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Copromotor: Dr.ir. M. Wisse

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof.dr.ir. P.P. Jonker, Technische Universiteit Delft, promotor
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Chapter 1

Introduction

1.1 Motivation

Service robots that learn

Service robots have the potential to be of great value in labour intensive en-
vironments such as domestic, medical and construction environments. Market
analysis (IFR Statistical Department, 2010) has shown a large expected growth
in the number of service robots worldwide. By the end of 2009, in total 76,600
professional service robots and 8.7 million personal service robots were sold. For
the period 2010-2013, 80,000 new professional service robots are expected to be
installed (mainly for defence, milking, cleaning, construction, rescue and secu-
rity applications, field robots, logistic systems, inspection robots, medical robots
and mobile robot platforms for multiple use), while 11.4 million personal ser-
vice robots (domestic robots for vacuum cleaning, lawn-mowing, window cleaning
and other types, and entertainment and leisure robots such as toy robots) are
expected to be sold. Medical robots will even become a necessity, since the age-
ing population in Western countries will require significantly more elderly care
in the coming decades than available (WHO, 2007). While the value of factory
robots has been long proven, today’s commercially available service robots are
still a novelty. They mainly consist of vacuum cleaners, lawn mowers and enter-
tainment robots. These machines perform relatively simple and straightforward
tasks and are as of yet incapable of versatile manipulation of their environment.
A key difficulty is the large diversity in destined environments of service robots.
While factory robots work in highly structured, controlled and predictable envi-
ronments, every household, office or construction site is typically unique. This
makes even basic tasks such as locomotion challenging. Because the variety in
environments cannot be completely foreseen and tested at the robot’s production
time, it is hard to manually program robots to perform motor control tasks such
as locomotion and object manipulation in a way that is robust against these en-
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2 INTRODUCTION 1.2

vironmental variations. Furthermore, the aforementioned environments are likely
to continuously change by the introduction of novel products and objects that the
service robot needs to interact with. This requires service robots to be versatile
and able to perform emerging tasks. To let robots function autonomously in such
unstructured, highly diverse and renewing environments, having robots learn mo-
tor control tasks autonomously from interaction with their environment forms an
attractive alternative to being manually programmed by experts.

Reinforcement Learning

There are several existing approaches to letting robots learn motor control tasks.
In learning from demonstration (LfD), a system learns from solutions demon-
strated by an expert (Argall et al., 2009), e.g., by teleoperation or direct ma-
nipulation of the system. With imitation learning (IL) (Schaal, IJspeert, and
Billard, 2003), a solution is shown on a different physical platform, and the robot
needs to translate this solution to its own hardware. LfD and IL are examples
of supervised learning; a solution is available and needs to be transferred to the
system via learning. An alternative method that does not require a demonstrated
solution is learning from experience (LfE), in which the system learns purely from
interaction with the environment in a trial-and-error fashion, which is the field of
Reinforcement Learning (RL) (Sutton and Barto, 1998; Bertsekas, 2007). These
three categories of methods – LfD, IL and LfE – can also be combined, e.g., an
initial solution from a human demonstrator is learned with imitation learning,
after which the solution is further optimized by learning from experience (Schaal
et al., 2005). Because an initial solution provided by an expert is seldom imme-
diately satisfactory and sufficiently generic, learning from interaction with the
actual environment is a necessary final step.

RL systems have the ability to learn directly from interaction with the envi-
ronment by receiving feedback on their behavior in the form of rewards: good
behavior is reinforced by positive rewards and bad behavior is discouraged by
negative rewards. A solution, however, is not provided. The rewards indicate
what is desired, but not how to achieve it. Therefore, RL is largely unsupervised.
Both model-based and model-free RL techniques exist, where the latter do not
require a model of the system and its environment, which can be hard or even
impossible to obtain for service robot tasks. These properties – learning from
interaction in a largely unsupervised way, without the need for a model – make
that RL offers great opportunities for service robots to learn to operate in diverse
and changing environments.

Because of its general formulation, RL has been successfully applied to a wide
set of problems ranging from games (Tesauro, 1995), economics (Moody and Saf-
fell, 2001) and traffic control (Salkham et al., 2008) to the control of elevators
(Crites and Barto, 1996), helicopters (Ng et al., 2004) and soccer robots (Stone
and Sutton, 2001; Kohl and Stone, 2004).
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1.2 RL on real robots

Applications of RL to robotic motor control tasks in which the data was collected
from trials on the real robot (as opposed to simulation) have been demonstrated
in a limited number of cases. Kalmár, Szepesvári, and Lörincz (1998) applied RL
to let a mobile robot learn to fetch and reposition a ball by learning to invoke
pre-programmed, small subtasks. Peters, Vijayakumar, and Schaal (2003) used
RL to optimize a parameterized point-to-point movement trajectory on a robot
arm with one degree of freedom (DoF) and Peters and Schaal (2006); Peters and
Schaal (2008) used RL to learn a 7 DoF humanoid robot arm to hit a baseball
by learning the parameters of inherently stable point attractor controllers (called
motor primitives) for each DoF. In a similar manner, Kober and Peters (2009) and
Nemec, Zorko, and Zlajpah (2010) demonstrated learning the ball-in-a-cup and
ball-paddling tasks on a humanoid robot arm. Smart and Kaelbling (2000) used
RL to learn a corridor following task in a mobile robot by learning to steer while
the forward velocity was controlled to be constant. Sutton et al. (2011) used RL to
learn a light-seeking policy and several sensor value maximizing policies on their
wheeled prototype Critterbot, which was specifically designed for RL experiments.
Ito, Takayama, and Kobayashi (2009) applied RL to learn a light-seeking task
on a snake-like robot. Furthermore, RL has been employed for gait synthesis
and optimization on bipedal walking robots (Benbrahim, 1996; Salatian, Yi, and
Zheng, 1997; Tedrake, Zhang, and Seung, 2004; Ogino et al., 2004; Morimoto et al.,
2005; Cherubini et al., 2009) and quadruped robots (Kohl and Stone, 2004; Kamio
and Iba, 2005). Morimoto and Doya (2001) applied a hierarchical RL controller
for learning a stand up behavior on a three-link robot, where the upper control
layer learned to select target angles for the lower layer, which learned to achieve
those target angles by selecting motor torques that were added to a standard servo
control rule. In the field of robot soccer, Riedmiller et al. (2009) demonstrated a
wheeled soccer robot learning a dribble task from scratch.

