

Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics

Onderzoek naar verschillende boven- en ondergrenzen van de constante van Steinitz

(Investigating various upper and lower bounds of the Steinitz constant)

> Verslag ten behoeve van het Delft Institute of Applied Mathematics als onderdeel ter verkrijging

> > van de graad van

 $\begin{array}{c} {\rm BACHELOR~OF~SCIENCE} \\ {\rm in} \\ {\rm TECHNISCHE~WISKUNDE} \end{array}$

door

ARD DE GELDER

Delft, Nederland Juni 2016

Copyright © 2016 door Ard de Gelder. Alle rechten voorbehouden.

BSc verslag TECHNISCHE WISKUNDE

"Onderzoek naar verschillende boven- en ondergrenzen van de constante van Steinitz"

("Investigating various upper and lower bounds of the Steinitz constant")

ARD DE GELDER

Technische Universiteit Delft

Begeleiders

Dr. D.C. Gijswijt

Dr. M.C. Veraar

Overige commissieleden

Dr. ir. M. Keijzer

Dr. J. Vermeer

Juni 2016

Delft

Contents

1	Introduction	7
2	Definitions and notation	9
3	Theorems	11
	3.1 Lower bound based on Grinberg and Sevast'yanov	11
	3.2 Lower bound for $S(\ell_p^2)$ for large p	12
	3.3 Lower bound using Hadamard matrices	
	3.4 Upper bound using balanced sets	15
	3.5 Weaker upper bound with Matlab algorithm	17
1	Conclusions	23

6 CONTENTS

Introduction

The history of the Steinitz constant begin with Riemann, whose well-known Rearrangement Theorem was published in 1866. This classic theorem states that any conditionally convergent sequence can be made to converge to any real number, by choosing a suitable permutation of the terms. This lead to the question whether we could do something similar with a conditionally convergent sequence of d-dimensional vectors: to what can they be made to converge by choosing a permutation? Steinitz[6] reduced this problem in 1913 to the Steinitz Lemma (see Chapter 2).

All left to do was to determine the value of S(E) for various d-dimensional real normed spaces E.

In his article, Steinitz proved a very rough upper bound: $S(E) \leq 2d$.

Bergström[3] found in 1930 an upper bound for $S(\ell_2^2) \leq \frac{1}{2}\sqrt{5}$, which would turn out to be exact. Grinberg and Sevast'yanov[4] improved Steinitz' result to $S(E) \leq d$ in 1980 and also mentioned that $S(\ell_1^d) \geq \frac{1}{2}(d+1)$ and $S(\ell_2^d) \geq \frac{1}{2}\sqrt{d+3}$. Seven years later Banaszczyk[1] improved their upper bound even further to: $S(E) \leq d-1+\frac{1}{d}$.

In this paper the known upper and lower bounds for the Steinitz constant, found by Grinberg, Sevas'yanov, Banaszczyk, and Bárány are examined and more extensive proofs are given for those — and more general — results. Furthermore a new — optimal — lower bound for the Steinitz constant of a two dimensional ℓ_{∞} -normed space is given.

Definitions and notation

In this paper E is a d-dimensional real normed space. When E is ℓ_p -normed, we will denote this als ℓ_p^d .

The Steinitz constant of this space is written S(E) and is defined as the smallest real number for which the following holds:

For any collection of vectors $\{u_1, \ldots, u_n\} \subseteq E$, satisfying

$$\bullet \sum_{i=1}^{n} u_i = 0$$

• $||u_i|| \le 1$ for all $i = 1, \ldots, n$

a permutation σ of $\{1, \ldots, n\}$ exists, such that:

$$\left\| \sum_{i=1}^{k} u_{\sigma(i)} \right\| \le S(E) \quad \text{for} \quad k = 1, \dots, n$$

Futhermore #A will be used to denote the cardinality of some set A and x(i) denotes the i-th coordinate of a vector x.

Theorems

3.1Lower bound based on Grinberg and Sevast'yanov

This theorem is based on a remark by Grinberg and Sevast'yanov[4]. They state without a complete proof that the maximum known lower bound for S(E) is $\frac{1}{2}(d+1)$ in ℓ_1^d and $\frac{1}{2}\sqrt{d+3}$ in ℓ_2^d . This theorem is slightly more general, but follows the same outline.

