
Analysing the effectiveness of fine-grained dependency analysis to convince
developers of updating their dependencies

CHRISTOPHE COSSE1 , SEBASTIAN PROKSCH1 , MEDHI KESHANI1
1TU Delft

Abstract
Dependency maintenance is a critically important
part of software development as vulnerabilities and
exploits are constantly being discovered. Unfor-
tunately it is extremely tedious for developers to
manually keep track of these vulnerability discov-
eries and update their dependencies consequently.
Dependency maintenance tools such as Depend-
abot and WhiteSource help to make this job eas-
ier for developers but still many developers never
update their dependencies even with notifications
from these tools. As such this research paper aims
to find if giving more information to the developer
as to how the vulnerability affects their code en-
tices developers more to update their dependencies.
This research found that developers seem to not
care much for extra information about vulnerabil-
ities and in whole maybe a different approach is
required to educate developers on the critical im-
portance of dependency maintenance.

1 Introduction
In modern software development, software engineers often
reuse code from others through the use of dependencies. Such
dependencies are handled through the use of tools like Maven
or Gradle (for the Java programming language). However, by
reusing code, developers often include many bugs and secu-
rity issues in their programs which are often not yet discov-
ered and come from the dependencies, [5] goes further into
detail between the correlation of dependencies and vulnera-
bilities in software projects. These bugs and security issues
can then be exploited by hackers to access confidential and
sensitive information. For example in 2017 a dependency
vulnerability was responsible for the leak of personally iden-
tifying information of over a 100 thousand Equifax clients
[6].

This leak could have been avoided had Equifax simply up-
dated their dependencies more regularly, as the exploit had
been discovered and patched in a previous update. How-
ever, dependency management is extremely tedious to do
manually. That is why nowadays several automated pro-
grams (bots) exist to automatically give recommended up-
dates for dependencies to developers. Examples of these bots

are WhiteSource 1 and Dependabot 2. For the purposes of this
research Dependabot will be used.

Unfortunately, these bots have one critical flaw; they
analyze repositories at the package-level. This leads to
Dependabot not being able to know if the vulnerable depen-
dency is actually vulnerable in the context of the repository.
To understand this further let us assume a software-project
uses some dependency that contains a vulnerable method.
This method is never directly, or indirectly, called in the
software project hence the vulnerability caused by the
method is never actually exploitable for this project, even
thought this is the case, Dependabot will still flag this
dependency as needing to be updated even though it does not
actually cause a security concern. This leads to Dependabot
recommending updates that are completely unnecessary and
therefore the high percentage of false positives which leads
the developers to not really paying attention to Dependabot
recommendations.

To solve this issue, recent studies [6] [4] have shown
that a different type of dependency analysis, this time at the
method-level, is much more reliable in proposing correct
updates to developers. However no study as so far concluded
on whether these more accurate suggestions lead to a higher
receptivity and attention from the repository maintainer. In
this study we aim to understand what the impact of such
analysis is on the actual actions of developers towards these
dependency management recommendations compared to
more traditional package-level analysis. Hence the research
question of this project is: Do people react to fine-grained
information more than package-level information?

The structure of this document is as follows: section 2
will delve deeper into the background of this field and show
the methodology used to select sample repositories, analyze
them using both package-level and method-level techniques
as well as how we use this analysis to create pull requests
that help us gather data and assess the reactions of developers
towards different types of data. Section 3 goes into detail
into what the main contributions of this paper are for the
wider computer engineering community. Section 4 will dive

1https://www.whitesourcesoftware.com/product-overview/
2https://dependabot.com/

Delft University of Technology, In Partial Fulfilment of the Requirements For the Bachelor of Computer Science and Engineering

into the experimental setup and the methodology of analysis
used on the data to obtain the results. Section 5 will deal
with the responsibility of this research and its reproducibility.
Section 6 compares the results of this paper to other known
results from related work. Finally, section 7 will lay down
the conclusion of this work and harp away at possible future
work.

