
LRFP : Extending local routing protocols in
layer 2 networks with a secure fee model

Oliver Neut, Stefanie Roos, Oghuzan Ersoy

Delft University of Technology

Abstract

Blockchains like Bitcoin are known to be victim of scalability issues. The lack in
high throughput and low latency form a great bottleneck to its network. A promis-
ing solution are layer 2 protocols, more precisely payment channel networks (PCN).
Payment success rates are a common metric in these networks. These rates can be in-
creased by tweaking the routing of payments in the network. Local routing is a form of
routing that allows payments in such networks to be split over multiple paths to reach
its receiver. This significantly increases the rate of payment successes, however there is
no trivial way to integrate fees in such protocol. This paper focuses on the integration
of fees in local routing protocols by proposing a viable solution. Local Routing Fee
Protocol (LRFP) is a protocol designed to extend an existing local routing protocol
and is proven to be secure. It is a light addition but works as intended. Proofs on se-
curity guarantees and a formal description on the protocol form the main contribution
of this paper.

1 Introduction

Blockchain is a novel technology that has gained increased popularity in the last decade.
It’s most known for the ability to enable trusted collaboration between untrusted parties
[5]. The most popular example of a technology that uses blockchain is Bitcoin [6]. A
digital currency with no central entity controlling the distribution of money or censoring
transactions [5]. Blockchain can be used in various financial services such as online payments
and digital assets, and even non-financial services e.g. smart contracts [7]. Although the
technology has great potential for the construction of future Internet systems, it lacks in
scalability. Bitcoin’s network takes 10 minutes or longer to confirm transactions and its
throughput achieves a maximum of 7 transactions per second [8] [2]. Ethereum, which is
the second largest cryptocurrency in the world in terms of market capitalization, achieves
roughly double that amount of transactions per second. In comparison, global payment
networks such as Visa or other centralized payment service providers confirm a transaction
within seconds and process thousands of transactions per second [5]. In order for Bitcoin to
succeed in its vision as a global payment system, it needs to improve on both latency and
throughput. It should also be noted that an average transaction fee in Bitcoin’s network is
usually over 1 USD [1].

A proposed solution to the bottleneck formed by the blockchain mechanism are layer-
two protocols. This layer exists on top of layer one, the blockchain [5]. One of which

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

are off-chain payment channels and they form a great solution to the problems described
above. By constructing payment channels between nodes and locking collateral in an opening
transaction (which is broadcasted to the underlying blockchain), parties can send funds to
each other. A payment channel consists of 2 parties, each party has some coins available for
sending and receiving coins. Informally, when Alice pays Bob 2 coins, the balances of the
channel that Alice and Bob share get updated. Transactions are reflected in the balance
of the corresponding channel instead of the blockchain. The only operations that involve
blockchain are the opening and closing of a channel. This takes a significant load of the
blockchain since transactions can be performed off-chain [1].

When multiple nodes participate in payment channels, they form a payment channel net-
work (PCN). A popular example of a PCN is Lightning, the layer 2 protocol accompanying
Bitcoin. It consists of more than 21 thousand nodes and more than 50 thousand channels
at the time of writing [9], [3]. Such a network allows nodes to send a payment to a receiver
over the network by paying fees to incentivize intermediaries. This protocol (Lightning) uses
source routing to route its payments. The sender determines a path based on the topology
of the network and on the initial capacities of the channels. This is a key reason for high
failure rates in the Lightning network, according to Roos et al [4]. To combat this, protocols
have been developed that use local routing. In this type of routing, the sender only decides
on the first hop of the payment and each subsequent node decides on where the payment
goes next [4]. Additionally splitting payments across multiple nodes is possible. It allows
an intermediary to forward a payment even if he shares no channel with sufficient capacity
for the entire payment value. Subsequently, gaining flexibility in the network and increasing
the probability of payment success [4].

While a PCN that uses local routing has higher success rate, it does introduce new
problems into the protocol such as : how can fees be integrated while maintaining the
corresponding security properties? The integration of fees isn’t a trivial problem to solve.
The Lightning method of integrating fees isn’t compatible with local routing, this will be
explained further on in the paper. The solution for this problem should ensure that the
security properties are satisfied. Because the network is designed to perform monetary
transactions, the security is of great importance. With the help of cryptographic proofs,
these security guarantees can be proven to be correct. The main contribution of this work
is a design on how fees can be integrated in a payment splitting protocol followed by proofs
on the security guarantees.

Section 2 outlines the background extensively, which is needed for understanding the
protocol. The solution of the fee model protocol is described in section 3, after which the
proofs of the protocols are presented in section 4. Section 5 contains the responsible research.
In section 6 the results are summarized. Lastly, section 7 concludes the research question
and provides a small discussion on future work.

2 Background

2.1 Payment channel networks

Payment channels provide a way for 2 parties in a network to exchange funds with each other.
A channel is established using a MULTISIG Bitcoin transaction, that requires signatures
from multiple parties in order to be spent [5]. Two nodes start by signing a MULTISIG
transaction and deposit funds. This transaction needs to be confirmed by the blockchain
first, after this they can start sending and receiving coins. To keep track of the balances

2

Figure 1: Payment channel transaction between Alice & Bob

in the channel, payments are done with ”commitment transactions” [12]. These types of
transactions do not require interaction with the blockchain. For a commitment transaction
to take place, both parties need to sign the transaction and a timelock is added to make sure
that the transaction cannot be redeemed before the timelock expires [5]. Later transactions
in a channel have shorter timelocks to ensure that only the latest commitment transaction
can be sumbitted on the blockchain. When 2 parties decide on closing the channel, they
broadcast an on-chain transaction where they collect the final balances of the channel [5].

