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Chapter 1

Introduction

The history of the Steinitz constant begin with Riemann, whose well-known Rearrangement
Theorem was published in 1866. This classic theorem states that any conditionally convergent
sequence can be made to converge to any real number, by choosing a suitable permutation of
the terms. This lead to the question whether we could do something similar with a condition-
ally convergent sequence of d-dimensional vectors: to what can they be made to converge by
choosing a permutation? Steinitz[6] reduced this problem in 1913 to the Steinitz Lemma (see
Chapter 2).
All left to do was to determine the value of S(E) for various d-dimensional real normed spaces
E.
In his article, Steinitz proved a very rough upper bound: S(E) ≤ 2d.
Bergström[3] found in 1930 an upper bound for S(`22) ≤ 1

2

√
5, which would turn out to be exact.

Grinberg and Sevast’yanov[4] improved Steinitz’ result to S(E) ≤ d in 1980 and also mentioned
that S(`d1) ≥ 1

2(d + 1) and S(`d2) ≥ 1
2

√
d+ 3. Seven years later Banaszczyk[1] improved their

upper bound even further to: S(E) ≤ d− 1 + 1
d .

In this paper the known upper and lower bounds for the Steinitz constant, found by Grinberg,
Sevas’yanov, Banaszczyk, and Bárány are examined and more extensive proofs are given for
those — and more general — results. Furthermore a new — optimal — lower bound for the
Steinitz constant of a two dimensional `∞-normed space is given.
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Chapter 2

Definitions and notation

In this paper E is a d-dimensional real normed space. When E is `p-normed, we will denote this
als `dp.
The Steinitz constant of this space is written S(E) and is defined as the smallest real number
for which the following holds:
For any collection of vectors {u1, . . . , un} ⊆ E, satisfying

�

n∑
i=1

ui = 0

� ||ui|| ≤ 1 for all i = 1, . . . , n

a permutation σ of {1, . . . , n} exists, such that:∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

uσ(i)

∣∣∣∣∣
∣∣∣∣∣ ≤ S(E) for k = 1, . . . , n

Futhermore #A will be used to denote the cardinality of some set A and x(i) denotes the i-th
coordinate of a vector x.
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Chapter 3

Theorems

3.1 Lower bound based on Grinberg and Sevast’yanov

This theorem is based on a remark by Grinberg and Sevast’yanov[4]. They state without a
complete proof that the maximum known lower bound for S(E) is 1

2(d + 1) in `d1 and 1
2

√
d+ 3

in `d2. This theorem is slightly more general, but follows the same outline.

Theorem 1. S(`dp) ≥ (1 + (d− 1)(12)p)
1
p =

∣∣∣∣∣∣(12 . . . 1
2 1

)>∣∣∣∣∣∣
Proof. Let k ∈ N arbitrary. Later on we let k →∞.

Let Bk be a collection of vectors consisting of k copies of a =
(
− 1

2k . . . − 1
2k 1− d−1

2k

)>
, k

copies of b =
(
− 1

2k . . . − 1
2k −(1− d−1

2k )
)>

and d− 1 unit vectors e1, . . . , ed−1.
Note that ||x|| ≤ 1 for all x ∈ Bk and

∑
x∈Bk

x = 0.
Let σ be any permutation of {1, . . . , 2k + d− 1}.
Let n be the smallest index such that #{i ≤ n : xσ(i) = a ∨ xσ(i) = b} = k. We may assume
without loss of generality that xσ(n) = a.
This means

∑n
i=1 xσ(i) sums exactly k copies of a or b and possibly some unit vectors.

Let sa = #{i ≤ n : xσ(i) = a} and se = #{i ≤ n : xσ(i) = ej for some j}. Then:

n−1∑
i=1

xσ(i) = (sa − 1)a+ (k − sa)b+ see

=

 1− k − 1

2k︸ ︷︷ ︸
se coordinates

−k − 1

2k︸ ︷︷ ︸
d−se−1 coordinates

(2sa − 1− k)(1− d−1
2k )

>

If we let k →∞ then

n−1∑
i=1

xσ(i) →

 1

2︸︷︷︸
se coordinates

−1

2︸︷︷︸
d−se−1 coordinates

(2sa − 1− k))

>

So ∣∣∣∣∣
∣∣∣∣∣
n−1∑
i=1

xσ(i)

∣∣∣∣∣
∣∣∣∣∣→

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


1
2
...
1
2

(2sa − 1− k)


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ ≥
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


1
2
...
1
2
1


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
11
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So S(E) ≥
∣∣∣∣∣∣(12 . . . 1

2 1
)>∣∣∣∣∣∣.

