Stellingen
behorende bij het proefschrift
MIGRATION OF SEISMIC DATA IN THE DOUBLE RADON DOMAIN

I

The transformation of the original coordinate system of shot and receiver positions and
two-way travel time into shot and receiver ray parameters and vertical travel time causes
reorientation of the seismic data according to the local time dip of the interfaces. This new
data orientation permits a selective velocity analysis to be performed only on the energy
reflected from interfaces with a particular time dip. A very good background model is
obtained by analysing only the energy reflected from horizontal segments of the
interfaces.

II
The information lost in the Radon transformation is increased in practice for land seismic
data with limited offsets, irregular geometry and large spatial shot intervals. The loss of
information may exceed the advantages gained by the transformation.

11T
A pre-stack or post-stack depth migration produces a migrated depth section of the
complex subsurface which is superior to a time section resulting from a time migration,
but only if a depth velocity model is known.

IV The velocity paradox
"Wave equation migration is a process which tracks waves through a medium of known
velocity in order to find unknown reflectors. That the reflectors are in large part caused by
the velocity changes that the wave must pass through is a paradox inherent in the
process.”

R.H. Stolt and AK. Benson, 1986, Seismic migration, p 16.

v
Migration in the double Radon domain cannot incorporate laterally varying velocity,
because it is a spatial transform method. Therefore it is fundamentally inconsistent to
attempt to perform a complete depth migration in this domain,



A% |

Unfortunately for velocity analysis, oil tends to occur in the complex geology of rapid
lateral velocity variations, rather than in the layer-cake uniformity ofien assumed by the
theory.

N. Anstey, 1982, Simple Seismics, p 17.

Vi

The testing of algorithms on synthetic data is a necessary, but insufficient, condition for
their success on real data.

vl

The algorithms for the migration of seismic data are often far less sophisticated than the
theories on which they are based. The general understanding of the limitations of the
theories proceeds more rapidly by studying the performance of the algorithms on the
data, than by studying the theories themselves.

IX
‘When scientists sacrifice their scientific principles for political gain, there is a net loss to
science and the political outcome is unpredictable.

X

The "truth" we receive from the media, responding to the authorities, is served to us
principally to maintain those authorities in power.

Delft, 15 June 1992 Radmila Tatalovic
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SUMMARY

The seismic wavefield, as recorded at the surface, has suffered certain changes during
propagation through the subsurface, and does not directly indicate the nature of the subsurface. It
is the aim of migration to reveal the true geometry of subsurface reflectors. In this thesis, a pre-
stack time migration algorithm is developed which is applied to the shot-oriented and double
Radon transformed data.

The Radon transform has traditionally been applied to CMP-oriented data, with the
assumption that the earth consists of plane horizontal layers. The double Radon transformation
consists of two steps: the first transform, with respect to offset coordinate, is applied to all the
shot gathers in a seismic line, and the second transform is applied to the once transformed data,
with respect to shot coordinate. The introduction of the second transform makes it possible to
apply the Radon transform without making the assumption of a horizontally layered earth.

In the double Radon domain, the data are discretized according to the local time dip of the
acoustic interfaces. The phase function becomes separated into two parts, the horizontal phase
and the vertical phase. This makes it possible to perform the imaging of the data by keeping the
vertical slowness constant. With the application of this condition the energy reflected from a
particular interface is selected into an imaging plane. One inverse transformation applied to the
data in the imaging plane leads to the time image of the interface. The method of stationary phase
used to derive the imaging equations is a high frequency approximation, which emphasizes the
onset of the seismic events.

The migration equations are derived for a single arbitrarily shaped interface, and then
extended to include any arbitrarily layered subsurface by introducing a smooth background RMS
velocity model. Due to the data discretization in the double Radon domain, the velocity can
readily be obtained from the double Radon transformed data. A plane in the double Radon
transformed data cube is selected, in which only reflections from the horizontal segments of the



interfaces are present. Not only is the best fit between the theoretical curves and the data achieved
in this plane, but also the RMS velocity function is obtained rather than the stacking velocity.

The derived background velocity function is valid for the entire data set; since the migration
is applied in the spatially transformed domain, the velocity cannot be varied laterally. This can be
regarded as both the drawback of the method, as well as its strength. It is not desirable for a
migration algorithm to be unable to accept a laterally variant velocity model; however, a laterally
variant velocity model is the result expected from the migration and thus it is not available prior
to migration. The result of any migration algorithm which can handle a laterally variant velocity
model, is heavily influenced by the approximate laterally variant velocity model. On the other
hand, a migration algorithm which does not require laterally changing velocity field, such as the
one presented in this thesis, produces result which is much more influenced by the data than by
the approximate laterally variant velocity model.

The method has been successfully applied to two complex data sets: the Marmousi
synthetic data set and the Tubbergen field data set. In spite of difficulties involved with the
practical application, such as great structural complexity in the Marmousi data and the irregular
shooting geometry in the Tubbergen data, good results have been achieved for both data sets.
These results are encouraging for the further research.




NOTATIONS AND CONVENTIONS

In this thesis, orthogonal Cartesian coordinates x1, x2, and x3 are employed in a right
handed system to locate a point in space, together with vectors i1, i2, and i3, where i3 is

pointing downwards. Vectors are typed bold-faced.
The list of major symbols follows:

Time coordinate

Frequency

Angular frequency

Laplace transform parameter
Horizontal slowness (Ray parameter)
Vertical slowness

Spatial Fourier transform parameter
Wave number

Wave number

Acoustic pressure

Source function, ;z(s) = —spw(t)
Source function, w(w) = iopw(r)
Green's function

Acoustic velocity

)

(€
(rad-s1)
(rad-s1)
(s-m1)
(ssm’1)
(sm1)
()
()
(Pa=N-m-2=kg-s"2m1)
(kg's2)
(kgs2)
(mD)
(ms1)
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In this thesis, the following transformations are used: Fourier transform (both temporal
and spatial), Laplace transform, and Radon transform.
The temporal Fourier transform pair, as defined in this thesis, is given by

= f f (O exp o) dr,
and

fH= f f (@) exp (~iwt) do> .

For causal time functions, where the function f does not exist for ¢ < 0, the temporal
Fourier pair becomes

f= f f(® exp Gox) dt
0

and
fi)=2Re f Nf(w) exp (—iot) do |.
0

The one-sided Laplace transform with respect to time, with real and positive transform
parameter s, applied to a causal time function fr) is defined as

f©= fmf ® exp (—=st) dt, s>0.
0

The Radon transform pair for a 2-dimensional function in the frequency domain is defined
as

; ,w) = f f (x,0) exp (—iwpx) do,

and

f o) = I 7 (0.) exp ieopx) dp .




The notations in the various domains are as follows:

SPACE-TIME FREQUENCY WAVE NUMBER RAY PARAMETER
DOMAIN DOMAIN DOMAIN DOMAIN

f(x’t) | .?(xaw) I ;(kxsw) I f(p,f)



INTRODUCTION

1.1 INTRODUCTION TO MIGRATION

The seismic method of geophysical exploration is based on changes in the propagating
wavefield which are caused by subsurface reflectors. A subsurface reflector can be described as
a discontinuity in the acoustic impedance of the earth, while the acoustic impedance is given as a
product of seismic velocity and density. The change in acoustic impedance gives rise to
reflections, with the amplitude of the reflected wave determined by the density and the velocity
contrast, and the phase of the reflected wave, that is the timing of the the seismic event,
determined only by the velocity part of the acoustic impedance.

The wavefield, as recorded at the surface, has suffered certain changes during
propagation through the subsurface, and does not directly indicate the nature of the subsurface.
It is the aim of migration to reveal the true geometry of subsurface reflectors. Since the
positioning of reflections on a seismic section is determined by the velocity distribution, it
follows that the aim of migration is to reveal the velocity structure of the subsurface. One way
to view migration is to observe how the reflections approach the shape of the reflectors as the
sources and the receivers are lowered down through the earth, towards the reflectors. In the
limiting case, when the sources and the receivers are positioned directly above the
discontinuities, they record the exact shape of the reflectors, and there is no wave distortion any
more. The effect of migration is illustrated with three synthetic examples, created by summing
diffractions from all point scatterers along an interface.

The first example shows a synthetic zero-offset section over a horizontal strip in Figure
1.1.1a. With the zero-offset section it is understood that the source and the receiver are
coincident, and the reflection recorded on each trace originates from normal incidence rays, that
is, rays which strike the reflector at 90°. The zero-offset section in Figure 1.1.1a does not
reproduce a correct picture of the reflector due to diffracted energy at the edges of the strip: at
both ends of the strip the reflection is followed by the diffraction, and from the zero-offset
section alone it is difficult to distinguish between the reflection and the diffraction.
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Fig.1.1.1a: The horizontal strip model: The zero-offset section

The generation of diffractions is explained in Figure 1.1.1b: since the edge of the strip can
be considered as a point, an infinite number of normal incidence rays can be reflected from this
point. The diffraction hyperbola is formed when these rays are plotted directly below the source-
receiver position. As the source-receiver level is lowered down to the reflector, the diffraction
energy is collapsed. At the end, the effect of the migration is the same as positioning the sources
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Fig.1.1.1b: The horizontal strip model: Diffraction generation




and the receivers directly above the reflector: the two diffractions are collapsed into "points"” at
the edges and the horizontal extent of the strip is easily determined on the migrated section in

Figure 1.1.1c.
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Fig.1.1.1c: The horizontal strip model: The migrated section

The second example illustrates a case of a plane interface dipping at an angle 6. On a
synthetic zero-offset section in Figure 1.1.2a the interface appears to be dipping at an angle ¢,
which is smaller than the true dip angle. The mechanism which creates the apparent dip is
explained in Figure 1.1.2b, where two normal incidence rays are traced to the reflector. On the
zero-offset section, the travel-times of these two rays are plotted directly below their source-
receiver positions, creating the reflection R of the discontinuity D. From the geometry of Figure
'1.1.2b, it follows that the apparent dip and the true dip are related as
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Fig.1.1.2a: The dipping layer model: The zero-offset section



tan o = sin 6. (1.1.1)

On the migrated section in Figure 1.1.2c the reflection from the dipping interface is migrated to
its true time position. The true dip of the interface is recovered by relating the time to depth by
the velocity of the wave propagation.

Fig.1.1.2b: The dipping layer model: A geometrical explanation for the apparent dip

—X(m) —
-630 0 630
" [T
\
t(ms)
800

Fig.1.1.2¢: The dipping layer model: The migrated section,
with the dashed line indicating the position of
the reflection on the unmigrated section.

In the third example, Figure 1.1.3a shows a rather complicated synthetic zero-offset section
over a syncline, where the reflections are not only obscured by the energy diffracted from the
edges of the syncline, but are also distorted by the reflector curvature. The same mechanism
which creates the diffractions and the apparent dip of the dipping interface is employed to
explain the zero-offset section of the syncline in Figure 1.1.3.b. Three normal incidence rays




are traced from one source-receiver surface position; the arrival times plotted directly below this
position in Figure 1.1.3c give rise to the complicated "bow-tie" appearance of the zero-offset
section over a syncline. The migration collapses the diffractions, maps the reflections from the
curved interface back to their true time position, and the shape of the syncline becomes obvious
in the migrated section in Figure 1.1.3d.
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Fig.1.1.3a: The syncline model: The zero-offset section

X S,;R

B

Fig.1.1.3b: The syncline model: The depth model

The three examples chosen here are quite simple; when the complexity of the earth is
considered, the need for migration becomes clear. The question which remains is how to do

migration.

1.2 THE CONVENTIONAL APPROACH TO MIGRATION

1.2.1 Classification

The migration methods which are in use in seismic data processing can be classified
according to several different criteria as follows:
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Fig.1.1.3c: The syncline model: A geometrical explanation for the apparent dip
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Fig.1.1.3d: The syncline model: The migrated section

1) Based on its place in the processing sequence, the migration can be applied either as:
« pre-stack migration, or
« post-stack migration.

Migration applied to stacked data assumes that the stacked section is a good approximation
of a zero-offset section. In post-stack migration, the sources and the receivers are coincident,
and can be downward continued simultaneously, whereas in pre-stack migration they have to be
downward continued separately, according to their spatial coordinates. Post-stack migration
often employs the exploding reflector model (Loewenthal et al., 1976), in which the reflectors in
the earth are replaced by seismic sources, which all explode at time ¢ = 0. The waves travel at
half the seismic velocity, and are recorded by the receivers which are positioned at the surface.
There are two motivations for post-stack migration: first, stacking has attenuated the multiple
reflections, and the assumption of a primaries only model is therefore good; second, since
stacking has reduced the data volume, the cost of the process is much lower than the pre-stack
migration. The main problem with it is that the approximation of a zero-offset section is often




violated, specially in areas with conflicting dips or strong lateral velocity changes, where the
incorrect stacking procedure will destroy the information rather than enhance it.

A considerable amount of time and effort has been directed towards developing procedures
for improving stacking in problematic areas. These procedures, known as partial migration
before stack, or dip moveout (DMO), to a certain extent solve the conflicting dip problem.
Various researchers have worked on this problem: Sherwood et al. (1978), Yilmaz and
Claerbout (1980), Deregowski and Rocca (1981), Hale (1984), Fowler (1984), French et al.
(1984). DMO methods vary in the domains in which they are applied, the computational effort
required, and the accuracy of the solution. All these methods try to map non-zero offset data to
zero-offset data in the presence of conflicting dips to enable proper stacking, which can then be
followed by some conventional migration scheme. According to Yilmaz (1987), there are
several problems with DMO processing: the methods based on a constant velocity assumption
can suppress dipping events instead of preserving them; some methods are limited to small dips
and small offsets; DMO sometimes enhances multiples; and finally, some of these methods
handle only small lateral velocity variations. It is theoretically more justifiable, although more
exhaustive, to apply migration prior to stacking.

2) Based on the extrapolation coordinate, the algorithms are organized either as:
« time migration, or
« depth migration.

For time migration, the input velocity model is given as a function of time, the
extrapolation is performed in steps of time, and the output is a migrated time section. For depth
migration the interval velocity model is given as a function of depth, the extrapolation is
performed in steps of depth, and the output is a depth section. Generally, time migration
algorithms are more approximate than depth migration algorithms, but they are more robust; the
input model for the time migration is given as a RMS velocity function, and as a consequence
the output from such an algorithm gives a less detailed answer than depth migration. On the
other hand, the depth migration algorithms, which are preferable in geologically complicated
areas, produce more detailed depth images of the subsurface, but they also require more detailed
input velocity models; the resulting depth images, which heavily depend on the input velocity
models, are only correct when a very good estimate of the true subsurface velocity field is
available.

3) Based on the extrapolation domain, the algorithms are grouped as:
« time-space (z-x) migration,
» frequency-wavenumber (f-k) migration, or
« frequency-space (f-x) migration.
Historically, the time-space algorithms were developed first. The frequency-wavenumber
migration algorithms were developed either to increase the accuracy or to speed up the
computations. The major advantage of time-space algorithms is that velocity can vary both



vertically and horizontally, which is not possible in the frequency-wavenumber domain. The
frequency-space algorithms combine some of the advantages of the original and transformed
domains.

4) Based on the input for each extrapolation step, the algorithms can be:
« recursive migration, or
* non-recursive migration.

In recursive algorithms, the velocity model is subdivided into a number of horizontal
strips, usually of a small thickness. Then the extrapolation and imaging are performed for each
horizontal strip separately, the output from one strip being the input for the following strip. The
important advantage of recursive techniques is that they can incorporate velocity changes; the
main disadvantage is that small errors at each step will accumulate as the extrapolation proceeds.
In non-recursive algorithms, the input to the migration program is always the data recorded at
surface, whether it is carried out in one or more steps. The non-recursive techniques are
generally numerically less exhaustive, since at each step the data need only to be evaluated at 1 =
0.

Further, most of the existing algorithms can be extended from 2 dimensions to 3
dimensions; then, rather than solving a problem of a seismic profile along a line, an area of two
horizontal dimensions is considered. This is a rather important aspect in seismic migration, since
very often 3D features cannot be neglected or approximated as 2D, and consequently the 2D
migration cannot reveal the structure properly.

1.2.2 Major contributions

As wave propagation through the earth is governed by the wave equation, the migration of
seismic data is usually formulated as the back propagation of waves. Therefore, the solution to
the migration problem is sought as the solution to the wave equation. The 2D scalar wave
equation, which describes propagation of compressional waves p = p (x,z,f), where x and z are
the horizontal and the vertical spatial coordinate and ¢ is the time coordinate, in a medium of
constant density and velocity c, is given by

2 2 2
dp 0 d

1
—5+ —2-——2—-—2-=0 , (1.2.1)

ox 0z C ot

in which it is assumed that there are no sources.

It is often more convenient to consider the wave equation in the Fourier domain, which
can be achieved by the substitutions of the time coordinate ¢ by angular frequency @, the
horizontal spatial coordinate x by the horizontal wave number ky, and the vertical spatial
coordinate z by the vertical wave number k;
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Substitution of the first two of equations 1.2.2 into the time-space domain representation
of the wave equation, leads to the expression which describes the propagation of plane waves
P =P (ky,z,0) as

2 2

dP ()
S+ |5 kP =0 (1.2.3)
dz ¢

Various ways of solving the wave equation - that is various approximations applied to the
wave equation in order to solve it - have led to various schemes for the migration of seismic
data.

Finite-difference migration was pioneered by Claerbout (1970), Claerbout and
Johnson (1971), and Claerbout and Doherty (1972). The finite difference techniques
approximate the partial derivatives in the wave equation with the operators which work with the
difference between neighbouring grid points from a mesh of discrete sampled data. The name
"finite difference" then refers to the approximation of derivatives (that is the infinitesimal
differences) with finite differences. The paraxial wave equation is solved instead of the scalar
wave equation (Claerbout, 1985), mainly to avoid the difficulties which arise from internal
multiples created by the scalar wave equation, evanescent waves, and the need for the second
partial derivatives in depth as the boundary conditions, which are not available. The paraxial
wave equation, or the one-way wave equation in the Fourier domain is given as

— i — ~kx P=0, (1.2.4)

and the solution to the paraxial wave equation in the Fourier domain is given by

Pkpz,0) = P(kpz=0,0) exp(-ik,z). (1.2.5)

The square root in the paraxial wave equation describes the dispersion relation
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ck, 2
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This square root is rewritten in the time-space domain using equations 1.2.2, expanded into a
series as a polynomial ratio and subsequently truncated, leading to various approximate
solutions. The "15° migration", obtained by keeping only the first two terms of the series, can
handle dips up to 15° properly. It has an effect of replacing the second depth derivative in the
scalar wave equation by a mixed first derivative in depth and time. The extension of "15°
migration” to include another term in the series leads to the "45° migration", which treats dips up
to 459 properly.

