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Summary

Multi-agent environment frameworks have been connected to Agent Program-
ming Languages (APLs) before. These connections are created to combine the
computational and graphical power offered by environment frameworks with
the reasoning power of agents in APLs. However, only limited reasearch has
been done to determine how the interface presented to the agents needs to be
structured. This thesis aims to expand the knowledge in this area by providing
guidelines for designing agent-facing interfaces.

The thesis is motivated by the desire to connect GOAL (an APL) to a multi-
agent environment framework. This allows us to make efficient use of the power
of GOAL to represent knowledge, while at the same time useing the environment
modeling capabilities of an existing environment framework. We compare three
environment frameworks and find Repast most suitable for our purposes.

We create the connection between GOAL and Repast using the Environment
Interface Standard (EIS). EIS offers a language, called Interface Immediate Lan-
guage (IIL), which allows two-way communication between the environment and
the APL. Objects written in the IIL contain percepts and actions which agents
use to do their work.

To make implementing EIS more manageable we add our own extension,
called EIS2Java. EIS2Java reduces the overhead of translating between Java
and the IIL. The EIS2Java framework also enables programmers to quickly
make changes to the agent interface, and ensures that the code is maintainable
and portable to other projects. The connection between GOAL and Repast is
used to create two simulation environments, in which we build and evaluate
agent-facing interfaces.

By evaluating the design and implementation of both environments, we con-
struct the following three guidelines for building agent-facing interfaces. First,
create the interface such that agents are able to spend their reasoning cycles on
accomplishing important tasks that are best suited for the explicit knowledge
representation of APLs. Second, introduce unique names for objects and agents,
since APLs have no notion of pointers like most other programming languages.
Finally, keep computationally expensive functionality in the environment, as
APLs are usually less efficient at math-like computations than languages in
which the environment is written.

Finally, we also conclude that EIS2Java is a helpful framework and we aim
for it to be included in the EIS distribution by default.
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Chapter 1

Introduction

Multi-agent systems are systems that consist out of multiple interacting intelli-
gent agents. Agents are written in numerous different programming languages
commonly referred to as Agent Programming Languages (APLs). APLs usually
focus on clearly structuring the reasoning behind decisions that agents make.
For instance, 2APL, 3APL, GOAL and AGENT0 each have their own language
to represent what agents know, how they think and what they do. However,
APLs usually offer no direct way to model complex environments in which these
agents operate. The environments are usually modeled in languages like Java or
C++, where the object-oriented approach, efficient implementation and good
support for graphical user interfaces make these languages perfect candidates to
model environments. Combining an APL with an object-oriented language is a
known problem in the area of multi-agent research, and some solutions already
exist, e.g. EIS [3] and Cartago[27]. The question remains, however, what level
of detail agents should be provided by the interface the environment offers. In
this thesis we seek to answer this question.

This thesis is motivated by the desire to connect GOAL to a multi-purpose
simulation framework, allowing us to make efficient use of the power of GOAL
to represent knowledge, while at the same time using the extensive capabilities
of existing simulation frameworks. This would in turn enable GOAL to be used
more extensively for multi-agent research.

The difficulty of connecting GOAL to a simulation framework does not lie in
the way the connection to the environment is created; this problem has largely
been solved [3]. Rather, we consider the higher-level issue of understanding what
kind of information and capabilities should be presented to an agent, and which
functionalities should stay hidden in the simulation. Therefore the research
question that this thesis tries to answer is:

Which design guidelines provide effective rules for designing inter-
faces that connect simulation environments to agent programming
languages?

The interface referred to in this question is the functionality of the environ-
ment that is exposed to agents written in an APL. These functionalities include
the actions that agents can perform and the sensory data (percepts) that they
receive.
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To answer this question we connect GOAL to a multi-agent framework called
Repast. Within Repast a set of simulation environments is created, based on re-
allife and other environments proposed within the field of multi-agent research.
We develop a connection between these environments to GOAL, which is then
evaluated using the environments just mentioned. This results in design guide-
lines for the interface offered by the environment to participating agents.

Chapter 2 covers the basics by introducing multi-agent systems, GOAL and
several frameworks that can be used to built multi-agent systems. Chapter 3
compares three different multi-agent frameworks and evaluates which one is best
suited to be connected to GOAL. Chapter 4 goes into depth and designs the
connection between the multi-agent framework and GOAL. Part III of the thesis
then describes the implementation of a highway simulation to help construct
guidelines for the agent interface. Part IV presents another environment called
BlocksWorld for Teams, which is also evaluated.

Finally, Chapter 14 concludes with our findings and guidelines, and Chapter
15 lists interesting possibilities for future work.



Chapter 2

Preliminaries

In this thesis we deal extensively with multi-agent systems in general and GOAL
as an agent programming language. This chapter introduce both these topics.
Section 2.1 introduces multi-agent systems and Section 2.2 summarizes several
frameworks for building a multi-agent system. The final section (2.3) introduces
GOAL.

2.1 Multi-Agent System
This section introduces the concept of multi-agent systems. First a definition
for rational agents is given in Section 2.1.1. Then software agents are described
in Section 2.1.2. The classifications of the different types of multi-agent envi-
ronments are given in Section 2.1.3. Finally several architectures for building
software agents are introduced in Section 2.1.4.

2.1.1 Rational Agents
One of the adopted definitions of a rational agent can be found in a book from
Russell [29].

A rational agent is one that acts to achieve the best outcome or,
when there is uncertainty, the best expected outcome.

2.1.2 Software Agents
A multi-agent system is a system that consists of interacting intelligent software
programs called agents. Intelligence in agents can be defined by the capabili-
ties the agents exhibits[39]. Wooldridge [41] suggests that the following three
capabilities are required for an agent to be considered intelligent:

Reactivity Agents are able to perceive their environment and respond to
changes in a timely manner. Depending on the environment in play “a timely
manner” can vary from a few milliseconds for mission-critical decisions to a
number of seconds when playing a game of backgammon.
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Pro-activeness Agents are able to instantiate actions independently, i.e. they
do not merely react to actions made by others. They are able to take control
of the situation and make things happen rather than just waiting for input and
act accordingly. An example of proactive behavior is an agent that offers to
help other agents without being asked to do so.

Social ability Agents are able to interact with other entities, such as other
agents and humans, to meet their goals. Note that this is not only about being
able to communicate, but also about being able to reason and cooperate with
others that might have a different goal than the agent.

In other words the goal of any good agent architecture is to offer a way to create
a reactive, proactive and social agent that act, to achieve the best possible
outcome. The architectures in Section 2.1.4 aim to incorporate these three
capabilities.

2.1.3 Multi Agent Environments
Multi-agent systems have to be able to operate in a range of possible environ-
ments. According to Russell these environments can be categorized along five
different dimensions[29]. We use these five different dimensions for defining our
own environments.

Observable versus partially observable An observable environment is one
in which the agent can acquire correct and complete information about the
state of the world at any time. If it is impossible for the agent to retrieve
the information needed to make a decision at any time, or if the information
might be wrong due to inaccurate sensors, an environment is called partially
observable. In case of partially observable environments an agent usually needs
to maintain an internal representation of the state of the world.

Deterministic versus stochastic In a deterministic environment the next
state of the world is completely defined by the current state and the action taken
by the agent, otherwise it is called a stochastic environment. The definition of a
deterministic environment, as given by Russell [29], ignores the fact that other
agents might be performing actions that change the state of the world. Therefore
a game can be deterministic, even though the actions of the other agents are
unpredictable.

Episodic versus sequential In an episodic environment the life of an agent
can be divided in clear episodes. In each episode the agent receives percepts and
performs a single action. Very important here is that the next episode does not
depend on any of the previous ones. If the life of an agent can not be divided
into episodes the environment is called sequential.

An example of an episodic environment is that of an agent in charge of
a simple entrance gate. Letting the next person in does not depend on the
previous person. Sequential environments are games of chess or backgammon:
in these games previous moves can and usually will have consequences later on.



Static versus dynamic An environment is classified as dynamic when its
state can change while the agent is reasoning, otherwise the environment is
classified as static. In a static environment the agent does not have to worry
about time, to a certain extent, nor does it have to keep observing the world
while deciding upon an action. Building an agent for a static environment is
therefore usually considered easier than building one for a dynamic environment.

A game of backgammon can be considered static since its state does not
change while the agent is thinking about the next move. On the other hand an
agent that is controlling elevators lives in a dynamic world where, the elevator
call button on another floor can be pressed, while the elevator is still processing
where to go next.

Discrete versus continuous Discrete and continuous refer to how time and
percepts are handled in an environment. For instance in backgammon time is
measured in turns and there are a finite number of states in which the game can
be, this makes it a discrete environment. On the other hand, an agent controlling
a production line at a factory deals with a continuous environment, where the
speed of the conveyor belt changes over time in a smooth and continuous way.

2.1.4 Software Agent Architectures
There are numerous different architectures for building a rational software agent.
Most of the popular ones can be found in a survey by Wooldridge [40]. In
this section we discuss two different architectures in some detail. In Section
2.1.4.1 we discuss the BDI architecture on which the APL GOAL, introduced
in Section 2.3, is based. Section 2.1.4.2 details the hybrid agent architecture
which combines reactive and deliberative components.

2.1.4.1 BDI Agent Architecture

BDI stands for Belief-Desire-Intention and originates from the human reasoning
model developed by Bratman [6]. It is used in this context as the basis of a
software architecture for building rational agents as presented by Rao [26]. It
discerns three aspects of the agent’s reasoning.

Beliefs The beliefs stand for the informational state of the agent. They repre-
sent what the agent knows about itself and the environment. Beliefs are usually
stored in a kind of database, commonly referred to as a belief base. The beliefs
stored might not necessarily be true: for instance, they may have become false
over time, or a faulty sensor may have led to wrong conclusions.

Desire The desires of an agent describe what the agent would like to accom-
plish. If an agent is actively trying to accomplish a desire, the active desire is
also referred to as a goal. Goals adopted by the agent must be consistent. An
example is that an agent is not allowed to simultaneously have the goals "go out
to lunch today" and "stay home today" even if the agent desires to accomplish
both of them.



Intention The intention of the agent stands for what the agent has chosen
to do. It means that the agent has committed to executing certain actions to
work towards one of its goals. The sequence of actions that an agent wants to
perform to achieve its intention is referred to as a plan in the literature. Plans
may be nested or partially complete, the latter helps when the environment of
the agent is changing due to external factors.

The BDI architecture is a very open architecture and its exact implementation
is up to the programmer. Implementations range from pure implementations
(usually backed by logical programming languages [14, 17]) or ad-hoc/hybrid
implementations that use the BDI mindset to structure their code [2, 28].

2.1.4.2 Hybrid Architectures

Architectures where time is almost exclusively spent on reasoning about the
model of the world are called deliberative. On the other hand architectures
where barely any time is spent thinking ahead and the agent’s action are a di-
rect response on input are called reactive. Many researchers have suggested that
purely deliberative and reactive architectures cannot be used for building suit-
able agents [40]. The solution they suggest is a hybrid architecture, a marriage
between a reactive and a deliberative architecture.

In such an architecture there is a reactive component that is able to re-
act directly to events in the world, such as imminent danger or other, usually
time-critical, events. The deliberative component is responsible for long-term
behavior or planning to achieve the agent’s goal. This bears great resemblance
to how the human mind works, where the parts that are involved in survival
are located in the front of the brain while those related to planning and reason-
ing are located deeper in the back of the brain. Examples of different hybrid
architectures are those of Ferguson [9] and Georgeff [11].

Hybrid architectures are important because they draw a parallel to the prob-
lem we are trying to solve in this thesis. Most of the code responsible for reactive
behavior in an environment is usually written and called from Java while the
deliberative part of the system is handed over to an APL.

2.2 Multi-Agent Environment Frameworks
This section introduces different frameworks for creating multi-agent systems.
All of these frameworks are different in nature and some of them are investi-
gated further to determine their applicability for creating multi-agent simulation
environments.

