ii) Exploring GS-WGANs capabilities regarding synthetic
time series data generation was done by altering the
model to take in inputs with other dimensions than
28x28 values (MNIST dimensions) and evaluating its
performance in generating time series data for two
datasets containing ECG heartrhythms: PTB [15] and
MIT-BIH [16]. Data generated by GS-WGAN will be
evaluated and performance will be compared to the three
models last mentioned in the previous paragraph.

This paper organized as follows. We first explain the pre-
liminary background of GANs and Differential Privacy in
section 2 and give an overview of the different GANs men-
tioned in section 3. These sections are followed by the main
contributions of this research:

• In section 4 the experiment setup and results for part (i)
are laid out.

• The proposed changes to GS-WGAN to facilitate gen-
eration of synthetic time series data, and the results of
time series generation for part (ii) are discussed next in
section 5.

After that the ethical implications of this research are dis-
cussed, and last, the conclusion is given in section 7.

2 Preliminaries
This section briefly introduces Generative Adversarial Net-
works and Differential Privacy, followed by how these con-
cepts are combined in subsection 2.3.

2.1 Generative Adversarial Networks
The GAN framework, proposed by Goodfellow et al. [3],
works by having two neural networks compete in a minimax
game with the goal to create a generator that is capable of
generating samples indistinguishable from the training sam-
ples. The two networks competing are called the discrimi-
nator (D) and the generator (G). The output of each of these
networks serves as input for the other: G creates fake samples
that become training examples for D, which tries to differen-
tiate real and fake samples. D’s classification is fed back into
G to update its weights through backpropagation. After suf-
ficient training G is capable of generating realistic samples.
These samples can then be used to enrich existing datasets
for improved modelling on this data, or for releasing datasets
without sensitive information.

However, for this last point a stronger privacy guarantee
is necessary since GANs may generate samples not present
in the training data. This makes GANs susceptible to mem-
bership inference attacks [17]. To improve resilience against
such attacks, and introduce a privacy guarantee, Differential
Privacy [4] can be used.

2.2 Differential Privacy
To fully understand the intricacies of Differential Privacy
in GANs we first need to understand the core of the DP
mathematical framework which is defined as follows in [4;
1]:

Definition 2.1 (Differential Privacy). A randomized algo-
rithmM with rangeM is (ε, δ)-DP, if

Pr[M(S) ∈ O] ≤ eε · Pr[M(S′) ∈ O] + δ (1)

holds for any subset of outputs O ⊆ R and for any adjacent
datasets S and S’, where S and S’ differ from each other with
only one training example. ε corresponds to the upper bound
of privacy loss, and δ is the probability of breaching DP con-
straints.

In simpler terms: DP ensures and quantifies privacy
through a mathematical guarantee. The privacy of a system is
quantified through ε and δ. ε is a metric for privacy loss, lower
ε means more private data. δ is the probability of breaking
the DP guarantee (accidental information leakage) and is of-
ten set to a maximum of the inverse of the number of records
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2.3 Differential Privacy in GANs
In DP GANs the randomized algorithmM is (a variation on)
a differentially private stochastic gradient descent algorithm
proposed in [7], also shown in algorithm 1 for the readers
convenience. This algorithm works by bounding its sensitiv-
ity (i.e. the influence any single training sample has on the
whole model in a step) through clipping gradients and adding
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Model Loss DP site Noise mechanism

GS-WGAN [1] Wasserstein Loss & gradient penalty Generator Gaussian
DP-CGAN [8] Minimax Loss Discriminator Gaussian

RDP-CGAN [10] Wasserstein Loss & gradient penalty Discriminator & Autoencoder/decoder Gaussian
PATE-GAN [11] KL Divergence Loss Discriminator Laplacian

DPGAN [12] Wasserstein Loss & weight clipping Discriminator Gaussian

Table 1: Overview of the GANs mentioned in this research.

Algorithm 1: Differentially Private SGD
Input Samples {x1, ..., xN}, loss function
L(θ) = 1

N

∑
i L(θ, xi). Hyper-parameters: learning

rate ηt, noise scale σ, batchsize L, gradient norm
bound C.

Initialize θ0 randomly;
for t ∈ [T ] do

Take a random sample : Lt with sampling
probability B/N ;

Compute Gradient For each i ∈ Lt, compute
gt(xi)← ∆θtL(θt, xi)

Clip gradient ḡt ← gt(xi)/max(1, ||gt(xi)||2
C )

Add noise g̃t ← 1
L (

∑
i ḡt(xi) +N (0, σ2C2I))

Descent θt+1 ← θt − ηtg̃t
Output θT and overall privacy cost (ε, δ) computed
using a privacy accountant.

random normally distributed noise to those gradients result-
ing in “a sanitized version of the gradients in which the influ-
ence of the input data is bounded, guaranteeing privacy” [18].
Every training step introduces a privacy loss, which needs to
be carefully monitored to keep track of the spent privacy bud-
get ε.