Reverse time migration (Baysal et al., 1983, and McMechan, 1983) also uses finite
differences to solve the wave equation, but it starts from the scalar wave equation, rather than
the paraxial wave equation. The wave propagation is carried out backwards in time, starting
from the last recorded time sample. The migrated depth image is obtained when zero time is
reached. This algorithm is more accurate for higher dips than the finite-difference migration
based on paraxial equation, since the scalar wave equation is valid for all dips.

Kirchhoff summation migration was introduced by French (1975) and Schneider
(1978). This method is based on the integral formulation of the solution of the scalar wave
equation, where the recorded seismic data at the surface are considered as the boundary value,
and the migrated image is obtained by solving the line integral (2D) or surface integral (3D) over
the recorded data. In the 2D case, the integral solution is given as

cos i

R2

1 _ R\ cosi?d _ R
P(X,Z,t)—'z—n- P(X,Z-O,t ?)'FWS;P x,z—O,t ? dx, (12.7)

where R is the distance between the surface point and the subsurface point, and i is the angle
between the direction of propagation and the vertical axis z. The contribution of the first term
(near-field term) is negligible compared with the contribution of the second term (far-field term),
and is often dropped in practical applications. This integration amounts to summing the
amplitudes along hyperbolic trajectories for each reflection point, where the hyperbolic
trajectories are determined by subsurface velocities. The integration is performed for the entire
data, and the migrated result at each location is obtained by setting ¢ =0.

The Kirchhoff summation method was originally developed as a non-recursive scheme in
the time-space domain. It was later formulated in the frequency-space domain as a recursive
scheme, in order to take into account both vertical and lateral velocity variations (Berkhout and
van Wulfften Palthe, 1979). If the extrapolation is implemented as a spatial convolution, the
advantage of operating in the frequency-space domain is obvious (Berkhout, 1980): the
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convolution is two dimensional in z-x (along both the ¢ and the x axis), but it is one dimensional
in the f-x domain (over the x-axis only).

The Stolt f-k migration was introduced by Stolt (1978), as a fast migration procedure
in the frequency-wavenumber domain. It was recognized that the dispersion relation (equation
1.2.6) can be used to map the data from a grid regular in k,-@ into a grid regular in k-k;, which
is, in the space domain, equivalent to a map from x-z into x-z. This simple mapping is explained
in Figure 1.2.1, which also shows how the apparent dip ¢ is related to the true dip & in the
Fourier domain. The entire migration is achieved with fast Fourier transform algorithms and
mapping. The dispersion relation holds for constant velocity only; the change of velocity in the
vertical direction can be approximated by a stretch of the time axis prior to migration.
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Fig.1.2.1: Frequency mapping in the Fourier domain for the f~k migration. The event
dipping at the apparent dip angle o (dashed line) in the -k, domain is mapped into an
event dipping at the true dip angle @ (solid line) in the k;-ky domain.

The phase shift migration (Gazdag, 1978) is also implemented in the f~k domain.
The solution to the wave equation in the f~k domain is the sum of monochromatic plane waves
(equation 1.2.5); the propagation of a plane wave is governed by its phase. The extrapolation of
the wave field is achieved by the phase shift of each plane wave component separately, through
strips of a small thickness and uniform velocity

P(kyz+Az,0) =P (kyz =0, 0) exp(~ik,Az). (1.2.8)

After extrapolation at each depth step, the data are imaged for time ¢ = 0. The vertical variation in
velocity is implemented by assigning a different velocity to each depth strip. An approximate
way to include the lateral variation of velocity is by applying the extrapolation in each depth step
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with several different (but each time uniform) velocities, and the final result is obtained by
interpolating between individual wave fields (Gazdag and Squazzero, 1984).

Split-step Fourier migration is an extension to the phase shift method, developed to
include lateral velocity changes (Stoffa et al., 1990a). This method is based on decomposing the
interval slowness (reciprocal of interval velocity) into a mean vertically varying slowness and a
laterally varying perturbation in each depth interval. The downward continuation of the
wavefield across each depth interval is accomplished in two steps. The first step employs a
phase shift in the frequency-wavenumber domain using the mean slowness in the depth
migration interval. The second step is a phase shift in the frequency-space domain that takes into
account the lateral slowness contribution. This method has been further developed to perform
migration prior to stack (Stoffa et al., 1990b).

1.2.3 Common problems with migration methods

All described methods have four things in common: they

1) assume there is no free surface,

2) assume there are no internal multiple reflections,

3) assume the velocity model is known, and

4) perform extrapolation prior to imaging.

The first two assumptions imply that only primary reflections are present in the
seismogram. In post-stack migration algorithms the primary-only assumption is based on the
property of the free-surface multiples becoming largely attenuated in the stacking process. The
internal multiples are usually ignored, since they do not stack out, unless there are significant
velocity changes with depth. The primaries-only assumption is particularly poor for pre-stack
migration algorithms, unless the multiples can be removed using methods other than migration.
The multiples which are still present in the seismogram are migrated as primaries. The algorithm
presented in this thesis also ignores the presence of the multiples and assumes that they have
been removed.

The migration equations are usually derived by solving the wave equation for a constant
velocity medium. After the solution has been derived, the velocity is then allowed to vary
vertically, or even horizontally. A crucial input for all known migration algorithms is the velocity
model. But the velocity model is the answer which is expected from the migration. This is
known as the "velocity paradox" (Stolt and Benson, 1986). In practical applications, the
velocity model supplied for the migration process is usually provided by the stacking velocity
analysis. This starting model is then allowed to change in the following migration runs, leading
to a "better" result. This is a costly process, and a lot of research is being carried out to ensure
fast convergence to the right answer. This is the property inherent in all the migration methods,
and at present cannot be avoided. The migration algorithm in this thesis goes a step further, but
still does not solve the velocity paradox completely. The constant velocity medium, which is
bounded by an arbitrarily shaped interface, is here also extended into an arbitrary velocity
distribution in the derivation of the migration equations. Further, it does not require an accurate
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velocity model as input, and provides a method for obtaining the background RMS velocity
function from the data.

With the known velocity model, the migration is usually performed in two steps: first, the
sources and the receivers are extrapolated down to a new depth level; second, the data are
imaged at the time t = 0. This two-step procedure is repeated until the source-receiver pairs have
been lowered through all the available data. Such a procedure is only possible with a known
velocity model. In the migration presented in this thesis, the imaging is the crucial step and it is
performed independently of the extrapolation; the complete migration can be performed in one
imaging step. As an extension to this theory, an extrapolation procedure can be developed as a
follow-up procedure which would yield a depth image of the subsurface.

The most serious, unsolved problem with migration is the velocity paradox. For all
migration algorithms described so far, the following holds: migration is applied to discover the
true position of subsurface velocity discontinuities, given the seismic data, and given the
approximate value of seismic velocities and approximate position of the velocity discontinuities,
as observed on seismic data. When this approximate velocity model is not the correct one, the
seismic events are migrated to wrong positions, thus creating a false picture of subsurface
discontinuities.

When migration with the wrong velocity is applied pre-stack, the events on each offset
will be migrated to a different position. This can be used for a self-consistent migration velocity
analysis, often called the macro velocity model estimation, in the same form as the iterative
forward modelling by model-fitting. The principle is similar to the stacking velocity analysis,
where the use of the correct velocities will straighten the events in a CMP gather, but the use of
wrong velocities will cause a residual moveout which then can be used to estimate the "true" or
"less wrong" velocity. This is explained on an example of pre-stack split-step migration
(Tatalovic et al., 1990), which performs migration on the 7 - p transformed CMP gathers. For
the purpose of velocity estimation, the data are migrated with a number of trial velocity
functions. As shown in Figure 1.2.2, the event migrated with the correct velocity is horizontal,
too low a velocity causes smaller travel times at higher ray parameters, and too high a velocity
causes increased travel times at higher ray parameters. The amount of curvature can than be used
to improve the velocity estimate for the next migration run. The remaining problem with all these
methods is how to choose the starting trial velocity model, and how to ensure a fast convergence
to the right model.

For post-stack migration algorithms, however, there is no such control of output other
than whether the migrated section "looks good". The wrong velocity model used to back
propagate the seismic waves will position the reflectors to the wrong places, thus creating a false
picture of the subsurface.

1.3 MIGRATION IN THE DOUBLE RADON TRANSFORMED DOMAIN
The high dependence of conventional migration algorithms on prior knowledge of the
velocity field has motivated the development of a new method, namely pre-stack time migration
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Fig.1.2.2;: A CMP gather with three events migrated using
the correct velocity, too low velocity, and too
high velocity

in the ray parameter-frequency domain. In terms of classification described in section 1.2.1, the
new method can only be clearly classified based on the first two criteria: it is a pre-stack, time
migration. Based on the third criterion, it mostly corresponds to the frequency-wavenumber
methods, since both temporal and spatial coordinates are transformed, but it differs in the spatial
transform parameter. The fourth classification cannot be applied directly to this method, since
this classification is mainly based on the extrapolation part of the migration, which, at present, is
not included in this migration method. Imaging is performed in one step for the entire data, and
as such can be regarded as a non-recursive method.

The double Radon domain is approached by transforming offset and source coordinates
into corresponding ray parameters, and the time coordinate into frequency. In this domain, the
data are discretized according to the local time dip of the velocity discontinuity interfaces. Thus,
by taking the double Radon domain with respect to offset and shot coordinates, the spatial
characteristics of the interfaces become separated from the ray-parameter dependent
characteristics in the phase function. In the mathematical derivation of the migration equations,
the stationary phase method is employed to solve the resulting integrals, which, as a high
frequency approximation, emphasizes the onset of the arriving waves.

The earth model and the approximations made are explained in the mathematical derivation
of the double Radon transform in chapter 2. It is shown how the application of two Radon
transformations with respect to the spatial coordinates helps to separate the phase of the
transformed wavefield into a horizontal and a vertical part. Also, the implementation of the
double Radon transform using fast Fourier transforms and interpolation procedures is explained.

The main part of this thesis is imaging in the double Radon transformed domain, described
in detail in chapter 3. The imaging is applicable not only to one arbitrarily shaped interface, but
also to an arbitrarily layered earth by introducing the RMS velocity. It is shown how the RMS
velocity function can be estimated from the double Radon transformed data. Since the data in the
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double Radon domain are discretized according to the local time dip of the interface, the velocity
analysis is performed in a plane where only contributions from horizontal interface segments are
present.

The new aspects of the double Radon domain and migration in this domain are explained
in chapter 4. These include an explanation of geometrical aspects of the double Radon domain,
the reciprocity principle which can be applied in either the space-time domain or the double
Radon domain, the changes which the wavelet suffers during these operations, and the
consistency of the migration when the seismic line is broken into smaller segments.

Throughout the thesis, the explanations are illustrated using simple synthetic data
examples. The performance of the method is demonstrated in chapter 5 on two complex data
sets, the Marmousi synthetic data set and the Tubbergen field data example.

Finally, the thesis is concluded in chapter 6 with a discussion of the new method and
possibilities for its extension.



DOUBLE RADON TRANSFORM

2.1 INTRODUCTION

The mathematical derivation of the double Radon transformation described in this chapter
follows the theory of Fokkema and van den Berg (1992). The starting point is the boundary
integral representation of the scattered field, by which the scattered field is expressed as a
surface integral of the contributions from monopole and dipole secondary sources, distributed
along the interface. The boundary integral describes the seismic data, provided the incident field
has been removed. By applying a locally plane reflector approximation, the incident field is
related to the scattered field through reflection coefficients. With these relations the source-
related Green's function is introduced into the boundary integral representation, leading to an
expression suitable for the transformations. The time coordinate of the data is subjected to a one-
sided Laplace transform, and the whole asymptotic analysis is carried out in the Laplace domain.
A spatial Fourier transform is applied to the horizontal receiver coordinates, and the resulting
integrals are solved by carrying out an asymptotic analysis and applying the steepest descent
arguments. The same procedure is repeated for the horizontal source coordinates. At this point,
it becomes obvious that an important advantage is gained by applying the Radon transformation
with respect to two horizontal spatial coordinates: the horizontal phase and the vertical phase of
the propagating waves become separated. The receiver-source coordinate system is then
transformed to an offset-source coordinate system, and the offset and the source ray parameters
are introduced. The imaginary axis of the Laplace transform domain is turned into the frequency
axis. The transform is finished by applying the source-receiver alignment and a scaled frequency
domain filter, resulting in a double Radon transformed scattered field as a function of the offset
and source ray parameters and frequency.

The equations for the double Radon transform are derived for 3D data, where the
transforms are applied to two spatial dimensions for both sources and receivers. The algorithm
is implemented for the 2D situation, where one of the spatial dimensions is set to zero, and for
2.5D data, where the source and the receiver are each approximated by a point. Instead of
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Laplace transformation, the data are transformed to the frequency domain using a temporal
Fourier transform. Then the double Radon transform can be achieved by using spatial Fourier
transforms and interpolations, leading to the data as a function of offset ray parameter and
source ray parameter. Finally, the data are inverse Fourier transformed from the frequency
domain to vertical travel time.

2.2 EARTH MODEL AND APPROXIMATIONS

The changes in the propagating wave field are caused by discontinuities in the acoustic
properties of the earth. These discontinuities are interfaces of arbitrary shape between the
isotropic homogeneous earth layers with different acoustic parameters. To derive the equations
for the double Radon transform, two such layers are considered and are shown in Figure 2.2.1.
The two layers, D and D1, with acoustic velocities cg and c; respectively, are separated by the
arbitrarily shaped interface S. In Cartesian coordinates x = {x, x2, x3}, this interface is
described as

x3=h(x1,x2), (221)

where 4 is an arbitrary, but smooth function of horizontal coordinates x; and x».

receiver

Fig.2.2.1: The scattering geometry

The source, located at x° = {xf, x‘;, xg }, generates an impulsive wave field at time ¢ = 0.
The receiver, located at x "= {x;,x;,xg }, records the field scattered by the interface S. Both
the source and the receiver are located above the interface.

For mathematical convenience, the asymptotic analysis is carried out in the Laplace
domain. The one-sided Laplace transform with respect to time, with real and positive transform
parameter s, applied to a causal time function f{¢) is given by
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fs) = f R ep sndr, (5)>0. 2.2.2)
0

The function f(s) has no singularities in the right half of the complex s-plane, and consequently
the real part of the complex s-values can be allowed to approach zero. Then, after the double
Radon domain has been achieved, the imaginary axis of the Laplace domain can be regarded as
the frequency axis through s — —iw.

In the s-domain, the source field generated by an explosive source located at x°, and
observed at point x is given by

~inc

p (x.x°) = WGox—x"), (2.2.3)

where W =W (s) is the Laplace transform of the source function w(z). In the L.aplace domain,
the Green's function G for a point source located at x = 0 is given by

exp[——%| x |]
Glx) = ————, (2.2.4)
4m| x |

where the distance x is given by
lx|=Vxi+x3+x3 . (2.2.5)

The wavefield scattered by the interface S can be considered as the field generated by the
secondary sources along interface S (Bleistein, 1984; Fokkema and van den Berg, 1992), and is
expressed as a surface integral over these sources as

~S5ct r

5 )= [ao(x’—x) 3, Esc'(x,xs))—a,,(c“;o (x’—x))Em(x,x‘)] ds. (2.2.6)

xes

In this integral equation, the first term gives the contribution of the monopole sources, and the
second one gives the dipole sources contribution. The normal derivative pointing away from the
upper layer D (see Figure 2.2.1) is given by 9, = n-V. This integral, for all x” and x°,
represents the seismic data from which, it is assumed, the incident field has been removed, and
which are to be transformed to the double Radon domain. Before the transformations are
applied, some approximations are introduced.
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For large values of s, which is equivalent to a high frequency approximation, the reflectors
are assumed to be locally plane. This is expressed by relating the incident and scattered field as

~sct
Pc(xxs) = ﬂp (x,xs), xe S
2.2.7)

~ Adnc
an psc(x:xs) = Canp (x’xs)9 X € S .

The reflection coefficients 17 (x, x-x°) and {(x, x-x*), which are s-independent, depend on the
absolute position of the reflector x and on the relative position with respect to source x-x*: at
each point x € S, the reflection coefficients 77 and { depend on the direction vector x-x* (see
Figure 2.2.1). Since the actual values of the reflection coefficients are not of importance for
migration, their behaviour during double Radon transform and imaging will not be investigated.

Substitution of the locally plane reflector approximation, equation 2.2.7, into the scattered
field representation, equation 2.2.6, leads to

~Sct

p (x'xH= W” [{?;o(x’—x)a,,(ao(x—x’))—nan(ao(x’—x))?;o(x-x‘)]ds. (2.2.8)
€S

The normal derivative operating on Green's functions (equation 2.2.4) is derived as
8 G == — Go 1+
»(Go) ( T I) CAEAE 2.2.9)

When the normal derivative of the Green's function is substituted into equation 2.2.8, the
scattered field representation becomes

P (xx‘)_—wff AGo(x~x)Gox-x"dS, (2.2.10)

with the amplitude function A=A (x,x—xr,x—x s) given by

N Co ’| Co
A=‘n1+———-—-7' nx—x —£1+—-s—an
slx—x| slx—x |

In equation 2.2.10, the scattered field is represented as an integral over the source and the
receiver related Green's functions, and the amplitude function A, which is given by equation

s
xX—X

(2.2.11)



21

2.2.11. The importance of expressing the scattered field with these equations is that the function
A becomes independent of s as the high frequency approximations, that is | s 1= o, are made to
solve the integrals. The scattered field, as expressed by equation 2.2.10, is now subjected to
two Radon transforms, with respect to both receiver coordinates and source coordinates.