Take Alice (A) and Bob (B) as an example of 2 parties that decide on opening a chan-
nel, they both deposit some BTC. The initial balance is denoted by the capacity function
C(A,B) = 5, it represents the amount of BTC (Bitcoin) A has in the channel with B and
C(B,A) = 5 represents the amount of BTC B has in the channel with A. When Alice wants
to pay Bob 2 BTC, the corresponding balances get updated: Alice’s balance decreases by 2
BTC while Bob’s balance increases by 2 BTC. Figure 1 describes this transaction. In the
end Alice is owed 3 BTC and Bob is owed 7 BTC.

A network of these channels allows parties to conduct payments across multiple interme-
diaries to a receiver of choice. The routing of a payment can be done in multiple ways. In
the Lightning network [3], this task is done by the sender in a pre-routing step. The sender
knows the topology of the network and the total capacities of the channels. Because only
the total amount of balances in a channel is known, there is no way to know for sure that
a channel is able to forward a payment. For example if Alice has a balance of 1 BTC and
Bob has 4 BTC, then Alice cannot forward a payment of more than 1 BTC through that
channel. The routing algorithms are therefore optimized to compute a path to the receiver
that is short and likely to succeed. This approach of sending payments has a relatively high
failure rate.

To incentivize intermediaries to forward payments, an additional fee is added by the
sender to tip the intermediaries. To compute the fee, Lightning let’s each node in the
network decide on their personal base fee and a proportional fee rate [13] [10]. The base fee
is a flat fee that is always charged, regardless of the value the node is forwarding. While
the fee rate is a fee charged for every satoshi (100 millionth of a Bitcoin) send through the

3

Figure 2: Payment channel network model

channel[9]. So based on the path, the source determines the size of the fee and adds this to
the payment value.

A different method of routing payments is local routing, it allows each node on the
path to freely choose the next hop based on the their local view on channel capacities. An
additional feature of this kind of routing is that nodes are able to split a payment over
multiple channels. Figure 2 depicts a PCN that uses payment splitting. This protocol
is described in the work of Roos et al. [4]. Splitting payments has a positive effect on
the probability of a payment succeeding, because the values of payments are smaller, the
probability of a channel having insufficient funds to forward a payment is lower. However,
it is this kind of routing where fees are still an undiscovered subject. This is simply because
the sender has no clue on how large the fee should be, since there is no pre-routing step
involved in local routing.

2.2 Interdimensional SpeedyMurmurs

In order to design a fee model, a good understanding of the payment splitting protocol is
needed. The following subsections describe the local routing protocol designed by Roos et
al[4].

2.2.1 Preliminaries

In this section, the basic notation and cryptographic primitives are explained. This will help
with better understanding the protocol and its security properties.

Basic notation : the sets N,Z,R denote the natural, integers and real numbers respec-
tively. We denote the uniform sampling of a variable x from a set X as x ←$ X . The
security parameter is n and all algorithms described in this paper run in polynomial time
in n. A probabilistic polynomial time algorithm A (ppt) on input y, outputs x is denoted
by x ← A(y). x := A(y) means that A is a deterministic. We denote an adversary with A
and in this protocol he is able to corrupt a set of parties in the network. To express that a
message m is send to a party P we denote : m ↪→ P . Lastly, to express that a message m is
received from party P we denote : m←↩ P .

Cryptographic primitives : A public key encryption scheme Ψ is a scheme that has 3 ppt
algorithms : generate key pairs (Gen), encrypt messages using a public key (Encpk), decrypt

4

messages using a secret key (Encsk). It also has 2 spaces, a message space M, a cipher text
space C. The encryption schemes used in this protocol are defined to be indistinguisable
under chosen plaintext attack (IND-CPA). This means that an adversary cannot distinguish
the encryption of 2 messages of his choice [11]. A digital signature scheme Σ is a scheme
that has 3 ppt algorithms : generate key pairs (Gen), verify a signed message using a public
key (V rfypk), sign a message using a secret key (Signsk). The signature schemes in this
protocol are defined to be existentially unforgeable under chosen message attack (EUF-
CMA). This ensures that an adversary, while he can learn polynomially many signatures of
messages, he cannot produce a signature to a message of his choice [11]. A hash algorithm
H : P→ H is an algorithm that takes an arbitrary length bit strings as input and produces a
fixed-length bit string as output : the hash value. This hash algorithm is preimage-resistant
if it is polynomial-time computable and for every ppt adversary A, given y = H(x), for a
randomly sampled x ∈ P, the probability that A outputs x′ ∈ P s.t. y = H(x′) is negligible
[11].

2.2.2 Formal description : Interdimensional SpeedyMurmurs

The protocol consists of a network of nodes, we denote this formally by a graph G = (V, E).
With V representing the set of parties in the network and E representing the payment
channels in the network between the parties. Note that this graph is connected and directed.
Along with G comes a capacity function C : E → R+. A payment channel between 2 parties
P and Q is denoted by 2 directed edges such that : (P,Q) ∈ E ⇔ (Q,P) ∈ E . This way the
capacity function is able to distinguish the balance of each party in the channel. C(P,Q) is
the amount of coins P has in the channel with Q and vice versa.

