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Chapter 1

Conjectures of Kikuta-Ruckle,
Erdős and Samuels

1.1 Basic notions and the hypergraph incidence
game

This thesis is motivated by a certain type of two-person win-lose games
that are played on hypergraphs. Such games are, by definition, instances
in which there are two players, say Alice and Bob, and each player has
a set of possible strategies, or moves. The set of all possible strategies of
each player is called her/his strategy space and each element of the strat-
egy space is referred to as a pure strategy. Let us denote by A the strategy
space of Alice, B the strategy space of Bob and suppose that both A and
B are finite sets, say A = {a1, . . . , am} and B = {b1, . . . , bk}. In this case
the game is called finite. Alice, in private, chooses an element a ∈ A. Bob,
also in private, chooses an element b ∈ B. The players then announce their
choices and for any such pair of choices there is a corresponding payoff.
That is, there is a function f : A × B → R such that f(a, b) indicates the
amount that Alice has to pay to Bob, after the pure strategies a and b have
been played. In case f(a, b) ∈ {0, 1} for any a ∈ A and any b ∈ B, the
game is called win-lose. Both players control the game in the sense that
their choices influence the outcome and both logically study the way to
achieve their best possible payoff. So Bob would like the game to end with
a payoff that is as large as possible and Alice would like the game to end
with a payoff that is as small as possible. We may view the values f(a, b)
as being entries of a |A| × |B|matrix, M . It might be that the matrix M has

1



2 Chapter 1. Conjectures of Kikuta-Ruckle, Erdős, Samuels

a saddle point, i.e., an element f(a0, b0) such that

min
a∈A

f(a, b0) = f(a0, b0) = max
b∈B

f(a0, b).

Hence f(a0, b0) is maximum in its row and minimum in its column. In
case the players have chosen a saddle point, we say that the game is in
equilibrium, in the sense that no player has an intension to change her/his
strategy, given that the other player plays in the same way. In such a case
we say that the pure strategies a0, b0 solve the game. However, there are
cases in which a saddle point does not exist. This fact leads to the idea of
using mixed strategies, i.e., to allow the players to choose pure strategies
according to some probability distribution over their strategy space. Sup-
pose that the game is played again and again. Let α = (α1, . . . , αm), where
αi is the proportion of times that Alice chooses the pure strategy ai ∈ A,
let β = (β1, . . . , βk), where βi is the proportion of times that Bob chooses
the pure strategy bi ∈ B. Then the expected payoff to Bob is given by

φ(α, β) :=
∑
i

∑
j

f(ai, bj)αiβj.

A fundamental result of von Neumann states that

min
α

max
β

φ(α, β) = max
β

min
α
φ(α, β).

This minimax value, η, is called the value of the game. An equivalent result
is that there exist mixed strategies ᾱ and β̄ such that

min
α
φ(α, β̄) = φ(ᾱ, β̄) := η = max

β
φ(ᾱ, β).

Thus η is a ”saddle point” in mixed strategies, or in other words, if Alice
chooses the mixed strategy ᾱ and Bob chooses the mixed strategy β̄, then
both players can guarantee an expected payoff of η. A different way to
state this is that if Alice chooses ᾱ then she never has to pay more than η,
no matter how Bob plays. Similarly, there is a mixed strategy, β̄, for Bob
such that his expected payoff is at least η, no matter what Alice plays. We
will apply von Neumann’s result to find the value a finite game in Theo-
rem 1.1.1 below.

We will also need some definitions from the theory of finite sets. A hyper-
graph,H, is a pair (V, E), where V is a finite set and E is a family of subsets
of V . The set V is called the vertex set ofH. The set E is called the edge set of
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H and its elements are called hyperedges, or just edges. Note that in case all
edges of E are doubletons, then we are in the case of a graph. An edge cover-
ing ofH is a collection of hyperedges E1, . . . , Et such that V ⊆ E1∪· · ·∪Et.
The smallest t for which this is possible is called the edge covering number
of H and is denoted by κ(H). A vertex v ∈ V is called exposed if it belongs
to no hyperedge. Thus, if H has an exposed vertex, we have κ(H) = ∞
and from now on we will assume that the hypergraphs under consider-
ation have no exposed vertices. Finding the edge covering number of a
hypergraph is an optimization problem. To see this, denote by A the inci-
dence matrix of H. That is, the matrix whose rows are represented by the
vertices, v1, . . . , vn, the columns are represented by the edges, E1, . . . , Em,
and whose elements, aij , are equal to 1 if vi ∈ Ej and equal to 0 otherwise.
Let also x be an indicator vector of the sets that have been selected for the
edge cover. Given such an indicator vector, x, let Ex be the set of edges
from E that correspond to this vector. Then x is an indicator vector of an
edge covering if and only if A · x ≥ 1. To see this just note that, for every
x, coordinate j of A ·x equals the number of edges from Ex that contain vj .
Hence κ(H) is the value of the optimization problem

minimize 1tx,

subject to: A · x ≥ 1,x ∈ {0, 1}m

where 1 is the vector of all ones. Problems of minimizing/maximizing a
certain linear function under linear constraints and under the assumption
that the variables are restricted to be integers belong to the field of Inte-
ger Programming (IP). The problem of finding the edge covering num-
ber of a hypergraph has a natural dual. A vertex packing in a hypergraph,
H = (V, E), is a subset X ⊆ V with the property that no two elements of X
belong to the same element of E . The vertex packing number, of H, denoted
p(H), is defined as the largest cardinality of a vertex packing. In the case of
a graph, the vertex packing number is its independence number, i.e., the
maximum cardinality of a set of vertices no two of which are adjacent.
Finding the vertex packing number of a hypergraph is also an IP prob-
lem. To see this, let y be an indicator vector of the vertices that have been
selected for the vertex packing. Then X is a vertex packing if and only if
At · y ≥ 1, where A is as above and so p(H) is the value of the IP

maximize 1ty,

subject to: At · y ≤ 1,y ∈ {0, 1}n
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Integer Programming problems are in general difficult. In contrast to this,
the field of Linear Programming (LP) in which a linear function has to be
minimized/maximized, under linear constraints and under the assump-
tion that the variables are real numbers, is easier. One approach to integer
programming problems is by its linear relaxation to a Linear Programming
problem. This approach to hypergraph problems is called fractional graph
theory (see [47]). Thus, if we allow the coordinates of the vectors x and y
above to take values in the set [0, 1], then we have fractional analogues of
the edge covering number and and vertex packing number. Thus define
κf (H) to be the value of the LP

minimize 1tx,

subject to: A · x ≥ 1,x ∈ [0, 1]m

and pf (H) to be the value of the LP

maximize 1ty,

subject to: At · y ≤ 1,y ∈ [0, 1]n

The Duality Theorem from the theory of Linear Programming implies that

p(H) ≤ pf (H) = κf (H) ≤ κ(H).

As an example consider the following win-lose game that is quite close to
the type of games that are studied in this thesis and can be found in [47].
It is called the hypergraph incidence game and is played on a hypergraph
H = (V, E). Alice chooses a vertex v ∈ V . Bob chooses an edge E ∈ E . The
payoff to Bob is 1, if v ∈ E. Otherwise the payoff is 0. This is a finite game
and so, by von Neumann’s theorem, it has a well defined value.

Theorem 1.1.1. For any hypergraph, H, the value of the hypergraph incidence
game played onH is equal to 1/κf (H) = 1/pf (H).

Proof. Recall that we assume that H has no exposed vertices. Let η be the
value of this game and A the incidence matrix of H. Let α be an optimal
mixed strategy for Alice, β an optimal mixed strategy for Bob. Thus if
Bob plays the mixed strategy β then, no matter what Alice does, he can
guarantee an expected payoff of at least η. Thus A · β ≥ η. Similarly, if
Alice plays the mixed strategy α, we have At · α ≤ η. Set α′ = 1

η
α and
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β′ = 1
η
β. Then A · α′ ≤ 1, At · β′ ≥ 1 and so α′ and β′ are feasible solutions

of the above LPs. Hence

κf (H) ≤ 1t · β′ = 1

η
1t · β =

1

η
,

since β is a probability vector, and

pf (H) ≥ 1t · α′ = 1

η
1t · α =

1

η
,

since α is a probability vector. The fact that κf (H) = pf (H) finishes the
proof.

Part of this thesis is concerned with weighted versions of the hypergraph
incidence game which we call poisoning games, for reasons that will be-
come clear in the next section. A poisoning game is an instance of a win-
lose game in which there are two players, say Alice and Bob, and a fixed
ground space, X . To fix our ideas, let us assume that X is a hypergraph
H = (V, E), where V is a finite set. The strategy space of Alice is the set of
all functions w : V → [0, 1] such that

∑
v w(v) ≤ h. Such a function will be

called a weighting overH. Bob chooses an edge E ∈ E . Once an weighting,
w, and an edge, E, have been chosen the players announce their choices
and the payoff, 〈w,E〉, to Bob is 1, if

∑
v∈E w(v) ≥ 1. Otherwise his payoff

is zero.1

The value of the game is the probability that Bob wins under optimal play
on both sides. Note that the strategy space of Alice is not a finite set which
means that this is not a finite game. Since Bob’s strategy space is finite the
poisoning game is semi-finite and it is not immediately clear that it has a
well defined value. However, as the following result shows, the game is
equivalent to a finite game and so, by von Neumann’s theorem, its value
is well defined.

Lemma 1.1.2. Any semi-finite win-lose game is equivalent to a finite win-lose
game.

Proof. Let A,B be the strategy spaces of the players and suppose that A
is an infinite set while B is a finite set. Define an equivalence relation on
A by setting a1 ∼ a2 if and only if f(a1, b) = f(a2, b), for all b ∈ B. Let
A∗ be the set of equivalence classes of A under this relation. We claim
that A∗ is a finite set. For the sake of contradiction, suppose that A∗ is

1We remark that the roles of Alice and Bob are going to be interchanged in the poison-
ing games that we will consider in subsequent sections.



6 Chapter 1. Conjectures of Kikuta-Ruckle, Erdős, Samuels

an infinite set and let {ai}∞i=1 be a set of representatives from a countable
set of different equivalence classes. Fix some representative, say, a1. As
a1 � ai, i = 2, 3, . . ., it follows that there exist bi ∈ B, i = 2, 3, . . ., for
which f(a1, bi) 6= f(ai, bi). As f(·, ·) takes only the values 0 or 1, it follows
f(ai, bi) = f(aj, bj), for i, j ≥ 2 and thus, since B is finite, there is an in-
finite set of indices, I1, such that for i, j ∈ I1, we have f(ai, bi) = f(aj, bj)
and bi = bj := b`1 . Now fix some i1 ∈ I1 Since ai1 � aj , for j ∈ I1, it fol-
lows, similarly, that there is an infinite set of indices I2 ⊆ I1 such that for
i, j ∈ I2, we have f(ai, bi) = f(aj, bj) and bi = bj := b`2 6= b`1 . Note that
for any i, j ∈ I2 we have f(ai, b`k) = f(aj, b`k), for k = 1, 2. Continuing
this way and since B is a finite set, we find that there is a countable set of
indices, J , such that for all i, j ∈ J we have f(ai, b) = f(aj, b), for all b ∈ B,
a contradiction. Hence A∗ is finite, and we may start removing strategies
from A without changing the problem at all, until we end up with a finite
set of strategies, one for every equivalence class.

Hence the poisoning game on H has a value and optimal strategies ex-
ist. Note that Alice is free to choose any weighting over V . We could also
consider a poisoning game in which Alice has further restrictions on her
weighting. As an example, suppose that Alice is only allowed to use unit
weights. That is, she can only choose weightings for which every vertex
gets either weight 1, or zero. Thus Alice chooses a weighting that gives
weight 1 in bhc vertices. Then, if h < 2, this restricted poisoning game is
the same as the hypergraph incidence game. In case h ≥ 2 the restricted
game suggests the following generalization of the hypergraph incidence
game that seems to be new.

Generalized hypergraph incidence game: Let H = (V, E) be a fixed hy-
pergraph and i ∈ Z>0. Alice chooses i vertices v1, . . . , vi. Bob chooses an
edge E ∈ E . The payoff to Bob is 1, if there exists j ∈ {1, . . . , i} such that
vj ∈ E. Otherwise his payoff is zero.

Note that the solution of the hypergraph incidence game is based on the
Duality theorem of Linear Programming. Similarly, in order to find the
value of the generalized hypergraph incidence game, we will formulate
an appropriate Integer Program. Before doing so, we need some defini-
tions.

Given a hypergraph, H = (V, E), we denote by
(
V
i

)
the family containing

all subsets of V of cardinality i. An edge i-covering of H is a collection of
edges E0 ⊆ E such that for every T ∈

(
V
i

)
, there exists E ∈ E0 for which
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T∩E 6= ∅. The smallest cardinality of an edge i-covering is called the edge i-
covering number of H and is denoted by κ(i,H). Note that κ(1,H) = κ(H),
if H has no isolated vertices. Again, the problem of finding the edge i-
covering number of a hypergraph is an IP problem. To see this denote
by Ai the i-incidence matrix of H, that is the 0, 1-matrix whose rows are
represented by the sets T1, . . . , Tl in

(
V
i

)
, the columns are represented by the

edgesE1, . . . , Em in E and whose elements, ak,j , are equal to 1 if Tk∩Ej 6= ∅,
and equal to 0 otherwise. Let x be an indicator vector of the sets that have
been selected for the edge i-covering and set Ex be the set of edges from
E that correspond to this vector. Then x is the indicator vector of an edge
i-covering if Ai · x ≥ 1 and so κ(i,H) is the value of the IP

minimize 1t · x,
subject to: Ai · x ≥ 1,x ∈ {0, 1}m

Again, this problem has a natural dual. A vertex i-packing of H is a subset
T ⊆

(
V
i

)
with the property that no two element in T intersect the same

member of E or, in other words, every member of E intersects at most
one element from T . The vertex i-packing number of H, denoted p(i,H), is
defined as the largest cardinality of a vertex i-packing. If y is an indicator
vector of the sets in

(
V
i

)
that are contained in the i-packing, then the IP

formulation of the vertex i-packing number is

maximize 1t · y,
subject to: At

i · y ≤ 1,y ∈ {0, 1}l

Hence p(i,H) ≤ κ(i,H) and the linear relaxation of these two IPs gives
rise to the fractional analogues of the edge i-covering number and vertex
i-packing number, denoted κf (i,H) and pf (i,H), respectively. The Duality
theorem of Linear Programming then implies that

pf (i,H) = κf (i,H).

In exactly the same way as in theorem 1.1.1 one can prove the following.

Theorem 1.1.3. For any hypergraph,H, the value of the generalized hypergraph
incidence game onH is equal to 1/κf (i,H) = 1/pf (i,H).

This thesis is motivated by poisoning games on hypergraphs. In particular,
we will be concerned with poisoning games on the complete uniform hy-
pergraph and the complete cyclic hypergraph. We begin the next section
by considering the first case.



8 Chapter 1. Conjectures of Kikuta-Ruckle, Erdős, Samuels

1.2 A conjecture of Kikuta and Ruckle

Suppose you want to poison your mother-in-law. She comes over for tea
and takes s biscuits from a tray containing n in total. She has no preference
and picks her biscuits randomly. You posses a bottle of arsenic containing
h grams of it, where h is a real number, and the lethal dose is, say, 1 gram.
You can distribute the poison any way you want over the biscuits. Unfor-
tunately, you cannot put the poison in her tea, you have to put it in the
biscuits. Which distribution has the highest probability of killing the old
lady?

Conjecture 1.2.1 (Kikuta-Ruckle, 2000). It is optimal to use j equal positive
dosages of h

j
grams and n− j zero gram dosages, for some j ≤ n that depends on

h, n, s.

This problem is due to Kikuta and Ruckle (see [33]) who, driven by less de-
vious motives, formulated it in terms of ”accumulation games” between
two players. It will be referred to as the poisoning game or poisoning prob-
lem.

The parameter h will remain fixed throughout this chapter and will al-
ways represent the amount of poison. Similarly, n is fixed and represents
the total number of biscuits. Finally, s is fixed and represents the number
of biscuits taken away. Notice that in case h ≥ n

s
the problem is trivial. A

dose of 1
s

in each biscuit kills the mother-in-law for sure. Also, if h < 1
then the mother-in-law can never be poisoned. So, from now on, suppose
that 1 ≤ h < n

s
.

In [33] Kikuta and Ruckle consider the following win-lose game between
a Hider, which from now on will be called Bob or the poisoner, and a
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Seeker, henceforth called Alice or mother-in-law. Suppose that there is a
fixed set of locations, [n] := {1, 2, . . . , n}, and a given initial amount of poi-
son h, 1 ≤ h < n

s
. Bob’s strategy space, Σ, is a distribution of h over the lo-

cations. That is, Bob chooses a function w : [n]→ [0, 1] such that
∑
wi ≤ h

which gives rise to the vector (w1, . . . , wn). Such a function will be referred
to as a weighting (or poisoning) on [n] and wi as the weight, or amount of
poison, at location i, i = 1, . . . , n. Thus the strategy space of the poisoner
is the set of all weightings Σ = {(w1, . . . , wn) :

∑
wi ≤ h, 0 ≤ wi ≤ h} ⊆ Rn

and so Σ is a convex set.
The strategy space of Alice is the family of all subsets of [n] of cardinality s,
denoted

(
[n]
s

)
. Once a weightingw and a set I ∈

(
[n]
s

)
have been chosen, then

Alice is poisoned (and Bob’s payoff is 1) ifw(I) ≥ 1, wherew(I) =
∑

i∈I wi.
If w(I) < 1 then Bob’s payoff is 0, i.e. he loses the game and Alice wins.
Any s-set, J , for which w(J) ≥ 1 will be called a heavy (or lethal) set. Oth-
erwise the set is light. The value of the game is the probability that Alice
is poisoned under optimal play on both sides and is denoted by V (h, n, s).
Note that the strategy space of Bob is not a finite set which means that
this is not a finite game. Since Alice’s strategy space is finite the poisoning
game is semi-finite and so, by Lemma 1.1.2, the game is equivalent to a
finite game which has a well defined value.

Recall some definitions from the theory of finite sets. An s-uniform hyper-
graph is a pair H = (V, E), where V is a finite set of vertices and E is a
family of subsets of V with s elements, called edges. Notice that for s = 2
a 2-uniform hypergraph is just a graph. Also note that the strategy space
of Alice is the complete s-uniform hypergraph, i.e. the hypergraph con-
sisting of all subsets of [n] of cardinality s. Any weighting, w, on [n] gives
rise to a hypergraph, Hw, whose vertex set is [n] and whose edge set is
Ew := {I ⊆ [n] : |I| = s & w(I) ≥ 1}, the heavy s-sets under the weighting.
Thus |Ew| is the number of lethal s-sets under w and the condition h < n

s

guarantees that there is always at least one light edge, i.e. |Ew| <
(
n
s

)
, for

any weighting w.

Suppose that A,B are strategy spaces of a finite win-lose game between
Alice and Bob. The game is called invariant under a bijective map g : A→
A if for every b ∈ B there is a unique b′ ∈ B such that

f(a, b) = f(g(a), b′), for all a ∈ A,

where f(·, ·) is the payoff function. It is known (see [17]) that the set of
all bijections under which a game is invariant forms a group under the
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composition operation and that if a game is invariant under a group, G, of
bijections on A then there exists an optimal mixed strategy for Alice that
assign the same probability to elements a1, a2 ∈ A for which g(a1) = a2, for
some g ∈ G.

It will be shown that the poisoning game is invariant under the group of
automorphisms of the underlying hypergraph. An automorphism of a hy-
pergraph, H = (V, E) is a pair (π, σ) where π is a permutation of V , σ is a
permutation of E such that for all v ∈ V and all E ∈ E it holds v ∈ E if and
only if π(v) ∈ σ(E). Recall that the set of automorphisms of a hypergraph
forms a group under the operation of composition.

The following result says that even if your mother-in-law was informed
about your intensions (though, still eager to eat your biscuits) the optimal
way to play would be to pick an s-set uniformly at random.

Lemma 1.2.2. It is optimal for Alice to choose an s-set at random.

Proof. This is an invariance argument (see [17], Theorem 3.4). The game
is invariant under the group of automorphisms, A, of the hypergraph,
H = (V,

(
[n]
s

)
) of all subsets of [n] of size s. To see this let p(w, S) be Bob’s

payoff (so either 0 or 1) provided that he chooses the weighting w and Al-
ice chooses the s-set S. Then for any automorphism (π, σ) ∈ A we have
that p(w, S) = p(π(w), σ(S)), where π(w) := (wπ(1), . . . , wπ(n)). Since the
game is invariant under the group A, there exist invariant optimal strate-
gies for the players. Since for any pair (v1, E1), (v2, E2) ∈ (V,

(
[n]
s

)
) there ex-

ists (π, σ) that maps (v1, E1) to (v2, E2), a mixed strategy for the mother-in-
law is invariant if it assigns the same probability to all elements of

(
[n]
s

)
.

So we know the optimal strategy of Alice. Given any poisoning, w, on [n],
the probability that she is poisoned equals

Pw :=
|Ew|(
n
s

) .
Hence the solution of the game comes down to the following optimization
problem: Find a weighting w over [n] such that the number of lethal s-sets
is maximal.

Since we are interested in maximizing the number of lethal s-sets, we may
assume that the weights are arranged in decreasing order, i.e. w1 ≥ · · · ≥
wn. This means that the strategy space of Bob reduces to
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Σ′ =
{

(w1, . . . , wn) :
∑

wi ≤ h,w1 ≥ · · · ≥ wn ≥ 0
}
.

The next result shows that the Kikuta-Ruckle conjecture says that an opti-
mal strategy occurs at an extreme point of Σ′.

Lemma 1.2.3. Any point of Σ′ is a convex combination of the following vectors:

(h, 0, . . . , 0) ,

(
h

2
,
h

2
, 0, . . . , 0

)
,

(
h

3
,
h

3
,
h

3
, 0, . . . , 0

)
. . . ,

(
h

n
,
h

n
, . . . ,

h

n

)
.

Proof. Denote by ei the vector (h
i
, h
i
, . . . , h

i
, 0, . . . , 0), i = 1, . . . , n. It is enough

to show that every vector in the boundary of Σ′ is a convex combination
of the vectors ei, i = 1, . . . , n. Suppose w := (w1, . . . , wn) ∈ ∂Σ′, so that∑

iwi = h and w1 ≥ w2 ≥ · · · ≥ wn. Let m be the maximum index for
which wm > 0 and set xi := wi−wi+1 > 0, for i = 1, . . . ,m−1. Now the fact
that h = mwm+(m−1)xm−1+· · ·+2x2+x1 andwi = wm+xm−1+· · ·+xi, i =
1, . . . ,m− 1 implies that

w =
x1

h
e1 +

2x2

h
e2 + · · ·+ (m− 1)xm−1

h
em−1 +

mwm
h

em,

which means that w is a convex combination of ei, i = 1, . . . , n.

A strategy,w, of Bob dominates some other strategy,w′, if and only ifw′(I) ≥
1 implies that w(I) ≥ 1, for any s-set I . In other words, if a set is lethal un-
der w′ then it is also lethal under w. Some of the extreme points of Σ′ are
dominated. To see this note that every vector ej for which h

j
≥ 1 is dom-

inated by the vector v = (1, . . . , 1, 0 . . . , 0) consisting of j unit doses since
any s-set that that is lethal under ej is also lethal under v. Furthermore, the
vectors ej for which h

j
< 1 are also dominated. To see this note that j

h
> 1

and so there is a positive integer, k, such that k−1 < j
h
≤ k, or equivalently

1
k−1

> h
j
≥ 1

k
. This means that an s-set has to have at least k doses of h

j
in

order to be lethal. But then Bob can just replace the weights h
j

in ej by 1
k

and achieve the same probability of winning. Hence if the Kikuta-Ruckle
conjecture is true then the following statement is also correct.
The optimal distribution of poison over the biscuits uses dosages of 1

j
in

as many biscuits as possible, for a positive integer j that depends on h, n, s.

The conjecture of Kikuta and Ruckle arose from a series of papers on
search games and optimal allocation over a number of years (see [31],[32]
and [33]). Some properties of the value of the game along with a proof that
the conjecture holds true in some particular cases can be found in [3].
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We close this section by mentioning that in the poisoning game just de-
fined the mother-in-law chooses an edge from the complete s-uniform hy-
pergraph on n vertices. The choice of the mother-in-law depends on her
eating habits. So one may consider poisoning games in which the mother-
in-law picks an s-set from a fixed s-uniform hypergraph that is different
from the complete. For example, the mother-in-law might arrange the n
biscuits cyclically and choose s consecutive elements from that circle. This
case is part of an entire chapter in this thesis.

1.3 A conjecture of Erdős

A family of subsets (or hypergraph),H, of a finite vertex set is called inter-
secting if any two sets fromH have non-empty intersection. The following
result of Erdős, Ko and Rado is well known.

Theorem 1.3.1 (EKR). LetH be an intersecting family of s-subsets of some ver-
tex set containing n elements. If n ≥ 2s then H cannot have more than

(
n−1
s−1

)
elements.

See Appendix A for a proof. Hence an example of a maximal intersecting
family is given by all s-sets containing some fixed element of the vertex
set. In other words, EKR says that one cannot do better than the obvious
solution.

Notice that this theorem settles the Kikuta-Ruckle conjecture for a certain
range of parameters. If h < 2 and n ≥ 2s, then any two lethal s-sets must
have non-empty intersection and the EKR theorem implies that putting a
unit weight is optimal.

There are several ways to generalize the EKR theorem. One of them is by
putting constraints on the number of disjoint edges of the hypergraph. A
set of pairwise disjoint edges in a hypergraph, H, is called a matching. We
denote by µ(H) the cardinality of the largest matching in H or, in short,
the matching number. Notice that in an intersecting family of s-sets there
are no disjoint edges and so its matching equals 1. Hence the EKR the-
orem says that the maximum cardinality of a uniform hypergraph with
matching number 1 is at most

(
n−1
s−1

)
, i.e. the cardinality of a family of sets

that contain 1 fixed element. So what if we take matching number a?

The problem of finding an s-uniform hypergraph, H = ([n], E), with the
maximum number of edges under the constraint µ(H) < a is well studied,
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though only partially solved, and goes back to a question of Paul Erdős
(see [15]) that he raised in 1965. Erdős conjectured that the maximum is at-
tained by two extremal hypergraphs. The first one is the hypergraph,H1/s,
consisting of all the s-subsets on sa− 1 vertices, whose matching number
is clearly a− 1. The second one is an s-uniform hypergraph, H1, on n ver-
tices that includes all s-sets that contain at least one element from a fixed
set of a− 1 vertices and whose matching number is a− 1 as well.

Conjecture 1.3.2 (Erdős, 1965). The number of edges in an s-uniform hyper-
graph,H, on n vertices with matching number µ(H) < a ≤ n

s
is at most

max

{(
sa− 1

s

)
,

(
n

s

)
−
(
n− a+ 1

s

)}
.

In case n ≥ a(s+1), then
(
n
s

)
−
(
n−a+1

s

)
>
(
sa−1
s

)
. To see this use the inequal-

ity
(
n
s

)
−
(
n−a+1

s

)
≥ (a − 1)

(
n−a+1
s−1

)
and do some elementary calculation.

Erdős proved the following result.

Theorem 1.3.3 (Erdős). There exists some constant cs, that depends on s, such
that the hypergraphH1 is maximal for all n > cs · a.

The proof can be found in [15]. There has been considerable work on find-
ing the constant cs (see [23]). The best known lower bound on cs is 2s− s

a
−1

and was established very recently (see [22]).

Erdős’ conjecture is related to the Kikuta-Ruckle conjecture. The family
of lethal s-sets under a weighting, w, on [n] forms a hypergraph Hw =
([n], Ew) and we are interested in maximizing the number of its edges. The
matching number ofHw is < a := dhe. If n > csa and Bob puts dosage 1

s
in

as many biscuits as possible then we get the hypergraph H1/s. If Bob puts
a dosage of 1 in as many biscuits as possible then we get the hypergraph
H1. Kikuta and Ruckle include more fractional doses in their conjecture. It
could be optimal to put dosages 1, 1/2, 1/3, . . . , 1/s. Notice that not all of
these dosages are included in the conjecture of Erdős. The reason is that the
conjecture of Erdős concerns an integer, a, while the conjecture of Kikuta
and Ruckle concerns a fractional, h. If both conjectures are correct, then the
optimal dosage is either 1 or 1/s when the amount of poison is an integer.

The conjecture of Erdős is an optimization problem in which the number
of edges of a hypergraph, H, needs to be maximized under a constraint
on the matching number. This is a linear constraint. To see this, denote
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by A the incidence matrix of H. That is, the matrix whose rows are repre-
sented by the vertices, v1, . . . , vn, the columns are represented by the edges,
E1, . . . , Em, and whose elements, aij , are equal to 1 if vi ∈ Ej and equal to
0 otherwise. A matching in H is then a binary vector x = (x1, . . . , xm)
such that A · x ≤ 1, where 1 is the vector consisting of 1’s only. The lin-
ear relaxation of the matching number problem gives rise to the following
definition.

Let H = (V, E) be an s-uniform hypergraph. A fractional matching in H is a
function w : E → [0, 1] for which

∑
E3v w(E) ≤ 1, for each v ∈ V . In other

words, w is a weighting on the edges, instead of the vertices. The fractional
matching number of H, denoted µ∗(H), is defined as maxw

∑
E∈E w(E). In

other words, the fractional matching number is the maximum total weight
on the edges.

The fractional version of Erdős’ matching conjecture reads as follows.