Both GS-WGAN and DP-CGAN use a refinement of dif-
ferential privacy called Rényi Differential Privacy (RDP)
[19]. This refinement is used since it provides composition
which is convenient for keeping track of the spent privacy
over multiple steps of gradient descent [1]. It also intro-
duces a tighter bound on the privacy budget when compared
to the classically used Moment Accountant which reduces the
amount noise needed to add to the gradients, while not com-
promising privacy [20; 8].

3 Related work

To create a better understanding of the GANs GS-WGAN
will be compared to, a summary of all mentioned models
is given here. Starting with the GS-WGAN itself in subsec-
tion 3.1, followed by DP-CGAN, the model GS-WGAN will
be compared with on MNIST data. Last, three GANs shown
to be capable of generating high quality synthetic timeseries
will be summarised from subsection 3.3. An overview of the
key characteristics for each model is given in Table 1

3.1 Gradient-Sanitized Wasserstein GAN
The main model evaluated in this research is the Gradient-
Sanitized Wasserstein GAN proposed by Chen in [1] which
addresses two shortcomings in standard DP-SGD, namely (i)
that gradient clipping destroys valuable gradient information,
and thus impacts utility; and (ii) that the search for a reason-
able clipping value is intensive.

The impact of gradient clipping is reduced by only ap-
plying gradient sanitization in the generator, since only that
model will be released. The discriminator does not to be pri-
vately trained as is done in standard DP GANs. This reduces
the limitations posed on the discriminator and allows a more
complex and better model architecture, as well as discrimina-
tor warm-start. This warm-starting process comprises of pre-
training discriminators with a non-private generator for some
iterations, these pre-trained discriminators are then used to
train the private generator without compromising privacy.

The search for a good clipping gradient is eliminated by
bounding sensitivity using the Wasserstein-1 metric [21] as
the loss function. This results in bounded gradients with
norms close to 1 and avoids the search for hyper-parameters
like the clipping bound. To further increase privacy GS-
WGAN supports using multiple discriminators during train-
ing. The dataset is subsampled into a seperate subset for each
discriminator. At each training step a single discriminator is
chosen and used for training. This increases privacy since any
sample that is not in the subset has no risk of being leaked.

GS-WGAN was released with two generator architectures,
a large learning framework with state-of-the-art performance
on image datasets: ResNet [22], and DCGAN, a simpler con-
volutional architecture. Since ResNet performs better on im-
ages this architecture is used for part (i). In part (ii) both
architectures are used and compared.

3.2 Differentially Private Conditional GAN
The main idea of DP-CGAN [8] is adding gaussian noise to
the sum of the separately clipped real and fake discriminator
loss. It is also capable of generating sample labels along with
the samples itself.

3.3 Timeseries GANs
The following GANs are used as baselines in part (ii) for as-
sessing GS-WGAN performance on time series. These par-
ticular models were chosen as they are part of the evaluation
from [10] that will be extended by adding GS-WGAN.

RDP-CGAN [10]: Combines convolutional autoencoders
and convolutional GANs to preserve temporal dynamics and
critical characteristics for the generated synthetic data.
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PATE-GAN [23]: Modifies the Private Aggregation of
Teacher Ensembles (PATE) framework [11] and applies it to
GANs by replacing the discriminator with a PATE mecha-
nism to make it DP. Also uses multiple teacher discriminators
on subsamples of the training data, similar to GS-WGAN.

DPGAN [12]: DPGAN uses the Wasserstein distance as
the loss function, like GS-WGAN, but, instead of clipping
gradients to limit the effect of any one training sample, the
weights of the model are clipped to provide privacy guaran-
tees.

4 Reproducing
Part (i) of this research: the exhaustive quantitative and quali-
titative difference between GS-WGAN and DP-CGAN is laid
out in this section. This evaluation was performed to verify
claims by Chen et. al. [1] stating that GS-WGAN outper-
forms other state of the art DP GANs when tasked with creat-
ing synthetic MNIST images with a robust privacy guarantee.
This evaluation shows the reproduced results alongside an ex-
tra dimension of the comparison: performance of downstream
classifiers versus privacy cost ε. This evaluation is structured
as follows: the metrics used are discussed in subsection 4.1.
All details to be able to reproduce the evaluation are given in
subsection 4.2. Last, the results of the evaluation are laid out
in subsection 4.3. Since not only results, but also ease of use
of these models is important, a more subjective view is given
in Appendix C.