To simplify the mechanics of the payment channels, an ideal functionality is used that
acts as a black box where the parties of the network can interact with. The functionality
of payment channels in this protocol is denoted using F(G, C0,∆). Where G = (V, E) is
the connected directed graph of the network, C0 is the initial capacity function and ∆ is
the upper bound on the blockchain delay. Each party P ∈ V can instruct the functionality
with a message ”pay” to send v coins from P to Q. The message ”cPay” is used for sending
conditional payments. A conditional payment is used in multi-hop payments, where inter-
mediaries need to forward a transaction. Such payments require more parameters such as
the condition ϕ : {0, 1}∗ → {0, 1} on which the payment occurs, the timelock T ∈ N and
auxiliary information in the form info ∈ {0, 1}∗. If C(P,Q) ≥ v then the functionality
deducts v coins from channel (P,Q) and informs Q about the conditional payment. If Q
wants to unlock a conditional payment, he needs to send ”cPay-unlock” to F and provide
the witness w such that the condition holds, ϕ(w) = 1. This witness is a preimage xr of
a hash value hr such that the condition H(xr) = hr holds. The reason for using this, will
be explained in section 2.2.3. After T rounds, the sender P of the conditional payment can
send ”cPay-refund” and receive the v coins back.

Θ : {0, 1}∗ → {0, 1}∗ is a function that keeps track of all conditional payments currently
being executed. On input of a payment identifier pid ∈ {0, 1}∗, the function Θ either
returns ⊥, meaning that there currently is no payment with that identifier, or (e, v, ϕ, T).
The parameters stand for respectively : e ∈ E the channel on which the payment takes
place, v the amount of coins being transferred, ϕ : {0, 1}∗ → {0, 1} the condition of the
payment and T the timelock. In this protocol we need to assume that a ppt adversary
A exists. This adversary can take control over every node P ∈ V. We define the set of
parties that are not corrupted by A to be Honest ⊆ V. In order for the sender to prove

5

that he has paid an amount to the sender, the sender provides a receipt. This receipt
can be defined valid with the function Validate: V × V × R+ × {0, 1}∗ → {0, 1}, that
takes as input a sender S, a receiver R, an amount of coins v and a receipt rec ∈ {0, 1}∗
and outputs a 0 or 1 depending on the validity. Lastly we define C and C′ to be the
capacity function before and after a payment in the network. The difference of the sum of
all capacities a party P ∈ V has in all its channels after and before a transaction is defined
as NetC,C′(P) :=

∑
W∈V:(P,W)∈E C′(P,W)− C(P,W).

2.2.3 Payment process

Once a sender and a receiver agree on sending a payment of value v, the receiver starts by
sampling a preimage xr and sending its hash value hr = H(xr) to the sender. The sender
calls the function RouteG , that decides on how to route the first hop of the payment. Either
it splits the amount v or it doesn’t. RouteG(v, P,R, excl, CP) takes as input : the amount
of coins v to be routed, the identifier of the part P performing the routing, the identifier
of the receiver R, the set excl containing the nodes that have already been visited on the
path between the sender S and party P and the capacity function of P , CP . The function
then returns either ⊥ signaling that the routing failed or k edge/value pairs {(ej , vj)}j∈[k] ⊆
(E × R+)k such that (i) CP (ej) ≥ vj for every j ∈ [k] (ii) ej = (P,Qj) such that Qj /∈ excl
and (iii)

∑
i∈[k] vj = v.

From this point on, the sender can use hr to either send 1 conditional payment to the first
hop or multiple conditional payments that add up to v coins to multiple hops. A conditional
payment can only be unlocked if an xr is provided by the receiver of that payment such
that H(xr) = hr holds. The intermediaries use the same hr of the conditional payment to
send one to the next hop, this process is repeated until enough conditional payments arrive
at the receiver with a value of at least v coins. Then the receiver uses the preimage xr as a
witness to unlock the incoming conditional payment(s). The intermediaries one hop before
the receiver receive the preimage xr and can use it to unlock their incoming conditional
payment. This process is repeated until all conditional payments are unlocked. The reason
for using a preimage-resistant hash function is to make sure that only the receiver (who
sampled the preimage) can start the unlocking of conditional payments. He will only do
this once he received x amount of conditional payments that add up to at least v coins.

2.3 Security

An important part of this protocol is that transactions can occur in a secure manner. A
few security properties are designed to assure the security of such networks. Termination
assures that all honest parties produce an output in finitely many rounds. All nodes except
the sender produce an output of the form > to signal the end of their cooperation. The
sender outputs the receipt if the payment succeeded or > if a non valid signature was pro-
vided. The next property, bounded loss for the sender , ensures that the sender never
loses more coins than the value of the payment. Balance neutrality means that no inter-
mediary or receiver ever loses coins in a transaction. An important property is atomicity :
it states that either a transaction occurs or it didn’t happen, the sender can prove this by
showing a receipt. If the sender is able to provide a valid receipt, it means that the receiver
has at least v coins (the payment amount) added to his balance. If a sender lost v coins,
it means that he has a valid receipt signed by the receiver that he paid v coins. Lastly
correctness ensures that if the capacity of all channels is at least v and all parties are
honest, then the payment completes successfully. The integration of fees in the protocol

6

change the security properties, therefore the proofs need to be modified accordingly. The
original security properties can be found in the work of Roos et al [4].

