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In this paper we develop four measures to 
describe the distribution of nuclear chroma- 
tin. These measures attempt to describe in an 
objective and meaningful way the heteroge- 
neity, granularity, condensation, and margin- 
ation of chromatin in cell nuclei. Starting 
with a high-resolution digitized image of a 
cell where the nuclear pixels have been iden- 
tified, the four measures may be rapidly esti- 
mated. The range of each is derived and the 

interpretation of the measures in the context 
of chromatin compaction and distribution is 
developed. Implementation issues such as 
sampling density, thresholding and subse- 
quent pre-processing, and algorithmic com- 
plexity are discussed. 

Key terms: Quantitative microscopy, image 
processing, texture measures, pattern recog- 
nition, image measurement 

In this paper we present four measures that we have 
developed to quantify and characterize the distribution 
of chromatin in the nuclei of stained cells. These mea- 
sures are based upon a simple model for the way chro- 
matin compacts in a cell nucleus and how that 
compaction is reflected in verbal descriptions of nuclear 
“texture.” Use of the word texture immediately sug 
gests a range of possibilities for quantification and it is 
not our purpose here to go into a lengthy review of the 
texture literature. What has guided us in this study, 
however, has been a search for ways of describing chro- 
matin distribution that clearly relate to the underlying 
processes that cause change in the appearance of cell 
nuclei. Thus we start from a somewhat different per- 
spective then the mathematical texture parameters of 
Haralick (5), Galloway (3, or Pressman (16). 

METHODS 
Modeling 

We begin with the idea that a cell nucleus (as pictured 
in Figs. 1A,B) has a constant amount of DNA except 
when the cell is synthesizing DNA or about to divide. 

Thus we are considering cells with a normal, diploid 
(212) DNA content-GO and G1 cells. In a typical cell 
population such cells will account for at least 85% of all 
randomly sampled cells (14). It is precisely these cells 
that we are interested in characterising with respect to 
chromatin distribution; cells with a DNA complement 
above the 2c level are easily found by measuring their 
DNA content. 

If a difference exists between the nuclear chromatin 
pattern in two similar cells, then, according to our model 
of constant DNA, it must be due to a redistribution of 

the chromatin within the nucleus. This is illustrated in 
Figure 2A-D where all four cell images have precisely 
the same total nuclear optical density (proportional to 
DNA) but the distributions have been artificially altered. 

We describe the possible chromatin variations in terms 
of three linguistic attributes: heterogeneity, granular- 
ity, and margination. The first, heterogeneity, refers to 
whether the nuclear chromatin is homogeneously dis- 
tributed throughout the nucleus or condensed into 
granules. 

If the chromatin is condensed, then the description of 
granularity assumes a useful role. While Figures 2C 
and D both exhibit an artificial granularity, the size of 
the “granules” differs significantly. Our granularity 
measures estimate the size distribution through a siev- 
ing technique. The final measure, margination, is based 
upon the observation that, in a number of biologically 
and clinically important situations, the chromatin den- 
sity is distributed primarily around the nuclear mem- 
brane or margin with clearing towards the center of the 
nucleus. 

Whether the margination exists in the (true) three- 
dimensional cell or is an effect that is visualized through 
the two-dimensional preparation technique is not clear. 
What is clear is that margination is a relevant indicator 
of the state of cell in certain disease processes. 
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of Technology, 2600 GA Delft, The Netherlands. 
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FIG. 1. Examples of cell nuclei with similar total DNA content but 
differing chromatin distribution. 

FIG. 2. A) Dissociated rat bladder cell (original); B) the same cell but 
with all nuclear pixels having the same average optical density as that 
in (A) thus producing a homogeneous nucleus; C) the same total optical 
density as in (A) and (B) but with a coarse “granulation”; D) the same 
as C) but with a fine “granulation.” 