Note that this gives us the aforementioned lower bounds:
S(`d1) ≥ 1

2(d+ 1)
S(`d2) ≥ 1

2

√
d+ 3

Unfortunetely, as p → ∞, this lower bound tends to 1, which isn’t that helpful. In the next
section we will prove a theorem that gives stronger results for large values of p (but only works
in 2 dimensions).

3.2 Lower bound for S(`2
p) for large p

This theorem is similar to Theorem 1 in 2 dimensions, but the vectors are rotated by 45 degrees.
This gives a better lower bound for p > 2. In particular, it gives S(`2∞) ≥ 3

2 , which is the best
possible, as we will prove in Theorem ??.

Theorem 2. S(`2p) ≥ p

√
1
2

p

√
(12)p + (32)p

Proof. If p = 1 the case is trivial. If p > 1, let z = p

√
1
2 and assume S(`2p) <

p

√
1
2

p

√
(12)p + (32)p =

z p

√
(12)p + (32)p.

Let k ∈ N be arbitrary. (Later on we let k →∞)

Let Ck be a collection of vectors consisting of 2k copies of a =

(
−z

(1− 1
2k )z

)
, 2k copies of

b =

(
(1− 1

2k )z
−z

)
and one vector e =

(
z
z

)
.

Notice that
∑

x∈Ck
x = 0 and ||x|| ≤ 1 ∀x ∈ Ck, so a permutation σ of {1, . . . , 4k + 1} exists,

satisfying ||
∑j

i=1 xσ(i)|| ≤ S(E) for j = 1, . . . , 4k + 1.

We’ll prove by induction that the first 2k elements of {xσ(i)} are k pairs (a, b) or (b, a).
Base case: for the first 0 elements this is trivially true.
Inductive step: if the first 2j (0 ≤ j ≤ k− 1) elements of {xσ(i)} are j pairs (a, b) or (b, a), then
the next two elements are also a pair (a, b) or (b, a).
Proof:
There are 8 possible cases:

� (xσ(2j+1), xσ(2j+2)) = (e, a). In this case∣∣∣∣∣
∣∣∣∣∣
2j+2∑
i=1

xσ(i)

∣∣∣∣∣
∣∣∣∣∣ = ||j · (a+ b) + e+ a||

= ||
(
− j

2kz

(2− j+1
2k )z

)
||

= z p

√(
j

2k

)p
+

(
2− j + 1

2k

)p
> S(E) for k sufficiently large

Contradiction.
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� (xσ(2j+1), xσ(2j+2)) = (e, b). This is similar to (e, a).

� (xσ(2j+1), xσ(2j+2)) = (a, e). This is similar to (e, a).

� (xσ(2j+1), xσ(2j+2)) = (b, e). This is similar to (a, e).

� (xσ(2j+1), xσ(2j+2)) = (a, a). In this case∣∣∣∣∣
∣∣∣∣∣
2j+2∑
i=1

xσ(i)

∣∣∣∣∣
∣∣∣∣∣ = ||j · (a+ b) + a+ a||

=

∣∣∣∣∣∣∣∣(−(2 + j
2k )z

(2− j+2
2k )z

)∣∣∣∣∣∣∣∣
> ||

(
2z
0

)
|| > S(E)

Contradiction.

� (xσ(2j+1), xσ(2j+2)) = (b, b). This is similar to (a, a).

� (xσ(2j+1), xσ(2j+2)) = (a, b). This is possible.

� (xσ(2j+1), xσ(2j+2)) = (b, a). This is possible.

So the only possible options for (σ2j+1, σ2j+2) are (a, b) and (b, a).
This concludes the proof by induction.

Now we know the first 2k elements of {xσ(i)}, let’s evaluate ||
∑2k−1

i=1 xσ(i)||. (By symmetry we
can assume xσ(2k−1) = a)∣∣∣∣∣

∣∣∣∣∣
2k−1∑
i=1

xσ(i)

∣∣∣∣∣
∣∣∣∣∣ = ||k · (a+ b)− a||

= z||
(

1
2

−(32 −
1
2k )

)
||

> S(E) for k sufficiently large

So ||
∑2k−1

i=1 xσ(i)|| > S(E), but σ satisfied ||
∑j

i=1 xσ(i)|| ≤ S(E) for j = 1, . . . , 4k+1. This gives

a contradiction, so our assumption that S(E) < z p

√
(12)p + (32)p must be false.