Theorem 1.
$$S(\ell_p^d) \ge (1 + (d-1)(\frac{1}{2})^p)^{\frac{1}{p}} = \left| \begin{bmatrix} \frac{1}{2} & \dots & \frac{1}{2} & 1 \end{bmatrix}^\top \right|$$

Proof. Let $k \in \mathbb{N}$ arbitrary. Later on we let $k \to \infty$.

Let B_k be a collection of vectors consisting of k copies of $a = \left(-\frac{1}{2k} \dots -\frac{1}{2k} \ 1 - \frac{d-1}{2k}\right)^{\top}$, k copies of $b = \left(-\frac{1}{2k} \dots -\frac{1}{2k} \ -(1 - \frac{d-1}{2k})\right)^{\top}$ and d-1 unit vectors e_1, \dots, e_{d-1} . Note that $||x|| \le 1$ for all $x \in B_k$ and $\sum_{x \in B_k} x = 0$.

Let σ be any permutation of $\{1, \ldots, 2k+d-1\}$.

Let n be the smallest index such that $\#\{i \leq n : x_{\sigma(i)} = a \vee x_{\sigma(i)} = b\} = k$. We may assume without loss of generality that $x_{\sigma(n)} = a$.

This means $\sum_{i=1}^{n} x_{\sigma(i)}$ sums exactly k copies of a or b and possibly some unit vectors.

Let $s_a = \#\{i \le n : x_{\sigma(i)} = a\}$ and $s_e = \#\{i \le n : x_{\sigma(i)} = e_j \text{ for some } j\}$. Then:

$$\sum_{i=1}^{n-1} x_{\sigma(i)} = (s_a - 1)a + (k - s_a)b + s_e e$$

$$= \left(\underbrace{1 - \frac{k-1}{2k}}_{s_e \text{ coordinates}} \quad \underbrace{-\frac{k-1}{2k}}_{d-s_e-1 \text{ coordinates}} \quad (2s_a - 1 - k)(1 - \frac{d-1}{2k})\right)^{\top}$$

If we let $k \to \infty$ then

$$\sum_{i=1}^{n-1} x_{\sigma(i)} \to \left(\underbrace{\frac{1}{2}}_{s_e \text{ coordinates}} \underbrace{-\frac{1}{2}}_{d-s_e-1 \text{ coordinates}} (2s_a - 1 - k))\right)^{\top}$$

So

$$\left| \left| \sum_{i=1}^{n-1} x_{\sigma(i)} \right| \right| \to \left| \left| \left(\begin{array}{c} \frac{1}{2} \\ \vdots \\ \frac{1}{2} \\ (2s_a - 1 - k) \end{array} \right) \right| \right| \ge \left| \left| \left(\begin{array}{c} \frac{1}{2} \\ \vdots \\ \frac{1}{2} \\ 1 \end{array} \right) \right| \right|$$

So
$$S(E) \ge \left| \left| \begin{pmatrix} \frac{1}{2} & \dots & \frac{1}{2} & 1 \end{pmatrix}^{\top} \right| \right|$$
.

Note that this gives us the aforementioned lower bounds:

$$\begin{array}{l} S(\ell_1^d) \geq \frac{1}{2}(d+1) \\ S(\ell_2^d) \geq \frac{1}{2}\sqrt{d+3} \end{array}$$

Unfortunetely, as $p \to \infty$, this lower bound tends to 1, which isn't that helpful. In the next section we will prove a theorem that gives stronger results for large values of p (but only works in 2 dimensions).

3.2 Lower bound for $S(\ell_p^2)$ for large p

This theorem is similar to Theorem 1 in 2 dimensions, but the vectors are rotated by 45 degrees. This gives a better lower bound for p > 2. In particular, it gives $S(\ell_{\infty}^2) \ge \frac{3}{2}$, which is the best possible, as we will prove in Theorem ??.

Theorem 2.
$$S(\ell_p^2) \ge \sqrt[p]{\frac{1}{2}} \sqrt[p]{(\frac{1}{2})^p + (\frac{3}{2})^p}$$

Proof. If p = 1 the case is trivial. If p > 1, let $z = \sqrt[p]{\frac{1}{2}}$ and assume $S(\ell_p^2) < \sqrt[p]{\frac{1}{2}} \sqrt[p]{(\frac{1}{2})^p + (\frac{3}{2})^p} = z \sqrt[p]{(\frac{1}{2})^p + (\frac{3}{2})^p}$.