Chromatin Condensation-Heterogeneity and 
Granularity 

Our technique for measuring the heterogeneity and 
granularity uses a preprocessing step that converts the 
grey-valued nuclear image (with normally 256 possible 
grey levels) into a three-level image where each level is, 
in fact, a label. For pixels within the nucleus, where the 
chromatin is highly compacted and thus very dark, we 
replace their values with grey value zero, that is 
BLACK. Where the chromatin has “cleared” we replace 
the value with 255, that is WHITE. Finally, where the 
chromatin remains approximately equal to the average 
value in the nucleus, the values are replaced with 128, 
GREY. 

The differentiation between cleared regions, com- 
pacted regions, and average regions is based upon 
thresholds determined from the histogram of grey val- 
ues within each cell nucleus. Such a histogram is shown 
in Figure 3 with the mean grey value and the two 
threshold levels indicated. 

Program 1 
Short Version of a Program to Reassign Grey Values of Pixels 

Inside the Nucleus of a Cell. The Variables “Mean” and 
“Percentage” are Defined in the Text 

threshl = (1.0 - percent) * mean 
thresh2 = (1.0 + percent) * mean 
for (all pixels in nucleus n[x,y] j 

{ 
if ( n[x,yl < threshl ) n[x,y] = BLACK; 
if ( n[x,y] > = threshl ) 

{ 
if ( n[x,yl < thresh2 ) n[x,yl = GREY; 
if ( n[x,yl > = thresh 2 ) n[x,y] = WHITE; 
I 

The labeling then proceeds as shown in Program 1. 
First the mean grey value of all the pixels in the nucleus 
is computed. Then a fixed percentage is used to deter- 
mine two thresholds - one above the mean and one 
below the mean. In the example of Figure 3 this percent- 
age is 20% so that the two thresholds are 120% of the 
mean and 80% of the mean. The exact choice of the 
percentage is dependent upon the problem. At the very 
least it should be equal to or greater than the CV (coef- 
ficient-of-variation) of the system for measurement of 
either optical density or DNA. That is, if the measure- 
ment system gives a 3% CV for DNA measures on the 
2c peak, then the percentage used in the computation of 
the thresholds should be at least 3%. This is in keeping 
with our model of DNA compaction described earlier. 

Using percentages of the mean (instead of a fixed 
offset relative to the mean) means that our results will 
be invariant to multiplicative changes, for example, 
changes in the overall illumination level. 

With the pixels in the nucleus reassigned, the nucleus 
now appears as is shown in Figure 4. 

Based upon the labeled nuclear image we are now 
ready to define measures for nuclear heterogeneity and 
granularity. If the number of pixels in the nucleus la- 
beled BLACK is NB, the number labeled GREY is NG, 
and the number labeled WHITE is Nw then the hetero- 
geneity measure (hetero) is defined by the dimensionless 
ratio: 

N B + N W  . 
NB + NG + Nw hetero = (1) 

A uniformly grey nucleus with no chromatin compaction 
will yield a value for hetero of 0.0 while a completely 
condensed nucleus, with all pixels either black or white, 
will yield a value of 1.0. Three observations can be made 
concerning this heterogeneity measure. First, the de- 
nominator in the definition is simply the total number 
of pixels in the nucleus, that is, the nuclear area. Sec- 
ond, the parameter itself may be computed directly from 
the histogram of nuclear values without reference to the 
original image. In other words, hetero may be computed 
from the histogram in Figure 3. Finally, if a homogene- 
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FIG. 3. Histogram of the cell nucleus shown in Figure 2A. Thresholds are automatically selected at 20 
percent above and below the mean value of the nuclear brightness. 

cells and their nuclei are randomly oriented and that 
there is no directional preference. Because of this, we 
replace the concept of a two-dimensional mesh with a 
one-dimensional mesh that operates along the rows of 
the nuclear image. 

