THDelft

Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica

Delft Institute of Applied Mathematics

Onderzoek naar verschillende boven- en ondergrenzen van de constante van Steinitz (Investigating various upper and lower bounds of the Steinitz constant)

Verslag ten behoeve van het
Delft Institute of Applied Mathematics
als onderdeel ter verkrijging
van de graad van

BACHELOR OF SCIENCE
in
TECHNISCHE WISKUNDE
door

ARD DE GELDER
Delft, Nederland
Juni 2016

THDelft

BSc verslag TECHNISCHE WISKUNDE

"Onderzoek naar verschillende boven- en ondergrenzen van de constante van Steinitz"

("Investigating various upper and lower bounds of the Steinitz constant")

ARD DE GELDER

Technische Universiteit Delft

Begeleiders

Dr. D.C. Gijswijt
Dr. M.C. Veraar

Overige commissieleden
Dr. ir. M. Keijzer
Dr. J. Vermeer

Contents

1 Introduction 7
2 Definitions and notation 9
3 Theorems 11
3.1 Lower bound based on Grinberg and Sevast'yanov 11
3.2 Lower bound for $S\left(\ell_{p}^{2}\right)$ for large p 12
3.3 Lower bound using Hadamard matrices 13
3.4 Upper bound using balanced sets 15
3.5 Weaker upper bound with Matlab algorithm 17
4 Conclusions 23

Chapter 1

Introduction

The history of the Steinitz constant begin with Riemann, whose well-known Rearrangement Theorem was published in 1866 . This classic theorem states that any conditionally convergent sequence can be made to converge to any real number, by choosing a suitable permutation of the terms. This lead to the question whether we could do something similar with a conditionally convergent sequence of d-dimensional vectors: to what can they be made to converge by choosing a permutation? Steinitz[6] reduced this problem in 1913 to the Steinitz Lemma (see Chapter 2).
All left to do was to determine the value of $S(E)$ for various d-dimensional real normed spaces E.

In his article, Steinitz proved a very rough upper bound: $S(E) \leq 2 d$.
Bergström[3] found in 1930 an upper bound for $S\left(\ell_{2}^{2}\right) \leq \frac{1}{2} \sqrt{5}$, which would turn out to be exact. Grinberg and Sevast'yanov[4] improved Steinitz' result to $S(E) \leq d$ in 1980 and also mentioned that $S\left(\ell_{1}^{d}\right) \geq \frac{1}{2}(d+1)$ and $S\left(\ell_{2}^{d}\right) \geq \frac{1}{2} \sqrt{d+3}$. Seven years later Banaszczyk[1] improved their upper bound even further to: $S(E) \leq d-1+\frac{1}{d}$.

In this paper the known upper and lower bounds for the Steinitz constant, found by Grinberg, Sevas'yanov, Banaszczyk, and Bárány are examined and more extensive proofs are given for those - and more general - results. Furthermore a new - optimal - lower bound for the Steinitz constant of a two dimensional ℓ_{∞}-normed space is given.

Chapter 2

Definitions and notation

In this paper E is a d-dimensional real normed space. When E is ℓ_{p}-normed, we will denote this als ℓ_{p}^{d}.
The Steinitz constant of this space is written $S(E)$ and is defined as the smallest real number for which the following holds:
For any collection of vectors $\left\{u_{1}, \ldots, u_{n}\right\} \subseteq E$, satisfying

- $\sum_{i=1}^{n} u_{i}=0$
- $\left\|u_{i}\right\| \leq 1$ for all $i=1, \ldots, n$
a permutation σ of $\{1, \ldots, n\}$ exists, such that:

$$
\left\|\sum_{i=1}^{k} u_{\sigma(i)}\right\| \leq S(E) \quad \text { for } \quad k=1, \ldots, n
$$

Futhermore $\# A$ will be used to denote the cardinality of some set A and $x(i)$ denotes the i-th coordinate of a vector x.