2.2.1 MARS
MARS stands for Multi-Agent Real-time Simulator and is a proprietary simu-
lator built by the Dutch Organization for Applied Scientific Research (TNO).
This system is capable of simulating discrete and continuous dynamical systems.
A main component in this simulator has three methods it supports. The first
method is sample, which collects data from the sensors of an agent. The second
method is output which determines the action an agent should take. The third



and final method is step, which updates the state of the agent. MARS supports
linking with other simulators and real-time parameter changes. It has been used
in an intelligent traffic system setup before [23].

2.2.2 JADE
JADE stands for Java Agent DEvelopment Framework and is a platform devel-
oped for interaction between FIPA-compliant agents. A FIPA-compliant agent
has the ability to communicate in FIPA-ACL or Agent Communication Lan-
guage [10]. This language is intended as a common standard for agents built
in different systems such that they can share part of their ontology with each
other, enabling agents to communicate. JADE supports FIPA-compliant agents
and is written in Java. It is mainly used for creating an inter-agent communi-
cations platform rather than a complete simulation. Many agent frameworks
are therefore built on top of JADE, e.g. [4, 24]. A more detailed description on
JADE can be found in [5].

2.2.3 Repast
Repast is an interactive cross-platform Java-based agent modeling and simula-
tion toolkit, designed to support flexible models and dynamic model adjustment.
Repast is open source and free to use. The installer ships with a modified version
of Eclipse, which is the IDE of choice for programming models. The simulation
is based on a concurrent discrete event scheduler, meaning that time is not ex-
actly continuous but is incremented in so called ticks. Methods to be executed
can be scheduled at a certain time and can be repeated at set intervals. The
toolkit has built-in simulation logging and graphing tools, allowing for a range
of ways to export data collected during simulations.

2.2.4 MASON
MASON stands for Multi-Agent Simulator of Networks and is a discrete-event
multi-agent simulation library written in Java. It is open source and free to
use. It is similar to Repast in that it also works on basis of a discrete event
scheduler. It has a strict framework in which agents must be molded. In other
words every agent must implement the so called Steppable interface. Every agent
has a step function which is called with the current state of the simulator. The
toolkit supports discrete and continuous 2D and 3D simulation and display, as
well as a built-in inspector for the agents which allows real-time inspection and
modification of the agent’s parameters.

2.2.5 Brahms
Brahms is “a set of software tools to develop and simulate multi-agent models
of human and machine behavior” [2], developed at NASA’s AMES Research
Center. These tools include a compiler and a virtual machine for the Brahms
Language, in which the models are defined.

One of the most distinguishing characteristics of Brahms is that it is specif-
ically designed to allow the modeling of work practice. Brahms’ creators define
work practice as follows:



The collective performance of contextually situated activities of a
group of people who coordinate, cooperate and collaborate while
performing these activities synchronously or asynchronously, mak-
ing use of knowledge previously gained through experiences in per-
forming similar activities. [32]

One of the key concepts in this definition is activities. Activities form the
smallest unit of execution in a Brahms model, rather than plans such as in
common BDI systems. To make sure models remain workable however, the
right granularity must be obtained when activities are specified. The most
suitable level of detail depends on the nature of the model and lies between the
high level formal process models on one side and the low level cognitive models
on the other. More information and the installers for Brahms can be found at
[2].

2.3 Agent Programming in GOAL
We choose to program our agents in GOAL since it is a language which is
developed at the Delft University of Technology and one with which the author
is familiar. However as we discuss in Chapter 14 we could have chosen any other
language such as 2APL, Jadex or Jason.

GOAL is an agent programming language built specifically for rational agents
[14]. It takes concepts from the Believes-Desires and Intentions (BDI) model [6],
which is a conceptual model developed to for writing intelligent agents. GOAL
stays true to this model by having a mental state that consists of knowledge,
beliefs and goals. GOAL agents receive information about the world in form of
percepts, which an agent can use to for instance create beliefs or update goals.

The GOAL language is implemented on top of the Prolog language. Prolog
is a general purpose logic programming language in which everything is repre-
sented in the form of facts and rules.

The downside of using Prolog is that it adds extra computational load of
the environment. The complexity of programs usually increase by 25-50% when
written in Prolog [33].

GOAL agents are run in environments that are written in Java. These
environments comply with the Environment Interface Standard (EIS), which
is introduced in Section 4.1. Environments are launched and controlled using
GOAL IDE. The GOAL IDE has support for inspecting the belief base of the
agent and other tools that help with debugging.



Part II

Connecting GOAL to
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Chapter 3

Agent Based Modeling &
Simulation Platforms

This chapter investigates three different agent based modeling & simulator plat-
forms. These platforms make it easier to program models and agents that in-
teract with these models. We start by defining agent based modeling in Section
3.1. We then consider platforms that support agent based modeling and sim-
ulation. Since there are many such platforms, each with their own quirks and
limitations, we limit ourselves to three platforms which we have access to, some
form of experience with, and which are known inside our field of research.

The three platforms are MARS, Repast and MASON, all of which are intro-
duced in section 2.2. We compare them in Section 3.2 based on a set of criteria
to conclude which platform is most useful to be connected to GOAL.

3.1 Agent Based Modeling & Simulation
Agent based modeling is a method for studying systems exhibiting two proper-
ties:

1. Firstly the system is composed of interacting rational agents as defined in
Section 2.1.1.

2. The system exhibits emergent properties.

These emergent properties arise from interactions of the agents and cannot be
deduced simply by aggregating the properties of the agents. When the inter-
action of the agents is dependent on the past, and especially when the agents
adapt to past experiences, mathematical analysis is limited in its ability to de-
rive the dynamic consequences. In these cases agent based modeling might be
the only practical method of analysis [35].

3.2 Comparison
The three modeling platforms to be compared all require that most of the work
is done in Java. We specifically choose Java since it is multi-platform, highly
interoperable and because we have experience with its programming paradigms.
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The platforms are compared on six criteria which we introduce first in Section
3.2.1. The actual comparison of the different platforms is done in Section 3.2.2.

3.2.1 Comparison Criteria
This section introduces the six criteria on which the agent based modeling and
simulation platforms will be compared. These criteria have been formulated
based on personal experience.

Modeling Tools Does the platform offer tools for modeling the environment?
In other words what primitives, like basic geometry, are available for the pro-
grammer to model the environment, or does everything have to be modeled from
scratch.

Simulation Tools Does the platform provide tools to support the simulation?
These tools can range from simple controls to start/stop/pause the simulation
to complete visualization frameworks or tools that allow aggregation of data
from the simulation.

Viability How well equipped is the platform to model different environments?
E.g. ranging from a microscopic traffic simulation to an ant farm. To evaluate
this criterion we consider available environments and other research surrounding
the platform to gauge its capability.

Ease of use How easy is the platform to understand? What kind of learning
curve is needed to implement a simple multi-agent scenario? Environments that
are not easy to use might take more time to get implemented, the extra time
investment required might not weigh against the goals of the research.

Documentation Documentation is vital when it comes to choosing a plat-
form to work with since it will save you time if the platform is well documented.
To evaluate documentation investigate the quality of the documentation of the
code and any user guides or tutorials that might be available.

Openness How open is the platform? I.e. is all the source code available,
how many other researchers have openly published their code and is there an
active community around the platform in general that can offer support?

These six criteria are used to evaluate whether a platform has the potential to
be a useful addition for researchers that want to work with GOAL.

3.2.2 Platform Comparison
We base the score of the various platforms on our personal findings, advice from
experts in personal communication and the paper by Railsback et al.[25]. Table
3.1 shows how each of the three platforms scored on the different criteria.

On the first criterion MARS scores lowest, because of its lack of built-in
representations of 2D and 3D environments. Both Repast and MASON do have
such modeling tools available, such as a framework for describing movement in



MARS Repast MASON
Modeling Tools +/− + +
Simulation Tools − ++ +

Viability +/− +/− −
Ease of use +/− + −

Documentation − + +/−
Openness − + +

Table 3.1: Comparison of different modeling & simulation platforms

2D/3D space and a clear way of representing the objects that are present in the
world.

Simulation tooling is not really available in MARS, it only allows starting
and stopping of the simulation and it therefore scores the lowest on this crite-
ria. Both MASON and Repast support visualization, screenshots, videos and
checkpoints. However Repast has built-in support for data collection, export
and graph display, it therefore scores higher than MASON.

MASON is highly suited for discrete environments and networks unlike the
highway environment where continuous coordinates play a big role. It therefore
scores the lowest since it would take serious molding of continuous problems to
make it fit into MASON. MARS and Repast have similar capabilities, however
they both lack examples of serious multi-agent environments.

Of the three platforms Repast is easiest to get started with, the setup time is
minimal and one can jump right into modeling without having to worry about
it costing too much work. MASON and MARS both require several software
packages to be installed separately, making it harder to get started.

Repast scores the highest on documentation, the framework code is highly
documented and there are tutorials available for a range of different use cases.
MASON’s current documentation is not written clearly, the tutorials seem to
lack focus as well.

Repast and MASON both score high on the openness factor since they are
both open source and are actively being used in research papers over the last
years according to a library search. MARS on the other hand is closed source
and has a limited number of known publications, roughly twenty times less than
Repast and MASON over the last two years.

Looking at the summary in table 3.1 we conclude that the best agent based
modeling and simulation platform to connect to GOAL is Repast.



Chapter 4

Connecting Repast and
GOAL

In this chapter we create a connection between GOAL and Repast to facilitate
the use of different Repast environments for research on multi-agent systems.

To achieve this we first introduce the Environment Interface Standard (EIS)
in Section 4.1, this is the standard we use to connect GOAL to Repast.

Section 4.2 introduces a way to enhance the use of EIS in environments
such that the overhead of creating new actions and percepts is significantly
reduced. We conclude in Section 4.3 with the design and implementation of the
connection between GOAL and Repast that makes use of EIS.

4.1 Environment Interface Standard
The Environment Interface Standard (EIS) is a proposed standard for connect-
ing different agent-platforms (2APL, GOAL, Jadex and Jason) and environment
models, created by Behrens et. al. in [3].

EIS assumes that the environment models entities that can be controlled.
These controllable entities are then controlled by agents. Controllable entities
must provide two things. First, they provide capabilities that can change the
state of the environment, so called actions. Second, they provide percepts which
forms the sensory information that is made available to the agent.

It is the job of EIS to offer a way to translate these actions and percepts
coming from the environment into something that can be understood at the
agent-platform level. This is achieved with a language that is used on both
the agent-platform side as well as the side of the environment. This language is
called Interface Immediate Language (IIL) and is the common ground that both
the agent-platform and the environment use to communicate. The IIL models
two basic structures namely Percepts and Actions, which are the two aspects
of controllable entities. Percepts and actions are defined as having a name and
containing an ordered list of Parameters, i.e. the action goTo(1, Fast) is an ac-
tion named goTo with 1 as its first parameter and Fast as its second parameter.
Parameters model primitive data types of the IIL, they define concepts such as
numbers, strings and lists.
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Figure 4.1: The EIS sits between the Agent Platform and the Environment.

Now that the ideas behind EIS have been introduced we take a look at the
actual implementation. EIS is currently implemented in Java and operates at
the level between the environment and the agent programming language (see
also Figure 4.1). We discuss the different components which EIS connects to
and what kind of sofware we use to implement them.

The Agent Platform is defined as the platform on which software entities,
called agents, run. These agents are able to process percepts and initiate actions.
As an agent platform in this thesis we use GOAL, which has been introduced
in Section 2.3.

The Environment is software that contains controllable entities. In this
thesis we use environments that are built on top of Repast.

The Environment Management System (EMS) allows the agent platform to
manage the state of the environment. It offers the functionality to stop, pause
and resume the environment. This component is implemented by us since it
differs for every environment.

The Environment Interface Standard (EIS) is the core component which
allows the agent platform to perceive and act upon the environment. For every
environment the implementation of EIS is slightly different. However some
functionality defined in EIS is the same across different environments. For
this reason the authors of EIS created the abstract Java class EIDefaultImpl,
which contains that common functionality. In Section 4.2 we discuss this default
implementation and how to extend it to make it easier to use with different kinds
of environments. Section 4.3 details how we create the connection between EIS
and Repast. The connection between GOAL and EIS is already implemented
by the authors of GOAL and is not detailed in this thesis [15].