Let $k \in \mathbb{N}$ be arbitrary. (Later on we let $k \to \infty$)

Let C_k be a collection of vectors consisting of 2k copies of $a = \begin{pmatrix} -z \\ (1 - \frac{1}{2k})z \end{pmatrix}$, 2k copies of $b = \begin{pmatrix} (1 - \frac{1}{2k})z \\ -z \end{pmatrix}$ and one vector $e = \begin{pmatrix} z \\ z \end{pmatrix}$.

Notice that $\sum_{x \in C_k} x = 0$ and $||x|| \le 1 \quad \forall x \in C_k$, so a permutation σ of $\{1, \ldots, 4k+1\}$ exists, satisfying $||\sum_{i=1}^{j} x_{\sigma(i)}|| \le S(E)$ for $j = 1, \ldots, 4k+1$.

We'll prove by induction that the first 2k elements of $\{x_{\sigma(i)}\}$ are k pairs (a,b) or (b,a).

Base case: for the first 0 elements this is trivially true.

Inductive step: if the first 2j $(0 \le j \le k-1)$ elements of $\{x_{\sigma(i)}\}$ are j pairs (a,b) or (b,a), then the next two elements are also a pair (a,b) or (b,a). Proof:

There are 8 possible cases:

• $(x_{\sigma(2j+1)}, x_{\sigma(2j+2)}) = (e, a)$. In this case

$$\left\| \sum_{i=1}^{2j+2} x_{\sigma(i)} \right\| = \left\| j \cdot (a+b) + e + a \right\|$$

$$= \left\| \left(\frac{-\frac{j}{2k}z}{(2 - \frac{j+1}{2k})z} \right) \right\|$$

$$= z \sqrt[p]{\left(\frac{j}{2k} \right)^p + \left(2 - \frac{j+1}{2k} \right)^p}$$

$$> S(E) \text{ for } k \text{ sufficiently large}$$

Contradiction.

- $(x_{\sigma(2j+1)}, x_{\sigma(2j+2)}) = (e, b)$. This is similar to (e, a).
- $(x_{\sigma(2j+1)}, x_{\sigma(2j+2)}) = (a, e)$. This is similar to (e, a).
- $(x_{\sigma(2j+1)}, x_{\sigma(2j+2)}) = (b, e)$. This is similar to (a, e).
- $(x_{\sigma(2j+1)}, x_{\sigma(2j+2)}) = (a, a)$. In this case

$$\left\| \sum_{i=1}^{2j+2} x_{\sigma(i)} \right\| = \left\| j \cdot (a+b) + a + a \right\|$$

$$= \left\| \left(\frac{-(2+\frac{j}{2k})z}{(2-\frac{j+2}{2k})z} \right) \right\|$$

$$> \left\| \left(\frac{2z}{0} \right) \right\| > S(E)$$

Contradiction.

- $(x_{\sigma(2j+1)}, x_{\sigma(2j+2)}) = (b, b)$. This is similar to (a, a).
- $(x_{\sigma(2j+1)}, x_{\sigma(2j+2)}) = (a, b)$. This is possible.
- $(x_{\sigma(2j+1)}, x_{\sigma(2j+2)}) = (b, a)$. This is possible.

So the only possible options for $(\sigma_{2j+1}, \sigma_{2j+2})$ are (a, b) and (b, a). This concludes the proof by induction.

Now we know the first 2k elements of $\{x_{\sigma(i)}\}$, let's evaluate $||\sum_{i=1}^{2k-1} x_{\sigma(i)}||$. (By symmetry we can assume $x_{\sigma(2k-1)} = a$)

$$\left| \left| \sum_{i=1}^{2k-1} x_{\sigma(i)} \right| \right| = \left| \left| k \cdot (a+b) - a \right| \right|$$
$$= z \left| \left| \left(-\left(\frac{3}{2} - \frac{1}{2k}\right) \right) \right| \right|$$
$$> S(E)$$

for k sufficiently large

So $||\sum_{i=1}^{2k-1} x_{\sigma(i)}|| > S(E)$, but σ satisfied $||\sum_{i=1}^{j} x_{\sigma(i)}|| \le S(E)$ for $j = 1, \dots, 4k+1$. This gives a contradiction, so our assumption that $S(E) < z \sqrt[p]{(\frac{1}{2})^p + (\frac{3}{2})^p}$ must be false.