Conclusion: S(`2p) ≥ p

√
1
2

p

√
(12)p + (32)p

3.3 Lower bound using Hadamard matrices

This theorem is based on a remark about S(`d∞) by Bárány[2]. This is a more complete proof
and works for S(`dp) where p > 2.

Theorem 3. S(`dp) ≥
d+ 1

2
√
d

if p ≥ 2 and a d+ 1× d+ 1 Hadamard matrix exists (d ≥ 3 odd).

This proof uses Hadamard matrices. A Hadamard matrix is a square matrix whose entries are
±1 and whose columns are pairwise orthogonal. A 2k × 2k Hadamard matrix can be created
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using the following procedure:

H1 =

[
1 1
1 −1

]
Hn+1 =

[
Hn Hn

Hn −Hn

]
It is conjectured that a 4k × 4k Hadamard matrix exists for every positive integer k.

Proof. Let H be a d+1×d+1 Hadamard matrix and let h1, . . . , hd+1 denote the column vectors
of H. Note that since ||hi||2 =

√
d+ 1 and each pair hi, hj is orthogonal, the squared Euclidean

norm of the sum of k vectors hi is k(d+ 1).
We may assume that H has a row, say j, of which all entries are 1. Let vi ∈ R be hi with it’s
j’th coordinate removed. Note that

∑
vi = 0 and the squared Euclidean norm of the sum of k

vectors vi is k(d+ 1)− k2 = k(d+ 1− k).

Let ui ∈ Rd be d
− 1

p vi. Note that
∑
ui = 0, ||ui||p = d

− 1
p ||vi||p = 1 and and the squared

Euclidean norm of the sum of k vectors ui is d
− 2

pk(d+ 1− k).

Let v be the sum of 1
2(d + 1) vectors ui. Note that ||v||22 = d

− 2
p 1
2(d + 1)(d + 1 − 1

2(d + 1)) =
1
4d
− 2

p (d+ 1)2.
Hölders inequality states that if 1

q + 1
q′ = 1:

||a||q · ||b||q′ ≥
∑
|a(i)b(i)|

We can use that with a(i) = v(i)2, b(i) = 1, q = 1
2p and 1

q′ = 1− 2
p to obtain

||v2|| 1
2
p · d

1− 2
p ≥

∑
v(i)2

We know that
∑
v(i)2 = ||v||22 = 1

4d
− 2

p (d+ 1)2, so:

||v2|| 1
2
p · d

1− 2
p ≥ 1

4
d
− 2

p (d+ 1)2

||v2|| 1
2
p ≥

1

4
d−1(d+ 1)2

Furthermore, since ||v2|| 1
2
p = ||v||2p:

||v||2p ≥ d−1
1

4
(d+ 1)2

||v||p ≥
d+ 1

2
√
d

So S(`dp) ≥ d+1
2
√
d
. Note that this lower bound does not depend on the specific value of p, it only

requires p ≥ 2.

This proof only works if a d+ 1× d+ 1 Hadamard matrix exists. However, for every d we can
find an integer k such that 2k ≤ d ≤ 2k+1 and we know a 2k × 2k Hadamard exists for every
positive integer k. Since S(`2

k

p ) ≤ S(`dp) ≤ S(`2
k+1

p ) we can use this result to obtain information
for every value of d.

For p = 2 this theorem gives no new information, since Theorem 1 gives a better result, but for
p > 2 (and sufficiently large values of d) this is a better result.
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3.4 Upper bound using balanced sets

This theorem is a more extensive proof of a proof by Banaszczyk[1]. We will show for any
d-dimensional real normed space E the inequality:

S(E) ≤ d− 1 +
1

d

Definitions
B is the closed ball in E with centre at zero and radius 1

d .
{u1, . . . , un} ⊆ E (n ≥ 2) is called balanced if some t1, . . . , tn ∈ [0, 1] exist such that

∑
ti =

n− d+ 1 and
∑
tiui ∈ B.

〈ui〉ni=1 denotes the polytope with vertices at u1, . . . , un

Lemma 4. Let w1, . . . , wd+1 ∈ E with ||wi|| ≤ 1. Let T = 〈wi〉d+1
i=1 . If a+B meets T for some

a ∈ E then there exists some index k such that a+B meets 〈wi〉i 6=k.