2.3 TRANSFORM WITH RESPECT TO RECEIVER COORDINATES
The transform with respect to horizontal receiver coordinates x7, x7 is achieved through a
spatial Fourier transform applied to the scattered field with the transform parameter o as

~Sct “Asct
P (xhx’sah= ff p ' xHexp (is o x]+is a;x;) dxydxy . (2.3.1)

In terms of the standard Fourier transformation, the real transform parameter is
sa’={sa;,sa;}, which is convenient for the mathematical derivation while operating in the
Laplace domain. Since s is real, in the further analysis &} and @ are also taken to be real; only
after deriving the Radon transform equations for both receiver and source coordinates, they will
be transformed to the ray parameter through ¢” — —ip, similarly to transforming the Laplace
parameter into frequency. Application of the Fourier transform to the scattered field in equation
2.2.10, change of the order of integration, substitution of the source related Green's function by
equation 2.2.4, and multiplication by exp + (is oy xy+is oty xz’ exp— (is o x, +is o) x 2) ,
leads to

~5C¢ r s ry_ S 55 = s .y .o
p (x3x'sa’) =56Wff BGo(x—x")exp (ls oy X +is azxz) as, (2.3.2)
xe§

where the function B is given by

o0
~

§= —A__exp -~ ia; (xl—x;)+ia;(x2—x;)+lil- dx; dx; (233)
47zlx —x’l ¢o

Equation 2.3.2 defines the scattered field with the spatial Fourier transform applied to the
receiver coordinates. The rest of this section is devoted to solving the integrals in the expression
for the function B in equation 2.3.3. De Hoop (1960, 1988) presented a technique for solving
the integrals of the same type as 2.3.3 in his presentation of the modified Cagniard technique,
which involves the manipulation of the integrand until it can be recognized as the Laplace
transform of a certain function in time. The derivation which follows is carried out along the
same lines and applying similar manipulations, and it will be done here in five steps:
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1) Introduce polar coordinates, and variables of integration y,z.

2) Deform the imaginary y”-axis into the steepest descent contour 7"
3) Change the order of integration dz', dt” — dt”,dz'.

4) Introduce the transformation z° — y”.

5) Apply the high frequency approximation.

1) Introduce polar coordinates, and variables of integration y r y Z r,
To solve the integrals in equation 2.3.3, the integration surface has to be deformed to force

the expression in the square brackets in the exponent to become real. For that purpose, polar
coordinates are introduced in the (a;, a; ) plane as

o} =k"cos (6")
oy =k sin (8", with (2.3.4)

e= (o) + (o)

where 0<k <oo, and 0<6"<2m. Also, the variables of integration in equation 2.3.3,
r r r r
X1, Xp,arereplaced by y ,z through

X -x]=- iy'cos® —z'sin@"
xy—x5==iy'sin@ + z'cos8’, with (2.3.5)
2 2 2 2
(e1=27) +ea-x3) =l =07
To complete the transformation, the Jacobian is calculated as (see Appendix A.1)

dx]dxy=— idy dz’, and
2.3.6
io} (xl—x;)+ia; (xz—x;)=k'y'. ( )

Accordingly, the limits of integration change as

f f dxﬁdx;a—f dz'f idy'. (2.3.7)
——o —i 00

—o0

With these transformations, as shown in Appendix A.1, the function B becomes
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~ 1 . A rr RTI,»
B=—- dz = exp{~slky +-—] dy, 3.
ami R { [ co 2.3.8)
oo i
where

- (y)z] . (2.3.9)

The choice of the new variables y’, 2z has conveniently enabled the introduction of R "
which later will be shown to be the position vector. The unwanted property of equation 2.3.8 is
the integration along the imaginary axis; to avoid it, the integrand in the second integral in
equation 2.3.8 will be analytically continued into the right half of the complex yr-plane, away
from the imaginary axis.

2) Deform the imaginary yr -axis into the steepest descent contour 7’.

As the integrand of equation 2.3.8 is extended in the complex y r-planc, it needs to be kept
single-valued. For that purpose, the branch cuts for the square root expression R are
introduced as

L
+(x3—x;)2]2 <|Rely")| <o, and 1m{y")=0. (2.3.10)

)

2 2
This is shown in Figure 2.3.1, for (z') + (x3 - xg) =a*. When lal< y', the argument of the
square root becomes negative, and that is the range that has to be avoided. Also, Re(R r) is taken

m§")

Fig.2.3.1: The branch cuts and the contours of
integration in the complex y” plane



to be positive in the entire cut y'-planc. The imaginary y’-axis is then deformed into a steepest
descent contour ¢” which satisfies inequality 2.3.10, defined as

r R’
T =kryr+._’ (2.3.11)
Co

where 77 is real and positive. The contour, shown in Figure 2.3.1 in the right half of the y'—
plane, is a branch of a hyperbola, and the integration along the imaginary y -axis will be
replaced by the integration along 7. This hyperbolic path is composed of two complex
conjugate branches, y = yq andy’ = ¥1, where * denotes complex conjugation. The parametric
representation for y” is obtained when R’ in equation 2.3.11 is substituted by equation 2.3.9
and the resulting equation solved for y ", leading to

o [7) -lr'e )
Yia=—s— ti T , thus y3=y7 (2.3.12)
Vel Nl
(k") +% )+ x

where T' (z") is given by

2 2 2
T'(z’)=/\/ () +L ,\/(z) +lxy-x) . (2.3.13)
Co

The hyperbolic path given by equation 2.3.12 is symmetric with respect to the real y -axis, and
crossesitatt’ =T (zr), that is between the two branch points -a and +a, as shown in Figure
2.3.1.

The Jacobian of this transformation, derived in Appendix A.2, is

ay’ r
LIy R . (2.3.14)

ot ,‘/ ( Tr)z_ (Tr(zr))z

The original path of integration along the imaginary y - axis is replaced by the integration
along the contour y;,g, which is joined to the imaginary y'- axis with circular arcs at infinity.
The contribution to the integral from the circular arcs vanishes (Jordan's lemma), and the
integration is now performed along the two branches y;,g only. The change of the limits of
integration from y” to 77 is explained in Figure 2.3.2: in y coordinates, the integral can reach
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+ ico along Im(yr), but in 7 coordinates the lowest limit on the =" contour is Tr(zr). Thus, after
the deformation, the integral in equation 2.3.8 changes into

5= L iz r 2 Re {A(Zr,)’r)> e (—S’L'r) d‘L’r, 2.3.15)
4r A/ (1.—’)2 _ (Tr(zr))z
—e° T’(z')

where the contributions of X(Zr,y ;) and X(zr,y;*) are replaced by 2 Re {X(zr,y i)}, based on
Schwartz reflection principle.

yr

loo“

-ioo| yr—a=1’

Fig.2.3.2: The transformation from y" to "

3) Change the order of integration dz7, dt" — dt ', dz’.

The order of integration in equation 2.3.15 is interchanged as explained in Figure 2.3.3,
where the new limits of integration Z' and T} follow from equation 2.3.13; the equation 2.3.13
solved for z’ leads to Z”

7
Z'() = ) (e5-x5 (2.3.16)

and for z” = 0 in equation 2.3.13, T}, follows as

2
To=TG"=0= 5 [ (] + L (5-x3) . 2.3.17)
Co
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Fig.2.3.3: The change of the order of integration

With this change of the order of integration, equation 2.3.15 becomes

e zZiz")
Re {A("y") ’

dz . (2.3.18)
'V(r) (T(z)

T, -zt

4) Introduce the transformation z” — y'.

To be able to evaluate the second integral in the right-hand side of equation 2.3.18 in the

high frequency approximation, a change of integration variables is introduced as

2'=Z" (¢ ) siny". (2.3.19)
The Jacobian for this transformation z” — v’
d2'=Z"(t")cos y ady’, (2.3.20)
and the new limits of integration follow from equation 2.3.19 as
z(z") %2
f df - f dy’. (2.3.21)
-zt -x/2
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After substitution of equation 2.3.19 into equation 2.3.13, the square root in equation
2.3.18 becomes

r 2 r, K 2 » 2 1 r r r
V (T ) —(T(z)) = (k’) +— “Z (Tt )cos(y). (2.3.22)
o
With these transformations, the expression for the function B (equation 2.3.18) becomes

oo 7!/2
B 1 f exp (—sr ’) a7 f Re {X(z’,y I)} dy’. (2.3.23)

-7 /2

5) Apply the high frequency approximation.

By rewriting the second integral in equation 2.3.23 as f(7), the integration by parts can be
applied to the remaining integral. Choosing u =f(7), and dv = exp |—s7 "1d7”, integration by
parts leads to

oo
oo

uv—Jv du =-—f(TT)exp(—srr) .

1 d "Nar
- g_f (D) exp (—S’L' )dT . (2.3.24)
° T

Subsequent integrations by parts will increase the power of s in the denominator to 1/s2, 1/s3,
and so on. Then, in the high frequency approximation, that is for s — e, the contribution of
integral in equation 2.3.24 becomes zero, leaving only the first part of equation 2.3.24 as the
solution. When the limits of the integral are substituted, that is when 7 is replaced by T6, the
amplitude A does not depend of 2 (" =0a T(')) ory” any more, thus it is not a function of y”
any more, and the integral f(7) can be solved, leading to

exp (—STS) ~ r

/2
e T = 7’” 2'=0, 7 =T, f dy . (2.3.25)
/2

_f ( )

Substitution of this result into equation 2.3.23 leads to

~ exp ( —sTO )

B= (2.3.26)
2s70

lZ—OT TO
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where the square root in equation 2.3.23 is replaced by %, using equation 2.3.4 as

T @3
o

Using this expression for 70' and equation 2.3.17 for Ty, the new expression for Ty is
established as

To= . (x;-x3). (2.3.28)

Thus, equations 2.3.26 - 2.3.28 give the solution for the function B, which was
expressed as a double integral in equation 2.3.3.

In order to evaluate the value of A for high frequencies, the parameter s in equation
2.2.11 is allowed to approach infinity, leading to

K=118n

x—xr|—C8nx—xs|. (2.3.29)

r
The normal derivative operating on ‘x — x |, as derived in Appendix A.3, is given by

_ =9k fxa=x) =3 (ra = x5) + (x5 - x}) . (2.3.30)

|x —xrl'\/(alh)2+(82h)2+ 1

Using z =0in equations 2.3.5, and substituting it into the expression for R " in equation
2.3.9, a new expression is obtained showing that R " is the position vector

L
2

2+(x3-xg)2] =[x -x|. (2:331)

r

R =

72 r
(.xl‘xl) +(X2—X2)

Another expression for R is obtained by substituting 7’ = Tg in equation 2.3.11, as shown in
Appendix A.3, leading to

r
r_ X3—Xj3

R = (2.3.32)
CO?’or
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Using the expressions for R” and equations 2.3.5 and 2.3.12 in a manner shown in the
Appendix A.3 the amplitude A becomes

iaj0h +iasdh+ 7

N (0,) + () +1

- (2.3.33)

o,

A| z'=0, c= T:) =con

for § — oo,

After the horizontal source coordinates have been transformed to the o-domain as well, the
expressions 2.3.33 for A , and 2.3.26 for B, will be included for the complete solution of the
double Radon transform.

2.4 TRANSFORM WITH RESPECT TO SOURCE COORDINATES

The procedure for the transform with respect to source coordinates is equivalent to the
receiver coordinates transform. Only the main steps are repeated here and applied to the source
coordinates. st

The Fourier transform applied to the scattered field p  (equation 2.3.2.) with respect to
xi, x; is expressed as

~Sct N~sct r s
p (xpxysasa’)= ff p (x3x 50 exp (is o) x]+is a;x;) dx dx; . 2.4.1)

~Sct
Solution of this transformation of the scattered field p  yields
ZSCt r s s o =
p (x3xzso’so’)= . w Cexp (is (a; +aj )x1 +is ((x; +o )x2 ds, (2.4.2)
0 xe§
where the function C can be written, equivalently to B in equation 2.3.3, as

oo

~

s
X —X

an
1

exp —s[iai(x1~x‘;)+ia; x2—x;)+ ] dxidxy. (2.4.3)

47r|x-xsl

Following again the same procedure which was used to obtain B in equation 2.3.26, the value
for C is found for s — o as
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exp (—sT‘B} ~

=z _ s
C= BI ZS=0,1,' =T'(')’ (2.4.4)

2syos

s . . . . s . . .
where ¥, and T'; have definitions similar to their equivalent functions for the receiver coordinates

Y- «/ (o) (o) + L, 245)

and
s s( s)
To=17, \x3—x3. (2.4.6)

Substitution of B from equation 2.3.26 yields

% _ expl—s (T6+Tf,)| 2

lz'=0 =T} :25=0,7=T5 (2.4.7)
2syorsyos ’ 0 ’ 0
~ s
The new expression for A is obtained by further developing equation 2.3.33 for 9, |x ~x |as
n r K - E
Alzr=0,f=T6;Zs=0,T =T‘(§—v 2 > ’ (2.4.8)
(0.) +(o,4) +1
where the function E, which is independent of s, is given by
E =con|iajoh +iadh +;/0] - cof [i a0k +iaP,h +y0‘] . (2.4.9)

The functions 7 and §, which were introduced as functions of direction vectors x and
x—x°, are now dependent on horizontal coordinates of the interface xj, x», and on vertical
coordinate of the receiver and source x3, X3.

To calculate the final expression for the scattered field in the double a-domain, the
following operations need to be done. The expressions for C in equation 2.4.7 and for A in
equation 2.4.8 are substituted into expression for the scattered field, equation 2.4.1. The variable
of integration dS in the surface integral is changed into dx; dx; as

H s — U '\/(alh)2+(82h)2+1 dx,dx, . (2.4.10)
xeS

x €S
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These substitutions lead to

asct r s ﬁ\, , s
4 (x3,x3;sa’,sa’) = Eexp|—s (T0+T0)] .
4sc0y0’70‘ x €S

(2.4.11)

exp[ is (‘a; +or] )xl +is (a; +o )x2 dx, dx, .

The important result obtained with this equation is that, according to equation 2.3.28 and
2.4.6, T(r) and T‘B depend only on vertical coordinates, while the argument in the second
exponent in equation 2.4.11 includes horizontal coordinates only. Thus, with the double
transform over horizontal coordinates, the horizontal phase and the vertical phase of the data are
separated. The importance of this result will become evident in the next chapter, when imaging is
discussed.

2.5 RAY PARAMETER - FREQUENCY DOMAIN

The derivation of the double Radon transform equations was done in the Laplace domain.
By allowing s — —i®, the derived s-dependent functions can be transformed into frequency
domain. If two functions in the Laplace domain are equal for real s, and s — e, as

?‘(x,s)=§(x,s), reals, § oo, 2.5.1)

then their counterparts in the frequency domain also are equal for real @, and @ — oo as

for—iw) = g(~iw), real @, @ —>oo . (2.5.2)

It follows that the derived expression for the scattered field, given by 2.4.11, holds not only for
real s — oo, but also for s — —im, and for @ — oo, provided s¢” and sa* are kept real-valued.

At this point the horizontal offset coordinates, which are the local coordinates within each
shot gather, are introduced instead of absolute receiver coordinates as

0_" S
X1=X1—X),
e r s (2.5.3)
X2=XZ—XZ.

The coordinates are changed in the spatial Fourier domain also: ray parameters
p’= {p?, pg }Jand p° = { pf, pg } are introduced to replace original a-coordinates as
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p0=i ar
2.5.4)
ps=i(a’+a‘). (

These new coordinates, x; and x3, and p° and p°, are introduced into equation 2.4.11 and
into expressions for T and T in equations 2.3.28 and 2.4.6, and s is allowed to approach —ie,
leading to the following expression for the scattered field

~sct W
p (x3x3-0p’w (po—ps))='—l—r—; ff E exp [‘ iop]x, - iop; xz] :
4iwcoqoqo Y /x s

(2.5.5)
exp {ia)[q(r)(xg,—xg) + qf)(x3—x;)]}dx1 dx, ,

for @ — o,
The new expression for E follows from introducing the new coordinates into equation 2.4.9 as

E =cq1 [p3a.h +p3050 447 +eof [(p‘{—pi)alh +(p‘£-pi)azh+qﬁ] . (2.5.6)

s
By introducing the ray parameters into equations 2.3.27 and 2.4.5 for 'yo' and 7%, the new
expressions for q('; and qé in equation 2.5.5 are recognized as vertical slowness functions, with
respect to receiver and source coordinates respectively

w5 S-b -6

o
2.5.7)
2 2
qos=,\/iz—(pi—p'f) ~3-r -
o

In equation 2.5.5, the scattered field is still a function of the different vertical source and
receiver coordinates. For that reason the sources and receivers are brought to the same level by
. . . r r § . "
performing a phase shift exp [l 0 qolxs— x,)] . Also, a scaled frequency domain filter
—dimcyqoqgo is applied to compensate for the scaling factor in front of the integral in equation
2.5.5. These two corrections are introduced together as

E =—4incyqhqsexp [iwq(; (xg—xg)] . (2.5.8)
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With this correction, the explicit dependence of the scattered field on x7 and x3 will be omitted in
the notation. Thus, the scattered field becomes

~sct v . )
P (po’ps) =EW ff Eexp [iw(q6+q(§)(x3 —xg)—lwpixl —zwp;xz dxdxy. (2.5.9)

x €S

Using equation 2.2.1, which describes the vertical interface coordinate x3 as a function A
of its horizontal coordinates x; and x», the surface integral over surface S is written as a double
integral over its horizontal coordinates, where the variables of integration are allowed to
approach * eo. With this change, the final expression for scattered field in the double Radon
domain is reached as

~sct o -
5 (po,p")=E w ff Eexp{iw[qo(h—xg)—pixl—p;x2]} dx,dxy , (2.5.10)

where the function g¢ is defined as sum of the vertical slowness functions
r s
40 = 490 *+9o- (2.5.11)

Similarly to equation 2.4.11, these two equations show the separation of the vertical phase
and the horizontal phase of the data: the first part of the exponent in equation 2.5.10 contains the
vertical slowness and the vertical coordinates, and the second part contains the horizontal
slowness and the horizontal coordinates. Also, the vertical phase term is now recognized as the
frequency domain equivalent of the vertical travel time (Diebold and Stoffa, 1981).