The choice of the mesh width is (again) a problem 
dependent issue. In our studies (9,23) we used a mesh 
that was 8 pixels (1 micrometer) wide. In a preparatory 
study (unpublished) we looked at the influence of var- 
ious mesh sizes. We determined that, for the class of 
cells that we were interested in studying, a change in 
the mesh width of 25% produced little variation in the 

The mesh windows are non-overlapping. Within a 
given window we count the number of BLACK-labeled 
pixels and the number of WHITE-labeled pixels and 

ity measure is prefered Over a heterogeneity measure, take the absolute difference, die Only those mesh win- 
dows that fit totally within the nucleus “row” are used 
in the computation. This calculation is illustrated in 
Figure 5. 

Based upon this sieving technique, two granularity 
(2) measures may now be defined. The first measure, clump, 

reflects the size distribution of the granules and is given 
by: 

FIG. 4. Reassignment of the pixels in the bladder cell image accord- 
ing to Prograin 1. A) Original cell image; B) nucleus processed with 
percent = 20%. 

then we can simply define 

NG 
NB + NG -t Nw ’ 

homogen = 1 - hetero = 

While the parameter hetero is quite capable of measur- 
ing the deviation from a uniform (i.e., homogeneous) 
chromatin distribution, it is not sensitive to  the spatial 
distribution of the condensed chromatin. As the degree 
of granularity can play an important role in biological 
and clinical descriptions, separate measures are re- 
quired. 

Our measures for granularity return to the spatial 
distribution of the granularity as depicted in the labeled 
nucleus of Figure 4B. We look at the labeled nucleus 
through a mesh or sieve to determine the fraction of 
granules larger than the mesh size. We assume that the 

(3) 

where NB and Nw, as defined earlier, are the total 
number of BLACK and WHITE labeled pixels in the 
nucleus, respectively. The sum is computed over all one- 
dimensional mesh windows. In Figure 5 there would be 
three such mesh windows. IfN* = Nw = 0, then clump 
is set to zero. 

If the black and white pixels represent very fine gran- 
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Mesh : Uindow 1 Window 2 Window 3 Uindow 4 

Uindow 1 :  N t B )  = 4 Uindow 3: N<B> = 2 
NtU> = 4 NCU) = 5 

d i f f  = 0 diff = 3 

Uindow 2: N(B> = 2 Window 4: Not used 
NtU) = 1 
diff = 1 

r] = Uhi te = Background 

FIG. 5. One-dimensional sieve overlayed on a region containing nuclear pixels. The width of the mesh 
window in this example is eight pixels and the fourth window is not used because it contains non-nuclear 
pixels. The difference (dim is defined as diff = I N(B) - N O  I . 

Table 1 
Values of Chromatin Pa,rarneters for Model Cells in Figure Za 

Hetero Clump Condens 
Cell a Normal nucleus 0.20 0.93 0.19 
Cell b Uniform optical density 0.00 0.00 0.00 

Cell d Small “granules” 0.90 0.00 0.00 
Cell c Large “granules” 0.90 0.39 0.35 

The  thresholds for labeling the cell nuclei were fixed at 20% above and 
below the mean (see Figure 3 and text). The mesh window was 8 pixels wide. 

ulation, that is grains smaller than the mesh size, then Since clump and hetero are both fractions between zero 
the values of diff will be small and clump will be close and one, we see immediately that: 
to 0.0. If the granules are much larger than the mesh 
size then the values of dif will be large and clump will 
tend to 1.0. 

The second measure, condensation, reflects the frac- 
tion of large granules with respect to total nuclear area. For the four model cells shown in Figure 2, the values 
The condensation is defined by: of these chromatin distribution parameters are given in 

Table 1. 