4.1 Method
To compare the two models the generated images are com-
pared qualitatively and quantitatively across iterations, and
thus across privacy cost ε. For the qualitative evaluation the
final generated images are analysed. The quantitative com-
parison is done by means of two widely used metrics in
GAN evaluations: the Inception Score (IS) [13] & Frechet
Inception Distance (FID) [14], and the accuracy of classifiers
trained on the generated samples. The first two aim to quan-
tify how realistic the samples are by leveraging pre-trained
classifiers to assess the generated images. The third metric
shows how useful the generated samples are for training new
classifiers.

Inception Score The Inception Score [13] is a commonly
used metric to evaluate images generated by GANs. It aims
to quantify the realism of an image and has been shown to
correlate well with human scoring. To compute this a classi-
fier [24] was trained on real MNIST data and used to compute
this metric. The metric formula as follows:

IS = exp(ExKL(p(y|x)||p(y))) (2)

which is the KL divergence between the marginal distribu-
tion and the conditional distribution of each image. In sim-
pler terms: if an image contains a single clear object (num-
ber or fashion item in this case) the conditional distribution
will have low entropy, and if the set of images has high va-
riety the marginal distribution will have high entropy. Thus,
synthetic image sets containing realistic samples evenly dis-
tributed over the classes get a high score.

Frechet Inception Distance Another metric used, and
specifically designed, for GAN performance evaluation is the

Frechet Inception distance, which improves upon the Incep-
tion Score by taking into account the statistics of real world
samples, and comparing those to the statistics of generated
samples [25]. The FID is given by:

FID = ||µr − µg||2 + Tr(Σr + Σg − 2
√

ΣrΣg) (3)

where µ and Σ are the mean and covariance of the activations
of the last pooling layer of the Inception network, and r de-
notes real & g the generated samples. Thus FID tries to cap-
ture the distance of a set of generated to a set of real images,
by comparing statistics of the activations of the Inception net-
work.

Accuracy of downstream classifiers The simplest, and ar-
guably most meaningful, metric used in this evaluation is the
accuracy of downstream classifiers trained on generated sam-
ples. This metric captures whether the generated images are
of high quality by verifying if a classifier trained on those
samples generalizes well on test data. To get a better idea of
how the accuracy compares to the accuracy of a model trained
on real samples the accuracy is divided by the accuracy of a
model trained on real samples.

4.2 Experimental setup
During this evaluation the original implementation of GS-
WGAN [26] using PyTorch 1.2.0 was used. The imple-
mentation of DP-CGAN [27] is written using TensorFlow
1.14.0. In an effort to increase reproducibility both mod-
els and the evaluation script can be run in Docker contain-
ers which should prevent versioning issues. The full imple-
mentation and instructions to reproduce this evaluation can be
found on https://github.com/ptemarvelde/dp-timeseries. All
training and evaluations were done on a Google Cloud sys-
tem: e2-custom (12 vCPUs, 96 GB memory).

Training details. To reproduce the evaluation of GS-WGAN
and compare it to DP-CGAN both models were trained with
the same hyperparameters as in the paper, also shown in Ta-
ble 8. The pre-trained discriminators published alongside the
GS-WGAN implementation were also used to warm-start the
model. During training intermediate samples and generators,
respectively for GS-WGAN and DP-CGAN were saved to be
evaluated.

Details on metric calculation. All metrics were calculated
using 10k generated samples for each save step. Since the au-
thors of GS-WGAN did not provide code for their evaluation
the actual calculation differs in some places, but the relation
between the metrics of DP-CGAN & GS-WGAN was pre-
served since they are both evaluated equally.

For the IS and FID the calculation was done in 10 batches
using 1000 samples each, for the classifier accuracy all 10k
generated samples were used at once.

Inception Score. For this metric a simplified model of the
Inception network was used. This model was trained on 60k
input images for 5 epochs with a final accuracy on the test
set of 98% and 91% for MNIST and Fashion-MNIST respec-
tively.