Conjecture 1.3.4. Fix positive integers n, s, a. Then the maximum number of
edges in an s-uniform hypergraph, H, on n vertices whose fractional matching
number is an integer and satisfies µ∗(H) < a ≤ n

s
is at most

max

{(
sa− 1

s

)
,

(
n

s

)
−
(
n− a+ 1

s

)}
.

This conjecture was introduced only recently by Alon et al. (see [2]). Note
that both the Kikuta-Ruckle and the fractional Erdős’ matching conjecture
address the following general problem.

Problem 1.3.5. Fix positive integers n, s and a real number h ≥ 1. Find a s-
uniform hypergraph, H = (V, E), on n vertices whose fractional matching num-
ber is ≤ h and for which |E| is maximum.

Using definitions analogous to those of the first section, one can general-
ize this problem. Fix a hypergraph H = (V, E) on n vertices. Denote by
∂i(E) the family containing all subsets of cardinality i, of some sets in E .
Formally,

∂i(E) = {T ⊆ V : |T | = i, T ⊆ E for some E ∈ E}.

∂i(E) is referred to as the i-th shadow of E in the literature. An i-matching of
H is a is collection of edges E0 ⊆ E such that every T ∈ ∂i(E) is contained
in at most one E ∈ E0. The largest cardinality of an i-matching ofH is called
the i-matching number of H and is denoted by µi(H). It is not difficult
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to formulate an Integer Program corresponding to the problem of finding
the i-matching number of a hypergraph. We leave the details to the reader.
The linear relaxation of this IP gives rise to the fractional analogue of the
i-matching number. We can generalize the last problem by introducing the
following one.

Problem 1.3.6. Fix positive integers n, s and a real number h ≥ 1. Find a
s-uniform hypergraph, H = (V, E), on n vertices whose fractional i-matching
number is ≤ h and for which |E| is maximum.

1.4 A conjecture of Samuels

The conjecture of Kikuta and Ruckle entails two problems. The first one
is the conjecture itself which, as we already saw, reduces to an optimiza-
tion problem. The second is the problem of determining the optimal dose,
given the validity of the conjecture. This is a probability problem. In order
to illustrate this suppose that the amount of poison, h, is an integer. Recall
that in this case Erdős’ conjecture, if true, implies that the optimal dose
is either equal to 1 or equal to 1/s. Let us assume further that unit doses
are better than doses of 1/s. So, if the Kikuta-Ruckle conjecture is true, the
optimal distribution of poison over the biscuits uses h · j poisonous bis-
cuits that contain 1

j
grams of arsenic and n−j zero gram biscuits, for some

j < s. This means that the amount of poison taken by the mother-in-law is
equal to 1

j
·Hj , for a hypergeometric random variable, Hj , that counts the

number of poisonous biscuits taken away when we sample s biscuits from
a set containing n in total and the number of poisonous biscuits is h·j. This
means that the probability that Alice is poisoned equals P[Hj ≥ j] and so
Bob faces the following (tail) probability problem.

maximize P[Hj ≥ j] where 1 ≤ j ≤ s− 1.

Recall that we require the parameters h, n, s to satisfy h·s
n
< 1, which gives

that E[Hj] = hjs
n

< j. Finding the maximum of the hypergeometric tails
turns out to be difficult. As a first case, we find the maximum tail under a
stronger restriction on E[Hj]. Namely, we assume that h·s

n
≤ 1

s−1
. Then, for

every j = 1, . . . , s− 1, we have that E[Hj] = h·j·s
n
≤ j

s−1
≤ 1 We now prove

that in this case the optimal j equals 1. This will require the following
elementary result.
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Lemma 1.4.1. Let Z be any random variable taking non-negative integer values
for which E[Z] ≤ 1. Then

P[Z = 0] ≥ P[Z ≥ 2] + P[Z ≥ 3] + · · · ≥ P[Z ≥ 2].

Proof. Notice that

P[Z = 0] + P[Z ≥ 1] = 1 ≥ E[Z] ≥ P[Z ≥ 1] + P[Z ≥ 2] + · · · .

Some evidence that the maximum tail equals P[H1 ≥ 1] is given by the
next result.

Lemma 1.4.2. Let H be a hypergeometrically distributed random variable with
parameters n, s, a, i.e. H ∼ Hyp(n, s, a). Suppose that H is such that E[H] ≤ 1.
Then

P[H = 1] ≥ P[H > 1].

Proof. An equivalent form of the inequality is

P[H = 0] + 2P[H = 1] ≥ 1.

For fixed n, s, a write

P[H = 0] + 2P[H = 1] =

(
n−a
s

)
+ 2a

(
n−a
s−1

)(
n
s

)
=

(
n−a
s

)(
n
s

) · (1 +
2sa

n− a− s+ 1

)
.

Straightforward calculation shows that the last quantity is increasing for
n ≤ n0 := 2na−a−n and decreasing for n ≥ n0. Since in the limit as n→∞
we get that P[H = 0] = 1, it is enough to show that the inequality holds
true in case n = sa, or, equivalently E[H] = 1. For this case we compute

P[H = 1]

P[H = 0]
=

sa

(s− 1)(a− 1)
> 1.

Thus, when n = sa, the inequality P[H = 1] ≥ P[H ≥ 2] follows by Lemma
1.4.1.

Theorem 1.4.3. Let m := h
n

. If m is less than 1
s(s−1)

then the solution of the
probability problem is j = 1. That is,

P[Hj ≥ 1] ≤ P[H1 ≥ 1], for j = 1, . . . , s− 1.
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Proof. Since E[Hj] = h·j·s
n
≤ 1 for all j = 1, . . . , s − 1 it follows that P[Hj =

0] ≥ P[Hj ≥ j], by Lemma 1.4.1. For j = 1, . . . , s − 1 it is immediate that
P[Hj = 0] ≥ P[Hj+1 = 0]. Thus P[H1 = 0] ≥ P[Hj = 0] ≥ P[Hj ≥ j]. Since
H1 is hypergeometrically distributed of mean less than one, Lemma 1.4.2
gives that

P[H1 ≥ 1] ≥ P[H1 = 1] ≥ P[H1 = 0] ≥ P[Hj ≥ j],

as required.

In words, if the Kikuta-Ruckle conjecture is true and the average number
of poisonous biscuits in the sample of Alice is less than 1, then it is optimal
to use unit weights. A fact that is intuitively obvious.

Denote by Xi, i = 1, . . . , s, the amount of poison in the i-th biscuit of Al-
ice. Then E[Xi] = h

n
and the total amount of poison that Alice eats equals

Σs = X1 + · · ·+Xs. This is a dependent sum of random variables and so the
poisoning game addresses the following problem.

Fix s real numbers m1, . . . ,ms such that 0 ≤ m1 ≤ · · · ≤ ms and
∑
mi < 1

and find
Ξ(m1, . . . ,m2) := supP[X1 + · · ·+Xs ≥ 1],

where the supremum is over all s-tuples of (dependent) random variables
X1, . . . , Xs with means m1, . . . ,ms, respectively.

This problem has been studied since Hoeffding for sums of independent
random variables. In the 60’s Samuels published a number of papers in
which he considered the following question. Let Xi, i = 1, . . . , s be inde-
pendent random variables of mean mi such that

∑
mi < 1. What is the

maximum value of P[X1 + · · ·+Xs ≥ 1] ?

Samuels only partially solved this problem, which by now has remained
open for more than fifty years, but he did conjecture a full solution: order
the means in increasing order, m1 ≤ · · · ≤ ms. Then the random variables,
X1, . . . , Xs, that maximize the tail have the following property. There exists
a t ∈ {0, 1, . . . , s − 1} such that Xi is constant and equal to mi for i ≤ t
and for i > t each Xi is a 0/1-valued random variable of mean mi. More
formally, Samuels’ problem reads as follows.
Fix s real numbers, m1, . . . ,ms such that 0 ≤ m1 ≤ · · · ≤ ms as well as∑s

i=1 m1 < 1, and denote

Ψ(m1, . . . ,ms) := inf P[X1 + · · ·+Xs < 1] = supP[X1 + · · ·+Xs ≥ 1],
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where the infimum and supremum is over all s-tuples of non-negative
independent random variables X1, . . . , Xs with means m1, . . . ,ms, respec-
tively. Now for each t = 0, 1, . . . , s− 1 set

Qt(m1, . . . ,ms) :=
s∏

i=t+1

(
1− mi

1−
∑t

j=1mj

)
.

Now suppose that Xi = mi with probability 1, for i ≤ t and for i > t each
Xi takes the values 1−

∑t
j=1mj with probability mi

1−
∑t

j=1mj
and 0 otherwise,

i.e., its mean equalsmi. ThenX1+· · ·+Xs < 1 if and only ifXt+1+· · ·+Xs <
1−

∑t
j=1mi and the last inequality is satisfied in case all Xi are equal to 0,

for i ≥ t+ 1. Hence for this choice of random variables we have

P[X1 + · · ·+Xs < 1] = Qt(m1, . . . ,ms).

Conjecture 1.4.4 (Samuels, 1966). Suppose that Xi are non-negative, inde-
pendent random variables of mean mi, i = 1, . . . , s. Then the tail probability
P[X1 + · · · + Xs ≥ 1] is maximized by random variables Xi such that each of
them is either constant and equal to mi, or takes only the values 0 and 1. For-
mally, for all real numbers, m1, . . . ,ms satisfying 0 ≤ m1 ≤ · · · ≤ ms, and∑s

i=1 m1 < 1,

Ψ(m1, . . . ,ms) = min
t=0,...,s−1

Qt(m1, . . . ,ms).

In [46] Samuels obtained, as a corollary of a more general theorem, the
following result.

Theorem 1.4.5. Let X1, . . . , Xs be i.i.d. with common mean, m. If m is less than
1

max{4s,s(s−1)} , then the tail probability P[X1 + · · ·+Xs ≥ 1] is maximized by i.i.d.
Bernoulli random variables Xi with common mean m. That is,

P[X1 + · · ·+Xs ≥ 1] ≤ 1− (1−m)s.

Compare this result with Theorem 1.4.3. Notice also that this result con-
firms the conjecture in the case of i.i.d. random variables Xi with com-
mon mean. This case has an interpretation in terms of a poisoning game.
Consider a poisoning game in which Bob has made s identical trays each
containing n biscuits. In each tray he has distributed h grams of arsenic
in exactly the same way. Alice will take one biscuit from each tray, so s
in total. Let’s refer to this game as the poisoning game with replacement.
If Xi is the amount of poison taken by Alice from the i-th tray, then each
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Xi, i = 1, . . . , s, is a random variable of mean m := h
n
< 1

s
. If Samuels con-

jecture holds true, then finding the optimal distribution of poison requires
to determine the minimum value of Qt(m), for t = 0, . . . , s − 1. Note that
the expression for Qt(m) simplifies a lot. For each t = 0, . . . , s− 1 we have

Qt(m) =

(
1− m

1− tm

)s−t
.

For t = 0, . . . , s−1 defineZt to be a binomially distributed random variable
of parameters s − t and m

1−tm . In short, Zt ∼ Bin(s − t, m
1−tm). Then finding

the minimum Qt(m) is a (tail) probability problem.

minimize P[Zt = 0], where t = 0, 1, . . . , s− 1.

The following result is proven in [2], using the arithmetic-geometric means
inequality.

Lemma 1.4.6. If m ≤ 1
s+1

then, for all t = 0, . . . , s− 1, we have

P[Z0 = 0] ≤ P[Zt = 0].

Proof. We want to prove that

(1−m)s ≤
(

1− m

1− tm

)s−t
=

(
1− tm−m

1− tm

)s−t
,

for t = 1, . . . , s− 1. Note that the inequality is true when m equals 0 or 1
s+1

.
For the intermediate values, 0 < m < 1

s+1
, we prove instead that

f(m) := s · log(1−m)− (s− t) log(1− tm−m) + (s− t) log(1− tm) ≤ 0.

Now notice that

f ′(m) =
t(1− tm)(sm− 1 +m)

(1−m)(1− tm−m)(1− tm)
< 0,

for 0 < m < 1
s+1

. This means that f(·) is decreasing for 0 < m < 1
s+1

.

In other words, if Samuels’ conjecture is true and the parameters h, n, s
satisfy h

n
≤ 1

s+1
, then the optimal weighting in the poisoning game with

replacement uses unit weights.
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1.5 Monotonicity and the binomial game

In this section we discuss asymptotic approaches of the poisoning game.
Throughout this section it is assumed that the Kikuta-Ruckle conjecture holds
true. The probability problem that is associated to the conjecture asks for
the optimal dose 1/j. Which j should the poisoner choose? There are three
parameters, h, n, s. Suppose we keep two of them fixed and vary the third.
If h increases then this is to the advantage of Bob. His resources improve
and, intuitively, it may be better to spread the poison. If s increases then,
again, this is to the advantage of the Bob since it is more likely that Alice
will get a lethal dose and, intuitively, it might be as well better to spread
the poison. However, if n increases then this is to the advantage of Alice
whose probability of getting a lethal dose decreases. This suggests that the
following monotonicity might be true.

j increases with h, j increases with s, j decreases with n.

This is a statement about hypergeometric random variables. Suppose that
Hj is a random variable of sampling s times without replacement from a
tray containing n biscuits in total and with bhcj of the biscuits being poi-
soned. Then the integer j that maximizes P[Hj ≥ j] increases with h and
s, but decreases with n. This is a technical statement that is not easy to
handle. In order to simplify the problem a bit suppose we vary two pa-
rameters and keep the third fixed. We now discuss two versions of this
approach.

Suppose first that we let h and n go to infinity while keeping h
n

fixed and
equal to µ and keeping s fixed as well. As n is getting larger, and in order to
simplify matters, we may assume that the dependence between different
samplings of Alice vanishes. Let Xi, i = 1, . . . , s be the amount of poison
in the i-th choice of Alice. So, in the limit, Bob is facing the following prob-
lem. Find i.i.d. random variables Xi, i = 1, . . . , s of mean µ such that the
tail probability P[X1 + · · · + Xs ≥ 1] is maximal. Note that this is a special
case of Samuels’ problem.

We may also consider another asymptotic approach by letting n and s go
to infinity while keeping s

n
fixed and equal to µ and keeping h fixed. Since

the n and s go to infinity, and in order to simplify matters, we might again
suppose that there is no dependence between different samples of Alice.
That is, we might suppose that Alice chooses her biscuits with replacement
and so, in the limit, the players can be thought of as participating in the
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following win-lose game on the interval [0, 1]. Alice chooses a subset, S, of
[0, 1] of Lebesgue measure µ. Bob puts poison on the interval and wins if
the amount of poison in S is≥ 1. That is, Bob chooses a measure γ on [0, 1]
such that γ([0, 1]) = h, where h is a real number greater than or equal to 1.
Bob wins if S is lethal under γ, i.e. if γ(S) ≥ 1.

If µh ≥ 1 then Bob wins for sure by choosing a uniform measure. So we can
assume from now on that µh < 1. This is not a finite game. The strategy
space of both players is infinite and it is not at all obvious that the game has
a well defined value. The next results imply that the value is well defined
for a certain range of parameters.

Lemma 1.5.1. If µ ≤ 1
2

and h < 2 then the optimal strategy for Bob is to choose
a point uniformly randomly on [0, 1] and put a dosage of 1 gram in this point.
The optimal strategy of Alice is to identify the points 0 and 1, thus turning the
interval into a circle, and choose an interval from the circle of length µ uniformly
at random.

Proof. Clearly, the suggested strategy of Bob guarantees that he wins with
probability µ, against any pure strategy of Alice.
Now fix any pure strategy, γ, of Bob. Alice picks a point, x, uniformly at
random from the circle and chooses the set Sx := [x, x+ µ),mod1. Alice is
poisoned if γ(Sx) ≥ 1. We show that the probability that Alice is poisoned
is ≤ µ. That is, we need to prove that λ({x : γ(Sx) ≥ 1}) ≤ µ, where λ
denotes Lebesgue measure. Since h < 2, any two lethal intervals Sx must
have non-empty intersection. Take any interval Sx that is lethal and note
that any interval that intersects Sx is one of the intervals St, t ∈ (x− µ, x+
µ) mod1. Now if St is lethal, then St+µ cannot be lethal since it has non-
empty intersection with St. Thus at most half of the interval that intersect
Sx can be lethal which means that λ({t : γ(St) ≥ 1}∩(x−µ, x+µ)) ≤ µ.

Observe that the previous lemma is related to EKR theorem. Its proof is a
modified version of Katona’s proof of the EKR theorem (see [29]).

Lemma 1.5.2. If µ = m−1
m

then the optimal strategy of Bob is to put a unit dosage
at a randomly chosen point of [0, 1]. The optimal strategy of Alice is to divide [0, 1]
into m equal subintervals, I1, . . . , Im, where Ij =

[
j−1
m
, j
m

]
and choose [0, 1] \ Ij

uniformly randomly.

Proof. The probability that Bob wins is 1 − 1
m

, for any pure strategy of
Alice.
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Now fix a pure strategy of Bob, γ. Alice chooses one of the sets Ai :=
[0, 1] \ Ii, i = 1, . . . ,m with equal probability. Now note that

m∑
i=1

γ(Ai) = (m− 1)h = mµh < m,

where the first equality follows from the fact that each subinterval, Ii, has
been counted m−1 times. Hence there is an index i0, for which γ(Ai0) < 1.
In case Alice chooses this set, then she survives and this happens with
probability 1

m
.

Notice that for m = 2 the last two Lemmata show that there are two dif-
ferent optimal strategies for Alice.

The Kikuta-Ruckle conjecture predicts that in the asymptotic game Bob
divides the poison into doses 1

j
and so the probability that a ”random”

subset S of [0, 1] contains at least j of these doses is P[Bj ≥ j], for a bino-
mially distributed random variable Bj ∼ Bin(bjhc, µ). Hence the problem
of finding the optimal j reduces to the problem of maximizing the tails
P[Bj ≥ j] for j ≥ 1. Such problems have been around for a long time. To
illustrate this, suppose that h is a positive integer. Then the optimal dose is
determined through the following probability problem.

maximize P[Bj ≥ j] where j ∈ Z>0, and Bj ∼ Bin(jh, µ).

Suppose further that we were allowed to choose µ = 1
h

. Recall that in fact
µ < 1

h
. Then we would have considered a well known problem.

In 1693 Samuel Pepys wrote a letter to Isaac Newton (see chapter 12 of
[13]) asking which of the following events is more likely to happen:

- throw a dice six times and gamble on at least one 6,

- throw a dice twelve times and gamble on at least two 6’s, or

- throw a dice eighteen times an gamble on at least three 6’s.

The answer, which is to take six dies and gamble on at least one 6, is con-
tained in the next result.

Theorem 1.5.3. Fix a positive integer h and let Zj ∼ Bin(jh, 1
h
). Then, for any

j ∈ N,
P[Zj ≥ j] ≥ P[Zj+1 ≥ j + 1].
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Proof. First note that E[Zj] = j ∈ N, for all j, in which case it is easy to see
that the mean of the binomial distribution equals the mode.
I.e. P[Zj = i] ≤ P[Zj = j] for all i. If we regard Zj+1 as the independent
sum of Zj and Z1 and compute P[Zj + Z1 ≥ j + 1] conditional on Zj , we
get

P[Zj+1 ≥ j + 1] =
∞∑
i=0

P[Z1 ≥ j + 1− i] · P[Zj = i]

= P[Z1 ≥ j + 1] · P[Zj = 0] + P[Z1 ≥ j] · P[Zj = 1] + · · ·
+ P[Z1 ≥ 1] · P[Zj = j] + P[Zj ≥ j + 1].

Hence it is enough to show that

P[Z1 ≥ j + 1] · P[Zj = 0] + · · ·+ P[Z1 ≥ 1] · P[Zj = j] ≤ P[Zj = j],

or, equivalently, that

P[Z1 ≥ j+1]·P[Zj = 0]+· · ·+P[Z1 ≥ 2]·P[Zj = j−1] ≤ P[Z1 = 0]·P[Zj = j].

Since P[Zj = i] ≤ P[Zj = j] for all i we get that

P[Z1 ≥ j + 1] · P[Zj = 0] + · · ·+ P[Z1 ≥ 2] · P[Zj = j − 1]

is less than or equal to

P[Zj = j] · (P[Z1 ≥ j + 1] + · · ·+ P[Z1 ≥ 2]).

Now that fact that E[Z1] ≤ 1 and Lemma 1.4.1 gives that the last quantity
is

≤ P[Zj = j] · P[Z1 = 0]

and finishes the proof.

Hence it is optimal to use unit weights. Note that, since h is an integer, this
coincides with the optimal dose that is suggested by Erdős’ conjecture.
The same dose is optimal in case µ < 1

h
, as we now show. For x ∈ (0, 1)

and j ∈ N define the function

fj(x) := P[Zj+1 ≤ j]− P[Zj ≤ j − 1],

where Zj ∼ Bin(hj, x) It is clear that fj(0) = fj(1) = 0 and from Theorem
1.5.3 we have that fj( 1

h
) ≥ 0. Also it is easy to verify that f ′j(x) equals

xj−1(1−x)hj−j
[
−
(
hj + h

j

)
x(hj + h− j)(1− x)h−1 +

(
hj

j − 1

)
(hj − j + 1)

]
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Theorem 1.5.4. For any h ∈ N and any 0 ≤ x ≤ 1/h, we have

P[Zj ≥ j] ≥ P[Zj+1 ≥ j + 1], for all j = 1, 2, . . . ,

where Zj ∼ Bin(jh, x).

Proof. Fix some j ∈ {1, 2, . . .}. Define gj(x) := −
(
hj+h
j

)
x(hj+h−j)(1−x)h−1.

Then

g′j(x) = −
(
hj + h

j

)
(hj + h− j)(1− x)h−2(−1 + hx).

which gives that gj(·) is decreasing for x < 1
h

and increasing for x > 1
h

. Also
gj(0) = gj(1) = 0. IfGj(x) := gj(x)+

(
hj
j−1

)
(hj−j+1) ≥ 0 for all x, then fj(·)

is an increasing function which contradicts the fact that fj(0) = fj(1) = 0.
Thus, by monotonicity of gj(·) , there exist x0 < 1/h and x1 > 1/h for
which Gj(x0) = Gj(x1) = 0. Thus Gj(·) is positive for x < x0, it is negative
for x0 ≤ x ≤ x1 and positive again for x > x1. This gives that for x < x0

and x > x1 the function fj(·) is increasing. But as fj(0) = fj(1) = 0, it
follows that fj(x0) > 0 and fj(x1) < 0. From Theorem 1.5.3 we know that
fj(1/h) ≥ 0. Since f ′j(·) changes sign at the points x0 and x1 and fj(·) is
decreasing for x ∈ [x0, x1], we conclude that fj(x) ≥ 0, for x ∈ [0, 1/h].

So in case h is an integer and the Kikuta-Ruckle conjecture holds true for
the asymptotic game, then it is optimal to use unit weights. The mono-
tonicity of tail probabilities of the binomial distribution is well studied.
For a general result see [27].
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1.6 A geometric poisoning-problem

In this section we consider a poisoning ”game” between Alice and Bob in
which Bob has made a pie that has the shape of a circular disk. Alice eats
a circular piece of the pie of radius, say, 1 that she will choose at random.
Bob has h ≥ 1 grams of arsenic and the lethal dose is 1 gram.
Denote by Π∗ the pie, which is a closed disk of radius R > 1. Suppose that
this disk is centered at the origin, O, of a plane. Denote by D(p, r) the disk
with center p and radius r > 0. Alice eats a circular piece of the pie of ra-
dius 1 and this piece is chosen uniformly at random. More precisely, she
chooses a point, p, uniformly at random from the disk Π := D(O,R − 1)
and eats the closed disk D(p, 1). Which distribution of poison over the pie
has the highest probability of doing the job?

Note that this is not a game. At least not the way it is defined. Alice is
given no choice. She is restricted in choosing her piece uniformly at ran-
dom and so this is an optimization problem.

Every distribution of poison over the pie gives rise to a measure µ defined
on Π such that µ(Π) = h. This means that Bob’s strategy space is the set of
all measures on Π of total mass h, denotedMh. For every choice of Bob,
µ ∈Mh, define

α(µ) := λ2(p ∈ Π : µ(D(p, 1)) ≥ 1),

where λ2 denotes the two-dimensional Lebesgue measure. Hence the prob-
lem of finding the optimal distribution of poison reduces to the problem
of finding a µ∗ ∈Mh for which α(µ∗) ≥ α(µ), for every µ ∈Mh.
This is a difficult problem that addresses non-trivial geometric questions.
In this section we focus on these geometric questions. In order to illustrate
this, suppose first that 1 ≤ h < 2. Then, for every µ ∈ Mh, any two disks
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D1, D2, that are lethal under µ must have non-empty intersection. Define
the size, σ(F), of a family F of unit disk in the plane to be the Lebesgue
measure of the set consisting of the centers of the disks D ∈ F . Formally,

σ(F) = λ2({p : D(p, 1) ∈ F}).

What is the maximum size of a family of pairwise intersecting unit disks
in the plane?
Notice that two unit disks have non-empty intersection if and only if their
centers are at distance ≤ 2. So one can rephrase the last question as fol-
lows. What is the maximum measure of a set of points in the plane for
which any two are at distance ≤ 2? Now, any two points of a set are at
distance ≤ 2 if and only if the diameter of the set is ≤ 2. So the question is
equivalent to the following well known problem whose solution implies
that disks maximize area under constrains on the diameter.

Isodiametric problem: Among all plane sets of diameter ≤ ∆, find one
that has maximal Lebesgue measure.

The answer, which is that a disk of radius ∆
2

has maximal area, can be
obtained via the Brunn-Minkowski inequality.

Theorem 1.6.1 (Brunn-Minkowski). Let A and B be non-empty compact sets
in R2. Then

λ2(A+B)1/2 ≥ λ2(A)1/2 + λ2(B)1/2,

where λ2 denotes 2-dimensional Lebesgue measure and A + B = {a + b : a ∈
A, b ∈ B}.

Proof. See [38].

Using this theorem one can prove the so-called isodiametric (or Bieber-
bach) inequality.

Theorem 1.6.2 (Isodiametric inequality). If A is a subset of the plane of diam-
eter ≤ ∆, then

λ2(A) ≤ π

(
∆

2

)2

.

Proof. The trick is to look at the set A − A := {a1 − a2 : a1, a2 ∈ A}. From
Brunn-Minkowski inequality we have

4λ2(A) ≤ λ2(A− A)
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and so any upper bound on λ2(A − A) gives an upper bound on λ2(A).
Now the fact that the diameter of A is ≤ ∆ implies that A − A ⊆ D(0,∆)
and so

4λ2(A) ≤ λ2(A− A) ≤ π∆2,

as required.

Let F be an intersecting family of unit disks in the plane. Let σ(F) be
its size. The isodiametric inequality implies that σ(F) ≤ π. That is, the
maximum size is achieved by the family of all disks that contain a specific
point.

Theorem 1.6.3. Suppose that 1 ≤ h < 2. Then it is optimal to put 1 gram of
poison at the center, O, of Π. That is, the optimal measure is a discrete one that
concentrates mass 1 at a point of Π.

Proof. For any distribution of poison over the pie we have that the family
of lethal disks is intersecting. Suppose first that R ≥ 2. Then the Lebesgue
measure of Π is ≥ π. This means that a unit disk is contained in Π. The
theorem follows since the area of such a disk is the maximum possible
size of an intersecting family of unit disks.
If R < 2, then every disk of radius 1 in Π contains O and the proof is
complete.

Notice the similarity with the case of the poisoning game that uses biscuits.
If 1 ≤ h < 2 and n ≥ 2s, then the family of lethal s-sets is an intersecting
family and the Erdős-Ko-Rado theorem gives that it is optimal to use a
unit gram dose.

More generally, if a − 1 ≤ h < a then, given any µ ∈ Mh, one cannot
find a disjoint unit disks that are lethal under µ and we want to maximize
the size of such a family of unit disks. This problem is now much more
complicated. In order to illustrate this, suppose now that 2 ≤ h < 3. Call
a family of unit disks in the plane 3

2
-intersecting if for any 3 disks from

the family, at least two have non-empty intersection. Since 2 ≤ h < 3 we
have that for any distribution of poison over the pie, µ, the family of lethal
disks under µ is 3

2
-intersecting. Hence, if we consider the set consisting of

the centers of the lethal disks under µ, the case 2 ≤ h < 3 addresses the
following geometry problem.

A generalized isodiametric problem: Fix ∆ > 0 and suppose that A is a
plane set of diameter ∆ for which among any three points, at least two are
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at distance ≤ 2. What is the maximum measure of A?

Notice that in case ∆ ≤ 2 the problem reduces to the isodiametric one
and so the maximal measure is achieved by a disk of radius ∆. The same
is true in case 2 < ∆ ≤ 4√

3
. To see this, first note that the smallest disk

that contains an equilateral triangle of side length 2 is one of radius 2√
3
.

Furthermore, the inclusion A−A ⊆ D(0,∆) is always true and the Brunn-
Minkowski inequality implies

4λ2(A) ≤ λ2(A) ≤ π∆2.

Thus λ2(A) ≤ ∆2

4
and this bound it achieved by a disk of radius ∆/2.
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Lemma 1.6.4. Suppose that R > 2. Then is is optimal to put unit gram doses in
two points of Π that are at distance 4 apart.