0.0 < condens < clump, hetero < 1.0. (6) 

Chromatin Condensation-Margination 
Margination is that characteristic of chromatin distri- 

bution where the stained material is seen (in the two- 
dimensional image) “to collect” at the nuclear mem- 
brane. To form a measure, we return to the original 
grey-valued image. This image, as seen in Figure 4A, 

If all pixels in the nucleus are either BLACK or WHITE has been transformed by taking the logarithm of the 
(NG = 0) then condens will equal clump. In the more original intensity image to yield an  image where the 
usual case, where some of the pixels are GREY then value at every pixel in linearly related to the optical 
condens will take on a value somewhat less than clump. density of the stain at that pixel. For stoichiometrically 
There exists an explicit relationship between these three stained cells this means that the sum of transformed 
parameters, hetero, condens, and clump given by: image values in any subregion of the nucleus will be 

proportional to the stain content in that subregion. We 
assess the margination by computing the average opti- 

(4) h e s h  diff 
NB + NG + N w ’  condens = 

condens = clump * hereto. (5) 
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cal density per pixel in a series of concentric “rings” measure akin to @ut not the same as) the radius of 
that begin at the outside boundary and move inward gyration, It is this scalar quantity that we use to de- 
toward the center of the nucleus. These rings are formed scribe the radial distribution of stained material, 
by beginning with the original nuclear contour and then To avoid confusion it is useful to point out that the 
considering the successive differences between the con- definition of second moment that we use here differs 
tour and its eroded versions. The Minkowski or cellular subtly from the common definition found in college 
logic operation “erosion” is particularly suited to the physics textbooks. We use a definition of m(r) based upon 
development of this margination measure and can be the average mass per pixel per ring. Thus, for a homo- 
effectively implemented in either hardware (3,15,17-19) geneous object, m(r) is a constant for all dings). In clas- 
or software (4,211. The procedure is illustrated in Figure sical mechanics a different quantity is defined. There, 
6 where the original cell and a graphic display of the the mass distribution M(r) is the total mass in each ring. 
rings are depicted. For a homogeneous object, M(r) therefore increases (lin- 

Through this computation of the average optical den- early) as r increases. We have chosen the definition m(r) 
sity per pixel as a function of ring number, the radial instead of M(r) because of the way it corresponds to the 
spatial distribution of the optical density (that is, of visual impression that the mass distribution in a homo- 
nuclear stain) is determined. Thus, for the purposes of geneous object is everywhere constant. 
determining nuclear margination of stain, we reduce The second moment i s  given by (20): 
the two-dimensional distribution of stain to a one-dimen- 
sional radial profile m(r) as depicted in Figure 7. From 
this profile we then compute a second radial moment, a so r2 m(r) dr 

so m(r) dr 

R 

‘2 = R (7) 

where m(r) represents the average mass per pixel as a 
function of radial position r and R is the maximum 
radius. In our case, where the radii are replaced by ring 
numbers based upon erosions, equation 7 becomes: 

FIG. 6. Development and representation of the radial distribution of 
nuclear chromatin. A) Original cell showing nuclear margination; B) 
series of rings generated by erosions of the nuclear boundary. Notice 
that the ring shapes generated by erosions follow the nuclcar shape. 
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FIG. 7. Profile of the radial distribution of stainad material from the nucleus shown in Figure 6 
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and R is the maximum ring number, that is, the outer 
nuclear boundary. By examining two extreme cases we 
can determine a normalization for 12. If all the mass is 
concentrated at  the center of the nucleus then clearly 12 
= 0.0. If all the mass is concentrated at the edge of the 
nucleus-this can be modeled by m(r) = Mo &(r-R)- 
then Iz = R2. We therefore define nuclear margination, 
marg, as: 

marg = IZm2 (9) 

and, in general, 0.0 < marg < 1.0. For a nucleus with 
uniformly distributed chromatin, where the histogram 
in Figure 7 is flat between 0 and R, the value of marg is 
given by 

marg = (1/3) - (1/2) R-’ + (1/6)R-2. (10) 

The discrete nature of the calculation is apparent in 
equation 10. In the continuous case the answer would 
be % and as the radius of the nucleus becomes large 
(with respect to the picture sampling density) this is the 
case. The difference between the value ?4 and the result 
in eq. 10 is simply the quantization error associated with 
the discrete, spatial sampling grid, 

Based upon this quantization error it is straightfor- 
ward to derive a relationship between the image sam- 
pling density-as expressed by R-and the percentage 
error in the estimate of marg. We can define the per- 
centage error (e%) for the homogeneous object as: 

