

A voxel-based method for automatic repair of 3D City Building models

Content

- 3D City models
- Problem statement
- Voxelization
- Approach 1
- Approach 2
- Implementation
- Conclusion & Future work

Rotterdam aerial image

Aleepo

Rotterdam aerial image

Stored as computer file

3D City Models concept

Attributes

Texture..

3D City Models Application – Solar3DCity

(F. Biljecki, 2015)

3D City Models

Application – Noise mapping

(J. Stoter et al., 2008)

3D City Models application

3D City Models application

9

3D City Models validation

When is the geometry valid?

geometric validation of GML 3D primitives

(H. Ledoux, 2013)

3D City Models validation

Invalid geometry: building non closed

3D City Models validation

Invalid geometry: non-manifold edge

3D City Models

validation

Invalid geometry: same consective points Invalid geometry: self-intersections 13

3D City Models Validity

Rotterdam3D 5%

Montreal 84%

	Buildings			Faces	
	defect	total	total	per building	
Rotterdam HoogvlietZuid	10 335	10 828	100 195	9,25	
Montreal VM01 2009	62	384	84 759	220,7	
Montreal VM02 2009	21	209	32 973	157,7	
Montreal VM03 2009	68	339	64 440	190,1	

Table 1: Details concerning the test datasets

Repair methods

Two existing methods:

- 1. Detect & Local Repair (N. Alam et al., 2013)
- 2. Shrink Wrapping (J. Zhao et al., 2013)

1. Detect & local repair

Non-planar polygon

Self-intersections

(N. Alam et al., 2013)

2. Shrink Wrapping

(J. Zhao et al., 2013)

Problem statement 2. Shrink Wrapping

(J. Zhao et al., 2013)

Alternative method

3. Voxel-based (Nooruddin & Turk, 2005)

Alternative repair method

Original Polygonal Model

Final Polygonal Model

Voxelization

(Noorruddin & Turk 2005)

Current repair methods

	1. Detect & Local Repair	2. Shrink Wrapping	3. Voxel-based
Gaps	++	++	++
Consecutive points	++	++	++
Self intersections	-	+	+
Non-manifold edges		-	++
Non-manifold vertex	-	-	?
Attributes preserved	++	++	-
Tilted surfaces	++	++	?

Research question

To which extent is it possible to automatically repair a geometrically invalid 3D City Building Model using a voxel-based method?

scan conversion

'parity count'

scan conversion

gap

scan conversion

'majority voting'

Voxelization number of rays

scanning in **6 directions** majority is **4 votes**

Voxelization Voxelization example

Voxelization Repair capability

Voxelization Repair capability

Surface reconstruction

Approach 1: Marching Cubes

Approach 2: Dual Contouring
Iso-surface extraction

Iso-surface extraction

Approach 1: Marching Cubes surface reconstruction

Approach 1: Marching Cubes Iso-surface extraction

ambiguities possible

Approach 1: Marching Cubes surface reconstruction

Approach 1: Marching Cubes surface reconstruction

Approach 1: Marching Cubes detriangulation

Approach 1: Marching Cubes detriangulation

From many triangles to a few polygons

Approach 1: Marching Cubes two drawbacks

corners rounded off & stair stepping effect

Approach 1: Marching Cubes Edge sharpening

Edge sharpening algorithm by Attene (2003)

Approach 1: Marching Cubes Edge sharpening

Edge sharpening algorithm by Attene (2003)

Approach 1: Marching Cubes Edge sharpening

Stair-stepping effect is sharpened... which is not desirable

Edge sharpening algorithm by Attene (2003)

Approach 1: Marching Cubes Distance field

Stair stepping is avoided when using a signed distance field

Approach 1: Marching Cubes evaluation

- ✓ Decent repair capability
- ✓ Almost no exceptions in resulting mesh
- ✓ Overshoots, gaps & self-intersections can be repaired

- Shift in geometry
- Corners rounded (or added risk in edge sharpening)
- Tilted surfaces approximated with stair stepping

Surface reconstruction: Approach 2: Dual Contouring

Approach 2: Dual Contouring

Principle

input = intersection + normal vector minimizing the Quadratic Error Function (QEF):

 $E|x| = \sum \left(n_i \cdot (x - p_i)^2 \right)$

(Ju et al., 2002)

In case of gap missing intersections

Approach 2: Dual Contouring Two ways of computing dual vertex

All intersections:

not all intersections:

1. QEF

2. Cube center

Approach 2: Dual Contouring example

No shift in geometry & sharp features

Approach 2: Dual Contouring 3D model with gap

Approach 2: Dual Contouring Result on gap

cube center assigned!

Approach 2: Dual Contouring Issue: self-intersections!

Approach 2: Dual Contouring evaluation

- ✓ Sharp features reconstructed
- ✓ Oblique surfaces reconstructed
- ✓ Overshoots can be repaired

- Self-intersections in output (for regular dual contouring)
- Sometimes issues concerning the QEF computation
- Visible artefacts when no intersections are found

Implementation Test 20 buildings

Approach 1: Marching Cubes✓ 18/20 repaired

Approach 2: Dual Contouring

✓ 6/20 repaired

Non-manifold edge

Same consecutive points

Implementation Test 20 buildings

Approach 1: Marching Cubes✓ repaired

Approach 2: Dual Contouring

self-intersection

Rotterdam Heijplaat
Rotterdam Heijplaat 1207 buildings 116 valid (10 %)

Existing dataset 116/1207 repaired = 10%

Approach 1: Marching Cubes
✓1159/1207 repaired = 96%

Repair failed due to ambiguity

Valid output but uwanted result (~5%?)

Conclusion

To which extent is it possible to automatically repair a geometrically invalid 3D City Building Model using a voxel-based method?

Conclusion

• Voxelization:

Correct building volumes can be almost guaranteed

- **Approach 1:** Marching Cubes Strong repair capability but:
 - geometry shifted
 - stair stepping
 - corners rounded
- Approach 2: Dual Contouring Sharp features & oblique surfaces reconstructed but:
 - contains self-intersections
 - artefacts may be created

Future work Distance field + edge sharpening

Approach 1: Marching Cubes

solution for oblique surfaces and sharp features

Future work Dual contouring non-intersecting

Dual Contouring (Ju et al., 2002 & Schaefer et al. 2002) Known for self-intersections

Isosurfaces over simplicial partitions of multiresolution grids (Schaefer et al., 2010) manifold & self-intersection free adaptation of Dual Contouring

Approach 2: Dual Contouring

adaption to avoid self-intersections

Future work 1. Geometry based attribute assumptions

TABLE 2.1: Normal vector limitations on semantic surfaces

Surface type	Allowed direction(s)
WallSurface	All
RoofSurface	All
ClosureSurface	All
GroundSurface	Only down
OuterCeilingSurface	Only down
OuterFloorSurface	Only up
Opening	All

(S. Donkers, 2013)

Future work 2. Voxel based attribute preservation

Approach 1: Marching Cubes

Future work

3. Edge based attribute preservation

Approach 2: Dual Contouring

Future work Shrink-wrapping hybrid method

Questions