Chapter 3

Theorems

3.1 Lower bound based on Grinberg and Sevast'yanov

This theorem is based on a remark by Grinberg and Sevast'yanov[4]. They state without a complete proof that the maximum known lower bound for $S(E)$ is $\frac{1}{2}(d+1)$ in ℓ_{1}^{d} and $\frac{1}{2} \sqrt{d+3}$ in ℓ_{2}^{d}. This theorem is slightly more general, but follows the same outline.
Theorem 1. $S\left(\ell_{p}^{d}\right) \geq\left(1+(d-1)\left(\frac{1}{2}\right)^{p}\right)^{\frac{1}{p}}=\left\|\left(\begin{array}{llll}\frac{1}{2} & \ldots & \frac{1}{2} & 1\end{array}\right)^{\top}\right\|$
Proof. Let $k \in \mathbb{N}$ arbitrary. Later on we let $k \rightarrow \infty$.
Let B_{k} be a collection of vectors consisting of k copies of $a=\left(\begin{array}{llll}-\frac{1}{2 k} & \ldots & -\frac{1}{2 k} & 1-\frac{d-1}{2 k}\end{array}\right)^{\top}, k$ copies of $b=\left(\begin{array}{llll}-\frac{1}{2 k} & \ldots & -\frac{1}{2 k} & -\left(1-\frac{d-1}{2 k}\right)\end{array}\right)^{\top}$ and $d-1$ unit vectors e_{1}, \ldots, e_{d-1}.
Note that $\|x\| \leq 1$ for all $x \in B_{k}$ and $\sum_{x \in B_{k}} x=0$.
Let σ be any permutation of $\{1, \ldots, 2 k+d-1\}$.
Let n be the smallest index such that $\#\left\{i \leq n: x_{\sigma(i)}=a \vee x_{\sigma(i)}=b\right\}=k$. We may assume without loss of generality that $x_{\sigma(n)}=a$.
This means $\sum_{i=1}^{n} x_{\sigma(i)}$ sums exactly k copies of a or b and possibly some unit vectors.
Let $s_{a}=\#\left\{i \leq n: x_{\sigma(i)}=a\right\}$ and $s_{e}=\#\left\{i \leq n: x_{\sigma(i)}=e_{j}\right.$ for some $\left.j\right\}$. Then:

$$
\begin{aligned}
\sum_{i=1}^{n-1} x_{\sigma(i)} & =\left(s_{a}-1\right) a+\left(k-s_{a}\right) b+s_{e} e \\
& =(\underbrace{1-\frac{k-1}{2 k}}_{s_{e} \text { coordinates }} \quad \underbrace{-\frac{k-1}{2 k}}_{d-s_{e}-1 \text { coordinates }} \quad\left(2 s_{a}-1-k\right)\left(1-\frac{d-1}{2 k}\right))^{\top}
\end{aligned}
$$

If we let $k \rightarrow \infty$ then

$$
\sum_{i=1}^{n-1} x_{\sigma(i)} \rightarrow(\underbrace{\frac{1}{2}}_{s_{e} \text { coordinates }} \underbrace{-\frac{1}{2}}_{d-s_{e}-1 \text { coordinates }}\left(2 s_{a}-1-k\right)))^{\top}
$$

So

$$
\left\|\sum_{i=1}^{n-1} x_{\sigma(i)}\right\| \rightarrow\left\|\left(\begin{array}{c}
\frac{1}{2} \\
\vdots \\
\frac{1}{2} \\
\left(2 s_{a}-1-k\right)
\end{array}\right)\right\| \geq\left\|\left(\begin{array}{c}
\frac{1}{2} \\
\vdots \\
\frac{1}{2} \\
1
\end{array}\right)\right\|
$$

So $S(E) \geq\left\|\left(\begin{array}{llll}\frac{1}{2} & \ldots & \frac{1}{2} & 1\end{array}\right)^{\top}\right\|$.
Note that this gives us the aforementioned lower bounds:
$S\left(\ell_{1}^{d}\right) \geq \frac{1}{2}(d+1)$
$S\left(\ell_{2}^{d}\right) \geq \frac{1}{2} \sqrt{d+3}$
Unfortunetely, as $p \rightarrow \infty$, this lower bound tends to 1 , which isn't that helpful. In the next section we will prove a theorem that gives stronger results for large values of p (but only works in 2 dimensions).

3.2 Lower bound for $S\left(\ell_{p}^{2}\right)$ for large p

This theorem is similar to Theorem 1 in 2 dimensions, but the vectors are rotated by 45 degrees. This gives a better lower bound for $p>2$. In particular, it gives $S\left(\ell_{\infty}^{2}\right) \geq \frac{3}{2}$, which is the best possible, as we will prove in Theorem ??.

Theorem 2. $S\left(\ell_{p}^{2}\right) \geq \sqrt[p]{\frac{1}{2}} \sqrt[p]{\left(\frac{1}{2}\right)^{p}+\left(\frac{3}{2}\right)^{p}}$
Proof. If $p=1$ the case is trivial. If $p>1$, let $z=\sqrt[p]{\frac{1}{2}}$ and assume $S\left(\ell_{p}^{2}\right)<\sqrt[p]{\frac{1}{2}} \sqrt[p]{\left(\frac{1}{2}\right)^{p}+\left(\frac{3}{2}\right)^{p}}=$ $z \sqrt[p]{\left(\frac{1}{2}\right)^{p}+\left(\frac{3}{2}\right)^{p}}$.
Let $k \in \mathbb{N}$ be arbitrary. (Later on we let $k \rightarrow \infty$)
Let C_{k} be a collection of vectors consisting of $2 k$ copies of $a=\binom{-z}{\left(1-\frac{1}{2 k}\right) z}, 2 k$ copies of $b=\binom{\left(1-\frac{1}{2 k}\right) z}{-z}$ and one vector $e=\binom{z}{z}$.
Notice that $\sum_{x \in C_{k}} x=0$ and $\|x\| \leq 1 \quad \forall x \in C_{k}$, so a permutation σ of $\{1, \ldots, 4 k+1\}$ exists, satisfying $\left\|\sum_{i=1}^{j} x_{\sigma(i)}\right\| \leq S(E)$ for $j=1, \ldots, 4 k+1$.