Proof. We prove that the maximum size of a 3
2
-intersecting family, F of

disks in the plane for which the maximum distance of their centers is > 4
is at most 2π. Notice that this value is attained by the size of the family of
disks whose centers form two disjoint unit disks. Let A be the set consist-
ing of the centers of the disks inF . Choose two points p1, p2 ∈ C, which are
at maximal distance, say r > 4. Now all other points of C must belong to
D := D(p1, r) ∩D(p2, r), by maximality of the distance between p1 and p2.
Since r > 4, it follows that the two disks D(p1, 2) and D(p2, 2) are disjoint.
Set A1 := D(p1, r) ∩ D(p2, 2) and A2 := D(p2, r) ∩ D(p1, 2) and note that
A1 ∩ A2 = ∅ (see the figure above). Also notice that no point of C belongs
to D \ (A1 ∪ A2), since any point of this set forms with the points p1 and
p2 a triangle whose sides have length > 2. Hence all points of C belong to
either A1 or A2. Now notice that no two points of A1 (resp. of A2) can be at
distance > 2 because in that case they would form with p2 (resp. with p1)
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a triangle with side lengths > 2. Thus any two points in A1 and any two
points in A2 are at distance ≤ 2. This means that λ2(A1), λ2(A2) ≤ π, from
the isodiametric inequality, and so λ2(A) = λ2(A1) + λ2(A2) ≤ 2π.

We close this section with a geometric problem that arises from the above
and is interesting on its own.

Problem 1.6.5. A setA ⊆ Rd of (fixed) diameter ∆ is called (n/k, δ)-intersecting
if every n-tuple of points in A contains a k-tuple of diameter δ. What is the maxi-
mum Lebesgue measure of A?
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Chapter 2

The Kikuta-Ruckle conjecture

In this Chapter we give further evidence for the validity of the Kikuta-
Ruckle conjecture. Some instances of the conjecture have been settled in
[33] and [3]. In this chapter we will settle a few more cases. In [33] it is
proven that the conjecture is true when s = 1 or s = n − 1. In [3] the
conjecture has been verified for the case s = 2 or s = n− 2 and for the case
n ≤ 7. In this chapter we will settle the case n = 2s− 1 as well a few more
instances.

2.1 The conjecture for the odd graph

In this section we prove that the Kikuta-Ruckle conjecture holds true in
case n = 2s− 1. Throughout this chapter n will always represent the total
number of biscuits in the tray. Similarly, s will represent the number of
biscuits taken by the mother-in-law. We begin with an example.

Example 2.1.1. Suppose that 3
2
≤ h < 5

3
, n = 5 and the mother-in-law takes 3

biscuits at random. Number the biscuits from 1 to 5. Three of these biscuits are
taken away. Equivalently, two of the biscuits won’t be taken. Consider all

(
5
2

)
such

pairs of biscuits as vertices of a graph and identify each pair with it’s complement.
Put an edge whenever two pairs are disjoint. The result is the Petersen graph.

31
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Now, any cycle of length 5 contains each biscuit exactly twice. If we look at the
complementary sets we get that each cycle of length 5 corresponds to five triples
for which each biscuit has been counted three times and thus the amount of poison
in those five triples equals 3h < 5. So any cycle of length 5 contains at least one
vertex that corresponds to a doubleton whose complement is not lethal. Notice
that for any pair of vertices, there is a 5-cycle that avoids them. This implies that
there are at least 3 vertices whose complement is non-lethal. Now it is not hard to
verify that the distribution {1

2
, 1

2
, 1

2
, 0, 0} creates exactly 3 vertices with non-lethal

complement and so is optimal.

The odd graph Os has one vertex for each of the s-element subsets of a
(2s − 1)-element set. Two vertices are connected by an edge if and only
if the corresponding subsets have one common element.1 The Petersen
graph is equal to the odd graph for s = 3. Norman Biggs [8] already re-
marked that if one wants to understand a graph theory problem, the odd
graph is a good place to start. So we consider the Kikuta-Ruckle conjecture
for the values of s and n that correspond to odd graphs: in this section, it
is our standing assumption that n = 2s− 1.

Lemma 2.1.2. Suppose that the Kikuta-Ruckle conjecture is correct when n =
2s− 1. Then it is optimal to put a dose of 1/j if and only if h ∈ [2− 1

j
, 2− 1

j+1
).

Proof. We have to determine the optimal dose 1
j
, depending on h. Let Nj

be the number of lethal s-subsets if we put a dose of 1
j

and h ≥ 2 − 1
j
.

We claim that N1 < · · · < N`. Assume that we put a dose 1
j

in the first
2j − 1 biscuits and denote this strategy by Sj . To compare Nj to Nj+1 we

1The original definition of the odd graph takes (k − 1)-element subsets as its vertices.
They are connected by an edge if and only if they are disjoint. So for each edge there
is one element that is not contained in the two vertices: the odd one out. This is where
the graph gets its name from. Our definition is equivalent and more convenient for the
poisoning problem. An edge represents the odd one in.
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need to consider the effect of reducing the amount of poison in the first
2j − 1 biscuits from 1

j
to 1

j+1
, while putting a dose of 1

j+1
in the next two

biscuits that previously did not have any poison. A lethal subset under Sj
becomes non-lethal under Sj+1 if it contains j elements from {1, . . . , 2j−1}
and none from {2j, 2j + 1}. There are exactly(

2j − 1

j

)(
2s− 2j − 2

s− j

)
such subsets. Conversely, a non-lethal subset under Sj becomes lethal un-
der Sj+1 if it contains j − 1 elements from {1, . . . , 2j − 1} and both 2j and
2j + 1. There are exactly (

2j − 1

j − 1

)(
2s− 2j − 2

s− j − 1

)
such subsets. Dividing the first binomial product by the second gives s−j−1

s−j <
1, so the number of s-subsets that become lethal exceeds those that become
non-lethal. Which proves that Nj < Nj+1.
If we put a dose of 1/j while h < 2 − 1

j
, then there are at most 2j − 2

poisonous biscuits. Let Mj be the number of lethal k-subsets in this case.
We claim that M1 < · · · < Ms is again an increasing sequence. To compare
Mj toMj+1 we need to consider the effect of reducing the amount of poison
in the first 2j− 2 biscuits, while putting a dose of 1/(j+ 1) in biscuit 2j− 1
and 2j. The number of lethal subsets that become non-lethal now is(

2j − 2

j

)(
2s− 2j − 1

s− j

)
while the number of subsets that become lethal is(

2j − 2

j − 1

)(
2s− 2j − 1

s− j − 1

)
.

and, once again, the quotient of these two binomial products is j−1
j

< 1,
so the number of subsets that become lethal upon redistribution again ex-
ceeds the number of those that become non-lethal. Now we claim that
Ms < N1, so it is better to put a single unit dose. Indeed Ms =

(
2s−2
s

)
while N1 =

(
2s−2
s−1

)
. So putting a dose 1/j for j > 1 is only optimal once

h ≥ 2− 1
j
.

We have an amount of poison h that we distribute over the biscuits, putting
a dose wi in the i-th biscuit. An s-subset V is lethal if and only if w(V ) =
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∑
i∈V wi ≥ 1. We number the biscuits in decreasing order of their doses,

putting the most poisonous biscuit first, i.e., w1 ≥ · · · ≥ w2s−1. Let P be the
family of poisonous s-subsets. We want to distribute the poison in such a
way that P has maximum cardinality. We adopt hypergraph terminology.
We say that V ∈ P is an edge, and degP(i) is equal to the number of edges
that contains i.

Lemma 2.1.3. If h < 2− 1
j+1

then degP (2j + 1) ≤ 1
2

(
2s−2
s−1

)
.

Proof. By the decreasing dosage of poison

(2j + 1)w2j+1 ≤ w1 + · · ·+ w2j+1 ≤ h <
2j + 1

j + 1
,

and so h + w2j+1 < 2. If V is any s-subset that contains 2j + 1 then let
V̄ = V c ∪ {2j + 1}. In other words, V̄ is the neighbor of V in the odd
graph Os that is connected by the edge that has 2j + 1 as the odd one in.
Then w(V ) + w(V̄ ) = h + w2j+1 < 2. So if V is poisonous then V̄ is not,
and we conclude that degP(2j + 1) is at most half of the degree of 2j + 1
in the complete hypergraph on all k subsets. The degree of the complete
hypergraph is

(
2s−2
s−1

)
.

Lemma 2.1.4. If h < 2− 1
j+1

then the number of lethal edges is at most

1

2

(
2j

j

)(
2s− 2j − 1

s− j

)
+

s∑
i=j+1

(
2j

i

)(
2s− 2j − 1

s− i

)
.

Proof. We maximize the number of edges V under the constraint that the
hypergraph has maximal

∑
i≥2j+1 deg(i), which by the previous lemma is

bounded by
n− 2j

2

(
2s− 2

s− 1

)
.

The greedy solution is to first take all s-subsets that have no elements in
{2j + 1, . . . , 2s − 1}, then to take all s-subsets that have one element in
{2j + 1, . . . , 2s − 1}, etc, until the sum of the degrees exceed the given
bound. We need to show that this happens exactly when we have taken
all s-subsets that contain > j elements from {1, . . . , 2j} and half of the s-
subsets that contain exactly j elements from this set. In other words, we
need to show that

1

2

(
2j

j

)(
2s− 2j − 1

s− j

)
(s− j) +

min{2j,s−1}∑
i=j+1

(
2j

i

)(
2s− 2j − 1

s− i

)
(s− i)
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is equal to n−2j
2

(
2s−2
s−1

)
. This can be rewritten to(

2j
j

)(
2s−2j−2
s−j−1

)
2
(

2s−2
s−1

) +

min{2j,s−1}∑
i=j+1

(
2j
i

)(
2s−2j−2
s−i−1

)(
2s−2
s−1

) =
1

2
.

Let X be a hypergeometric random variable that describes the number of
successes in s−1 draws from a population ofN = 2s−2 with 2j successes.
Then this equation is equal to

1

2
P[X = j] + P[X > j] =

1

2
.

To see why this last equation is true, notice that drawing s− 1 from 2s− 2
is equivalent to leaving s − 1 from 2s − 2. Since the number of successes
is 2j this means that for every drawing for which X > j there is a unique
drawing for which X < j, which implies that P[X > j] = P[X < j] and
finishes the proof.

Theorem 2.1.5. The Kikuta-Ruckle conjecture is true for odd graphs, i.e., if n =
2s− 1.

Proof. If we put 2j − 1 doses of 1/j then an edge is lethal if and only if it
contains at least j out of the first 2j − 1 biscuits. So the number of lethal
edges is equal to

s∑
i=j

(
2j − 1

i

)(
2s− 2j

s− i

)
.

By the previous lemma, it suffices to show that this is equal to

1

2

(
2j

j

)(
2s− 2j − 1

s− j

)
+

s−1∑
i=j+1

(
2j

i

)(
2s− 2j − 1

s− i

)
.

If we divide both sums by
(

2s−1
s

)
then the first quotient is P[X1 ≥ j] for

a hypergeometric random variable that counts the number of successes if
we draw s times with 2j − 1 successes. The second quotient is 1

2
P[X2 =

j] + P[X2 ≥ j + 1] if the number of successes is 2j. To see why these
probabilities are the same, start with the population that has 2j successes
and call one of them a failure, which transforms X2 into X1. Let U be the
event that the draw does not contain the success which turns into a failure.
Then X1 ≥ j is equal to

(X2 ≥ j + 1) ∪ {U ∩X2 = j} .
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Now observe that

P[U ∩X2 = j] = P[U | X2 = j]P[X2 = j] =
1

2
P[X2 = j].

Note that Lemma 2.1.2 works whenever n = 2s−k, k = 1, 2, . . . , s. We state
the result and leave the details to the reader.

Partition the interval I := [1, n
s
) by writing it as a union of intervals [1, 3

2
)∪

[3
2
, 5

3
) ∪ · · · ∪ [2`−3

`−1
, 2`−1

`
) ∪ I1, for the maximum possible value of `. I1 is

interval that remains. Note that ` ≤ m, for the integer m for which n =
m · k + υ, 1 ≤ υ ≤ k − 1.

Lemma 2.1.6. Suppose that the Kikuta-Ruckle conjecture is true for n = 2s− k.
Then it is optimal to put a dose of 1

j
if and only if h ∈ [2− 1

j
, 2− 1

j+1
).

2.2 The conjecture for a few more cases

In this section we give further evidence for the validity of the Kikuta-
Ruckle conjecture by proving that it holds true in some additional cases.
Denote by V (n, s, h) the value of the poisoning game on the complete uni-
form hypergraph.

Lemma 2.2.1. If n = 0 mod s, then V (n, s, h) ≤ sbhc
n

.

Proof. Suppose that n = d · s. Let P be the set of all partitions of [n] :=
{1, . . . , n} into d subsets of cardinality s. We first need to know the propor-
tion of partitions P ∈ P that contain a fixed s-set. By symmetry, each of the(
n
s

)
choices for s-set, H , belongs to the same number, say a, of partitions

in P . Also, each member of P contains d s-sets. Thus
(
n
s

)
a = |P|d and so

a = |P|/
(
n−1
s−1

)
.

LetHw be the number of lethal s-sets under a weighting,w, over [n]. Count
pairs (H,P ), where H ∈ Hw and H ∈ P ∈ P . Each of the |Hw| choices for
H belongs to a choices for P . Since the amount of poison that is available
to Bob is h, each partition P ∈ P has at most bhc lethal s-sets. Thus

a · |Hw| ≤ bhc · |P|

and so |Hw| ≤ bhc ·
(
n−1
s−1

)
, for any weighting w. Hence V (n, s, h) ≤ bhc s

n
, as

required.
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Corollary 2.2.2. If n = 0 mod s and h < 2, then it is optimal for the poisoner to
put a unit weight

Proof. The result follows from the previous lemma and the fact that bhc =
1.

Corollary 2.2.3. Suppose that n = ks, k = 1, 2, . . . and k − 1
s
≤ h < k. Then it

is optimal for the poisoner to put weight 1
s

in ks− 1 vertices.

Proof. If the poisoner uses this strategy then the probability that he wins
equals 1 −

(
ks−1
s−1

)
/
(
ks
s

)
= 1 − 1

k
. By the previous lemma the value of the

game is ≤ (k − 1) s
sk

= 1− 1
k
. Hence the suggested strategy is optimal.

We can settle some more cases using game-theoretic arguments.

Lemma 2.2.4. Suppose that n = k
k−1

s, where k ≥ 2. Then it is optimal for the
poisoner to use a single unit weight.

Proof. Note that h < k
k−1

. If the poisoner plays this strategy, then the prob-
ability that he wins is 1 −

(
n−1
s

)
/
(
n
s

)
= k−1

k
, no matter how the mother-in-

law plays. Now we look the game from the mother-in-law’s point of view.
Since s = k−1

k
n = n − n

k
, it follows that the set {1, . . . , n} can be parti-

tioned into k sets of cardinality n/k. Let P be the set of all such partitions
of {1, . . . , n}. She selects k−1 of these sets at random. Now for every mem-
ber of P there are at least k− 1 parts that are non-lethal. This follows from
the fact that h < 2. Hence the probability that the mother-in-law is not
poisoned is at least 1

k
, no matter how the poisoner plays.

Lemma 2.2.5. The Kikuta-Ruckle conjecture holds true when n ≥ 2s + 1 and
h < 2 + 1

s
.

Proof. If h < 2 then the Erdős-Ko-Rado theorem implies that it is optimal
to put a unit gram dosage. So suppose that 2 ≤ h < 2 + 1

s
. We may assume

that the doses of an optimal distribution, w, of poison are ordered w1 ≥
· · · ≥ wn, so that w1 ≥ 1/s. If the poisoner puts two unit dosages then he
creates (

n

s

)
−
(
n− 2

s

)
lethal s-sets. Let Fw be the family of lethal s-sets under w, and set

F1 := {F ∈ Fw : 1 /∈ F}.
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Since w1 ≥ 1/s, it follows that the family F1 is intersecting and so, by the
Erdős-Ko-Rado theorem, we have |F1| ≤

(
n−2
s−1

)
. Now, the fact that |F \

F1| ≤
(
n−1
s−1

)
implies

|F| = |F \ F1|+ |F1| ≤
(
n− 1

s− 1

)
+

(
n− 2

s− 1

)
=

(
n

s

)
−
(
n− 2

s

)
,

as required.

We can also settle a case using the result from the Odd graph.

Lemma 2.2.6. Suppose that both n and s are divided by k and n = 2s − k.
Assume further that h ∈ [1, 3/2). Then it is optimal for the poisoner to use a unit
weight.

Proof. Let n = k · n1 and s = k · s1, so that n1 = 2s1 − 1. Denote by
Γ(a, b) the game on a vertices in which b of them are taken away by Al-
ice. Suppose that Alice adopts the following strategy. She partitions the
set {1, . . . , n} into n1 sets of cardinality k and chooses s1 of them uni-
formly at random. This strategy of Alice forces the poisoner to play in
the game Γ(n1, s1) and so, under optimal play, the probability, Pn,s, that
Alice is poisoned in Γ(n, s) is at most the probability that she is poisoned
in the game Γ(n1, s1). Thus Pn,s ≤ P[X = 1], where X ∼ Hyp(n1, s1, 1).
Now look the game Γ(n, s) from the poisoner’s point of view. Suppose
that he puts a unit dosage at a vertex that is chosen uniformly at ran-
dom. Then the probability that Alice is poisoned equals P[Y = 1], where
Y ∼ Bin(1, s/n), and so Pn,s ≥ P[Y = 1]. The result follows form the fact
that P[X = 1] = P[Y = 1].

The following result is taken from [3] and its proof is included for the sake
of completeness.

Lemma 2.2.7. The Kikuta-Ruckle conjecture holds true when h < 2 + 1
s−1

and
n ≥ 2s.

Proof. If h < 2, then the collection of lethal s-sets forms an intersecting
family and so, by the Erdős-Ko-Rado theorem it is optimal for Bob to put
one unit weight. So suppose that 2 ≤ h < 2 + 1

s−1
and arrange the weights

of an optimal distribution of poison in decreasing order, w1 ≥ · · · ≥ wn.
Suppose first that w1 <

1
s−1

. Then all weights are smaller than 1
s−1

and so
every lethal edge must contain s weights that are ≥ 1

s
. Hence the poisoner

may as well use weight 1
s
, and the conjecture holds true.

Assume now that w1 ≥ 1
s−1

. Thus h−w1 < 2 which implies that the family
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of lethal s-sets that do not contain the vertex, v, with the biggest weight
is an intersecting family, which we denote by F . By the Erdős-Ko-Rado
theorem, |F| ≤

(
n−2
s−1

)
. There are

(
n−1
s−1

)
s-sets that contain vertex v, and so

the number of lethal s-sets is

≤
(
n− 2

s− 1

)
+

(
n− 1

s− 1

)
=

(
n

s

)
−
(
n− 2

s

)
,

which is exactly the number of lethal edges if the poisoner puts two unit
weights.

In [3] one can find a proof that the Kikuta-Ruckle conjecture holds true
when n ≤ 7. We end this section by verifying that the conjecture holds also
true in case n = 9. Hence s ∈ {1, . . . , 9} and h < 9

s
. It is proven in [33] that

the conjecture is true when s = 1, or s = n− 1, for any n. In [3] it is proven
that the conjecture is also true when s = 2, or s = n− 2, for any n. We also
know that the conjecture holds true for the odd graph. Hence, if n = 9, we
already know that the conjecture holds true for s ∈ {1, 2, 5, 7, 8, 9} and so
we only have to consider the case s ∈ {3, 4, 6}.
The case s = 6 follows from lemma 2.2.4 and lemma 2.2.7 settles the case
s = 4. We are only left with the case s = 3.
If s = 3 and h < 2 then, by the Erdős-Ko-Rado theorem, the conjecture
holds true and one unit weight is optimal. The case 8/3 ≤ h < 3 follows
from corollary 2.2.3 and Bob uses eight 1

3
’s. The case 2 ≤ h < 5/2 follows

form lemma 2.2.7 and Bob uses two unit weights. Thus we only have to
check the conjecture for the following case.

Suppose that n = 9, s = 3 and 5/2 ≤ h < 8/3. We prove that it is optimal
for the poisoner to use five 1

2
’s. In this case the probability that the poisoner

wins equals 25/42 and there are 34 non-lethal 3-sets. We prove that, in this
case, there is no weighting over {1, . . . , 9} creating less than 34 non-lethal
3-sets. So suppose that this is not true and so there exists a weighting w, of
total weight h ∈ [5/2, 8/3), having ≤ 33 non-lethal 3-sets. We may assume
that w1 ≥ · · · ≥ w9. Now in this case, the 3-sets {1, 6, 7}, {2, 4, 8}, {3, 4, 5}
are all lethal. To see this, suppose that it is not true and count the number
of 3-sets that are smaller than these sets in the lexicographic order. For
example, if {1, 6, 7} is non-lethal then any 3-set that contains exactly one
element from {1, 2, 3, 4, 5} and any two elements from the set {6, 7, 8, 9}
is also non-lethal as well as any 3-set that is contained in set {6, 7, 8, 9} is
also non-lethal. But there are

(
5
1

)(
4
2

)
+ 4 = 34 such 3-sets, which contradicts

our assumption that the number of non-lethal 3-sets is ≤ 33. Similarly the
other cases.
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Now now suppose that {3, 5, 6} is lethal. To finish the proof, we show that
the value of the following optimization problem is 8/3.

minimize w1 + · · ·+ w9,

subject to w1 + w6 + w7 ≥ 1

w2 + w4 + w8 ≥ 1

w3 + w5 + w6 ≥ 1

w1 ≥ · · · ≥ w9 ≥ 0

Let w, i.e. w1 ≥ · · · ≥ w9, be a feasible solution of the above optimization
problem. Set Σ(w) :=

∑9
i=1wi. By adding the three inequality constraints

we get that Σ(w) ≥ 3 − w6 + w9. This shows that, for an optimal w, we
have w9 = 0 since otherwise we could replace it by 0 and get a feasi-
ble solution having less weight. Now we claim that an optimal weight-
ing w is such that w6 ≥ 1/3. To see this, suppose that w6 < 1/3. Then
Σ(w) ≥ 3−w6 > 8/3. But the weighting x1 = · · ·x6 = 1/3, x7 = x8 = x9 = 0
is a feasible solution with total sum 8/3, a contradiction to the optimality
of w. Thus we might also suppose that w6 ≥ 1/3 holds true for an opti-
mal weighting w. We now claim that w6 = 1/3. Suppose not, so that there
exists an optimal weighting w for which w6 = 1/3 + ε for a positive ε.
Then, by monotonicity of the weights, we get w3, w5 ≥ 1/3 + ε and thus
Σ(w) ≥ 3 + 3ε− w6 = 8/3 + 2ε > 8/3. Thus ε should be zero and the value
of the above optimization problem is 8/3.

A similar analysis works if {3, 5, 6} is non-lethal. Note that in this case the
are 30 sets that are lexicographically smaller than or equal to {3, 5, 6}, thus
also non-lethal. We claim that in this case {2, 6, 8} is lethal. If not, then all
3-sets that contain 2, one element from {6, 7} and one element from {8, 9}
is also non-lethal. This adds at least four more lethal 3-sets to the existing
set of 30 non-lethal 3-sets.

minimize w1 + · · ·+ w9,

subject to w1 + w6 + w7 ≥ 1

w2 + w6 + w8 ≥ 1

w3 + w4 + w5 ≥ 1

w1 ≥ · · · ≥ w9

The value of this LP is again 8/3.
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We also mention another instance in which the conjecture holds true and
can be obtained using results from the next chapter. It uses Theorem 3.5.7
and so can be skipped on a first reading.

Corollary 2.2.8. Consider the poisoning game on the complete s-uniform hyper-
graph on n vertices with amount of poison h. Suppose that the parameters h, n, s
are such that the fraction of smallest denominator in

[
s
n
, 1
h

)
equals j−1

j
, for some

j ∈ {2, 3, . . .}. Then it is optimal for the poisoner to use a single unit weight.

Proof. Note that restriction on the parameters implies that h < 1 + 1
j−1

.
Suppose that the poisoner picks an element from {1, . . . , n} uniformly at
random and puts a unit weight. Then his winning probability is at least
s
n

, no matter how the mother-in-law plays. Now the mother-in-law has to
come up with a strategy to compensate on this probability. Suppose that
she plays as follows. She arranges the vertices cyclically and picks one
path of length s from this cycle, uniformly at random. This strategy of the
mother-in-law forces the poisoner to play the poisoning game on the cyclic
graph G(n, s). Now, by Theorem 3.5.7, the value of the cyclic game G(n, s)
equals 1 + q s

n
− p, where p

q
is the Farey successor in Fj of the fraction, j−1

j
,

of smallest denominator in
[
s
n
, 1
h

)
. The Farey successor of j−1

j
is p

q
= 1

1
.

It follows that, under optimal play, the mother-in-law is poisoned with
probability ≤ s

n
, as required.
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Chapter 3

The Kikuta-Ruckle conjecture on
circular hypergraphs

3.1 Introduction

So far we have considered the poisoning game on the complete s-uniform
hypergraph. In this chapter we change the ground space and play the poi-
soning game on the circular hypergraph. We prove that the Kikuta-Ruckle
conjecture holds true in this case. The games that we consider in this chap-
ter are instances of the following.

Poisoning game on the hypergraph H: Fix a hypergraph H = (V, E) and
let h > 1 be a fixed real number. Bob (or the poisoner) chooses a measure
µ on V such that µ(V ) = h. Alice chooses a set E ∈ E . Bob wins if and only

43
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if µ(E) ≥ 1.

This is a win-lose game in which the payoff to Bob is 1, in case he wins,
and 0 in case he loses. The measure µ can be thought of as representing the
way Bob distributes the poison over V . For fixed µ and E ∈ E , we will say
that E is heavy (or lethal) under µ if µ(E) ≥ 1. Otherwise the set is light.
We will also refer to µ(E) as the weight (or amount of poison) of P under
µ. Notice that this a semi-finite game and so has a well defined value.

LetH = (V, E) be a fixed hypergraph. For v ∈ V , defineN(v) to be the set of
edges from E that contain v. A fractional covering (or fractional transversal)
ofH is a real valued function w : V → [0, 1] such that∑

v∈E

w(v) ≥ 1, for all E ∈ E .

We will refer to w(v) as the weight of v under w(·) and call an edge E ∈ E
heavy if w(E) :=

∑
v∈E w(v) ≥ 1, otherwise E is light. Thus a fractional

covering on (V, E) is a function on V that makes all E ∈ E heavy. The
fractional covering number ofH is defined as

τ ∗(H) := min
w

∑
v∈V

w(v),

where the minimum is over all fractional coverings, w, ofH.

A fractional covering on H can be thought of as a way to put poison over
its vertices and so, provided we know that Alice chooses an edge E ∈ E
uniformly at random, the poisoning game on H addresses the following
problem. Among all subsets E0 of E whose fractional covering number is
≤ h, find one that has the maximum cardinality.

We will also be interested in the fractional covering number of hyper-
graphs that are based on cyclic graphs. More precisely, fix two positive in-
tegers a < b and letCb denote the cyclic graph on b vertices, which we iden-
tify with Zb = Z/bZ. Thus the edges of Cb connect vertex i to i+ 1. Let Ca,b
be the hypergraph whose vertex set, V , is the vertex set of Cb and whose
edge set, Ea, is the set of all paths in Cb of length a. Hence Ca,b = (V, Ea) and
|Ea| = b. Thus Ca,b is the complete cyclic hypergraph on b vertices and path
length equal to a. In this chapter we study the poisoning game on Ca,b. We
prove that the Kikuta-Ruckle conjecture holds true for this game, i.e., that
the optimal distribution of poison uses weights 1/j, for a positive integer
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j that depends on n, s, h. In order to solve this game we first need to settle
the Kikuta-Ruckle conjecture on tree-like hypergraphs. This is the content
of the following section.

3.2 The Kikuta-Ruckle conjecture on tree-like hy-
pergraphs

In this section we solve the poisoning game on tree-like hypergraphs, which
are defined as follows. Let T be a tree with vertex set V . Let E = {E1, . . . , Em}
be a non-empty family of subsets of V each of which induces induces a
subtree of T . Then the hypergraphH = (V, E) is called tree-like.

Let us recall some more definitions from the theory of finite sets. Fix a
hypergraphH = (V, E). A set V ′ ⊆ V is a covering (or transversal) ofH if it
meets all edges. That is, V ′∩E 6= ∅, for allE ∈ E . The covering number ofH,
denoted τ(H), is the smallest cardinality of a covering. A matching inH is a
family of pairwise disjoint edges. The matching number ofH, denoted ν(H),
is the maximum cardinality of a matching. Note that, for any hypergraph,
ν(H) ≤ τ(H). A hypergraph is said to have the König property if ν(H) =
τ(H). A leaf of a tree is a vertex of degree 1. The following result is taken
from [7, p. 67] and its proof is included for the sake of completeness.

Lemma 3.2.1. If H = (V, E) is a tree-like hypergraph then it has the König
property.

Proof. The proof is by induction on τ(H) = t. If t = 1, then clearly ν(H) =
τ(H). So we may suppose that H has a covering, C = {v1 . . . , vt}, of min-
imal cardinality for which t ≥ 2. We may assume that C is such that the
sub-tree, TC , spanned by C is minimal, i.e., no other covering C ′ of cardi-
nality t spans a tree that is properly contained in TC . Furthermore, choose
the covering C so that the number of vertices in TC is minimum; this im-
plies that any leaf of TC belongs to C. Fix a leaf v1 of TC and set

E1 := {E ∈ E : E ∩ C = {v1}} and E2 := {E ∈ E : v1 ∈ E}.