2.4 Fee motivation

Fees in payment channel networks are typically significantly lower than in blockchain trans-
actions. However they play an important role in the network, reasons for this are the
following. Fees act as a incentivization mechanism in payment channel networks. When
there isn’t a benefit to routing a payment to the next hop, why would a node participate in
this procedure? Fees are the solution for the incentivization of intermediaries.

When an intermediary gets a conditional payment that should be forwarded, its funds
are locked for a certain time window in the channel it shares with the next hop. During
this, the channel can be seen as illiquid. Therefore it makes sense to provide value to such
intermediaries when they help conduct a payment. As a result, the total balance of a node
in all its channels will increase.

2.5 Problem description

The problem which is ought the be tackled in this paper revolves around the fees in a PCN.
More precisely a PCN that uses local routing and payment splitting. A formal description
of a fee integration in such networks doesn’t exist. This is not a trivial task, because the fee
model that Lightning uses does not work in a protocol that uses local routing. The lack of
a pre-routing step in Interdimensional SpeedyMurmurs makes it difficult for the sender to
decide on a reasonable fee. Since the sender does not know in advance how many nodes are
forwarding parts of the payment, there is no way to guess the combined value of all the base
fees and fee rates. A formal fee model that extends the Interdimensional SpeedyMurmurs
protocol is needed that solves this problem. Part of creating a fee extension to the payment
splitting protocol is proving that the protocol is secure. The security properties will need
small alterations to make them applicable to the new protocol. Subsequently, the proofs of
these properties will need a revision as well.

3 Local Routing Fee Protocol

Now that the basics of payment channel networks are clear, we can move on to the description
of the developed fee model. The solution forms an extension to the payment splitting
protocol provided by Roos et al [4]. A fitting name for this fee protocol was chosen to be :
LRFP, an acronym for local routing fee protocol.

3.1 Protocol design

The protocol is designed to be used in a payment channel network that uses local routing
and payment splitting. We let the intermediaries in the PCN decide on their own base fee,
denoted by rI . Simply because, if we require everyone to charge the same base fee, there
is no easy way to know if someone isn’t cheating and charging more. The idea is that the
sender can determine the fee as the maximum value he’s willing to pay for a transaction. We
denote this value by feemax. This decision of the feemax has 2 outcomes: (i) either the value
of the fee attached is too low, or (ii) it is (just) enough. In the first case (i), intermediaries

7

subtract their base fee rI from the feemax until a next hop (we call him Q), realizes there is
no fee left to profit from, because feeatQ < rQ (feeatQ is the fee remaining once it arrives
at Q). Thus Q aborts the payment and all parties before him are refunded. The sender is
able to retry with a slightly higher fee. In the latter case (ii), the fee provided by the sender
is enough, the payment succeeds and if the last intermediary before the receiver has some
leftover fee, he can choose to keep it or send it over to the receiver. In order for the sender
to determine a reasonable fee, network statistics of fees and corresponding payment values
can be used as guidance.

3.2 Generic description of LRFP

By extending the protocol with a fee model, the inner workings of the protocol don’t change
significantly1. A few modifications are made in the RouteG algorithm : it takes an extra fee
value f parameter and outputs k tuples of the form {(ej , vj , fj)}j∈[k] ⊆ (E ×R+×R+)k. For
which the following conditions hold : (i) CP (ej) ≥ vj + fj for every j ∈ [k] (ii) ej = (P,Qj)
such that Qj /∈ excl and (iii)

∑
i∈[k] vj = v ,

∑
i∈[k] fj = f . When this function is called,

it decides on whether to split the payment across multiple nodes or 1 node. If multiple
nodes are chosen, the fee is split proportionally over the different nodes. 2 If 1 node suffices
in capacity to transfer the coins and fee, the output fee remains the same. The altered
RouteG algorithm is depicted in figure 3. The next modification was made in messages to
the payment channel functionality F . Specifically the ’cPay’ message, in which a party P
(sender or intermediary) sends a conditional payment to a next hop Q. An extra parameter
is added, the value of the fee f . F takes this value and subtracts (v + f) from P’s channel.
Once this message is unlocked with ’cPay-unlock’ by Q, the same value (v + f) is added to
Q’s channel. This functionality is depicted in figure 5. Lastly, an intermediary I chooses his
own base fee rI and has to check a few conditions when forwarding a payment. The base
fee rI ∈ R+ is the fee value that I charges when asked to forward a payment. He subtracts
the incoming fee f with his base fee rI and sends the resulting value f ′ = f − rI to the next
hop(s). Note that if f ′ < 0 or if he received a ’cPaid’ message with f = 0, I aborts 3. The
pseudocode of the algorithm can be found in figure 4. The highlighted parts in figure 3, 4
and 5 resemble the parts that are altered for the fee model integration.