We'll prove by induction that the first $2 k$ elements of $\left\{x_{\sigma(i)}\right\}$ are k pairs (a, b) or (b, a).
Base case: for the first 0 elements this is trivially true.
Inductive step: if the first $2 j(0 \leq j \leq k-1)$ elements of $\left\{x_{\sigma(i)}\right\}$ are j pairs (a, b) or (b, a), then the next two elements are also a pair (a, b) or (b, a).
Proof:
There are 8 possible cases:

- $\left(x_{\sigma(2 j+1)}, x_{\sigma(2 j+2)}\right)=(e, a)$. In this case

$$
\begin{aligned}
\left\|\sum_{i=1}^{2 j+2} x_{\sigma(i)}\right\| & =\|j \cdot(a+b)+e+a\| \\
& =\left\|\binom{-\frac{j}{2 k} z}{\left(2-\frac{j+1}{2 k}\right) z}\right\| \\
& =z \sqrt[p]{\left(\frac{j}{2 k}\right)^{p}+\left(2-\frac{j+1}{2 k}\right)^{p}} \\
& >S(E) \text { for } k \text { sufficiently large }
\end{aligned}
$$

Contradiction.

- $\left(x_{\sigma(2 j+1)}, x_{\sigma(2 j+2)}\right)=(e, b)$. This is similar to (e, a).
- $\left(x_{\sigma(2 j+1)}, x_{\sigma(2 j+2)}\right)=(a, e)$. This is similar to (e, a).
- $\left(x_{\sigma(2 j+1)}, x_{\sigma(2 j+2)}\right)=(b, e)$. This is similar to (a, e).
- $\left(x_{\sigma(2 j+1)}, x_{\sigma(2 j+2)}\right)=(a, a)$. In this case

$$
\begin{aligned}
\left\|\sum_{i=1}^{2 j+2} x_{\sigma(i)}\right\| & =\|j \cdot(a+b)+a+a\| \\
& =\left\|\binom{-\left(2+\frac{j}{2 k}\right) z}{\left(2-\frac{j+2}{2 k}\right) z}\right\| \\
& >\left\|\binom{2 z}{0}\right\|>S(E)
\end{aligned}
$$

Contradiction.

- $\left(x_{\sigma(2 j+1)}, x_{\sigma(2 j+2)}\right)=(b, b)$. This is similar to (a, a).
- $\left(x_{\sigma(2 j+1)}, x_{\sigma(2 j+2)}\right)=(a, b)$. This is possible.
- $\left(x_{\sigma(2 j+1)}, x_{\sigma(2 j+2)}\right)=(b, a)$. This is possible.

So the only possible options for $\left(\sigma_{2 j+1}, \sigma_{2 j+2}\right)$ are (a, b) and (b, a).
This concludes the proof by induction.
Now we know the first $2 k$ elements of $\left\{x_{\sigma(i)}\right\}$, let's evaluate $\left\|\sum_{i=1}^{2 k-1} x_{\sigma(i)}\right\|$. (By symmetry we can assume $\left.x_{\sigma(2 k-1)}=a\right)$

$$
\begin{aligned}
\left\|\sum_{i=1}^{2 k-1} x_{\sigma(i)}\right\| & =\|k \cdot(a+b)-a\| \\
& =z\left\|\binom{\frac{3}{2}}{\left.-\frac{1}{2 k}\right)}\right\|
\end{aligned}
$$

$$
>S(E) \quad \text { for } k \text { sufficiently large }
$$

So $\left\|\sum_{i=1}^{2 k-1} x_{\sigma(i)}\right\|>S(E)$, but σ satisfied $\left\|\sum_{i=1}^{j} x_{\sigma(i)}\right\| \leq S(E)$ for $j=1, \ldots, 4 k+1$. This gives a contradiction, so our assumption that $S(E)<z \sqrt[p]{\left(\frac{1}{2}\right)^{p}+\left(\frac{3}{2}\right)^{p}}$ must be false.
Conclusion: $S\left(\ell_{p}^{2}\right) \geq \sqrt[p]{\frac{1}{2}} \sqrt[p]{\left(\frac{1}{2}\right)^{p}+\left(\frac{3}{2}\right)^{p}}$