The assumption that C is a covering of minimal cardinality implies that
E1 is non-empty (indeed, if it would be empty we could remove v1 from
C and get a covering having less vertices) and the assumption that |S| is
minimum implies that there exists an edge E1 ∈ E1 such that E1 ∩ (S \
{v1}) = ∅ (otherwise we could replace TC with TC \ {v1} and make |S|
smaller). The hypergraph H′ = (V, E \ E2) has a covering of cardinality
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≤ t − 1; in fact a covering of cardinality equal to t − 1 since otherwise we
would have a contradiction with the assumption that the covering number
ofH is t. Thus ν(H′) = t−1, by induction hypothesis. A maximal matching
of H′ together with the edge E1 forms a matching of H of cardinality t,
which implies that ν(H) ≥ t = τ(H) and finishes the proof.

As an example of a tree-like hypergraph, suppose that V = {1, . . . , n} and
the elements are arranged on a line so that V is the line graph on n vertices.
Let Ak be the set of all paths of length k in V and all paths of length ≤ k
that have either 1 as a starting point or n as an endpoint. The poisoning
game on (V,Ak) is defined and fully analyzed in [33, Theorem 26]. The
next result generalizes its solution to tree-like hypergraphs.

Theorem 3.2.2. Let H = (V, E) be e tree-like hypergraph and consider the poi-
soning game on H. Then, an optimal strategy for Alice is to choose an element
from a maximal matching uniformly at random. An optimal strategy for Bob is to
put unit weights in the elements of a random subset of a minimal covering.

Proof. Let h be the amount of poison that Bob possesses. Set q = bhc. Sup-
pose that Bob chooses a minimum covering, C, ofH and puts unit weights
at the elements of a random subset of C with q vertices. Then the proba-
bility that Alice get a lethal dose is ≥ q

|C| , no matter how Alice plays. On
the other hand, suppose that Alice decides to play an edge of a maximum
matching,M , ofH. Then the probability that she is poisoned is≤ q

|M | , since
at most q edges of M are lethal. The result follows from the fact thatH has
the König property and so |C| = |M |.

In this Chapter we will be concerned with poisoning games that are played
on the unit circle and the cyclic graph. The analysis of these games requires
some results from elementary number theory that are collected together in
the next section.

3.3 Farey sequences

In this section we recall some basic facts about Farey sequences that can be
found in [25, p. 28]. For any positive integer k the Farey sequence of order
k, denoted Fk, is the increasing sequence of reduced fractions between 0
and 1 whose denominators are ≤ k. The Farey sequence of order k is de-
fined recursively as follows. Set F1 := {0

1
, 1

1
} and for i = 2, . . . , k define Fi

by doing the following: start from Fi−1 and insert the fraction a+c
b+d

between
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consecutive fractions a
b

and c
d

if b+ d ≤ i. For example, the Farey sequence
of order 5 is

F5 =

{
0

1
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
1

1

}
.

The following is a well known theorem on Farey sequences. We provide a
proof for the sake of completeness.

Theorem 3.3.1. If a
b

and a′

b′
are consecutive terms of Fk then

|ab′ − a′b| = 1.

Proof. We induct on k. For k = 1 the statement is clearly correct. Suppose
that it is true for all consecutive fractions in Fk−1 and consider two con-
secutive fractions, a

b
and a′

b′
, in Fk. Suppose, without loss of generality, that

a
b
< a′

b′
. If a

b
and a′

b′
are consecutive fractions in Fk−1 then we are done so

suppose that a
b

and a′

b′
are not consecutive in Fk−1. This can only happen if

one of the fractions, say a
b
, belongs to Fk−1 and the other fraction does not

belong to Fk−1. Let c
d

be the successor of a
b

in Fk−1, so that ad− cb = −1, by
the inductive hypothesis. The definition of Fk implies that a′

b′
= a+c

b+d
and so

ab′ − a′b = a(b+ d)− (a+ c)b = −1, as required.

In particular, this implies that successive elements of a Farey sequence
have co-prime denominators.

Lemma 3.3.2. Let 0 < x < 1 and consider a half-open interval, I , of the positive
real line, say I = [x, y), that is contained in [0, 1]. Let p

q
be the unique rational of

minimal denominator in I and r
s

be its successor in the Farey sequence of order q.
If p = 1 then r

s
= 1

q−1
> y. If p 6= 1, then r

s+1
< x < y < r

s
.

Proof. The claim that p
q

is unique follows form the fact that consecutive el-
ements in Fq have co-prime denominator. As r

s
is the term that succeeds p

q

in Fq it follows that s < q and so we always have r
s
> y, since otherwise

r
s

would be a rational in [x, y) of denominator that is smaller than the de-
nominator of p

q
. Let r′

s′
be the term before p

q
in Fq. Similarly, the minimality

of q implies that r′

s′
< x.

If p = 1, then r′

s′
= 0

1
and the term after 1

q
in Fq is clearly 1

q−1
. Now suppose

that p 6= 1 and notice that r
s+1
∈ Fq. If s + 1 < q then r

s+1
< x and the

lemma follows. If s + 1 = q then r
s+1

< x follows from the uniqueness of
the fraction p

q
.

We will need the above results in our analysis of the poisoning game on
the cyclic graph.
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3.4 A poisoning game on the unit circle

3.4.1 Definition of the game

In this section we consider the following instance of the general poisoning
game. Suppose that T := R/Z is the circle of circumference 1. Bob has a
fixed amount, h ≥ 1 of poison that he can distribute over T. So the strat-
egy space of Bob is the set Mh of all Borel measures, µ, on T such that
µ(T) = h. Notice thatMh is a convex set of measures, where µ is the con-
vex combination of µ1 and µ2 if µ(A) = αµ1(A) + (1−α)µ2(A), for all Borel
subsets, A, of T. The strategy space of Alice is the set of all half-open inter-
vals, It := [t, t+x), t ∈ T, of fixed length x. Throughout this chapter we will
assume that x is a rational number. Notice that the strategy space of Alice
is the set T, since we can identify the interval It with t. Let’s assume for
now that this game has a well defined value and optimal strategies exist.
In fact, this will be a consequence of the result that this game is equivalent
to a poisoning game on the cyclic graph (see lemma 3.5.3 below).
Notice that a mixed strategy of Alice is a probability measure on T and
that a mixed strategy for Bob is a probability measure onMh.
If Bob plays the pure strategy µ ∈ Mh and Alice plays the pure strategy
It = [t, t + x), then the payoff, < µ, t >, to Bob is 1 if µ(It) ≥ 1, otherwise
his payoff is zero. The value of the game equals the probability that Bob
wins under optimal play on both sides. Given a measure µ ∈Mh and a set
A ∈ A, we will say that A is heavy (or lethal) under µ if µ(A) ≥ 1. We will
also refer to µ(A) as the weight of A under µ.
If h · x ≥ 1 and Bob plays the uniform measure of total mass h, then any
interval of length x has weight ≥ 1 and so Bob always wins. Hence, from
now on, we will always assume that h · x < 1.
If Alice plays the mixed strategy γ and Bob plays the pure strategy µ, then
the probability that Bob wins equals

< µ, γ >:= γ(t ∈ T : µ(It) ≥ 1).

For fixed t ∈ T and any Borel measure β on T define the measure βt by
βt(·) = β(·− t). Suppose that Bob plays the pure strategy µ and Alice plays
the mixed strategy γ. Then for any t ∈ Twe have

< µt, γ > = γ(s ∈ T : µt(Is) ≥ 1)

= γ(s ∈ T : µ(Is−t) ≥ 1)

= γ(s+ t ∈ T : µ(Is) ≥ 1)

= < µ, γ−t >,
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and similarly
< µ, γt > = < µ−t, γ > .

Notice that both µ and µt are pure strategies for Bob and both γ and γt are
mixed strategies for Alice.

Lemma 3.4.1. It is optimal for Alice to choose an interval according to the uni-
form probability measure.

Proof. We prove that the optimal mixed strategy of Alice is invariant under
rotations. The result will then follow from the fact that the Haar measure is
the unique measure on T that is invariant under rotations. Let γ be a mixed
strategy of Alice and let µ be an optimal pure strategy of Bob. Suppose that
Alice averages γ over all rotations. That is, suppose that Alice adopts the
mixed strategy γ∗ defined by

γ∗(·) =

∫
T
γt(·)dt.

Then the payoff to Bob against his optimal strategy is

< µ, γ∗ > =

∫
T
< µ, γt > dt =

∫
T
< µ−t, γ > dt

≤
∫
T
< µ, γ > dt = < µ, γ >,

where the inequality follows from the fact that µ is an optimal pure strat-
egy for Bob. The fact that γ is an optimal mixed strategy for Alice implies
that < µ, γ > ≤ < µ, γ∗ >. Hence

< µ, γ > = < µ, γ∗ >,

and so γ∗ is also an optimal strategy for Alice. This means that the optimal
strategy of Alice is invariant under rotations and the result follows.

Hence we know the optimal strategy of Alice and the solution of the game
reduces to the following optimization problem:

FIND µ ∈Mh THAT MAXIMIZES λ(s ∈ T : µ(Is) ≥ 1),

where λ is Lebesgue measure.
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3.4.2 Discrete measures with equidistant equal weights

In this sub-section we assume that Bob plays a discrete measure whose
atoms have the same weight and determine the optimal weight of the
atoms of that measure. If Bob plays such a discrete measure, µ, then an
interval I satisfies µ(I) ≥ 1 if and only if it contains enough poisonous
points. For n = 1, 2, . . . define rn = mn

n
to be the largest rational of denomi-

nator n that is ≤ h and µn to be the discrete measure on Twith atoms hav-
ing weight equal to 1

n
at each point of the set An = {0, x

n
, 2x
n
, . . . , (mn−1)x

n
} ⊆

T. That is, µn gives weight 1
n

in as many equidistant points as possible.
Note that the gap between these points is equal to δn := x

n
except the fi-

nal gap that is equal to ∆n := 1 − (mn−1)x
n

. Notice also that any interval
[t, t+ x), t ∈ T, contains at most n of the points in An and that ∆n > δn.
Alice is going to choose an interval It = [t, t + x) uniformly at random.
This means that, for n = 1, 2, . . ., the probability that It is heavy under µn
equals

Pn := λ(t ∈ T : µn(It) ≥ 1),

where λ is Lebesgue measure. Thus, in order to find the optimal measure
µn, we have to maximize Pn over all n = 1, 2, . . ..
Let Ln = {t ∈ T : µn(It) < 1} be the set of light intervals under µn. Then
Ln = (1− x−∆n + δn, 1− δn]. To see this take an interval It = [t, t+ x) and
let t increase from 0 to 1. Any interval contains at most n of the points of
An and it is heavy whenever it contains exactly n points of An. Now note
that for any t ∈ Ln the interval It contains strictly less than n points from
An. Hence λ(Ln) = x+ ∆n − 2δn and so

Pn = 1− λ(Ln) = 1− x− (∆n − 2δn).

From the last equation we can conclude that the integer n that maximizes
Pn has to be such that ∆n < 2δn.

Lemma 3.4.2. If n is such that ∆n ≥ 2δn, then Pn ≤ P1.

Proof. We know that λ(Ln) = x+ ∆n − 2δn = 1 + x− (mn+1)x
n

and so

Pn = x

(
mn + 1

n
− 1

)
.

Hence, in order to maximize Pn we have to maximize the fraction mn+1
n

under the constraint mn+1
n
≤ h. If n = 1, then mn+1

n
= bhc+ 1. If n 6= 1, then

notice that mn

n
≤ h < bhc+ 1 = (bhc+1)n

n
. As bhc+ 1 is a multiple of 1

n
that is

> mn

n
, it follows that mn

n
≤ bhc+ 1− 1

n
and so mn+1

n
≤ bhc+ 1. Thus for all

n for which ∆n ≥ 2δn we have mn+1
n
≤ bhc+ 1 and the maximum value of

mn+1
n

is achieved for n = 1. The lemma follows.
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Lemma 3.4.3. If n is such that ∆n < 2δn then Pn = 1 +mnx− n.

Proof. We claim that in case ∆n < 2δn then every interval It contains either
n or n − 1 poisonous points. To see this, first notice that a heavy interval
contains exactly n poisonous points and that any light interval must in-
tersect the final gap. A light half-open interval has a minimum number of
poisonous points in case it strictly contains the final gap. Since the final
gap has length ∆n < 2δn it follows that a light interval has exactly n − 1
poisonous points.
The expected number of poisonous points in a random interval of length
x equals mnx. Hence

mnx = nPn + (n− 1)(1− Pn)

which implies that Pn = 1 +mnx− n.

Hence in order to maximize Pn we need to maximize 1+mnx−n under the
constraint n

mn
≥ 1

h
. We solve this optimization problem in the next result

but first we need to fix some notation. Denote by p
q

the unique rational
of smallest denominator in [x, 1

h
) and by r

s
the successor of p

q
in the Farey

sequence of order q, Fq.

Lemma 3.4.4. The fraction n
mn

that maximizes 1 + mnx − n, for n = 1, 2, . . . ,,
is the successor fraction r

s
in Fq of the unique rational,p

q
, of smallest denominator

in [x, 1
h
).

Proof. Note that we assume x ≤ p
q
< 1

h
. For any rational a

b
> p

q
we have

0 > bp− aq ∈ Z and so bp− aq ≤ −1. This implies that for a
b
> p

q
we have

1 + b
p

q
− a = 1 +

bp− aq
q

≤ 1− 1

q
.

Since r
s

is the successor of p
q

in Fq, Theorem 3.3.1 implies that ps− qr = −1
and so r

s
is the rational a

b
that maximizes 1+bp

q
−a. That is, for any fraction

a
b
> p

q
we have 1 + bp

q
− a ≤ 1 + sp

q
− r. To finish the proof we show that for

all rationals a
b
≥ 1

h
we have 1 + bx− a ≤ 1 + sx− r. Suppose that this is not

true and so there exists a rational a
b
≥ 1

h
such that 1+bx−a > 1+sx−r. We

already know that 1+sp
q
−r ≥ 1+bp

q
−a. If we add the last two inequalities

we get

b

(
x− p

q

)
> s

(
x− p

q

)
and so b < s. Hence a

b
∈ Fq and since r

s
is the successor of p

q
in Fq it

follows that a
b
> r

s
. Now note that 1 + bx− a > 1 + sx− r is equivalent to
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x < r−a
s−b and that 1 + sp

q
− r ≥ 1 + bp

q
− a is equivalent to r−a

s−a ≤
p
q
. Since

s − a < s < q it follows that r−a
s−a is a rational in [x, 1

h
) of denominator < q,

which contradicts the choice of p
q
.

3.5 A poisoning game on the cyclic graph

3.5.1 Definition of the game

The game on the unit circle, T, has the following discrete analogue. Let
Zb := Z/bZ be the set of integers modulo b and Ea be the set of all subsets of
Zb that contain a consecutive integers modulo b. Equivalently, the ground
space is the cyclic graph on b vertices and Ea consists of all paths of length
a. Note that the path of length a can be thought of as a discrete interval of
length a and consequently the game on the cyclic graph can be thought of
as the discrete analogue of the game on the unit circle. Bob possesses h ≥ 1
grams of poison that he may distribute over the graph. That is, his strategy
space is the set of measures µ on Zb such that µ(Zb) = h. Note that such
a measure is a vector (µ0, . . . , µb−1) whose coordinates add up to h and so
the strategy space of Bob is a convex set. It will be referred to as weighting
over Zb of total mass h.
Alice chooses an interval, I , from Ea. As we can identify any interval in
Zb with its starting point, the strategy space of Alice is Zb. That is, Alice
chooses an element j ∈ Zb and plays the interval Ij := {j, j + 1, . . . , j +
a− 1}. If Bob plays µ and Alice plays j, then the payoff, 〈µ, j〉, to Bob is 1,
if µ(Ij) ≥ 1, otherwise his payoff is zero. Notice that this is a semi-infinite
game and so by Lemma 1.1.2 it is equivalent to a finite game. In particular,
this implies that the game has a well defined value in mixed strategies.
The value, Va,b, of the game equals the probability that Bob wins, assuming
optimal play on both sides. We will denote this game by G(a, b).
A mixed strategy for Alice is a probability distribution on Zb. That is, Alice
chooses a vector p̄ = (p0, . . . , pb−1) whose coordinates add up to 1 and
plays the interval Ij with probability pj, j = 0, 1 . . . , b − 1. If Alice plays
the mixed strategy p̄ and Bob plays the pure strategy µ, then the expected
payoff to Bob equals

〈µ, p̄〉 :=
b−1∑
j=0

pj〈µ, j〉 ≤ Va,b.

Given a pure strategy, µ, of Bob and j ∈ Zb, define the measure µj by
µj(·) = µ(· − j). Note that µj is also a pure strategy for Bob. Similarly,
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given a mixed strategy, p̄, of Alice and j ∈ Zb, define p̄j to be the vector
(p−j, . . . , pb−1−j), which is a mixed strategy of Alice. Notice that for all i ∈
Zb and all j ∈ Zb we have 〈µi, j〉 = 〈µ, j − i〉, since both are equal to 1 if
µ(Ij−i) ≥ 1, and zero otherwise. Hence

〈µi, p̄〉 =
b−1∑
j=0

pj〈µi, j〉 =
b−1∑
j=0

pj〈µ, j − i〉 = 〈µ, p̄−i〉

as well as
〈µ, p̄i〉 = 〈µ−i, p̄〉.

Lemma 3.5.1. It is optimal for Alice to choose an element from Zb uniformly at
random.

Proof. Let p̄ be an optimal mixed strategy for Alice and suppose that she
averages p̄ over all rotations of Zb. That is, she plays the mixed strategy

p̄∗ :=
1

b

b−1∑
j=0

p̄j.

If µ is an optimal pure strategy for Bob, we have

〈µ, p̄∗〉 =
1

b

b−1∑
j=0

〈µ, p̄j〉 =
1

b

b−1∑
j=0

〈µ−j, p̄〉

≤ 1

b

b−1∑
j=0

〈µ, p̄〉 = 〈µ, p̄〉 ≤ 〈µ, p̄∗〉.

Hence p̄∗ is also an optimal mixed strategy for Alice and thus there exists
an optimal mixed strategy of Alice that is invariant under rotations. The
lemma follows.

So we know the optimal strategy of Alice and thus Bob has to find a
weighting over Zb that creates the maximum possible number of heavy in-
tervals. Notice that the game addresses the following problem. For given
positive integers a, b and a real number h ≥ 1, find

τh := max
P⊆Ea
{|P| : τ ∗(P) ≤ h}.

The following result basically says that we can always assume that a and
b are co-prime.
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Lemma 3.5.2. Suppose that a and b have a common divisor, say d. Then then
games G(a, b) and G(a/d, b/d) are equivalent.

Proof. Suppose that a = k1d and b = k2d, where k1 < k2 are positive in-
tegers. Consider the game G(a, b) and assume that Alice plays as follows.
She chooses the partition V1, . . . , Vk2 , where Vi = {(i− 1)d + 1, . . . , id}, i =
1, . . . , k2, and picks k1 consecutive sets (modulo k2) from this partition
uniformly at random. This strategy of Alice forces Bob to play on the
game G(k1, k2) and so the probability that Alice chooses a light path in
G(a, b), under optimal play on both sides, is at least the probability that
she chooses a light path in G(k1, k2).
On the other hand, suppose that Bob chooses an optimal weighting, γ,
in G(k1, k2) and plays the measure, µ, on Zb by setting µ(id) = γ(i), for
i = 0, 1, . . . , k2 − 1 and zero otherwise. Notice that any path of length a
in Zb contains k1 vertices with non-zero weight under µ. Thus, the prob-
ability that Bob wins in G(a, b) is at least the probability that he wins in
G(k1, k2). It follows that the two games are equivalent.

3.5.2 The game on the unit circle with a rational interval

There is a close relation between the poisoning game on the unit circle and
the poisoning game on the cyclic graph. This connection is clarified in the
next result.

Lemma 3.5.3. The game on the unit circle for rational x = a
b

is equivalent to the
game on the cyclic graph on b vertices and discrete intervals of length a.

Proof. Couple the two games by placing the b vertices of the cyclic graph
on the unit circle at the positions j

b
, 0 ≤ j ≤ b − 1. Set Gb = { j

b
: 0 ≤ j ≤

b − 1}. Note that any interval It = [t, t + x) contains exactly a consecutive
points from Gb. Any distribution of poison in the game on the cyclic graph
can also be used in the game on the unit circle by putting the poison only
to the set of points Gb, of the unit circle. Hence the strategy space of the
poisoner in the game on the unit circle contains the strategy space of the
poisoner in the game on the cyclic graph. Thus the probability that Bob
wins, assuming optimal play by both sides, in the game on the unit circle
is at least the probability that he wins in the game on the cyclic graph.
On the other hand, suppose that Alice plays only intervals of the form
[ j
b
, j
b

+ x) in the game on the unit circle. Let µ ∈ Mh be an optimal pure
strategy of Bob. Recall that µ is a Borel measure on T of total mass h. Con-
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sider the measure µ̄ that has support on Gb and is defined by

µ̄

(
j

b

)
= µ

([
j

b
,
j + 1

b

))
, j = 0, 1, . . . , b− 1.

The weight of an interval [ j
b
, j
b

+ x) under µ is equal to the sum of µ̄
(
j
b

)
for all points j

b
that are contained in the interval. Hence if Alice plays such

intervals, then Bob may as well put poison to the points j
b

only. In other
words, by selecting these intervals Alice forces Bob to play the game on
the cyclic graph. This implies that the probability that Alice loses (hence
Bob wins), under optimal play on both sides, in the game on the unit circle
is at most the probability that she loses the game on the cyclic graph. We
conclude that the two games are equivalent.

Notice that the fact that the two games are equivalent, for rational x, im-
plies that the game on the unit circle has a well defined value and that an
optimal pure strategy for Bob is a discrete measure on T. Furthermore, an
optimal strategy of the game on the cyclic graph is also an optimal strat-
egy of game on the unit circle for rational x. Notice also that we can chose
any a and b such that x = a

b
. In particular, we may assume that a and b are

co-prime.

3.5.3 Solution of both cyclic games

Let V = Zb be the vertex set of the cyclic graph, Cb, on b vertices and Ea be
set consisting of all paths inCb of length a. For a fixed subsetP of Ea, define
the hypergraph Ca,b(P) := (V,P). Note that there are 2b − 1 hypergraphs
whose edge set consists of paths of length a in the cyclic graph. Let τ ∗(P)
be the fractional covering number of Ca,b(P). Given a real number h ≥ 1,
let

τh := max
P⊆Ea
{|P| : τ ∗(P) ≤ h}

be the maximum number of edges over all hypergraphs Ca,b(P) whose
fractional covering number is at most h. Note that, since Ea is a finite fam-
ily, τh is well defined for any h ≥ 1 and the maximum is attained by a
unique hypergraph.

Lemma 3.5.4. Let P ⊆ Ea, h ≥ 1 be such that τ ∗(P) ≤ h and |P| = τh and let w
be a fractional covering of Ca,b(P) such that

∑
v w(v) = τ ∗(P). Assume further

that there is a vertex j such that w(j) = 1. Then all non-zero weights of w are
equal to 1.
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Proof. As w(j) = 1 it follows that all intervals that contain j are heavy.
Since |P| is maximum we have that w is a fractional covering of Ca,b(P) for
which the number of heavy intervals that do not contain j is maximal. Let
Vj = V \ {j} and Pj = {P ∈ P : j /∈ P}. Thus {w(i)}i 6=j is a fractional
covering of (Vj,Pj) such that |Pj| is maximal and τ ∗(Pj) ≤ h − 1. Now
from Lemma 3.2.1 we have that (Vj,Pj) has the König propetry and so w
is a fractional covering whose non-zero weights are equal to 1.

Lemma 3.5.5. Let P ⊆ Ea and suppose that w is a fractional covering of Ca,b(P)
for which

∑
v∈V w(v) is minimal. Suppose further that the number of vertices

with non-zero weight under w is minimal. Then the endpoints of all light paths
under w have zero weight.

Proof. We argue by contradiction. Suppose that Pj /∈ P is a light path for
which w(j) > 0. Choose a minimal k such that w(j − k) > 0 and transfer
the weight from j to j − k. This transfer reduces the number of non-zero
weights by one and defines a function w̄ : V → [0, 1]. We claim that no
interval that is heavy under w becomes light under w̄. This will imply
that w̄ is a minimal fractional covering on Ca,b(P) having less vertices with
non-zero weight, a contradiction. To prove the claim notice that w̄(Pi) <
w(Pi) if and only if j ∈ Pi and j − k /∈ Pi, which holds if and only if
i ∈ {j − k + 1, . . . , j}. But only one of these vertices has non-zero weight
under w, namely vertex j. This shows that w(Pi) ≤ w(Pj), for i ∈ {j − k +
1, . . . , j} and so all paths whose weight is reduced after the transfer were
light under w. The claim follows and, hence, so does the lemma.

For a given edge Pj ∈ Ca,b(P) let ζw(j) be the function that counts the
number of vertices with non-zero weight in Pj under a fractional covering
w.

Lemma 3.5.6. Suppose that a and b are co-prime. Fix h ≥ 1 and let P ⊆ Ea be
the family of paths for which |P| is maximum and τ ∗(P) ≤ h. Let w : V → [0, 1]
be a fractional covering on Ca,b(P), for which

∑
v∈V w(v) = τ ∗(P) and assume

further that w(·) has a minimal number of vertices with non-zero weight. Then
(i) there exists a positive integer, n, such that ζw(j) = n − 1 if Pj is light and
ζw(j) = n if Pj is heavy;
(ii) If v1 . . . , vn are n consecutive vertices having non-zero weight, then

n∑
i=1

w(vi) ≥ 1.

Proof. By the previous lemma we know that the endpoints of the paths that
do not belong to P have zero weight. This implies that ζw(j) = ζw(j + 1) if
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both Pj and Pj+1 are light and ζw(j) + 1 = ζw(j+ 1) if Pj is light and Pj+1 is
heavy. If there is a path whose vertices have zero weight then, by Lemma
3.5.4, all non-zero weights equal to 1 and the lemma holds true. So we may
assume that there are no a− 1 consecutive vertices with zero weight.
Suppose that the paths P1, . . . , Pk are light and Pk+1 is heavy. The previous
lemma implies that the vertices a, . . . , a + k − 1 have zero weight and so
w(a + k) > 0, since otherwise Pk+1 would be light. Transfer the weight
from a+ k to a. Then all paths Pj, j = 1, . . . , k, become heavy since they all
contain vertex a. On the other hand, the paths Pj, j = a+1, . . . , a+k, reduce
in weight. Since k paths became heavy after the transfer, the assumption
that |P| is maximum implies that the paths Pj, j = a + 1, . . . , a + k, were
heavy and become light after the transfer. All other paths preserve the
same weight after the transfer. Set J = {1, . . . , k} and let L = {j : w(Pj) <
1} be the set of light paths underw. We saw that by a single weight transfer
a maximal subinterval J ⊆ L is replaced with the subinterval a+J and all
other vertices remain unaffected. Since a and b are co-prime we can keep
on rotating maximal subintervals of L until we end up with a weighting
for which all light paths of length a are consecutive. Since ζ(·) is constant
on consecutive light paths, it follows that all light paths contain the same
number of vertices with non-zero weight. Furthermore, we can rotate L
over any multiple of a. Each time we rotate L, we apply a single weight
transfer and heavy paths become light by losing just one non-zero weight.
This means that all heavy paths can be made light by removing a single
non-zero weight. So ζ(·) is constant on the heavy paths as well and the first
statement follows.
To prove the second statement we may assume that the starting points of
all light paths are consecutive, say L := {1, . . . , k}. We know that ζ(j) =
n − 1 for j ∈ L and ζ(j) = n for j /∈ L. By the previous lemma we may
assume that the vertices in L have zero weight and so all paths Pj with
j ∈ L contain the same n − 1 consecutive non-zero weights. Since P0 and
Pk+1 are heavy, it follows that the vertices 0 and a+k have non-zero weight
and there is no other non-zero weight between the n− 1 non-zero weights
contained in the light paths and the vertices 0 and a+k. It follows that any
n consecutive non-zero weights are contained in a heavy path of length
a.

Theorem 3.5.7. Consider the poisoning game on the unit circle, T, with A the
family of half open intervals [t, t + x) of fixed rational length x = a

b
. Let r

s
be

the successor fraction in Fq of the unique rational, p
q
, of smallest denominator in

[x, 1
h
). Then the optimal strategy of Bob is a discrete measure with s equidistant

atoms of weight 1
r

and the value of the game is 1 + sx− r.
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Proof. Notice that, by Lemma 3.3.2, we have s
r
< h and so there is enough

poison for Bob to play the suggested strategy. We already know that this
game is equivalent to the poisoning gameG(a, b) on the cyclic graph. LetP
be a subfamily of Ea such that |P| = τh and τ ∗(P) ≤ h. The previous lemma
implies that an optimal fractional covering on Ca,b(P) is such that every
heavy path contains n non-zero weights and every light path contains n−1
non-zero weights. Let m be the total number of non-zero weights. The
expected number of non-zero weights in a random path of length a equals
am
b

. There are τh paths that contain n non-zero weights and the remaining
b− τh paths contain n− 1 non-zero weights. Hence

m
a

b
= n

τh
b

+ (n− 1)
b− τh
b
→ 1 +m

a

b
− n =

τh
b
.

Note that m
n
≤ h. As τh is the maximum number of edges in a sub-hypergraph

of the complete cyclic hypergraph whose matching number is ≤ h, it fol-
lows that 1 + mx − n is the maximum value of 1 + k a

b
− l, over all k

l
≤ h.

By Lemma 3.4.4, this maximum value is attained by the successor frac-
tion and we know from the analysis of discrete measures with equidistant
equal weights that this value is attainable.