2.6 THE DOUBLE RADON TRANSFORMED DOMAIN

2.6.1 From 3D to 2.5D and the 2D problem

The Double Radon transformation was derived for 3D seismic data, the three dimensions
being the two horizontal coordinates x; and x5, and the temporal coordinate 2. In practice, it is
often assumed that the seismic profile was measured along a strike line in the direction of x3, so
that x2 = 0. Since the source and the receiver can each be approximated by a point, and the
seismic data are measured in the 2D configuration, the situation is called 2.5D (Bleistein, 1986).
In that case, x; = x, and the scattered field in the double Radon domain is expressed as



34

~SCt Vo~ *
? (p°,p’)=EWf Eexp{iw [qo(h—xi)—p’x]}dx ; (2.6.1)

2 2
0= A/ —-b) + A/ N (2.6.2)
Co Cop

The expression 2.6.2 appears to be equivalent to the 3D expression in equation 2.5.10. The
difference between the two is hidden in the frequency scaled filter in E', which in the 2.5D case
is 87V —iw ¢,qqq - For computer simulated data, the sources and the receivers are often given
in a line configuration (2D problem), and the filter becomes —87ioV gogq -

The derivation of the 2.5D or 2D expression of the double Radon transform becomes
rather tedious with the steepest descent method, and it is shown in Fokkema and van den Berg
(1992). This derivation becomes easier with the stationary phase method (for stationary phase
method, see Bleistein, 1984). The derivation of the double Radon transform for the 2.5D case
using stationary phase method is shown in Vissinga (1992).

For most practical situations, either 2D (synthetic data) or 2.5D (field data) expressions
would be used. The theory which follows in this thesis is applicable to either 2D or 2.5D
situations, depending on the frequency scaling filter only.

with

2.6.2 Implementation

The mathematical derivation of the double Radon transform was carried out in the Laplace
domain for the temporal coordinate, and the spatial coordinates were transformed into the & -
domain. In the final stage, the Laplace parameter was transformed into frequency, and the o-
parameters were transformed into offset ray parameter and source ray parameter.

The actual implementation of the double Radon transform is done by temporal and spatial
Fourier transforms directly. The double Radon transform is carried out in two steps, as indicated
in the Figure 2.6.1. Practically, the first Radon transform is applied to shot gathers, and the
coordinate x° is transformed into p°. After the data have been sorted into constant p°-gathers, the
second Radon transform is applied to the p°-gathers, and the coordinate x* is transformed into
p’.

It was recognized that an efficient algorithm for a 7-p transform can be achieved by
applying two Fourier transforms, temporal and spatial, followed by an interpolation (Benoliel et
al., 1987, Fokkema et al., 1992). The first Radon transform starts by applying a Fourier
transform with respect to time to the measured scattered field pS¢f (x°, x5, t)as

oo

~sct
p °x’w) =f Pl epliot)d . (2.6.3)

—oco
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x? p°
/ -1 / - x°
x? —_pC —_—
p 2 sort
First Radon transform
Y. Yo
xs ps

/ =p 0 /Apa
xs ___.—ps
————————

p 9 sort Second Radon transform
Vo T

Fig.2.6.1: Implementation of the double Radon transform

The frequency dependent data are subjected to a spatial Fourier transform with respect to
offset coordinate as

—sct

-~ o

wAsct
p (K,‘i,x’,w)=f p (x",x’,w)exp(—iKix")dxa (2.6.4)

-~ o0

where K z =2z k;’ . Using the projection slice theorem, the data are interpolated from a grid
. o . 0 . 7] . . o (4]
regular in K | into a grid regular in p®, using the equality K, = wp~ as

~8ct —sct
X =

p @°xw)=p K;=wp’x’ ). (2.6.5)

For a conventional 7-p transform, it would be sufficient now to apply an inverse temporal
Fourier transform and obtain the data as a function of the vertical travel time 7

*.sct

~sct x
pu (po,xs,r)=-l—Re fp (po,xs,a))exp(—ia)t)wda). (2.6.6)
b4
0
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For the double Radon transform, the data are kept in the frequency domain and sorted into
common p? - gathers for the second Radon transform. The transform is carried out by applying
the second spatial Fourier transform, this time with respect to the horizontal source coordinate

—sct = sct
p @’ Kpo)=) p (p",xs,w)exp(—iKixs)dxs- 2.6.7)

— oo

Again, the projection slice theorem is applied to interpolate the data from the X ; grid to the
p* grid using K 5 = wp® as

~sct =sct

p @°p0)=p @Ki=0p w). (2.6.8)

At this point, the Double Radon transformed data in the frequency domain, as given by
equation 2.6.1, are obtained. To transform frequency into vertical travel time, an inverse
temporal Fourier transform is applied leading to

o, sct

~SCt
p (p",ps,r)=;1;Re fp @°p w)expl-iwt)wdo | (2.6.9)
0

Equations 2.6.3 - 2.6.9 are used for computer implementation. The execution of these
equations for discrete data using fast Fourier transforms leads to the data set in the p® - p° - ©
domain, which was also described by Vissinga (1992).
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IMAGING IN THE DOUBLE
RADON TRANSFORMED DOMAIN

3.1 INTRODUCTION

Imaging of the data in the double transformed Radon domain starts with the selection of
the data along the imaging lines. As mentioned earlier, by double transforming the data to the
Radon domain, the vertical phase (containing vertical slowness and vertical spatial coordinates)
and the horizontal phase (containing horizontal slowness and horizontal spatial coordinates) of
the data become separated. The imaging lines are determined by the vertical slowness function,
which, in turn, restricts the possible values of the ray parameters to a particular combination of
the p%, p® pairs. For a fixed value of the vertical slowness function, determined by the velocity
of propagation through the layer of interest, the only possible combination of the p?, p® pairs is
the one which belongs to the interface in question. For a particular value of p (the ray recorded
at the receiver position), there are two possible corresponding values of p® (the rays leaving the
source), one updip and the other one downdip from the receiver position, depending on the dip
of the interface. Thus, by fixing the vertical slowness function, a domain is selected which
contains only the energy reflected from a particular interface. This energy is inverse Radon
transformed once, giving the time image of the interface. The procedure is illustrated with a
simple synthetic example.

The imaging is extended to the multi-interface case by introducing the RMS velocity
function, rather than the interval velocity of a single layer. The background velocity function is
obtained from the p? - p® transformed data, by exploiting the properties of the double
transformed Radon domain. In the p? - p° domain, the data are discretized according to the
local dip of the interface. This means that there is a domain in p° - p® space, where only energy
reflected from horizontally layered interfaces is present. This domain is ideal for velocity
analysis, since it satisfies the assumption of a horizontally layered earth. The z-p velocity
analysis described here employs the coherency calculation of the best fitting ellipse.
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The double Radon transformed domain offers another possibility for migration of the data,
which is carried out through frequency scaling in the domains of constant dip. The frequency
scaling leads to an NMO-like operation which corrects for the phase differences caused by the
elliptical and quasi-elliptical move-out.

3.2 SINGLE INTERFACE: CONSTANT VELOCITY

In chapter 2, the expression for the field scattered from an arbitrarily shaped interface and
double transformed to the Radon domain, equation 2.6.1, was derived. For convenience, the
integral representation of the scattered field and its slowness function are repeated here

,.,sct

p 0’0 0)=EW @) f”Eexp{iw[qoz—psx]}dx ; (3.2.1)

where z (h x3 with the slowness function

- A / c_o_(p ) ,\/_—(p . (3.2.2)

In order to keep the slowness function real and the arguments of the square-root positive
in equation 3.2.2, the maximum allowed values for the p° and p® range are

...L_<_ p° <1

c “c .
1 00 s 10 0 (3.2.3)
——+p £p S—+p
Co Co

This theoretically possible range of p® and p® values is shown in Figure 3.2.1 by the diamond
shaped contour in the p° - p° plane. In the limiting case for the p° value in equation 3.2.3, the
limits for p* become

pf=t X (3.2.4)
To proceed with the imaging, the slowness function is rewritten to express p° explicitly.

The solution of equation 3.2.2 for p? indicates that two real solutions exist for each value of p’
and for real values of gqq, as
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. ,\/——(p ~fao)”
p —2' 7 ’\/(p (%}

To keep the argument of the square root in the equation 3.2.5 positive and the solutions for p°
real, for a particular value of go, for example g, the values of p® are restricted to the domain
D (qa), P° € D(ga), Where

(3.2.5)

2@ ¢ [ ] < % o (3.2.6)
Co

Aps
2/¢

llco

[EUS SR SRS V2

-1/¢,

P

'l/CO

"2/C0

Fig.3.2.1: The theoretically possible range of p° and p® values. The
imaging line g4 (a=1.85, and cp=1.5 km/sec) has two
solutions for p? and two solutions for p%.

The curve expressed in equation 3.2.5, for a chosen g, and for a particular velocity ¢y, is
called the imaging line and is shown in Figure 3.2.1. When extended to p° - p° -7 space, it
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describes the imaging surface. Equation 3.2.5 restricts the values of p® and p° to a particular
range, depending on the chosen value of go, and indicates that for each value of p®, two values
of p? are possible. Also, the opposite holds: for each value of p?, two values of p® are possible.
For each ray characterized by p°, reflected from the interface and recorded at the receiver, two
possible incident rays exist. These incident rays can be either updip or downdip from the
receiver location, and the interface can be dipping either at a positive angle or at a negative angle,
as indicated in Figure 3.2.2. The incident ray is not completely described by its pf value. If the
ray parameter of the downgoing ray is denoted by pd, where pd = + (p® —p°), then for a fixed
p° value the p® value characterizes either of rays (p° — p°) or (p° — p*). For a fixed value of
P, two incident rays are possible, (p°— p°*) or (p*— p®"), and therefore two possible solutions
for p? exist, p°* and p®", as indicated in Figure 3.2.3. This means that by selecting all p° - p*
pairs characterized by ¢, the rays that could have been reflected from the interface are gathered,
regardless of the shape of the interface.

One p°, two downgoing rays,
two solutions for p$

Fig.3.2.2: The reflected ray p® originates either from p¢ = (p5* - p°)
or p? = (p? - p>~), depending on the dip of the interface

The selection of the particular p° - pS pairs is carried out by accepting both solutions for p?
for each p* € D(q,). Then, the selected imaging surface contains the energy reflected from the
interface above which the velocity of propagation is cg. Since both solutions of p? are accepted,
the mean value of the selected data is obtained as

~sct sct
1= o+_s§

sct ~
= 1 5 -
0 0a») =50 @ P@)+5p @ P0). (3.2.7)

Substitution of equation 3.2.1 into 3.2.7 results in
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~sct v =
@ (p‘,qa,w) =EW (w)f F (x:p°qz)exp {iw [qaz —psx]} dx , (3.2.8)
where
1 1 -
F(x;p°q4) = 7 E(;p° P+ EG:p” 70 . (3.2.9)

One pS, two downgoing rays,
p going ray
two solutions for p°

Fig.3.2.3: The same value of p® is shared between two down-going
rays; thus, two possible reflected rays p exist for this p5.

It follows from equation 3.2.9 that, for a chosen ¢g4, the new amplitude F is a function of x
and an algebraic function of p®; it does not depend on p® any more. Also, like the amplitude
function E, it does not depend on . For the high frequency approximation, when @ — oo, the
main contribution to the integral on the right hand side of equation 3.2.8 comes from the
stationary point. The value of p® at the stationary point follows from the stationary phase
condition, which states that the first derivative of the phase in equation 3.2.8 needs to be equal
to zero

go—-p"=0. (3.2.10)
X

Using the value of p® at the stationary point, a new function F is defined at the stationary point
as

F&aa)=F|p'ag 2 - (3.2.11)
X
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This function, which does not depend explicitly on p®, exists only if the value of p* at the
stationary point is contained in the domain D (q,). With these changes, the scattered field given
by equation 3.2.8, for the selected qq, is replaced by

~5cCt . ”_ s
) (p’,qa"’))=E W(a))f F(x;qa)exp('iwqaz)exp(—iwpx)dx , 3.2.12)

—oa

for @ — oo and for p5 € D (q,). This integral vanishes for points p* outside domain D (g,),
because of the assumption that the p® is related to the stationary point. Since the function F
does not depend on p* any more, equation 3.2.12 is now recognized as a forward spatial Fourier
transformation with respect to the coordinate x, with transform parameter —@ p°. To obtain the
image of the interface, the inverse Fourier transform is therefore applied as

~5ct ) =S¢t .
0 ('qm0)= —I, 0 ¢'q.0) epliop)dp’ . (3.2.13)
27 ‘p'e m(q,)

Combining the equations 3.2.12 and 3.2.13, the application of the inverse Fourier transform
leads to
~sct

Q (xs,qa,w)=ElW(w)?(x;qa)exp(i(oqaz) , form — oo, (3.2.14)

This expression, when inverse Fourier transformed to the time domain, gives the time image of
the function z, which is the interface k as observed from the source level x 3. The time image of
the interface follows from the phase shift in equation 3.2.14

T,(x39,) =qa(h (x)—xi). (3.2.15)

The obtained time image is still dependent on the value g4 chosen for the vertical slowness
function. The imaging procedure has been initiated by fixing go at some constant value, where

a
40=C—0=‘1a- (3.2.16)

The maximum possible value of go follows from equation 3.2.6, since only real solutions for p*
are acceptable, as
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2
q0S . - (3.2.17)

When the limiting value of ¢ is substituted into the travel time expression, equation 3.2.15, it
gives the two-way travel time to the interface 4. As shown in Figure 3.2.4, for the limiting case
a =2, the imaging line reduces to a point in the origin.

s
2/cy | P
a=1
/¢,
a=2 - po
-1/¢ 1/¢cqy
'1/C0
""2/(:0

Fig.3.2.4: The limiting values for qp in the p®-p® plane: g4 = 1/co and g, = 2/co

The energy reflected from the interface  can only be imaged after it has been reflected,
and the imaged time has to be not less than the one-way travel time. This implies that the lower
limit of parameter a to be used in the imaging is a = 1, and the lower limit for go then becomes

902 (3.2.18)

1
Co :
The lower limit of gg in equation 3.2.18, for a = 1, gives the one-way travel time to the interface

when substituted in the travel time expression in equation 3.2.15. For a = 1, the imaging line
approaches asymptotically the limits of the p? and p® range, as shown in Figure 3.2.4.



The true time image can now be obtained by resampling the data from the scaled time T,
(given by equation 3.2.15) to the true two-way travel time T

T@W=2T,q0 . (3.2.19)

giving the laterally changing two-way travel time to the interface A from the source level x3.

-840 —x (m) > 840
L
c 0= lfl()O m/s |||
z(m) T T - .T
c = 2000 m/s ||
il

Fig.3.2.5: The depth-velocity model of the triangle-shaped
interface, used to create the synthetic data set

p’ (s/km)
378

-.378

0
-8.8 =

f?ig.3.2.6: The energy density distribution in the p°-p® plane for the triangle-
shaped interface of Figure 3.2.3, and the imaging line ¢, for ¢=1.85
(dashed line)
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The result of the imaging procedure is shown on a simple synthetic example. In Figure
3.2.5, the depth model used to create the synthetic data is shown. The triangle-shaped interface
is 380 m deep at its shallow point, and 450 m at its flat parts, with the two flanks dipping at
+8.80. The velocity to the interface is 1500 m/sec. Using finite differences, a data set was
created consisting of 128 shots and 128 receivers in a split-spread geometry, with Ax$ = Ax" =
12 m. This data set was subsequently double transformed to the Radon domain, with Ap° = Ap°
= 6-10~6 sec/m, with 127 p°-traces and 127 p®-traces. To examine the data in the p°-pt
domain, the energy density plot was generated by summing the squared amplitudes along the
time axis, and is displayed in Figure 3.2.6. The data were selected along the imaging line using
equation 3.2.7, for a particular value of go, where the chosen value was @ = 1.85, and displayed
in Figure 3.2.5. These data were then inverse Radon transformed, according to equation 3.2.13,
transformed back to time, and scaled to two-way travel time, using equation 3.2.19. The
resulting time image, displayed in Figure 3.2.8, closely resembles the input model.

-378 —p® (km/s) —» 378
0

T g (ms)

o o
1
——

1000

Fig.3.2.7: The reflected energy in the selected imaging plane
(projected onto the p° = 0 axis for plotting
purpose). The horizontal axis is p*, and the vertical
axis is the vertical travel time ¢, scaled with the

chosen g,
-840 —x (m) - 840
200
t (ms) |
1000

Fig.3.2.8: The resulting time image of the interface. The
vertical axis is the two-way travel time.
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3.3 MULTI-INTERFACE: RMS VELOCITY

Imaging described in the previous section is valid for the one-interface case. Also, the
expressions for the scattered field derived in chapter 2 are valid for the field scattered from one
interface, and the velocity cg used in the slowness function, equation 3.2.2, is the velocity of
propagation in the medium above the interface. This theory can be extended to a multi-interface
case, by assuming that the total scattered response is the superposition of M independent
contributions as

r_s

M
Prot X x) = D pmix'xh) (3.3.1)
m=1

where pf,f‘(x',xs) = pm(x "x s) The assumption that the individual contributions are independent,

that is, that there is no interaction between the individual fields, implies that multiple reflections
and free surface effects are ignored, which is the common assumption in the theory of

migration.

S
P
-

s F R
' ) constant
velocity  velocity

1.

Fig.3.3.1: The imaging lines changing along the time axis, as a
function of the RMS velocity distribution.