4.2 Simplifying the use of EIS
This section aims to simplify the way Java environments are made compatible
with EIS. In order to qualitatively improve the code on a software engineering
level. This simplification also makes it easier to make small adjustments to the
interface exposed to agents.

The current strategy of implementing EIS for environments, especially when
it comes to generating percepts and actions, is introduced in Section 4.2.1.
Section 4.2.2 explains the downsides of this strategy. A new method for making
environments EIS compatible, called EIS2Java, is introduced and evaluated in



Code Snippet 4.1 Entity in the HelloWorldEnvironment.

public int getPrintedTextAmount () {
return printedTextAmount ;

}

public String getLastPrinted () {
return lastPrinted ;

}

public void printText ( String text) {
System .out. println (text);
lastPrinted = text;
printedTextAmount ++;

}

Section 4.2.3.
To visualize the differences between the old strategy and EIS2Java’s ap-

proach we use an example called the HelloWorldEnvironment. An Entity in
this environment is capable of printing text to the standard output in Java.
The entity is also able to sense how many times it has written something to
the output and what was the last string it wrote. The actions and percepts
available are public methods in the Entity class. A partial implementation of
the entity can be found in Snippet 4.1.

4.2.1 Actions and percepts directly in EIS
In this section we go through Snippet 4.2 which is a simplified version of what
currently needs to be done to support percepts and actions in an environment.
This approach is evaluated in Section 4.2.2.

All of the functions written are part of the Environment Interface and are
therefore present in a single class that also deals with other things like actually
coupling an agent to an entity, see also EIS in Figure 4.1.

To support actions a programmer has to implement two methods, perfor-
mEntityAction and isSupportedByEntity. The latter of these methods checks
whether an entity actually supports the given action. It involves at least a
check on the name of the action and the number of arguments present. The
perform method unwraps the action and tries to translate the arguments into
something that can be understood by the entities. If it is successful in translat-
ing it tries to perform the requested action. In this example the action does not
return a percept, but this is possible, and in that case it means that the return
value would need to be translated into a Parameter so that it can be processed
by the agent platform side of EIS.

Dealing with percepts is similar to actions in some sense: the programmer
needs to implement a method called getAllPerceptsFromEntity in the environ-
ment. As the snippet shows this method has to locate the entity with the given
name and create percepts for each concept that is deemed interesting. This
involves giving values a name and translating them into IIL.



Code Snippet 4.2 Code for actions and percepts directly in EIS.

protected Percept performEntityAction ( String entity ,
Action action )
throws ActException {

Entity e = entityMap . getEntity ( entity );
if( action . getName (). equals (’printText ’)) {

Parameter param = action . getParameters ().get (0);
if (!( param instanceof Identifier )) {

throw new ActException (...)
}
String text = (( Identifier )param). getValue ();
e. printText (text);

} // else if( action . getName (). equals (’
someOtherAction ’)) { ... }

return null;
}

protected boolean isSupportedByEntity ( Action action ,
String entity ) {

if( action . getName (). equals (’printText ’)) {
return action . getParameters .size () == 1;

} // else if( action . getName (). equals (’
someOtherAction ’)) { ... }

return false;
}

protected LinkedList <Percept > getAllPerceptsFromEntity (
String entity ) throws ActException {

LinkedList <Percept > percepts = new LinkedList <Percept >();

Entity e; // Retrieve the entity in some way
int printedTextAmount = e. getPrintedTextAmount ();
percepts .add(new Percept (

" printedText ", new Numeral ( printedTextAmount )));
String lastPrinted = e. getLastPrinted ();
percepts .add(new Percept (

" lastPrintedText ", new Identifier ( lastPrinted )));

return percepts ;
}



4.2.2 Evaluating programming directly in EIS
The previous section explained what needed to happen to implement the en-
vironment side of EIS. While this approach does works for small environments
there are three downsides that become apparent when the environment grows.

First, the implementation of actions and percepts directly in EIS does not
scale nicely with regards to the size of the environment. Imagine having an ex-
tensive environment which usually has a lot more actions and percepts available.
For instance the Unreal Tournament 2004 environment that can be connected
to GOAL has around ten different percepts and ten different actions [15]. If this
would be done using the current approach where the code is put directly into
EIS, this would greatly increase the amount of code present in performEntityAc-
tion and getAllPerceptsFromEntity, up to a point where it is hard to maintain
and test the correctness of the code. Imagine as well having support for differ-
ent types of entities each with their own set of available actions, this has the
potential to make the code even more cluttered.

While actions and percepts for different entities can be delegated to separate
methods and objects, the entire implementation still has the potential to grow
excessively. Such is the case for the Unreal Tournament environment. After
manual inspection of the Unreal codebase over two thousand lines of code are
involved in gathering percepts, executing actions and make translations to and
from the IIL.

A second downside is the duplicated code in the example. While the names
of the actions/percepts can be factored out, it is clear that if for instance the
number of arguments of a function are changed, the code would need to be
changed in at least two different places. This means that the definition of
what an action exactly entails (the name, number of arguments and type of
arguments) is made in two different places. This can lead to programming
errors and is bad for the maintainability of code. This breaks one of the rules of
the Don’t Repeat Yourself (DRY) principles, namely, every piece of knowledge
must have a single, unambiguous, authoritative representation within a system
[18].

Finally there many of manual translations defined between the IIL, especially
the Parameter, and Java objects. Although the example in the previous section
is quite small, you can already see that it is not very convenient to have to
write the same five lines of code over and over again for each environment that
is made just to translate a parameter to a string. These kinds of translations
are not happening in a localized place, meaning that code is duplicated across
projects. This once again increases the maintenance cost of the code and allows
for errors between different versions.

4.2.3 EIS2Java: A framework to assist with EIS-ifying an
environment

Section 4.2.2 shows that the current way of implementing EIS for an environ-
ment has serious drawbacks when it comes to scalability, testability and main-
tainability. For this thesis we have implemented a framework, called EIS2Java,
that reduces these drawbacks and makes it easier to have an environment EIS
compliant. Note that while this report focuses specifically on the connection
between Repast and GOAL, this framework is designed so that it can be used



for any environment that can interface with Java.
The idea behind EIS2Java is to automatize the discovery of actions and per-

cepts that are made available to an agent without imposing additional restric-
tions on the environment itself, as well as ensuring that EIS still is non-intrusive
in the code of the environment. To achieve automated discovery and a low level
of intrusiveness we have opted for an approach that involves annotations. An-
notations are a way of adding meta-information to methods inside Java1, in our
case whether a method is an action or whether it should should be seen as a
producer of percepts.

The AsPercept annotation can be applied to any method which has no ar-
guments and has a return value of any type. For the AsAction annotation there
are no restrictions on the signature of the method.

The values passed into methods annotated with AsAction and the value
returned by those annotated with AsPercept can be any Java object. We do not
leak any IIL objects to the environment, unless the environment itself is defined
using them. This is because EIS2Java automatically handles translation from
Java objects to Parameters and vice versa for common Java primitives and
structures, such as Integers, Strings and Collections.

If an environment wants to use other Java objects, a translator can easily
be written by implementing the right translation interface (see Code Snippet
4.3 and 4.4). These interfaces allows translations of objects to be defined at a
single place and be tested separately from other code.

The automatic discovery of actions and percepts in EIS2Java is based on the
fact that environments in EIS are responsible for registering controllable entities.
Instead of only passing a string identifying the object, the actual object itself is
passed along to the method which exposes entities in EIS. At this stage EIS2Java
uses reflection to find all annotated methods and cache them for later use when
percepts or actions need to be executed. The implementation of the code that
processes the annotations, retrieves percepts and performs actions can be found
in Appendix A.

Code Snippet 4.5 shows what the implementation of the HelloWorldEnviron-
ment looks like with EIS2Java. Note that only three lines of code were added to
the entity. The rest of the code is hidden in the reusable EIS2Java implemen-
tation of the EIS interface and takes care of all the translations and argument
checking.

EIS2Java addresses the concerns posed in Section 4.2.2. It is easy to extend
an environment with new percepts and actions, a single annotation is all that
is needed.

Names of percepts and definitions of actions are found in a single place.
When the signature of an action needs to be changed only the actual Java
method signature would need to be touched, any code in EIS remains un-
changed. Moreover, since all translations happen inside EIS2Java by use of
the Java2Parameter and Parameter2Java interfaces, translations for a single
type are defined in one location and can be modularly reused across multiple
projects.

Finally we estimate that the percept and action related code for the Unreal
Tournament environment mentioned in Section 4.2.2 can be reduced by as much

1More information can be found at http://download.oracle.com/javase/tutorial/java/
javaOO/annotations.html.

http://download.oracle.com/javase/tutorial/java/javaOO/annotations.html
http://download.oracle.com/javase/tutorial/java/javaOO/annotations.html


Code Snippet 4.3 Interface for translating from Java to Parameters.

/**
* Interface for translating Java objects of type T to

a Parameter .
*
* @param <T> The type of the Java object to translate

.
*/

public interface Java2Parameter <T> {
/**

* Translates the object into an array of Parameter .
*
* @param o The object to translate .
* @return The array of Parameter that represents a

translated object .
* @throws TranslationException if the translation

can not be made.
*/

Parameter [] translate (T o) throws
TranslationException ;

/**
* @return The class that is being translated .
*/

Class <? extends T> translatesFrom ();
}



Code Snippet 4.4 Interface for translating from Parameters to Java.

/**
* Interface for translating a Parameter into a Java

object of Type T.
*
* @param <T> The type of the Java object to translate

.
*/

public interface Parameter2Java <T> {
/**

* Translates the Parameter into an object of type T
.

*
* @param <T> The type of object to translate the

parameter to.
* @param parameter The parameter to translate .
* @return The Parameter that represents a

translated object .
* @throws TranslationException if the translation

can not be made.
*/

T translate ( Parameter parameter ) throws
TranslationException ;

/**
* @return The class that is translated to.
*/

Class <T> translatesTo ();
}

Code Snippet 4.5 The entity when EIS2Java is used.

@AsPercept (name = " printedText ")
public int getPrintedTextAmount () {

return printedTextAmount ;
}

@AsPercept (name = " lastPrintedText ")
public String getLastPrinted () {

return lastPrinted ;
}

@AsAction (name = " printText ")
public void printText ( String text) {

System .out. println (text);
lastPrinted = text;
printedTextAmount ++;

}



as 50% if it would use EIS2Java.
More information about how to use EIS2Java can be found in Appendix B.

4.3 The connection between GOAL and Repast
In this section we design the connection between GOAL and Repast. First we
explain how we deal with Repast’s discrete event scheduler when it is combined
with EIS in Section 4.3.1. Section 4.3.2 deals with the problem of getting GOAL
to launch an environment written for Repast.

4.3.1 Dealing with Repast’s discrete event scheduler
EIS makes no assumptions on the scheduling of either the agent platform or
the environment. This presents a challenge because Repast itself is based on a
concurrent discrete event scheduler. We decided to interfere with this setup as
little as possible and leave the responsibility of how to deal with concurrent data
access to the programmer. This means that percepts can be requested at any
time during the simulation and it is the programmer’s job to decide what kind
of consistency is guaranteed for the returned data. Actions are quite similar in
that they may be executed during the time other scheduled methods in the envi-
ronment are being executed. A programmer who wishes to circumvent this can
wrap the execution of the actions from agents in a method that can be queued
with the discrete event scheduler for execution at the earliest convenience.

4.3.2 Launching environments from GOAL
GOAL uses Java programs packaged in JARs to launch environments[16]. The
main-class specified in the JAR’s manifest should implement the EIS; it is in-
stantiated by GOAL using the empty public constructor.

Since Repast is built on the Simphony Application Framework (SAF2), it
has a peculiar way of loading classes during runtime. The classes that need to
be loaded are defined in XML files. This loading mechanism does not allow
any Repast classes except those in the runtime package to be available on the
classpath at start up. This makes creating a single JAR containing both Repast
and the actual environment a near impossible task and it would require a lot
of manual effort when new versions of Repast would be released. We therefore
opted for an approach in which the user is required to install Repast separately.