3.6 Fractional coverings of circular hypergraphs

3.6.1 Introduction and basic result

This section deals with the following problem. Suppose that H = (V, E) is
a fixed hypergraph and that you are interested in putting poison over V
in such a way that you make all edges E ∈ E lethal. What is the minimum
amount of poison you need? Off course, the answer depends on the un-
derlying hypergraph. In this section we study this problem in the case of
fixed sub-systems, P ⊆ Ca,b, of the complete cyclic hypergraph.

We have already seen that a hypergraph H has the König property if its
covering number is equal to its matching number. An alternative way to
define this is to say that H has a minimal fractional covering in which all
non-zero weights are unit weights; just put unit weights on a covering of
H to get a fractional covering and put unit weight on a matching of H to
get a fractional matching.
Extend this idea, we say thatH is a König-Kikuta-Ruckle hypergraph, or sim-
ply that it is KKR, is there exists a minimal fractional covering such that
all vertices with positive weight have the same weight.
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We consider hypergraphs that are based on cyclic hypergraphs. More pre-
cisely, consider the cyclic graph, Cb, on b vertices, identified with Zb. We
say that a proper subset I ⊂ Zb is a path if it forms a connected sub-graph
of the Cb. We call H a circular hypergraph if (up to isomorphism) its set of
vertices is equal to Zb and its edges are paths of Cb.

The basic result of this section is the following.

Theorem 3.6.1. A circular hypergraph is a KKR hypergraph.

We prove this theorem in a series of lemmata. We first need to fix some
definitions. A hypergraph is redundant if it contains edges E1, E2 such
that E1 is a proper subset of E2. If we remove E2 from the edge set of
H then, clearly, the resulting hypergraphH′ has the same fractional cover-
ings as the original hypergraph. So we may restrict our attention to non-
redundant hypergraphs.
We orient the circular hypergraph so that all paths are directed and have
an initial point and an end-point.

Lemma 3.6.2. A non-redundant circular hypergraph on b vertices has at most b
edges

Proof. If two paths have the same initial point then one of them is properly
contained in the other. Thus a non-redundant hypergraph has at most one
edge for every vertex, i.e., at most b edges.

Lemma 3.6.3. Suppose H is circular. If a vertex, v, is not an initial point of any
edge in H then there exists a minimal fractional covering such that v has zero
weight.

Proof. Every edge that contains v also contains v − 1 so in every fractional
covering we can transfer the weight from v to v − 1 without affecting the
heavy edges.

If v is not an initial point, then we can remove v from the vertex set and all
the edges without changing the fractional covering number of H. Let Hv

be the resulting hypergraph.

Lemma 3.6.4. Suppose that v is not an initial point. IfHv is KR then so isH.

Proof. Any minimal fractional covering ofHv gives rise to a minimal frac-
tional covering ofH.

Hence to prove our theorem, we may assume thatH is non-redundant and
that all its vertices are initial points of an edge. In particular,H has equally
many vertices and edges.
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Lemma 3.6.5. IfH is non-redundant and has m edges then it is KKR.

Proof. A complete cyclic hypergraph, Ca,b is KKR. Now observe that a cir-
cular non-redundant hypergraph with m edges must be complete.

3.6.2 One edge out

We saw in the previous subsection that every circular hypergraph is KKR
and so has a minimal fractional covering such that all vertices with posi-
tive weight have the same weight. Hence a natural problem is to compute
the fractional covering number of circular hypergraphs. In this section
we compute the fractional covering number of the hypergraph obtained
from the complete cyclic hypergraph by removing exactly one edge. That
is, fix an element in V := Zb, say j, and define Ca,b(j) to be the hyper-
graph obtained from Ca,b by removing exactly one edge, namely Pj :=
{j, j + 1, . . . , j + a− 1}(mod b).

We begin by recalling the notions of the dual of a hypergraph and of hy-
pergraph isomorphism. The dual of H = (V ;E1, . . . , Em), denoted H∗, is
a hypergraph whose vertex set e1, . . . , em, corresponds to the edges of H,
and with edges Xi := {ej : vi ∈ Ej in H}. That is, an edge of H∗ consists
of all edges in H containing a fixed element of V or, in other words, the
edge set of H∗ is the collection of sets {N(v) : v ∈ V }. A hypergraph H1 =
(V1;E1, . . . , Em) is isomorphic to the hypergraphH2 = (V2, F1, . . . , Fm), writ-
ten H1 ' H2, if they have the same number m of edges, and if there exists
a bijection φ : V1 → V2 and a permutation σ on {1, . . . ,m} such that

φ(Ei) = Fσ(i), i = 1, . . . ,m.

A hypergraph,H, is called self-dual ifH ' H∗.

Lemma 3.6.6. Suppose that H = (V, E) is self-dual and we can find a fractional
covering, w, on H for which w(E) :=

∑
v∈E w(v) = 1, for all E ∈ E , Then the

fractional covering number ofH equals
∑

v w(v).

Proof. Notice that in this case, w gives rise to a fractional matching of H∗
and thus, by self-duality, to a fractional matching on H that is equal to∑

v w(v).

For the rest of this section we will assume that a and b are co-prime.
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By symmetry, it is enough to find the fractional covering number of Ca,b(0).
Notice that Ca,b(0) consists of b vertices and b−1 edges. We are interested in
finding an optimal weighting w : Zb → [0, 1] that makes all paths Pj, j 6= 0
heavy and is such that

∑
v w(v) is minimal. We claim that we may suppose

that such an optimal weighting satisfies w(0) = 0. To see this, choose an
optimal weighting, w, with a minimal number of non-zero weights and
suppose that w(0) > 0. Choose a minimal k for which w(0 − k) > 0 and
transfer the weight from 0 to−k to get a new weighting. Now, as in Lemma
3.5.5 above, we can conclude that this transfer of weight does not decrease
the number of heavy edges.
Hence an optimal fractional covering of Ca,b(0) gives zero weight on 0.
This means that, for the purpose of finding the covering number, we might
interpret Ca,b(0) as being a hypergraph on b−1 vertices and b−1 edges with
vertex set V ′ := {1, 2, . . . , b − 1} and edge set consisting of P ′i := Pi \ {0},
for i ∈ {b− a+ 1, . . . , b} and P ′i := Pi, for i ∈ {1, . . . , b− a}.

Lemma 3.6.7. The hypergraph (V ′, {P ′i}b−1
i=1) is self-dual.

Proof. Both (V ′, {P ′i}b−1
i=1) and its dual have a vertex set consisting of b − 1

vertices and an edge set consisting of b − 1 edges. Let E1, . . . , Eb−1 be the
edge set of the dual hypergraph. Recall that, for ` ∈ {1, . . . , b − 1}, E`
consists of all paths P ′j that contain vertex `. Define the map φ : {1, . . . , b−
1} → {P ′i}b−1

i=1 by φ(j) = P ′−j . The map is clearly a bijection and it is easy to
see that under this map we have

φ(P ′i ) = Eb−i−a, i = 1, . . . , b− 1.

The result follows.

Hence it remains to find a fractional covering,w, on (V ′, {P ′i}b−1
i=1) for which

w(P ′i ) = 1, for all i = 1, . . . , b− 1.

Define the map Ra(·) : Zb → Zb by Ra(j) = j + a and consider the set of
iterates of this map,

{Ri
a(a)}ti=0 = {a, 2a+ 1, . . . , ta},

where t is the smallest integer for which ta = −1, mod b. Note that such
a t exists since a and b are co-prime. Notice also that ta + 1 = 0, mod b is
equivalent to ta + 1 = nb, for some n and so nb− ta = 1. This implies that
a
b
< n

t
and that n

t
is the Farey successor of a

b
in the Farey sequence of order
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b, Fb.
Let w : Zb → [0, 1] be the map defined as

w(j) =
1

n
, when j ∈ {Ri

a(a+ 1)}ti=0,

and w(j) = 0, otherwise.

Lemma 3.6.8. Let w be the map defined above. Then w(Pj) = 1, if j 6= 0 and
w(P1) = n−1

n
. Moreover, all paths Pj, j 6= 0, contain n vertices with non-zero

weight under w and P0 contains n− 1 vertices with non-zero weight.

Proof. We first prove that all heavy paths of length a contain the same
number of non-zero weights. Let Pi and Pi+1 be two consecutive heavy
paths. If w(i) > 0, then w(i+ a) > 0 and i+ a /∈ Pi. Hence Pi and Pi+1 con-
tain the same number of non-zero weights. Ifw(i) = 0 thenw(i+a) = 0 and
again Pi and Pi+1 contain the same number of non-zero weights. Hence all
heavy paths contain the same number of non-zero weights. This means
that, in order to determine the exact number of non-zero weights in a
heavy path, it is enough to determine the number of non-zero weights
in path Pa. Now the number of non-zero weights in Pa equals the number
of indices i for which Ri

a(a) ∈ Pa. Since we start iterating the map Ra(·)
from a ∈ Pa, it follows that the number of indices, i, for which Ri

a(a) ∈ Pa
equals the number of times the iterate crosses over the vertex 0, until it hits
vertex −1. Thus, the number of indices, i, for which Ri

a(a) ∈ Pa is a posi-
tive integer, d, such that ta = db−1. The uniqueness of the Farey successor
of a

b
in Fb implies that d = n. Since w gives weight 1

n
to the elements of the

set {Ri
a(a)}ti=0, it follows that all paths Pj, j 6= 0 satisfy w(Pj) = 1.

To finish the proof, we have to show that there are n− 1 non-zero weights
in the path P0. First note that if i ∈ P0 has non-zero weight, then i+ a ∈ Pa
has also non-zero weight. The lemma now follows from the fact that the
last iterate of Ra(a), namely Rt

a(a), is equal to −1.

Hence we have found a fractional covering, w, on Ca,b(0) such that w(Pj) =
1, for j 6= 0. Since w gives weight zero to vertex 0, it follows that w in-
duces a fractional covering on (V ′, {P ′i}b−1

i=1) for which w(P ′j) = 1, for j 6= 0.
The fact that (V ′, {P ′i}b−1

i=1) is self-dual implies that
∑

v w(v) is the fractional
covering number of (V ′, {P ′i}b−1

i=1). Since an optimal fractional covering of
Ca,b(0) gives weight zero to vertex 0, it follows that

∑
v w(v) is also the

fractional covering number of Ca,b(0). Summarizing, we have proven the
following result.
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Theorem 3.6.9. Suppose that a and b are co-prime. Then, for any j ∈ Zb, we
have

τ ∗(Ca,b(j)) =
t

n
,

where n
t

is the successor of a
b

in the Farey sequence Fb, of order b.
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Chapter 4

Network coloring and randomly
oriented graphs

4.1 Network coloring game

4.1.1 Introduction and related work

Suppose you can color n fair coins with n colors. It is forbidden to color
both sides of a coin with the same color, but all other colors are allowed.
Let X be the number of different colors after a toss of the coins. In what
way should you color the coins such that you maximize the median of X?
Can you find a non-trivial upper bound on the median of X?

This is a problem that arises in the analysis of the network coloring game.
The network coloring game is motivated by conflict resolution situations
and was first defined and studied empirically in [30]. The first theoreti-
cal study of the game appears in Chaudhuri et al. (see [10]), which is the
main reference of this section. The network coloring game is played on a
graph, G = (V,E), on n vertices and maximum degree ∆. Each vertex of
the graph is thought of as a player that has k available colors. Each player
has the same set of colors. As in [10] we assume that k ≥ ∆ + 2. Fix any
starting assignment of colors. The game is then played in rounds and in
each round all players simultaneously and individually choose a color.
They can only observe the colors chosen by their neighbors. We say that
a player is happy if she chooses a color that is different from the colors of
her neighbors, otherwise she is unhappy. We assume that once a player is
happy, she chooses the same color in the next round. Knowing this, play-
ers will never choose a color that has been used by a neighbor in the pre-

65
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vious round. Therefore, once a player is happy, she continues to be happy
in all consecutive rounds by sticking to her color, i.e., happiness can only
increase. Note that happy players are essentially removed from the game.

Suppose each player adopts the following strategy: if the player is happy
she sticks to her color, if she is unhappy she changes her color and chooses
equiprobably between the remaining colors that are not used by her neigh-
bors. We call this the simple strategy. In [10] it is shown that under this
strategy the expected number of unhappy players decays exponentially in
each round. Note that the condition k ≥ ∆ + 2 guarantees that for every
unhappy player, there are always at least two colors that are not chosen by
the neighbors.

Note that the condition k ≥ ∆+2 is a crucial assumption. If, say, k = ∆+1
then the previous strategy might lead to a game that never ends, as can
been seen by playing the game on a triangle.
For an individual player, v ∈ V , denote by τv the first round in which she
is happy. The first round in which all players are happy, τ , is the maximum
over all τv. In particular, the main result of Chaudhuri et al. says that

P
[
τ ≤ O

(
log
(n
δ

))]
≥ 1− δ,

for arbitrary small δ. In other words, the graph is properly colored within
τ steps and τ < c log

(
n
δ

)
with high probability for some constant c. It is

remarkable that this estimate does not depend on the maximum degree
of the network. The proof of this theorem depends on the following key
lemma [10, p. 526]

Lemma 4.1.1 (Key Lemma). There exists a constant c such that if player v is
unhappy after round t, then the probability that she is happy after two rounds is
≥ c. Formally,

P[τv ≤ t+ 2|τv > t] ≥ c, (4.1)

for every v.

It turns out that the constant c according to the estimates of Chaudhuri
et al. is equal to 1

1050e9
. Notice that this estimate does not depend on ∆.

Also notice that the estimate is over two rounds instead of one, which is
because of a two-step approach to obtain the constant c. The analysis over
two steps is crucial. Over a single round, it is possible that an unhappy
player gets happy in the next round with probability 1

2∆ , an estimate which
depends on maximum degree.
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The game reaches a proper coloring of the graph when all players are
happy. Note that when all players are happy, none of them has a motive
to change her strategy and so the game reaches a Nash equilibrium.

We are going to improve the bound on the rate of convergence to Nash
equilibrium by first improving the constant c in the Key Lemma. The prob-
ability that an unhappy player v gets happy after two rounds depends on
two factors: the number of colors that v can choose from and the number of
unhappy neighbors. Roughly, the proof of the Key Lemma is in two steps
and goes as follows.
The first step concerns the event that v, who is unhappy after round t, gets
many available colors in round t + 1. Fix a player v who is unhappy after
round t. Call a color active if it is available to v in the next round with
positive probability. Let A be the set of active colors for player v. Let also Y
be the number of colors available to v after round t+ 1 has been played. In
[10] it is proven that Y ≥ |A|

6
with probability at least 1

25
, by using (reverse)

Markov’s inequality.
The second step concerns the event that v gets happy in round t+ 2, given
that v has at least |A|

6
available colors. The probability of this event is es-

timated by using Markov’s inequality and the Key lemma is proven by
combining the estimates of the two steps. Now, using the Key Lemma, the
main result in [10] is proven by applying the so-called Bayes sequential
formula and an union bound. One of the intentions of this work is to avoid
the use of Markov’s inequality (mean estimate) and instead use ideas from
search games. Below we define a simple search game that turns out to be
of use to estimate the constant c in the Key Lemma. We find that the opti-
mal strategy of the searchers involves tossing colored coins. This leads to
a combinatorial probability problem whose solution allows to prove that
Y ≥ |A|

4
with probability at least 1

2
, using median estimates. The problem

on colored coins, that was stated at the beginning of this chapter, rises
in the analysis of the first round using this search game. Then we apply
the arithmetic-geometric mean inequality to obtain a better estimate of the
second step in the proof of the Key Lemma. This allow us to replace the
constant c in the Key Lemma by 1

29 . Finally, we apply results on maximally
dependent random variables to show that the global time to equilibrium,
τ , is stochastically dominated by the maximum of n exponential random
variables. In particular, we show that τ is stochastically smaller than a ran-
dom variable T , such that E[T ] ≤ c′ log n (see Theorem 4.1.9 below).

Another line of research that is related to network coloring is the literature
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on dispersion games. Dispersion games model situations that are similar
to those modeled by the network coloring game. To give an example, sup-
pose that there are five toilettes of comparable stylishness and ladies, at-
tending a party every Saturday night, want to wear the one that has been
chosen by the minority. In this case the ladies are happy if their dress is
relatively unique.
The dispersion game was defined in [6]. It is played in rounds by a group
of n players that can choose between k locations, where k divides n. In each
round players simultaneously and individually choose a location and they
announce their choice to all other players. A player receives payoff 1 if she
has chosen a location that contains ≤ n/k players, otherwise she receives
0. Denote this game by Γ(n, k). In case n = k and if the locations are inter-
preted as colors, the dispersion game Γ(n, n) is equivalent to the network
coloring game on a complete graph on n vertices, where the number of
colors available to each player is n, it’s degree plus 1. In this case one can
work out a one-step analysis. The following strategy is considered in [6]
and is rephrased here in terms of colors:

Basic strategy. Let us say that a color is unique if it is chosen by one and
only one player. If a player has chosen a unique color, she sticks to her
choice for all consecutive rounds. If not, then she changes color and in the
next round chooses equiprobably from the set of non-unique colors.

Note that this strategy uses the fact that every player knows the status
of all other players. Also note that, if Ut is the total number of unhappy
players after round t has been played, the probability that an unhappy
player becomes happy in the next round is equal to(

1− 1

Ut

)Ut−1

>
1

e
.

By employing results on maximally dependent random variables one can
conclude that the expected time to equilibrium in Γ(n, n) under the basic
strategy is less than e+ e log n.

There exists a vast literature on graph coloring algorithms. Some related
work is in [37], where a graph coloring is provided in O(log n) rounds via
a distributed algorithm which uses ∆ + 1 colors, or more, but requires
that the neighbors have information on the status of a vertex. Attempts to
properly color a graph via strategic games can be found in [39] and [16].
For an informal discussion on the network game see [11].
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4.1.2 A very simple search game

In order to estimate the first time player v is happy, τv, we define the fol-
lowing search game. A player, H , the Hider, chooses an element (color)
from Ω = {1, 2, . . . , d} with d ≥ 2. So the strategy space of H is the set
Ω. The opponent of H consists of a team of m ≥ d searchers (agents) that
each choose a subset Ωj containing at least two colors from Ω. We denote
the searchers by Sj, 1 ≤ j ≤ m. Subsequently, each searcher draws a color
ωj uniformly randomly from his own Ωj . The searchers may communicate
their choice of Ωj . If H has chosen a color that is different from all ωj he
wins, otherwise he looses. This is a finite, one round zero-sum game that
has a value, which is the probability that H wins under optimal play on
both sides.

Lemma 4.1.2. The optimal strategy for H is to choose his color uniformly at
random.

Proof. This is an invariance argument (see [17], page 24). We claim that the
game is invariant under the group, Sd, of permutations. To see this, denote
by π(`,Ω1, . . . ,Ωm) the payoff to H (i.e. his winning probability) provided
that H has chosen ` and Sj has chosen Ωj, j = 1, 2, . . . ,m. Then, for any
σ ∈ Sn we have that

π(`,Ω1,Ω2, . . . ,Ωm) = π(σ(`), σ(Ω1), σ(Ω2), . . . , σ(Ωm)).

As the game is invariant under the group Sd, there exist invariant optimal
strategies for the players. Since for any two `1, `2 ∈ {1, 2, . . . , d} there exists
a permutation σ that maps `1 to `2, a mixed strategy for H is invariant if it
assigns the same probability to all elements of Ω.

The value of the game equals the expected proportion of the number of
colors chosen by the searchers.

Lemma 4.1.3. There exists an optimal pure strategy in which all searchers use a
doubleton.

Proof. Any searcher, Sj , picks a color uniformly at random from his own
Ωj , i.e. with probability 1

|Ωj | . This is equivalent to first pick a doubleton
from Ωj uniformly at random and then equiprobably choose one of the
two colors from that doubleton. This means that every pure strategy of Sj
is equivalent to a mixed strategy on doubletons. Now we prove that it is
optimal for each searcher to choose one doubleton. Since the game is fi-
nite, there exists an optimal mixed strategy for the searchers which can be
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described by a probability distribution on doubletons (pure strategies). Fix
some searcher, say S1, and suppose that he chooses a collection of double-
tons,D1, D2, . . . , Dk with probabilities p1, p2, . . . , pk that add up to 1. Let, P ,
denote the winning probability of the searchers. Then P =

∑
piPi, where

Pi denotes the probability that the searchers win, given that S1 chooses
Di and the other searchers do not change their strategy. Choose an i0 for
which Pi0 = maxi Pi. Then Pi0 ≥

∑
piPi. This means that there is a double-

ton such that if it is chosen by S1, the expected payoff does not decrease,
provided that the rest of the searchers do not change their strategy.

Notice that choosing a color from a doubleton uniformly at random is the
same as tossing a fair colored coin. Although we will not need it, we in-
clude the computation of the value of the game, for the sake of complete-
ness.

Theorem 4.1.4. If 2m = ad + b, for integers a and 0 < b < d, then the value of
the game equals 2d−b

2a+1d
.

Proof. Clearly, it is optimal for the searchers to use coins (doubletons) that
contain every color at least once. Let Z be the set of colors chosen by the
searchers after flipping their coins, let Xd,m = |Z|. That is, Xd,m is the num-
ber of different colors after a toss. The value of the game is equal to the
expected proportion of the complement of Z, E[|Zc|]

d
= 1− E[Xd,m]

d
. Fix some

strategy, s, of the searchers, let Gs be the set of colors corresponding to this
strategy and let Ci be the event that color i is chosen by the searchers after
they toss their coins. Note that |Gs| = d. Then E[Xd,m] =

∑
i∈Gs

P[Ci] =∑
i∈Gs

(1 − (1
2
)c(i)), where c(i) is the number of times that color i appears

on a coin. The searchers seek to minimize the sum
∑

i∈Gs

(
1
2

)c(i) under the
constraint

∑
i c(i) = 2m. Note that whenever l − j ≥ 2 then

(
1
2

)l
+
(

1
2

)j ≥(
1
2

)l−1
+
(

1
2

)j+1. Iteration of this inequality shows that the minimum is
achieved by choosing Gs such that all c(i), i ∈ Gs, are as equal as possi-
ble, i.e. b of them equal to a + 1 and the remaining d − b equal to a. Then
we get

∑
i∈Gs

(
1
2

)c(i)
= b

2a+1 + d−b
2a

= 2d−b
2a+1 .

4.1.3 Maximizing the median

Picking an element from a doubleton is just flipping a coin and so the
searchers are using d colors to createm coins that do not use the same color
on both sides. Note that for each array of coins used by the searchers, one
can draw a graph whose vertices correspond to the colors and whose edges
correspond to the coins. More explicitly, for each color put a vertex in the
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graph and join two vertices if and only if they are sides of the same coin.
Note that the graph is loop-less1 and that it might have parallel edges, be-
cause the same colored coin may occur more than one time. In addition,
note that the graph may not be connected and that there is a one-to-one
correspondence between array of coins and graphs and so one can choose
not to distinguish between vertices and colors as well as between coins
and edges. We call this graph the dependency graph of the set of coins. No-
tice that in case m = d, the searchers strategy {1, 2}{2, 3} . . . {d−1, d}{d, 1}
corresponds to the cycle-graph on d vertices and Theorem 4.1.4 implies
that if the searchers want to maximize the mean of Xd, the number of dif-
ferent colors after a toss, then they have to choose coins in such a way
that the corresponding graph is a cycle or a union of cycles. But what if
the searchers want to maximize the median of Xd? What is the maximum
value of the median of Xd? By median of a random variable, X , we mean
any number µ satisfying P [X ≥ µ] ≥ 1/2 and P [X ≤ µ] ≥ 1/2. Notice that
this µ might not be unique. It turns out that the following theorem is true.

Theorem 4.1.5. A median of Xd is ≤ 3d+2
4

.

The proof of this Theorem is involved and builds on ideas from combina-
torial probability. We prove this theorem in the next section. Having this
result, we are then able to improve on the constant of the Key Lemma. This
is the content of the following sub-section.

4.1.4 Probability of individual happiness

We now return to the network coloring game. The lemma below improves
on Lemma 4, from [10].

Lemma 4.1.6. Consider a single player, i.e., a vertex v in the network game at a
given round, t, and suppose that v is unhappy. Let Y be the set of available colors
to v in the next round, t + 1, and let f be the number of happy neighbors of v in
the next round, t+ 1. Then

P
[
|Y | ≥ k − f − 2

4

]
≥ 1

2
.

Proof. Let h be the number of happy neighbors of v at the start of round
t + 1. Let ξ be the degree of v. Then only ξ − h unhappy neighbors are
active in the game. Let I be the set of colors that are not used by the happy
neighbors. For these colors there is a positive probability of being available

1Recall that a loop in a graph is an edge joining a vertex to itself.
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to v in the next round. In particular I contains at least k − h elements. In
the worst case there are ∆ − h ≤ k − h unhappy neighbors all choosing a
color from I . That is, the neighbors can be thought of as being searchers
in the search game that was defined in the previous section. We may even
add more neighbors (searchers) and suppose that the number of unhappy
neighbors is |I| ≥ k − h. If Z is the set of colors chosen by the Searchers,
then we have that with probability ≥ 1

2
, the cardinality of Z is less than

3|I|+2
4

, by Theorem 4.1.5. That is, with probability more than 1
2

we have
that |Y | ≥ |I|−2

4
≥ k−h−2

4
≥ k−f−2

4
, since the number of happy players can

only increase, i.e., f ≥ h.

Recall that τv is the number of rounds needed for player v to become happy
in the Network Coloring Game.

Lemma 4.1.7. For every player, v, in the Network Coloring Game we have that

P[τv ≤ t+ 2|τv > t] ≥ 1

29
.

Proof. Suppose that v is unhappy after round t has been played. Let Y be
the set of available colors to v after round t+ 1 and f the number of happy
neighbors after this round. So v is choosing a color with probability 1

|Y | .
Suppose that U is the set of unhappy neighbors of v after round t+1. Thus
|U | ≤ k − f − 2. For each u ∈ U , let pu(i) be the probability with which
player u chooses color i. Define also Yu to be the set of available colors to
each u ∈ U . From the previous lemma we know that with probability more
than 1

2
the cardinality of Y is more than k−f−2

4
. The probability that a fixed

color i ∈ Y is not chosen by the neighbors is∏
{u∈U :i∈Yu}

(1− pu(i)).

Thus the probability Pv that v is happy in the next round equals

Pv =
1

|Y |
∑
i∈Y

∏
u∈U :i∈Yu

(1− pu(i)) ≥

(∏
i∈Y

∏
u∈U :i∈Yu

(1− pu(i))

) 1
|Y |

,

by the arithmetic-geometric mean inequality. For each player in u ∈ U that
has i as a choice we have that 1 − pu(i) equals 1 − 1

`
, for some ` ≥ 2. If i is

not a choice of u ∈ U , then pu(i) = 0. Thus 1−pu(i) = 1− 1
|Yu| ≥

1
2

for every



4.1. Network coloring game 73

i and so (∏
i∈Y

∏
u∈U :i∈Yu

(1− pu(i))

) 1
|Y |

≥

(∏
u∈U

∏
i∈Yu

(1− pu(i))

) 1
|Y |

≥

(∏
u∈U

(
1− 1

|Yu|

)|Yu|) 1
|Y |

≥ 1

4|U |/|Y |
,

since |Yu| ≥ 2. Now on the event |Y | ≥ k−f−2
4

, and since |U | ≤ k−f −2, we
find 1

4|U|/|Y |
≥ 1

44 = 1
28 . The result follows by noticing that P[τv ≤ t+2|τv > t]

is at least P
[
τv ≤ t+ 2|τv > t, |Y | ≥ k−f−2

4

]
· P
[
|Y | ≥ k−f−2

4
|τv > t

]
.

Our lower bound of 1
29 ≈ 0.0019531 improves on the lower bound of

1
1050e9

≈ 0.0000013 that is derived in [10]. In the next subsection we use
this lower bound to estimate the expected time to global happiness.

4.1.5 Time to Nash equilibrium

So far, we have obtained a bound on the time τv of an individual player.
Now we want to obtain a bound on the global time to happiness τ =
maxv τv. Unfortunately, we know nothing about the dependence structure
between the τv, so the estimate on maxv τv has to be a worst case estimate.
It turns out that this worst case estimate is covered by the case of maxi-
mally dependent random variables. This is a notion that comes up in the
study of stochastic order relations.
Recall that a random variable, X , is said to be stochastically smaller than
another random variable, Y , if P[X > t] ≤ P[Y > t], for all t. Denote this
as X ≤st Y . It is known (see [48], Theorem 1.A.1) that X ≤st Y if and
only if there exist two random variables X̂, Ŷ such that X̂ ∼ X , Ŷ ∼ Y

and X̂ ≤ Ŷ with probability 1. This will apply in our case because we will
show that τv is stochastically smaller than Sv, where Sv ∼ 2 · Exp(λ) and
λ := − log(1 − 1

29 ). In that case maxv τ̂v ≤ maxv Ŝv with probability 1 and
τ ∼ maxv τ̂v.
To see that τv ≤st Sv, note that the estimate of the previous subsection
shows that P[τv > t + 2|τv > t] ≤ 1 − 1

29 . Notice also that, for every player
v,

P[τv > 1|τv > 0] = 1− (1− 1

k
)deg(v) ≤ 1− (1− 1

k
)k−1 ≤ 1− 1

e
≤ 1− 1

29
.
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Hence, if t is odd,

P[τv > t] = P[τv > 1|τv > 0] · P[τv > 3|τv > 1] · · ·P[τv > t|τv > t− 2]

≤
(

1− 1

29

)t/2
= P[Exp(λ) >

t

2
]

= P[2 · Exp(λ) > t],

and similarly if t is even.
Thus τv ≤st Sv which gives that maxv τ̂v ≤ maxv Ŝv with probability 1.
Define Mn := maxv Ŝv = 2 maxvXv, where Xv ∼ Exp(λ). Since τ ∼ maxv τ̂v
and maxv τ̂v ≤Mn with probability 1, we conclude that E[τ ] ≤ E[Mn].
This means that, in order to estimateE[τ ], it is enough to estimate the maxi-
mum possible value of E[Mn] = 2E[µn], where µn is the maximum of n (de-
pendent) Exp(λ) random variables. Such ensemble maxima occur often in
practical problems and have been well studied both in the independent
and the dependent case (see [14], [34] and [35]).
We estimate E[µn] using ideas from [34]. Let F be the distribution function
of Xv, v ∈ V . For any real number t, we have that

µn ≤ t+
∑
v

(Xv − t)+,

which gives that E[µn] ≤ h(t) := t + n
∫∞
t

[1 − F (x)] dx, for any t ∈ R.
Differentiating h(·) one finds that its minimum is at tn := F−1(1 − 1

n
) and

so E[µn] ≤ tn + n
∫∞
tn

[1 − F (x)] dx. Since 1 − F (x) = e−λx it follows that
E[µn] ≤ 1

λ
(1 + log n). Hence

E[τ ] ≤ 2 · E[µn] ≤ 2

λ
(1 + log n).