The superposition of the individual contributions is also valid in the double Radon
domain, and the double Radon transformed total scattered field is written as
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zsct ~SCt

M
Dot @50 = Xom @0 (3.3.2)

m=1

~SCt ~Sct
where p,, (po,ps) =p (pa,ps). With the assumption of linear superposition of individual

fields, the interval velocities are replaced by the RMS velocities. In the equation 3.2.2, the
interval velocity is substituted by the RMS velocity in the expression for the slowness function

2 2
qms=’\/ b+ \/%—(ps-p”) : (33.3)
Crus Crus

The introduction of the RMS velocity makes it possible to apply the imaging procedure to
situations more realistic than the one interface case. The imaging lines change at every time
sample, according to the RMS velocity function, as indicated in Figure 3.3.1: As the RMS
velocities increase with time, the imaging lines become smaller. The data selection along the
imaging lines is carried out in the time domain, and only the selected data are Fourier
transformed to the frequency domain for the imaging. After this, the imaging procedure is the
same as for the one interface case, as was outlined in the previous section.

as

-840 —x (m) = 840
o= 1500 m/s
[N TR R LN TV UNRATRAS
e
I c = 2|[|)00 m/s
bhpt) ||
i T
c = 2500 m/s{l|
1l
800 I

Fig.3.3.2: The depth-velocity multi-interface model

Imaging with the RMS velocities is illustrated with a simple synthetic example. Figure
3.3.2 shows the depth model, where the familiar triangle shaped interface is sandwiched
between two flat interfaces. The same configuration for the synthetic data simulation by finite
differences was used as for the one-interface example. The energy density plot shown in Figure
3.3.3 indicates that the energy reflected from horizontal interfaces dominates the data. Imaging
with the known RMS velocity function produces the time image shown in Figure 3.3.4. Since
this is a time migration, the propagation effects are not removed from the bottom interface, but it
is positioned correctly. The free surface reflection is still present in the data at about 400 msec,
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since nothing was done to remove it, and it is migrated as a primary reflection. This is a
common problem with all migration algorithms, especially when they are applied prior to stack,
which indicates that the free surface effects have to be removed first.

p° (s/km)
378

-.378 378

p°(s/km)

-.378

Fig.3.3.3: The energy density distribution in the p?-p® plane for the multi-

interface model
-840 —X (m) > 840
100
PN EI“FFIIH‘I{I" 0]
t (ms)
il
oo M

Fig.3.3.4: The resulting time image of the multi-interface
model, with the multiple migrated as a primary

3.4 VELOCITY ANALYSIS IN THE 7—p DOMAIN
3.4.1 Data discretization

One of the consequences of transforming the data into the double Radon domain is the data
discretization according to the local dip of the interface. This is shown by examining equation
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3.2.10 and replacing the gradient of the interface by the tangent of the dip angle 6. Then,
equation 3.2.10 can be rewritten to express lines of constant dip as

5
an 9=P7, (3.4.1)

e~

2/c, T 900

1/¢g

-1/¢

90 r-2/cg

Fig.3.4.1: Lines of constant dip in the p?-pS plane

where g denotes either g or grys- The dip angle 8 can be either the true dip of the interface,
when gg is given by the interval velocity cg, or the time dip when ggys is defined by the RMS
velocity cpys. Equation 3.4.1 shows how the dip of the interface is related to the ray parameters
in the p? - p* domain: the spatial complexity of the interfaces is manifested through the data
distribution along the p®-axis in the double Radon transformed domain. The expression for lines
of constant dip (either true dip or time dip), when solved explicitly for p%, is rewritten as
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p = 2 . (3.4.2)
1+mn” 6

These lines, for a particular value of velocity in the slowness function, are displayed in Figure
3.4.1. It follows from equations 3.4.1 and 3.4.2, and Figure 3.4.1, that in the p* = 0 plane,
only energy reflected from horizontal segments of the interfaces is present. This is an important
conclusion, indicating the best approach for velocity analysis in the double Radon domain.

-0378 —pO(km/s) —m 0.378
50 M 9=88°

T (T)
-

50 0

T (ms) 1

50 m g=-88°
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| g
o LA

Fig.3.4.2: The data in the planes of constant dip for the triangle-shaped
interface (projected onto the p* = 0 axis)
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The energy reflected from interfaces dipping at steeper dips maps at higher p* values. In
the limiting case of a vertical reflector, 6 = 900, all reflected energy maps into a line along the 7-
axis at the point p* = 2/co. Energy reflected from the interface dipping at positive dips maps
along the positive p®-axis, and energy reflected from interfaces dipping at negative dips maps
along negative p®-axis.

The dip-dependent data discretization in the p° - p* domain is also exhibited in Figure
3.2.6, which shows the energy density plot for the triangle-shaped interface. The high energy
density concentration along three principal lines indicates the presence of the three interface
segments, two dipping at 8.80 and —8.80, and the flat parts at p* = 0. The energy along these
three principal lines in Figure 3.2.6 is interconnected by the energy scattered from the point
diffractors at the edge of the triangle. To show the shape of the 7-p curves resulting from the
three interface segments, the data are intersected along the three principal lines and displayed in
Figure 3.4.2. As expected, the intersection at p* = 0, for the horizontal segment, shows an
exactly elliptical 7-p response. Intersection for the interface dipping at 8.80, along the line p* =
0.15¢, shows the quasi-elliptical shape of the T-p curve, with its apex shifted to the positive p°
values, while the intersection for —8.80, that is along p* = —0.15g, shows the 7-p response anti-
symmetrical to the previous one, with its apex shifted to the negative p® values. It will be shown
in chapter 4 that the apex p° values correspond to the rays normal to a single interface, which in
this case are p® = +0.1 sec/km.

3.4.2 Curve fitting

In the p* = 0 plane, due to the data discretization, all 7-p curves are elliptical, since only
the energy reflected from horizontal components of the subsurface is present. This means that
velocity analysis by curve fitting is best achieved in this plane, because the theoretical elliptical
travel time curves fit the data much better than they do in conventional CMP gathers using the
hyperbolic assumption. Also, the output of such a velocity analysis is the RMS velocity
function, rather than the stacking velocity.

The method used for the velocity analysis in the p* = 0 plane is based on measuring the
coherency of the best elliptical fit (Vincentie, 1989), analogous to velocity analysis in the t-x
domain, where the coherencies are measured for the best hyperbolic fit (Yilmaz, 1987). The
coherencies are calculated along elliptical curves in the 7-p domain

2 2 o2
r(p°)=ro[1—(p ) v}zws] : (3.4.3)

where T (p?) is the two-way vertical travel time in the p* = 0 plane as a function of the ray
parameter p°, and % is the normal two-way vertical travel time at p® =0.

For a number of trial (7,vrus) pairs, the coherency is measured along the corresponding
ellipse, as shown in Figure 3.4.3. The most often used measure for coherency is the semblance
S, defined as the normalized ratio of coherent energy to the total energy (Neidell and Taner,
1971; Yilmaz, 1987)
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S=x : (3.4.4)

where N is the number of the p? - traces, A; x(;) is the amplitude on the i-th p° -trace at the time
(i), and w is the length of the time window in which the amplitudes are summed for each trial
(T0,VRMS) pair.
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Fig.3.4.3: The principle for velocity analysis in the p = 0 plane

The output of such a velocity analysis procedure is a contour plot of coherencies in the
time-velocity coordinate system, which then requires velocity picking, that is, choosing the
velocities which produce the highest coherencies along the time axis. The procedure is illustrated
in Figure 3.4.4. The velocity producing the highest coherency is accepted as the RMS velocity at
the particular time %, and the final vgps function is obtained by linear interpolation between the
picked values.

3.5 FREQUENCY SCALING METHOD

Another approach to migration applied in the p°- p® domain, as described by Vissinga
(1992), is to perform frequency scaling of the data discretized in planes of constant dip. For that
purpose, equation 3.2.1 is rewritten as



53

Fig.3.4.4: A contour plot of the calculated coherencies and the corresponding velocity

picking
~sct

p P°p @)=E W (@) waexp{im [V/OTO -psdex , (3.5.1)

—o0

where the normalized vertical slowness yo = w(p°p®) is given as

2 2
w@)i[a/ Lpf aaf Lol . a5
Co

and Ty is defined as the two-way travel time from the source level to the interface

2

= (h ) -x3). (3.5.3)

Tyx)=

The data discretization in the p°- p* domain is exploited by selecting the (p°, p*) pairs
which belong to the domain 2 (pd ), defined as

2 (%) : p* =p'y,. (3.5.4)
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From equation 3.5.4, it follows that the parameter pd is equivalent to the ray parameter
p®, scaled by the normalized slowness function yp, and, as such, it is called the dip slowness.
The relation of the dip slowness to the dip of the interface will be shown after the stationary
phase condition has been applied. For now, it suffices to say that the domain D (pd) is the
domain of a constant dip. The scattered field, restricted to the D (pd) domain is written as

Sm(po,ps,w )=E W () ij exp {iw Yo [To -~ p“‘x]} dx | (3.5.5)

for (p°-p° ) € D (p?). For a fixed value of p%, the term in the brackets [T, — p%a] is completely
determined by the properties of the interface, and does not depend on the p%-p* values, while the
function yo depends entirely on the ray parameters p® and p®, for the given interface. For
energy reflected from a horizontal interface, which is mapped into the pt=p=0 plane, it
follows from equation 3.5.2 that the function yq represents elliptical move-out, and when
combined with the function Ty in the expression for phase (equation 3.5.1) gives the elliptical 7
p response from horizontal layers. The shape of the T-p curve is determined by the pd (orp®)
value, and becomes quasi-elliptical in all planes where p* # 0.

If the correction for the quasi-elliptical shape is applied to the data discretized into constant
pd planes to produce the elliptical response, the result is equivalent to dip moveout (DMO). By
carrying the correction procedure one step further and applying the complete move-out
correction to flatten the T-p curve for the phase differences, the actual migration is achieved.

In each D (p9), the move-out correction is performed by scaling each frequency
component by the corresponding function yp. The procedure is repeated in each D (pd ), and the
mean value of all move-out corrected data leads to

~Sct i
0] (pd,w)= J Fo(x,pd,w) exp {iw [TO —pdx]} dx , (3.5.6)
where
E'W(-“i)Edp"dp’
N epdenph 'O
FoxpSw)= 2 : (3.5.7)
ff o 1 d dpodps
Ppr)eDP@)

From here on, the procedure is identical with the imaging procedure described in section
3.2. The main contribution to the integral in equation 3.5.7, for @ — oo , comes from the
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stationary points. The value of pd follows from the stationary phase condition at the stationary
point

p = ——mﬂ 9, (3.5-8)

When the explicit value of pd is substituted in equation 3.5.6, the amplitude becomes a function
of (x,w) only, rather than being a function of (x, pd,a)). This leads to the recognition of the
forward Radon transform, and the application of the inverse Radon transform leads to

~S5ct o
P (xo)=Foxw) explioT,), for® —es. (3.5.9)

Again, an inverse Fourier transform with respect to time leads to the time image To of the
interface hg.

The data set created for the triangle-shaped interface was migrated using the frequency
scaling method. The resulting time image of the reflector is shown in Figure 3.5.1, as a function
of two-way travel time. For this simple model, the result does not differ from the image obtained
by the imaging method, shown in Figure 3.2.8.

-840 —X (m) 840
200 l

1000 l

Fig.3.5.1: The time image of the triangle shaped interface
model of Figure 3.2.5, obtained by the frequency
scaling method.

This method is extended to the multi-interface case by repeating the complete frequency
scaling procedure with a number of constant velocities, and allowing the selected dip lines to
change with each selected velocity. The final image is created by selecting the corresponding
window for each interface, according to the velocity distribution. However, it would not be
practical for a rapidly changing velocity medium, where a large number of scaling procedures
would have to be repeated in small windows, each of constant velocity.
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PRACTICAL CONSIDERATIONS

4.1 INTRODUCTION

The p? - p* domain is unfamiliar to most geophysicists, and migration in the p? - p*
domain is even more unfamiliar. It is certainly an unconventional way to handle seismic data.
The unknown aspects of the p® - p* domain are described in this chapter. First, its connection
with the more familiar, conventional 7-p transform is established. For that purpose, the
geometrical aspects of the travel time response in the -x domain and the 7-p domain are
described, for both the CMP geometry and the common shot geometry. It is shown that the dip
information becomes hidden in the CMP geometry in both the 7-x and 7-p domains, while the
shot geometry preserves the dip information in both domains. This conclusion is extended to the
double Radon transformed domain by showing the connection between the 7-p response over
plane dipping layers in the conventional Radon transformed domain and 7-p response in the
planes of constant dip in the p° - p* domain.

The quality of the Radon transform is higher when applied to data with split-spread
geometry, since negative offsets also carry valuable information. It is shown how the reciprocity
principle can be applied to z-x data to improve the result of the double Radon transformation.

Even though the theoretical limits for the ray parameters p° and p® are established as 1/cg
and 2/cg respectively, they cannot be achieved in the double Radon transformed data due to the
limitations of the recorded offsets. Apart from this limitation, which is imposed by the data
acquisition parameters, there is also a limit to the highest dip to be migrated, imposed by the
migration algorithm itself. However, it is shown that dips higher than 60°, which is the
theoretical limit, can be recovered from the diffraction energy.

The migration in the double transformed Radon domain causes distortions of the seismic
wavelet. These changes are caused by interpolation, integration, and selective filtering, which
are all inherent to the Radon transformation. These changes, except for the interpolation effects,
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can be corrected for, and the original waveform can be recovered to a certain extent. However,
regardless of the changes to the wavelet, the interfaces are properly positioned after migration.

Finally, it is shown how the data collected over long lines can be segmented into smaller
subsets which can be migrated individually. The final output is composed of individual
segments, producing the result which is consistent with one-pass migration.

4.2 GEOMETRICAL ASPECTS

The data discretization according to the local dip of the interface in the p° - p* domain was
described in section 3.4.1 of this thesis. The time response in planes of constant dip can be
compared with the 7-p response over plane horizontal and dipping interfaces. For that purpose,
the geometrical aspects in both the z-x domain and in the 7-p domain are investigated, for both
CMP and shot geometry.

4.2.1 The t-x response

CMP gathers

The CMP geometry, for one source and one receiver position, over an interface dipping at
an angle 6, is shown in Figure 4.2.1. The distance between the source and the receiver is
x% = x, and the thickness of the layer at the midpoint location is z, while the velocity of
propagation through the layer above the dipping interface is c. The travel time response ¢ for a
complete CMP gather, as derived by Levin (1971), is given by

2
=15 + L-cos’0, @.2.1)

(4

where Iy, the normal incidence travel time appearing at the zero offset trace, is given by

2z cos@

o= p . 4.2.2)

Fig.4.2.1: The common mid-point (CMP) geometry over a dipping layer
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Fig.4.2.2: The time-space (¢-x) response in a CMP gather for the dipping layer (solid line), and for

the horizontal layer (dashed line)

The travel time hyperbola, given by equation 4.2.1 and shown in Figure 4.2.2 (solid line),
is symmetrical with respect to x = 0, and has its apex at the same point. For a horizontal
interface, that is @ = 0 in equation 4.2.1, the travel time response is also a symmetrical
hyperbola. The 7-p response for a dipping interface shown in Figure 4.2.2 with the solid line is
equivalent to the travel time response over a horizontal interface at depth z.cos 6, and velocity of
propagation of c/cos 6. The dashed line in Figure 4.2.2 corresponds to the travel time over the
horizontal interface at depth z and velocity of propagation ¢, which is shown in Figure 4.2.1 by
the horizontal dashed line. Whether the interface is horizontal or dipping, the #-x response is a
symmetric hyperbola in CMP gathers.

Shot gathers

A shot gather over the same layer as in the previous experiment, with split-spread shooting
geometry, is shown in Figure 4.2.3. The thickness of the layer z is measured at the shot
position. The corresponding travel time curve for a complete shot gather (Slotnick, 1959;
Tatalovic, 1988) is given by

Fig.4.2.3: The split-spread shot geometry over a dipping layer
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X + 2z cos O sin 6
=12 cos’0 + ( - ) . (4.2.3)

c

This is again an equation of an hyperbola in -x space, as shown in Figure 4.2.4 by the solid
line. The apex of this hyperbola is shifted up-dip, towards negative x-values for the positive dip.
The minimum travel time ¢4 at the apex of the hyperbola is recorded at offset x, , and is given by

2z cos@
t,= cos0
c

(4.2.4)
Xa= —2zcosOsinf .

Fig.4.2.4: The t-x response in a shot gather for the dipping layer (solid line), and for the horizontal
layer (dashed line)

The equivalent horizontal interface (for 6 = 0) is shown by the dashed line in Figure
4.2.3. The travel time response from a horizontal interface, a symmetric hyperbola with apex at
Xg =0, is shown in Figure 4.2.4 by the dashed line. The travel time at the apex is the same as
the travel time at the zero-offset trace.

In shot gathers, the travel time response over a dipping interface is a hyperbola shifted
along the x-axis, up-dip from the shot position, whereas the travel time response from either
horizontal interfaces or dipping interfaces is a symmetrical hyperbola in the CMP oriented data.
The symmetrical shape of the travel time curves in the CMP oriented data has been used to
justify the assumption of a horizontally layered earth, commonly exploited in conventional data
processing. The asymmetry of the travel time curves in shot gathers made the shot-oriented data
processing unattractive; however, when the data are treated correctly, some valuable information
can be recovered with shot-oriented processing.
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4.2,2 The 7-p response

CMP gathers

The derivation of the 7-p response from a dipping interface starts from the basic equation
for the vertical travel time for a single layer (Diebold and Stoffa, 1981)

r=z2(¢%+4") . 4.2.5)

where the vertical slowness of the downgoing rays qd is identical with the vertical slowness at
source g°, and the vertical slowness of the upgoing rays q"* is identical with the vertical
slowness at receiver ¢, that is

2
¢"=q" = %—(ps—po)
(4
- (4.2.6)
“=¢" =4/ 5-6°)
[4

The downgoing and upgoing rays are characterized by the ray parameters pd and p*, which
are related to the source and receiver ray parameters p® and p° as

p? =p* -p°
. o 4.2.7)
p“ =p

In terms of the incidence angle # and emergence angle i* which are formed relative to the
vertical by the downgoing and upgoing rays, as shown in Figure 4.2.5, the vertical slownesses
are defined as

e v =i"0

Fig.4.2.5: The geometrical relations formed by downgoing and upgoing rays
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d _cosi

7 =7¢

u _ COS i* “4.2.8)
9 ==

Substitution of equations 4.2.8 into the travel time equation 4.2.5, and algebraic
manipulation of the geometrical relations of the angles 1d
expressions for the vertical travel time

d
T -1: —r sin (z +9)
2 (4.2.9)
u 2
(‘5) -—17 -7 sin (z —9)

a

, and 6, leads to the following

2

In these equations, Td is the vertical travel time in terms of downgoing rays, as observed
in a common receiver gather, and 7" is the vertical travel time in terms of upgoing rays, as
observed in a common shot gather. The vertical travel time 7, in equation 4.2.9 is equal to the
travel time #g for the zero offset trace in the #-x domain

_2zcos 0

= 4.2.10)
a c

As explained by Diebold and Stoffa (1981), the ray parameters for the downgoing and
upgoing rays are averaged in the CMP geometry, as

pt+p*  sini® +sini®
p=Dl P _sini tsini @.2.11)

Again, using the geometrical relations of the angles id, i*, and 8, equation 4.2.11 can be
rewritten as

cos 6 cos 6

sin(i® + 0) = sinli*=0). (4.2.12)

Substitution of equations 4.2.12 into either of equations 4.2.9 leads to the 7-p response over a
dipping interface in a CMP gather as

2 2 2 ot
T=1, (l—p ) (4.2.13)

2
cos ~ @
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Fig.4.2.6: The 7-p response in a CMP gather for the dipping layer (solid line), and for the
horizontal layer (dashed line)

The elliptical 7-p response for a CMP gather over a dipping interface is shown in Figure 4.2.6
as a solid line. For a horizontal interface, that is for 8 = 0, equation 4.2.13 becomes identical
with equation 3.4.3 for elliptical 7-p curves in the p® = 0 plane, since for horizontal layers
p= pd = p*. The dashed line in Figure 4.2.6 shows the elliptical 7-p response over the
horizontal interface shown in Figure 4.2.1. The 7-p response in CMP gathers is elliptical,
whether the interface is horizontal or dipping.