Figure 3: Altered RouteG algorithm of LRFP

1For a complete generic description of the IntSM protocol, consult the paper by Roos et al[4].
2E.g. take f = 1 and v = 5 and v coins are split over 2 nodes A and B, where A receives vA = 1 coin

and B vA = 4 coins, then A receives fA = 0.2 fee and B fB = 0.8 fee accordingly.
3In both cases the fee provided by the sender S is too small

8

Sender S(G, CS , S, R, v, fmax)

out := ∅, rec:= >

In round t0 + 1

if (init, hR, σ)←↩ R ∧ V rfypkR((S,R, v, hR), σ) then

// Split and send payments

T := t0 + 1 + |V| · (1 + 2 · (∆ + 1))

excl := S

(ej , vj , fj)j∈[k] ← RouteG(v, S,R, excl, CS , fmax)

(hj , cj , xj)j∈[k] ← HLocks(hR, EncpkR(0), k, pkR)

for j ∈ [k] do

pidj ←$ {0, 1}∗

(cPay, pidj , ej , vj , fj , hj , T, (cj , R, excl)) ↪→ F
out := out ∪ (pidj , xj)

else TerminateS()

Intermediary I(G,CI , rI)

fw := ∅

(cPaid, pid, e, v′, f , h, T, (c,R, excl)) ←↩ F
if now > t0 + |V|∨f = 0 then

abort // too late to route

else // Split and forward payment

T ′ := T − 2(∆ + 1)

excl := excl ∪ I
f ′ := f − rI // decrease f with rI

if f ′ < 0 then abort // fee is too small

(ej , vj , fj)j∈[k] ← RouteG(v′, I, R, excl, CI , f ′)
(hj , cj , xj)j∈[k] ← HLocks(h, c, k, pkR)

for j ∈ [k] do

pidj ←$ {0, 1}∗

(cPay, pidj , ej , vj , fj , hj , T
′, (cj , R, excl)) ↪→ F

fw[T ′] := fw[T ′] ∪ (pidj , pid, xj)

Figure 4: Generic description of LFRP

Payment channel functionality F(G, C0,∆)

The initial state is set to C := C0 and Θ(pid) := ⊥ for all pid ∈ {0, 1}∗.

• Upon receiving (cPay, pid, e, v, f , ϕ, T, (c,R, excl))←↩ P , where e = (P,Q) ∈ E , C(e) ≥
(v + f) and Θ(pid) = ⊥, wait for one round to set C(e) := C(e) − (v + f), store
Θ(pid) := (e, v, f , ϕ, T) and send (cPaid, pid, e, v, f , ϕ, T, (c,R, excl)) ↪→ Q.

• Upon receiving (cPay-unlock, pid, w) ←↩ Q, wait for at most ∆ + 1 rounds. If
((P,Q), v, f , ϕ, T) := Θ(pid) 6= ⊥ and ϕ(w) = 1, then set C(e′) := C(e′) + (v + f),
for e′ = (Q,P), set Θ(pid) = ⊥ and send (cPay-unlocked, pid, w) ↪→ P .

• Upon receiving (cPay-refund, pid) ←↩ P , wait for at most ∆ + 1 rounds. If
(e, v, f , ϕ, T) := Θ(pid) 6= ⊥ and the current round number is larger than T , then
set C(e) := C(e) + (v + f), Θ(pid) = ⊥ and send (cPay-refunded, pid) ↪→ P .

Figure 5: Payment channel functionality F of LRFP

9

4 Security proofs

The following section contains the altered security properties and its proofs. The changed
parts are highlighted in the properties below. The symbol Π denotes LRFP (Local Routing
Fee Protocol).

The adapted security properties can be defined formally :

• Balance neutrality :

– R ∈ Honest⇒ netC,C′(R) ≥ 0 (for the receiver)

– The payment succeeds ∧ P ∈ Honest\{S,R} ⇒ netC,C′(P) ≥ rP

• Bounded loss for sender : S ∈ Honest⇒ netC,C′(S) ≥ −(v + fmax)

• Atomicity :

– S ∈ Honest ∧ netC,C′(S) < 0⇒ V alidate(S,R, v, rec) = 1

– R ∈ Honest ∧ V alidate(S,R, v, rec) = 1⇒ netC,C′(R) ≥ v

• Correctness : If V = Honest and for every e ∈ E it holds that C(e) ≥ v + f and∑
I∈V\{S,R} rI ≤ fmax, then it holds that netC,C′(S) = −(v + fmax), netC,C′(R) ≥ v

and netC,C′(I) ≥ rI for all I ∈ V\{S,R}.

4.1 Termination

Because the changes made in the protocol pseudocode do not modify any timelock or affect
the behavior of the timelocks, the termination property of the extended protocol doesn’t
change. Therefore its proof remains unaltered. The proof of Termination can be read in [4].

Claim 1 The protocol Π terminates in finitely many rounds.

4.2 Balance neutrality

Balance neutrality claims that the monetary loss of an honest sender is bounded by the
amount of coins that he wants to send, and none of the other honest parties can ever lose
coins. To this end, we make the following simple but important observation about the pay-
ment channel ideal functionality F := F(G, C,∆) that parties call in the protocol execution.

Observation 1. The ideal functionality F never reduces coins of any party unless it re-
ceives the instruction ’cPay’ or ’pay’ from this party.

Claim 2 (Bounded loss for the sender). It holds that :

S ∈ Honest⇒ netC,C′(S) ≥ −(v + fmax)

Proof. The proof states that an honest sender S never sends a ’pay’ message. Only if
the signature from the receiver is valid, S sends k cPay-messages of values (v1, ..., vk) and
corresponding fees (f1, ..., fk). Since the values (v1, ..., vk) and (f1, ..., fk) are returned by
the routing algorithm RouteG , we know that

∑
i vi = v and

∑
i fi = fmax. Hence, the total

value of all the cPay-messages sent by S to F is at most v + fmax which by Observation 1
implies that netC,C′(S) ≥ −(v + fmax).