Similarly, in order to estimate the variance of τ , it is enough to estimate
the variance of µn = maxvXv. Let X(1), . . . , X(n) be the order statistics of
the random variables Xv, v ∈ G. The following holds true.

Lemma 4.1.8.
n∑
i=1

Var(X(i)) ≤
∑
v

Var(Xv).

We prove this lemma in Appendix B. Having this result, we can then esti-
mate the variance of the maximum since

Var(µn) = Var(X(n)) ≤
∑
v

Var(Xv).
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This gives that Var(Mn) = Var(2µn) = 22Var(µn) ≤ 22
∑

v Var(Xv) = 4
λ2n.

We summarize the preceding results into a theorem which is an improve-
ment of the main result from [10].

Theorem 4.1.9. Let G be a graph on n vertices and maximum degree ∆. If the
number of available colors is at least ∆ + 2 and if all players adopt the simple
strategy, then for any starting assignment of colors, the network coloring game
reaches a proper coloring at time τ that is stochastically smaller than a random
variable T , with E[T ] ≤ 2

λ
(1 + log n) and Var(T ) ≤ 4

λ2n, where λ ≈ 0.001955.

4.2 Colored coin tosses

4.2.1 Fair coins

This section is devoted to the proof of Theorem 4.1.5. We want to show
that median of Xd is ≤ 3d+2

4
, where Xd is the number of different colors

after a toss of d coins that are colored using d colors. Before proving this
theorem we need some notation and remarks.
Suppose that we have d coins that are colored with d colors. Let G be the
dependency graph corresponding to this set of coins. We are going to ori-
entG as follows. Toss all the coins and orient each edge towards the vertex
(color) that came up in the toss. Thus a toss of the coins gives rise to an ori-
entation on the edges of G. As a consequence, Xd = j corresponds to the
fact that j vertices have positive in-degree, which means that d− j vertices
must have in-degree 0. Also note that none of the vertices of zero in-degree
can be adjacent.
We denote the in-degree of a vertex v by deg−(v) and by Zd the number of
vertices of zero in-degree. Thus Xd = d− Zd.
It turns out that the median of Xd can be estimated through the median of
Ed, the number of even in-degree vertices, whose distribution is easier to
determine. We will need the following two graph-theoretic results.

Lemma 4.2.1. Suppose that G is a (possibly disconnected) graph on d vertices
and m edges. Fix some orientation on the edges and let Od,m, Ed,m be the number
of odd and even in-degree vertices respectively. Then the parity of Ed,m equals the
parity of m− d.

Proof. The in-degree sum formula states that∑
v∈G

deg−(v) = m.
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From this we have that the parity of Od,m equals the parity of m. Note that
d − Ed,m = Od,m. Hence the parity of m equals the parity of d − Ed,m and
the lemma follows.

For any real number r, we denote r+ = max{r, 0}.

Lemma 4.2.2. For every oriented graph on d vertices, m edges and Zd vertices of
zero in-degree,

−Zd +
∑
v

(deg−(v)− 1)+ = m− d.

Proof. We use again the in-degree sum formula,
∑

v deg−(v) = m. Thus∑
v

(deg−(v)− 1) = m− d

and so−Zd+
∑

v(deg−(v)−1)+ = m−d, since the sum contributes a ”−1”
for every vertex of in-degree zero.

We denote by Med(Y ) the median of the random variable Y .

Lemma 4.2.3. If Med(Ed) ≥ d−2
2

, for any graph on d vertices and d edges, then
Theorem 4.1.5 holds true.

Proof. Let Yd := Ed − Zd, then Lemma 4.2.2 gives that Zd =
∑

v(deg−(v)−
1)+, since m = d. Note that∑

v

(deg−(v)− 1)+ ≥
∑

{v:deg−(v)≥2}

(deg−(v)− 1)+ ≥
∑

{v:deg−(v)≥2}

1 ≥ Yd.

Since Yd + Zd = Ed, it follows that Zd ≥ 1
2
Ed. Now Xd + Zd = d so that

Xd = d− Zd ≤ d− 1
2
Ed and Med(Xd) ≤ d− d−2

4
= 3d+2

4
.

So it remains to prove that Med(Ed) ≥ d−2
2

. To prove this, we first compute
the distribution of the number of even in-degree vertices in the case of
a connected graph on d vertices and m ≥ d − 1 edges. We then extend this
computation to the general case by considering the connected components
of the graph.
We denote by Bin(s, p) a Binomially distributed random variable of pa-
rameters s and p. In case p = 1

2
we just write Bin(s). The parity of the

in-degree of each particular vertex is related to the parity of the Binomial
distribution for which the following is well known.

Lemma 4.2.4. Suppose that Xs := Bin(s) mod 2. Then Xs is a Bin(1) random
variable regardless of s.
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Proof. The proof is by induction on s. When s = 1 the conclusion is true.
Suppose that it is true for all integers up to s− 1 and consider Xs. Observe
that Xs ∼ Xs−1 + Bin(1), mod 2. The induction hypothesis gives that
Xs−1 + Bin(1) equals Bin(1) + Bin(1) mod 2, for two independent Bin(1)
random variables which finishes the proof of the lemma.

The next lemma is also well known and follows immediately from the
symmetry of the Bin(s) distribution.

Lemma 4.2.5. A median of a Bin(s) random variable is its mean.

Lemma 4.2.6. Fix some vertex v of the graph. Let C be any set of edges (coins)
that does not contain some edge incident to v. Then the parity of deg−(v) is inde-
pendent of the orientation of the edges in C.

Proof. Suppose the coins corresponding to C have been flipped. Let C− be
the number of edges in C which are oriented towards v after the toss. By
the previous lemma, C− is even or odd with probability 1

2
. Since there is at

least one edge incident to v that does not belong to C, we have that

P[deg−(v) even|C−] =
1

2
· 1{C− odd} +

1

2
· 1{C− even} =

1

2
,

where 1{·} denotes indicator function. So this conditional probability does
not depend on C−. Similarly for the odd outcomes.

We will also need a special enumeration on the vertices and edges of a
tree which, combined with the previous lemma, allows us to compute the
distribution of the number of even in-degree vertices.

Lemma 4.2.7. For any tree, T , on d vertices, there exists an enumeration, v1, . . . , vd,
of the vertices and an enumeration, e1, . . . , ed−1, of the edges such that, for i =
1, . . . , d−1, the only edge incident to vertex vi among the set of edges {ei, ei+1, . . . , ed−1}
is ei.

Proof. Fix a tree, T , on d > 1 vertices and choose any of its vertices. Call
this vertex vd. If vd is a leaf, then consider the vertex set L of leaves in T
except vd and enumerate them v1, v2, . . . , v`. If vd is not a leaf, then consider
all leaves of T and enumerate them in the same manner. Note that L is not
empty even if vd is a leaf since any tree with at least two vertices has at
least two leaves. Enumerate each edge incident to vj by ej , j = 1, 2, . . . , `.
Now consider the tree T ′ := T \ {v1, v2, . . . , v`} and repeat this process on
the leaves of T ′ again sparing vd if it is a leaf of T ′. We continue enumer-
ating the leaves and edges of the subtrees until we end up with the graph
consisting of vertex vd only. It is evident that the enumeration satisfies the
required condition.



78 Chapter 4. Network coloring and randomly oriented graphs

We are now ready to compute the distribution of the number of even in-
degree vertices for any connected graph.

Theorem 4.2.8. Suppose that G is a connected graph on d vertices and m ≥
d − 1 edges. Let Ed,m be the number of even in-degree vertices after a random
orientation on the edges. Then Ed,m has the probability distribution of a Bin(d)
random variable conditional on the event that the outcome of Bin(d) has the parity
of m− d. Formally,

P[Ed,m = k] =

(
d

k

)
1

2d−1
,

where k runs over the odd integers up to d if m − d is odd, and over the even
integers if m− d is even.

Proof. Fix some spanning tree, T , of G and toss the coins corresponding
to the edges that do not belong to T . Enumerate the vertices of the tree
v1, v2, . . . , vd and the edges e1, e2, . . . , ed−1 as in Lemma 4.2.7. Now toss the
coins e1, e2, . . . , ed−1 in that order. The enumeration on the vertices and
edges gives that once the coin ej is flipped, then the parity of vertex vj is
determined. Lemma 4.2.6 gives that once the parity of some vertex vj is
determined, the parity of the next vertex vj+1 is independent of the parity
of v1, v2, . . . , vj−1. Only the parity of vd is deterministic given the parities
of the previous vertices. Thus, if we set δi := deg−(vi) mod 2, for i =
1, 2, . . . , d, we have that each δi is distributed as a Bin(1) random variable
which, by independence, means that

∑d−1
i=1 δi ∼ Bin(d− 1). Let Od,m be the

number of odd in-degree vertices. ThenOd,m = δ1 + · · ·+δd−1 +δd ∼ X+δd,
where X ∼ Bin(d − 1) and δd depends on the outcome of X . From the
relationOd,m+Ed,m = d and the fact thatX is symmetric, i.e.X ∼ d−1−X ,
we get that Ed,m = d − X − δd ∼ X + 1 − δd. Suppose that m − d is even.
In case m − d is odd, the argument is similar. Then Ed,m is also even, by
Lemma 4.2.1, and thus 1 − δd equals 0, if X is even and equals 1, if X is
odd. Hence, we have that Ed,m = k, for some even k, if and only if either
X = k or X = k − 1. This means that

P[Ed,m = k] = P[Bin(d− 1) = k] + P[Bin(d− 1) = k − 1] =

(
d

k

)
1

2d−1
.

For any positive integer, s, we write W ∼ Bin(s, even) (resp. Bin(s, odd))
whenever the random variable W is distributed as a Bin(s) random vari-
able conditioned to be even (resp. odd). We will also write Bin(s,�) when-
ever we don’t want to specify the exact parity and refer to it as a half-
binomial.
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Note that the proof of the last theorem says that if we are interested in an
outcome of, say, Bin(s, even) (resp. Bin(s, odd)), we can toss s − 1 fair 0/1
coins and if the result is even, add a 0 (resp. a 1), if it is odd add 1 (resp. a
0). Call such a toss an even-sum (resp. odd-sum) toss of s coins.
We now consider the general case of a disconnected graph, G. Suppose
that it consists of connected components,G1, G2, . . . , Gt each having di ver-
tices and mi edges such that

∑
di = d and

∑
mi = m. Recall that we as-

sume d = m. Let Ei, 1 ≤ i ≤ t be the number of vertices of even in-degree
in each graph after a toss. The Ei’s are independent random variables and
the total number of even in-degree vertices is given by E = E1 + · · · + Et.
Now, the distribution of each Ei is given by the previous theorem and
thus E is the sum of independent Bin(di,�) random variables. Note that
if these were pure binomials instead of half-Binomials, then we would be
done. In that case E would also be binomial whose median is known. The
problem is that we have a sum of independent half-binomials and it is not
immediately clear how to analyze a sum like Bin(7, odd)+Bin(6, even). We
analyze such sums by breaking down each term of the sum, Bin(s,�), into
a sum of Bin(2,�) and Bin(3,�). More specifically, Bin(s,�) will be a con-
vex combination (mixture) of such sums. Recall that a mixture of random
variables Zi is defined as a random selection of one of the Zi according to
a probability distribution on the index set of i’s. It is clear that if all these
Zi have a median that is ≥ µ, then also the mixture has a median ≥ µ.

Lemma 4.2.9. For any s ≥ 2, let s = s1 + s2 + · · · + sl be a partition of s into
si = 2 or si = 3, with at most one part equal to 3 in case s is odd. Then Bin(s,�)
is a mixture of sums Bin(s1,�) + · · ·+ Bin(sl,�), where the parities of all these
half-binomials, Bin(si,�), add up to the given parity of Bin(s,�).

Proof. Suppose we want to decompose a Bin(s, even) random variable.
The other case is similar. We get an outcome of such a half-binomial by
tossing s − 1 independent coins and add a deterministic one to fix the
parity, i.e., by tossing s even-sum 0/1 fair coins. This is equivalent to par-
tition s into s1, . . . , sl, where all si are equal to 2, except possibly one that
is equal to 3, and then toss l even-sum 0/1 fair coins, assign the parity of
the j-th coin, j = 1, . . . , l, to sj and then this parity to Bin(sj,�). To be
more precise, suppose that Yj ∈ {even, odd} is the parity of the j-th coin.
Then for each j = 1, . . . , l, toss sj Yj-sum coins to get an outcome from
Bin(sj, Yj). Then the parity of

∑l
j=1 Yj is even and thus the independent

sum
∑l

j=1 Bin(sj, Yj) has as even number of terms of the form Bin(sj, odd)
which means that it is an outcome from Bin(s, even).
To see that this is equivalent, notice that the probability of each particu-
lar outcome equals 1

2l−1 · 1
2s1−1 · 1

2s2−1 · · · 1
2sl−1 = 1

2s−1 , which is exactly the
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probability of each particular outcome from Bin(s, even). So it remains to
prove that the number of outcomes for which Bin(s, even) = k, for some
even k, equals the number of outcomes for which

∑l
i=1 Bin(si, Yi) = k,

given the parities Y = (Y1, . . . , Yl). But this is immediate. Every outcome
of Bin(s, even), that is, every toss of s even-sum 0/1 fair coins with k 1’s
gives rise to a vector of parities Y = (Y1, . . . , Yl) such that the parity of∑l

j=1 Yj is even,
∑l

i=1 Bin(si, Yi) = k and vice versa.

If we apply the last Lemma to each Ei ∼ Bin(di,�), i = 1, . . . , t we get the
following.

Corollary 4.2.10. E is a mixture of sums of independent half-binomials Bin(2,�)
and Bin(3,�).

The reason to partition each di into sums of 2’s and at most one 3 is the
following.

Lemma 4.2.11. Bin(2,�) and Bin(3,�) can be interpreted as binomials of biased
coins. More precisely, they are distributed like the sum of a binomial and a scalar.

Proof. It is easy to check that Bin(3, odd) ∼ 1+2·Bin(1, 1
4
) and Bin(2, odd) ∼

Bin(1, 1), as well as Bin(3, even) ∼ 2 · Bin(1, 3
4
) and Bin(2, even) ∼ 2 ·

Bin(1, 1
2
).

Corollary 4.2.12. E has the distribution of a mixture of a sum of a scalar and a
sum of independent binomials.

Having this corollary, we can then apply a well known result of Hoeffding
(see [26]).

Theorem 4.2.13 (Hoeffding). If Xp1 , Xp2 , . . . , Xp` are independent Bernoulli
trials with parameters p1, p2, . . . , p` respectively, then

P[b ≤
∑̀
i=1

Xpi ≤ c] ≥ P[b ≤ Bin(`, p̄) ≤ c], when 0 ≤ b ≤ `p̄ ≤ c ≤ `,

where p̄ = 1
`

∑`
i=1 pi.

Recall that we are interested in a lower bound on the median of the inde-
pendent sum E ∼

∑t
i=1Ei ∼

∑t
i=1 Bin(di,�). We know that E is a mixture

of independent sums of Bin(2,�) and Bin(3,�), which are (rescaled) bi-
ased coins. We finish the proof of Theorem 4.1.5 by proving that every
particular independent sum of this mixture has a median that is ≥ d−2

2
.

Suppose that we have an independent sum, Ξ, consisting of r, z, a, w ∈
{0, 1, 2, . . .} terms from Bin(3, odd),Bin(3, even), Bin(2, even) and Bin(2, odd)
respectively. Notice that 3r + 3z + 2a+ 2w = d.
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Lemma 4.2.14. A median of Ξ is ≥ d−2
2

.

Proof. Suppose first that z ≥ r. In that case we show that Med(Ξ) ≥ d−1
2

.
Denote by Ψ the independent sum Bin(r, 1

4
)+Bin(a, 1

2
)+Bin(z, 3

4
). Then Ψ =

j if and only if Ξ = r+2j+w. Thus a median of Ξ can be estimated through
a median of Ψ and so a median of Ξ is ≥ d−1

2
if and only if a median of Ψ

is ≥ r+2a+3z−1
4

. We apply Hoeffding’s result with p̄ = 1
r+a+z

(
r+2a+3z

4

)
, ` =

r + a+ z and c = r + a+ z, b = r+2a+3z−1
4

. This gives that

P
[
Ψ ≥ r + 2a+ 3z − 1

4

]
≥ P

[
Bin(r + a+ z, p̄) ≥ r + 2a+ 3z − 1

4

]
≥ P

[
Bin(r + a+ z, p̄) ≥ r + 2a+ 3z

4

]
.

Hence the lemma will follow once we prove that P[Bin(r + a + z, p̄) ≥
r+2a+3z

4
] ≥ 1

2
. Note that the mean of Bin(r + a + z, p̄) equals r+2a+3z

4
. Now,

if z ≥ r then p̄ ≥ 1
2

and thus Bin(r + a + z, p̄) is stochastically larger than
Bin(r+a+z, 1

2
). This means that a median of Bin(r+a+z, p̄) is bigger than

or equal to a median of Bin(r + a+ z, 1
2
). But a median of Bin(r + a+ z, 1

2
)

is r+a+z
2

, it’s mean. Since r+a+z
2
≤ r+2a+3z

4
when z ≥ r, the result follows.

Suppose now that z < r. We consider two case.
(a) Assume that r − z is even. In that case we prove again that Med(Ξ) ≥
d−1

2
. Define Φ1 := Bin(r, 1

4
)+Bin(a, 1

2
)+Bin(z, 3

4
)+ r−z

2
. Then Med(Ξ) ≥ d−1

2

if and only if Med(Φ1) ≥ 3r+2a+z
4

. By the result of Hoeffding we have that
Med(Φ1) ≥Med(Bin(n̂, p̂)), where p̂ = 1

r+a+z+ r−z
2

( r
4

+ a
2

+ 3z
4

+ r−z
2

) = 1
2

and

n̂ = r + a + z + r−z
2

. Since p̂ = 1/2, we get that a median of Bin(n̂, p̂) is its
mean which in turn equals n̂ · p̂ = 3r+2a+z

4
.

(b) Assume that r − z is odd. In a similar way as above we show that
Med(Ξ) ≥ d−2

2
. Define Φ2 := Bin(r, 1

4
) + Bin(a, 1

2
) + Bin(z, 3

4
) + r−z−1

2
. Then

Med(Ξ) ≥ d−2
2

if and only if Med(Φ2) ≥ 3r+2a+z−2
4

− 2
4
. Again, by Hoeffding,

we conclude that Med(Φ2) ≥ Med(Bin(ň, p̌)), where p̌ = 1
r+a+z+ r−z−1

2

( r
4

+
a
2

+ 3z
4

+ r−z−1
2

) and ň = r + a + z + r−z−1
2

. Now the mean of Bin(ň, p̌)
equals ň · p̌ = 3r+2a+z−2

4
. It is known (see [24]) that the smallest uniform

(with respect to both parameters) distance of the mean and a median of a
Binomial distribution is ≤ ln 2 ≈ 0.69 < 3

4
. This means that if ň · p̌ equals

µ+ 1
4
, for some integer µ, then µ is a median of Bin(ň, p̌). If ň · p̌ equals µ+ 3

4
,

for some integer µ, then µ + 1 is a median of Bin(ň, p̌) and if ň · p̌ = µ + 1
2
,

then a median of Bin(ň, p̌) is ≥ µ. If the mean, ň · p̌ is an integer, then
it is well known (see [28]) that mean and median coincide. In all cases a
median is ≥ ň · p̌− 1

2
and the result follows.
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The colored coin tossing problem that is considered above is interesting
in its own right. A natural extension of the problem that deserves further
study is the following: suppose you can color n biased coins with n colors,
all coins having the same bias. It is forbidden to color both sides of a coin
with the same color, but all other colors are allowed. Let X be the number
of different colors after a toss of the coins. In what way should you color
the coins such that you maximize the median of X? What about a non-
trivial upper bound on the median of X?
We also mention that there are possible extensions of this problem. One
might try to use dies with k faces, instead of coins, and ask for the col-
oring over the dies for which the number of different colors after a toss
is stochastically larger. We will discuss some aspects of these questions in
the next sub-section.

4.2.2 Bernoulli trials of fixed parity

Denote byB(n, p) a binomially distributed random variable of parameters
n and p. That is, B(n, p) is the number of successes in n independent and
identical Bernoulli trials, Ber(p). A random variable that generalizes the
binomial is defined in the following way. Fix a set of n parameters, I =
{p1, . . . , pn}, from (0, 1) we denote byH(I) the random variable that counts
the number of successes in n independent, non-identical Bernoulli trials,
Ber(pi), i = 1 . . . , n. In other words, H(I) counts the number of 1’s after
an independent toss of n 0/1-coins, ci, i = 1, . . . , n, having the property
that coin ci shows 1, or is a success, with probability pi. The distribution of
H(I) is well studied and is referred to as Poisson binomial distribution, or as
Poisson trials (see [26],[50]). Our first result, concerning the parity of such
a random variable, will be used repeatedly.

Lemma 4.2.15. Let I = {p1, . . . , pn} and hn := H(I) mod 2. Then hn is a
biased 0/1 coin that lands 1 with probability 1

2
(1 −

∏n
i=1(1 − 2pi)). That is, the

probability that aH(I) random variable is even equals 1
2
(1 +

∏n
i=1(1− 2pi)) and

the probability that it is odd equals 1
2
(1−

∏n
i=1(1− 2pi)).

Proof. The proof is by induction on n. When n = 1 the conclusion is true.
Suppose that it is true for every set of parameters having n − 1 numbers
and consider aH(I) random variable such that |I| = n. SinceH(I) is as an
independent toss of n coins, by conditioning on the outcome of the n-th
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coin, we get

P[H(I) even] = pn · P[H(I \ {pn}) odd]

+ (1− pn) · P[H(I \ {pn}) even]

= pn ·
1

2
(1−

n−1∏
i=1

(1− 2pi)) + (1− pn) · 1

2
(1 +

n−1∏
i=1

(1− 2pi))

=
1

2
(1 +

n∏
i=1

(1− 2pi))

Since P[H(I) odd] = 1− P[H(I) even] the lemma follows.

For a fixed set of parameters I = {p1, . . . , pn}, we set α(I) := P[H(I) even]
and β(I) = 1 − α(I). Note that if there is a parameter, pi ∈ I , that is equal
to 1

2
then α(I) = β(I) = 1

2
.

Now fix a set of parameters I = {p1, . . . , pn} and define a random variable
whose outcomes have fixed parity, in the following way. First consider the
case of even outcomes. Place the 0/1 coins c1, . . . , cn on a line. Roll a biased
die with n faces that shows i ∈ {1, . . . , n} with probability πi. That is, let
π = (π1, . . . , πn) be such that

∑
πi = 1 and choose i with probability πi.

If the result of the die is i ∈ {1, . . . , n}, then toss all coins except ci. If the
outcome after the toss has an even number of 1’s, then fix the parity by
letting ci to be 0. If the outcome has an odd number of 1’s, then fix the
parity by letting ci to be 1. The number of 1’s that we see after this (slightly
dependent) toss is random. Denote it by E(I, π) and call this dependent
toss an even-sum toss of n coins. Similarly we define the odd-sum toss of n
coins and denote by O(I, π) the number of 1’s that we see after an odd-
sum toss of n coins. Formally, for an even k, the probability distribution
E(I, π) is defined by

P[E(I, π) = k] =
n∑
i=1

πi · {P[H(I \ {pi}) = k] + P[H(I \ {pi}) = k − 1]}

and similarly for an odd `, the distribution of O(I, π) is defined by

P[O(I, π) = `] =
n∑
i=1

πi · {P[H(I \ {pi}) = `] + P[H(I \ {pi}) = `− 1]}

Note that in case all parameters pi ∈ I, i = 1, . . . , n, are equal to p, then the
probability distribution of an even-sum toss equals

P[E(I, π) = k] = P[B(n− 1, p) = k] + P[B(n− 1, p) = k − 1],



84 Chapter 4. Network coloring and randomly oriented graphs

and so does not dependent on the vector π = (π1, . . . , πn). Similarly for
the odd-sum toss. In case all parameters pi are equal to p we will denote
the random variables that count the number of successes in an even-sum
(resp. odd-sum) toss of n coins by A(n, p) (resp. P (n, p)).

Notice also that in case pi = 1
2
, for all i ∈ {1, . . . , n}, the above formulas

reduce to

P[A(n, 1/2) = k] = P [B(n− 1, 1/2) = k] + P [B(n− 1, 1/2) = k − 1]

=

(
n− 1

k

)
1

2n−1
+

(
n− 1

k − 1

)
1

2n−1

=

(
n

k

)
1

2n−1

and similarly for P (n, 1/2).
The random variables just defined are related to the random variableH(I),
conditional on the event that its outcomes have fixed parity. More pre-
cisely, denote by H(I, 0) (resp.H(I, 1)) the random variable that has the
same distribution as H(I) conditional on the event that it’s outcome is
even (resp. odd). That is, for even k

P[H(I, 0) = k] =
1

α(I)
P[H(I) = k]

and, for an odd `,

P[H(I, 1) = `] =
1

β(I)
P[H(I) = `].

Hence we can obtain an outcome of a, say, H(I, 0) random variable by
tossing the coins again and again until we see an even outcome. In case I
consists of n parameters all equal to p, we will write B(n, p, 0) for H(I, 0)
andB(n, p, 1) forH(I, 1). ThusB(n, p, 0) is the random variable whose dis-
tribution function is binomial, conditional on the event that the outcomes
are even. Similarly for B(n, p, 1).
The following results shows the relation between conditional Poison trials
and the random variables that are under consideration.

Lemma 4.2.16. If I = {p1, . . . , pn} and π = (π1, . . . , πn) is a probability vec-
tor then the distribution of E(I, π) is the same as the distribution of the random
variable that takes even outcomes according to the following procedure. Roll a bi-
ased die with n faces. If the result of the die is i ∈ {1, . . . , n} with probability πi,
then toss a 0/1 coin having probability of showing 1 equal to 1 − α(I \ {pi}) =
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β(I\{pi}). If the outcome of this coin is 0, then draw from aH(I\{pi}, 0) random
variable and add 0. If the outcome is 1, then draw from a H(I \ {pi}, 1) random
variable and add 1.

Proof. For an even k, write

P[E(I, π) = k] =
n∑
i=1

πi ·
{
α(I \ {pi}) ·

P[H(I \ {pi}) = k]

α(I \ {pi})

}
+

n∑
i=1

πi ·
{
β(I \ {pi}) ·

P[H(I \ {pi}) = k − 1]

β(I \ {pi})

}
,

which can be rewritten as

P[E(I, π) = k] =
n∑
i=1

πi · α(I \ {pi}) · P[H(I \ {pi}, 0) = k]

+
n∑
i=1

πi · β(I \ {pi}) · P[H(I \ {pi}, 1) = k − 1]

and finishes the proof of the lemma.

For random variables Y,W that take values on the same sets, we will write
Y ∼ W whenever Y and W have the same distribution. Note that, in case
all parameters pi are equal to p, the previous lemma says that A(n, p) has
the same distribution as the random variable that takes even outcomes
according to the following procedure. Toss a 0/1 coin whose probability of
showing 1 equals β({p}n−1). If the outcome is a 1, then toss n independent
0/1 coins that show up 1 with probability 1 until you see an odd outcome,
and add a 1. If the outcome is 0, then toss n independent 0/1 coins that
show 1 with probability p until you see an even outcome, and add a 0 to
this outcome. We can formally express this as

A(n, p) ∼ B(1, β({p}n−1)) +B(n− 1, p, B(1, β({p}n−1))).

Similarly one can prove the following result for O(I, π).

Lemma 4.2.17. If I = {p1, . . . , pn} and π = (π1, . . . , πn) is a probability vector,
then the distribution ofO(I, π) is the same as the distribution of the random vari-
able that takes odd outcomes according to the following procedure. Roll a biased die
with n faces. If the result of the die is i ∈ {1, . . . , n} with probability πi, then toss
a 0/1 coin having probability of showing 1 equal to α(I \{pi}) = 1−β(I \{pi}).
If the outcome of the coin is a 0, then draw from aH(I \ {pi}, 1) random variable
while and add a 0. If the outcome is a 1 then draw from a H(I \ {pi}, 0) random
variable and add a 1.
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Again, in case all parameters pi are equal to p, the previous lemma can be
formally expressed as

P (n, p) ∼ B(1, α({p}n−1)) +B(n− 1, p, 1−B(1, α({p}n−1))).