Shot gathers
Starting with equation 4.2.9 for vertical travel times in shot gathers, and using
trigonometric relations for angles id, i*, and 6, the travel time curve in terms of ray parameters

for the upgoing rays becomes
“ 2 2 2( u 2 2 u u
(‘r) =1, l—c(p )(l—tan 0)+2pqtan6, 4.2.14)

where the vertical travel time

2
LAY (4.2.15)

equals the travel time at the apex t, in the z-x domain; it is observed at the ray emerging at the
vertical to the receiver, that is at p* =0.

The curve described by equation 4.2.14 is no longer elliptical. It is the last term in
equation 4.2.14, containing the vertical slowness, which deforms the ellipse into a quasi-ellipse.
The 7-p curve in a shot gather over a dipping interface is shown in Figure 4.2.7 by the solid
line. The apex of the quasi-elliptical curve is shifted downdip, to the trace with ray parameter
value
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Pa =

(4.2.16)

For a horizontal layer, that is for 8 = 0, the quasi-elliptical response in equation 4.2.14
reduces to the elliptical response as was given in equation 3.4.3: the terms containing tan@
become equal to zero, and 7, = 7 for horizontal layers. The z-p response of the horizontal layer
of Figure 4.2.3 is shown as a dashed line in Figure 4.2.7.
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Fig.4.2.7: The 1-p response in a shot gather for the dipping layer (solid line), and for the
horizontal layer (dashed line)

Equation 4.2.14 is derived for plane dipping layers. Since the application of the double Radon
transform causes the discretization of the data into planes of constant dip, it follows that the
vertical travel time in planes of constant dip in the p° - p® - T domain can also be expressed in
terms of ray parameters, the dip of the interface and the velocity through the layer. Since p® = p*
(equation 4.2.7), and ¢° = ¢¥ (equation 4.2.6), equation 4.2.14 for vertical travel time from
plane dipping layers is also valid as expression for vertical travel time in planes of constant dip
in the p? - p* - T domain. The phase factor in the expression for the double Radon transformed
data, equation 3.2.1, also gives the vertical travel time in the p? - p* domain. The main
difference between the travel time described by the phase function in equation 3.2.1 and the
vertical travel time in equation 4.2.14 is that equation 4.2.14 holds in the planes of constant dip
only, while equation 3.2.1 gives the travel time at any point in p° - p’ space, from any arbitrarily
shaped interface. As such, it also contains the coordinates of the interface.

Comparison of the theoretical 7-p response shown in Figure 4.2.7 with the data sections
along the lines of constant dip in Figure 3.4.2 confirms these conclusions.

The apex of the quasi-elliptical curves in planes of constant dip is given by equation
4.2.16 for the p° coordinate. To determine at which p°® value the apex occurs, equation 4.2.16 is
substituted into the expression for the constant dip lines, equation 3.4.1. This leads to
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s 2 “: o . (4.2.17)

It follows from equations 4.2.16 and 4.2.17 that the apexes of the quasi-elliptical travel time
curves, when projected on to the p? - p® plane, are distributed along the line
s o

p = 2p. (4.2.18)

The same line connects the apexes of the constant dip lines, given by equation 3.4.2. This
can be shown by finding the value p° at which the first derivative of the function given by
equation 3.4.2 equals zero, that is dp*/dp? = 0. This leads to

P’ == (4.2.19)

Line of constant dip

_—

Plane of constant dip,
perpendicular to po-pS plane

2 sin

(¢}
a=]

/

A |

L Locus of apexes of

- constant dip lines,

- quasi-elliptical travel
time curves | I

Fig.4.2.8: The constant dip line has its apex on the p¥ = 2p? line (left). The 7-p response in the

constant dip plane (right) has its apex at the same p? value, and at the same p° value
when projected onto p?-p® plane,

which is the same value p? at which the quasi-elliptical 7-p response curves have their apexes.
Thus, the projection of the line which connects the apexes of the quasi-elliptical curves onto the
PP - p° plane, given by equation 4.2.18, also connects the maxima of the lines of constant dip in



the p? - p® plane. This is shown in Figure 4.2.8, for a constant dip line in the p° - p*
coordinates, and the corresponding constant dip plane in the 7-p coordinates.

By repeating the same procedure to find the apexes of the imaging lines, given by equation
3.2.2, it is found that the imaging lines have their apexes along the same line given by equation
4.2.18.

4.3 RECIPROCITY AND THE EFFECT OF MISSING OFFSETS

The reciprocity principle states that, if the source and the receiver were interchanged, the
same trace would be recorded. In terms of ray parameters, this implies the following
substitutions, as shown in Figure 4.3.1

pD _)ps_pa
s o ) “4.3.1)
p—-p —p .
S R R S
0 0
Ps‘ P0 P p s _o
- P-P

Fig.4.3.1; The upgoing and downgoing rays can be interchanged according to the reciprocity principle.

By equating p® to (p* — p?) in equation 4.3.1, it is recognized that the obtained line of
symmetry, p° = 2p°, is the same as the line in equation 4.2.18, which connect the apexes of the
important curves in the p° - p* domain. Figure 4.3.2 illustrates the symmetry of the p? - p$
domain with respect to line p* = 2p°, and lists all the features of the p° - p* domain connected to
this line. Thus, the reciprocity principle can be applied to the double Radon transformed data.
For a particular value of p®, the vertical slowness function ¢ (equation 3.2.2) does not change
when p? is substituted by (p° — p?). Similarly, the double Radon transformed data, equation
3.2.1, do not change when, for a fixed value of p®, p? is substituted by (p°— p? ). It can now be
recognized that accepting both solutions for p? in the imaging equation 3.2.5, is actually obeying
the reciprocity principle and allowing sources and receivers to be exchanged.

The reciprocity principle is exploited in the z-x domain rather than in the p° - p* - Tdomain,
because the use of reciprocity can help obtain a higher quality of transformation. This is
achieved by recovering, to a certain extent, missing offsets. As shown in section 4.2.1, traces at
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Fig.4.3.2: The symmetry of the p°-pS space with respect to the pS = 2p? line
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Fig.4.3.3: Recovery of missing negative offsets based on the reciprocity principle

negative offsets as well as traces at positive offsets contain valuable information in the shot-
oriented data. When spatially transforming "non-causal" spatial functions, it is wrong to assume
that the value of the function is zero at negative offsets; although, due to lack of the data at
negative offsets (especially for marine data), this is often done. The reciprocity principle can be
applied to the data prior to the double Radon transform to overcome this problem. The procedure
is explained in Figure 4.3.3. The original shot gathers have receivers only at positive offset



locations. Using reciprocity, the first receiver with negative offset is recovered from the second
shot gather and its first receiver, the second recovered receiver follows from the third shot gather
and its second receiver, and so on.
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Fig.3.2.6: The energy density distribution for the triangle-shaped interface with
split-spread geometry
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Fig.4.3.4: The energy density distribution for the triangle-shaped interface (shown
in Figure 3.2.5), when the negative offsets were excluded from the data
set prior to transformation
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The shot gathers at the extreme end of the profile cannot be recovered completely, since
there are no corresponding data. Also, missing near offsets obviously cannot be recovered.

-84 —x (m) > 840
200 T

t(ms) ks

1000

Fig.4.3.5: The image of the interface obtained from the data
set modelled for the triangle-shaped interface
(shown in Figure 3.2.5) without negative offsets

The influence of missing offsets on imaging is illustrated with a simple synthetic data set
recorded over the triangle shaped interface which was shown in chapter 3, Figure 3.2.5. The
energy density plot in Figure 3.2.6 (which is repeated here for convenience) was created for
split-spread data which were double Radon transformed. When negative offsets are excluded
from the synthetic data, and the data set with the end-off shooting geometry is double Radon
transformed, the amount of information on the resulting energy density plot, as shown in Figure
4.3.4, is considerably decreased. Not only is the energy to the left of the p* = 2p° line
missing, but also the energy which is present to the right of this symmetry line is decreased. The
little energy that is still present on the left is caused by transformation noise. The image of the
interface obtained from this data set has also lost some information compared with the image

-840 —x (m) = 840

200

1000

Fig.3.2.8: The image of the triangle-shaped interface, obtained
from the data set modelled with the split-spread
geometry
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obtained from the full data set, as can be seen by comparing Figure 4.3.5 with Figure 3.2.8
(Figure 3.2.8 is also repeated here for convenience). This is especially pronounced at the
extreme negative x° positions, where the only information about the interface was at the negative
offsets. Nevertheless, the image is rather good, even though the negative offsets were
completely excluded from the data.

4.4 RESOLUTION ASPECTS

4.4.1 Limits of the p° - p’ range

It was shown in chapter 3 that the values for p® and p* are limited to the range given by
equation 3.2.3, which was derived by imposing the condition that the vertical slowness function
needs to be real. The Radon transformation, as explained in chapter 2, was derived with the
assumption that the offsets of the data recording, x” and x*, were infinite. Thus, the limits given
by equation 3.2.3 can be considered as theoretical limits, which cannot be achieved in practice.
A more realistic allowable range can be determined by taking into account the limited offsets of
the data.

The limiting value of p? in equation 3.2.3 implies that the emergence angle needs to be
i* =900, to produce sin i* = 1. This, in turn, means that the upgoing ray will be recorded by a
receiver positioned at infinity. From the geometry of Figure 4.4.1 it is clear that, when the last
receiver in a shot gather is at the maximum distance x’, the limit for p° becomes

r
x|

¢ V(x'—x)2+z2 .

lp°l <

44.1)

Fig.4.4.1: The geometry showing the limits on p° and p* values

By introducing the offset coordinate instead of the absolute receiver coordinate, as was done in
equation 2.5.3 and as follows from Figure 4.4.1, the limit for the receiver ray parameter p°
becomes dependent on the maximum offset x,,,, as
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The same reasoning applies for the downgoing ray, and the limiting value for pd, derived
from the geometry of Figure 4.4.1 is
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By recalling the relation between p? and p®, given by equation 4.2.7, the limit for p*
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The sum of the two numerators in inequalities 4.4.2 and 4.4.4 equals the maximum
recorded offset xf,mx. Thus, the limiting value for both p? and p* depends on the maximum
recorded offset, as well as on the depth to the interface and the seismic velocity. Since the
maximum recorded offset is the only controllable parameter, it follows that long offsets need to
be recorded if deep steep interfaces are to be imaged.

The limitation on p? and p* values in practical situations is caused by the lack of near
offsets as well. Missing near offsets are common in marine data, but not always in land data. In
the absence of near offsets, the small values of p° and p®, around zero, are also unreliable. The
range of reliable low values can be calculated by using near trace offset xf,u-,, instead of
maximum offset x,,,, in inequalities 4.4.2 and 4.4.4.

4.4.2 Limits of imaging
The imaging equations derived in chapter 3 were based on the high frequency
approximation, using the method of stationary phase. This method states that the main
contribution to the integral comes from the points at which the phase is stationary, that is when
its first derivative equals zero. Using this condition, the stationary point was determined and
given by equation 3.2.10, which is repeated here as

P’ =qq g—;. (4.4.5)
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Thus, to obtain a complete image of an interface, the domain 2 (g,) defined in equation
3.2.6 as D (qq) : (0°)2 < 4/co? — g42, and selected by choosing a particular value of go, has to
contain all the stationary points given by equation 4.4.5. This also means that the imaging line
has to intersect all the constant dip lines in which there is some energy reflected from the

2/¢ ? p?

-l/co

T '2/00

Fig.4.4.2: The imaging line with the limiting value of parameter a,
ga = 1/cg (solid line) overlaps the constant dip lines for ¢
= + 60° (dashed lines)

particular interface. Substitution of the stationary point p* into equation 3.2.6 which defines the
domain D (q,) leads to

2
(g;z < —24—2— 1. (4.4.6)
€04a

It follows from equation 4.4.6 that the chosen g, should be as low as possible, in order to
image interfaces with high gradients, that is, interfaces dipping at large angles. The lower limit
of g4 was determined to be 1/cg in equation 3.2.18. Substituting this limiting value for g4 in
equation 4.4.6, the steepest interface to be imaged is determined by the limit of its gradient as
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indicating that the maximum dip can be 60°. This is also shown in Figure 4.4.2, by displaying
the dip lines for 6 = +60° (dashed line), and the imaging line for g4 = 1/cp (solid line). The two
dip lines are completely overlapped by the imaging line, and the dip lines for dips higher than
60° can not be intersected by the imaging line.

Ap % (s/km)
-1.260

: '.630
-630 p - p °(s/km)

-1.260

Fig.4.4.3: The energy density distribution for the syncline model of
Figure 1.1.3.

In practice, some of the image of the steeply dipping reflectors is recovered by summing
the diffraction energy from the steeply dipping events, which appears inside the limiting image
line in p - p* space. This is shown by an example of the syncline model discussed in chapter 1,
which has steeply dipping flanks. The energy density plot in the p® - p* plane, shown in Figure
4.4.3, indicates the presence of energy reflected from a very steeply dipping interface, with dips
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approaching +90°. To image this interface, the data selection into imaging planes was repeated
several times, with a number of values of g4. The resulting image which was displayed in Figure
1.1.3d (which is repeated here for convenience), obtained by summing these partial images,
indicates a clear picture of the syncline.

—x(m) —m-
-630 0 630
0
»
) >
R
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Fig.1.1.3d: The migrated section of the syncline model

As long as the energy reflected from a discontinuity is present in the data, it can be
imaged. But a very steep reflector, for example a fault plane with dip approaching 90°, will be
represented on a migrated section as a disruption in the continuity of the reflectors, rather than a
reflector itself. Taking into account the limits of the p® and p* values given by equations 4.4.2
and 4.4.4, it is likely that the energy reflected from steep fault planes will nor be present in the
data.

x
4.5 WAVELET DISTORTION

The data transformation from the ¢ - x domain to the 7- p domain causes distortions of the
original waveform. The factors causing these changes include interpolation, integration, and
selective filtering effects.

4.5.1 The interpolation effect

As described in section 2.6.2 of this thesis, there are three steps to be performed to obtain
the 7- p data from the t- x data:

1) t — o, the temporal Fourier transform,

2) x = K, the spatial Fourier transform, and

3) Kx — p, where p = K /o, mapping to the regular p-grid.

After the first two steps, that is after the two Fourier transforms, the data still can be
recovered exactly. However, the third step requires interpolation, which in effect introduces new
information. Both the temporal and the spatial Fourier transforms are orthogonal transforms; it is
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the third step that makes the Radon transform non-orthogonal. The changes to the waveform
caused by the interpolation are irrecoverable.

Since interpolation is an important step in the procedure for the Radon transform (as it is in
most seismic processes) the question is raised of what interpolation to use. The interpolation
problems have been extensively studied in the literature. The comparison of interpolation
methods related to the Radon transform can be found in Benoliel et al. (1987) and Vissinga
(1992). When comparing the results of recovering a wavelet by linear interpolation and the cubic
spline interpolation (Vissinga, 1992), the cubic spline doubtless produces results with higher
accuracy at greater expense. However, when the interpolation is incorporated into the Radon
transform algorithm, the advantage of the more expensive, higher order interpolation is lost.
This conclusion applies even more strongly to field data (Benoliel et al., 1987).

) To take the best of the low cost and high accuracy, a three-point polynomial interpolation,
which follows from Lagrange's interpolation formula (Froberg, 1965) is implemented in the
double Radon transform algorithm. The function f(x) to be recovered at position x, is known at
three points xj, x2, and x3, such that xs > x >x2>x;. fw=x—x2, and Ax =x3—x3=x2—
x1, the function is recovered by applying
,
w

2 (Ax)

flx) =

P [fEd -2 s @) + 2 (@) +r@d. @s

This three-point interpolator is only a fraction more expensive than linear interpolation and
significantly less expensive than the cubic spline interpolator. On the other hand, when
implemented with Fourier transforms its accuracy approaches that of the third-order
interpolators.

4.5.2 Integration effect

To obtain the data in a regular p-grid, division of constant Ky values by frequency @ is
required. This operation causes changes in both the amplitude and the phase of the input
wavelet, and as a consequence, the waveform in the 7- p domain is changed compared with the
waveform in the - x domain. When the 7- p transformation is considered as a slant stack,
where the summation of the amplitudes along the slant lines is performed, the described
waveform change caused by 1/@ corresponds to integration of the wavelets. Thus, the
application of the inverse operation, that is differentiation, can be applied to the 7 - p transformed
data to correct for this wavelet change.

4.5.3 Filtering effect
To avoid aliasing during the mapping from the K,-grid to the p-grid, the anti-aliasing
criterion has to be satisfied
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op <kV -2 (4.52)
24x

As shown in Figure 4.5.1, the equation of the Ky = constant line in @ - K space becomes an
equation of hyperbola in @ - p space. To satisfy the inequality 4.5.2, all the data which appear
outside the limits of the hyperbola are replaced by zeros. As a consequence of this selective
filtering, another distortion of the wavelet is introduced. This effect also contributes to the non-
orthogonality of the Radon transform, and cannot be compensated for. The amount of distortion
depends on both the ray parameter and frequency values, and it is observed in the 7- p data as
the waveform change which is particularly noticeable on traces with high p-values.

Kx
—_—

N

'
Z i
N 2rx
= o

Fig.4.5.1: The anti-aliasing condition when mapping from K-@ space to p-@ space

In addition to the limits of the p? - p* range discussed in section 4.4.1, the inequality 4.5.2
imposes another limitation on the maximum p? and p* values. To minimize this effect, both Ax®
and AX" need to be small, in agreement with the resolution required.