Frechet Inception Distance. FID was calculated using the
implementation from [28], which uses the InceptionV1 net-
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Inception Score
↑

Frechet Inception
Distance ↓

Average downstream
accuracy ↑

Calibrated
accuracy ↑

Repr. Paper Repr. Paper Repr. Paper Repr. Paper

MNIST Real 9.92 9.80 4.46 1.02 0.85 0.88 100% 100%

GS-WGAN 9.17 ± 0.290 9.23 155.74 ± 6.658 61.34 0.56 ± 0.025 0.60 66% 68%
DP-CGAN 4.59 ± 0.925 4.76 152.78 ± 8.173 179.16 0.36 ± 0.043 0.52 41% 45%

Fashion-
MNIST

Real 8.49 8.98 9.00 1.49 0.75 0.79 100% 100%

GS-WGAN 5.03 ± 0.281 5.32 221.71 ± 5.880 131.34 0.51 ± 0.008 0.53 69% 67%
DP-CGAN 3.69 ± 0.750 3.55 229.08 ± 6.772 243.80 0.34 ± 0.019 0.43 45% 54%

Table 2: Comparison of quantitative results from the paper and the reproduced (Repr.) values with ε = 10 and δ = 10−5. ↑ & ↓ respectively
denote higher and lower values being better. Best results from both the reproduced values and the Paper’s values are bold

(a) Inception Score (b) Frechet Inception Distance (c) Average calibrated classifier accuracy*

Figure 1: Privacy vs. utility tradeoff comparison between GS-WGAN and DP-CGAN with up to ε = 10 (δ = 10−5). Corresponding graphs
for Fashion-MNIST are presented in Appendix D. *Average accuracy of a classifier trained on synthetic data and tested on real data divided
by the accuracy of the same classifiers trained and tested on real data.

work, opposed to the InceptionV3 network used in the origi-
nal paper’s evaluation since none of the three publicly avail-
able FID calculation codebases performed accurately. For
the downstream classifier accuracy a collection of standard
scikit-learn models trained and evaluated, as is done in [1;
9]. The only difference being the number of privately gener-
ated samples used to train the classifiers. In the GS-WGAN
paper this is 60k, but in this evaluation only 10k synthetic
samples was used since this reduced computational costs sig-
nificantly and had no significant impact on classifier accuracy
(0.003± 0.020).

4.3 Results and findings
The quantitative results in Table 2 show that GS-WGAN out-
performs DP-CGAN in all metrics. For the Inception Score
GS-WGAN almost scores twice as high as DP-CGAN on
MNIST data, while the improvement on Fashion-MNIST is
less big (36%, 5.03 v.s. 3.69). GS-WGAN also scores worse
than DP-CGAN on FID, likely due to the use of the old In-
ceptionV1 network as mentioned in Figure 4.2.

Arguably the most impressive improvement is the perfor-
mance of classifiers trained on privately generated samples.
This metric translates the best to real life performance since
it shows how well models trained on the generated data per-
form, essentially telling us how well the generated data cap-
tures the statistical properties of the training data [1]. GS-

WGAN shows a performance increase over DP-CGAN of
37% and 67% for MNIST and FashionMNIST respectively.
Important however, is to note that GS-WGAN only performs
better with higher privacy budgets of ε > 4.

Data generated by GS-WGAN performing better than DP-
CGAN is also supported by the qualitative results shown in
Table 3. GS-WGAN’s images are clearer and have signifi-
cantly less noise than DP-CGAN’s counterparts.

An interesting observation is that both models stop approv-
ing after spending a privacy budget of ε ≈ 7. As shown in
Figure 1 the metrics improve rapidly at the start of training,
and slow down around the ε = 6 mark, rarely improving af-
ter ε = 8 Therefore, stopping training earlier will not have
significant impact on quality of generated samples, but will
yield a stronger privacy guarantee.

In conclusion we can confidently say GS-WGAN is capa-
ble of generating higher quality differentially private images
than DP-CGAN. Since we, and Chen et. al. in the proposal of
GS-WGAN [1] draw the same conclusions this is an accurate
reproduction substantiating the performance of GS-WGAN.

5 Supervised generation of synthetic time
series data using GS-WGAN

The second research question addressed by this study is
whether GS-WGAN is capable of creating realistic differ-
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Model MNIST Fashion-MNIST

Real

GS-WGAN

DP-CGAN

Table 3: Generated and real samples for MNIST & Fashion-MNIST datasets. (ε, δ) = (10.0, 10−5)

entially private synthetic time series data, as ResNet archi-
tecture has proven effective at classifying timeseries [29].
This question is answered in this section, while simultane-
ously comparing the different generator architectures of GS-
WGAN. Comparing the architectures is done to see if in-
creased performance of ResNet over DCGAN on image syn-
thesis carries over to time series. This enables better reason-
ing about the general setting of applying image-based deep
learning models to time series. This evaluation is done by
training GS-WGAN on two time series datasets and evalu-
ating the synthetic data. The precise approach taken, and
changes made to the model, to do this are explained in sub-
section 5.1. In subsection 5.3 the performance is evaluated
against baselines from Torfi et. al. [10] laid out in the pro-
posal of RDP-CGAN.