With Repast installed separately there are two ways of enabling the support
of EIS. First we could run Repast in another VM and use Remote Method
Invocation (RMI) to remotely connect to GOAL through the EIS framework it
exposes or we could run Repast in the same VM as GOAL.

Early investigation showed that using RMI is sub-optimal since EIS does
not directly support the separation of concerns that is needed to make this
work. For instance, environment management and agent management are all
cluttered into a single class, which makes it difficult to setup an RMI version
of EIS without having to write a complicated layer in-between. RMI should
however be the eventual goal since it makes it easier to deal with the complicated
loading mechanism of Repast. This can by accomplished by re-writing the

2http://old.nabble.com/saf-source-code-td19221478.html

http://old.nabble.com/saf-source-code-td19221478.html


current interface into a more modular structure where the only information
traveling between the APL and environment are actions, percepts and simple
management code.

Because of the complicated loading framework we need to call the main
method of the Repast framework in the implementation of EIS to start the
environment. To accomplish this, GOAL needs to have the Repast runtime
on its classpath. More information on how to create an Repast environment
that works with GOAL is given in Appendix C. We allow the initialization
parameters of EIS to contain the location of the Repast scenario that should be
loaded on start-up. The user can also manually load a scenario in Repast by
using the menu in the Repast interface. For action and percept definitions we
use the EIS2Java framework that is defined in Section 4.2.

The environment management component is implemented by subscribing the
Repast environment to changes in its own state. These state changes are then
communicated to EIS, where they are handled appropriately.

4.4 Conclusion
In this chapter we built a connection between GOAL and environments writ-
ten in Repast. While doing so we constructed a framework to make it easier
to create environments that are compatible with EIS, even if those environ-
ments are not written in Repast. We call this framework EIS2Java and it uses
advanced concepts of Java such as reflection and annotations to do its work.
The connection between Repast and GOAL does not impose any restrictions on
the functionality of Repast. This means that the data analysis tools and other
functionality of Repast can be unchanged while GOAL controls the entities.

Now it is time that we put the connection between GOAL and Repast in
use to construct guidelines on creating agent-facing interfaces. We do this by
implementing two different environments in Repast, they can be found in Parts
III and IV of this thesis.



Part III

Highway Simulation
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Chapter 5

Environment

In this chapter the highway environment is detailed. Section 5.1 lays out the
details of the environment. Finally Section 5.2 analyzes the tasks agents need
to be able to perform in the environment.

5.1 The highway environment
Section 2.1.3 showed that the environments of multi-agent systems can be clas-
sified amongst five dimensions. In this section we describe the environment
according to these five dimensions.

The goal is to build an agent that can drive successfully from point A to
point B. Since this is a very broad objective, we restrict ourselves to a simple
environment: a highway. The highway is one-way and has at least two lanes.
The agent is situated in a vehicle in which it can perform certain actions, namely
steering and application of the throttle and brakes. The vehicle is equipped with
sensors allowing it to sense the position of other cars surrounding the vehicle.
Communication equipment is also present so that communication can take place
between other vehicles and road-side units.

The classification of the environment, according to the five dimensions in
Section 2.1.3, is as follows. First, the environment can be classified as partially
observable, since the agent is not able to obtain information about the current
state of the entire road network at any time. Nor can the agent detect what
other automated vehicles are thinking.

Second, the environment can be considered stochastic, since it is hard to
predict the behavior of traffic. For example, tires may blow out at any time or
other mechanical failures might occur.

Third, driving is clearly a sequential task, where one action may have future
consequences. Short term actions such as a lane change may result in more lane
changes in the future.

Fourth, an agent controlling a car is situated in a dynamic environment,
since during deliberation the car itself and the other cars keep moving, thereby
changing the state of the world.

Finally, the environment is dynamic, because percepts such as speed and
steering angle are measured on a continuous scale.
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5.2 Task Analysis
In this section a description is given of the different tasks a driver has to ac-
complish, these tasks are used in the next chapters to formulate a design of
the system. Section 5.2.1 introduces measurable concepts of safety on the road.
The first task that is introduced in section 5.2.2 is very basic but common task
which is changing the lanes. Section 5.2.3 discusses merging and Section 5.2.4
discusses overtaking.

5.2.1 Safety
Safety is very important when human lives are at stake. Not only do accidents
cause personal injury but they can also severely damage the economy. It is
estimated that traffic jams hurt the Dutch economy for over one billion Euros
each year[12]. It is estimated that 13% of those traffic jams are related to
accidents. Since this chapter analyzes the high level tasks a driver has to perform
it is good to define some measures that can help us define how safe a situation
is.

The first measurement is called Time-HeadWay (THW ), it defines the time
it takes for the vehicle to cover the distance to the vehicle in front. Formula 5.1
shows how THW is calculated. t2 is the tail of the vehicle in front, h1 is the
head of the vehicle for which THW is being calculated and v1 and v2 are the
speed of the vehicles.

THW1 = t2 − h1

v1
(5.1)

The second measurement is called Time-To-Collision (TTC), it defines the
time it takes for the gap between two cars to close if they keep traveling at their
current speed. Formula 5.2 shows how this is defined.

TTC1 = t2 − h1

v1 − v2
(5.2)

In highway situations humans are usually expected to keep the THW above
two seconds and the TTC larger than five seconds[22].

5.2.2 Changing lanes
A basic task that occurs in highway situations is changing lanes. This lateral
movement is usually performed by gradually steering the car into the other lane
and then straighten it out to stay on the other lane.

Goal The goal of this action is to change the lane the car is currently occupying
lc to ln where lc 6= ln.

Preconditions The car is allowed to drive on lane ln.
Lane ln is considered safe. This can be determined from using the formulas

from section 5.2.1. If the car would only change lateral coordinates to lane ln
the safety conditions should still hold. Also, the back area of the car should be
clear since you don’t want to cut cars off.



Action sequence

1. Indicate to which lane you want to change.

2. Steer in the direction of lane ln.

3. When the car is almost completely in lane ln, the car should steer as to
level out in lane ln.

Abort conditions When during the lane change the safety conditions in lane
ln are violated, the lane change should be aborted and the car should return to
the original lane lc.

5.2.3 Merging
Merging is the act of changing lanes when forced to because the lane you are
currently occupying ends, because it is an entrance ramp or an accident has
occurred. It therefore differs from normal overtaking in that lane x ends soon.

Goal The goal of this action is to change the lane the car is currently occupying
lc to lane ln where lc 6= ln before the vehicle reaches the end of lane lc.

Preconditions The same as in Section 5.2.2.

Action sequence The same as in Section 5.2.2.

Abort conditions When the safety conditions in lane ln are violated the lane
change should be aborted and the car should return to lane lc. The speed of
the car might need to be adjusted since lane lc might end soon.

5.2.4 Overtaking
Overtaking is a task where a faster vehicle passes a slower vehicle that is in front
of him by first switching lanes, then passing the vehicle and finally switching
back to the original lane.

Goal The goal of overtaking is to pass the car in front of you on lane lc while
using lane lo to the left of lane lc to pass that car.

Preconditions The speed of the car in front is lower than the speed you
would like to drive at.

There is a lane lo directly to your left which you are allowed to use.
And any conditions from Section 5.2.2.



Action sequence

1. Execute a lane change as indicated in Section 5.2.2.

2. Increase speed to an amount that allows you to overtake the car.

3. When you have overtaken the car execute a lane change as indicated in
Section 5.2.2 to lane lc. Unless there is another car on lane lc that you
want to overtake during the same task, then perform the second action
again.

Abort conditions The conditions in Section 5.2.2 apply here as well. Also if
the car you want to overtake suddenly decides to speed up and you are unable
to safely/legally overtake it then you should abort and try to change lanes back
to lane lc.



Chapter 6

Conceptual Design

In this section the design of our simulation is conceptually explored. Section
6.1 introduces the separation between the driver and the vehicle. Section 6.2
discusses automating the driver and finally Section 6.3 introduces how human
behavior can be simulated using an automated driver.

6.1 Separating the driver and the vehicle
When a vehicle is moving from one place to another we can in essence distinguish
two separate entities that together accomplish this goal. Namely the physical
vehicle itself which uses the laws of motion to propel itself towards its destina-
tion. And a person, the driver of the vehicle, or in other words the entity that
controls the vehicle’s actuators. The driver is responsible for short-term and
long-term planning. In other words the driver is responsible for deciding when
to overtake or perform other maneuvers and is also responsible for planning the
route to the actual destination.

6.2 Automation of the driver
In the future we would like roads to be used more efficiently and also more safely.
Since computers have proven that they can do certain tasks better than us it
seems to be a good idea to look into vehicles where the driver is being replaced
by a computer program. These automated vehicles would be able to drive safely,
using a set of advanced sensors to gather knowledge about the surrounding area.
Combining this with navigational aids such as GPS the system should be able
to drive long distances with ease. In fact such a system has already been proven
and used to drive over 160.000 miles in total[20].

6.3 Introducing human behavior in automated
drivers

To fully understand the interaction between humans and computers we simulate
a scenario in which human driven and automated vehicles share the road. This
is done by adding personality to the automated vehicle. To accomplish this we
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Figure 6.1: Drawing of the different drivers in the simulation.

further separate what constitutes an automated vehicle and putting part of it
in a component called the Intelligent Vehicle (IV). The IV has the ability to
safely execute driving maneuvers such as changing lane and keeping distance
based on the personality of the driver. The higher level functionalities such as
route planning and initiating lane changes are left to the automated driver or
which in our case is analogous to the human driver.

The IV is connected to an Information Structure (IS) which allows it to
sense the world around it. The information it needs to receive is very minimal:
only direct environment information such as who is around me can be enough to
make the vehicle drive safely. More sensor information can be delivered to the
automated driver so that look ahead can be improved, allowing better/efficient
choices to be made (for instance dynamic routing). Also the human driver has
his or her own sensors (mostly eyes and ears) which can be used to gather more
information to be input into the IV.



Chapter 7

System Architecture

In Chapter 6 we conceptually explored a design for our agents. In this chapter
we take a more practical look at how we can put those concepts to use in an
architecture that should be used for agents in our simulation. We base the archi-
tecture on MASQ which is introduced in Section 7.1. Section 7.2 introduces the
models we use to create intelligent/human behavior in traffic. Finally Section
7.3 explains the architecture in which we build our agents.

7.1 Multi-Agent Systems based on Quadrants
(MASQ)

MASQ helps to give structure to complex environment such as the ones in the
traffic simulation. In this section MASQ is described, a more detailed descrip-
tion can be found in[7, 34].

MASQ is based, as the name might suggest, on a 4-quadrant framework
consisting of two axes. The horizontal axis is one that differentiates between
interior and exterior, which distinguishes between opinions and facts: facts are
things we observe in the environment and the opinion is the mental represen-
tation of such an environment and anything else that deals with interpretation.
The vertical axis distinguishes between the individual and the collective. The
individualistic quadrants deal with single components in the system while the
collective quadrants deal with the relationship between all of these components.

This results in four quadrants that are each mapped to a basic construct to
describe complex systems such as our highway scenario or any other complex
social system as seen in Figure 7.1.

Mind (Interior-Individual) The mind is the component that makes deci-
sions on what the agents wants to do (intentions) but not on what it will do.
The inputs for this component are mostly the percepts received from the envi-
ronment. In our simulation the role of mind is played by a GOAL agent.

Body/Object (Exterior-Individual) An object is a tangible representation
of things in the world. If the object is a physical representation of an agent
with a mind it is also referred to as a body. Objects obey the rules of the
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Figure 7.1: Summary of the four quadrants of MASQ, based on a presentation
from V. Dignum [1].

environment, in our simulation for instance the physics of a vehicle: apply the
brakes and the vehicle gradually slows down. When a mind is connected to a
body it can perform actions in the environment; the body is used as executor
of these actions.

Space (Exterior-Collective) The environment in which bodies are located
are described by spaces. Spaces can be physical but they can also represent
non-physical concepts such as a being used to display the social relationships
between different bodies. In our highway scenario we currently only use one
space to model the physical environment.

Culture (Interior-Collective) An environment is mainly described by ob-
jects and spaces. However the interpretation of these spaces differs per group of
individuals, these kinds of interpretations are referred to as culture. In MASQ
culture is used to represent facts such as dependencies, norms and values. For
instance in our simulation we could have a driver who thinks it is very normal
to drive over the speed limit, while another group of drivers thinks it is very
annoying.