10

The following proves the balance neutrality for the intermediaries and the receiver. It
is trivial for the receiver R, since R never sends a ’pay’ or ’cPay’ message. For an honest
intermediary I, it needs to be shown that I never sends more than he conditionally receives
and that I has the ability to unlock an incoming conditional payment. Which requires I :
(i) to have the revealed witness xr from an outgoing payment and (ii) enough time to un-
lock the incoming payment. In the basic protocol, proving (i) is trivial and in the extended
protocol it follows from the homomorphic property of H. The following states an auxiliary
lemma about additively homomorphic functions.

Lemma I.1. Let H : P → H be an additively homomorphic function. Let h ∈ H, xi ∈ P
and let us define hi := h + H(xi). Then for every x′ ∈ P s.t. H(x′) = hi, it holds that
H(x′ − xi) = h.

Proof. By definition of hi, we know that h = hi −H(xi), hence

h = hi −H(xi) = H(x′)−H(xi) = H(x′ − xi)

Claim 3 (Balance neutrality for the receiver) . It holds that :

R ∈ Honest⇒ netC,C′(R) ≥ 0

Proof. Since an honest receiver R never sends any pay-message or cPay-message to F , by
Observation 1, netC,C′(R) ≥ 0.

Claim 4 (Balance neutrality for the intermediaries) . It holds that :

The payment succeeds ∧ P ∈ Honest\{S,R} ⇒ netC,C′(P) ≥ rP

Proof. An honest intermediary I never sends ’pay’ and never sends ’cPay’ without receiving
a ’cPay’ message. In other words, every outgoing conditional payment is triggered by an
incoming conditional payment.

Assume now that I receives a conditional payment of value v, condition h, fee f and
time-lock T . The fee f is subtracted with the base fee rI of I, f ′ = f − rI . Then I executes
the routing algorithm RouteG on input value v and f ′ and obtains k values (v1, ..., vk) and
(f1, ..., fk) such that

∑
i vi = v and

∑
i fi = f ′. Thereafter, the intermediary executes

the algorithm HLocks on input h and k and obtains k hash values (h1, ..., hk). For every
i ∈ [k], the intermediary sends a cPay-message of value vi, fee fi, condition hi and time-lock
T ′ := T − 2 ∗ (∆ + 1). This implies that an honest I never conditionally pays more coins
than what he can conditionally receive minus his base fee rI . As a next step, we prove that
if one of the outgoing payments is completed, i.e., I pays (vi coins, then I has the guarantee
of unlocking the corresponding incoming payments, i.e. receive v coins.

First we show that if I learns a preimage of at least one of the hash values (h1, ..., hk),
then he can compute a preimage for h.
Π = Πb: Since for every i ∈ [k] we have hi = h, the statement trivially holds.
Π = Πext: For every i ∈ [k], the value hi is computed as h+H(xi). Upon learning x′, such
that hi = H(x′), I computes x′ − xi which by Lemma I.1 is a preimage of h.
The proof further shows that the intermediary I has enough time to learn the preimage and
submit it to unlock the incoming payment. This part isn’t affected by the fee model.

11

4.3 Atomicity

The atomicity property isn’t affected by the integration of fees. This is because it simply
states that a sender S has a valid receipt if he lost coins and that a receiver has at least v
coins if the sender has a valid receipt of sending v coins to R. The integration of a fee model
doesn’t change the procedure of providing receipts, therefore its proof remains the same.
The proof of Atomicity can be read in [4].

Claim 5 (Atomicity for the sender) :
S ∈ Honest ∧ netC,C′(S) < 0⇒ V alidateΣ,H(S,R, v, rec) = 1

Claim 6 (Atomicity for the receiver) :
R ∈ Honest ∧ V alidateΣ,H(S,R, v, rec) = 1⇒ netC,C′(R) ≥ v

4.4 Correctness

We need to prove that our protocol satisfies correctness meaning that if all parties are honest
and all channels in the network have enough coins and all intermediaries combined charge
no more fees than fmax, then the payment succeeds. The main steps of our proof are the
following. Since both sender and receiver are honest, the sender initiates conditional pay-
ments of total value v+ fmax. Then we show that the sender provides a sufficient time-lock
for the partial payments to arrive at the receiver. We now state and proof the correctness
of our protocol formally.

Claim 7 (Correctness) :
If V = Honest and for every e ∈ E it holds that C(e) ≥ v + f and

∑
I∈V\{S,R} rI ≤ fmax,

then it holds that netC,C′(S) = −(v + fmax), netC,C′(R) ≥ v and netC,C′(I) ≥ rI for all
I ∈ V\{S,R}.

Proof. Since the receiver R is honest, the sender S receives a valid signature σ on the
statement (S,R, v, hR) from the receiver R in the round t0 + 1. This means that the sender
executes the algorithm RouteG on input excl = ∅. We know that the routing algorithm
returns {(ei, vi, fi)}i∈[k] and hence the sender initiates k conditional payments - each of
them with set excl := {S}. Assume for now that at least one of the conditional payments
is completed and hence netC,C′(S) < 0. By claim 5, this implies that the sender outputs a
valid receipt. Since the receiver is honest and the sender outputs a valid receipt, by claim 6
we know that netC,C′(R) ≥ v. Moreover, by claim 4 we know that the intermediaries cannot
lose coins and earn at least rI (given that the payment succeeds), i.e., netC,C′(I) ≥ rI for
every I ∈ V\{S,R}. Hence we have

netC,C′(S) ≤ −

(
netC,C′(R) +

∑
I∈V\{S,R}

netC,C′(I)

)
≤ −(v + fmax)

The bounded loss for the sender, claim 2, guarantees that netC,C′(S) ≥ −(v+ fmax), hence
it must holds that netC,C′(S) = −(v+ fmax). This in turn implies that netC,C′(R) ≥ v and
it holds that

∑
I∈V\{S,R} rI ≤

∑
I∈V\{S,R} netC,C′(I) ≤ fmax and thus netC,C′(I) ≥ rI .