2 Background
2.1 The importance of dependency management
Dependency management is a critically important task that
must be performed on all projects, whether they be large-
scale, medium-scale or even toy projects. Code reuse has per-
mitted object-oriented projects to be developed much quicker
then starting from scratch as shown in [3], which empirically
shows how code reuse increases productivity.

However with this code reuse, vulnerabilities are transmit-
ted from project to project as shown in [5], which studied over
1200 projects and showed a correlation between the number
of dependencies a project used and the number of security
issues affecting the project.

2.2 The hunt for dependency vulnerabilities
Dependency vulnerabilities have been a wide known problem
for many years and therefore there exists a large database of
each know vulnerability and thousands new ones are discov-
ered every year either by vulnerability hunters, or simply by
accident. These vulnerabilities are published in CVEs (Com-
mon Vulnerabilities and Exposures explained well in this blog
post [1]). These CVEs are critical in the pursuit of more
secure software ecosystems since they are the data used by
all tools which manage dependencies, including the research
done by this paper explained in section 3

2.3 Automating dependency management
To automate the combat against dependency vulnerabilities
tools such as Dependabot are used currently. These tools must
be added individually by projects are scan the dependencies
of these projects for vulnerable dependencies. If such a de-
pendency is found, a pull request is generated to update the
dependency. Figure 1 shows an example of such a pull re-
quest. As can be seen the pull request also contains the secu-
rity vulnerability information to notify the developer of what
the vulnerability is and what the previous and updated version
of the dependency is.

While Dependabot gives the developer the vulnerability in-
formation and the fix to update the dependency and get rid of
the vulnerability in the project, it is up to the developer to ap-
ply the fix by merging which is unfortunately not something
that is always done.

2.4 Issues with these tools
The main issue with tools such as Dependabot is that they
only scan repositories for a vulnerability on the package-
level; that means that they only check if the project contains
a dependency which has been detected as vulnerable. As
such they do not check if the vulnerability actually affects
the project.

That means many Dependabot pull requests are actually
false since the vulnerability doesn’t actually affect the project
itself. Indeed vulnerabilities are often just a simple error in a
single method of a dependency. If that method is never called,
either directly or indirectly, then the vulnerability doesn’t af-
fect the project.

The gross method of vulnerability detection might have
something to do with the general nonchalant attitude that de-
velopers show towards security vulnerabilities. As can be
seen in [2], a study that performed a statistical analysis of
the effectiveness of Dependabot security issues on large-scale
projects, a large majority of issues (65%) result in a depen-
dency update however this number is still very low consider-
ing the fact that most security vulnerabilities are of high risk.

2.5 The FASTEN Project
The FASTEN project 3 is large project in development which
aims to make software ecosystems more robust by making
dependency management more intelligent. They do this by
relying on the creation of an ecosystem-wide Fine-Grained
Call Graph directly at the function-level. These call graphs
permit FASTEN to track function calls across an entire appli-
cation and therefore determine if a vulnerable method is ever
called.

The reader is indicated to [4] [6] to further understand call
graphs and their application for dependency mangement.

3 Methodology
The following section describes in great detail the methodol-
ogy used to answer the research question and provide a contri-
bution to the field of dependency management. Starting with
the selection of a usable project set we go over the package
level and method level analysis produced and ending with the
explanation of the information gathering. Each subsequent
subsection represents one step in the methodology used.

3.1 Selection Criteria
Before analysing projects, it is necessary to first obtain a
project set that fits the usage of the project since it is sim-
ply unfeasible to analyze the millions of java projects pub-
licly available on Github. For this several factors must be
taken into account. Firstly the project must be in the Java
programming language. Next projects need to have been
package level vulnerable at a minimum and they must use ei-
ther Maven or Gradle as dependency management tools. The
popularity and activity of projects is also taken into account.
Luckily FASTEN contains a database, the FASTEN Metadata
Database 4, of projects which fit this description.