We chose to use MASQ for the highway simulation so that we can give the
environment more structure and to investigate what the added value of MASQ
would be. MASQ is evaluated in Chapter 9.

7.2 Modeling intelligent behavior in traffic
Instead of defining behavioral rules or state machines to simulate the behavior of
traffic, several mathematical models have been developed to mimic the human
driver. Two of them are introduced in this section. Section 7.2.1 describes
a mathematical model for dealing with the longitudinal control of a car and



section 7.2.2 introduces a mathematical model for steering based on two salient
points.

7.2.1 Intelligent/Human Driver Models for longitudinal
control

If we take a step back and take a look at what is behind some of the simulations
out there we find that most of them try to model following behavior using
mathematical models. A summary of a set of popular models is given in [38].
These models all relate to one ability, namely following the car in front.

One of these models that has been built for intelligent vehicles is called the
Intelligent Driver Model (IDM). It has been developed by Treiber[36]. Formula
7.1 defines the longitudinal acceleration of the vehicle as per the IDM.

αidm = a · [1− ( v
v0

)4 − (x
∗

x
)2] (7.1)

x∗ = x0 + vT + v∆v
2
√
ab

(7.2)

In these formulas v is the velocity of the vehicle, α is the acceleration, x is the
distance to the vehicle in front and ∆v is the velocity difference between the two
cars. Formula 7.2 defines x∗ which is the desired distance to the predecessor.

The model contains five parameters which have a sensible definition when it
comes to car following.

• a is the maximum possible acceleration of the vehicle

• b is the maximum comfortable deceleration of the vehicle. This parameter
has to be positive otherwise a negative root occurs in the formula. If the
situation dictates a quick stop the model can suggest a deceleration of the
vehicle which is higher then b.

• v0 is the desired velocity of the driver.

• x0 is the minimum distance, in meters, to the vehicle in front. If the car
in front stops x0 is the distance between the two cars.

• T is the desired time headway in seconds. It defines the time it takes
for the vehicle to cover the distance to the vehicle in front at its current
velocity. Human drivers are suggested to have a headway of at least two
seconds[22]. See also Equation 5.1.

Six years later the Human Driver Model (HDM) was developed, again by Treiber,
as a meta model on top of IDM[37]. The reasoning behind this was that the IDM,
although good for intelligent vehicles, didn’t take into account human factors
such as temporal and spatial anticipation errors and reaction time. Estimation
errors are modeled using a Wiener process[8], which produces pseudo-random
estimations. The reaction time is modeled by taking values not at the current
time, but by taking values at a certain reaction time T0 ago. This is done for
the value of x the distance between the two vehicles, the velocity of the vehicle
v and the difference in velocity between the two vehicles ∆v. If the value at
exactly T0 is not available a linear interpolation is used to estimate it.



7.2.2 Two-Point steering model for lateral control
In 2004 Salvucci et al. introduced a two-point control model for lateral move-
ment, or steering[31]. It was later used to model driver behavior in a cognitive
architecture[30], which makes it a candidate for lateral control in an agent-based
system. The steering model is based on two salient points, i.e. points that tend
to get a lot of attention when it comes to human driving.

The first point is called the near point, it represents how close the vehicle is
to the center of the lane. It is defined as the point in the center of the lane in
front of the center of the car at a set distance of 10m.

The second point is called the far point, it represents the curvature of the
upcoming road and helps the driver to anticipate the actions required to stay
close to the center of the road. The definition of the far point depends on three
different cases:

1. On a straight empty road it is the point in the center of the road up to 2
seconds THW distance from the car.

2. If there is a car nearby that we are following then the center of that car
is used.

3. Otherwise, the tangent point of an upcoming curve (the point on the inside
of the lane).

The near and far points provide overlapping information that allows for ad-
justment to stay in the lane center using the near point and for compensation
at a near-future position using the far point. The model uses formula 7.3 to
determine the adjustment needed to the steering angle ∆ϕ.

∆ϕ = kfar∆θfar + knear∆θnear + kIθnear∆t (7.3)

θnear and θfar are the angles to the two points respectively. Their difference
from the last iteration is denoted by the ∆ symbol. ∆t is the elapsed time
since the last iteration. The formula aims at imposing three constraints. First a
stable far point (∆θfar = 0), secondly a stable near point ∆θnear = 0 and finally
the near point at the center of the lane θnear = 0.

kfar, knear and kI are constants that determine the weight of each component,
these can be dynamically adjusted[30]. Salvucci’s research also showed that for
lane changing behavior that mimics that of a human the constants kfar = 20,
knear = 9 and kI = 6 can be used.

7.3 System Architecture
The goal of our agent is to drive a car in a highway setting. Since both safety and
reaction time are important our architecture should definitely have a reactive
component that keeps the safety conditions in check. However since driving
involves getting from point A to point B it is also important that some higher
form of planning is involved. The most obvious candidate to support these
functionalities comes in the form of a hybrid architecture discussed in Section
2.1.4.2. The role of the reactive component is played by multiple finite state
machines, while the deliberative component is implemented by GOAL.

The agent is layered in the following manner from top to bottom:



Cooperation The cooperation layer is responsible for actions that require
communication with other cars. These are the actions surrounding platooning.
This layer can be implemented in GOAL but is not part of this thesis.

Decision The Decision layer is responsible for the day-to-day decision making
process. These include decisions about actions such as overtaking or merging.
This layer is implemented in GOAL.

Motion The motion layer is responsible for simple actions such as the throttle
and the lane change. The actions are separated in a latitudinal and a longitudi-
nal part. These two parts are implemented in Java in the form of a lateral and
longitudinal controller that follows the models from Section 7.2.

Safety The safety layer is responsible for vehicle safety. It activates when the
safety of the driver is in danger. This layer is implemented in Java together
with the motion layer. This layer however can not be directly controlled by the
agent but is influenced by their profiles.

More information about the implementation of these layers can be found in
Chapter 8.



Chapter 8

Implementation

This chapter details the implementation of the control architecture for the au-
tomated vehicle in a highway situation. The implementation consists out of two
controllers, one for the longitudinal and one for lateral actions. These controllers
are implemented to enable a vehicle to successfully navigate the highway, how-
ever when to initiate switching lanes or when to overtake is decided on a higher
level by the agent, and not by these controllers. Overtaking and merging are
modeled as higher layer processes which uses the power of the longitudinal and
lateral controller. These controllers are based upon work of Habib[21]. First
Section 8.1 introduces the different objects that are simulated. The longitudinal
controller is described in Section 8.2 and the lateral controller is described in
Section 8.3. Section 8.4 then explains the different parameters of the driver
profile. Section 8.5 details the implementation of sensing in the simulation. Fi-
nally Section 8.6 introduces the interface that EIS exposes such that agents can
control the vehicles.

8.1 Physics objects and the road
This section discusses the physical objects and the road surface that has been
implemented in the simulation. Since we are not interested in height differences
the simulation takes place in a two-dimensional plane.

Vehicles Vehicles are implemented as simple objects with a two-dimensional
speed, and have a rectangular bounding box for detection of crashes. For sake
of simplicity crashes immediately halt the vehicles involved. Controlling the
vehicle is done by setting the acceleration for the lateral and longitudinal move-
ment. The acceleration is automatically applied during every timestep in the
simulation.

Road The road is not implemented as a physical object but as a virtual surface
that can determine on which of its lanes a vehicle currently is. The vehicles in
turn use this information to determine whether they are driving properly in
between
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Figure 8.1: State machine for longitudinal control

8.2 Longitudinal Controller
The longitudinal controller is responsible for controlling the speed of the vehicle
according to the model in Section 7.2.1. It can be modeled as a state machine
with three states, see Figure 8.1. An important role is played by the so-called
reference vehicle. This is the vehicle directly in front of us which we use as a
reference point to figure out whether to accelerate or decelerate.

The controller has three different states, namely:

Cruise In this state there is no reference vehicle defined and the vehicle accel-
erates to its desired cruising speed. It changes to the follow state if a reference
vehicle has been acquired. It changes to the off state if a higher level is taking
control over longitudinal actions.

Follow Being in the follow state makes the vehicle adjust the speed of the
vehicle to reach the desired distance to the reference vehicle. The state changes
to cruise if the reference vehicle is lost or to off if a higher level is taking
control over longitudinal actions.

Off The off state means that the longitudinal controller doess not influence
the speed of the vehicle. A system on the higher level is directly controlling the
speed.

Since one of the goals of the simulation is to model different drivers, certain
parameters influence the decisions made by this controller. These parameters
are the cruising speed, following distance, safe time headway and acceleration
profile. The latter influences how a driver uses the acceleration paddles to
change the speed of the vehicle.

8.3 Lateral Controller
The lateral controller is responsible for controlling the steering wheel of the
vehicle according to the steering model in Section 7.2.2. It is responsible for
successfully and safely making the vehicle switch lanes. It consists out of a
state machine with three states, see Figure 8.2.



Figure 8.2: State machine for lateral control

Off In this state the lateral controller tries to stay on the middle of the lane.
When it receives a request for a lane change the state changes to on.

On The lateral controller steers the vehicle in the direction of the lane that is
being changed to. If a safety condition fails, such as a vehicle in front suddenly
starts to break, then the controller changes to the cancel state. If the lane
change is successfully completed the controller changes back to the off state.

Cancel In this state the controller returns the vehicle to a safe lane, which
is very likely the lane it came from. Once it is back on a lane the controller
switches to the off state. This means that if the driver would still like to switch
lanes this has to be indicated again.

Important when performing lateral actions is the so called gap acceptance.
The gap acceptance of a lane determines if the driver believes a lane change is
safely possible. For modeling gap acceptance we use the minimum distance
vehicle distance from the driver profile. A second parameter indicates the kind
of steering profile the driver uses, i.e. aggressive versus calm steering.

8.4 Driver Profile
Because we gave direct control over the throttle and steering to the environment
we need a different way of introducing differences between drivers. To this end
we have implemented a driver profile. The driver profile is fed to the controllers,
which use it to make their adjustments.

The driver profile contains the following variables:

Target Velocity The velocity the vehicle attempts to accelerate to when the
road is clear.

Minimum Vehicle Distance Minimum distance that will be kept to the
vehicle in front.



Target Time Headway This is the targeted outcome of Equation 5.1, it
measures the time it takes for the vehicle to hit the vehicle in front if it would
be standing still.

Maximum follow distance The maximum distance to the vehicle in front.
If the vehicle goes beyond this distance the lateral controller transitions away
from the follow state.

Steering Speed The speed/aggressiveness of steering is determined by the
value of this parameter. The value of this parameter is multiplied by kfar from
the steering model in Section 7.2.2. A value > 1 means faster steering, while
a value that is < 1 is slower than the average human as defined by Salvucci in
[30].

8.5 Sensing
Sensing is implemented by modeling sensors that are separated from the rest of
the vehicle. These sensors push their latest readings to all the components that
have expressed interest in the information.

The sensor data consists out of three types of information, all of which are
measured without any sensor deviation. In future work, sensor deviation can
be added for more realism.

Vehicle information The information that is available about the vehicle is
the current speed, both lateral and longitudinal as well as the position of the
vehicle in the world. The vehicle is also aware about which lanes it is currently
occupying.

Road topology The agent receives information about the topology of the
road, i.e. how many lanes there are and what the speed limit is.

Vehicle neighborhood information The data about the vehicles nearby
that is given to the agent is information about which vehicle is in front and
which vehicle is to the back of the agent on each of the lanes. They’ll know
how fast these vehicles are going and what their relative position is to the agent
itself.

8.6 EIS
In this section the percepts and actions that are made available through EIS
are discussed. Section 8.6.1 lists the percepts and section 8.6.2 lists the actions.

8.6.1 Percept Definitions
Percepts are defined as the input the agent receives at any given moment in
time[29]. Intelligent agents use these percepts to decide which action they are
going to take. These percepts are a one-to-one translation of the sensor data
that the agents receive.



Percept: vehicle(id)

id The identifier of the vehicle.