Conclusion:
$$S(\ell_p^2) \ge \sqrt[p]{\frac{1}{2}} \sqrt[p]{(\frac{1}{2})^p + (\frac{3}{2})^p}$$

3.3 Lower bound using Hadamard matrices

This theorem is based on a remark about $S(\ell_{\infty}^d)$ by Bárány[2]. This is a more complete proof and works for $S(\ell_p^d)$ where p > 2.

Theorem 3.
$$S(\ell_p^d) \ge \frac{d+1}{2\sqrt{d}}$$
 if $p \ge 2$ and a $d+1 \times d+1$ Hadamard matrix exists $(d \ge 3 \text{ odd})$.

This proof uses Hadamard matrices. A Hadamard matrix is a square matrix whose entries are ± 1 and whose columns are pairwise orthogonal. A $2^k \times 2^k$ Hadamard matrix can be created

using the following procedure:

$$H_1 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$H_{n+1} = \begin{bmatrix} H_n & H_n \\ H_n & -H_n \end{bmatrix}$$

It is conjectured that a $4k \times 4k$ Hadamard matrix exists for every positive integer k.

Proof. Let H be a $d+1 \times d+1$ Hadamard matrix and let h_1, \ldots, h_{d+1} denote the column vectors of H. Note that since $||h_i||_2 = \sqrt{d+1}$ and each pair h_i, h_j is orthogonal, the squared Euclidean norm of the sum of k vectors h_i is k(d+1).

We may assume that H has a row, say j, of which all entries are 1. Let $v_i \in \mathbb{R}$ be h_i with it's j'th coordinate removed. Note that $\sum v_i = 0$ and the squared Euclidean norm of the sum of k vectors v_i is $k(d+1) - k^2 = k(d+1-k)$.

Let $u_i \in \mathbb{R}^d$ be $d^{-\frac{1}{p}}v_i$. Note that $\sum u_i = 0$, $||u_i||_p = d^{-\frac{1}{p}}||v_i||_p = 1$ and the squared Euclidean norm of the sum of k vectors u_i is $d^{-\frac{2}{p}}k(d+1-k)$.

Let v be the sum of $\frac{1}{2}(d+1)$ vectors u_i . Note that $||v||_2^2 = d^{-\frac{2}{p}} \frac{1}{2}(d+1)(d+1-\frac{1}{2}(d+1)) = \frac{1}{4}d^{-\frac{2}{p}}(d+1)^2$.

Hölders inequality states that if $\frac{1}{q} + \frac{1}{q'} = 1$:

$$||a||_q \cdot ||b||_{q'} \ge \sum |a(i)b(i)|$$

We can use that with $a(i) = v(i)^2$, b(i) = 1, $q = \frac{1}{2}p$ and $\frac{1}{q'} = 1 - \frac{2}{p}$ to obtain

$$||v^2||_{\frac{1}{2}p} \cdot d^{1-\frac{2}{p}} \ge \sum v(i)^2$$

We know that $\sum v(i)^2 = ||v||_2^2 = \frac{1}{4}d^{-\frac{2}{p}}(d+1)^2$, so:

$$||v^{2}||_{\frac{1}{2}p} \cdot d^{1-\frac{2}{p}} \ge \frac{1}{4}d^{-\frac{2}{p}}(d+1)^{2}$$
$$||v^{2}||_{\frac{1}{2}p} \ge \frac{1}{4}d^{-1}(d+1)^{2}$$

Furthermore, since $||v^2||_{\frac{1}{2}p} = ||v||_p^2$:

$$||v||_p^2 \ge d^{-1}\frac{1}{4}(d+1)^2$$

 $||v||_p \ge \frac{d+1}{2\sqrt{d}}$

So $S(\ell_p^d) \ge \frac{d+1}{2\sqrt{d}}$. Note that this lower bound does not depend on the specific value of p, it only requires $p \ge 2$.

This proof only works if a $d+1 \times d+1$ Hadamard matrix exists. However, for every d we can find an integer k such that $2^k \le d \le 2^{k+1}$ and we know a $2^k \times 2^k$ Hadamard exists for every positive integer k. Since $S(\ell_p^{2^k}) \le S(\ell_p^d) \le S(\ell_p^{2^{k+1}})$ we can use this result to obtain information for every value of d.