3.2 Package level analysis
Performing package level analysis is a rather simplistic task.
All that needs to be done is to check the dependency file
(pom.xml for Maven 5 and build.gradle for Gradle 6) of the

3https://www.fasten-project.eu/
4https://github.com/fasten-project/fasten/wiki/Metadata-

Database-Schema
5https://maven.apache.org/
6https://gradle.org/

Figure 1: Example Dependabot pull request

project for vulnerable dependencies. Figure 2 shows an ex-
ample of such information in a pom.xml file. A script was
written for this task. The dependency file is parsed and all
dependencies and their versions are extracted.

These dependencies and their versions are then cross-
referenced with a list of known vulnerable dependencies ob-
tained from CVEs. If such a dependency and its correct vul-
nerable version is present in the dependency file, the project
is marked as package-level vulnerable.

Figure 2: Dependency information in a pom.xml file

3.3 Method level analysis
Once a list of all package-level vulnerable projects is obtained
from the previous step, method-level analysis can be done.
This is done using the FASTEN project which has a java li-
brary containing many functions and features for the creation
of call-graphs. These call-graphs track which methods are
called by which other methods and as such permits the user
to trace method-calls. So one method A calls method B which
in turns calls method C which finally in-turn calls method D.
Using call-graphs it is possible to trace a vulnerable method,

lets say D is vulnerable, all the way to method A, the method
of the developer. These call graphs hence permit developers
to know if vulnerabilities in dependencies are actually affect-
ing their repositories.

Therefore a script is then built with input the list of
package-level vulnerable projects from the previous step and
CVEs which contain information such as vulnerable depen-
dency name, version and the methods that are responsible
for the vulnerability. This script then has as output a list of
projects that are actually vulnerable as well as the affected
methods in the repository and the methods that are at the
source of the vulnerability for each of the repository meth-
ods.

3.4 Pull request generation
With all this information, pull-requests are manually created
with method-level information see Figure 3 for an example
of this. These pull requests also contain a small very sim-
ple yes/no quiz (in the form of assertions with tick-boxes)
for the repository manager to answer. These assertions ask
for simple information such as if the method-level informa-
tion was found to be relevant to the project or if the manager
was convinced to update the dependency because of the extra
method-level information.

As can be seen in Figure 3, the title of the pull request
starts with the vulnerability severity in all caps, the depen-
dency name, old version and version to which it is updated.
This information is obtained directly from the CVEs. The
pull request then follows a similar styling as dependabot pull

requests with information about the vulnerability and a link
to the concerned CVE as well as a link to the patch notes of
the dependency release which fix this vulnerability. Then the
pull request shows, the affected methods in the project (which
are hyperlinks to the place in the code), the method from the
dependency called in the project and finally the method from
the dependency that is at the origin of the dependency.

It is important, for the method-level information to be taken
seriously, that all three methods are shown such that the de-
veloper is able to trace the vulnerable method directly to his
code and as such be certain that this vulnerability does indeed
affect his project.

The pull request then has a small description and explana-
tion of the information presented above as well as how this
information was generated and the scope and aim of the re-
search project tied to this pull request. This was added to en-
tice the developers to hopefully do more research about this
topic and convince them to answer out the quick survey.

4 Results
In this section, we present our findings.

4.1 Responses to the method level pull requests
The following Table 1 shows the responses to the method
level pull requests sent out to vulnerable projects. The
projects are divided into active and inactive groups based on
if the project had a contribution in the last 4 months.

Activity Active Inactive
Pull Requests 25 12

Merges 3 0
Interactions 7 0
Ticked Box 1 0

Average Time to Respond 10 days NA
Responses within 1 day 4 0

Responses after 3+ weeks 3 0

Table 1: Obtained responses from PRs

As can be seen from Table 1 a total 37 pull requests con-
taining method level information were sent out, 25 of these
being on active repositories which had recent contributions
and therefore are expected to respond to the dependency
information. A further 12 pull requests were also sent out
to inactive projects to check whether developers continue to
maintain their projects after having published them.