Description The identifier in this percept belongs to a vehicle. This identifier
can be used to query for specific information in other percepts, such as
velocity and distance.

Percept: position(id, x, y)

id The identifier of the vehicle.

x The x coordinate of the position as a double.

y The y coordinate of the position as a double.

Description This percept describes the position of the rear of the vehicle. In
practice this might be done with road side tracking equipment or GPS.

Percept: velocity(id, v)

id The identifier of the vehicle.

v The longitudinal velocity of the vehicle in m/s as a double.

Description This percept contains the longitudinal velocity of the vehicle in
m/s.

Percept: lateralVelocity(id, v)

id The identifier of the vehicle.

v The lateral velocity of the vehicle in m/s as a double.

Description This percept contains the lateral velocity of the vehicle in m/s.

Percept: lane(id, lane)

id The identifier of the vehicle.

lane The identifier of the lane.

Description This percept indicates the lane on which the vehicle is driving.
This is included because the details of the road’s topology are hidden to
the agent, e.g. the agent does not know how wide a lane is. This percept
may occur more than once for a single vehicle if it is switching between
lanes.

Percept: distance(id, d)

id The identifier of the vehicle.

d Distance to the vehicle in meters.

Description This percept indicates the distance to the other vehicle when they
are projected on a line (i.e. all lanes collapse into one). This is the head
to tail distance between the two vehicles.



Percept: neighbors(lane, front, rear)

lane The identifier of the lane.

front A list with ids of vehicles that are in front, starting with the one that is
closest.

rear A list with ids of vehicles that are in the rear, starting with one that is
closest.

Description This percept contains which vehicles are to the front and rear of
your vehicle for a specific lane.

Percept: numberOfLanes(n)

n The identifier of the lane.

Description This percept contains the number of lanes on the road.

Percept: targetVelocity(v)

v The target velocity of the vehicle in m/s.

Description The speed at which the vehicle would like to drive on the open
road.

Percept: minimumVehicleDistance(d)

d The minimum distance to keep to other vehicles in meters.

Description The minimum distance the vehicle wants to keep from other ve-
hicles in front of it.

Percept: targetTimeHeadway(t)

t The new time head-way in seconds.

Description The time head-way (see Equation 5.1) that the vehicle tries to
keep.

Percept: maximumFollowDistance(d)

d The maximum distance in meters.

Description The the maximum distance at which the vehicle follows the vehi-
cle in front.

Percept: steeringSpeed(x)

x The steering speed relative to the average human. > 1 is faster and < 1 is
slower than the average human.

Description The steering speed or agression of steering relative to that of the
average human. This is used by the lateral controller for steering.



8.6.2 Action definitions
Actions define the way agents can manipulate the state of the environment.
Intelligent agents base the actions they choose on the percepts they receive.
All actions defined for agents that control vehicles influence either the profile
of the driver or the lateral/longitudinal controllers. The speed and steering of
the vehicle are not directly influenced so that agents are protected from most
dangers of driving.

Action: changeToLane(lane)

lane The identifier of the lane to change to.

Description Attempts to change the vehicle’s lane. The action fails if the lane
is not deemed safe enough according to the agent’s own profile parameters.
If the lane is safe enough the lateral controller changes the sidewards
velocity of the vehicle so that it can change lane.

Action: setTargetVelocity(v)

v The target velocity of the vehicle in m/s.

Description Allows the agent to change the speed of the target speed of the ve-
hicle. The vehicle attempts to maintain this speed as long as the situation
is safe according to the profile parameters of the agent.

Action: setMinimumVehicleDistance(d)

d The minimum distance to keep to other vehicles in meters.

Description Changes the minimum distance the agent wants to keep from
other vehicles in front of it.

Action: setTargetTimeHeadway(t)

t The new time headway in seconds.

Description Changes the time head-way (see Equation 5.1) to the time the
agent wants to obey to.

Action: setMaximumFollowDistance(d)

d The maximum distance in meters.

Description Changes the maximum distance at which the agent follows the
vehicle in front. If the vehicle in front goes further away then the agent’s
vehicle accelerates to the target velocity.

Action: setSteeringSpeed(x)

x The steering speed relative to the average human. > 1 is faster and < 1 is
slower than the average human.

Description Sets the steering speed relative to that of the average human.



Chapter 9

Evaluation

In this chapter we evaluate the highway simulation, keeping in mind that the
goal of this thesis is to provide guidelines for interfaces between simulation
environments and multi-agent frameworks. Section 9.1 evaluates MASQ to see
if it adds value for the highway simulation. In Section 9.2 we evaluate the
interface exposed to GOAL agents through EIS.

9.1 MASQ
MASQ is developed to help create a deeper and more complete understanding
of the interaction processes in multi-agent systems [34]. In its current state this
understanding only seems to add value at the conceptual level. When it comes
to putting MASQ into practice its benefits seem to disappear.

First, the use of the MASQ framework for the highway simulation did not
add new functionality to the simulation. The only MASQ feature used is the
unique identifier it assigns to every object, which is very useful for representing
these objects in EIS. However this can also be easily achieved without MASQ.

Second, the abstraction provided by the MASQ quadrants proved to be
redundant when combined with Repast. For instance, the Space quadrant is
already represented in Repast, and wrapping the Repast code in a MASQ Space
does not add essential functionality.

Third, while the separation between Body and Mind in MASQ is conceptu-
ally interesting, most modelers already make this separation when entities are
to be controlled based on some logic, be it in an APL or another language. In
that case a modeler already applies a structure to publish the capabilities of an
entity, mimicking what in MASQ terminology is a Body and letting the logic
play the role of the Mind.

If we compare MASQ to EIS2Java we see that, while MASQ defines a Body
as having capabilities that the Mind can execute, their current implementation
does not expose capabilities to the mind. In that sense MASQ is different from
EIS2Java where the capabilities are explicitly defined and made available to the
agent. In theory MASQ could use the same approach as EIS2Java and use the
annotation approach to automatically expose the capabilities of a body. A mind
would then only be allowed to execute capabilities that are annotated. MASQ
would be doing the same as EIS2Java although their goals are different. MASQ
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tries to structure the environment to create more insight into the interaction
processes of multi-agent systems, while EIS2Java aims to publish the capabilities
of controllable entities for use in multi-agent systems.

To conclude, MASQ has a plausible theoretical foundation, but when us-
ing Repast its current implementation does not offer more than some common
terminology during design. This may be resolved in a future version by imple-
menting the Culture quadrant and tying the Body and Mind closer together by
means of interfaces that really enable the programmer to give Bodies explicit
capabilities.

The advantage of our prototype is that we can now take other environments
that were written using MASQ and couple them to GOAL, such as crisis man-
agement and warehouse logistics [1, 13].

9.2 Environment Interface
Making abstractions to allow an agent to drive a car is not easy. There are
different layers of abstraction one could propose. To take two extremes, one
could have agents calculate the speed of the vehicle by giving them access to
how many times the wheel rotates and what its diameter is, on the other end
they could just get the speed directly from the sensors.

Is the wheel rotations method relevant to the agent when it comes to driving
a vehicle? We think the answer to this question is no, for the same reason why
dials on vehicles give us an approximation of the speed rather then the number
of wheel rotations: namely to reduce the amount of cognitive reasoning required
to drive. Just like humans, agents cannot perform an infinite number of tasks
as the same time. When designing an interface it is therefore important to first
determine what the agent aims to achieve, and then select a simple and effective
representation the information it needs to realize its goal. This helps to reduce
the reasoning power the agent requires. It appears the current interface does
provide an appropriate representation: they are able to drive the vehicle and
complete the tasks stated in Section 5.2.

Using the same line of reasoning we decided not to give the agent direct
control over the speed of the car. Instead we allow the agent to suggest a speed,
which the vehicle then accelerates to, if there is enough room in front of the
vehicle to do so safely. This also goes for steering: the agent simply suggests
that it wants to switch to another lane and the steering is automatically handled
by the controller in the vehicle.

From a software engineering point of view we note an important aspect
when it comes to connecting environments to an APL. Since APLs usually do
not address objects by pointers like OOP languages, it is important that they
are assigned a unique ID. In our case this was handled by MASQ.

In a scalability test where agents drove from one end of the highway to the
other without overtaking, we were able to simulate 150 vehicles when controlled
by GOAL and 200 when they are purely controlled in Java. This can likely be
improved upon by modeling sensors in a more efficient way. The reason why
GOAL is less efficient actually seems to reside with EIS. Every so often the
getAllPercepts method gets called for every entity. This leads to a large amount
of generated percepts, each which has to be handled by GOAL. More research
is required to confirm this is the case and to figure out where optimizations can



be made.



Part IV

Blocks World For Teams
Simulation
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Chapter 10

Blocks World for Teams
Environment

The Blocks World for Teams (BW4T) environment was introduced by Johnson
et al.[19] as a testbed for planning problems in a multi-agent environment. The
idea behind the environment is based on a classical AI problem called Blocks
World, in which the world consists of blocks resting on a table and it is the
agent’s task to rearrange them in stacks in a particular order.

The multi-agent version of Blocks World works slightly different. The agents
are placed in a world consisting of rooms and hallways connecting these rooms.
The rooms contain colored. The goal is for the agents to bring these blocks to a
drop zone in a specific order, based on the colors of the blocks. The agents can
not see what is outside the room they are currently in, nor can they see other
agents, forcing them to communicate about their observations and actions for
optimal team performance.

We can classify the BW4T environment according to the five dimensions
in Section 2.1.3. The environment can be considered partially observable since
robots are not able to observe other robots nor are they able to observe anything
outside of the room they are currently in. The environment is deterministic and
only depends on the actions taken by the agents that are present. This makes
prediction possible in this environment provided the agent has enough infor-
mation. The environment is sequential, since actions can not be divided into
episodes although such an episodic approach can be taken to complete the mis-
sion, i.e. find and transport blocks one at a time. The environment is dynamic
since the state of the environment can be changed while the agent is think-
ing about its next action. Finally the environment is dynamic in nature since
speed, position and location are all measured on a continuous scale representing
a continuous world.
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Chapter 11

Specification

This chapter specifies the different types of objects that needed to be imple-
mented to simulate the BW4T environment in Repast.

Blocks Blocks are objects that can be in two states. Either they are held by
a robot or they are placed somewhere in the world. Apart from this state the
other property that a block has is color. The color is important since blocks
need to be delivered in a certain colored order.

Rooms Rooms are rectangular locations in the world that can be surrounded
by a wall with small doorways as an opening. The rooms can have blocks placed
inside of them on initialization of the environment.

Dropzone The dropzone is basically a special room in the world where no
blocks are placed initially. The dropzone has an ordered list of colors of blocks
which need to placed in the zone to complete the mission.

Robots Robots are objects that can move around the world. Therefore they
always have a position and a velocity. They also have the ability to observe the
world around them and hold/drop a block.

These four different objects are the only objects that exist in the BW4T
environment. They work together to create challenging tasks that requires the
robots to work together to solve them efficiently.
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Chapter 12

Implementation

This chapter discusses the implementation details of the BW4T environment
and details the interface which agents use to interact with the environment.
Section 12.1 describes the modeling of the environment. Section 12.2 details
the EIS interface developed for the agents.

12.1 Modeling the environment
The environment is implemented in two dimensional space since we are not
interested in height as a third dimension.

BoundedMoveableObject The objects in the Java implementation of the
BW4T environment are all based on the BoundedMoveableObject class. This
class gives each object a unique integer for identification. It also offers basic
functionality such as adding/removing the object from the world, putting objects
in another position, changing the size of objects and doing intersection checks.

Robot The robot is modeled as an entity shaped like a square. It has a current
location and a location it wants to move to. The robot is capable of picking up
blocks that are a certain distance from it, much like a robot would have an arm.
The robot also has a human-readable name for visualization purposes. The
movement of the robot is done by moving at a set speed towards the location it
wants to move to, slow-down or speed-up has not been added but would require
little effort to implement if the need arises.

Room The rooms are modeled as rectangular areas. A robot is considered
inside a room if it is entirely inside. Rooms are capable of having blocks placed
inside of them however the room has no knowledge of this. In the implementa-
tion each room also has a color for visualization purposes.