4.5.4 The double Radon domain

After the data have been double Radon transformed, there are still two more interpolations
to be performed during imaging: first, when the data are selected into the imaging surfaces, and
second, when the time is scaled into two-way travel time after the image in the time domain has
been obtained. For consistency, the three-point polynomial interpolation defined in equation
4.5.1 is used.

It was explained that transforming the data to the 7- p domain has an integration effect on
the data, which can be corrected for by multiplication by @ during the inverse transform.
Imaging in the double Radon transformed domain involves two forward Radon transforms and
one inverse transform. Thus, there is an additional correction for the integration to be
performed.
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The frequency scaling filter, as explained in chapter 2, arises when the data are double
Radon transformed, and differs with the given configuration as

3D : -4iwceqodo

25D : 8z —iwcoqhqs (4.5.3)
2D : -8mioVgyq

In the 2D and 3D configurations, the io factor corresponds to the differentiation operator,
which corrects for the integration effect of the forward Radon transform. The = iw factor in
the 2.5D configuration is the half-differential operator, and similarly to the 2D and 3D

" configurations, it has the function of differentiation.

The synthetic example showing a horizontal strip before and after migration, Figure 1.1.1,
was modelled by summing diffractions from all point scatterers along the interface, and as such
represents the 2.5D case. A detail from Figure 1.1.1, displayed in Figure 4.5.2, illustrates the
wavelet before migration (trace 1) and after migration with all proper corrections (trace 2), as
well as the difference between the two (trace 3). The resemblance between the wavelets before
and after migration is quite good, in spite of their rather large difference, which is probably due
mostly to interpolation effects.

>

Fig.4.5.2: A detail from the section over the horizontal strip of
Figure 1.1.1(c) before migration (1), after migration
(2), and the difference between the two (3)

In summary, regardless of the wavelet changes in the double Radon transform, the
interfaces are still properly imaged. The most important influence on the phase, the integration
effect, can be corrected for, and the onset of the wavelet indicates the position of the interface.
Further, the result of the imaging does not depend on the amplitude of the wavelet. This also
implies that the impedance contrast does not influence the imaging, since only the phase
information is utilized in imaging.

In the frequency scaling method, which was described in section 3.5, the wavelet suffers
greater changes, which can be compared to the normal moveout (NMO) wavelet stretching
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(Dunkin and Levin, 1973). Each frequency component is scaled by the normalized slowness
function y, which is less than 1, meaning that the frequencies are compressed. The compression
of the frequency spectrum corresponds to stretch in the time domain. Due to this additional
waveform deformation, the frequency scaling method is less effective when it is desirable to
preserve the wavelet during migration.

4.6 SEGMENTATION AND CONSISTENCY

The coordinate system for the double Radon transform is usually chosen such that the
origin is positioned in the middle of the survey area. The p° - p® coordinate syster is then also
symmetrical with respect to the survey area, and its origin is connected to the origin of the x? -
x¥ coordinate system. However, it is not necessary to set the coordinate system in this way. The
data line can also be broken into segments so that each segment is separately transformed and
imaged, and the total image is composed at the end from the individual segments. If the seismic
line is very long, this would make not only the data handling easier, but would also improve the
resolution of individual segments.

shot 1 shot 64 shot 127
*

L———segment 2 ——
L—segment | ———— £ L——segment 3———!

- -

Fig.4.5.3: The asymmetric triangle-shaped interface, consisting of four segments A, B, C, and D. The
seismic line is divided into three segments, 1, 2, and 3.

This procedure is illustrated with synthetic data, created by the diffraction summation from
the asymmetrical triangle-shaped interface shown in Figure 4.5.3. The data set consists of 127
shots with Ax® = 12 m, each shot gather consisting of 127 traces with split-spread geometry
and Ax” = 12 m. The whole data set is double Radon transformed, and its energy density plot in
the p? - p® plane is displayed in Figure 4.5.4a, and the contents of the imaging plane is shown in
Figure 4.5.5a. Both of these plots contain all four segments of the interface, as well as the
migrated time image shown in Figure 4.5.6a.
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Fig.4.5.4: The energy density distribution for the asymmetric triangle-shaped interface of Figure 4.5.3 for (a)
the whole line, (b) segment 1, (c) segment 2, and (d) segment 3. All four interface segments A, B,
C, and D are recognized on plot (a)

To illustrate the consistency of the method, the original z-x data set is divided into three
partially overlapping segments, as shown in Figure 4.5.3. The first segment contains shots 1-
45, the second one 42-86, and the third one 83-127. Each of these segments is double Radon
transformed with its own coordinate system. The resulting energy density plots are shown in
Figure 4.5.4b - 4.5.4d. Each of the segments contains only a part of information contained in
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Fig.4.5.5: The energy contained in the imaging surfaces for the asymmetric triangle-shaped interface of Figure
4.5.3 for (a) the whole line, (b) segment 1, (c) segment 2, and (d) segment 3. All four interface
segments A, B, C, and D are present on plot (a)

the whole data set in Figure 4.5.4a.

Imaging was applied to each of the segments, and the contents of the imaging plane for
each of the segments are displayed in Figure 4.5.5b- 4.5.5d. Again, it is clear that each segment
contains only part of the total energy. When transforming the contents of the imaging planes
back to z-x space, the coordinate systems were adjusted to the original setting. The images
obtained from each of the segments are displayed in Figure 4.5.6b - 4.5.6d. Finally, the total
image is created by summing these partial images, and is displayed in Figure 4.5.7. This
migrated image is identical to the image obtained from the whole data set, except that the end
parts, containing the flat interface, are somewhat better resolved in the composite image of
Figure 4.5.7. This is probably because the wraparound effect, which can be seen in Figure
4.5.6a, is avoided in Figure 4.5.7. since the large amount of zero traces in individual segments
(Figure 4.5.5) act as a strong taper.
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Fig.4.5.6: The interface image obtained for the asymmetric triangle-shaped interface of Figure 4.5.3 for (a) the

whole line, (b) segment 1, (c) segment 2, and (d) segment 3
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Fig.4.5.7: The composite time image for the
asymmetric triangle-shaped interface of
Figure 4.5.3, obtained by summing
partial images for segments 1, 2, and 3






5

DATA EXAMPLES

5.1 INTRODUCTION

Most of the features of the p? - p* domain, and the migration performed in this domain,
have been explained. To get the complete picture of the method, the performance of the
algorithm on complex data needs to be examined. For that purpose, two data sets have been
chosen: first, a complex synthetic example, the Marmousi data set, where the geology has the
complexity which could be expected in the real world, but the experiment still has controlled
geometry; and second, a field data set (Tubbergen data) acquired near Almelo, in the eastern part
of Holland, which has the unpleasant features of real data, such as missing offsets, large shot
intervals, noise, and so on.

5.2 MARMOUSI SYNTHETIC DATA SET
The Marmousi data set was created for the blind test of the workshop organized by P.

Lailly and R. Versteeg at the 1990 EAEG meeting in Copenhagen (Versteeg and Lailly, 1991;
Versteeg and Grau, 1991). Since its generation, this model has been highly popular to test new
processing algorithms. The model, consisting of 160 layers, was created to simulate the
complex geology of Angola. The major structural elements of the model are shown in Figure
5.2.1. This model was input to a 2D acoustic finite difference modelling programme. The
resulting data set, simulating marine data acquisition with end-off shooting geometry, has the
following parameters:

* 240 shots

* 96 traces per shot

« Spatial sample interval Ax* = Ax" =25 m

« Near-offset trace at 200 m, far-offset trace at 2575 m

* Recording time 2.9 sec

« Time sample interval 4 msec
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Fig.5.2.1: The depth model of the Marmousi synthetic data (with permission from EAEG)

The source was modelled as 6 independent identical waterguns at 8 m intervals, resulting
in an array of 40 m length. The shot point position is in the middle of the source array, and the
source depth was modelled at 8 m. The hydrophone group was modelled as 5 identical
hydrophones at 4 m intervals, resulting in a receiver array of 16 m length. The streamer depth
was modelled as 12 m. The positions of the first, middle and the last shots are indicated in the
Figure 5.2.1. Because of the 2D geometry, the individual sources and receivers were lines,
rather than points.

As explained in section 4.3, split-spread shooting geometry is prefered to end-off shooting
for the spatial transformation. Thus, the reciprocity principle was applied to the Marmousi data,
resulting in a split-spread data set. The shot gather at the shot position 1, with its positive
offsets recovered using reciprocity, is shown in Figure 5.2.2. Due to the geometry of the
Marmousi data acquisition, only negative offsets were available, and the positive offsets had to
be recovered. The traces at far negative offsets in shot 1 are recorded over relatively smooth,
slightly dipping layers. The traces at positive offsets already cover the complex middle part of
the model, which is exhibited through the more complicated travel time curves. The overall
appearance of this shot gather indicates that the global geology model is dipping at negative dips,
since the apexes of the travel time hyperbolas are shifted to the positive offsets.

This split-spread data set was input to the double Radon transform programme with the
following parameters:

* 127 p°-traces

+ 255 p’-traces

» Trace increment A p°= Ap® = 0.008 sec/km

» Maximum p° value 0.504 sec/km

» Maximum p° value 1.016 sec/km

The energy density plot for this double Radon transformed data set is displayed in Figure
5.2.3. The dominating energy is concentrated in the lower part of the p° - p* plane, indicating
again that the trend geology is dipping at negative angles.
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Fig.5.2.2: Shot gather 1, with its positive offsets recovered using the reciprocity principle

For the purpose of velocity analysis, the data in the p® = 0 plane were extracted from the
p? - p® data volume. This data set, displayed in Figure 5.2.4, was input to the 7-p velocity
analysis program, and the resulting contour plot is shown in Figure 5.2.5. The velocity trend is
quite clear from the contour plot, especially when the complexity of the input model is taken into
account. Due to the dip separation in the p? - p* domain, reflections from horizontally layered
structures are isolated in the p* = 0 plane. The resulting velocity analysis is this simple, easy to
pick, velocity contour plot. This estimated RMS velocity function was input to the imaging
algorithm, with the double Radon transformed data. The imaging was repeated with a number of
selected imaging lines. The contents of one of the imaging planes, displayed in Figure 5.2.6,
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Fig.5.2.3: The energy density distribution in the p®-p* plane for the Marmousi data

indicate the complexity of the data. The available energy range decreases with increasing time, as
the RMS velocity increases. This is in accordance with Snell's law: with increasing velocity, the
range of maximum possible p-values (both p® and p* ) decreases.

The data in each selected imaging plane were inverse Radon transformed and scaled to
two-way travel time. The final output displayed in Figure 5.2.7 was obtained by summing the
individual images.

The main reflectors, visible in the model in Figure 5.2.1, are all present in the resulting
image. The three steep faults in the middle of the model are also recognized in the image, not as
clear reflections, but rather as disruptions in the reflector continuity. Since this is a time
migration, the propagation effects are not removed from the image of the lower reflections. This
is especially noticeable in the image of the unconformity, which extends through the most of the
depth model at about 2500 m as an almost horizontal interface, but in the time image appears as a
dipping reflector at 2200 msec at the left end of the profile and at about 1700 msec at the right
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Fig.5.2.4: The data in the pS = 0 plane

end, as indicated in Figure 5.2.7. Overall, the main features of the geological model are
recovered.

For comparison, the result of the pre-stack depth migration, obtained with the known
exact velocity model (Versteeg and Lailly, 1991) is presented in Figure 5.2.8. As could be
expected, this is a very good image of the input structure, and without doubt, it is a better image
than the one produced by the time migration in the double Radon domain. One serious
drawback, however, makes it unattractive: to obtain this image, the exact velocity model was
required as input to the migration. In other words, to obtain the image of the model, the model
had to be known. On the other hand, the time image in Figure 5.2.7 was generated with a
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Fig.5.2.5: The contour velocity plot obtained from the 7-p velocity analysis on data in the pS = 0 plane

background velocity model estimated from the data. Another advantage of the time image is the
low cost required for its creation. To double Radon transform the Marmousi data set, the
required time was 58 CPU minutes on a Convex 120 (with more than half of this time used for
input/output). The time required for each imaging was about 10 CPU minutes, and this
procedure was repeated eight times to obtain the final image displayed here. The pre-stack depth
migration is a rather costly procedure; even more expensive is the velocity estimation for the
depth migration, which requires a number (usually a large number) of trial migration runs. In
this sense, the result of the pre-stack time migration, as presented here, could be used as a very
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Fig.5.2.6: The energy contained in the imaging surface for the imaging line
with a = 1.85. The amount of information decreases with with
increasing RMS velocity. The edges are slightly tapered

good starting model for the depth migration, which should decrease the number of trial runs for
the velocity estimation.

The migrated time section displayed in Figure 5.2.7 has a rather narrow band-pass filter
applied to it, with the cut-off frequencies 0-10-15-25 Hz. When the section is displayed with the
original frequency range of 0-10-30-45 Hz (Figure 5.2.9), some noise can be seen, especially in
the middle, complex part of the model. According to the anti-alias criterion (equation 4.5.2), the
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Fig.5.2.7: The result of imaging with time migration of the Marmousi data, band-pass filtered to 5-20 Hz.

maximum allowable frequency for Ax = 25 m and the maximum value of p* = 1.016 sec/km is
20 Hz. In the middle of the model, where the steeply dipping interfaces are present, most of the
information comes from the high p* values. Thus, this information can be extracted from a
limited range of frequencies. During the Radon transformation, the anti-alias filter is applied to
reduce this type of noise. However, in order to allow all possible information to be passed, very
short tapers are applied in both the time and space directions. The noise still present in the data
can then be removed by a high-cut filter after the data have been imaged.

The reciprocity principle is valid when both sources and receivers can be approximated by
points (or, for this 2D synthetic data set, lines). This is not the case for the Marmousi data set,
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Fig.5.2.8: The result of depth migration of the Marmousi data, with the exact velocity model (with permission
from EAEG)
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Fig.5.2.9: The result of imaging with time migration of the Marmousi data, with the original frequency
content of 5-40 Hz.

2900

with 40 m long source arrays and 16 m long receiver arrays. The source and the receiver
directivity could then make the interchanging of the sources and the receivers invalid, which
could be the cause for the higher frequency noise in the middle of the model. The directivity
becomes important when the array size is of the order of the wavelength or greater (Ziolkowski,
1984). With the velocity of wave propagation in water of 1500 m/sec, the source directivity
becomes important for frequencies higher than about 37 Hz, and the receiver directivity becomes
important at a frequency of 94 Hz. Thus, for the frequency range utilized for the Marmousi data
set, the size of the source and the receiver arrays does not cause directivity problems.
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Fig.5.2.10: The result of imaging with time migration of the preprocessed Marmousi data (free surface effects
removed), band-pass filtered to 5-20 Hz.
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With source and receivers positioned at different water depths, the part of the wavelet
caused by the source and receiver ghosts is not reciprocal. Also, the reverberations within the
water layer make the wavelet rather long and ringy, which could be another reason for the noise
in the middle of the Marmousi model. To test this possibility, the Marmousi data set which was
preprocessed and described by Berkhout et al. (1990), was input to the imaging procedure. The
preprocessing scheme used includes removal of the surface related multiple, as well as
reverberations within the thin layer at both the source and receiver sides. The resulting migrated
section, displayed in Figure 5.2.10, which appears with a rather compressed wavelet, still had
to by narrow-band filtered, similarly to the section in Figure 5.2.7.

To satisfy the anti-alias criterion during inverse Radon transform (equation 4.5.2), Ap®
had to be kept sufficiently small for higher frequencies. Due to the size of the Marmousi data,
Ap® was chosen rather high, 0.008 sec/km, which was sufficient to pass frequencies up to about
20 Hz, which might be the reason for noise visible in Figure 5.2.7. Thus, a test run was
performed for the Marmousi data set, with Ap® = 0.004 sec/km and 509 p®-traces, while all the
other parameters were kept the same. However, the resulting time image, shown in Figure
5.2.11, still has the noisy appearance similarly to the image shown in Figure 5.2.7, and has to
be narrow band-pass filtered.
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Fig.5.2.11: The result of imaging with time migration of the Marmousi data, with ApS = 0.004 sec/km, and
original frequency content 5-40 Hz.

This leads to the conclusion that the noise in the middle of the Marmousi model probably
originates from the violations of some basic assumptions, made in chapter 2. In particular, the
locally plane layer assumption is specially violated in the middle, complex part of the model.
Further, in this complex geology there is much more wave scattering other than the primary
reflections, unlike the primaries-only assumption made in chapter 2 to develop this theory. This
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scattered energy then maps into wrong places, which might be an additional cause of the noise
in the middle of the model.

5.3 TUBBERGEN FIELD DATA SET

The Tubbergen data set was acquired as a part of the EEC sponsored project "The
Inversion of Land Seismic Data". The experiment was designed to test and extend the theory
developed for the one-dimensional inversion of seismic data (Koster, 1991), and to test the
scaling law for determination of the signature of a dynamite source (Ziolkowski and Bokhorst,
1992).

The field experiment resulted in a data set with split-spread geometry, and the following
parameters:

* 90 shots

* 240 traces per shot

» Shot sampling interval Ax® = 50 m

» Receiver sampling interval Ax” = 10 m

« Near-offset trace at + 5 m, far-offset trace at + 1195 m

* Recording time 4 sec (2 sec processed)

+» Time sampling interval 2 msec

At each shot position, 4 shots with different charge sizes were fired in order to estimate
the source signature using the scaling law. For the purpose of this thesis, only one shot per shot
position was processed. Thus, the source for the Tubbergen data consists of 250 g dynamite
placed in a single hole, 10 m deep. The receiver group consists of 12 geophones spread over 20
m length.

The main challenge for processing the Tubbergen data with a spatial-transform method
comes from its irregular geometry. To avoid various obstacles in the field, the data set resulted
in skipped shots and shot distances often bigger or smaller than 50 m. Furthermore, at both ends
of the line, the split-spread configuration was replaced by the end-off shooting. The geometry of
the data acquisition for the Tubbergen data, displayed in Figure 5.3.1, shows these
irregularities. The gaps in the data resulting from the skipped shots could be filled in either by
interpolating between the shots, or by using the reciprocity principle. It was decided to use
reciprocity and thus use all the information that already exists in the data, rather than introduce
new information by interpolating between shots. Reciprocity is applied after the static
corrections had been applied and the ground roll removed by f-« filtering, and a 15-60 Hz band-
pass filter to avoid aliasing during transforms. A typical recorded shot gather, from the middle
of the line, is displayed in Figure 5.3.2, and one of the recovered shots is displayed in Figure
5.3.3. The quality of the recovered shot is not as good as the quality of the recorded shot,
mainly because not all the traces in the shot gather could be recovered (the traces displayed in
Figure 5.3.3 are not at the equal distances, and missing traces are replaced by zeros), since the
shots were fired only at every fifth receiver group position. Nevertheless, some of the



information still could be recovered, and the new data set, resulting in 117 shots at a regular
interval of 50 m, was input for the double Radon transform.