From the data it is quite obvious that the responses are
rather lacking with only seven of the active projects (28%)
having any interaction at all with the pull requests while only
three (12%) actually merged the pull request and updated
their dependency.

Furthermore while the average response time was ten
days this result is extremely skewed since four of developers
replied almost instantly within the first one of the PR being
sent out while the other three responses each took over three

weeks to reply.

Unfortunately while some developers did interact with
the pull requests only one actually managed to tick any of
the boxes in the pull requests that asked for feedback on the
usage of method-level information in these types of security
pull requests. This is why comments were published on
each PR with a survey link, with the same questions as the
tick boxes in the pull requests, to hopefully obtain more
information which resulted in two more responses. These
responses are presented in Section 4.2.

Finally it can be noted that none of the inactive projects
responded to the pull requests or interacted with them in
any way showing that these projects will most likely be
vulnerable forever.

4.2 Responses to the survey
From the survey sent out to the developers and the responses
to the checklist style tick boxes in the pull requests, a total
of three responses were recorded which are presented in the
following table:

Question Yes No
I was aware of the vulnerability affecting my
project before being informed by the Pull Re-
quest.

0 3

I was convinced by the provided method call
data that the vulnerability indeed affects my
project.

2 1

I plan on merging the PR in the near future. 3 0
The provided method call information has
made my process of dealing with the vulner-
able dependency easier

1 2

I have given priority to the task of fixing the
vulnerability over other project tasks that are
yet to be completed.

2 1

I would like to receive this kind of method
information in future vulnerable dependency
Pull Request descriptions.

2 1

Table 2: Obtained responses from Survey

It is interesting to note that from the three respondents one
of them (who did not give priority to this issue in his project)
has yet to merge the pull request and update their dependency.
These responses will be further discussed in Section 6.

4.3 Developer behaviour from the literature
While developers of active projects had a low interaction rate
with the pull requests (28%), it is important to put these re-
sults into perspective and understand how developers react to
normal package-level pull requests (dependabot). From the
literature study [2] shows that 65% of normal security pull
requests are merged. However it is important to realize that
these are pull requests on projects which are subscribed to de-
pendabot. This means these projects are generally aware of
the importance of proper dependency management.

Figure 3: Example method level pull request

When it comes to general projects [7] showed that the vast
majority of active projects (81.5%) do not update their de-
pendencies and 69% of developers were not aware that their
projects were vulnerable. These results fall somewhat inline
with the data obtained from the method-level pull requests
and surveys where 87% of the projects did not update their
dependency and none of the respondents were aware of their
project being vulnerable.

5 Responsible Research and Reproducibility
5.1 Responsible research and ethical aspect
Given the nature of this research, finding and alerting project
managers of vulnerabilities in their projects, it is critical to
take into account responsibility.

Although no personal or identifiable information is pre-
sented in this document, it would be rather easy for anyone
with knowledge of Github to find all the PRs that were made
by the research group and with that all the vulnerability in-
formation on the different projects. Although it is true that
anyone can, just as simply as was done for the purpose of this
document, analyze thousands of repositories for vulnerabili-
ties, the fact of the matter is with this research a couple dozen
projects are directly publicly announced as vulnerable with
all the details of these vulnerabilities. This is quite sensitive
information so special care needs to take place to make sure
this information is as protected as can be. That is why all the
pull requests (be they merged or not) have been deleted be-
fore the publication of this document and no information that
permits readers from identifying the projects used for this re-
search is present in this document either.

5.2 Reproducibility of the research
Another important discussion that needs to be mentioned is
the reproducibility of the research and the results. While the
exact same results are impossible to reproduce (given that the
projects have all either updated their dependencies or are in-
active), the publishers of this document do believe that the
general consensus and contribution done by this research can
be reproduced simply by following the exact same methodol-
ogy described in section 3 with a new base set of projects and
up to date CVEs.