5.1 Method
This section presents how GS-WGAN is applied to timeseries
and how the generated data is evaluated to conclude whether
the model is fit for generation of synthetic time series under
strict privacy guarantees. First, the necessary changes to the
model architecture are described, after that an explanation of
how the data is prepared enabling the use of GS-WGAN is
given, followed by an overview of the datasets used, base-
lines compared against and the metrics that are part of the
comparison.

Model changes. GS-WGAN did not have the ability to
be trained on images of arbitrary (square) sizes, the model
only supported 28x28 pixel images. This restriction limits the
applicability of the model immensely. Therefore, any hard-
coded inner model layer dimension that limited the input size
was converted to dynamic dimensions, thus scaling the model
with the input image size.

Data preparation Since GS-WGAN has proven to be ef-
fective on image datasets, we want to convert the problem of
generating time series to the problem of generating images,
enabling direct application of GS-WGAN to the data. A sim-
ilar approach was shown to be effective in [30]. To achieve
this, we first convert the time series data into an image, and
then train GS-WGAN model on that image. The step by step
process is:

Figure 2: Diagram of data preparation steps with an explanatory sine
sample of length 40, converted to an image of 7x7 pixels.

1. The input time series of length n is padded with zeros
up to length N = d(n2)e

2. The padded data is reshaped into a square array of values
with width & height equal to

√
N

3. If necessary this square array is normalized , resulting in
sample that could be interpreted as a grayscale image of√
N x

√
N with pixel values between 0 and 1. This is

equal to the MNIST images GS-WGAN was evaluated
on for

√
N = 28

PTB Diagnostic [15] MIT-BIH
Arrhythmia [16]

Samples 14,550 109,444
Sequence length 187 187
No. of classes 2 51
Label
distribution2 10506 / 4048 90587 / 18857

Train/test split random, 80%/20% predefined,
87553/21891

Accuracy 0.951 0.959
AUROC 0.989 0.965
AUPRC 0.995 0.927

Table 4: Statistics of datasets used for comparison alongside perfor-
mance of the baseline model. 1 1 label for normal heartbeats, 4 types
of abnormal heartbeats. 2 normal / abnormal
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After these steps the model can be trained on these images
using the process shown to be effective on MNIST images.

Datasets Since GS-WGAN relies on having training labels
two supervised problems, making use of PTB [15] and MIT-
BIH [16] datasets, are used in this comparison. Both contain
electrocardiogram (ECG) recordings with the task to classify
the recording as normal or abnormal. An overview of each
set’s statistics is given in Table 4. These two datasets were
chosen since there are extensive baselines available for an ac-
curate comparison.

Evaluation metrics To asses the quality of the synthetic
data a Gradient Boosting Classifier from sklearn with the
number of estimators set to 100 is used. This classifier is
tasked with classifying input samples as ’normal’ or ’abnor-
mal’ heartbeats. To reason about how well the generated data
captures the feature distribution of the real data the model is
trained on the synthetic data, and then tasked with classifying
real test samples. This classification is converted into four
metrics: the first being the Operating Characteristic Curve
AUC (AUROC), second is the Precision-Recall curve AUC
(AUPRC) which correlates better with performance on im-
balanced datasets [10], these two metrics are used to compare
GS-WGAN to the baselines. To further evaluate performance
the F1 score, which shows how well precision and recall are
balanced, and accuracy are also shown. Higher is better for
all four metrics.

5.2 Experimental setup
The experiment is carried out as follows. After preparing the
data as described in subsection 5.1 the GAN is trained. Since
parameters (Number of discriminators & noise scale) directly
influencing the spent privacy budget ε have tremendous effect
on utility, a (naive) hyperparameter search was performed on
the PTB dataset to find good values for these parameters, this
can be found in subsection E.2 and results are presented in
the next paragraph. During these experiments the observation
that using the same setting for high and low privacy budgets
was difficult. For low privacy one wants a low number of
iterations coupled with a high number of discriminators and
high noise scale, i.e., the GAN should learn very quickly and
you do not have to worry much about getting stuck in local
optima, since the chance that finding any optimum in such
little iterations is small. In a high privacy setting the GAN
should converge more gradually and it should converge to a
global optimum. Therefore finding one set of hyperparame-
ters for both settings is extremely difficult. Thus, we use two
sets of hyperparameters for the different privacy budgets. The
values can be found in Table 8. The hyperparameter search
was not performed again on the MIT-BIH dataset to see if
near optimal parameters for PTB also result in high utility on
MIT-BIH.