12

The remaining part of the proof shows that at least one of the conditional payments
made by the sender is unlocked before the protocol terminates. This part is not affected by
the fee model.

4.5 Unlinkability

On a high level, the unlinkability of the protocol ensures that an honest party (sender or
intermediary) that sends a payment of v coins into k partial payments (v1, ..., vk), which
he routes over k next hops P1, ...Pk. Even if all of these neighbours collude, they cannot
decide whether these conditional payments are from the same payment or if these originate
from k different payments [4]. This functionality is facilitated with the use of homomorphic
addition of hashes, more precisely the hashes used for sending conditional payments. No
changes are made that affect the functionality of unlinkability, so this property is unaltered
in the protocol. Therefore the proof needs no changes and can be consulted in the paper of
Roos et al [4].

5 Responsible Research

This section reflects on the ethical aspects and the reproducibility of the research done in
this paper. Since the adoption of cryptocurrencies is gaining traction, the research in this
field becomes of greater importance. It is therefore crucial to consider the consequences and
implications of the enhancement of these technologies.

5.1 Reproducibility

In this paper a solution to the problem : ”how can fees be integrated into a PCN that uses
local routing such that the protocol still achieves corresponding security guarantees?” is
proposed. The proposed protocol (LRFP) only serves as a proposed design and it is proven
to be sound, there are no quantitative results derived from this model. Since this is largely
a descriptive research paper, it can be defined as reproducible. Everyone is perfectly able
to reproduce the solution that is found to the research question.

5.2 Ethical aspects

The pseudocode of the solution is in the paper, this can be used to implement the system in
an existing protocol. This integration could essentially be used in a real working system with
humans exchanging real funds e.g. Bitcoin. However, there are some possible consequences
for the future of this research. If this proposed fee model contains mistakes in the pseudocode
or in the proofs of the security guarantees. Someone that implements this protocol in an
existing system might break the security or basic functionality of his protocol. This could
lead to undesirable behaviour in the protocol and in the worst case, honest parties in such
a network could lose funds.

Another consequence concerns the mass adoption of payment channel networks in the
cryptocurrency space. Because layer 2 protocols are one of the most promising realisations
to tackle the scalability problems of blockchains, the adoption of it has great potential. Con-
tributing to layer 2 protocols consequently has real implications. Payment channel networks

13

drastically increase the amount of transactions while maintaining security aspects. Hence it
opens up a lot of possibilities for blockchains in industries of scale, which will drive the adop-
tion even more. A significant advantage of the use of layer 2, is the diminished interaction
with the blockchain. Bitcoin tends to use enormous amounts of energy [14], even surpassing
some countries in energy consumption. Reducing the load of the blockchain, by performing
more transactions off-chain would have a posititive effect on the energy consumption. Thus
layer 2 solutions provide a way to maintain security, a higher throughput and would reduce
the energy consumption of e.g. Bitcoin’s blockchain [5] [14].

6 Discussion

The aim of this paper was to provide a solution to the fee problem in local routing protocols
and prove the solution provided is a sound one. To evaluate this contribution, the benefits
and limitations of the Local Routing Fee Protocol are covered in this section. Hereafter,
alternatives to LRFP are proposed and described. LRFP is a protocol that extends the
Interdimensional SpeedyMurmurs protocol with a fee model [4]. Because the procedure of
the fee model is very simple, the integration of it requires very little modification to the
existing protocol. This also makes it easy to understand and to integrate in other protocols
that make use of local routing.

A major limitation of the protocol is that the sender never receives any of his fmax back.
This is because none of the intermediaries or sender send the remaining fee of fmax back
to the sender. Hence this would be similar as sending a payment from the receiver to the
sender and would in turn also need fees. Since the fee values in a PCN are significantly
smaller than average Bitcoin fees [9], anyone is still better of by choosing a PCN to send his
payment.

Compared to Lightning, this protocol only allows intermediaries to charge a base fee rI
and no fee rate. This fee rate would allow an intermediary I to charge a fee for every satoshi
passing through their channel. The protocol currently doesn’t include this. However, this
could be a simple addition to LRFP.

Another limitation of LRFP is that a sender cannot calculate the exact fee needed.
Because of the local routing, conditional payments are made while routing. There is no easy
way to solve this issue. Therefore the sender should advise himself on statistics of fees in
the network [9].

Currently, in the protocol, the payment value v and fee f are distinguishable as 2 pa-
rameters in the messages to F . These values can also be merged into 1 parameter, this has
different consequences. First, if the fmax provided was too low, the payment would always
fail at the sender since there would be no way for the intermediaries to know if they are
charging fees from the payment value v. Second, the exact payment value v is not known to
the intermediaries which is beneficial for privacy. Third, since the last intermediary before
the sender doesn’t know what v is, he will not be able to claim all the remaining fee and the
sender will end up receiving the surplus. This would improve on privacy, but knowing that
the sender won’t receive any of his fmax back, these other changes are of no importance to
the sender.