The DropZone is a special kind of room which keeps track of the sequence of
colors the blocks dropped in the zone need to adhere to to complete the mission.
A drop zone is capable of removing blocks from the world once a block has been
dropped in it. Every block is removed, even if it doesn’t have the right color.
In such cases however, the color sequence does not advance.
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Code Snippet 12.1 Example of a map for the BW4T environment.

100 100
R 45 45 10 10 B B R W
D 5 5 10 10 B R
E Bender 20 25
J WallE 20 20

Blocks Blocks are modeled as rectangular objects, they have a color not only
for visualization purposes but also important for the sequence in which they
need to be delivered to a dropzone. Blocks know if they are being held by a
Robot.

MapLoader The MapLoader is an important class that exposes a static
method to load an environment from a text file. The an example of the text file
that defines a map is give in Snippet 12.1.

The first line in the map file specifies the width and the height of the map.
Every next line indicates an object in the world, the first character of that line
indicates which type of object we are dealing with.

The R indicates a room at a certain (x, y) coordinate followed by the width
and height and finally [0,∞〉 colors of the blocks that are put in this room
upon initialization. The colors are coded as single characters and only a limited
number is supported at this time.

The D indicates a dropzone, only one of which may be present in a map
file. It has the same specification as a room with one difference, the block color
indicators indicate the sequence of blocks of the dropzone.

The E stands for EIS entity and spawns a Robot that can be controlled
through EIS. The E is followed by the human readable name (without spaces)
and the starting location of the robot in (x, y) format.

The J stands for a Robot that is controlled by Java itself, a programmer can
built an implementation for it. The syntax is the same to that of a robot that
can be controlled through EIS.

12.2 EIS
This section details the percepts and actions that are made available through
EIS to control a Robot entity in the BW4T environment.

12.2.1 Percepts
This section details the percepts a robot can receive during the simulation.

Percept: at(id, x, y)

id The identifier of the object that is at the location.

x The x coordinate of the location.

y The y coordinate of the location.



Description Percept that tells the location of the object with the given id.
This can be used to find out where to navigate to but also to find out
where the robot itself is.

Percept: block(id)

id The identifier of the block.

Description Percept identifying that a certain id belongs to a block.

Percept: room(id)

id The identifier of the room.

Description Percept identifying that a certain id belongs to a room.

Percept: dropZone(id)

id The identifier of the drop zone.

Description Percept that couples an identifier to a drop zone.

Percept: robot(id)

id The identifier of a robot.

Description Percept identifying that a certain id belongs to a robot.

Percept: color(id, c)

id The identifier of the block.

c The character that represents the color of the block.

Description This percept gives information about which color a certain block
has.

Percept: sequence(seq)

seq List of color identifiers.

Description This percept contains the color order in which blocks need to be
delivered to the dropzone. Once a block with the right color has been
delivered, the sequence is updated.

Percept: holding(id)

id The identifier of the block that is being held by the robot.

Description The percept gives information about which block the robot is
currently holding.



12.2.2 Actions
This section introduces the actions a robot can perform. Although they are
rather basic, they grant the robot the power it needs to perform the tasks
needed.

Action: goTo(x, y)

x The x coordinate of the position to move to.

y The y coordinate of the position to move to.

Description Instructs the robot to move to the given coordinates.

Action pickUp(id)

id The identifier of the block to pick up.

Description The robot tries to pickup the block. The action fails if the block
is not in range of the robot’s arm.

Action putDown

Description The robot drops the block it is holding at the current position.
If the current position is in the dropzone the block is removed from the
environment and the sequence may progress, if and only if the block is of
the right color.



Chapter 13

Evaluation

The goal in the BW4T domain is to facilitate agent-agent and human-agent
teamwork. This means that it is important that the interface enables agents to
cooperatively engage in problem solving. To facilitate this focus on teamwork
we decided to apply abstractions to aspects of the environment where the agent
does not need to be in full control. One of these aspects is navigation. We
believe that control over navigation in the BW4T environment is best left to be
implemented in Repast for two reasons. First, because APLs are less efficient
at solving path planning problems. Second, because changes in the setup of
the environment, such as adding walls, would severely influence how navigation
works. By hiding the navigation behind an abstract action we can ensure that
the agents code stays relatively simple.

Our thinking about the navigation abstraction resulted in three questions which
should be asked when faced with the problem of designing the agent interface.

First, what are the decisions an agent needs to make? This question is
important because agents can be written in APLs, which are developed to fa-
cilitate creating agents that are strong in logic-based complex decision making
and reasoning. It is therefore important that the agent has enough information
and power to make the decisions that are important for the interaction under
research. In case of the BW4T environment the main decision an agent is faced
with is which block to pickup or which room to visit. We built the interface
around this premise.

Second, is there any functionality for which the strengths of the environment
simulation language can be leveraged? Environment languages are usually bet-
ter suited for 3D visualizations and navigational issues since they are more
efficient in math-like calculations. Keeping this kind of functionality in the en-
vironment can increase the efficiency of the simulation and the clarity of the
agent code.

Third, is there any functionality in the environment that might be subject
to change? Functionality that internally might change over time is best ab-
stracted away from for the agent to ensure that the agents do not need to be
rewritten when the environment is modified. This is why we decided to make an
abstraction for navigation, such that the path planning could easily be replaced
without any changes to the agents.
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This is the second environment we developed using EIS2Java and the connection
between EIS and Repast. During development we found that we generated a lot
of percepts with the same name, such as the block percept for each block. We
therefore decided to change the AsPercept annotation of EIS2Java to include
the option to have a method return multiple percepts instead of a single one.

This environment was also built from the ground up and helped in construct-
ing the manual in Appendix C, to explain how environments in Repast can be
connected to GOAL.

Finally, although it may seem obvious, it bears repeating that as a rule of thumb,
one should aim to give the agent enough information and power to act upon
the environment in such a way that is in line with the goals of the simulation,
without cognitively overloading the agent. Start simple and make more complex
information available only when required.



Part V

Conclusions,
Recommendations and

Future work
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Chapter 14

Conclusions

In this chapter we answer the research question defined in Chapter 1: “Which
design guidelines provide effective rules for designing interfaces that connect
simulation environments to agent programming languages?” Our guidelines are
given in Section 14.1. Section 14.2 highlights the implementation of the connec-
tion between EIS and Repast.

14.1 Interface Design Guidelines
Looking back at the evaluation of the highway environment in Chapter 9 and
the BW4T environment in Chapter 13 we can construct the following three
guidelines for designing environment interfaces.

Introduce unique names for objects Unique names for objects are impor-
tant because most APLs do not have a concept of a memory pointer to address
objects. The unique names will become the identifiers for the objects and can be
used in actions and percepts. A modeler should keep this in mind when writing
the environment.

Keep computationally expensive functionality in the environment
Computationally expensive functionality, such as navigation, should remain en-
cased in the environment. The reasons for this are two-fold.

First, APLs are less efficient in such tasks than OOP languages, since they
are usually built to perform theorem proving and other forms of logical inference
[33]. Other types of languages such as those that are OOP are more efficient at
implementing navigation algorithms such as A∗ and Dijkstra.

Second, keeping expensive functionality outside the agents allows them to
focus on higher level tasks that are in need of a logical decision structure, some-
thing which APLs are good at.

Design the interface according to the simulation goals Environments
for multi-agent systems are usually built to have agents complete certain tasks.
In creating the interface it is therefore important that agents are able to focus
their reasoning cycles on accomplishing these tasks successfully. A good way
of doing this is to make abstractions for tasks that are of less importance. In
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the BW4T environment we applied this to navigation, where the agent is only
able to state that it wants to go somewhere, how exactly this is achieved is
abstracted away and done by the environment.

Looking at the guidelines we can conclude the choice for GOAL as APL is
actually arbitrary. By using a generic layer, like EIS, we could have easily
swapped out GOAL with 2APL, Jadex or Jason. It is however the case that
some of these guidelines may become obsolete when an APL based on Java
is used. Unique names for objects may not be necessary if the APL supports
pointers. One could also argue that computationally expensive functionality
can then be put in the agent. However this might not be the best solution since
every agent would usually want to make use of the same implementation. It
might therefore be better to just have it exist in the the simulation framework
rather than in the agent.

14.2 Connection to Repast
In Chapter 4 we developed the tools and system to connect GOAL to Repast.
In doing so we have used advanced features of Java such as reflection and an-
notations to create EIS2Java. EIS2Java makes it easier to define and expose
controllable entities through EIS, reducing the work needed to make an environ-
ment EIS compatible. It also lowers the maintenance costs, since percepts and
actions are defined as single method which makes it easier to test and change.
Finally EIS2Java reduces the overhead of translating between Java objects and
EIS’s Interface Immediate Language by introducing a compact interface to sep-
arate translation from action/percept handling and to by making translations
portable across projects.

The connection to Repast allows researchers to take any environment in Repast
and expose it through EIS so that it may be influenced by a multi-agent
systems. None of the current functionality of Repast was compromised to
make this connection and can still be used by the environments.



Chapter 15

Future Work

This chapter discusses several possible improvements to the products developed
during this thesis and also those that we have worked with. Most of the sugges-
tions in this chapter are focussed on making it easier to connect environments to
agent platforms. Some suggestions for future thesis projects are also included.

EIS2Java
Some percepts in environments should be sent only once, or when their value
changes. Currently there is no support for that in EIS2Java. Research needs
to be done to determine the use-cases of these special types of percepts and
whether it is possible to capture these use-cases in EIS2Java. If it is deemed
necessary this can be achieved by implementing a third annotation in EIS2Java
or by extending the asPercept annotation.

We also seek to include EIS2Java as part of the EIS distrubtion, and we will
discuss this with the authors.

Connection between GOAL and Repast
To make the connection between GOAL and Repast to use, the connection
should be implemented using RMI, or any other method that would allow Repast
to run in a separate VM from GOAL. To achieve this the current code needs to
be refactored and RMI bootstrap code to publish the EIS interface needs to be
developed. This should however be a straightforward task once EIS has become
easier to use (see the future work section on EIS).

Highway Environment
The Highway environment is capable of simulating one-way traffic on a straight
stretch of highway, but entrance/exit ramps are unsupported at this time. They
can be added, together with a more flexible and efficient sensor design that is
easier to maintain than the current implementation. This also helps to improve
the scalability of the simulation, although GOAL seems to be partially causing
the overhead as well. To achieve a better sensor implementation it would need
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to make efficient use of caching data that is requested multiple times during the
same tick and make sure that data that is not needed is not built.

BW4T Environment
To make the BW4T environment fully comply with that specified by Johnson
et. al. the rooms need to have walls [19]. This prevents agents from entering
a room from every direction, making it necessary that the the navigation is
updated to solve the arbitrary routing of robots through the environment. The
navigation of robots can be implemented by using A∗ or another grid-based
navigation approach.

Additionally, a user interface needs to be built on top of the current im-
plementation, to make agent-human interaction possible. The exact approach
required to make this possible together with Repast is unknown to us.

Environment Programming with EIS
In this thesis EIS has been found effective in allowing environments to be coupled
to agent platforms. However, there are a few issues which need to be solved to
make it easier and more pleasant for a programmer to work with EIS. These
issues have to do with the definition of the EIS interface in Java.

First, and foremost the current interface is trying to accomplish too many
tasks at once. As has been noted in Section 4.1, the environment management
code has been rolled into the interface that also deals with percepts, actions
and agent/entity registration. In programmer’s terms one could call the current
interface a “kitchen sink”; the place where all the magic happens. This large
array of responsibilities of the single interface makes it difficult to create a proper
separation between the tasks that belong purely to the environment, like entity
registration, and tasks that GOAL should handle, e.g. agent coupling. The
overloaded responsibility of the interface causes problems when the environment
is run remotely, and is the main reason why Repast could not be run over
RMI. We propose that much of the current functionality be removed from the
definition of the EIS interface and a more slim version of EIS form the basis
for different flavors. These can be created using programming principles such
as plugins, hooks and facades. For example, Repast can implement the core
functionality of EIS while GOAL wraps this functionality and extends it to
support the event handlers it needs.