Lemma 4.2.16 and 4.2.17 imply that the distributions of E(I, π),O(I, π) can
be analyzed via the distributionsH(I \ {pi}, 0) andH(I \ {pi}, 1). The next
result can be used in case one is interested in adding independent copies
of E(·, ·) and O(·, ·).

Lemma 4.2.18. Let I = {p1, . . . , pn} and consider a partition of I into disjoint,
non-empty sets I1, I2. Then the distribution of H(I, 0) is a mixture of the inde-
pendent sumsH(I1, 0) +H(I2, 0) andH(I1, 1) +H(I2, 1). More precisely, for an
even k, we have

P[H(I, 0) = k] =
α(I1) · α(I2)

α(I)
P[H(I1, 0) +H(I2, 0) = k]

+
β(I1) · β(I2)

α(I)
P[H(I1, 1) +H(I2, 1) = k].

Proof. Write P[H(I, 0) = k] = P[H(I)=k]
α(I)

and note that if we regard H(I) as
an independent sum ofH(I1) andH(I2), then P[H(I) = k] equals∑
i:i even

P[H(I1) = i] · P[H(I2) = k − i] +
∑
i:i odd

P[H(I1) = i] · P[H(I2) = k − i].

Multiply and divide the sum that runs over even indices by α(I1) · α(I2)
and the sum that runs over odd indices by β(I1) ·β(I2) to get the result.

Similarly, one can prove the following.

Lemma 4.2.19. Let I = {p1, . . . , pn} and consider a partition of I into disjoint,
non-empty sets I1, I2. Then the distribution of H(I, 1) is a mixture of the inde-
pendent sumsH(I1, 1) +H(I2, 0) andH(I1, 0) +H(I2, 1). More precisely, for an
odd k, we have

P[H(I, 1) = k] =
α(I1) · β(I2)

β(I)
P[H(I1, 0) +H(I2, 1) = k]

+
β(I1) · α(I2)

β(I)
P[H(I1, 1) +H(I2, 0) = k].

The last two lemmata can be iterated. By doing so one gets that every
H(I, 0) or H(I, 1) random variable is a mixture of independent sums con-
sisting only of summands of the formH({a, b}, 0),H({c, d}, 1),H({e, f, g}, 0)
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and H({k, l,m}, 1), where a, b, c, d, e, f, g, k, l,m ∈ (0, 1). That is, one may
apply the last two lemmata by partitioning I into I1 ∪ D1, where D1 is a
doubleton. Then apply the lemma again by partitioning I1 into I2∪D2, for
some doubleton D2 and so on.
The reason to partition I this way is the next result that says that all terms
of the previous mixture are rescaled biased coins. Its proof is immediate.

Lemma 4.2.20. Let I = {p1, p2} and J = {q1, q2, q3}. Then H(I, 0) ∼ 2 ·
B(1, p1·p2

α(I)
), H(I, 1) ∼ B(1, 1), H(J, 0) ∼ 2 · B(1, 1 − (1−q1)·(1−q2)·(1−q3)

α(J)
) and

H(J, 1) ∼ 1 + 2 ·B(1, q1·q2·q3
β(J)

)

The next result is an inequality on conditional binomial random variables.
Set αn = P[B(n, p) even] and βn = 1− αn.

Lemma 4.2.21. Fix a positive integer n and a real number p ∈ (0, 1). Then

P[B(n, p, 1) ≥ 2k − 1] ≥ P[B(n, p, 0) ≥ 2k]

and
P[B(n, p, 0) ≥ 2k] ≥ P[B(n, p, 1) ≥ 2k + 1].

Proof. We induct on n. For n = 2 it is easy to check that both inequali-
ties hold true, so suppose that both inequalities hold true for all positive
integers that are ≤ n − 1. Let q = 1 − p. The fact that 1 − 2q = −1 + 2p
and the symmetry of the binomial distribution imply that it is enough to
check the inequalities for p ∈ (0, 1/2]. In order to simplify notation, set
Xn = B(n, p, 0) and Yn = B(n, p, 1). From Lemma 4.2.18 and Lemma 4.2.19
we know that

P[Yn ≥ 2i− 1] =
pαn−1

βn
P[Xn−1 ≥ 2i− 2] +

(1− p)βn−1

βn
P[Yn−1 ≥ 2i− 1],

P[Xn ≥ 2i] =
(1− p)αn−1

αn
P[Xn−1 ≥ 2i] +

pβn−1

αn
P[Yn−1 ≥ 2i− 1].

and that

P[Yn ≥ 2i+ 1] =
pαn−1

βn
P[Xn−1 ≥ 2i] +

(1− p)βn−1

βn
P[Yn−1 ≥ 2i+ 1].

Since p ≤ 1/2 it is easy to check that

p

βn
≤ 1− p

αn
and

p

αn
≤ 1− p

βn
.
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Hence
P[Yn ≥ 2i− 1] ≥ P[Xn ≥ 2i]

if and only if

P[Yn−1 ≥ 2i− 1] · βn−1 ·
(

1− p
βn
− p

αn

)
≥

P[Xn−1 ≥ 2i] · αn−1 ·
(

1− p
αn
− p

βn

)
− pαn−1

βn
· PXn−1 = 2i− 2]

Elementary calculations, and the fact that αn = p+ (1− 2p)αn−1, imply

βn−1 ·
(

1− p
βn
− p

αn

)
= αn−1 ·

(
1− p
αn
− p

βn

)
and the result follows from the inductional hypothesis. Similarly,

P[Xn ≥ 2i] ≥ P[Yn ≥ 2i+ 1]

if and only if

P[Xn−1 ≥ 2i] · αn−1 ·
(

1− p
αn
− p

βn

)
≥

P[Yn−1 ≥ 2i+ 1] · βn−1 ·
(

1− p
βn
− p

αn

)
− pβn−1

αn
· P[Yn−1 = 2i− 1].

Elementary calculations, and the fact that αn = p+ (1− 2p)αn−1, imply

αn−1 ·
(

1− p
αn
− p

βn

)
= βn−1 ·

(
1− p
βn
− p

αn

)
and, once again, the inductional hypothesis finishes the proof.

As a corollary we obtain the following result that will be used in our anal-
ysis of colored coin tosses. Recall that a random variable X is said to be
stochastically larger than another random variable Y , denoted byX ≥st Y ,
if P[X ≥ t] ≥ P[Y ≥ t], for all t.

Corollary 4.2.22. Let p1 ≥ p2 ≥ p be three real number from (0, 1) and fix a
positive integer n. Then

B(1, p1) +B(n, p,B(1, p1)) ≥st B(1, p2) +B(n, p,B(1, p2))

and

B(1, p1) +B(n, p, 1−B(1, p1)) ≥st B(1, p2) +B(n, p, 1−B(1, p2)).
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Proof. We only prove the first inequality, the other can be proved similarly.
Set X1 = B(1, p1) +B(m, p,B(1, p1)) and X2 = B(1, p2) +B(m, p,B(1, p2)).
We want to prove that, for every even integer, say 2k, in {0, 1, . . . , n}, we
have P[X1 ≥ 2k] ≥ P[X2 ≥ 2k]. This inequality is equivalent to

p1 · P[B(n, p, 1) ≥ 2k − 1] + (1− p1) · P[B(n, p, 0) ≥ 2k] ≥
p2 · P[B(n, p, 1) ≥ 2k − 1] + (1− p2) · P[B(n, p, 0) ≥ 2k]

and the later holds true if and only if

P[B(n, p, 1) ≥ 2k − 1] ≥ P[B(n, p, 0) ≥ 2k].

Lemma 4.2.21 finishes the proof.

The following result gives a lower on a median of the random variables
A(n, p) and P (n, p). Recall that a median of a random variable, Y , is any
number µ satisfying P [Y ≥ µ] ≥ 1/2 and P [Y ≤ µ] ≥ 1/2. Notice that this
µ might not be unique. By abuse of notation, we will denote any median
of Y by Med(Y ).

Lemma 4.2.23. Fix a p ∈ (0, 1) and a positive integer n. Then a median of a
A(n, p) random variable is ≥ (n − 1)p − 1. Similarly, a median of a P (n, p)
random variable is ≥ (n− 1)p− 1.

Proof. We prove the result forA(n, p). A similar argument works for P (n, p).
For any even k, we have

P[A(n, p) ≥ k] = P[B(n− 1, p) ≥ k − 1].

Now it is well known (see [28]) that a median of a B(n − 1, p) random
variable is ≥ b(n − 1)pc. If b(n − 1)pc is odd, then a median of A(n, p) is
≥ b(n− 1)pc + 1 ≥ (n− 1)p. If b(n− 1)pc is even, then a := b(n− 1)pc − 1
is odd and is such that P[B(n− 1, p) ≥ a] ≥ 1/2. Thus a median of A(n, p)
is ≥ b(n− 1)pc ≥ (n− 1)p− 1.

We also mention an important theorem, obtained by Hoeffding (see [26]),
that will be used in the next section.

Theorem 4.2.24. If I = {p1, . . . , pn} is a set of parameters in (0, 1), then

P[b ≤ H(I) ≤ c] ≥ P[b ≤ B(n, p̄) ≤ c], when 0 ≤ b ≤ np̄ ≤ c ≤ n,

where p̄ = 1
n

∑n
i=1 pi.
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The following result is well known (see [48]). We include a proof for the
sake of completeness.

Lemma 4.2.25. Let I = {p1, . . . , pn} and J = {q1, . . . , qn} be sets of parameters
in (0, 1) such that pi ≥ qi, for all i = 1, . . . , n. ThenH(I) ≥st H(J)

Proof. Since pi ≥ qi for all i, it follows that qi = qi
pi
pi and ri := qi

pi
≤ 1.

Begin by tossing n coins, ci, i = 1, . . . , n, such that coin ci has probability
of success pi. Let H be the number of successes. Then H ∼ H(I). Now
replace each coin ci that was a success, by the outcome of an independent
coin c∗i that has probability of success ri. The final number of successes,H ′,
is distributed like an H(J) random variable, by independence. If H ′ ≥ t,
then H ≥ t and thus P[H ′ ≥ t] ≤ P[H ≥ t], as required.

For a given set of parameters, I = {p1, . . . , pn}, let p0 = min1≤i≤n pi and de-
note by I0 = {p0, . . . , p0} the set consisting of n copies of p0. The following
holds true.

Lemma 4.2.26. For the sets I and I0 defined above and any probability vector π,
we have

E(I, π) ≥st E(n, p0) and O(I, π) ≥st O(n, p0).

Proof. We only consider the case E(I, π) ≥st E(I0), the other being similar.
Notice that, for an even k, we have

P[E(I) ≥ k] =
n∑
i=1

πi · P[H(I \ {pi}) ≥ k − 1].

By the previous lemma we have H(I \ {pi}) ≥st H(I0 \ {p0}), for each
i = 1, . . . , n. Hence P[H(I \ {pi}) ≥ k − 1] ≥ P[H(I0 \ {p0}) ≥ k − 1]. This
gives that

P[E(I, π) ≥ k] ≥ P[H(I0 \ {p0}) ≥ k − 1] = P[E(n, p0) ≥ k],

as required.

We end with two results on Bernoulli random variables that will be used
in the next subsection.

Lemma 4.2.27. Let p ∈ (0, 1) and suppose thatXi, i = 1, . . . , s are {0, 1}-valued
random variables such that P[X1 = 1] ≥ p and

P[Xi = 1|X1, . . . , Xi−1] ≥ p, for all i = 2, . . . , s. (4.2)
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Then Σs := X1 + · · ·+Xs is stochastically larger than aB(s, p) random variable.
Furthermore, it is possible to define random vectors U = (U1, . . . , Us) and V =
(V1, . . . , Vs) on a common probability space so that the law of (U1, . . . , Us) is the
same as the law of (X1, . . . , Xs), each coordinate of V is an independent Ber(p)
random variable and

Vi ≤ Ui, for all i = 1, . . . , s, with probability 1.

Proof. We want to prove that

P[Σs ≥ t] ≥ P[B(s, p) ≥ t], for all t ∈ {0, 1, . . . , s}.

Note that every outcome of the random variables Xi, i = 1, . . . , s is an s-
tuple (x1, . . . , xs) ∈ {0, 1}s. We associate a binary vector b = (b1, . . . , bs) to
every outcome of Xi, i = 1, . . . , s in such a way that the number of 1’s in b
has the same distribution as a B(s, p) random variable.
To do so, begin by drawing from X1. Let q1 = P[X1 = 1]. If X1 = 0, then
set b1 = 0. If X1 = 1, then let b1 be the outcome of a 0/1 coin that shows
up 1 with probability p

q1
. Note that b1 = 1 with probability p. Now, for i =

2, . . . , s do the following: Suppose that we have sampled from X1, ..., Xi−1

and thus have formed an (i− 1)-tuple (x1, ..., xi−1). Let qi = P[Xi = 1|X1 =
x1, ..., Xi−1 = xi−1] ≥ p and now sample from Xi. If Xi = 0, then set bi = 0.
If Xi = 1, then let bi be the outcome of a 0/1 coin that shows up 1 with
probability p

qi
. Notice again that bi = 1 with probability p and this does not

depend on the previous values b1, ..., bi−1, by (4.3). Thus the number of 1’s
in the vector b = (b1, . . . , bs) is binomially distributed. If the vector b has
more than t 1’s, then also the vector (X1, ..., Xn) has more than t 1’s and
first statement of the lemma follows. As xi ≥ bi, for all i = 1, . . . , s, the
second statement is immediate.

The next result can be proved in a similar way.

Lemma 4.2.28. Let p ∈ (0, 1) and suppose thatXi, i = 1, . . . , s are {0, 1}-valued
random variables such that P[X1 = 1] ≤ p and

P[Xi = 1|X1, . . . , Xi−1] ≤ p, for all i = 2, . . . , s. (4.3)

Then Σs := X1+· · ·+Xs is stochastically smaller than aB(s, p) random variable.
Furthermore, it is possible to define random vectors U = (U1, . . . , Us) and V =
(V1, . . . , Vs) on a common probability space so that the law of (U1, . . . , Us) is the
same as the law of (X1, . . . , Xs), each coordinate of V is an independent Ber(p)
random variable and

Vi ≥ Ui, for all i = 1, . . . , s, with probability 1.
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4.2.3 Biased Colored Coin Tosses

Take n biased coins that are colored with n colors. Let p ∈ (0, 1) be the bias
of the coins. Recall that for each array of coins, one can draw its depen-
dency graph,G = (V,E), whose vertex set, V , correspond to the colors and
whose edge set, E, correspond to the coins, so that |V | = |E| = n. Recall
also that G might not be connected and that a toss of the coins gives rise
to an orientation on the edges of G. As a consequence, if XG is the number
of different colors after the toss, then XG = j corresponds to the fact that
j vertices have positive in-degree, which in turn means that n− j vertices
must have in-degree 0. Note that none of the vertices of zero in-degree can
be adjacent. Hence if ZG is the number of vertices of zero in-degree after a
toss then XG = n− ZG.

Some more notation is needed. For every vertex v of the graph, let Pv be
the set of edges incident to v that are oriented towards v with probabil-
ity p. Denote also by Qv the set of edges incident to v that are oriented
towards v with probability q := 1 − p. Set xv = |Pv| and yv = |Qv|. Thus
xv + yv = deg(v). After each toss, denote by x−v the number of edges in
Pv that are oriented towards v, and by y−v the number of edges in Qv that
are oriented towards v. Without loss of generality we may assume that
0 < p < 1

2
. The case p = 1

2
has already been considered.

In this section we discuss, though not solve entirely, the following.

Problem 4.2.29. For a fixed positive integer, n, find a graph, G0, on n vertices
and n edges such that XG0 is stochastically larger than XG, for any other graph
G on n vertices and n edges. If such a graph does not exist, find an upper bound
on the t-th quantile of XG, for any G.

By t-th quantile of XG it is understood any number µt such that P[XG ≥
µt] ≥ 1

t
and P[XG ≤ µt] ≥ 1− 1

t
. Note that this µt might not be unique and

that the 2-nd quantile is just the median of XG.
We fix the integer n for the rest of this section. It will always refer to the
number of vertices (= number of edges) of the graph that is under consid-
eration.
Note that if XG is stochastically larger, then XG has the largest mean. So
in order to make an educated guess on the graph, one might first try to
maximize E[XG].

Lemma 4.2.30. The maximum value of E[XG] is n(1 − p + p2). This value is
achieved by a set of coins that uses every color twice and every color in this set
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appear exactly once in a p-side of a coin and exactly once in a q-side of some other
coin.

Proof. Fix a graphG and for every v ∈ G denote byCv the event that vertex
v gets positive in-degree after a toss. Then

E[XG] =
∑
v∈G

P[Cv] =
∑
v∈G

(1− (1− p)xvpyv).

The arithmetic-geometric mean inequality implies that∑
v∈G

(1− p)xvpyv ≥ n · (
∏
v∈G

(1− p)xvpyv)1/n = np(1− p),

since
∑

v xv =
∑

v yv = n. We conclude that E[XG] ≤ n − np(1 − p) =
n(1− p+ p2). The second statement is immediate.

Notice that the graph G for which the mean of XG is maximum is a union
of cycles. Note also that the function f(p) = 1− p+ p2, p ∈ (0, 1) is convex
and attains its minimum at p = 1

2
. This means that the maximum mean is

minimized when p = 1
2
.

Lemma 4.2.31. Suppose that G is a (possibly disconnected) graph on n vertices
and m edges. Fix some orientation on the edges and let OG, EG be the number
of odd and even in-degree vertices respectively. Then the parity of EG equals the
parity of m− n.

Proof. See lemma 4.2.1.

A similar result holds for the vertices v for which yv is even.

Lemma 4.2.32. Suppose thatG is the (possibly disconnected) graph on n vertices
and m edges that corresponds to a set of coins. Let AG be the number of vertices
for which yv is even and ΠG the number vertices for which yv is odd. Then the
parity of AG is the same as the parity of m− n.

Proof. Since ∑
v

yv = m

it follows that ΠG has the same parity as m. Now the fact that AG = n−ΠG

gives the result.

Lemma 4.2.3 holds true for any oriented graph. We rewrite it here, giving
a different proof. Denote by Qt(Y ) a t-th quantile of the random variable
Y .
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Lemma 4.2.33. For any oriented graph, G, on n vertices and n edges, we have

ZG ≥
1

2
EG.

A lower bound on Qt(EG) gives an upper bound on Qt(XG). More precisely,

Qt(XG) ≤ n− 1

2
Qt(EG).

Proof. Let YG = EG − ZG. For i = 1, 2, . . . , set Ii := {v ∈ G : deg−(v) = i}.
From the in-degree sum formula we have that

n =
∑
v∈G

deg−(v) =
∑
i≥1

i|Ii|.

In addition, n = ZG +
∑

i≥1 |Ii|. Hence

n− n =
∑
i≥1

i|Ii| −
∑
i≥1

|Ii| − ZG

=
∑
i≥1

(i− 1)|Ii| − ZG

≥ YG − ZG
= EG − 2ZG,

which implies that 2ZG ≥ EG, thus proving the first statement. From this
we can conclude that

XG = n− ZG ≤ n− 1

2
EG,

and so Qt(XG) ≤ n− 1
2
Qt(EG), as required.

The idea behind looking at the number of vertices of even in-degree is the
following. Recall that we are interested in determining the graph, G, on n
vertices and n edges for which

P[XG ≥ t] ≥ P[XG′ ≥ t],

for all t and all other graphs G′ on n vertices and n edges. Since XG =
n− ZG, the problem is equivalent to determining the graph G for which

P[ZG ≥ t] ≤ P[ZG′ ≥ t],

for all t and all other graphs,G′. Thus, equivalently, we may find the graph,
G, for which ZG is stochastically smaller. From the previous lemma we
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know that ZG ≥ 1
2
EG, for all graphs G. This means that if we can deter-

mine the graph G for which EG is stochastically smaller and if for this
graph ZG = 1

2
EG holds true, then G will also be the graph for which XG is

stochastically larger. Notice that a graph G for which ZG = 1
2
EG is a union

of cycles. Moreover, even if the stochastically smaller graph, G, satisfies
ZG >

1
2
EG, lower bounds on the quantiles of 1

2
EG will give upper bounds

on the quantiles of XG′ , for any graph, G′, with n vertices and n edges.
Furthermore, in case G is connected, one can ”estimate” the distribution
of EG, in a way that we make precise in Theorem 4.2.8 below. To do so we
will use again the following version of 4.2.7. Recall that a leaf in a tree is a
vertex of degree 1.

Lemma 4.2.34. Let T be a tree on n vertices and fix any edge f ∈ T . Then
there exists a labeling, v1, . . . , vn, of the vertices and a labeling, e1, . . . , en−1, of
the edges of T such that
(i) edge f has label en−1;
(ii) the only edge incident to vertex vi, i = 1, . . . , n − 1, among the edges with
labels {ei, ei+1, . . . , en−1} is the edge with label ei.

Proof. The statement is clearly true if n = 2, so suppose that n > 2. Fix
a tree, T , on n > 2 vertices and choose any of its edges. Label this edge
en−1 and label its endpoints vn and vn−1 arbitrarily. Notice that not both
vn and vn−1 can be leaves. If vn or vn−1 is a leaf, say vn, then consider the
vertex set L of leaves in T except vn and label them v1, v2, . . . , v`. If vn is
not a leaf, then consider all leaves of T and label them in the same manner.
Note that L is not empty even if vn is a leaf since any tree with at least two
vertices has at least two leaves. Now label each edge incident to vj with
ej , for j = 1, 2, . . . , `. Now consider the tree T ′ := T \ {v1, v2, . . . , v`} and
repeat this process on the leaves of T ′ again sparing vn or vn−1 if it is a leaf
of T ′. We keep on labeling the leaves and edges of the subtrees until we
end up with the graph consisting of the edge en−1 only. It is evident that
the labeling satisfies the required condition.

Note that we can label any edge of T with en−1 and any endpoint of en−1

with vn. We will call a labeling on the vertices and edges of a tree, a good
labeling if it satisfies the conditions of Lemma 4.2.34. Notice also that if we
are given a good labeling of a tree and we interchange the labels vn and
vn−1 then we get another good labeling of the same tree. We collect this
observation in the following.

Lemma 4.2.35. Let T be a tree on n vertices and fix two adjacent vertices u1, u2

of T . Suppose that T has a good labeling such that u1 has label vn−1 and u2 has
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label vn. Then the labeling that interchanges the labels of u1 and u2 and keep all
other labels the same is also a good labeling.

Note that the previous lemma says that for any edge f = (u,w) of T there
is a one-to-one correspondence between good labelings for which u gets
the label vn and w gets label vn−1 and good labelings for which u gets the
label vn−1 and w gets label vn. We will also need the following observation
on the spanning trees of connected graphs.

Lemma 4.2.36. Suppose that G = (V,E) is a connected graph and fix any edge
e ∈ E. Then there exists a spanning tree, T , of G such that e is an edge of T , i.e.
e ∈ T .

Proof. Let T = (V,E ′) be a spanning tree of G. If e ∈ E ′ then we are done,
so suppose that e /∈ E ′. This means that if we add e to E ′ then we create a
cycle. Now note that if we delete any edge, e′ 6= e, from this cycle we get a
spanning tree T ′ of G for which e belongs to T ′.

In the following result we compute the probability that a certain vertex
has even in-degree.

Lemma 4.2.37. If v ∈ V is such that yv is even, then

P[deg−(v) even] = P[B(deg(v), p) even].

If v ∈ V is such that yv is odd, then

P[deg−(v) even] = P[B(deg(v), p) odd]

Proof. We only prove the first equality. The second can be proved similarly.
Note that deg−(v) is even if and only if both x−v and y−v are even, or both
are odd. Thus P[deg−(v) even] equals

P[x−v even] · P[y−v even] + P[x−v odd] · P[y−v odd]

or, equivalently, to

P[B(xv, p) even] ·P[B(yv, 1− p) even] +P[B(xv, p) odd] ·P[B(yv, 1− p) odd]

and thus equal to

1

2
(1 + (1− 2p)xv) · 1

2
(1 + (1− 2q)yv) +

1

2
(1− (1− 2p)xv) · 1

2
(1− (1− 2q)yv).
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Now from the fact that q = 1 − p and yv is even we can conclude that the
last sum is the same as
1

2
(1 + (1− 2p)xv) · 1

2
(1 + (1− 2p)yv) +

1

2
(1− (1− 2p)xv) · 1

2
(1− (1− 2p)yv)

which in turn is equal to

1

2
+

1

2
(1− 2p)deg(v)

and proves the lemma.

We will also need the following version of lemma 4.2.6. Recall that we
assume p ≤ 1/2.

Lemma 4.2.38. Fix some vertex v of the graph, fix an edge, e, that is incident to
v and let C be the set consisting of all edges edges incident to v except e. Let C−

denote the number of edges from C that are oriented towards v after a toss. Then

P[deg−(v) even|C−] ≥ p.

Proof. Suppose the coins corresponding to C have been flipped. Let C−

be the number of edges in C which are oriented towards v after the toss.
Suppose that the edge e corresponds to a coin that is oriented towards v
with probability p. The other case is similar. Then

P[deg−(v) even|C−] = (1− p) · 1{C− even} + p · 1{C− odd}

= p+ (1− 2p) · 1{C− even}

≥ p,

as required. Note that in case p = 1
2

the last inequality is in fact equality.

For every vertex v ∈ G, denote by θv the probability that the in-degree of
v is even. Note that, by Lemma 4.2.37, θv is either P[B(deg(v), p) even] or
P[B(deg(v), p) odd]. Thus θv ≥ p, for all v ∈ V .

We now have all the necessary tools to ”estimate” the distribution of EG
in the case of a connected graph G on n vertices and m edges.

Theorem 4.2.39. Suppose that G = (V,E) is a connected graph on n vertices
and m ≥ n − 1 edges. Let dv be the degree of vertex v, πv := dv

2m
and π be the

probability vector with coordinates πv, v ∈ V . Assume p < 1 − p and let {p}n
be the set consisting of n copies of p. Then, if m − n is even, EG is stochastically
larger than a E({p}n, π) random variable. Ifm−n is odd, thenEG is stochastically
larger than a O({p}n, π) random variable.
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Proof. Recall that for every edge we toss a coin to decide on its orientation.
All these m coins, ci, i = 1 . . . ,m, are independent. Since the order with
which we toss the coins doesn’t matter we may, equivalently, suppose that
we toss the coins in the following way: we choose a coin, say coin ci, with
probability 1

m
, flip the remainingm−1 coins in any way we want and then

toss the coin ci. Tossing this way does not affect the distribution of EG but
allows us to use Lemma 4.2.34. More precisely, we may suppose that once
the coin ci is chosen, then we toss the remaining m − 1 coins according to
a good labeling, v1, . . . , vn; e1, . . . , en−1, of a spanning tree T of G that con-
tains the edge corresponding to ci, say this edge is fi = [u,w], and with the
good labeling of T chosen in such a way that the edge fi gets label en−1; we
can use this specific good labeling of T and first toss the coins correspond-
ing to edges that do not belong to T in any way we like and then toss the
coins that correspond to edges e1, . . . , en−1 in that specific order. This way
the coin ci is flipped last and we do not affect the distribution of EG. Note
that, by Lemma 4.2.36, there exists a spanning tree, T , ofG containing edge
fi and we can always construct a good labeling of T for which fi gets label
en−1, by Lemma 4.2.34. Furthermore, the edge fi has two endpoints, u,w,
and the probability that vertex u has label vn equals 1/2, by Lemma 4.2.35.
Since we fix coin ci with probability 1/m it follows that, for every vertex
v ∈ V , the probability that we toss the coins according to a good labeling
of a spanning tree T of G for which vertex v gets label vn equals dv

2m
.

So let T be a spanning tree of G with a good labeling and recall that we
are going to do the following: first we randomly orient the edges that do
not belong to T and then randomly orient the edges e1, e2, . . . , en−1 in that
order. Note that the probability that the vertex with label v1 has even in-
degree equals θv1 ≥ p. The fact that T has a good labeling implies that,
for j = 1, . . . , n − 1, once the edge ej is given an orientation, then the
parity of vertex vj is determined. Lemma 4.2.38 gives that once the parity
of vertex vj is determined, the probability that vertex vj+1 has even in-
degree is ≥ p. Only the parity of the vertex with label vn is deterministic
given the parities of the previous vertices. Let δi be the indicator of the
event {deg−(vi) is even}, for i = 1, 2, . . . , n. Thus EG = δ1 + · · · + δn and
each δi, i = 1, . . . , n− 1 is stochastically larger than a B(1, p) random vari-
able. From Lemma 4.2.27 we know that there exist random binary vectors
U = (U1, . . . , Un−1) and V = (V1, . . . , Vn−1) defined on a common proba-
bility space such that the law of U is the same as the law of (δ1, . . . , δn−1),
each Vi is an independent Bernoulli Ber(p) random variable and

n−1∑
i=1

Ui ≥
n−1∑
i=1

Vi with probability 1.
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In addition we know that
∑n−1

i=1 Vi ∼ B(n−1, p). To end the proof, suppose
that m − d is even. The other case is similar. Thus EG is even as well and
EG ∼ U1 + · · ·+Un−1 + δn, where δn = 1 if U1 + · · ·+Un−1 is odd and δn = 0
if U1 + · · ·+Un−1 is even. Now let γn = 1 if V1 + · · ·+Vn−1 is odd and γn = 0
if V1 + · · ·+ Vn−1 is even, in order to guarantee that V1 + · · ·+ Vn−1 + γn is
always even. Since U1 + · · ·+Un−1 ≥ V1 + · · ·+Vn−1 with probability 1, we
also have that U1 + · · ·+ Un−1 + δn ≥ V1 + · · ·+ Vn−1 + γn with probability
1 and the result follows.