3.3 Lower bound using Hadamard matrices

This theorem is based on a remark about $S\left(\ell_{\infty}^{d}\right)$ by Bárány[2]. This is a more complete proof and works for $S\left(\ell_{p}^{d}\right)$ where $p>2$.
Theorem 3. $S\left(\ell_{p}^{d}\right) \geq \frac{d+1}{2 \sqrt{d}}$ if $p \geq 2$ and ad $d+1 \times d+1$ Hadamard matrix exists ($d \geq 3$ odd).
This proof uses Hadamard matrices. A Hadamard matrix is a square matrix whose entries are ± 1 and whose columns are pairwise orthogonal. A $2^{k} \times 2^{k}$ Hadamard matrix can be created
using the following procedure:

$$
\begin{aligned}
H_{1} & =\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
H_{n+1} & =\left[\begin{array}{cc}
H_{n} & H_{n} \\
H_{n} & -H_{n}
\end{array}\right]
\end{aligned}
$$

It is conjectured that a $4 k \times 4 k$ Hadamard matrix exists for every positive integer k.
Proof. Let H be a $d+1 \times d+1$ Hadamard matrix and let h_{1}, \ldots, h_{d+1} denote the column vectors of H. Note that since $\left\|h_{i}\right\|_{2}=\sqrt{d+1}$ and each pair h_{i}, h_{j} is orthogonal, the squared Euclidean norm of the sum of k vectors h_{i} is $k(d+1)$.
We may assume that H has a row, say j, of which all entries are 1 . Let $v_{i} \in \mathbb{R}$ be h_{i} with it's j 'th coordinate removed. Note that $\sum v_{i}=0$ and the squared Euclidean norm of the sum of k vectors v_{i} is $k(d+1)-k^{2}=k(d+1-k)$.
Let $u_{i} \in \mathbb{R}^{d}$ be $d^{-\frac{1}{p}} v_{i}$. Note that $\sum u_{i}=0,\left\|u_{i}\right\|_{p}=d^{-\frac{1}{p}}\left\|v_{i}\right\|_{p}=1$ and and the squared Euclidean norm of the sum of k vectors u_{i} is $d^{-\frac{2}{p}} k(d+1-k)$.
Let v be the sum of $\frac{1}{2}(d+1)$ vectors u_{i}. Note that $\|v\|_{2}^{2}=d^{-\frac{2}{p}} \frac{1}{2}(d+1)\left(d+1-\frac{1}{2}(d+1)\right)=$ $\frac{1}{4} d^{-\frac{2}{p}}(d+1)^{2}$.
Hölders inequality states that if $\frac{1}{q}+\frac{1}{q^{\prime}}=1$:

$$
\|a\|_{q} \cdot\|b\|_{q^{\prime}} \geq \sum|a(i) b(i)|
$$

We can use that with $a(i)=v(i)^{2}, b(i)=1, q=\frac{1}{2} p$ and $\frac{1}{q^{\prime}}=1-\frac{2}{p}$ to obtain

$$
\left\|v^{2}\right\|_{\frac{1}{2} p} \cdot d^{1-\frac{2}{p}} \geq \sum v(i)^{2}
$$

We know that $\sum v(i)^{2}=\|v\|_{2}^{2}=\frac{1}{4} d^{-\frac{2}{p}}(d+1)^{2}$, so:

$$
\begin{aligned}
\left\|v^{2}\right\|_{\frac{1}{2} p} \cdot d^{1-\frac{2}{p}} & \geq \frac{1}{4} d^{-\frac{2}{p}}(d+1)^{2} \\
\left\|v^{2}\right\|_{\frac{1}{2} p} & \geq \frac{1}{4} d^{-1}(d+1)^{2}
\end{aligned}
$$

Furthermore, since $\left\|v^{2}\right\|_{\frac{1}{2} p}=\|v\|_{p}^{2}$:

$$
\begin{aligned}
& \|v\|_{p}^{2} \geq d^{-1} \frac{1}{4}(d+1)^{2} \\
& \|v\|_{p} \geq \frac{d+1}{2 \sqrt{d}}
\end{aligned}
$$

So $S\left(\ell_{p}^{d}\right) \geq \frac{d+1}{2 \sqrt{d}}$. Note that this lower bound does not depend on the specific value of p, it only requires $p \geq 2$.

This proof only works if a $d+1 \times d+1$ Hadamard matrix exists. However, for every d we can find an integer k such that $2^{k} \leq d \leq 2^{k+1}$ and we know a $2^{k} \times 2^{k}$ Hadamard exists for every positive integer k. Since $S\left(\ell_{p}^{2^{k}}\right) \leq S\left(\ell_{p}^{d}\right) \leq S\left(\ell_{p}^{2^{k+1}}\right)$ we can use this result to obtain information for every value of d.
For $p=2$ this theorem gives no new information, since Theorem 1 gives a better result, but for $p>2$ (and sufficiently large values of d) this is a better result.