6 Discussion
6.1 The developer responses
The biggest takeaway from the experiment that was con-
ducted was that there were very little responses from the de-
velopers which were contacted. Only one of the developers
checked any of the check boxes in the PRs (even though the
first one was essentially ”I have read the pull request”) which
shows how careless developers are to external information on
their projects. Only seven project maintainers interacted with
the PR generated mostly for them to ask someone else to have
a look at it and nothing came of those. In the end from 37 pull
requests only three were merged.

From this, two main takeaways can be considered: firstly
developers are, for the large majority, not receptive to external
contributions. Secondly when they are receptive, they do not

take the time to fully read the contribution and understand
it. This leads them to miss out on critical information and
probably if the driving force behind vulnerability fixes that
aren’t addressed as soon as they are discovered and published
through CVEs.

6.2 Analyzing the responses received
Now that the lack of responses has been discussed it is pos-
sible to analyze the few responses that were obtained, even if
they are not sufficient enough to come to any hard conclusion.
The analysis of these responses might indicate that further re-
search in this field is necessary to understand the added value
of method-level information.

We will list all seven interactions with the pull and discuss
briefly what these interactions entail and how the developer
responded.

1. elasticsearch-maven-plugin This developer took 21
days to respond but decided to ignore it fully because
they already had a dependabot pull request open about
the same topic and preferred to merge this one instead.

2. terrier-core This developer took 20 days to respond and
answered the survey in which he mentioned that he plans
on merging the pull request but has not done so as of yet.
He also mentioned that he didn’t want to give preference
to this issue over others in his project.

3. hazelcast-tomcat-sessionmanager This developer ac-
knowledged the pull request nearly instantaneously,
however only to ask an admin to have a look at it. Since
then nothing has come of it and the pull request has re-
mained ignored for over 3 weeks.

4. openstack4j This developer reacted within a day to the
pull request however the dependency update failed to
build and the developer decided to ignore the depen-
dency update instead .

5. jcabi-http This developer merged after a total of 22 days
however he did not respond to the survey and later ig-
nored a comment prompting him to answer the survey.

6. stream-java This developer merged the pull request
only a few hours after receiving it however he did not
respond to the survey neither on the pull request or on
the comment sent to prompt him.

7. trex-java-sdk This developer merged the pull request a
day after receiving it and responded to the survey after a
comment prompted him to do so.

When taking a look at the three responses from the survey
it is clear that developers are generally unaware of vulnerabil-
ities in their projects. Furthermore only two out of the respon-
dents said they were convinced their projects were vulnerable
from the provided method-level information. This might be
because of a lack of knowledge on the topic or because of the
way the information was presented. Only one of the respon-
dents also said that the extra method call information made
their process of dealing with the vulnerability easier and fi-
nally one of the developers did not wish to receive more of
these pull requests with extra method-level information while
the other two did.

The above results therefore do seem to suggest that this ex-
tra method-level information does provide a benefit to devel-
opers but there simply isn’t enough data to formulate a strong
opinion on the subject matter.

It is worth mentioning also that we obtained two responses
from the survey posted in the comments sent to developers,
yet only one developer actually confirmed that he completed
the survey.

6.3 Reasons for the lack of responses
What should be discussed further is the reasons for the lack
of responses. Why don’t developers check in more detail in-
formation given to them about their projects? Below is a list
of possible reasons and each will be discussed in some detail.

• After publishing their work, developers do not regu-
larly check it for vulnerabilities. Possibly the biggest
reason. Developers are not thinking about the security
of their work after it has been published. Many of the
repositories did not see any activity since the release of
the project. Even if the release was rather recent.

• Developers do not fully read vulnerability warnings in
detail. While this is impossible to fully confirm, it can be
assumed that one of the big reasons that developers did
not reply to the check boxes is simply that they did not
read long enough to reach them. It is quite likely most
to the developers simply read the PR title and decided
”oh I will take care of this later” or ”oh this is only de-
pendency vulnerability I don’t mind”. Developers might
think they have more important work and cannot allo-
cate the simple 2 minutes it would take to fully read the
pull request and respond to it.