The number of robots that were capable of performing their learning updates
while executing their task, i.e., in real-time, is only in the order of 10 world-
wide (Benbrahim, 1996; Salatian, Yi, and Zheng, 1997; Kalmár, Szepesvári, and
Lörincz, 1998; Morimoto and Doya, 2001; Tedrake, Zhang, and Seung, 2004; Ogino
et al., 2004; Kamio and Iba, 2005; Morimoto et al., 2005; Ito, Takayama, and
Kobayashi, 2009; Sutton et al., 2011). In the majority of cases, learning was per-
formed at a coarse time scale, for example at every footstep or at every macro
action (e.g., ’go forward’) taking 1-10s, with the exceptions of Sutton et al. (2011)
(their robot learned at 2-10Hz) and Morimoto and Doya (2001) (the lower level of
their robot’s control hierarchy learned at 100Hz). In most of the aforementioned
cases, the learning controller had a pre-programmed structure (such as the mo-
tor primitives used by Peters et al.) or was augmented with a pre-programmed
controller that aided the solution. Such approaches require prior knowledge of
the task. Computing the learning updates was typically done on a computer on
the side line instead of on the robot’s embedded computer, with the exception of
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Tedrake, Zhang, and Seung (2004). Learning on embedded computing hardware,
which poses additional technical challenges, is ultimately necessary to ensure the
autonomy and mobility of service robots. To keep service robots agile, their mass,
volume and power consumption are preferably kept low. This constrains the com-
putational power that they can embed.

1.3 Problem statement

From the literature, we can observe that little is known about applying RL to
learning low-level motor control tasks in real-time, on embedded robot hardware.
To the best of our knowledge, none of the above robots were capable of doing this.
The lack of wide scale application of RL to robots has several known reasons. The
most important theoretical difficulty is the inability of current RL algorithms to
solve problems with large state-action spaces (the space spanned by all states and
all control actions) in reasonable time. In this respect, the state space of as task
for a robot with more than 3 degrees of freedom can generally be considered large
for RL. Most of the aforementioned successful RL demonstrations were shown
on robots with few degrees of freedom, or reformulated the learning problem to
one with a state space with low dimensionality. The most important practical
difficulty is related to the trial-and-error nature of RL. Performing occasional
random actions are essential for RL to improve upon the task solution in a largely
unsupervised way. Such explorative actions can lead to control signals and system
states that quickly wear down or directly damage the robot. In practice, this limits
the time that learning can be performed on a real robot. Generally speaking, it
appears that robotic hardware is often simply not suitable for RL. It has led to the
common strategy under researchers to limit the solution space in a way that both
speeds up learning (there are fewer solutions to try out) and prevents damage to
the system, e.g., by only allowing a class of parameterized, usually locally stable
control functions of which the parameters are optimized by RL. This was done
in nearly all of the aforementioned applications of RL to real robots. Creating
such parameterized policy functions, however, requires expert knowledge on the
robot and on the task at hand. While knowledge on the robot is available at
production time, knowledge on the environment and exemplary task solutions is
typically lacking in our envisioned setting of service robots solving a variety of
(emerging) tasks in diverse environments.

In summary, the problems in applying RL to real service robots are as follows:

1. There is limited knowledge on applying RL to learning low-level motor con-
trol tasks in real-time, on embedded robot hardware.

2. It is problematic to apply RL to robotic tasks due to the large state-action
space spanned by their degrees of freedom.

3. Current RL approaches in robotic tasks typically need prior knowledge on
the task.
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4. Robotic hardware is typically not suited for RL’s trial-and-error nature.

1.4 Research goal

The goal of this thesis is to identify and address difficulties in hardware design,
software design and RL theory that currently prevent the application of RL to real,
autonomous service robots. More specifically, the following research questions are
being addressed:

1. What are suitable RL techniques for real-time, autonomous learning of low-
level motor control tasks on a real robot without the need for prior knowl-
edge on the task or its environment?

2. What are the hardware and software requirements for a real robot in order
to be suitable for these RL techniques?

3. What are the practical complications that arise from applying these RL
techniques to a real robot?

4. How can these practical complications be addressed?

1.5 Approach

To find answers to the posed research questions, this thesis starts by selecting
RL techniques from the literature that are suitable for our particular purpose,
based on their theoretical properties and on existing simulation results. The
selected techniques must learn from experience, i.e., from interaction with the
real world, require as little prior knowledge on the task or its environment as
possible, and be able to run on embedded computing hardware. Preference is
given to ’vanilla’ techniques, i.e., techniques that exist for quite some time and
are therefore relatively well understood. In this way, the work can focus on the
particular complications of applying RL to real robots.

The motivating example throughout the thesis is bipedal locomotion, i.e., the
task of learning to walk for a bipedal robot. Simulation results have shown that
it is possible to learn this task in a matter of hours using vanilla RL techniques
without pre-structuring the solution space and without the need for an expert
solution (Schuitema et al., 2005). The task is both challenging and interesting
to solve with RL for the following reasons. Its dynamics include aspects that
are difficult to model or simulate, such as the underactuated, friction dominated
degree of freedom between the foot and the ground, and the sequential alternation
of the statically stable double-support phase (i.e., when both legs are in contact
with the floor) and the statically unstable single-support phase. This makes it
difficult to design robust conventional controllers; a practically oriented paradigm
such as RL forms an attractive alternative. The task is challenging since the
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number of degrees of freedom for bipedal walking robots quickly exceeds 5, which
results in a very large state space. The inherent instability of many walking
robots emphasizes the existence of risky system states such as a fall. The walking
task is interesting from an RL perspective, because the use of rewards creates
the opportunity to easily have the robot learn to focus on walking speed (by
rewarding forward movement and punishing time), minimal energy usage (by
penalizing motor work) or a combination (Schuitema et al., 2005).

We believe that RL poses some important requirements on the hardware and
software in order to be suitable for RL. However, in the literature, we could find
only one robot that was designed specifically for RL (Sutton et al., 2011). There-
fore, from the selected RL techniques, hardware and software requirements are
derived for a real bipedal walking robot, from which a new prototype is created
– bipedal walking robot ‘Leo’. The prototype will serve as a dedicated research
platform for RL. Experimentation on this prototype is used to identify the par-
ticular complications of applying RL to a real robot. In the remaining work,
solutions are proposed to a number of these complications, which are evaluated
in simulation. To facilitate the research, a realistic simulation of the prototype is
built in which solutions can be tested prior to evaluating them on the prototype.

The work in this thesis is of predominantly practical nature and focuses on
the application of the proposed techniques in simulation and on real hardware.
There is less focus on deriving new algorithms or providing mathematical proof
of the soundness of the proposed techniques.

1.6 Thesis outline

The remainder of this thesis is structured as follows.

Chapter 2 introduces the theoretical preliminaries of RL that are used in the re-
mainder of this thesis. It motivates the choice for Temporal Difference (TD) learn-
ing algorithms, linear function approximation and several peripheral techniques,
thereby answering research question 1. Furthermore, this chapter discusses the
impact of one practical complication – the existence of control delay, i.e., delay
between measuring the robot’s state and acting upon it – and provides solutions
for specific cases.