3.4 Upper bound using balanced sets

This theorem is a more extensive proof of a proof by Banaszczyk[1]. We will show for any d-dimensional real normed space E the inequality:

$$
S(E) \leq d-1+\frac{1}{d}
$$

Definitions

B is the closed ball in E with centre at zero and radius $\frac{1}{d}$.
$\left\{u_{1}, \ldots, u_{n}\right\} \subseteq E(n \geq 2)$ is called balanced if some $t_{1}, \ldots, t_{n} \in[0,1]$ exist such that $\sum t_{i}=$ $n-d+1$ and $\sum t_{i} u_{i} \in B$.
$\left\langle u_{i}\right\rangle_{i=1}^{n}$ denotes the polytope with vertices at u_{1}, \ldots, u_{n}
Lemma 4. Let $w_{1}, \ldots, w_{d+1} \in E$ with $\left\|w_{i}\right\| \leq 1$. Let $T=\left\langle w_{i}\right\rangle_{i=1}^{d+1}$. If $a+B$ meets T for some $a \in E$ then there exists some index k such that $a+B$ meets $\left\langle w_{i}\right\rangle_{i \neq k}$.

Proof

If a lies outside of T or on a face of T it is trivial that $a+B$ meets some face of T if it meets any point in T, so we may assume that a is an interior point of T.
We may also assume without loss of generality that 0 is an interior point of T.
So some $t_{1} \ldots, t_{d+1} \in[0,1]$ exist such that $\sum t_{i}=1$ and $\sum t_{i} w_{i}=a$.
Furthermore some $s_{1} \ldots, s_{d+1} \in[0,1]$ exist such that $\sum s_{i}=1$ and $\sum s_{i} w_{i}=0$.
From the equality $\sum_{i=1}^{d+1}\left(d t_{i}+s_{i}\right)=d+1$ it follows that $d t_{i}+s_{i} \leq 1$ for some i, say for $i=1$.
If $s_{1}=1$ then $w_{1}=0$, so $a+B$ would meet $\left\langle w_{i}\right\rangle_{i \neq 1}$.
If $s_{1}<1$, let $r=\frac{t_{1}}{1-s_{1}}$, then $r \leq \frac{1}{d}$. Let $x=a-r w_{1}$. Notice that $x \in a+B$.
We will now show that $x \in\left\langle w_{i}\right\rangle_{i=2}^{d+1}$:

$$
\begin{aligned}
x=a-r w_{1} & =a-t_{1} w_{1}+\left(t_{1}-\frac{t_{1}}{1-s_{1}}\right) w_{1} \\
& =\sum_{i=2}^{d+1} t_{i} w_{i}+\frac{-s_{1} t_{1}}{1-s_{1}} w_{1} \\
& =\sum_{i=2}^{d+1} t_{i} w_{i}+\frac{t_{1}}{1-s_{1}} \sum_{i=2}^{d+1} s_{i} w_{i} \\
& =\sum_{i=2}^{d+1}\left(t_{i}+r s_{i}\right) w_{i}
\end{aligned}
$$

Note furthermore that $\sum_{i=2}^{d+1}\left(t_{i}+r s_{i}\right)=\sum_{i=2}^{d+1} t_{i}+r \sum_{i=2}^{d+1} s_{i}=\sum_{i=2}^{d+1} t_{i}+r\left(1-s_{1}\right)=\sum_{i=2}^{d+1} t_{i}+t_{1}=1$ and that $t_{i}+r s_{i} \geq 0$, since $t_{i}, r, s_{i} \geq 0$.
So $a+B$ meets $\left\langle w_{i}\right\rangle_{i \neq 1}$ in x.
Lemma 5. If $\left\{u_{1}, \ldots, u_{n}\right\} \subseteq E(n \geq d+1)$ is balanced and $\left\|u_{i}\right\| \leq 1$ for all i, then there exists an index h such that $\left\{u_{i}\right\}_{i \neq h}$ is balanced.

Proof. $\left\{u_{1}, \ldots, u_{n}\right\}$ is balanced, so some $t_{1}, \ldots, t_{n} \in[0,1]$ exist such that $\sum t_{i}=n-d+1$ and

$$
\sum_{i=1}^{n} t_{i} u_{i} \in B
$$

Let $A: \mathbb{R}^{n} \rightarrow E$ be the linear operator $x \mapsto \sum_{i=1}^{n} x(i) u_{i}$.
Let $W \subseteq \mathbb{R}^{n}$ be the convex polyhedron given by $\left\{x \in[0,1]^{n}: \sum_{i=1}^{n} x(i)=n-d\right\}$.
If we can find an element $x \in W$ for which $A(x) \in B$ and $x(h)=0$ for some h, then we can show that $\left\{u_{i}\right\}_{i \neq h}$ is balanced.