For p = 2 this theorem gives no new information, since Theorem 1 gives a better result, but for p > 2 (and sufficiently large values of d) this is a better result.

Upper bound using balanced sets 3.4

This theorem is a more extensive proof of a proof by Banaszczyk[1]. We will show for any d-dimensional real normed space E the inequality:

$$S(E) \le d - 1 + \frac{1}{d}$$

Definitions

B is the closed ball in E with centre at zero and radius $\frac{1}{d}$.

 $\{u_1,\ldots,u_n\}\subseteq E\ (n\geq 2)$ is called balanced if some $t_1,\ldots,t_n\in[0,1]$ exist such that $\sum t_i=0$ n-d+1 and $\sum t_i u_i \in B$.

 $\langle u_i \rangle_{i=1}^n$ denotes the polytope with vertices at u_1, \ldots, u_n

Lemma 4. Let $w_1, \ldots, w_{d+1} \in E$ with $||w_i|| \leq 1$. Let $T = \langle w_i \rangle_{i=1}^{d+1}$. If a + B meets T for some $a \in E$ then there exists some index k such that a + B meets $\langle w_i \rangle_{i \neq k}$.

Proof

If a lies outside of T or on a face of T it is trivial that a + B meets some face of T if it meets any point in T, so we may assume that a is an interior point of T.

We may also assume without loss of generality that 0 is an interior point of T.

So some $t_1 ldots, t_{d+1} leq [0,1]$ exist such that $\sum t_i = 1$ and $\sum t_i w_i = a$. Furthermore some $s_1 ldots, s_{d+1} leq [0,1]$ exist such that $\sum s_i = 1$ and $\sum s_i w_i = 0$.

From the equality $\sum_{i=1}^{d+1} (dt_i + s_i) = d+1$ it follows that $dt_i + s_i \le 1$ for some i, say for i = 1.

If $s_1 = 1$ then $w_1 = 0$, so a + B would meet $\langle w_i \rangle_{i \neq 1}$.

If $s_1 < 1$, let $r = \frac{t_1}{1-s_1}$, then $r \le \frac{1}{d}$. Let $x = a - rw_1$. Notice that $x \in a + B$.

We will now show that $x \in \langle w_i \rangle_{i=2}^{d+1}$:

$$x = a - rw_1 = a - t_1 w_1 + \left(t_1 - \frac{t_1}{1 - s_1}\right) w_1$$

$$= \sum_{i=2}^{d+1} t_i w_i + \frac{-s_1 t_1}{1 - s_1} w_1$$

$$= \sum_{i=2}^{d+1} t_i w_i + \frac{t_1}{1 - s_1} \sum_{i=2}^{d+1} s_i w_i$$

$$= \sum_{i=2}^{d+1} (t_i + rs_i) w_i$$

Note furthermore that $\sum_{i=2}^{d+1} (t_i + rs_i) = \sum_{i=2}^{d+1} t_i + r \sum_{i=2}^{d+1} s_i = \sum_{i=2}^{d+1} t_i + r(1-s_1) = \sum_{i=2}^{d+1} t_i + t_1 = 1$ and that $t_i + rs_i \ge 0$, since $t_i, r, s_i \ge 0$. So a + B meets $\langle w_i \rangle_{i \neq 1}$ in x.

Lemma 5. If $\{u_1, \ldots, u_n\} \subseteq E$ $(n \ge d+1)$ is balanced and $||u_i|| \le 1$ for all i, then there exists an index h such that $\{u_i\}_{i\neq h}$ is balanced.

Proof. $\{u_1,\ldots,u_n\}$ is balanced, so some $t_1,\ldots,t_n\in[0,1]$ exist such that $\sum t_i=n-d+1$ and

$$\sum_{i=1}^{n} t_i u_i \in B$$

Let $A: \mathbb{R}^n \to E$ be the linear operator $x \mapsto \sum_{i=1}^n x(i)u_i$.

Let $W \subseteq \mathbb{R}^n$ be the convex polyhedron given by $\{x \in [0,1]^n : \sum_{i=1}^n x(i) = n-d\}$.

If we can find an element $x \in W$ for which $A(x) \in B$ and x(h) = 0 for some h, then we can show that $\{u_i\}_{i\neq h}$ is balanced.