\\ Receiver spread : 2400 m
\ Line length : 5800 m
Receiver \ A 50 m
spread \ Ax": 10 m
Shot

SN

Fig.5.3.1: The geometry of the data acquisition for the Tubbergen data: the solid line
represents the seismic line, and the dotted lines indicate the receiver spread

From conventional processing of the data it was clear that there are no steeply dipping
interfaces in the Tubbergen data. Therefore, the complete p®-p® range is not needed. The data
were transformed with the following parameters:

« 127 p®-traces

» 127 p’-traces

« pO-trace increment A p® = 0.004 sec/km

« pS-trace increment Ap® = 0.006 sec/km

» Maximum p? value 0.252 sec/km

« Maximum p?® value 0.378 sec/km
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Fig.5.3.2: A typical shot gather recorded in the middle of the line

The energy density plot for this double Radon transformed data set is displayed in Figure
5.3.4. The energy distribution indicates relatively smooth subsurface geology. The RMS
velocity function was estimated from the p* = 0 plane, similarly to the procedure applied to the
Marmousi data. This estimated RMS velocity function was used to migrate the data. The
imaging was repeated several times, and the final output, displayed in Figure 5.3.5, was
obtained by summing the result of each imaging.
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Fig.5.3.3: A shot gather recovered using the reciprocity principle (missing traces are not shown)

Due to a rather large shot distance, Ax® =50 m, the data had to be band-pass filtered up to
50 Hz prior to transformations. Further, with reciprocity only part of the data could be
recovered, and a large amount of zeros instead of real data values was input to transformations.
Because of this, it was decided to recover the missing data with spline interpolation, as well as
to decrease the shot distance from 50 m to 25 m. This was done after the first Radon
transformation, in planes of constant p?, by interpolating with a spline function the real and the



97

-.378

Fig.5.3.4: The energy density plot for the Tubbergen data

imaginary part of the complex trace separately (Ziolkowski and Bokhorst, 1992). After this, the
procedure was the same as for the data recovered by reciprocity principle. Even though a higher
frequency content was preserved with smaller Ax®, the resulting time image, shown in Figure
5.3.6, has a resolution similar to the time image shown in Figure 5.3.5. In both of these images,
some noise is visible at shallow parts which increases towards the ends of the sections. This is
caused by the irregular offsets in shots at the beginning and the end of seismic line.

For comparison with the conventional processing, the stacked section is displayed in
Figure 5.3.7. Post-stack migration was performed on this section using the f-k algorithm, and
the result is displayed in Figure 5.3.8. The velocity function used for the f-k migration was
derived from the stacking velocities, independently of the RMS velocity derived from the p® - p*
data. The f~k migration does not perform satisfactorily at about 1.5 sec and -900 m lateral
distance, where the velocity changes abruptly. Hence, finite difference migration was applied
with the interval velocities derived also from the stacking velocities, and the result is displayed in
Figure 5.3.9. Since the finite difference migration is not sensitive to high velocity contrasts, it
produced a migrated section which is of better quality than the result produced by the f-k
migration. Also, the not too complex geology of the Tubbergen area allows a rather good quality
stacked section to be be produced (Figure 5.3.7), which is the main prerequisite for post-stack
migration to perform satisfactorily.
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Fig.5.3.5: The result of imaging the Tubbergen data (reciprocity principle)

On the other hand, processing with the spatial transform over shot coordinates has the
disadvantage in the case of Tubbergen data, due to its irregular shooting geometry. This problem
can be overcome using either the reciprocity principle or spline interpolation. In spite of this
major difficulty, it was possible to migrate this data set in the double Radon domain, and
produce a result comparable with the conventional processing.
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Fig.5.3.6: The result of imaging the Tubbergen data (spline interpolation)
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Fig.5.3.7: The conventional stacked section of the Tubbergen data
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CONCLUSIONS

In the introduction of this thesis, the aim of migration was stated as the need to reveal the
true geometry of subsurface reflectors, which consists of discontinuities in the acoustic
impedance of the earth. It was also explained that all existing migration methods require the
velocity structure of the earth to be known, in order to produce a reliable image of the reflectors.
That is, the answer which is expected from migration, is required to be known in order to do the
migration. This velocity paradox has inspired the present study, in which a pre-stack time
migration algorithm has been developed. This migration method also needs the velocity function
as an input parameter, but only as a background RMS velocity model rather than a detailed
interval velocity model, and it also provides a way of obtaining a reliable RMS velocity.

Further, this migration method is applied prior to stack, thus the mis-stacking in areas of
complex geology is avoided. Yet, a stack of individual migrated panels is carried out, which,
like the conventional stack, improves the signal-to-noise ratio.

This new migration algorithm is developed as a time migration, which has both advantages
and disadvantages. Time migration methods do not require a detailed velocity model, but neither
do they produce a clear depth picture of the subsurface. On the other hand, depth migration
methods produce more reliable and more detailed images of the subsurface, but only when an
accurate input velocity model is available. Ultimately, it is a depth migration method which is
required to produce the best image of the discontinuities in acoustic impedance.

Thus, for the full advantage of a pre-stack depth migration, an accurate knowledge of
velocity is needed. With this in mind, the time migration algorithm presented here can be viewed
as an important step in obtaining a good background velocity model for a subsequent depth
migration. At the same time, it is more than a mere velocity estimation procedure, since it also
produces a rather good time picture of the subsurface.

The new migration algorithm has been applied to simple synthetic models to illustrate the
method. It was also applied to two challenging data sets. In the case of the Marmousi model



104

with a rather complex geology many of the assumptions made in the theory are violated. Yet, a
quite acceptable time migrated section was produced. A practical drawback of the method is that
it requires regular shooting geometry, in both source and receiver coordinates. This problem
was overcome by using either reciprocity or spline interpolation and the method was
successfully applied in the case of the real data from Tubbergen.

The highest dip possible to be imaged is limited, theoretically, to 60°. However, it was
demonstrated with the simple syncline model, as well as with the Marmousi model, that dips
higher than this still can be "seen", as long as their reflections are present in the data. There are
migration methods which theoretically can migrate dips up to 909, and even beyond 909 if the
rays are bending with changing velocities. However, the real limitations to any migration
methods come from the practical issues and from the data contents themselves.

A novel feature of operating in the double Radon domain is the possibility to perform the
Radon transformation on data which originate from non-horizontal layers. The conventional
Radon transform can be applied to a horizontally layered earth only, and for that reason it has
been applied to the CMP-oriented data. It is the second Radon transform, which is performed
with respect to the horizontal source coordinate, that makes it possible to apply the scheme to the
shot - oriented data, without the assumption of horizontally layered earth. In this respect, the
double Radon transform can be compared with the double Fourier transform methods.

An important property of the double Radon domain is the data discretization and separation
according to the local time dip of the interfaces. This property enabled the development of a
rather robust velocity estimation scheme in the p* = 0 plane by curve fitting, where only energy
contributions from horizontal segments are present. Thus, the estimated velocity is indeed the
RMS velocity function, rather than a stacking velocity which is influenced by the dip of the
reflectors.

The theory of the double Radon domain described in this thesis has been developed for the
3D case. Since the migration for 2D earth has been successfully applied here, the imaging theory
can now also readily be extended to 3D. The need for 3D data and 3D migration schemes
becomes obvious in areas where the assumption that the geology does not vary in the direction
perpendicular to the seismic line is violated. Then, side scattering introduces a considerable
amount of energy which cannot be properly migrated within a single seismic line.

Another possible extension of this theory is to include an extrapolation step which would
correct for the ray bending at the interfaces, which in turn would lead to a depth migration
algorithm, Then the time image and its velocity model, obtained by the pre-stack time migration
as explained in this thesis, could be used as a starting model. The depth migration scheme would
probably have to be organized as a layer-oriented operation, where imaging of the entire data
could be performed in one step, followed by extrapolation to the first major reflector, correction
for the ray bending, and only then the extrapolation to the next reflector. The data discretization
into the planes of constant dip which occurs in the double Radon domain should be utilized for
such an layer-oriented depth migration scheme. To be able to vary velocity laterally, which is
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necessary in a depth migration, a combination between transform domain and space domain
would have to be utilized, as in the split-step algorithm of Stoffa et al. (1990a, 1990b).

For the depth migration, the velocity analysis could be extended from estimation of a
background velocity to estimation of interval velocities by a layer stripping scheme. In the 7-p
domain (or in the p’=0 plane), only the travel time curve from the first interface is elliptical, and
all the underlying curves are distorted into pseudo-ellipses. After the interval velocity to the first
interface is estimated, its distorting effect can be removed from all underlying interfaces,
allowing estimation of the interval velocity of the next layer (Schultz, 1982). For dipping
interfaces, the time dip separation in the double Radon domain can also be utilized for estimation
of interval velocities, and the layer-stripping could then, in principle, proceed in the same way as
for the horizontal interfaces.




APPENDIX

A.1 POLAR COORDINATES AND VARIABLES y, z"
The Jacobian for the transformation x{, x; —y", 2" isfound as

ox;  ox]
oy’ oz ;
afad =| P % e (A1)
aX2 aX2
oy 9z

The partial derivatives in equation A.1 are found as

ox’ ox’
ﬂ::‘coser 1 =sin 6"
oy" oz
: (A2)
0x ox7
X2 =isin@ 2 cos 0"
oy 9z’

Substitution of these derivatives into equation A.1 gives the Jacobian

dxjdxy=—idy dz’. (2.3.6)
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To complete the transformation, the following calculations are needed

(xl - x; )2 = (yr)z cos® (6') + (z')zsin2 (B')— 2 iy'(zr) cos §"sin 6
(xz—x; )2 =— (y')2 sinz(er)+ (z')2 cosz(er) +2 iyr(z') cos 8" sin 6" (A.3)

(e +lea-xs) =) -b)

Using equations A.3, the distance | x — x| becomes

‘(y')z] : A4

Combining equations 2.3.4 and 2.3.5, the following expression is obtained

][+ ey

io] (xl——x;)ﬂ'a; (xz—x;)=k’yr. (A.5)

Substitution of equations A4 and A.5, as well as Jacobian from equation 2.3.6 into equation
2.3.3, and changing — i = 1/i, the expression for B in equation 2.3.8 is obtained

o0 ioo
~ 1 r A N,rr R" r
B=— dz — exp{—is|lky +—/|;dy .
4ri R { [ Co]} (2.3.8)

—o0

A.2 THE JACOBIAN FOR THE STEEPEST DESCENT ARGUMENTS
To calculate the Jacobian for the transformation from y” to 77, expression for y” in
equation 2.3.12 is differentiated with respect to 77, leading to

T
" & co
P L TS 5 2 (A.6)
v (lc)+-E [(k')«u%] (1’) -(r'e))
Co Co

On the other hand, equation 2.3.11 is rewritten to express R 7 as
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R'=Tcy-k"y'cq . (A7)

Substitution of parametric expression for y!, given by equation 2.3.12, into equation A.7, leads

to

r
T

2
o 5 KA
=T 2 : A.8)
() ()L ‘

Co Co

!

Combining equations A.6 and A.8, the expression for Jacobian is recognized as

r
dy; R’

=i

” (Tr)z - (T'(z"))2 | e

A.3 HIGH FREQUENCY APPROXIMATION
A.3.1 Normal derivative

r
The normal derivative d,,|x — x | has three components

= n;+ n)+ nj. (A9)

Taking each partial derivative and substituting back to A.9 leads to

r

r r
(xl—xl)nl+(x2—x;)n2+(x3—x3)n3
X=X |=

]

n

|x—x | (A.10)

The unit normal n of a function f'is defined as

9.f +0,f +05f

N oV ot o

(A.11)

In this case, the function f is given by equation 2.2.1, that is f = x; — h (x, x;) = 0. Then the
partial derivatives follow as
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Substitution of partial derivatives, equation A.12, into the unit normal in equation A.11 leads to
—d,h —0,h +1
—_— . (A.13)
'\[(alh] +(9,h) +1

n =

Combining this equation with equation A.10 leads to the expression for Bnlx -x" | as

r
X —Xx

_ =0y (A (1= x5)= 3, A (= x5) + (x5 - x3)

e — x|V (o ) + (o) + 1

d

n

(2.3.30)

A.3.2 Expression for R”

To derive equation 2.3.32, start from expression for R” in equation A.8 and substitute
r r
T = TO

S T (A.14)
[(k') . lz]

Substitution of equations 2.3.17 for T, and equation 2.3.27 for ¥;, leads directly to
q 0

r x3—x;
R =—.

(2.3.32)
007()'

A.3.3 Solution for A

To calculate the expression for A in equation 2.3.33, the following calculations are
needed. From equation 2.3.5, for z7 = 0,
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xl—x;=—iy;cos ¢, (A.15)

and from 2.3.4, substituting cos ',

r

r_ . fal (A.16)
xl"xl—"'lyl—r. .

The expression for y” is obtained from equation 2.3.12, by substituting 7= Ty and using
expression for T6 in equation 2.3.28 as

Yor(xrx;)kr

5 (A.17)
(k’) + ~1§
Co

-
n=

Using equation 2.3.27 for }'or and equations 2.3.31 and 2.3.32 for R’, this is written as
Yi=k co|x-x|. (A.18)

Substituting this expression into equation A.16 leads to

r
xl—‘x

. r
——lCOal . (A.l9)

r
e -]

The equivalent expression is obtained for x5, x5 as

=—icyoty . (A.20)

Combining equations 2.3.31 and 2.3.32 for R, the following expression for x3, x5
coordinates is obtained

r
X3— X3
T "¢ 7’6 . (A.21)
|- %]

Substitution of equations A.19, A.20, and A.21, into equation 2.3.29, leads to the
expression for A given by equation 2.3.33
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SAMENVATTING

Het seismische golfveld, zoals het aan het aardoppervlak wordt gemeten, heeft zekere
veranderingen ondergaan tijdens zijn propagatie door de ondergrond, en geeft niet direct het
karakter van de ondergrond weer. Het is het doel van migratie om de ware geometrie van de
ondergrondse reflectoren te onthullen. In dit proefschrift is een prestack tijdmigratie algoritme
ontwikkeld dat wordt toegepast op schot-georienteerde en dubbel Radon getransformeerde data.

De Radon transformatie is traditioneel toegepast op CMP-georienteerde data waarbij is
aangenomen dat de aarde uit vlakke horizontale lagen bestaat. De dubbele Radon transformatie
bestaat uit twee stappen: de eerste transformatie, met betrekking tot de offset coordinaten, wordt
toegepast op alle shotgathers van de seismische lijn, en de tweede is toegepast op de éénmaal-
getransformeerde data set, met betrekking tot de schotcoordinaten. De introductie van de tweede
transformatie maakt het mogelijk de Radon transformatie toe te passen zonder de aanname van
een horizontaal-gelaagde aarde.

In het dubbel getransformeerde Radon domein wordt de data gediscretiseerd volgens de
locale tijdshelling van de akoestische grensvlakken. De fasefunctie wordt opgesplitst in twee
delen: de horizontale fase en de verticale fase. Dit maakt het mogelijk de data af te beelden door
de verticale slowness constant te houden. Door de toepassing van deze voorwaarde wordt de
gereflecteerde energie van een bepaald grensvlak geselecteerd in een afbeeldingsvlak. Eén
inverse transformatie toegepast op de data in het afbeeldingsvlak leidt tot een tijd-afbeelding van
het grensvlak. De methode van stationaire fase, gebruikt om de afbeeldingsvergelijkingen af te
leiden, is een hoog-frequente benadering die de aanzet van de seismische “events” benadrukt.

De migratievergelijkingen zijn afgeleid voor een enkel grensvlak van willekeurige vorm,
en dan uitgebreid voor een willekeurig-gelaagde ondergrond door een RMS achtergrond
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snelheidsmodel te introduceren. Vanwege de discretisatie in het dubbel getransformeerde Radon
domein, kan de snelheid direct worden verkregen uit de dubbel Radon getransformeerde data.
Een vlak in de dubbel Radon getransformeerde data kubus wordt geselecteerd waarin alleen
reflecties van de horizontale segmenten van de grensvlakken aanwezig zijn. Niet alleen wordt de
beste fit tussen de theoretische krommes en de data bereikt in dit vlak, maar ook de RMS
snelheidsfunctie wordt verkregen, in plaats van de stacksnelheden.

De verkregen achtergrond snelheidsfunctie is geldig voor de gehele dataset; omdat de
migratie is toegepast in het spatieel-getransformeerde domein kan de snelheid niet lateraal
varieéren. Deze restrictic kan zowel als een zwakte van de methode als zijn sterkte worden
gezien. Het is niet wenselijk voor een migratie-algoritme dat het geen lateraal-variérend
snelheidsmodel aankan; echter, een lateraal-variérend snelheidsmodel is het resultaat verwacht
van de migratie, en dus is het niet voorhande voordat het migratieproces heeft plaatsgevonden.
Het resultaat van elk migratie-algoritme dat een lateraal -vari€rend snelheidsmodel aankan, wordt
sterk beinvloed door het benaderde lateraal-variérende snelheidsmodel. Aan de andere kant, een
migratie-algoritme dat geen lateraal-vari€rend snelheidsmodel nodig heeft, zoals bijvoorbeeld
hetgene wat gepresenteerd wordt in dit proefschrift, produceert een resultaat dat veel meer door
de data zelf wordt beinvloed, dan door een benaderd lateraal-variérend snelheidsmodel.

De methode is met success toegepast op twee complexe datasets: de Marmousi
synthetische data set, en de Tubbergen dataset. Ondanks moeilijkheden, ontstaan door practische
toepassingen, zoals grote structurele complexiteit in the Marmousi dataset, en een onregelmatige
schotgeometrie in de Tubbergen dataset, zijn goede resultaten verkregen voor beide datasets. De
verkregen resultaten zijn aanmoedigend voor verder onderzoek.
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