Let $v \in \mathbb{R}^{n}$ be the vector given by $v(i)=\frac{n-d}{n-d+1} t_{i}$. Note that $A(v) \in B$.
Let W^{\prime} be the convex polytope given by $\{x \in W: A(x)=A(v)\}$.
Since W^{\prime} is convex and nonempty we can choose a vertex w of W^{\prime}.
Such a vertex is given by at least n equalities. Since w has to satisfy $\sum_{i=1}^{n} w(i)=n-d$ (which is 1 equality) and $A(w)=A(v)$ (which are d equalities) at least $n-d-1$ of the constraints $w(i) \in[0,1]$ must be equalities.
If for any one h of those $n-d-1$ coordinates $w(h)=0$ then $\left\{u_{i}\right\}_{i \neq h}$ is balanced: let $t_{i}=w(i)$, then $t_{i} \in[0,1], \sum_{i \neq h} t_{i}=n-2$ and $\sum_{i \neq h} t_{i} u_{i}=A(w) \in B$.
So we may assume that $w(i)=1$ for $i \geq d+2$, so $w=(w(1), \ldots, w(d+1), 1,1, \ldots 1)$.
Since $\sum_{i=1}^{n} w(i)=n-d$ we know that $\sum_{i=1}^{d+1} w(i)=(n-d)-(n-d-1)=1$.
Let $y_{1}=\sum_{i=1}^{d+1} w(i) u_{i}$ and $y_{2}=\sum_{i=d+2}^{n} u_{i}$. Note that $y_{1}+y_{2}=A(w) \in B$.
Let $T=\left\langle u_{i}\right\rangle_{i=1}^{d+1}$. Note that $y_{1} \in T$.
Since $y_{1}+y_{2} \in B$, this means that $-y_{2}+B$ meets T. Lemma 4 then gives us that $-y_{2}+B$ meets $\left\langle u_{i}\right\rangle_{i \neq k}$ in some point x for some index k, say $k=1$.
So $x=\sum_{i=2}^{d+1} p_{i} u_{i}$ for some $p_{2}, \ldots, p_{d+1} \in[0,1]$ with $\sum_{i=2}^{d+1} p_{i}=1$.
Now let $z=\left(0, p_{2}, \ldots, p_{d+1}, 1,1, \ldots, 1\right) \in \mathbb{R}^{n}$. Note that $z \in W$ and $A(z)=x+y_{2} \in B$.
Now let $t_{i}=z(i)$ for $i=2, \ldots, n$.

$$
\begin{gathered}
\sum_{i=2}^{n} t_{i}=(n-d-1)+1=(n-1)-d+1 \\
\sum_{i=2}^{n} t_{i} u_{i}=A(z) \in B
\end{gathered}
$$

So $\left\{u_{i}\right\}_{i \neq 1}$ is balanced, which concludes the proof.
Lemma 6. If $\left\{u_{1}, \ldots, u_{n}\right\}$ is balanced and $\left\|u_{i}\right\| \leq 1$ then $\left\|\sum_{i=1}^{n} u_{i}\right\| \leq d-1+\frac{1}{d}$.
Proof. By the definition of balanced, some $t_{1}, \ldots, t_{n} \in[0,1]$ exist such that $\sum_{i=1}^{n} t_{i}=n-d+1$ and

$$
\left\|\sum_{i=1}^{n} t_{i} u_{i}\right\| \leq \frac{1}{d}
$$

Let $s_{i}=1-t_{1}$. Then $\sum_{i=1}^{n} s_{i}=d-1$ and therefore

$$
\left\|\sum_{i=1}^{n} u_{i}\right\| \leq\left\|\sum_{i=1}^{n} s_{i} u_{i}\right\|+\left\|\sum_{i=1}^{n} t_{i} u_{i}\right\| \leq d-1+\frac{1}{d}
$$

Theorem 7. $S(E) \leq d-1+\frac{1}{d}$
Proof. Take any collection $\left\{u_{1}, \ldots, u_{n}\right\}$ with $\left\|u_{i}\right\| \leq 1$ and $\sum_{i=1}^{n} u_{i}=0$.
Note that $\left\{u_{1}, \ldots, u_{n}\right\}$ is balanced. (Choose $t_{i}=1-\frac{d-1}{n}$.)
By applying Lemma 5 , we construct by induction a permutation p of $\{1, \ldots, n\}$ such that $\left\{u_{p(i)}\right\}_{i=1}^{k}$ is balanced for $k=d, \ldots, n-1$.
Lemma 6 now gives us that $\left\|\sum_{i=1}^{k} u_{p(i)}\right\| \leq d-1+\frac{1}{d}$ for $k=d, \ldots, n$.
For $k<d$ we also know that

$$
\left\|\sum_{i=1}^{k} u_{p(i)}\right\| \leq k<d-1+\frac{1}{d}
$$

So $S(E) \leq d-1+\frac{1}{d}$
For $d=2$ this gives $S(E) \leq \frac{3}{2}$, which is the best possible, since both $S\left(\ell_{1}^{2}\right) \geq \frac{3}{2}$ and $S\left(\ell_{\infty}^{2}\right) \geq$ $\frac{3}{2}$.