The results of the search for optimal noise scale σ for the
low and high ε settings are:

• High (ε > 1.0): For this setting the number of pretrained
discriminators was set to 100, since this amount of dis-
criminators is still practical to pretrain. Any more would
take multiple days. After this six different noise scales
were tried between 1.0 and 2.25, with σ = 1.25 being
best, resulting in the configuration shown in Table 8

Low ε ≤ 1.0 High ε ¿ 10.0

Pretrained discriminators 7 3
Number of discriminators 400 100
Noise scale σ 4.0 1.25
Learning rate 1.0−2 1.0−4
Save Iterations ε = 0.1: 9, ε = 10.0: 312,

ε = 1.0: 937 ε = 100.0: 7915

Table 5: Hyperparemeters used for GS-WGAN training. Low ε cor-
responds to privacy budget ≤ 1.0, high ε to budgets of > 1.0.

Figure 3: Comparison of GS-WGAN generator architectures by
showing utility versus privacy budget. Higher values signify higher
quality synthetic data. All graphs for PTB dataset.

• Low (ε ≤ 1.0): The search for good noise scale for low
privacy budget is more difficult due to the way privacy
budget is spent in GS-WGAN. The spent privacy budget
per step decreases across iterations (shown visually in
subsection E.1) making it difficult to get good results for
low privacy budgets, since there is no time to train. The
slow learning at the start of training is also prevalent in
MNIST training as shown in Figure 1, DP-CGAN out-
performs GS-WGAN only for low privacy budgets. To
enforce some training before the spent privacy budget
reaches ε = 0.1, noise scale, number of discriminators
and learning rate need to be increased. The best values
found are shown in Figure 8. A higher number of dis-
criminators could perform better but could not be tried
due to GPU memory constraints.

All experiments were run five times with both DCGAN and
ResNet generator architectures, and averages and standard
deviations are shown. δ is always set to 10−5, other hyper-
parameters are those shown in Table 8 unless stated other-
wise. Important to note is that all values for PATE-GAN,
RDP-CGAN and DPGAN are taken from the paper propos-
ing RDP-CGAN [10]. The evaluation procedure is clearly de-
scribed there, thus enabling values presented for GS-WGAN
are computed using the same method making them fit for di-
rect comparison. Training was done on an NVIDIA 2080Ti.
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Dataset Metric PATE-GAN RDP-CGAN DPGAN GS-WGAN ResNet GS-WGAN DCGAN

PTB AUROC 0.75 ± 0.012 0.79 ± 0.009 0.71 ± 0.012 0.47 ± 0.051 0.50 ± 0.121
AUPRC 0.76 ± 0.011 0.80 ± 0.008 0.71 ± 0.018 0.83 ± 0.069 0.80 ± 0.083

MIT-BIH AUROC 0.73 ± 0.006 0.77 ±0.003 0.69 ± 0.004 0.42 ± 0.051 0.56 ± 0.055
AUPRC 0.73 ± 0.016 0.78 ±0.008 0.68 ± 0.023 0.17 ± 0.031 0.37 ± 0.169

Table 6: GS-WGAN comparison versus baselines under (ε, δ) = (1, 10−5)-DP. Best and second best are respectively bold and underlined.

5.3 Results and findings
Generator architecture for GS-WGAN. First we compared
GS-WGAN generator architectures: DCGAN vs ResNet on
PTB data. The metrics over time, shown in Figure 3, il-
lustrate that using DCGAN generator architecture results in
higher quality synthetic data (for higher privacy budgets). All
metrics show clear convergence by diminishing standard de-
viation as epsilon grows, which is not the case for ResNet,
since the ResNet architecture significantly more trainable pa-
rameters (>40M v.s. 1M for DCGAN) convergence will take
longer.

GS-WGAN v.s. baselines - fixed privacy. The perfor-
mance of GS-WGAN on PTB data for a fixed privacy budget
of (ε, δ) = (1.0, 10−5) (shown in Table 6, is better than, or on
par with, baselines when looking at AUPRC. But, AUROC is
much lower for both GS-WGAN architectures, showing sub-
optimal performance for this privacy budget. This imbalance
between the metrics is due to GS-WGAN generating samples
that cause the downstream classifier to classify all test sam-
ples as ’normal’. This is the most prevalent class resulting in
high AUPRC.