Let $v \in \mathbb{R}^n$ be the vector given by $v(i) = \frac{n-d}{n-d+1}t_i$. Note that $A(v) \in B$.

Let W' be the convex polytope given by $\{x \in W : A(x) = A(v)\}.$

Since W' is convex and nonempty we can choose a vertex w of W'.

Such a vertex is given by at least n equalities. Since w has to satisfy $\sum_{i=1}^{n} w(i) = n - d$ (which is 1 equality) and A(w) = A(v) (which are d equalities) at least n - d - 1 of the constraints $w(i) \in [0,1]$ must be equalities.

If for any one h of those n-d-1 coordinates w(h)=0 then $\{u_i\}_{i\neq h}$ is balanced: let $t_i=w(i)$,

then $t_i \in [0,1], \sum_{i \neq h} t_i = n-2$ and $\sum_{i \neq h} t_i u_i = A(w) \in B$. So we may assume that w(i) = 1 for $i \geq d+2$, so $w = (w(1), \dots, w(d+1), 1, 1, \dots 1)$.

Since
$$\sum_{i=1}^{n} w(i) = n - d$$
 we know that $\sum_{i=1}^{d+1} w(i) = (n - d) - (n - d - 1) = 1$.

Let
$$y_1 = \sum_{i=1}^{d+1} w(i)u_i$$
 and $y_2 = \sum_{i=d+2}^{n} u_i$. Note that $y_1 + y_2 = A(w) \in B$.

Let $T = \langle u_i \rangle_{i=1}^{d+1}$. Note that $y_1 \in T$.

Since $y_1 + y_2 \in B$, this means that $-y_2 + B$ meets T. Lemma 4 then gives us that $-y_2 + B$ meets $\langle u_i \rangle_{i \neq k}$ in some point x for some index k, say k = 1.

So $x = \sum_{i=2}^{d+1} p_i u_i$ for some $p_2, \dots, p_{d+1} \in [0, 1]$ with $\sum_{i=2}^{d+1} p_i = 1$. Now let $z = (0, p_2, \dots, p_{d+1}, 1, 1, \dots, 1) \in \mathbb{R}^n$. Note that $z \in W$ and $A(z) = x + y_2 \in B$.

Now let $t_i = z(i)$ for $i = 2, \ldots, n$.

$$\sum_{i=2}^{n} t_i = (n-d-1) + 1 = (n-1) - d + 1$$

$$\sum_{i=2}^{n} t_i u_i = A(z) \in B$$

So $\{u_i\}_{i\neq 1}$ is balanced, which concludes the proof.

Lemma 6. If $\{u_1, ..., u_n\}$ is balanced and $||u_i|| \le 1$ then $||\sum_{i=1}^n u_i|| \le d - 1 + \frac{1}{d}$.

Proof. By the definition of balanced, some $t_1, \ldots, t_n \in [0,1]$ exist such that $\sum_{i=1}^n t_i = n-d+1$ and

$$\left\| \sum_{i=1}^{n} t_i u_i \right\| \le \frac{1}{d}$$

Let $s_i = 1 - t_1$. Then $\sum_{i=1}^n s_i = d - 1$ and therefore

$$\left| \left| \sum_{i=1}^{n} u_i \right| \right| \le \left| \left| \sum_{i=1}^{n} s_i u_i \right| + \left| \left| \sum_{i=1}^{n} t_i u_i \right| \right| \le d - 1 + \frac{1}{d}$$

Theorem 7. $S(E) \leq d - 1 + \frac{1}{d}$

Proof. Take any collection $\{u_1, \ldots, u_n\}$ with $||u_i|| \le 1$ and $\sum_{i=1}^n u_i = 0$.

Note that $\{u_1, \ldots, u_n\}$ is balanced. (Choose $t_i = 1 - \frac{d-1}{n}$.)

By applying Lemma 5, we construct by induction a permutation p of $\{1,\ldots,n\}$ such that $\{u_{p(i)}\}_{i=1}^k$ is balanced for $k = d, \dots, n-1$.

Lemma 6 now gives us that $\left| \left| \sum_{i=1}^k u_{p(i)} \right| \right| \le d-1 + \frac{1}{d}$ for $k = d, \ldots, n$.