Chapter 3 derives the hardware and software requirements for the RL techniques
proposed in Chapter 2 and presents the hardware and software design of the
resulting prototype ‘Leo’, answering research question 2. Subsequently, the ex-
perimental results are presented of applying these techniques in simulation as well
as on the real prototype, ultimately demonstrating real-time TD learning on the
prototype for two tasks: learning a stairs step-up and learning to walk. From
these results, several practical complications are identified in response to research
question 3. The main contribution of this chapter is that it demonstrates the
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successful application of well known RL techniques in solving a non-trivial task
with large state-action space on a real robot, in real-time.

Chapter 4 studies the detrimental effects of large and infrequent disturbances on
the process of learning to walk, thereby partially addressing research question 4.
Simulation results of a simplified model of a walking robot show that large and in-
frequent deviations of the sampling period or sensor readings have a much smaller
effect on the learning process than large and infrequent external disturbances such
as a push.

Chapter 5 further addresses research question 4. A learning scheme is proposed in
which actuators learn independently but cooperatively to accomplish the global
task of learning to walk. This approach makes the proposed RL techniques more
scalable in the number of actuators because it reduces memory consumption and
reduces the control delay caused by algorithmic computation.

Chapter 6 proposes a method designed to reduce the risk that the robot is exposed
to during learning, with the aim to reduce the hardware strain caused by the
explorative nature of RL, thereby further answering research question 4. With
the proposed method, the robot quickly but coarsely learns to predict the risk of
its actions, which enables it to quickly learn how to avoid risky situations such as
a fall and learn a solution in a safer way.

Chapter 7 presents conclusions and discussion of the work presented in this thesis
and proposes possible future research directions.
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Chapter 2

Reinforcement Learning for real,
autonomous robots

This chapter introduces the theoretical preliminaries of Reinforcement Learning
(RL) that are used in the remainder of this thesis. The focus is on techniques
suitable for autonomously learning to perform various tasks on real robots. Some
tasks can be performed by learning a single motor control skill, such as locomo-
tion. Other tasks might require learning an ensemble of skills, e.g., a hierarchy,
that contains both motor skills and strategy skills. The goal is to use learning
techniques that can be applied to learning motor skills as well as strategy skills
(although the latter are not demonstrated in this thesis). For a more general and
more thorough introduction to RL, see for example (Sutton and Barto, 1998) and
(Bertsekas, 2007). Section 2.1 introduces the commonly used framework for RL,
the Markov Decision Process. Section 2.2 introduces temporal difference (TD)
learning, including its main on-line algorithms. Section 2.3 considers function
approximation of continuous high-dimensional state-action spaces, an important
prerequisite for learning on robotic systems.

In addition, a contribution on the inclusion of control delay in the MDP frame-
work, and its influence on TD-learning, is discussed in Section 2.4. Control delay
is the time delay between measuring the system’s state and executing the control
action. It is always present in real systems.

2.1 The Markov Decision Process

The common approach in RL is to model the process of learning a task as a
Markov Decision Process (MDP) with discrete time steps k ∈ N and sampling
period h. The dynamic systems that we are interested in – robotic systems – have
a continuous state space S and a continuous or discrete action space A. State
transitions are considered to be stochastic. The MDP is defined as the 4-tuple

9
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〈S,A, T,R〉, where S is a set of states and A is a set of actions. The state transition
probability density function T : S×A×S → [0,∞) defines the probability density
over S for the next state sk+1 ∈ S after executing action ak ∈ A in state sk ∈ S.
The reward function R : S ×A× S → R is real valued and defines the reward of
a state transition as rk+1 = R(sk, ak, sk+1). A control policy (or simply policy)
π : S × A→ [0,∞) defines the action selection probability density for all actions
in all states. An MDP has the Markov property, which means that transitions
only depend on the current state-action pair and not on past state-action pairs
nor on information excluded from s. This implies that s must contain all relevant
state information on both the robot and its environment.

Every task – and in case of a modular architecture, every sub-task – has its
own MDP definition. For a robotic system in a certain environment, multiple
similar MDPs can be defined to learn different tasks. By varying R, it is possible
to optimize towards different goals within the same task environment. Changes
in the dynamics of the robot, e.g., due to an added load, usually cause changes
in T , which results in a new MDP. Furthermore, when different elements of the
robot and the environment are relevant for different tasks, e.g., when interaction
with different objects takes place, these tasks require different definitions of S.
Finally, A can be chosen differently between tasks, e.g., when some actuators do
not need to be controlled by the learning agent in order to solve the task.

2.1.1 Goal of the agent

The goal of the learner is to find a control policy that maximizes, from every state
s ∈ S, the return, i.e., the long-term sum of discounted rewards R :

Rk =

kterm∑
i=0

γirk+i+1 (2.1)

in which γ ∈ [0, 1] is the (time) discounting factor through which future rewards
are weighted equal or less than immediate rewards, and kterm is a final time step
at which the task terminates. For episodic tasks, i.e., tasks that have a distinct
start and end, kterm is finite. Examples of episodic robotic tasks are grasping an
object or standing up after a fall. For continuing tasks (infinite horizon tasks)1,
kterm = ∞. Examples of continuing tasks are state maintaining tasks, such as
balancing a bipedal robot, or periodic tasks, such as walking. Note, however,
that when failure states are present, continuing tasks can contain episodes as
well, especially at the beginning of the learning process. For example, if a robot
is learning to walk, a fall on the floor can mark the end of the episode, after which
the robot is put into an initial condition. With the definition of an absorbing state
– a state that transitions only to itself and that only generates rewards of zero –
we can generalize episodic and infinite horizon tasks by defining episodic tasks to
end in an absorbing state and always taking kterm =∞ in (2.1).

1For infinite horizon tasks, γ cannot equal 1; this could lead to infinite returns.
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The value function V π(s) gives the expected return of following policy π from
state s:

V π(s) = Eπ{Rk|sk = s} = Eπ

{ ∞∑
i=0

γirk+i+1

∣∣∣∣∣ sk = s

}
(2.2)

where Eπ{ · } denotes the expected value given that the agent follows policy π.
The action-value function or Q-function Q(s, a) gives the estimated return of
choosing action a in state s and following the control policy afterwards:

Qπ(s, a) = Eπ{Rk|sk = s, ak = a} = Eπ

{ ∞∑
i=0

γirk+i+1

∣∣∣∣∣ sk = s, ak = a

}
(2.3)

A policy that is better than or equal to all other policies with respect to R for
all s ∈ S is an optimal policy, denoted π∗. All optimal policies share the same
optimal value function V ∗(s) and optimal action-value function Q∗(s, a).