Second, the default implementation of EIS, called EIDefaultImpl, uses con-
current hash maps for some of its data. However, the documentation of the
interface does not mention concurrent access at all. Since agent in a multi-agent
systems are very likely to be multi-threaded, this matter should be investigated
and clarified in the documentation to ensure that concurrency issues do not
occur.

Finally, EIS could use a general code clean up. Over time EIS grown in size
and function and lessons have been learned about the strengths and weaknesses
of EIS. Therefore, it should be possible to create a better version of EIS. Prefer-
ably starting from scratch code wise, the theoretical foundation seems solid.
Also, the Javadoc needs to be cleaned up and made useful for programmers



in several places, especially when it comes to the assumptions methods may
make when they are implemented. Other aspects are important too, such as
the reduction of code duplication and removing the use of old Java classes, such
as Vector. Finally, the definition of exceptions that EIS can throw need to be
cleaned up and make use of proper inheritance. Enumerations rather than hard
coded integers can be used to indicate the type of an exception.

Suggestions for followup projects
Since this thesis is made in cooperation with the university it is likely that there
are more students that are looking for similar projects. We use this opportunity
to make a few project suggestions based on the work we have done and where
we think challenges still remain.

Clear to us is that the BW4T environment has potential and it would be
nice to see it further developed into an actual research project that focuses on
robot teamwork and perhaps even human-agent interaction.

Secondly, working extensively with GOAL has made us realize that they both
could use some usability attention. One of the interesting ideas that should be
tried with GOAL is to integrate it with a proper IDE such as Eclipse instead of
GOAL maintaining their own implementation.
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Appendix A

EIS2Java Implementation

This appendix shows the implementation of the methods that form the backbone
of the EIS implementation that uses the EIS2Java annotations. These methods
are called from methods that are specified in EIS. The moment an entity is
added, the code in Snippet A.1 is executed to process the annotations. The
getAllPerceptsFromEntity calls the code in Snippet A.2. When an action is
performed the EIS method called performEntityAction is backed by the code in
Snippet A.3.
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Code Snippet A.1 Showing how annotations are processed.

/**
* Processes and caches all annotations for the given

class. If the class has
* already been processed this method will do nothing .
*
* @param clazz The class to process .
* @throws EntityException Thrown when the annotations

are not used properly .
*/

private void processAnnotations (Class <?> clazz) throws
EntityException {

if ( processedClasses . contains (clazz)) {
// Already processed .
return ;

}

Map <String , Method > percepts = new HashMap <String ,
Method >();

Map <String , Method > actions = new HashMap <String ,
Method >();

for ( Method method : clazz. getMethods ()) {
AsPercept asPercept = method . getAnnotation (

AsPercept . class);
if ( asPercept != null) {

String name = asPercept .name ();
percepts .put(name , method );

}

AsAction asAction = method . getAnnotation ( AsAction .
class );

if ( asAction != null) {
String name = asAction .name () + "/" + method .

getParameterTypes (). length ;
actions .put(name , method );

}
}
allPercepts .put(clazz , percepts );
allActions .put(clazz , actions );
processedClasses .add(clazz);

}



Code Snippet A.2 Simplified version of how percepts are generated.

/**
* Creates new percepts by calling the given method on

the entity .
*
* @param entity the entity to get the percept from.
* @param perceptName the name of the percept .
* @param method the method to invoke on the entity .
*/

private List <Percept > getPercepts ( Object entity ,
String perceptName , Method method )
throws PerceiveException {

// Retrieve the object that is generated by the
method .

Object returnValue ;
try {

returnValue = method . invoke ( entity );
} catch {...}

// Figure out which Java objects to turn into
percepts .

List <Object > generatedJavaObjects ;
AsPercept annotation = method . getAnnotation (

AsPercept . class );
if (! annotation . multiplePercepts ()) {

generatedJavaObjects = new ArrayList <Object >(1);
if ( returnValue != null) {

generatedJavaObjects .add( returnValue );
}

}

// Generate percepts for each object that needs to
be translated .

List <Percept > percepts = new ArrayList <Percept >(
generatedJavaObjects .size ());

for ( Object javaObject : generatedJavaObjects ) {
Parameter [] parameters ;
try {

parameters = Translator . getInstance ().
translate2Parameter ( javaObject );

} catch ( TranslationException e) {
throw new PerceiveException (" Unable to translate

percept " + perceptName , e);
}
percepts .add(new Percept ( perceptName , parameters ))

;
}
return percepts ;

}



Code Snippet A.3 Simplified version of how actions are performed.

/**
* Performs the action method on the given method

using the parameters . The
* returned {@link Percept } will have the same name as

the action .
*
* @param entity The entity to perform the method on.
* @param method The method to invoke on the entity .
* @param actionName The name of the action that is

being performed .
* @param parameters The parameters to the method (

before translation ).
*/

private Percept performAction ( Object entity , Method
method , String actionName ,
LinkedList <Parameter > parameters ) throws

ActException {
Translator translator = Translator . getInstance ();

Class <? >[] parameterTypes = method . getParameterTypes
();

Object [] arguments = new Object [ parameters .size ()];
// Translate all parameters to method arguments .
int i = 0;
for ( Parameter parameter : parameters ) {

try {
arguments [i] = translator . translate2Java (

parameter , parameterTypes [i]);
} catch ( TranslationException e) {

throw new ActException ( ActException .FAILURE , "
Action " + actionName + " with parameters "
+ parameters + " failed to be translated ", e

);
}
i++;

}

Object returnValue ;
try {

returnValue = method . invoke (entity , arguments );
} catch {...}

// Use the return value to generate a percerpt .
...

}



Appendix B

EIS2Java Manual

In this manual we go through the steps required to make an environment EIS
compatible using EIS2Java.

B.1 Extend AbstractEnvironment
Create a class that extends the AbstractEnvironment that comes with EIS2Java.
This is going to be the environment interface class that will be launched by
GOAL to start your environment, we refer to this as the instance of EIS. Im-
plement abstract methods according to the EIS documentation. Make sure that
you are able to retrieve an instance of this class during runtime so that your
environment may use it to register entities that can be controlled by agents,
this can be achieved by passing it along to the constructor of your environment
when EIS’s init() method is called.

B.2 Create a class representing an entity
Every entity that an agent needs to control needs to be contained within a single
class for EIS2Java to work. We will call this class Entity during the rest of this
manual.

B.3 Define Percepts
Percepts can be defined by annotating methods in Entity with the AsPercept
annotation. The object that the method returns will be translated to the In-
terface Immediate Language(IIL). Methods annotated with AsPercept must not
take any arguments and have a non-void return type. The AsPercept annotation
has one required attribute and one optional attribute.

name The percept that are generated by translating the object returned by
the annotated method will have this name. This is a required attribute.

multiplePercepts If set to true then the annotated method must return a
subclass of Collection, the collection will be iterated over and each entry
in the collection will generate one percept. The default value is false.
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Note that the return type must have an associated translator otherwise a Trans-
lationException will be thrown when this percept is generated.

B.4 Define Actions
Actions can be defined by annotating methods in Entity with the AsAction
annotation. Methods annotated may have an arbitrary amount of arguments
and can have any return type (including void). If the annotated method has a
non-void return type a percept with the same name as the action is generated
upon completion containing the object returned by the annotated method. The
AsAction annotation has one required attribute.

name The action must have a name so that it can be addressed by an agent
through the EIS interface. This is a required attribute.

Note that the arguments must have a Parameter2Java translator and the return
type must have an associated Java2Parameter translator otherwise a Transla-
tionException will be thrown when the action is performed.

B.5 Register Entities
Entities that you want to have controlled by agents must be registered with the
instance of EIS. An entity can be registered by calling the registerEntity(name,
entity) method on the EIS instance. Make sure the name given to the entity is
unique or otherwise an exception will be thrown.

B.6 Creating and using your own translators
If you want to use a type of object as a return value in any of the annotated
method you must make sure that an appropriate Java2Parameter translator
has been registered with the translator. This can be done by implementing the
Java2Parameter interface that comes with EIS2Java and then calling Transla-
tor.getInstance().registerJava2ParameterTranslator() from anywhere before an
entity is registered with the environment. Note that for objects that need to
be translated to parameters the superclass tree will be traversed, meaning that
you won’t have to register a translator for each and every subclass, as long as
you want them translated in the same way.

For the arguments of actions a Parameter2Java object needs to be registered
with the translator in a similar fashion. These arguments require a translator
registered with the exact same class as the argument.

B.7 All set
You should be all set now. Just follow the normal steps when combining an EIS
environment with the APL of your choice.



Appendix C

How to use Repast with
GOAL

This manual explains the process of how to combine your Repast environment
with GOAL. Before starting we will assume that the user has completed the
GOAL and Repast Simphony installation.

For GOAL and Repast to work together you must make sure you have fol-
lowed the steps in Appendix B to make the entities EIS2Java compatible, this
excludes implementing the AbstractEnvironment which can be the same for ev-
ery Repast environment. This environment class that ships with this thesis is
called RepastEnvironment and should be present inside a Jar in Repast’s lib
folder.

C.1 Enable GOAL to use Repast
Go into your GOAL installation folder and locate a folder called modes. Copy
this folder to the root directory of your Repast project. This is done because
GOAL has some problems with relative paths for files it requires after start up.
If you don’t copy this folder GOAL will still work, however there will be no
syntax highlighting in the editor.

Copy goal.bat or goal.sh file to your Repast project. Open up the file
and locate the command that starts the java VM. Add the following folders
from the Repast Simphony Eclipse plugin folder to the classpath (-cp flag),
repast.simphony.runtime_2.0.0/bin and repast.simphony.runtime_2.0.0/lib/*.
You should now be able to successfully start GOAL using this file.

C.2 Editing the MAS file
To enable GOAL to run a Repast the MAS file from GOAL, which specifies the
location of the environment, needs to point to the location of the JAR containing
the RepastEnvironment. You can use the initialization parameters in MAS to
point to the location of the scenario folder, or you can use load function in the
GUI of Repast to load a scenario. An example of the MAS file can be found in
Snippet C.1.
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Code Snippet C.1 GOAL MAS file for the default RepastEnvironment.

environment {
% insert the RepastEnvironment reference on the

next line.
"lib/ RepastEnvironment .jar" .
% insert the initialization parameters and values

on the next line.
init [ scenario_location = "./ HighwayTraffic .rs"]

.
}

C.3 All set
You should now be able to control Repast/GOAL like you would in normal
circumstances. Depending on how you structured the registering of entities you
might need to press the play button in GOAL to make the agents do their job.



Appendix D

Example GOAL Agent

This appendix contains example code of a GOAL agent written for the BW4T
environment. Note that this agent operates solely on his own, and that only the
code for the reasoning cycle is shown.
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Code Snippet D.1 GOAL agent for the BW4T environment.

main module {
program {

if bel( sequence ([C|T])) then adopt( dropOff (C)).
if goal( dropOff (C)), bel( sequence ([X|T]), C \= X)

then drop( dropOff (C)).

% I’m holding a correct block , let ’s drop it off
if goal( dropOff (C)), bel(robot(Me), holding (Block)

, color(Block , C), dropZone (D), at(D, X, Y), at
(Me , MyX , MyY), (X \= MyX ; Y \= MyY)) then
goTo(X, Y).

if goal( dropOff (C)), bel(robot(Me), holding (Block)
, color(Block , C), dropZone (D), at(D, X, Y), at
(Me , X, Y)) then putDown .

% I don ’t know a block of the requested color , go
to another room.

if goal( dropOff (C)), bel(not(color(Block , C)),
robot(Me), at(Me , MyX , MyY), room(R), at(R, X,
Y), (X \= MyX ; Y \= MyY)) then goTo(X, Y).

% I want to commit to picking up a block.
if goal( dropOff (C)), bel(color(Block , C), at(Block

, BlockX , BlockY ), robot(Me)) then blockPicker (
Me , Block).

}
}

module blockPicker (Me ,Block)[focus=new ,exit= nogoals ] {
goals {

holding (Block).
}

program {
if bel(at(Block , X, Y), at(Me , MyX , MyY), (X \=

MyX ; Y \= MyY)) then goTo(X, Y).
if bel(at(Block , X, Y), at(Me , X, Y)) then pickUp

(Block).
}

}
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