Impact of privacy budget on GS-WGAN. Although the
quality of data generated for the low privacy setting is not
ideal, GS-WGAN with DCGAN architecture shows promis-
ing results for higher privacy budgets, see Figure 4. For
ε > 10 the model performs close to baselines, not only with
competitive AUPRC, but also with good AUROC (Figure 4),
showing that the proposed method of converting time se-
ries into images is a valid technique to leverage image based
GANs for synthesizing time series.

Performance on MIT-BIH. Performance on MIT-BIH
data is much worse, even for large ε, than baselines. Thus
we can confidently sufficiently good parameters from PTB
do not translate to high quality synthetic MIT-BIH data. This
is likely due to the large discrepancy in the number of nor-
mal v.s. abnormal samples, preventing the discriminator from
learning an accurate representation of the abnormal samples,
and thus the generator from generating high quality abnormal
samples in the limited number of iterations enforced by the
privacy budget.

Summary. GS-WGAN is capable of creating high qual-
ity synthetic time series data in a differentially private setting
after the made changes to the architecture and way data is
prepared. But for low privacy settings the model is outper-
formed by other state of the art DP GANs, only having better
performance when focussing on AUPRC. Also important to
note is that it might be possible to get high quality results, for
all metrics, for low privacy budgets, but this would require
substantial computing power to pretrain discriminators and

Figure 4: The effect of spent privacy budget ε on the quality of gen-
erated data measured by AUPRC for the PTB Diagnostic dataset.

be able to hold all discriminators in memory.

6 Responsible Research
This section detail the ethical considerations alongside the ef-
forts to increase reproducibility of this research.

6.1 Ethical implications
Differentially Private GANs enables distribution of valuable
data in a robust privacy preserving way. This encourages ad-
vances in fields where sharing data is difficult due to the pri-
vacy implications and restrictions. It is, however, important
to remember that the data is created by a deep learning model.
This makes it hard to reason about possible biases in down-
stream models since the bias could be rooted in either the DP
GAN that generated the data, or the machine learning model
that was trained on the synthetic data. Therefore, much care
should go into controlling the quality of the synthetic data in
order to minimize bias introduced by the GAN.

6.2 Reproducibility
All material needed to reproduce the presented results can
be found, alongside the raw results, on GitHub. Docker and
Docker-compose files for both models and the evaluation are
provided that can be used to run the training and evaluation
with two commands. This allows anyone with access to the
necessary computing power to reproduce all results without
having to worry about dependency conflicts.

Providing all these materials to encourage and simplify re-
producing of results does, unfortunately, not mean that ev-
eryone will get equal results. The exact values and synthetic
data will differ slightly due to randomness in GANs. To try
and reduce this a random seed was set during training and
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evaluation, but since no two computers are equal this does
not take away all randomness.

7 Conclusions and future work
This research consisted of two parts. For part (i) We have
shown qualitatively and quantitatively that GS-WGAN out-
performs DP-CGAN when tasked with synthetic MNIST im-
ages in a differentially private setting. Also extending the
original evaluation of GS-WGAN by showing average down-
stream classifier accuracy over spent privacy budget. For us-
ing GS-WGAN to generate time series (ii) we propose using
the convolutional architecture of GS-WGAN for time series
generation by converting time series into images and using
these to train our GAN. This approach enables the use of im-
age based GANs for time series synthesis. We have shown
that using GS-WGAN to generate Differentially Private time
series yields results on par with state of the art time series
based DP GANs for privacy budgets ε > 10.0 on the PTB
dataset. For low privacy budgets (ε < 1.0 the data generated
by the data boasts higher AUPRC, but significantly worse
AUROC. This shows that the model does not learn feature
distribution of underrepresented classes quickly enough to
generate high quality samples for such classes early in train-
ing.

For future work, considering how to increase performance
early on in training to get high quality results for settings
with a tight privacy budget would increase usefulness of GS-
WGAN greatly. Also interesting would be exploring the pos-
sibility of exploiting more features of image based GANs on
time series, like using the different channels of colored im-
ages to represent different features in multivariate data.
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Figure 5: The effect of spent privacy budget on the quality of gener-
ated data measured by AUPRC for the MIT-BIH dataset. AUPRC
calculated on by using real test samples to evaluate a classifier
trained on synthetic data. Higher AUPRC signifies better classifier
performance and thus higher quality generated data.