(11) 
I1/3 - margl 

1/3 
x loo%, e% = 

that is, the normalized difference between the “true” 
analog value and the estimated digital value. If we 
require that e% be below a certain threshold, say p%, 
and we ignore terms on the order of Rp2, then using 
equation (10) this result can be rewritten as: 

300 R > -- 
2P 

(12) 

Thus, if the percentage quantization error is to be below 
p = 2%, then it is necessary to choose a sampling density 
in the original image such that the nuclear radius is at 
least 75 pixels! For a nucleus approximately 10 microm- 
eters in diameter this would imply a sampling density 
of a t  least 15 pixels per micrometer. 

Preprocessing for Measurement 
Sampling density. Before the four chromatin features 

can be measured a number of preprocessing steps are 
necessary. First, and perhaps most frequently underes- 

timated, is the importance of choosing a proper sam- 
pling density. As we have just shown, the quantization 
error associated with the choice of sampling density can 
be of significant size. In the results that we will be 
presenting shortly the cell images were sampled at a 
density of 8 pixels per micrometer and the nuclei were 
approximately 5 micrometer in diameter. Based upon 
our results from the previous section it would not have 
been unreasonable to use a sampling density of 16 pixels 
per micrometer or greater to minimize the errors due to 
spatial quantization. In fact, in several different studies, 
including one of ours on the quantification of shape 
changes in mammalian sperm, sampling densities of 
from 16 to 30 pixels per micrometer have been reported 
(6,22). The choice of sampling density couples, of course, 
to our measure of chromatin granularity. At a sampling 
density of 8 pixels per micrometer and with a mesh 
window of 8 pixels, we are sieving for granules of 1 
micrometer diameter. Should we choose a higher sam- 
pling density then a wider mesh (in pixels) would be 
necessary to maintain a constant size relative to the 
granules. 

Segmentation of nuclear image. All of our chromatin 
measures depend upon a n  accurate assessment of the 
nuclearlcytoplasmic boundary. With a proper choice of 
stain this may be accomplished by ordinary threshold- 
ing. When special circumstances arise (for example with 
phase or interference microscopy) more complicated 
techniques may be required to delineate the boundary, 
for example heuristic search techniques. One must re- 
main mindful, however, of the computational complex- 
ity of such algorithms and how they can limit or a t  least 
affect total cell analysis throughput (13). 

Contour encoding and processing. All of the chroma- 
tin measures described here have been implemented 
using the “run table” formulation described in reference 
21. This has led to an efficient and thus rapid code [in 
the C programming language (S)] for acquiring the pix- 
els within the nucleus, histograms within a specific re- 
gion or ring, and the implementation of erosions and 
other binary operators. Two optional pre-processing steps 
that can be used for the chromatin measures are a pre- 
erosion of the nuclear contour before the measurement 
of hetero, clump, and condens and a pre-dilation of the 
nuclear contour before the measurement of marg. Both 
optional steps are useful when there is an uncertainty 
about the exact position of the nuclear boundary. In both 
cases the pre-processing of either erosion or dilation 
produces a border that more conservatively estimates 
the boundary with respect to the desired measure(s). The 
number of pre-processing erosion or dilation steps is a 
function of the sampling density and the electro-optical 
transfer function of the measuring system. In our case 
this turned out to  be two pre-erosions of the nuclear 
contour for the heterogeneity and granularity measures 
and zero pre-dilations for the margination measure. 