Online RL implies that the system learns from interaction with the real world.
The state transition probability function T can be either unknown to the learning
agent (model-free RL), learned while learning the task (model-learning RL), or
provided a priori (model-based RL). In the remainder of this thesis, we focus on
model-free RL.

2.1.2 Designing an MDP for a robotic task

In setting up an MDP to solve a robotic task, design choices have to be made for
most of its parameters. While the state transition probability density function
T is an intrinsic property of the process, the state space S, the action space A,
reward function R, sampling period h and discounting factor γ generally have to
be (carefully) chosen manually2.

State space The state space S is in principle defined by its requirement to comply
with the Markov property, although in practice, this requirement is hard or im-
possible to meet. Often, Markovian state information is not available, e.g., due to
a lack of sensors or sensor precision. When the Markov property is (severely) vi-
olated, it can be more appropriate to model the process as a Partially Observable
MDP or POMDP (see, e.g., (Sondik, 1978)). In addition, the Markov state signal
is not unique; an equivalent Markov state signal can easily be obtained, e.g., by
an isometric transformation of an existing Markov state vector. This leaves some
freedom in defining the state signal.

Action space and sampling period The robot’s action space A is often continuous,
e.g., it consists of a set of motor voltages. Certain RL algorithms, such as the

2Ideally, an autonomously learning robot can choose these parameters automatically. How-
ever, this is not the current state of the art.
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Temporal Difference algorithms discussed in 2.2, are designed for discrete action
space. Therefore, from here on we assume A to be a finite set A = {a1, a2, . . . , an},
obtained by discretizing the robot’s original, continuous action space. Due to the
discrete nature of both the time steps and the actions, the size of the action
space |A| and the sampling period h together determine the space of possible task
solutions. The number Na of distinct action sequences (a0, . . . , akterm) that can
be performed from a starting state s0 in the characteristic time scale τtask of the
task is approximately of the order

Na = O
(
|A|

τtask
h

)
(2.4)

where each time step, an action is drawn from A. A lower Na results in a smaller
solution space and thus faster learning. Because Na increases polynomially in
|A| but exponentially in 1/h, it is especially beneficial to increase h. A lower
limit of h is related to the actuator dynamics (the minimum time scale at which
the actuator can switch between discrete actions) and the sensor resolution (in
a very small period of time, sensor values might not change at all). An upper
limit of h is related to the natural frequencies of the mechanical system and the
desired solution space; h and |A| together determine the maximum obtainable
system performance. In addition, a smaller h results in a shorter response time
to disturbances (disturbances in the context of RL are discussed in more depth
in Chapter 4). To the best of our knowledge, no systematic approach exists to
choose |A| and h.

Reward function The reward function R is task dependent. Because the rewards
influence the agent’s exploratory behavior, its final performance and its learning
speed, choosing R is often a process of trial and error. It can even be proven
that multiple reward functions share the same optimal policy for a certain task
(Ng, Harada, and Russell, 1999). Designing reward structures that lead to faster
learning, e.g., by rewarding sub-goals (Mataric, 1994) or by reward shaping (Laud,
2004; Marthi, 2007), is a topic under research.

Discounting factor The discounting factor γ defines the time horizon of the task.
Therefore, it can best be chosen to correspond with the characteristic time con-
stant of the task (in seconds), τtask:

γ = e
− h
τtask (2.5)

2.1.3 Solving an MDP

Several RL methods exist to find a (locally) optimal policy π for an MDP, either
directly by performing the optimization in policy space (direct policy search) or
indirectly by making use of V π(s) or Qπ(s, a). To estimate the (action-)value
function, Temporal Difference (TD) learning is a widely used approach. The
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control policy π can be derived from the value function in different ways, either
directly, such as in TD control, or indirectly, such as in actor-critic schemes, in
which the policy is stored in a separate memory structure (the actor) that learns
from ’critique’ of the value function (the critic). To select appropriate RL methods
for use in this thesis, we considered the following.

On real robots, most successes (Morimoto and Doya, 2001; Nakanishi et al.,
2004; Tedrake, Zhang, and Seung, 2004; Peters, Vijayakumar, and Schaal, 2003)
have been accomplished using actor-critic and policy-gradient based algorithms,
in which the policy is parameterized and stored separately from the value func-
tion. Those algorithms converge to a locally optimal policy (see, e.g., (Bhatnagar
et al., 2008; Peters and Schaal, 2008; Bhatnagar et al., 2009)) by performing
gradient-ascent on the policy parameter vector. For non-trivial tasks, generally, a
reasonable initial solution needs to be available a priori in order to converge to a
useful local optimum. An initial solution might not always be available, especially
for autonomous robots learning new tasks. Therefore, it is useful to consider al-
gorithms that do not require such an initial solution to perform well, such as TD
control algorithms. TD control algorithms are model-free and derive the policy
directly from the estimated (action-)value function. They do not require explicit
policy parameterization or an initial task solution. In addition, TD control al-
gorithms are relatively well understood and computationally simple. Because of
these potential benefits, this thesis focuses on the feasibility and practical im-
plications of using TD control on real robots in real-time. TD learning and TD
control are discussed in more detail below. For a recent overview of value function
approaches as well as direct policy search approaches in robotics, see (Kober and
Peters, 2012).

2.2 Temporal Difference learning

Temporal Difference (TD) learning methods have the goal to estimate V π(s)
or Qπ(s, a). TD methods estimate the (action-)value function at time step k,
Qk(s, a), by bootstrapping from an initial estimate, using information from single
state transitions. Because TD methods learn from single observed state transi-
tions, they do not need a model. They work on-line, for both episodic tasks and in-
finite horizon tasks. The following recursive reformulation of Qπ(s, a) (reformula-
tion of V is analogous) shows the relation between Qπ(sk, ak) and Qπ(sk+1, ak+1):

Qπ(s, a) = Eπ

{ ∞∑
i=0

γirk+i+1

∣∣∣∣∣ sk = s, ak = a

}

= Eπ

{
rk+1 + γ

∞∑
i=0

γirk+i+2

∣∣∣∣∣ sk = s, ak = a

}
= Eπ {rk+1 + γQπ(sk+1, ak+1)| sk = s, ak = a}
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This formulation can be used to derive the TD error δTD,k+1 of the transition,
which gives the difference between the current estimate Qπk (sk, ak) and the esti-
mate based on rk+1 and Qπk (sk+1, ak+1):

δTD,k+1 = rk+1 + γQπk (sk+1, ak+1)−Qπk (sk, ak) (2.6)

The TD error is used to update the estimate of Qπk (sk, ak). For discrete state-
action spaces (function approximation is explained in Section 2.3), Q can be
updated as follows:

Qπk+1(sk, ak) = Qπk (sk, ak) + αδTD,k+1 (2.7)

in which α ∈ (0, 1] is the learning rate or step size.
In TD control, the policy is directly derived from Q(s, a). An important policy

is the greedy policy, which selects ak,greedy, the action with the highest estimated
return:

ak,greedy = arg max
a′

Qπ(sk, a
′) (2.8)

While greedy actions exploit the knowledge gained and currently stored in Q(s, a),
new knowledge can be gained from selecting exploratory, non-greedy actions. A
widely used action selection policy that includes exploratory actions is the ε-greedy
policy πε-greedy(sk, ak), which is defined such that a random action is selected with
probability ε (uniformly sampled from A) and ak,greedy otherwise:

πε-greedy(sk, ak) =

{
1− ε+ ε/n if ak = ak,greedy

ε/n if ak 6= ak,greedy

(2.9)

with ε ∈ [0, 1] the exploration rate and n the number of actions in A. For a good
trade-off between exploration and exploitation, the value for ε is typically chosen
from the range [0.01, 0.20]. The softmax action selection policy πsoftmax(sk, ak)
is also common in RL and defines a probability distribution over greedy and
non-greedy actions that is continuous in Q(s, a):

πsoftmax(sk, ak) =
eQ(sk,ak)/Θ∑n
i=1 e

Q(sk,an)/Θ
(2.10)

with Θ > 0 the temperature. A higher temperature leads to more exploration.
Choosing an action with the ε-greedy policy (2.8-2.9) or the soft-max policy (2.10)
becomes a computationally costly operation when the action space is large (e.g.
multidimensional), especially when a computationally expensive function approx-
imator is used to represent the Q-function. Therefore, these algorithms are likely
to create time delay between observing the state and choosing an action in a real
system. The effects of this delay are discussed in Section 2.4.

Popular on-line TD control algorithms are Q-learning and SARSA. SARSA is
an on-policy algorithm, estimating the value function for the policy being followed.
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Q-learning is an off-policy algorithm under which Q(s, a) converges to the optimal
value function Q∗(s, a) belonging to the optimal policy π∗, independently of the
policy actually followed during learning. The TD-errors for these algorithms are
computed as follows:

δTDSARSA,k+1 = rk+1 + γQk(sk+1, ak+1)−Q(sk, ak)
δTDQ,k+1 = rk+1 + γmax

a′
Qk(sk+1, a

′)−Q(sk, ak) (2.11)

To speed up convergence, SARSA and Q-learning can be combined with eligi-
bility traces, see, e.g., (Sutton and Barto, 1998), thereby forming SARSA(λ) and
Q(λ), respectively. With eligibility traces, the TD error is not only used to update
Qk(s, a) for s = sk, a = ak, but also for state-action pairs that were visited earlier
in the episode. In this process, more recently visited (s, a)-pairs receive a stronger
update than pairs visited longer ago. For discrete state-action spaces (function
approximation is explained in Section 2.3), Q(s, a) is updated, ∀s ∈ S,∀a ∈ A, as
follows:

Qπk+1(s, a) = Qπk (s, a) + αδTD,k+1ek+1(s, a) (2.12)

with

ek+1(s, a) =

{
γλek(s, a) + 1 if s = sk and a = ak

γλek(s, a) otherwise
(2.13)

where ek(s, a) contains the eligibility of a state-action pair at time step k, with
e0(s, a) = 0, and λ the (eligibility) trace discounting factor. For Q(λ), the eli-
gibility of preceding states is only valid as long as the greedy policy is followed.
Thus, for Q(λ), e is also reset after an exploratory action. Choosing a value for
λ can be done in the same way as for γ using a characteristic time scale for the
eligibility of the agent’s actions:

λ = e
− h
τelig (2.14)

2.3 Function approximation for RL in high-dimensional state-action
spaces

Function approximation (FA) is a necessary component of RL in continuous state-
action spaces. While the action-value function Q(s, a) of a discrete state-action
space can be exactly represented using a finite amount of memory, this is not
possible for a continuous state-action space. Instead, the action-value function
is approximated by Q̂(s, a,θ), a function of s, a and a parameter vector θ =
[θ1, θ2, . . . , θn]T with a finite number of elements n.

Function approximation results in generalization, i.e., the change of an element
of θ results in a change of Q̂(s, a,θ) in a region of the state-action space. Gen-
eralization can be global or local; the value of a single element of θ can influence
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Q̂(s, a,θ) at every point in state-action space, or only locally in a (small) region.
Generalization can lead to faster learning, since a learning update for (sk, ak)
influences Q̂(s, a,θ) in a region around (sk, ak). Many FA techniques have been
used in the context of RL, the most common being CMAC (Albus, 1971; Albus,
1981), tile coding (Sutton, 1996; Sutton and Barto, 1998; Stone and Sutton, 2001),
support vector machines, fuzzy approximation (Buşoniu et al., 2007), radial basis
functions (RBF’s) and neural networks. These techniques differ in computational
complexity and the smoothness of the approximation (Kretchmar and Anderson,
1997).

Combining TD algorithms such as SARSA and Q-learning with function ap-
proximation can introduce convergence problems (Gordon, 1995; Gordon, 2001)
such as complete divergence or oscillation around a good solution. Several TD
algorithms have been introduced that address these convergence problems (Baird,
1995; Precup, Sutton, and Dasgupta, 2001; Sutton, Szepesvári, and Maei, 2009).
In this thesis, however, it was possible to obtain satisfactory convergence behavior
with SARSA and Q-learning.

2.3.1 Training function approximators

Training a function approximator is an example of supervised learning; the desired
value of Q̂(sk, ak,θk+1) is known – Qk+1(sk, ak) – and the elements of θ should
be adjusted towards a more accurate approximation. When Q̂(s, a,θ) is a smooth
differentiable function of θ, a common way to train a function approximator is to
use a gradient descent update rule of the form

θk+1 = θk+α(Qk+1(sk, ak)−Q̂k(sk, ak,θk))∇θQ̂k(s, a,θ)|s=sk,a=ak,θ=θk (2.15)

with Qk+1(sk, ak) the new estimate calculated by the RL algorithm at time k for
s = sk and a = ak, Q̂k(sk, ak,θk) the current approximated value, α the learning
rate or step size and ∇θQ̂k(s, a,θ) the vector of partial derivatives

∇θQ̂k(s, a,θ) = [
∂Q̂k(s, a,θ)

∂θ1
,
∂Q̂k(s, a,θ)

∂θ2
, . . . ,

∂Q̂k(s, a,θ)

∂θn
]T (2.16)

Typically, Q̂(s, a,θ) cannot exactly represent Q(s, a) due to the limited size of θ.
Choosing α < 1 results in averaging over multiple updates and reduces fluctua-
tions of the values of θ.