A List of abbreviations
See Table 7

Abbreviation Meaning

GAN Generative Adversarial Network
DP Differential Privacy
RDP Rényi Differential Privacy
SGD Stochastic Gradient Descent
GS-WGAN Gradient Sanitized Wasserstein GAN
DP-CGAN Differentially Private Conditional GAN
PATE Private Aggregation of Teacher Ensembles
AUROC Area Under the Receiver Operating Char-

acteristic Curve
AUPRC Area Under the Precision-Recall Curve

Table 7: List of used abbreviations

B MNIST training hyperparameters
See Table 8

C GS-WGAN vs DC-GAN: usability
GANs are known for intensive and long training. This also is
the case for GS-WGAN and DP-CGAN. On the system used
in this evaluation training takes upwards of a day to com-
plete. This will probably be much lower on a system with a
powerful GPU, but due to the current shortage those were not
available in the Google Cloud Compute Engine

10

http://proceedings.mlr.press/v70/arjovsky17a.html
https://openreview.net/forum?id=S1zk9iRqF7
https://maelfabien.github.io/deeplearning/inception/#in-keras
https://maelfabien.github.io/deeplearning/inception/#in-keras
https://github.com/DingfanChen/GS-WGAN
https://github.com/DingfanChen/GS-WGAN
https://github.com/frhrdr/dp-merf
https://github.com/frhrdr/dp-merf
https://github.com/tsc2017/Frechet-Inception-Distance
https://github.com/tsc2017/Frechet-Inception-Distance
https://towardsdatascience.com/using-resnet-for-time-series-data-4ced1f5395e3
https://towardsdatascience.com/using-resnet-for-time-series-data-4ced1f5395e3


(a) Inception Score (b) Frechet Inception Distance (c) Average calibrated classifier accuracy*

Figure 6: Privacy vs. utility tradeoff comparison, on Fashion-MNIST dataset, between GS-WGAN and DP-CGAN with maximal ε = 10 and
δ = 10−5. *Average accuracy of a classifier trained on synthetic data and tested on real data divided by the accuracy of the same classifiers
trained and tested on real data.

GS-WGAN DP-CGAN

(ε, δ)-Differential Pri-
vacy

(10, 10−5) (10, 10−5)

(Maximum) training it-
erations

20,000 150,000

Number of pre-trained
discriminators

1,000 -

Batch size 32 600
(σ,C) (noise scale, clip-
ping value)

(1.07, 1.0) (2.1, 1.1)

Save step 2,000 10,000

Table 8: Hyperparameters used in the evaluation for GS-WGAN and
DP-CGAN

Also noteworthy is the ease of use of both models. GS-
WGAN is much easier to configure and use than DP-CGAN.
The code is more structured and understandable. Command
line options and examples on how to run training are given.
DP-CGAN took much more time to get working since the
original implementation did not give good results. The only
two advantages over GS-WGAN: First, regarding usability, is
that the model will automatically end training when the pre-
defined privacy budget has been spent. Second is the mem-
ory usage during training. GS-WGAN is incredibly memory
intensive since all discriminators are kept there, requiring up-
wards of 22GBs of RAM for 1000 discriminators.

D Privacy v.s. utility tradeoff for GS-WGAN
and DP-CGAN on FashionMNIST data

See Figure 6

E Supplementary materials for applying
GS-WGAN on timeseries

E.1 Influence of number of discriminators and
noise on privacy spending

See Figure 7

E.2 PTB hyperparameter search
To find an appropriate value for noise scale σ for the high
epsilon setting GS-WGAN was trained on PTB dataset for 6
values between 1.0-2.25, these values were chosen since they
give a good balance between privacy budget and training iter-
ations. A higher noise scale would increase training time too
much. Each noise scale was used for 5 training runs and the
averages and standard deviations are shown in Figure 8. The
effect of the noise on synthetic data quality is most obvious in
the AUROC plot. σ = 1.25 consistently shows above average
synthetic data quality and was therefore chosen as the noise
scale for the high ε setting.

E.3 MIT-BIH AUPRC plot
See Figure 5
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(a) Effect of number of discriminators (log scale)

(b) Effect of number of discriminators for lower privacy bud-
get

(c) Effect of noise (log scale)

(d) Effect of noise of discriminators for lower privacy budget

Figure 7: Effects of noise scale on utility, 1.0 ≤ σ ≤ 2.25. Averages of 5 runs.
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(a) Area Under Receiver Operating Characteristic Curve

(b) Area Under Receiver Precision-Recall Curve

(c) Downstream Classifier Accuracy

(d) F1 Score

Figure 8: Effects of noise scale on utility, 1.0 ≤ σ ≤ 2.25. Averages of 5 runs.
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