3.5 Weaker upper bound with Matlab algorithm

This is a weaker result than Theorem 7. It was first proven by Grinberg and Sevast'yanov[4]. However, since this proof gives a constructive way to find a permutation σ that satisfies $\left\|\sum_{i=1}^{k} u_{\sigma(i)}\right\| \leq$ d, I have created a Matlab program that finds such a permutation.

Theorem 8. $S(E) \leq d$
Proof. Let $A_{n}=\{1, \ldots n\}$ and $\lambda_{n}(i)=\frac{n-d}{n}\left(i \in A_{n}\right)$.
We create by induction a chain of sets $A_{n} \supset A_{n-1} \supset \cdots \supset A_{d}$ and corresponding numbers λ_{k}^{i} $\left(k=d, \ldots, n ; i \in A_{k}\right)$, with the following properties for all $k=d, \ldots, n$:

$$
\begin{aligned}
& \# A_{k}=k \\
& 0 \leq \lambda_{k}(i) \leq 1 \quad i \in A_{k} \\
& \sum_{i \in A_{k}} \lambda_{k}(i)=k-d \\
& \sum_{i \in A_{k}} \lambda_{k}(i) u_{i}=0
\end{aligned}
$$

Induction : $k \rightarrow k-1$.
Let A_{k} and λ_{k} have the abovementioned properties.
Now consider $K \subseteq \mathbb{R}^{k}$ the set of all collections $\left(\mu\left(i_{1}\right), \ldots, \mu\left(i_{k}\right)\right)$ with $\left\{i_{1}, \ldots, i_{k}\right\}=A_{k}$, which have the properties:

$$
\begin{aligned}
& 0 \leq \mu\left(i_{k}\right) \leq 1 \quad i_{k} \in A_{k} \\
& \sum_{i_{j} \in A_{k}} \mu\left(i_{j}\right)=k-d-1 \\
& \sum_{i_{j} \in A_{k}} \mu\left(i_{j}\right) u\left(i_{j}\right)=0
\end{aligned}
$$

K is convex and nonempty (for example $\left\{\mu\left(i_{j}\right)=\frac{k-d-1}{k-d} \lambda_{k}\left(i_{j}\right) ; i_{j} \in A_{k}\right\} \in K$).
Let $\left(\mu^{*}\left(i_{1}\right), \ldots, \mu^{*}\left(i_{k}\right)\right)$ be a vertex of K.
Note that K is a polyhedron in \mathbb{R}^{k}, given by $d+1$ linear equalities, and $2 k$ linear inequalities $\left(-\mu\left(i_{j}\right) \leq 0\right.$ and $\left.\mu\left(i_{j}\right) \leq 1:\left\{i_{1}, \ldots, i_{k}\right\}=A_{k}\right)$.
Since μ^{*} is a vertex in \mathbb{R}^{k} it is given by at least k equalities, so $\#\left\{i_{j} \in A_{k}: \mu^{*}\left(i_{j}\right)=0 \vee \mu^{*}\left(i_{j}\right)=\right.$ $1\} \geq k-(d+1)$.
If all these $k-d-1 \mu^{*}\left(i_{j}\right)$ are 1 then $\sum_{i_{j} \in A_{k}} \mu^{*}\left(i_{j}\right)>k-d-1$, so at least one of the $\mu^{*}\left(i_{j}\right)$ is 0.

Fix j such that $\mu^{*}\left(i_{j}\right)=0$ and let $A_{k-1}=A_{k} \backslash\left\{i_{j}\right\}$ and $\lambda_{k-1}\left(i_{j}\right)=\mu^{*}\left(i_{j}\right),\left(i_{j} \in A_{k-1}\right)$. This concludes the induction.

Now we put $\{\sigma(i)\}=A_{i} \backslash A_{i-1}(i=d+1, \ldots, n)$.
For $k \leq d,\left\|\sum_{i=1}^{k} u_{\sigma(i)}\right\| \leq d$ follows trivially from $\left\|u_{i}\right\| \leq 1$.
For $k>d$, we have:

$$
\begin{aligned}
\left\|\sum_{i=1}^{k} u_{\sigma(i)}\right\| & =\left\|\sum_{i \in A_{k}} u_{i}\right\| \\
& =\left\|\sum_{i \in A_{k}} u_{i}-\sum_{i \in A_{k}} \lambda_{k}^{i} u_{i}\right\| \\
& =\left\|\sum_{i \in A_{k}}\left(1-\lambda_{k}^{i}\right) u_{i}\right\| \\
& \leq \sum_{i \in A_{k}}\left(1-\lambda_{k}^{i}\right)=d
\end{aligned}
$$