• Developers do not take dependency vulnerabilities se-
riously. This reason flows from the previous and that is
the thought that developers seem to not much care for
dependency vulnerabilities. They assume that the vul-
nerability is small. Or that their project is not important
enough to be targeted.

• Dependency management bores developers. No devel-
oper seems to care for dependency management. And
that might be more because it bores them. Indeed it
seems likely no developer enjoys spending their time
sorting through dependency vulnerabilities to under-
stand them and see if they need to perform an update.

7 Conclusions and Future Work
7.1 Conclusion
The main research question of this project was ”Do people
react to fine-grained information more than package-level in-
formation?” to be able to understand whether a lack of infor-
mation on how vulnerabilities affect projects was the reason
behind the low amount of dependency updates.

To answer this question a script was written to be able to
automatize as much as possible the lengthy process of go-
ing method-level analysis on projects and then pull requests
where sent out containing this extra method-level informa-
tion. The objective was to obtain information about the inter-

actions of developers with the pull request so that they could
be compared to already available data from literature.

Unfortunately the number of responses were very low and
very few conclusions can be taken from them. From what was
gathered it is clear that, while the developers that did merge,
seemed to be convinced by the extra information they only are
a small proportion of the total developers contacted. There-
fore it seems that the problem with low dependency updates
is not with convincing developers that their projects are vul-
nerable but that these vulnerabilities are actually dangerous.

7.2 Future Works
While the research failed to get enough responses it is im-
portant to note that three of the seven total responses were
obtained three weeks after the initial pull requests were sent.
Therefore with more time and prompts to developers it might
be possible to obtain more responses. Furthermore just ex-
panding the project set will inherently increase the amount of
responses. However this would require a great deal of work
and investing into the creation of a dependabot-like script to
automatically generate the pull requests.

A future paper which will be co-written with all the other
researchers in this field, Jakub Nguyen, Tudor Popovici and
Niels Mook shall include these new findings should they exist
as well as incorporating all the research done by the fellow
researchers.

References
[1] Kevin Casey October 29, Kevin Casey, October 29,

Kevin Casey writes about technology, and business for
a variety of publications. He won an Azbee Award. How
to explain cve, common vulnerabilities and exposures, in
plain english, Oct 2019.

[2] Mahmoud Alfadel, Diego Costa, Emad Shihab, and
Mouafak Mkhallalati. On the use of dependabot security
pull requests. 02 2021.

[3] Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo.
How reuse influences productivity in object-oriented sys-
tems. Commun. ACM, 39(10):104–116, October 1996.

[4] Paolo Boldi and Georgios Gousios. Fine-grained network
analysis for modern software ecosystems. 21(1):14.

[5] Antonios Gkortzis, Daniel Feitosa, and Diomidis Spinel-
lis. Software reuse cuts both ways: An empirical analysis
of its relationship with security vulnerabilities. Journal
of Systems and Software, 172:110653, 2021.

[6] Joseph Hejderup, Arie van Deursen, and Georgios
Gousios. Software ecosystem call graph for dependency
management. 40:4.

[7] Raula Kula, Daniel German, Ali Ouni, Takashi Ishio, and
Katsuro Inoue. Do developers update their library depen-
dencies? Empirical Software Engineering, 23:1–34, 02
2018.

	Introduction
	Background
	The importance of dependency management
	The hunt for dependency vulnerabilities
	Automating dependency management
	Issues with these tools
	The FASTEN Project

	Methodology
	Selection Criteria
	Package level analysis
	Method level analysis
	Pull request generation

	Results
	Responses to the method level pull requests
	Responses to the survey
	Developer behaviour from the literature

	Responsible Research and Reproducibility
	Responsible research and ethical aspect
	Reproducibility of the research

	Discussion
	The developer responses
	Analyzing the responses received
	Reasons for the lack of responses

	Conclusions and Future Work
	Conclusion
	Future Works