For k < d we also know that

$$\left\| \sum_{i=1}^{k} u_{p(i)} \right\| \le k < d - 1 + \frac{1}{d}$$

So
$$S(E) \le d - 1 + \frac{1}{d}$$

For d=2 this gives $S(E)\leq \frac{3}{2}$, which is the best possible, since both $S(\ell_1^2)\geq \frac{3}{2}$ and $S(\ell_\infty^2)\geq \frac{3}{2}$

3.5Weaker upper bound with Matlab algorithm

This is a weaker result than Theorem 7. It was first proven by Grinberg and Sevast'yanov[4]. However, since this proof gives a constructive way to find a permutation σ that satisfies $||\sum_{i=1}^k u_{\sigma(i)}|| \le$ d, I have created a Matlab program that finds such a permutation.

Theorem 8. $S(E) \leq d$

Proof. Let $A_n = \{1, \dots n\}$ and $\lambda_n(i) = \frac{n-d}{n} \ (i \in A_n)$. We create by induction a chain of sets $A_n \supset A_{n-1} \supset \dots \supset A_d$ and corresponding numbers λ_k^i $(k = d, ..., n; i \in A_k)$, with the following properties for all k = d, ..., n:

$$\#A_k = k$$

$$0 \le \lambda_k(i) \le 1 \qquad i \in A_k$$

$$\sum_{i \in A_k} \lambda_k(i) = k - d$$

$$\sum_{i \in A_k} \lambda_k(i) u_i = 0$$

Induction : $k \to k-1$.

Let A_k and λ_k have the abovementioned properties.

Now consider $K \subseteq \mathbb{R}^k$ the set of all collections $(\mu(i_1), \dots, \mu(i_k))$ with $\{i_1, \dots, i_k\} = A_k$, which have the properties:

$$0 \le \mu(i_k) \le 1 \qquad i_k \in A_k$$
$$\sum_{i_j \in A_k} \mu(i_j) = k - d - 1$$
$$\sum_{i_j \in A_k} \mu(i_j) u(i_j) = 0$$

for l=1:k-d-1

K is convex and nonempty (for example $\{\mu(i_j) = \frac{k-d-1}{k-d}\lambda_k(i_j); i_j \in A_k\} \in K$). Let $(\mu^*(i_1), \dots, \mu^*(i_k))$ be a vertex of K.

Note that K is a polyhedron in \mathbb{R}^k , given by d+1 linear equalities, and 2k linear inequalities $(-\mu(i_j) \leq 0 \text{ and } \mu(i_j) \leq 1 : \{i_1, \ldots, i_k\} = A_k)$.

Since μ^* is a vertex in \mathbb{R}^k it is given by at least k equalities, so $\#\{i_j \in A_k : \mu^*(i_j) = 0 \lor \mu^*(i_j) = 1\} \ge k - (d+1)$.

If all these k-d-1 $\mu^*(i_j)$ are 1 then $\sum_{i_j \in A_k} \mu^*(i_j) > k-d-1$, so at least one of the $\mu^*(i_j)$ is 0.

Fix j such that $\mu^*(i_j) = 0$ and let $A_{k-1} = A_k \setminus \{i_j\}$ and $\lambda_{k-1}(i_j) = \mu^*(i_j)$, $(i_j \in A_{k-1})$. This concludes the induction.

Now we put $\{\sigma(i)\} = A_i \setminus A_{i-1} \ (i = d+1, \ldots, n)$. For $k \leq d$, $\left|\left|\sum_{i=1}^k u_{\sigma(i)}\right|\right| \leq d$ follows trivially from $||u_i|| \leq 1$. For k > d, we have:

$$\left\| \sum_{i=1}^{k} u_{\sigma(i)} \right\| = \left\| \sum_{i \in A_k} u_i \right\|$$