Note that in case p = 1
2

Lemma 4.2.38 gives that once the parity of vertex vj
is determined, the probability that vertex vj+1 has even in-degree is equal
to 1

2
, and so the parity of vj+1 is independent of the parity of v1, v2, . . . , vj−1.

Only the parity of vn is deterministic given the parities of the previous
vertices. This implies that the random variables δi, i = 1, . . . , n − 1 in the
proof of Theorem 4.2.39 satisfy δ1 + · · · + δn−1 =st B(n − 1, 1/2) and the
following result (which is Theorem 4 in [43]) follows.

Corollary 4.2.40. Suppose that p = 1
2
. If m − n is even, then EG has the same

distribution as a A(n, 1/2) random variable. If m − n is odd, then EG has the
same distribution as a P (n, 1/2) random variable.

Using Lemma 4.2.23 and Lemma 4.2.33 we have the following result on
XG, in case G is connected.

Corollary 4.2.41. Let G be a connected loop-less multi-graph on n vertices and
n edges. Then a median of XG is ≤ n− 1

2
(n− 1)p+ 1

2
.

We end this subsection by proving the following result on a median ofXG.

Theorem 4.2.42. For any graph G on n vertices and n edges, a median of XG is
≤ n− p2

1+(1−2p)2n+ 3
4
.

Recall that the dependency graph G = (V,E) of the colored coins might
not be connected. Suppose it consists of t connected components,G1, . . . , Gt,
each having ni vertices andmi edges such that

∑
ni = n and

∑
mi = n. Let

alsoEGi
be the number of vertices of even in-degree in each component, af-

ter a toss. Hence the total number of vertices of even in-degree after a toss,
EG is equal to the independent sumEG1 +· · ·+EGt . As |V | = |E| = n, it fol-
low from Lemma 4.2.1 that EG is even. By Theorem 4.2.39, the distribution
of eachEGi

is stochastically larger than aA(·, p) or P (·, p) random variable.
More precisely, suppose that the first t1 components of G correspond to a
A(·, p) random variable and the remaining t2 components correspond to a
P (·, p) random variable, so that t1 + t2 = t and t2 is even. Let {p}k denote
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the set consisting of k parameters that are all equal to p. From Theorem
4.2.39 we know that

EGi
≥st A(ni, p), for i = 1, . . . , t1

and
EGi
≥st P (ni, p), for i = t1 + 1, . . . , t.

Hence, the total number of even in-degree vertices, EG, is stochastically
larger than the independent sum

t1∑
i=1

A(ni, p) +
t∑

i=t1+1

P (ni, p).

Since p ∈ (0, 1/2] we have β({p}ni−1) ≥ p and α({p}ni−1) ≥ p and thus
Corollary 4.2.22 implies that

A(ni, p) ∼ B(1, β({p}ni−1)) +B(ni − 1, p, B(1, β({p}ni−1)))

≥st B(1, p) +B(ni − 1, p, B(1, p))

and

P (ni, p) ∼ B(1, α({p}ni−1)) +B(ni − 1, p, 1−B(1, α({p}ni−1)))

≥st B(1, p) +B(ni − 1, p, 1−B(1, p))

and so EG is stochastically larger than

t1∑
i=1

B(1, p) +B(ni − 1, p, B(1, p)) +
t∑

i=t1+1

B(1, p) +B(ni − 1, p, 1−B(1, p))

This independent sum takes even values (recall t2 is even) and, by Lemma
4.2.16 and Lemma 4.2.17, is equivalently described as follows. Toss t inde-
pendent 0/1 coins, ci, i = 1, . . . , t, each having probability p of landing on
1. Let Γ = (γ1, . . . , γt) ∈ {0, 1}t be a particular outcome of the toss. This is a
binary vector of length t. If BΓ is the number of 1’s in this vector, then add
BΓ to the outcome of the independent sum

H|Γ :=

t1∑
i=1

B(ni − 1, p, γi) +
t∑

i=t1+1

B(ni − 1, p, 1− γi),

thus forming the sum BΓ + H|Γ. Note that BΓ ∼ B(t, p). Now each par-
ticular vector Γ can be equivalently obtained in the following way. Fist
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toss a coin with probability of success 1
2
(1 + (1 − 2p)t). If the outcome is a

success, then arrange t independent 0/1 coins (whose probability of land-
ing on 1 equals p) on a line and toss them until you see an even number
of 1’s. If Γe is the resulting binary vector and Be is the number of 1’s in
Γe, then Be ∼ B(t, p, 0) and BΓ + H|Γ equals Be + H|Γe with probability
1
2
(1 + (1 − 2p)t). If the outcome is a failure, then toss t independent 0/1

coins until you see an odd number of 1’s. If Γo is the resulting binary vector
and Bo is the number of 1’s in Γo, then Bo ∼ B(t, p, 1) and BΓ +H|Γ equals
Bo +H|Γo with probability 1

2
(1 − (1 − 2p)t). Hence BΓ +H|Γ is a mixture

of the sums Be +H|Γe and Bo +H|Γo.

Lemma 4.2.43. A median of BΓ +H|Γ is ≥ np̄− 3
2
, where p̄ := 2p2

1+(1−2p)2 .

Proof. First toss a coin to decide whether you take a vector, Γe, with an
even number of 1’s or a vector, Γo, with an odd number of 1’s. Suppose
that we end up with a vector Γe. The other case is similar. This vector gives
rise to the sum Be +H|Γe. Then Be ∼ B(t, p, 0) and each term inH|Γe is of
the form B(ni − 1, p, 0) or B(ni − 1, p, 1). Apply lemmata 4.2.18 and 4.2.19
repeatedly to write each term of the sum Be +H|Γe as a mixture of inde-
pendent sums consisting only of terms H(J, 0) and H(J, 1) for which |J |
equals 2 or 3. Thus the initial sum, Be +H|Γe, is a mixture of independent
sums of terms H(J, 0) and H(J, 1) for which |J | equals 2 or 3. Suppose
that Ξ is a particular independent sum consisting of a terms of the form
B(2, p, 0), b terms of the form B(2, p, 1), c terms of the form B(3, p, 0) and
d terms of the form B(3, p, 1). Thus 2a + 2b + 3c + 3d = n. Lemma 4.2.20
implies that

B(2, p, 0) ∼ 2 ·B (1, p̄) , B(2, p, 1) ∼ B(1, 1),

where p̄ = 2p2

1+(1−2p)2 , and that

B(3, p, 0) ∼ 2 ·B (1, p̂) , B(3, p, 1) ∼ 1 + 2 ·B (1, p̃) ,

where p̂ = 6p2(1−p)
1+(1−2p)3 and p̃ = 2p3

1−(1−2p)3 . Denote

Ψ := B(a, p̄) +B(c, p̂) +B(d, p̃).

Then Ξ = 2Ψ + b + d and so a median of Ξ can be estimated via a median
of Ψ. Hence a median of Ξ is ≥ np̄ − 3

2
if and only if a median of Ψ is

≥ np̄−b−d
2
− 3

4
. Using the fact the 2a+ 2b+ 3c+ 3d = n we can write

np̄− b− d
2

= ap̄+ b

(
p̄− 1

2

)
+ c

3p̄

2
+ d

(
3p̄

2
− 1

2

)
:= π∗.
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Note that p̄ − 1
2
≤ 0. As 0 ≤ p ≤ 1/2, elementary calculations show that

p̂ ≥ 3p̄
2

and p̃ ≥ 3p̄
2
− 1

2
. This implies that

E[Ψ] = ap̄+ cp̂+ dp̃ ≥ π∗.

From Hoeffding’s result (Theorem 4.2.24) we know that

P
[
Ψ ≥ π∗ −

3

4

]
≥ P

[
B(a+ c+ d, p0) ≥ π∗ −

3

4

]
,

where p0 = 1
a+c+d

(ap̄ + cp̂ + dp̃) and so it is enough to show that a median
of a B(a+ c+d, p0) random variable is≥ π∗− 3

4
. Now, it is well known (see

[24]) that the smallest uniform (with respect to both parameters) distance
between the mean and a median of a binomial distribution is ≤ ln 2 < 3

4
.

This means that a median of B(a+ c+ d, p0) is ≥ ap̄+ cp̂+ dp̃− 3
4
≥ π∗ − 3

4

and the lemma follows.

The proof of Theorem 4.2.42 is almost complete.

Proof of Theorem 4.2.42. Since EG is stochastically larger than BΓ +H|Γ and
a median of BΓ + H|Γ is ≥ np̄ − 3

2
, we conclude that the median of EG is

≥ np̄− 3
2
. Theorem 4.2.42 follows since, from Lemma 4.2.33, we have

Med(XG) ≤ n− 1

2
Med(EG) ≤ n− n

2
p̄+

3

4
.

We end this section by mentioning that our method works also in case one
is interested in estimating XG from below. Since XG ≥ OG = n−EG, for all
graphs G it is enough to estimate the probability distribution of EG from
above, i.e., to find a random variable that is stochastically larger than EG.
Now we know that θv ≤ 1−p, for all v ∈ V and a modification of the proof
of Theorem 4.2.39 along with Lemma 4.2.28 shows that the following is
true.

Theorem 4.2.44. Suppose that G = (V,E) is a connected multi-graph on n
vertices and m ≥ n − 1 edges. Let dv be the degree of vertex v, set πv := dv

2m
and

let π be the probability vector with coordinates πv, v ∈ V . Assume p < 1− p and
let {1− p}n be the set consisting of n copies of 1− p. Then, if m− n is even, EG
is stochastically smaller than a E({1− p}n, π) random variable. If m− n is odd,
then EG is stochastically smaller than a O({1− p}n, π) random variable.
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4.2.4 Random graphs

In this section we apply our method to the distribution of the number
of vertices with odd degree in random sub-graphs of fixed graphs. More
precisely, let G be any connected graph on n vertices and for each edge of
G toss a coin that shows up tails with probability p, independently for all
edges. If the result of the coin is tails, then keep the edge. If the result
is heads, delete the edge. The distribution of the vertex degree in such
models has been well studied (see [9] for a whole chapter on this topic).
The resulting sub-graph of G that remains after the toss of the coins is
random. Let q = 1− p and denote by On,p(G) the number of vertices of odd
degree in the resulting graph. The following folds true.

Theorem 4.2.45. If 0 ≤ p ≤ 1
2

then the random variable On,p(G) is stochas-
tically larger than a A(n, p) random variable. If 1

2
≤ p ≤ 1, then On,p(G) is

stochastically larger than a A(n, q) random variable.

Proof. The proof is similar to the proof of Theorem 4.2.39, so we only
sketch it. Suppose that 0 ≤ p ≤ 1

2
. The other case is similar. Let T be a

spanning subgraph of G with a good labeling, v1, . . . , vn; e1, . . . , en−1 on
its vertices and edges given by Lemma 4.2.34. By Lemma 4.2.15 we know
that the probability that di := deg(vi) is odd is equal to 1

2
(1 − (1 − 2p)di),

for i = 1, . . . , n. Toss all coins to decide which edges are included in the
sub-graph, except the coins corresponding to the edges ei, i = 1, . . . , n− 1.
Now begin from vertex v1 and toss a coin to decide whether edge e1 is in-
cluded or not. Then proceed to vertex v2 and toss a coin to decide on the
edge e2, and in general, at step j, j = 1, . . . , n − 1 move from vertex j − 1
to vertex j and toss a coin to decide if edge ej is included or not. Let Cj be
the set of edges that are included in the graph and are incident to vj at step
j − 1. As in Lemma 4.2.38, by conditioning on whether |Cj| is even or odd
we conclude that

P[deg(vj) odd|Cj] ≥ p,

Hence the random variable 1{deg(vj) odd}, j = 1, . . . , n − 1, is stochastically
larger than a B(1, p) random variable. Only the parity of vertex vn is de-
terministic, given the parities of the previous vertices. The result follows
from the fact that the degree-sum formula implies that On,p is even.

Notice that in case p = 1
2

we obtain the following result.

Corollary 4.2.46. If p = 1
2

then, for any connected graph G, On,1/2(G) has the
same distribution as a A(n, 1/2) random variable.
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4.2.5 Some applications

Let G = (V,E) be a connected undirected graph and fix T ⊆ V . An orien-
tation of G, is an assignment of direction to each edge of G. An orientation
of G is called T -odd if the vertices in T are the only ones having odd in-
degree. We allow T to be the empty set in which case ∅-odd orientation
simply means that all vertices of G have even in-degree. The following
result is obtained in [19], using induction.

Lemma 4.2.47. A connected graph, G = (V,E), on n vertices and m edges has
a T -odd orientation if and only if |T |+ |E| is even.

Proof. Suppose first that G has a T -odd orientation. Let EG be the number
of even in-degree vertices, OG the number of odd in-degree vertices. From
Lemma 4.2.1 we know that EG ≡ m − n mod 2 and OG ≡ m mod 2. This
implies that OG = |T | ≡ m = |E| mod 2 and so |T | ≡ |E| mod 2, which is
equivalent to |T |+ |E| is even.
On the other hand, fix some set of vertices T such that |T | ≡ |E| mod 2
and consider a random orientation on G obtained by directing each edge
in G independently of the others and with probability 1

2
in each direction.

Let EG, OG be as above. We prove that there is a positive probability that
the vertices of T are the only ones having odd degree. Since EG ≡ m−n ≡
|T | − n mod 2 it follows that n− |T | belongs to the range of EG. The result
follows from Corollary 4.2.40, since P[EG = n− |T |] = 1

2n−1

(
n

n−|T |

)
> 0, and

from the fact that any set, T , of |T | ≡ |E| mod 2 vertices can be such that
all vertices in T have odd in-degree.

We can also deduce a result on enumeration of oriented graphs.

Lemma 4.2.48. Let G = (V,E) be a graph on n vertices and m edges. Then the
number of orientations on the edges of G for which there are exactly t vertices of
even in-degree equals 2m−n+1

(
n
t

)
.

Proof. Let νt be the number of orientations of G having exactly t vertices
of even in-degree. Note that t has to be such that t ≡ m − n mod 2. From
the set of all possible orientations of G, choose one uniformly at random
and let At be the event that the orientation has t vertices of even in-degree.
Then

P[A] =
νt
2m
.

Now consider a random orientation on the edges of G by directing each
edge in G independently of the others and with probability 1

2
in each di-

rection. The result follows since, by Corollary 4.2.40, the probability that
there are t vertices of even in-degree equals 1

2n−1

(
n
t

)
.
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For similar results see [49]. In a similar way, using Corollary 4.2.46, one
can obtain a result on enumeration of labeled graphs. We leave the details
to the reader.

Lemma 4.2.49. The number of labeled graphs on n vertices for which there are
exactly t (where t is even) vertices of odd degree equals 2m−n+1

(
n
t

)
.

Note that the case t = 0 of the previous result appears as problem 16 in §5
of [36].

4.2.6 A question on unimodality and a related conjecture

Suppose that we are given a set of m fair coins that are colored with n dif-
ferent colors, where m ≥ n − 1 and let let G be it’s dependency graph.
Assume that G is connected and denote by XG the number of different
colors that we see after a toss. We saw in the previous sections that every
toss of the coins gives rise to an orientation on the edges of G by directing
each edge e = (uv) towards the color that occurred after the toss. Thus
after each toss, the edges of G get (random) directions. This means that
if XG = j, then n − j vertices of the graph must have in-degree 0. This
observation gives a way to describe the distribution of XG via indepen-
dent sets of vertices of G. By an independent set of a graph it is meant a
set of vertices no two of which are adjacent. Suppose α := α(G) is the
number of vertices in a maximum independent set of G, i.e., the indepen-
dence number of the graph. If all vertices of a maximum independent have
zero in-degree after a toss, then all other vertices (colors) have positive in-
degree. This means that the smallest value that XG can achieve is n − α
and so XG ∈ {n− α, . . . , n}. Now we ask the following.

Question: For which graphs, G, is the distribution of XG unimodal?

The distribution of XG is related to the collection of independent sets in G.
If XG = j, then n− j vertices have in-degree zero and these n− j vertices
form an independent set. That is, XG = j gives rise to an independent set
of vertices in G of cardinality n − j and, in general, there will be many
(different) independent sets of cardinality n − j. So we might also ask the
following.

Question: For j = 0, 1, . . . , n, denote by αj(G) the number of independent
set of vertices of G of cardinality j. Is the sequence {αi(G)}nj=0 unimodal?
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This problem is considered in [1] where it is proven that the answer to
the last question is no, for general graphs. However, it remains an open
question to determine whether the question is true in the case of trees. In
[1] one can find the following.

Conjecture 4.2.50 (Alavi, Erdős, Malde, Schwenk, 1987). If G is a tree, then
the independent set sequence {αi(G)}nj=0 is unimodal.

Our conjecture is that the same is true for the distribution of XG.

Conjecture 4.2.51. If G is a tree, then the distribution of XG is unimodal.



Appendix A

Erdős-Ko-Rado Theorem

Erdős-Ko-Rado theorem is well known. It has been proved and general-
ized in many different ways. See [21] for a collection of eight different
proofs. The latest proof appears in [20]. In this appendix we provide a
proof of EKR that uses the idea of Katona (see [29]) on cyclic permutations.
Our proof only differs from Katona’s proof in the counting argument that
provides the bound on the probability that a randomly chosen s-subset
belongs to a given intersecting family.

Let [n] := {1, . . . , n} and denote by
(

[n]
s

)
the set of all s-subsets of [n]. A

family F ⊆
(

[n]
s

)
is called intersecting if F ∩ F ′ 6= ∅ holds for all F, F ′ ∈ F .

Theorem A.1 Suppose that n ≥ 2s and F ⊆
(

[n]
s

)
is an intersecting family.

Then

|F| ≤
(
n− 1

s− 1

)
.

Proof. Write n = ks+ i, where k ≥ 2 and i ∈ {0, 1, . . . , s−1}. We prove that
the probability, π, that a randomly chosen s-set belongs to F is at most s

n
.

The result then follows since

π =
|F|(
n
s

) ≤ s

n
.

Now choosing an s-set uniformly at random is equivalent to cyclically ar-
ranging the n vertices, uniformly at random, and then choosing an interval
of length s from that cyclic arrangement, uniformly at random. We claim
that, for any such cyclic arrangement, there are i intervals of length s on
the circle that do not belong to F . To see this, suppose that there are at
most i − 1 intervals of length s that do not belong to F . This means that
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there are at least ks+ 1 remaining intervals all belonging to F and so form
an intersecting family. For all pairs I, J of the remaining intervals consider
the distance between the anti-clockwise endpoint of I and the clockwise
endpoint of J . The fact that this family is intersecting implies that the max-
imum of these distances is≤ 2s−1. Hence these intervals consist of at most
2s− 1 vertices and so ks+ 1 ≤ 2s− 1, a contradiction.
We finish the proof by showing that, for any cyclic arrangement of the ver-
tices, there are at most s intervals of length s that belong toF . So fix a cyclic
arrangement. We may identify the vertices in this arrangement with Zn
and identify every interval of length s on this circle with its anti-clockwise
endpoint. Let Im1 , . . . , Imi

be i intervals that do not belong to F . Choose
an element a1 ∈ Zn \ {m1, . . . ,mi} and consider the set V := {a1, . . . , aks},
where, for j = 2, . . . , ks, aj is the first element of Zn \ {m1, . . . ,mi} that is
located after aj−1 in the clockwise motion. Then

Ia1 ∪ Ias+1 ∪ · · · Ia(k−1)s+1

is a disjoint union and so at most one of these intervals belongs to F . The
same argument applies to

Iaj ∪ Ias+j
∪ · · · Ia(k−1)s+j

for 1 ≤ j ≤ s

and so at most s of the intervals Iaj+`s
belong to F , where 1 ≤ j ≤ s and

0 ≤ ` ≤ k − 1. For the given restrictions on j and ` we find all intervals of
Zn except Im1 , . . . , Imi

. But these intervals do not belong to F .
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Sum of variances of order
statistics

This appendix is devoted to the proof of Lemma 4.1.8, i.e. to the inequality

n∑
i=1

Var(X(i)) ≤
n∑
i=1

Var(Xi),

whereX1, . . . , Xn are (possibly dependent) non-negative random variables,
of finite mean, and X(1), . . . , X(n) is their order statistics. We will prove the
inequality by induction on n. The base case is n = 2. Fix two random vari-
ables, X1, X2. Let m = min{X1, X2} and M = max{X1, X2} and note that
m+M = X1 +X2 and m ·M = X1 ·X2. Thus Var(m+M) = Var(X1 +X2)
and so

Var(m) + Var(M) + Cov(m,M) = Var(X1) + Var(X2) + Cov(X1, X2).

Hence, in order to prove that Var(m) + Var(M) ≤ Var(X1) + Var(X2), it
suffices to show that Cov(m,M) ≥ Cov(X1, X2), or, equivalently, that

E[m ·M ]− E[m] · E[M ] ≥ E[X1 ·X2]− E[X1] · E[X2].

Now the fact that m ·M = X1 ·X2 implies E[m ·M ] = E[X1 ·X2] and so it
is enough to prove that

E[X1] · E[X2] ≥ E[m] · E[M ].
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To end the proof of the base case, we compute

E[X1] · E[X2]− E[m] · E[M ] = E[X1] · E[X2]− E[m] · E[X2]

+ E[m] · E[X2]− E[m] · E[M ]

= E[X2] · (E[X1]− E[m])

+ E[m] · (E[X2]− E[M ])

≥ E[m] · (E[X1] + E[X2]− E[m]− E[M ])

= 0,

where the inequality follows from the fact X2 ≥ m and the last line from
the fact that m+M = X1 +X2.
We now proceed to the general case. Suppose thatX1, . . . , Xn are n random
variables. We begin with the sum

∑n
i=1 Var(Xi). From the case n = 2 we

know that if we replace two terms of this sum, say Var(Xi) + Var(Xj), by
Var(mi,j) + Var(Mi,j), where mi,j := min{Xi, Xj} and Mi,j := max{Xi, Xj},
then the sum does not increase. We iterate this procedure by applying the
base case to the resulting sum. After a finite number of steps we will end
up with a sum in which the variances are ordered. The result follows.

Note that in case all random variables, Xi, i = 1, . . . , n, have the same
distribution then the inequality reduces to

n∑
i=1

Var(X(i)) ≤ nVar(X)

which implies that

Var(X(i)) ≤ n · Var(X), for all i ∈ {1, . . . , n}.

The following question arises naturally. Fix n ∈ Z>0, i ∈ {1, . . . , n} and a
random variable X . What is the smallest constant cn,i such that

Var(X(i)) ≤ cn,i · Var(X) ?

This problem is solved in [40], under the assumption of independence. The
general question was answered, quite recently, in [44].



Appendix C

A generalized notion of
hypergraph matchings

In this appendix we generalize the notions of matchings and covers in
uniform hypergraphs. We define their fractional analogues and prove a
theorem that relates all these notions.
LetH = (V, E) be a hypergraph where |V | = n and suppose further thatH
is s-uniform, that is, each E ∈ E satisfies |E| = s. Recall the notion of the
i-th shadow of E defined as

∂i(E) := {T ⊆ V : |T | = i, T ⊆ E for some E ∈ E}.

For i = 1, . . . , s and k ∈ Z>0, a (k, i)-matching of H is a collection of edges
E0 ⊆ E (the same edge may occur more than once) such that each T ∈ ∂i(E)
belongs to at most k edges in E0. The maximum cardinality of a (k, i)-
matching is denoted by νk(i,H). Thus ν1(1,H) = ν(H) is the maximum
number of disjoint edges in H or, in short, the matching number of H.
A (k, i)-matching is called simple if no edge occurs in it more than once.
We denote by ν̃k(i,H) the maximum number of edges in simple (k, i)-
matchings ofH.
A (k, i)-cover of H is a collection T ⊆ ∂i(E) (the same set may occur more
than once) such that any edge E ∈ E contains at least k sets from T . The
minimum number of sets in a (k, i)-cover is denoted by τk(i,H). Hence
τ1(1,H) = τ(H) is the covering number ofH.
Given T ⊆ V , denote by N [T ] the neighbor of T , i.e., N [T ] := {E ∈ E : T ⊆
E}. A fractional i-matching ofH is a function ω : E → [0, 1] such that∑

E∈N [T ]

ω(E) ≤ 1, for all T ∈ ∂i(E).
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Set ν∗(i,H) := maxω
∑

E ω(E), where the maximum is over all fractional
i-matchings ofH.
A fractional i-cover is a function w : ∂i(E)→ [0, 1] such that∑

T∈∂i(E)∩N [E]

w(T ) ≥ 1, for all E ∈ E .

Let τ ∗(i,H) := minw
∑

T∈∂i(E) w(T ), where the minimum is over all frac-
tional i-covers ofH.

Theorem B.1 Every s-uniform hypergraphH = (V, E) satisfies

ν1(i,H) = min
k

νk(i,H)

k
≤ max

k

νk(i,H)

k
≤ ν∗(i,H)

= τ ∗(i,H) ≤ min
k

τk(i,H)

k
≤ max

k

τk(i,H)

k
= τ1(i,H).

Proof. Suppose that E0 is a (1, i)-matching ofH. Then, for any k, the collec-
tion E ′0 obtained from E0 by taking every edge k times is an (k, i)-matching.
Thus νk(i,H) ≥ kν1(i,H). If k = 1, then the last inequality is in fact equal-
ity and so

ν1(i,H) = min
k

νk(i,H)

k
.

Now let E1 be a maximum (k, i)-matching of H. For every E ∈ E let m(E)
denote the number of times that E appears in E1 and define the function
ω : E → [0, 1] by setting ω(E) := m(E)

k
. The fact that E1 is a (k, i)-matching

implies that ω(·) is a fractional i-matching ofH and thus

max
k

νk(i,H)

k
≤ ν∗(i,H).

The equality ν∗(i,H) = τ ∗(i,H) comes from the duality theorem of Linear
Programing. Now let T be a (k, i)-cover of H and define w : ∂i(E) → [0, 1]
by w(T ) = 1

k
if T ∈ T , and w(T ) = 0 otherwise. The fact that T is a (k, i)-

cover implies that w(·) is a fractional i-cover ofH and so

τ ∗(i,H) ≤ min
k

τk(i,H)

k
.

Finally, let T0 be a (1, i)-cover of H and denote by T ′0 the family obtained
from T0 by taking every of its sets k times. Then T ′0 is a (k, i)-cover and so
kτ1(i,H) ≥ τk(i,H). This implies that

max
k

τk(i,H)

k
≤ τ1(i,H)

and the theorem follows.
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[15] P. Erdős, A problem on independent r-tuples, Ann. Univ. Sci. Budapest
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Summary

The main motivation behind this thesis is a certain type of win-lose games
that are played on hypergraphs and can be translated into the following
puzzle. Suppose there are two persons, say Alice and Bob. There are n bis-
cuits, where n is a positive integer, and Alice chooses s of them uniformly
at random. Bob possesses h grams of poison, where h ≥ 1, and the lethal
dose is 1 gram. How should Bob distribute the poison over the biscuits in
order to maximize the probability of poisoning Alice?
This problem is due to Ken Kikuta and William Ruckle who, driven by less
devious motives, formulated it in terms of accumulation games between
two players. They conjectured that the optimal distribution of poison uses
dosages of 1/j grams in as many biscuits as possible, where j is a positive
integer that depends on h, n, s.

In Chapter 1 we introduce the poisoning problem and discuss its relation
to known results from the literature. The conjecture of Kikuta and Ruckle
is related to two other conjectures, one from extremal combinatorics and
one from the theory of probability. The combinatorial flavor of the Kikuta-
Ruckle conjecture is its relation to the matching conjecture of Paul Erdős
and its fractional analogue. Its probabilistic flavor is its relation to a con-
jecture of Stephen Samuels on a tail probability problem. We also consider
a poisoning problem on more general ground spaces. This leads to a geo-
metric problem that generalizes the isodiametric one.

In Chapter 2 we settle the Kikuta-Ruckle conjecture in case n = 2s−1. This
case corresponds to the, so called, Odd graph. We also settle the conjecture
for a few more cases using elementary combinatorial and game-theoretic
arguments.

In Chapter 3 we consider the poisoning game on the cyclic graph. In this
game the n biscuits are arranged cyclically and Alice chooses s consecutive
of them uniformly at random. We find the value of this game along with
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the optimal strategies of both players. In addition, we give a characteriza-
tion of the fractional covering number of uniform hypergraphs obtained
from the cyclic graph.

Chapter 4 deals with the analysis of a network coloring game. This is a
game that is motivated by conflict resolution situations and is played on a
graph. The vertices of the graph are thought of as players having a fixed
set of available colors. The game is played in rounds and in each round
all players simultaneously and individually choose a color with the per-
spective of ending up with a color that is different from the colors chosen
by their neighbors. We analyze the network game by introducing a very
simple search game. The optimal strategy of the searchers in this game
involves tosses of fair colored coins and leads to the following combina-
torial probability problem that is interesting on its own. Suppose that you
can color n fair coins with n colors. It is not allowed to colors both sides
of a coin with the same color, but all other combinations are allowed. Let
X be the number of different colors after a toss of the coins. In what way
should you color the coins such that you maximize the median of X? We
solve this problem and consider its natural generalization to the case of
biased coins.
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