2.3.2 Linear function approximation

In the special case of linear function approximation, the approximate value func-
tion is linear in its parameters. For each θi there is an associated basis function
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(BF) φi(s, a), also called feature, which defines the spatial influence of that pa-
rameter in the state-action space. Q(s, a) is now approximated as

Q̂k(s, a,θk) = θTkφ(s, a) =
n∑
i=1

θikφ
i(s, a) (2.17)

The gradient in (2.15) has the following simple form for linear FA:

∇θQ̂k(s, a,θ) = φ(s, a) (2.18)

For TD learning with linear function approximation, every θi is updated as follows:

θik+1 = θik + αδTD,k+1φ
i(sk, ak) (2.19)

Eligibility traces can be implemented (see, e.g., (Sutton and Barto, 1998)) by
storing an eligibility trace per feature instead of per discrete state-action pair in
a column vector e = [e1, e2, . . . , en]T . Every θi can then be updated according to

θik+1 = θik + αδTD,k+1e
i
k (2.20)

The elements ei of the eligibility traces vector can be updated as follows:

eik+1 = γλeik +
∂Q̂k(s, a,θk)

∂θi
= γλeik + φi(s, a) (2.21)

and e0 = 0.
Non-linear function approximation techniques, such as neural-networks trained

with backpropagation, have the potential to achieve better approximations with
fewer parameters when the basis functions are carefully chosen. However, in
general, it is more difficult to choose the parameters of such approximators.

2.3.3 High-dimensional state-action spaces

An important property of robotic systems is the high dimensionality of the state-
action space. Robot Leo, a robot of only moderate hardware complexity and
number of degrees of freedom (see Chapter 3), already has a state space with
dimension 16, while its action space has dimension 7. Although the dimensionality
of such a robot can be reduced using virtual constraints (i.e., by using conventional
controllers that effectively remove a degree of freedom by keeping joint angles
constant, or making them a function of the other joint angles), the state-action
space of a robotic task typically has dimension 10 or higher. This poses an
important computational constraint on the function approximation technique to
be used, as will now be explained in more detail.

The simplest form of (linear) function approximation is the tabular approxima-
tion, in which the state-action space is discretized into hypercubes. A hypercube
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represents a BF that has value 1 inside the hypercube and 0 elsewhere. Each hy-
percube has an associated parameter θi. This method is computationally fast and
simple, but since its generalization width equals its resolution, learning is either
slow and accurate (with large memory requirements), or fast but inaccurate (with
less memory requirements). Usually, in high-dimensional state-action spaces, a
satisfactory resolution results in prohibitively high memory requirements due to
the curse of dimensionality : when every dimension d = 1, 2, . . . , D is discretized
into M bins within its typical range, the number of elements of θ becomes MD.
The memory requirements for θ are then exponential in D.

For other FA techniques, the curse may also apply to the computational re-
quirements. In practice, (2.17) is computed by only summing over the BFs that
have non-zero value at the specified (s, a). The computational load consists of
finding the non-zero BFs, computing their value at the specified (s, a), retrieving
the values of their corresponding θi from memory and, finally, computing (2.17).
Consider again the tabular approximation, but this time the BF’s are also non-
zero in at least one neighboring hypercube, in which each dimension adds new
neighbors. Examples of such approximation schemes using product-space BF’s
are radial basis functions (RBFs), whose influence is a function of the distance
between (s, a) and the location of the BF, and fuzzy approximators (Horiuchi
et al., 1996; Jouffe, 1998; Buşoniu et al., 2007). The number of BFs that have
non-zero value when computing Q̂(s, a,θ) for a single state-action pair according
to (2.17) is at least ND with N ≥ 2, a number that increases exponentially in D.
This increases the time needed to compute (2.17). A large computational load
will cause a time delay on real systems between perceiving state s and taking
action a when using, e.g., (2.8) for action selection. In Section 2.4, it is shown
that this delay can cause convergence problems.

2.3.4 Tile coding

Tile coding, also known as CMAC (Albus, 1971; Albus, 1981), is a linear approx-
imation scheme. The scheme is based on a (possibly large) set of overlapping
multi-dimensional grids of BFs, or tilings (named receptive fields in the CMAC
literature) T1,T2, . . . ,TK with K the number of tilings. A single BF is defined
for each hypercube in each tiling. This BF has value 1 inside its hypercube and
0 elsewhere. Therefore, each (s, a) has exactly K BFs with non-zero value. Due
to their simple shape, finding the BFs with non-zero value for (s, a) is relatively
easy. Due to these factors, the computational complexity of tile coding is fairly
limited 3. Each tiling is shifted (displaced) from the origin with a different offset
as to create an even distribution of BFs throughout the multi-dimensional state-
action space. A good choice of the displacement vector Adk for each tiling k in

3A thorough analysis of the computational complexity of tile coding and other linear function
approximation techniques is non-trivial and implementation dependent, and therefore beyond
the scope of this chapter.
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each dimension d is (Miller et al., 1990):

Adk = rd(k − 1)(1 + 2(d− 1))/K (2.22)

with rd the edge length of the hypercube for dimension d. An example of tile
coding in three dimensions with four tilings, shifted according to (2.22), can be
found in Figure 2.1.

The number of hypercubes in each tiling still rises exponentially with D. How-
ever, due to the tiling displacement, the input quantization is much finer than the
size of the hypercubes. Therefore, good approximation can often be achieved with
relatively large hypercubes (compared to, e.g., the tabular approach), resulting
in relatively low memory requirements, especially in high-dimensional spaces.

Figure 2.1: Example of tile coding function approximation in three dimensions with
four tilings. The four cubes visualize the tiles activated by a certain state. Their projec-
tions are shown on the xy-, xz- and yz-plane. The state is shown as a black dot in the
projections. The function value at the dot is calculated according to (2.17) by summing
the elements of θ associated with the four activated tiles.

While in tile coding the BFs are typically binary, i.e., have a uniform value of 1
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across their hypercube, this is not necessary (Miller et al., 1990; Lane, Handelman,
and Gelfand, 1992; An, 1991). A possible extension – which adds to the computa-
tional complexity compared to binary BFs – is to use radial basis functions that
have their center in the center ci of each hypercube:

φi =

{
f(||(s, a)− ci||p) , if (s, a) inside hypercube
0 , otherwise

(2.23)

with p the norm of the distance function and f( · ) an arbitrary function of dis-
tance. While binary BFs produce a piecewise constant approximation, continuous
alternatives of the form (2.23) produce smoother approximations. A downside of
such BFs is that for high values of D, φi is small-valued in most of the hypercube’s
volume. To see this, consider a hypersphere with radius r

2 located in the center
of a hypercube with edge length r, i.e., a hypersphere touching the hypercube’s
faces. The volume of this hypersphere scales with ( r2 )D, while the hypercube’s
volume equals rD. Therefore, most of the hypercube’s volume is located at a
distance ≥ r

2 from the center, where φi is usually small (also see, e.g., (Dasgupta,
2010)). This effect, however, becomes smaller for larger values of p. In (Miller
et al., 1990), satisfactory continuous alternatives for binary BFs were found using
the infinity norm distance || · ||∞. Note that when using non-binary BFs, it is
advised to normalize (2.17) with the sum of BF values.