NUCLEAR CHROMATIN DISTRIBUTION 473 

RESULTS most powerful in classifying the individual cases. Once 
The ultimate test of any measure is, of course, how again these results follow the observation of the cyto- 

well it works in describing the similarities within cell pathologist that change in chromatin is considered to be 
populations and the differences between cell popula- the most reliable feature for recognition of neoplasia 
tions. In two very different sets of experiments the chro- and preneoplasia in clinical cytology. 
matin measures described here were used along with 
other conventional measures such as  nuclear area, nu- SUMMARY AND CONCLUSIONS 
clear optical density, cytoplasmic area size, etc. to char- Several research groups have recognized and imple- 
acterize populations of cells. Since both experiments are mented parameters for the description of chromatin tex- 
described in detail elsewhere (9,23) only the issues rele- ture that are oriented more towards the descriptions of 
vant to assessing the utility of our chromatin measures the cell nucleus (or cytoplasm) and less towards an  ad 
will be presented here. hoe mathematical formalism. These include the count- 

In the first experiment (23) a population of rats was ing densitogram [Bins et al. (I)], which estimates the 
exposed to a known carcinogen to produce bladder can- number of dark and light regions inside a cell nucleus 
cer. The morphology of dissociated urothelial cells was and the similar numbers for cell cytoplasm. Landeweerd 
compared against those from a control population. Sam- (12) also devised a technique for labeling a nuclear im- 
ples were taken up to 45 weeks after onset of exposure age with three levels- His final n ~ a s u r e s  based upon 
and a visually distinct change in the nuclear chromatin the labeled image were somewhat different from ours 
pattern appeared as  the weeks progressed (10). The and no simple explanation was Presented for the rela- 
ACUity system (22) was used to scan samples and to tion between the parameters and the changes occuring 
measure various parameters including nuclear area, nu- during chromatin condensation. Krans et al., in their 
clear aredcytoplasmic area (N/C) ratio, and the chro- paper (11) on discrimination of normal and dyskaryotic 
matin distribution measures, A set of abnormal cells (as cells, offer in their Figure 3 a concept quite similar to 
determined by a cytotechnologist) from the exposed ani- that dmwn in our F i W e  2. Their method of assessing 
mals was compared against a randomly selected set of the Panulation Seems to differ significantly, however. 
control cells using the non-parametric Mann-witney Nowhere in the literature does there appear to be an 
ranks test [BMDP test, P3S (7)]. The nuclear area was attempt to quantify the concept of nuclear margination. 
significantly larger at the 14, 34, and 45 week time In this Paper we have presented four r m m x ~ ~  for the 
points (after birth) with p values of 0.05, 0.146, and quantitative description of nuclear chromatin texture. 
0.0037, respectively. There was no significant difference These ~ e a ~ ~ ~ e s  satisfy four important requirements for 
in nuclear area at 26 weeks. N/C ratio showed low dis- quantitative Pathology- First, the measures can be de- 
criminatory power although the same general trends ~ r i b e d  and related to changes in nuclear appearance, 
noted in nuclear area were also present. changes that correlate with the descriptions used by 

The chromatin parameters differed significantly be- cfioPatholo~sts. Second, we understand how the mea- 
tween test and control cells (animals) at all time points. sures change as the chromatin bmmnes ~ X T  clumped 
Abnormal cells had chromatin that was more heteroge- (clump h ~ d s  to 1.0h more marginated (marg kmds to 
neous with greater condensation (larger clumps). The etc. Third, as was demonstrated through several 
levels of significance (.0001, .05, .0001, .0001 at 14, 26, experiments, the ~ & X U E S  Perform well both in the 
34, and 45 weeks, respectively) were significantly better empirical Sense and also in comparison With Other con- 
than those for nuclear area and, in fact, all other param- ventional morPholo@cal Parameters. Fourth, the mea- 
eters measured. Further, these results were consistent sures can be rapidly measured as their structure admits 
with the cflopatholo&t’s verbal description of in- an  efficient algorithmic implementation. 
creased chromatin condensation in abnormal cells. In summary, we believe that the four chromatin mea- 

In the second experiment (9) images of foam cells in Provide important new tools for image CflometrY 
human nipple aspirate fluid were analyzed with the and its application in biomedical research and clinical 
ACUity system in a study to attempt to distinguish diagnosis. 
among cases diagnosed as benign, hyperplasia, atypical ACKNOWLEDGMENTS 
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