Proof
If a lies outside of T or on a face of T it is trivial that a + B meets some face of T if it meets
any point in T , so we may assume that a is an interior point of T .
We may also assume without loss of generality that 0 is an interior point of T .
So some t1 . . . , td+1 ∈ [0, 1] exist such that

∑
ti = 1 and

∑
tiwi = a.

Furthermore some s1 . . . , sd+1 ∈ [0, 1] exist such that
∑
si = 1 and

∑
siwi = 0.

From the equality
d+1∑
i=1

(dti + si) = d+ 1 it follows that dti + si ≤ 1 for some i, say for i = 1.

If s1 = 1 then w1 = 0, so a+B would meet 〈wi〉i 6=1.
If s1 < 1, let r = t1

1−s1 , then r ≤ 1
d . Let x = a− rw1. Notice that x ∈ a+B.

We will now show that x ∈ 〈wi〉d+1
i=2 :

x = a− rw1 = a− t1w1 + (t1 −
t1

1− s1
)w1

=

d+1∑
i=2

tiwi +
−s1t1
1− s1

w1

=
d+1∑
i=2

tiwi +
t1

1− s1

d+1∑
i=2

siwi

=
d+1∑
i=2

(ti + rsi)wi

Note furthermore that
d+1∑
i=2

(ti + rsi) =
d+1∑
i=2

ti + r
d+1∑
i=2

si =
d+1∑
i=2

ti + r(1− s1) =
d+1∑
i=2

ti + t1 = 1 and

that ti + rsi ≥ 0, since ti, r, si ≥ 0.
So a+B meets 〈wi〉i 6=1 in x.

Lemma 5. If {u1, . . . , un} ⊆ E (n ≥ d+ 1) is balanced and ||ui|| ≤ 1 for all i, then there exists
an index h such that {ui}i 6=h is balanced.
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Proof. {u1, . . . , un} is balanced, so some t1, . . . , tn ∈ [0, 1] exist such that
∑
ti = n− d+ 1 and

n∑
i=1

tiui ∈ B

Let A : Rn → E be the linear operator x 7→
∑n

i=1 x(i)ui.
Let W ⊆ Rn be the convex polyhedron given by {x ∈ [0, 1]n :

∑n
i=1 x(i) = n− d}.

If we can find an element x ∈ W for which A(x) ∈ B and x(h) = 0 for some h, then we can
show that {ui}i 6=h is balanced.

Let v ∈ Rn be the vector given by v(i) = n−d
n−d+1 ti. Note that A(v) ∈ B.

Let W ′ be the convex polytope given by {x ∈W : A(x) = A(v)}.
Since W ′ is convex and nonempty we can choose a vertex w of W ′.
Such a vertex is given by at least n equalities. Since w has to satisfy

∑n
i=1w(i) = n− d (which

is 1 equality) and A(w) = A(v) (which are d equalities) at least n − d − 1 of the constraints
w(i) ∈ [0, 1] must be equalities.
If for any one h of those n− d− 1 coordinates w(h) = 0 then {ui}i 6=h is balanced: let ti = w(i),
then ti ∈ [0, 1],

∑
i 6=h ti = n− 2 and

∑
i 6=h tiui = A(w) ∈ B.

So we may assume that w(i) = 1 for i ≥ d+ 2, so w = (w(1), . . . , w(d+ 1), 1, 1, . . . 1).

Since
n∑
i=1

w(i) = n− d we know that
d+1∑
i=1

w(i) = (n− d)− (n− d− 1) = 1.

Let y1 =
d+1∑
i=1

w(i)ui and y2 =
n∑

i=d+2

ui. Note that y1 + y2 = A(w) ∈ B.

Let T = 〈ui〉d+1
i=1 . Note that y1 ∈ T .

Since y1 + y2 ∈ B, this means that −y2 + B meets T . Lemma 4 then gives us that −y2 + B
meets 〈ui〉i 6=k in some point x for some index k, say k = 1.

So x =
∑d+1

i=2 piui for some p2, . . . , pd+1 ∈ [0, 1] with
∑d+1

i=2 pi = 1.
Now let z = (0, p2, . . . , pd+1, 1, 1, . . . , 1) ∈ Rn. Note that z ∈W and A(z) = x+ y2 ∈ B.