In this thesis, all experiments were conducted using tile coding, because it
is a linear FA technique with low computational complexity that showed impor-
tant successes in the past (Sutton, 1996; Stone, Sutton, and Kuhlmann, 2005;
Schuitema et al., 2005). We used binary BFs, since we were unable to produce
consistently better results using continuous BFs.

2.3.5 Appropriate feature spaces

Despite numerous attempts to automatically set up the feature space (i.e., the
number, shape and placement of features) for an MDP (Chow and Tsitsiklis,
1991; Moore and Atkeson, 1995; Munos and Moore, 2002; Whiteson, 2010; Bern-
stein and Shimkin, 2010), to the best of our knowledge there exists no method that
guarantees a certain level of system performance, related to the rewards, for an
arbitrary (fully observable) MDP, especially for high-dimensional state(-action)
spaces. Therefore, in the remainder of this thesis, feature spaces of MDPs are
manually tuned towards satisfactory learning time, final system performance and
computational requirements. Usually, fast learning and high final system perfor-
mance are conflicting goals when setting up the feature space and a preference
for either will lead to a different choice of features. The discovery of an algorithm
that generates a feature space that is guaranteed to result in a certain level of
final system performance would be a major contribution to the field and would
greatly increase the applicability of RL in general, but is outside the scope of this
thesis.



2.3 FUNCTION APPROXIMATION 21

2.3.6 Storing the parameters in memory

A sufficiently accurate approximation of Q(s, a) can require a considerable number
of feature parameters. There are several ways in which the number of feature
parameters that need to be stored in memory can be reduced. Below we discuss
the two most important methods used in the experiments in this thesis.

Exploiting system symmetry

Many robotic systems and their corresponding tasks contain symmetry at multi-
ple levels. This means that situations that are essentially identical, but mirrored
or rotated, offer the opportunity to be learned only once by exploiting this sym-
metry when estimating and storing the (action-)value function. For example, the
situation of a walking soccer robot that is given the task to dribble a ball and
kick it into the goal contains at least two levels of symmetry. The robot itself
is usually mirror-symmetrical regarding its left and right side, so that when it
learned to kick the ball with its left leg, it can automatically kick the ball with
its right leg. Furthermore, game situations are mirror-symmetrical with regard to
approaching the goal from the left or the right side. Exploiting symmetries can
greatly reduce memory requirements and learning time. In practice, when using
function approximation, this requires to map symmetrical states to the same fea-
tures. Sometimes, there are multiple possible implementations. For example, a
bipedal robot with symmetrical left and right sides that learns to walk can benefit
from this symmetry, but it is not trivial which states should be considered ’mir-
rored’ and which states are ’original’. One solution is to consider all states where
the right foot is in front of the left foot as ’mirrored’ and map (mirror) them to
equivalent states where the left foot is the frontmost foot. Another solution is to
define the state space in terms of stance leg and swing leg, where the stance leg
is the leg whose foot touches the floor. If both feet touch the floor, the stance leg
is the leg whose foot is in front of the other. The latter definition is used in the
remainder of this thesis when setting up state spaces for walking robots. This is
illustrated in Figure 2.2.

Hashing

For a robotic task, the bounds of the state variables are often unknown a priori
and possibly very wide, which makes it difficult to reserve memory storage for the
function approximator for the complete state space in advance. More importantly,
the robot will most likely not visit all possible states inside the state space region
bounded by the bounds of the individual state variables. Therefore, it is beneficial
to store an approximation of the (action-)value function only for states that are
actually observed. Hashing is a convenient method to map a large state space
to a (much) smaller memory space; see, e.g., (Sutton and Barto, 1998). When
combining function approximation with hashing, storage for feature parameters
is only allocated for features associated with state-action pairs that are actually
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Figure 2.2: Bipedal walking robot Leo, showing two states that are mirror-symmetrical
regarding its left and right side. When estimating Q(s, a) with function approximation,
learning time can be decreased by mapping both states to the same features.

required in computations. After computing the state-action space locations of the
features that have non-zero value for a given (s, a), the hashing function4 maps
these feature locations to the memory locations of their parameter values. These
memory locations are guaranteed to lie within a predefined, fixed memory range.

In addition, it is not common for the agent to have tried (or eventually try)
all available actions ak ∈ A for a state sk that it visits. For the commonly used
greedy policy (2.8), however, Q(sk, ak) is evaluated for all ak ∈ A. In this process,
many feature values are requested that have never been updated before and will
not be updated that time step if their corresponding action is not selected. The
parameters of these features contain initialization values. In these cases, it suffices
to simply return the initialization value of these features by computation, instead
of reserving actual memory for the storage of these feature parameters. This
further reduces memory requirements.

2.4 Control Delay in Reinforcement Learning for Real-Time Dynamic
Systems: A Memoryless Approach

Control delay – the delay between measuring a system’s state and acting upon
it – is always present in real systems. Real-time learning control algorithms that
require a considerable amount of computation can result in a significant control
delay. This section discusses the effects of control delay on real-time RL and
proposes possible counter measures. This section is largely based on (Schuitema
et al., 2010a).

4In principle, any hashing function can be used. The software implementations used through-
out this thesis made use of the MurmurHash2 hashing function (Appleby, 2008) because of its
good hashing properties and small computational footprint.
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2.4.1 Introduction

Reinforcement Learning (RL) is a promising approach to adding autonomous
learning capabilities to robotic systems. However, examples of real dynamic sys-
tems controlled in real-time by RL are still rare; most work on RL is done in
simulation. An important difference between such real systems and their sim-
ulations is the presence of time delay between observation and control action:
control delay. Every such real system that runs on-line RL will have a non-zero
control delay caused by its sensors, actuators and controller due to computation
and communication (also called network delay). The delay is illustrated in Fig.
2.3. In this work, we show that besides negatively influencing the final solution,
control delay can be particularly detrimental to the learning process itself, if it
remains unaccounted for.
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Figure 2.3: Schematic illustration of control delay between measuring state sk and
acting accordingly with action ak. (a) No delay. (b) With control delay.

Although control delay is well studied in the context of conventional (non-
learning) control, the influence of control delay on RL has received little atten-
tion in the RL literature. Currently, there are two state-of-the-art approaches.
In the first approach, the state space of the learning agent is augmented with
the actions that influenced the evolution of the system during the delay interval
(Katsikopoulos and Engelbrecht, 2003). While this approach works well, the state
space increase can cause a large increase in learning time and memory require-
ments. The second approach uses state prediction. A model of the underlying
undelayed process is learned, and the control action is chosen for the future state
after the delay as predicted by the model (Walsh et al., 2009). This adds the
extra burden of acquiring a model of the system, while the added computational
complexity may actually increase the delay itself.