$$= \left\| \sum_{i \in A_k} u_i - \sum_{i \in A_k} \lambda_k^i u_i \right\|$$

$$= \left\| \sum_{i \in A_k} (1 - \lambda_k^i) u_i \right\|$$

$$\leq \sum_{i \in A_k} (1 - \lambda_k^i) = d$$

This proves that $S(E) \leq d$. The following Matlab agorithm finds a permutation such that the partial sums all have norms at most d.

```
%Find a direction r in which to move and how far we can move along it
       N = null(Z);
       r = N(:,1);
       minroom = bitmax;
       for i=1:length(r)
           if (mu(i) > 10^-10 \&\& mu(i) < 1-10^-10)
                if r(i) < 0
                    room = -mu(i)/r(i);
                end
                if r(i) > 0
                    room = (1-mu(i))/r(i);
                end
                if room < minroom</pre>
                    minroom = room;
                    constraining_coordinate = i;
                end
           end
       end
       %Move mu along r
       mu = mu + minroom*r;
       %Make sure we don't move along this coordinate again
       newrow = zeros(1,n);
       newrow(constraining_coordinate) = 1;
       Z = [Z; newrow];
   end
   %Now we are guaranteed mu has one coordinate (approximately) 0. Find
   %which coordinate that is, by first removing all already used
   %coordinates
   mu_new = mu;
   realcoordinates = 1:length(mu);
   if k < n
       sorted_order = sort(order, 'descend');
       for i=1:n-k
           index = sorted_order(i);
           mu_new(index) = [];
           realcoordinates(index) = [];
       end
   end
   [q, zc] = min(mu_new);
   zero_coordinate = realcoordinates(zc);
   %Make sure we don't use the vector we just added to order again
   order(k) = zero_coordinate;
   newrow = zeros(1,n);
   newrow(zero_coordinate) = 1;
   Y = [Y; newrow];
   %Adjust lambda for the next step
   lambda(:,k-1) = mu;
end
%Flip order (in the algorithm we add vectors to the right of order)
order = fliplr(order);
%Add the remaining vectors in order
added = 0;
```

```
for i=1:n
    if any(order==i)==0
        order(n-d+1+added) = i;
        added = added + 1;
    end
end
order
```

An example of the algorithm in ℓ_2^2 . Let

$$\{u_1, \dots, u_8\} = \left\{ \begin{pmatrix} 0.71 \\ 0.48 \end{pmatrix}, \begin{pmatrix} -0.84 \\ 0.13 \end{pmatrix}, \begin{pmatrix} -0.28 \\ -0.89 \end{pmatrix}, \begin{pmatrix} -0.77 \\ -0.63 \end{pmatrix}, \begin{pmatrix} 0.41 \\ 0.23 \end{pmatrix}, \begin{pmatrix} -0.06 \\ -0.41 \end{pmatrix}, \begin{pmatrix} 0.10 \\ 0.78 \end{pmatrix}, \begin{pmatrix} 0.73 \\ 0.31 \end{pmatrix} \right\}$$

which looks like this:

The algorithm finds the following order:

Which does indeed has no partial sums with norms larger than d=2. It is however far from optimal, as the following image shows:

Conclusions

A quick overview of what we now know about $S(\ell_p^d)$:

	p=1	p=2	$p = \infty$
d=2		$S(\ell_2^2) = \frac{1}{2}\sqrt{5}$	$S(\ell_{\infty}^2) = \frac{3}{2}$
d > 2	$\frac{1}{2}(d+1) \le S(\ell_1^d) \le d-1+\frac{1}{d}$	$\frac{1}{2}\sqrt{d+3} \le S(\ell_2^d) \le d-1+\frac{1}{d}$	$\left \frac{d+1}{2\sqrt{d}} \le S(\ell_{\infty}^d) \le d-1 + \frac{1}{d} \right $

A plot of the possible values of $S(\ell_p^2)$ looks like this:

This is all for d finite. An investigation for Steinitz constant in infinite-dimensional spaces can be found in [5], but falls beyond the scope of this project.

Bibliography

- [1] W. Banaszczyk, The Steinitz constant of the plane, Journal für die reine und angewandte Mathematik, 373(1987), 218-220
- [2] I. Bárány, On the power of linear dependencies, Building Bridges, Bolyai Society Mathematical Studies, 19(2008), 31-45
- [3] V. Bergström, Zwei Sätze über ebene Vectorpolygone, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 8(1931), 206-214
- [4] V.S. Grinberg, S.V. Sevast'yanov, Value of the Steinitz constant, Functional Analysis and its Applications, 14(1980), 125-126.
- [5] M.I. Kadets, V.M. Kadets, Series in Banach spaces: conditional and unconditional convergence, Birkhaüser (1997)
- [6] E. Steinitz, Bedingt konvergente Reihen und convexe Systemen, Journal für die reine und angewandte Mathematik, 143(1913), 128-175