Protocols like Boomerang [15] provide a way for the sender to send more coins than v
(the payment amount) over the network. Once the receiver, receives at least v coins, he can
send the redundant amount back to the sender in a secure manner. Combine this with fees
in a local routing protocol and this solves a major issue of this protocol. This requires more
research and proving the soundness of this is likely more complex.

14

The Merchant [16] is a protocol that integrates a fee model designed to increase the
long-term health of the network. It counteracts the depletion of channels by incentivizing
rebalancing channels with the help of fees. This is not a solution to solving the fee problem
in local routing, but it does provide a way to incentivize rebalancing. This isn’t trivial to
integrate in the current protocol and requires more research.

7 Conclusions and Future Work

The content of this paper contains a solution to the problem : ”how can fees be integrated
into a PCN that uses local routing such that the protocol still achieves corresponding security
guarantees?”. It is not evaluated on how well it performs nor is it an analysis on what its
advantages or disadvantages are. It is merely a proposed method to integrate fees in a
local routing protocol. That is proven to be sound and completes the task it needs to fulfil,
namely provide intermediaries in a PCN with fees. Note that there are different solutions to
this problem, that can be more complex or simpler. The solution that this paper proposes
is one design that is proven to be a viable one. This system however is easy to comprehend
and to integrate in an existing local routing protocol.

This work is a basis for fee models in local routing and payment splitting payment
channel networks. This field is wide open for improvement. Some future work can include
the integration of The Merchant [16] or to combine the protocol with Boomerang [15]. A
simple upgrade can be made with the v + f parameter, subsequently boosting the privacy
of payments. An evaluation of this protocol in an existing network based on its fees is
recommended. This would be useful to compare the performance of it to other future fee
models.

References

[1] Dziembowski, S., Kedzior, P. (2020). Non atomic payment splitting in channel networks.
https://eprint.iacr.org/2020/166.pdf

[2] Visa. (2018). Visa Fact Sheet. https://usa.visa.com/dam/VCOM/download/

corporate/media/visanet-technology/aboutvisafactsheet.pdf

[3] Poon, J., Dryja, T. (2016). The Bitcoin Lightning Network: scalable off-chain instant
payments. https://lightning.network/lightning-network-paper.pdf

[4] Eckey, L., Hostáková, K., Faust, S., Roos, S. (2020). Splitting Payments Locally While
Routing Interdimensionally. https://eprint.iacr.org/2020/555.pdf

[5] N. Papadis L. Tassiulas, ”Blockchain-Based Payment Channel Networks: Challenges and
Recent Advances,” in IEEE Access, vol. 8, pp. 227596-227609, 2020, doi: 10.1109/AC-
CESS.2020.3046020.

[6] Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008), available at:
https://bitcoin.org/bitcoin.pdf

[7] Z. Zheng, S. Xie, H. Dai, X. Chen and H. Wang, ”An Overview of Blockchain Technology:
Architecture, Consensus, and Future Trends,” 2017 IEEE International Congress on Big
Data (BigData Congress), 2017, pp. 557-564, doi: 10.1109/BigDataCongress.2017.85.

15

[8] Croman K. et al. (2016) On Scaling Decentralized Blockchains. In: Clark J., Meiklejohn
S., Ryan P., Wallach D., Brenner M., Rohloff K. (eds) Financial Cryptography and
Data Security. FC 2016. Lecture Notes in Computer Science, vol 9604. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-662-53357-4_8

[9] “Real-time Lightning Network statistics.” [Online]. Available: https://1ml.com/

statistics

[10] G. Di Stasi, S. Avallone, R. Canonico and G. Ventre, ”Routing Payments on the Light-
ning Network,” 2018 IEEE International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Phys-
ical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 2018, pp.
1161-1170, doi: 10.1109/Cybermatics2018.2018.00209.

[11] Smart, N. P. (2016). Cryptography Made Simple (1st ed.). Springer Publishing Company,
Incorporated.

[12] Gudgeon L., Moreno-Sanchez P., Roos S., McCorry P., Gervais A. (2020) SoK: Layer-
Two Blockchain Protocols. In: Bonneau J., Heninger N. (eds) Financial Cryptography and
Data Security. FC 2020. Lecture Notes in Computer Science, vol 12059. Springer, Cham.
https://doi.org/10.1007/978-3-030-51280-4_12

[13] lightningnetwork. (2019). Basis of Lightning Technology. GitHub. https://github.com/
lightningnetwork/lightning-rfc/blob/master/00-introduction.md

[14] Huynh, A.N.Q., Duong, D., Burggraf, T. et al. Energy Consumption and Bitcoin Market.
Asia-Pac Financ Markets (2021). https://doi.org/10.1007/s10690-021-09338-4

[15] Bagaria V., Neu J., Tse D. (2020) Boomerang: Redundancy Improves Latency and
Throughput in Payment-Channel Networks. In: Bonneau J., Heninger N. (eds) Financial
Cryptography and Data Security. FC 2020. Lecture Notes in Computer Science, vol 12059.
Springer, Cham. https://doi.org/10.1007/978-3-030-51280-4_17

[16] Engelshoven, Y. V., Roos, S. (2020). The Merchant: Avoiding Payment Channel Depletion
through Incentives. https://arxiv.org/pdf/2012.10280.pdf

16