Now let ti = z(i) for i = 2, . . . , n.

n∑
i=2

ti = (n− d− 1) + 1 = (n− 1)− d+ 1

n∑
i=2

tiui = A(z) ∈ B

So {ui}i 6=1 is balanced, which concludes the proof.

Lemma 6. If {u1, . . . , un} is balanced and ||ui|| ≤ 1 then ||
∑n

i=1 ui|| ≤ d− 1 + 1
d .

Proof. By the definition of balanced, some t1, . . . , tn ∈ [0, 1] exist such that
∑n

i=1 ti = n− d+ 1
and ∣∣∣∣∣

∣∣∣∣∣
n∑
i=1

tiui

∣∣∣∣∣
∣∣∣∣∣ ≤ 1

d

Let si = 1− t1. Then
∑n

i=1 si = d− 1 and therefore∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

ui

∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

siui

∣∣∣∣∣
∣∣∣∣∣+

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

tiui

∣∣∣∣∣
∣∣∣∣∣ ≤ d− 1 +

1

d
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Theorem 7. S(E) ≤ d− 1 + 1
d

Proof. Take any collection {u1, . . . , un} with ||ui|| ≤ 1 and
n∑
i=1

ui = 0.

Note that {u1, . . . , un} is balanced. (Choose ti = 1− d−1
n .)

By applying Lemma 5, we construct by induction a permutation p of {1, . . . , n} such that
{up(i)}ki=1 is balanced for k = d, . . . , n− 1.

Lemma 6 now gives us that
∣∣∣∣∣∣∑k

i=1 up(i)

∣∣∣∣∣∣ ≤ d− 1 + 1
d for k = d, . . . , n.

For k < d we also know that ∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

up(i)

∣∣∣∣∣
∣∣∣∣∣ ≤ k < d− 1 +

1

d

So S(E) ≤ d− 1 + 1
d

For d = 2 this gives S(E) ≤ 3
2 , which is the best possible, since both S(`21) ≥ 3

2 and S(`2∞) ≥
3
2 .

3.5 Weaker upper bound with Matlab algorithm

This is a weaker result than Theorem 7. It was first proven by Grinberg and Sevast’yanov[4].
However, since this proof gives a constructive way to find a permutation σ that satisfies ||

∑k
i=1 uσ(i)|| ≤

d, I have created a Matlab program that finds such a permutation.

Theorem 8. S(E) ≤ d

Proof. Let An = {1, . . . n} and λn(i) = n−d
n (i ∈ An).

We create by induction a chain of sets An ⊃ An−1 ⊃ · · · ⊃ Ad and corresponding numbers λik
(k = d, . . . , n; i ∈ Ak), with the following properties for all k = d, . . . , n:

#Ak = k

0 ≤ λk(i) ≤ 1 i ∈ Ak∑
i∈Ak

λk(i) = k − d

∑
i∈Ak

λk(i)ui = 0

Induction : k → k − 1.
Let Ak and λk have the abovementioned properties.
Now consider K ⊆ Rk the set of all collections (µ(i1), . . . , µ(ik)) with {i1, . . . , ik} = Ak, which
have the properties:

0 ≤ µ(ik) ≤ 1 ik ∈ Ak∑
ij∈Ak

µ(ij) = k − d− 1

∑
ij∈Ak

µ(ij)u(ij) = 0
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K is convex and nonempty (for example {µ(ij) = k−d−1
k−d λk(ij); ij ∈ Ak} ∈ K).

Let (µ∗(i1), . . . , µ
∗(ik)) be a vertex of K.

Note that K is a polyhedron in Rk, given by d + 1 linear equalities, and 2k linear inequalities
(−µ(ij) ≤ 0 and µ(ij) ≤ 1 : {i1, . . . , ik} = Ak).
Since µ∗ is a vertex in Rk it is given by at least k equalities, so #{ij ∈ Ak : µ∗(ij) = 0∨µ∗(ij) =
1} ≥ k − (d+ 1).
If all these k− d− 1 µ∗(ij) are 1 then

∑
ij∈Ak

µ∗(ij) > k− d− 1, so at least one of the µ∗(ij) is
0.
Fix j such that µ∗(ij) = 0 and let Ak−1 = Ak \ {ij} and λk−1(ij) = µ∗(ij), (ij ∈ Ak−1). This
concludes the induction.

Now we put {σ(i)} = Ai \Ai−1 (i = d+ 1, . . . , n).