This proves that $S(E) \leq d$. The following Matlab agorithm finds a permutation such that the partial sums all have norms at most d.

```
clear all;
%Generate a d x n testmatrix X
%The column vectors of X all have norm <= 1 and add up to 0
X = [0.71, -0.84, -0.28, -0.77, 0.41, -0.06, 0.1, 0.73;
    0.48, 0.13, -0.89, -0.63, 0.23, -0.41, 0.78, 0.31];
d = size(X, 1);
n = size(X, 2);
%Generate a starting lambda
lambda(:,n) = ones (n,1)* (n-d)/n;
Y = X; ones(1,n)]; %Add a row of ones to make sure the sum of lambda doesn't change when we move alo
for k=n:-1:d+1
    %Every iteration we want to remove one vector from A(:,k), adjust lambda accordingly
    mu = lambda (:,k)* (k-d-1)/(k-d);
    Z = Y;
    %Find the vertex of the polyhedron
    for l=1:k-d-1
```

```
    %Find a direction r in which to move and how far we can move along it
    N = null(Z);
    r = N(:,1);
    minroom = bitmax;
    for i=1:length(r)
        if (mu(i) > 10^-10 && mu(i) < 1-10^-10)
            if r(i)<0
                room = -mu(i)/r(i);
            end
            if r(i) > 0
                room = (1-mu(i))/r(i);
            end
            if room < minroom
                minroom = room;
                constraining_coordinate = i;
            end
        end
end
%Move mu along r
mu = mu + minroom*r;
%Make sure we don't move along this coordinate again
newrow = zeros(1,n);
newrow(constraining_coordinate) = 1;
Z = [Z;newrow];
end
%Now we are guaranteed mu has one coordinate (approximately) 0. Find
%which coordinate that is, by first removing all already used
%coordinates
mu_new = mu;
realcoordinates = 1:length(mu);
if k < n
    sorted_order = sort(order,'descend');
    for i=1:n-k
        index = sorted_order(i);
        mu_new(index) = [];
        realcoordinates(index) = [];
        end
end
[q, zc] = min(mu_new);
zero_coordinate = realcoordinates(zc);
%Make sure we don't use the vector we just added to order again
order(k) = zero_coordinate;
newrow = zeros(1,n);
newrow(zero_coordinate) = 1;
Y = [Y;newrow];
%Adjust lambda for the next step
lambda(:,k-1) = mu;
end
%Flip order (in the algorithm we add vectors to the right of order)
order = fliplr(order);
%Add the remaining vectors in order
added = 0;
```

```
for i=1:n
    if any(order==i)==0
        order (n-d+1+added) = i;
        added = added + 1;
    end
end
```

order

An example of the algorithm in ℓ_{2}^{2}.
Let

$$
\left\{u_{1}, \ldots, u_{8}\right\}=\left\{\binom{0.71}{0.48},\binom{-0.84}{0.13},\binom{-0.28}{-0.89},\binom{-0.77}{-0.63},\binom{0.41}{0.23},\binom{-0.06}{-0.41},\binom{0.10}{0.78},\binom{0.73}{0.31}\right\}
$$

which looks like this:

The algorithm finds the following order:

Which does indeed has no partial sums with norms larger than $d=2$. It is however far from optimal, as the following image shows:

Chapter 4

Conclusions

A quick overview of what we now know about $S\left(\ell_{p}^{d}\right)$:

	$p=1$	$p=2$	$p=\infty$
$d=2$	$S\left(\ell_{1}^{2}\right)=\frac{3}{2}$	$S\left(\ell_{2}^{2}\right)=\frac{1}{2} \sqrt{5}$	$S\left(\ell_{\infty}^{2}\right)=\frac{3}{2}$
$d>2$	$\frac{1}{2}(d+1) \leq S\left(\ell_{1}^{d}\right) \leq d-1+\frac{1}{d}$	$\frac{1}{2} \sqrt{d+3} \leq S\left(\ell_{2}^{d}\right) \leq d-1+\frac{1}{d}$	$\frac{d+1}{2 \sqrt{d}} \leq S\left(\ell_{\infty}^{d}\right) \leq d-1+\frac{1}{d}$

A plot of the possible values of $S\left(\ell_{p}^{2}\right)$ looks like this:

This is all for d finite. An investigation for Steinitz constant in infinite-dimensional spaces can be found in [5], but falls beyond the scope of this project.

Bibliography

[1] W. Banaszczyk, The Steinitz constant of the plane, Journal für die reine und angewandte Mathematik, 373(1987), 218-220
[2] I. Bárány, On the power of linear dependencies, Building Bridges, Bolyai Society Mathematical Studies, 19(2008), 31-45
[3] V. Bergström, Zwei Sätze über ebene Vectorpolygone, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 8(1931), 206-214
[4] V.S. Grinberg, S.V. Sevast'yanov, Value of the Steinitz constant, Functional Analysis and its Applications, 14(1980), 125-126.
[5] M.I. Kadets, V.M. Kadets, Series in Banach spaces: conditional and unconditional convergence, Birkhaüser (1997)
[6] E. Steinitz, Bedingt konvergente Reihen und convexe Systemen, Journal für die reine und angewandte Mathematik, 143(1913), 128-175