For k ≤ d,
∣∣∣∣∣∣∑k

i=1 uσ(i)

∣∣∣∣∣∣ ≤ d follows trivially from ||ui|| ≤ 1.

For k > d, we have: ∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

uσ(i)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈Ak

ui

∣∣∣∣∣∣
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈Ak

ui −
∑
i∈Ak

λikui

∣∣∣∣∣∣
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈Ak

(1− λik)ui

∣∣∣∣∣∣
∣∣∣∣∣∣

≤
∑
i∈Ak

(1− λik) = d

This proves that S(E) ≤ d. The following Matlab agorithm finds a permutation such that the
partial sums all have norms at most d.

clear all;

%Generate a d x n testmatrix X
%The column vectors of X all have norm <= 1 and add up to 0
X = [0.71, −0.84, −0.28, −0.77, 0.41, −0.06, 0.1, 0.73;

0.48, 0.13, −0.89, −0.63, 0.23, −0.41, 0.78, 0.31];
d = size(X,1);
n = size(X,2);

%Generate a starting lambda
lambda(:,n) = ones(n,1)*(n−d)/n;
Y = [X;ones(1,n)]; %Add a row of ones to make sure the sum of lambda doesn't change when we move along null(Y)

for k=n:−1:d+1
%Every iteration we want to remove one vector from A(:,k), adjust lambda accordingly
mu = lambda(:,k)*(k−d−1)/(k−d);

Z = Y;
%Find the vertex of the polyhedron
for l=1:k−d−1
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%Find a direction r in which to move and how far we can move along it
N = null(Z);
r = N(:,1);
minroom = bitmax;
for i=1:length(r)

if (mu(i) > 10ˆ−10 && mu(i) < 1−10ˆ−10)
if r(i)<0

room = −mu(i)/r(i);
end
if r(i) > 0

room = (1−mu(i))/r(i);
end
if room < minroom

minroom = room;
constraining coordinate = i;

end
end

end

%Move mu along r
mu = mu + minroom*r;

%Make sure we don't move along this coordinate again
newrow = zeros(1,n);
newrow(constraining coordinate) = 1;
Z = [Z;newrow];

end

%Now we are guaranteed mu has one coordinate (approximately) 0. Find
%which coordinate that is, by first removing all already used
%coordinates
mu new = mu;
realcoordinates = 1:length(mu);
if k < n

sorted order = sort(order,'descend');
for i=1:n−k

index = sorted order(i);
mu new(index) = [];
realcoordinates(index) = [];

end
end
[q, zc] = min(mu new);
zero coordinate = realcoordinates(zc);

%Make sure we don't use the vector we just added to order again
order(k) = zero coordinate;
newrow = zeros(1,n);
newrow(zero coordinate) = 1;
Y = [Y;newrow];

%Adjust lambda for the next step
lambda(:,k−1) = mu;

end

%Flip order (in the algorithm we add vectors to the right of order)
order = fliplr(order);

%Add the remaining vectors in order
added = 0;
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for i=1:n
if any(order==i)==0

order(n−d+1+added) = i;
added = added + 1;

end
end

order

An example of the algorithm in `22.
Let

{u1, . . . , u8} =

{(
0.71
0.48

)
,

(
−0.84
0.13

)
,

(
−0.28
−0.89

)
,

(
−0.77
−0.63

)
,

(
0.41
0.23

)
,

(
−0.06
−0.41

)
,

(
0.10
0.78

)
,

(
0.73
0.31

)}

which looks like this:

The algorithm finds the following order:
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Which does indeed has no partial sums with norms larger than d = 2. It is however far from
optimal, as the following image shows:



22 CHAPTER 3. THEOREMS



Chapter 4

Conclusions

A quick overview of what we now know about S(`dp):

p = 1 p = 2 p =∞
d = 2 S(`21) = 3

2 S(`22) = 1
2

√
5 S(`2∞) = 3

2

d > 2 1
2(d+ 1) ≤ S(`d1) ≤ d− 1 + 1

d
1
2

√
d+ 3 ≤ S(`d2) ≤ d− 1 + 1

d
d+1
2
√
d
≤ S(`d∞) ≤ d− 1 + 1

d

A plot of the possible values of S(`2p) looks like this:

This is all for d finite. An investigation for Steinitz constant in infinite-dimensional spaces can
be found in [5], but falls beyond the scope of this project.

23
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