As opposed to methods that augment the state space or estimate an explicit
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model, memoryless methods form an alternative approach. Such methods base the
next control action only on the most recent observation. A memoryless method
that is known empirically to produce good results is SARSA(λ) (Sutton and Barto,
1998; Walsh et al., 2009). The downside of memoryless approaches is that they
are likely to perform suboptimally, because they have no means of predicting the
state in which the control action will take effect. Furthermore, SARSA(λ) does
not take the presence of delay into account in its learning updates. However,
memoryless methods do not have the added complexity of learning a model or
enlarging the state space, and may perform acceptably, especially when the delay
is small.

In this work, we introduce two new memoryless, online algorithms – dSARSA(λ)
and dQ(λ). While their complexity remains comparable to that of SARSA(λ) and
Q(λ), they exploit the knowledge about the length of the delay to improve their
performance. In addition, we present an extension to these algorithms which is,
under certain conditions, applicable to systems in which the delay is not an inte-
ger multiple of the time step. While this is most likely to be true for real robotic
systems, this case has not been considered in previous literature on RL with delay.

2.4.2 Control delay in MDPs

In this section, we define an extension of the MDP definition from Section 2.1
that models control delay. We define control delay as the time delay between the
moment of observing a state and the moment when acting upon that state takes
effect. Control delay, which we will further refer to simply as delay, can be caused
both by delayed observation, e.g., due to transportation of the measured data,
and by delayed actuation, e.g., due to lengthy computations. In this work, we
only consider constant delays5. We define the relative delay τd as

τd =
Td

h
(2.24)

with Td the absolute delay and h the sampling period.

In (Katsikopoulos and Engelbrecht, 2003), it is shown that from the point
of view of the learning agent, there is no functional difference between observa-
tion delay and action delay; both add up to the delay between the moment of
measurement and the actual action.

From the TD error definitions for SARSA and Q-learning (2.11), it can be
seen that the estimate of the Q-function is adjusted every time step according to
a supposedly Markovian (stochastic) state transition based on state sk and action
ak; the agent learns the effect of executing action ak. In the delayed case, the
action that is executed in sk is not ak. If τd is an integer, i.e., the delay is an

5Variable delays in real robotic systems (interesting for future work) can be made (nearly)
constant by artificially adding delay to the system’s inherent delay until every sample meets the
system’s worst case delay.
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integer multiple of h, the actually executed action is ak−τd . If τd is not an integer,
two actions are (partially) active during the state transition from sk to sk+1.

The fact that state transitions become dependent on actions selected in the
past, which are not part of the input of the learning agent, results in a violation
of the Markov property. This relates the problem of delay to the framework of
Partially Observable MDPs, or POMDPs.

Existing approaches to MDPs with delay

Delay implies that decisions take effect in future states. When the future state
(distribution) can be predicted from the most recent observation and the up-
coming actions, e.g. by an explicit state transition model, optimal action selec-
tion becomes possible again. From (Katsikopoulos and Engelbrecht, 2003), it is
known that when the state space of the MDP is expanded with the actions taken
in the past during the length of the delay, forming the augmented state space
Iτd = S × Aτd with τd integer-valued, a constant delay MDP can be reduced to
the regular MDP 〈Iτd , A, T,R〉. This formulation makes it possible to use ex-
isting RL techniques to solve the delayed case. However, since the state space
dimensionality grows with the number of delay steps, learning time and memory
requirements will rapidly increase with this approach.

In (Walsh et al., 2009), an approach called Model Based Simulation is pre-
sented, in which a state transition model of the underlying undelayed MDP is
learned by matching actions with the states in which they actually took place.
Model-based RL is then used to estimate the optimal (action-)value function.
However, such an approach has the additional burden of learning an explicit
model of the system.

A memoryless policy is a policy that only bases its actions on the current state
s, despite the delay. This means that it does not take into account the future state
in which the action takes effect. Therefore, it is likely to perform worse than meth-
ods that use a model for state prediction. From (Singh, Jaakkola, and Jordan,
1994), it is known that the best memoryless policy of a POMDP can be arbitrarily
suboptimal in the worst case. However, this does not mean that a memoryless
policy cannot achieve an acceptable level of performance in a given problem. In
(Loch and Singh, 1998), it is argued that SARSA(λ) performs very well in finding
memoryless policies for POMDPs, compared to more sophisticated and compu-
tationally much more expensive methods. In (Walsh et al., 2009), Model Based
Simulation is also compared with SARSA(λ), which performs surprisingly well,
but not as well as their model-based approach.

In this work, we will use the knowledge on the source of the partial observabil-
ity - the delay, and its length - to create memoryless algorithms that outperform
SARSA(λ), while having similar complexity. They do not enlarge the state space
and they are model-free.

In all the aforementioned work, only delays of an integer multiple of the time
step were considered, while in real-time dynamic systems, this is usually not the



26 REINFORCEMENT LEARNING FOR REAL, AUTONOMOUS ROBOTS 2.4

case. Therefore, we also present an extension to our algorithms that make them,
under certain conditions, applicable to the case where τd can have any non-integer
value.

2.4.3 TD learning with control delay: dSARSA and dQ

We now present our contribution: modified versions of SARSA and Q-learning
that exploit knowledge about the delay. In these versions, instead of updating
Q(sk, ak), updates are performed for the effective action âk that actually took
place in sk. We will first consider the case where τd is an integer, which results
in the following effective action

âk = ak−τd . (2.25)

The TD errors are computed as follows

δTDdSARSA,k+1 = rk+1 + γQ(sk+1, âk+1)−Q(sk, âk)
δTDdQ,k+1 = rk+1 + γmax

a′
Q(sk+1, a

′)−Q(sk, âk) (2.26)

We call these variants dSARSA and dQ, where ‘d’ stands for ‘delay’. Both al-
gorithms are memoryless, which means their policy depends only on the current
state. Action execution is still delayed. They use the knowledge on the length of
the delay to improve the learning updates. Eligibility traces can be introduced by
modifying (2.13) at the following point: ek+1(s, a) = γλek(s, a) + 1 if s = sk and
a = âk. We will now discuss the most important properties of dQ and dSARSA.

Behavior of dQ-learning

Regular Q-learning is an off-policy algorithm, which means that Q(s, a) is not
based on the action selection policy. The only restriction on the action selection
policy is that all state-action pairs continue to be updated. In dQ-learning, we
restored the temporal match between states and actions. This means that with
dQ-learning, the action-value function will converge to the optimal action-value
function of the underlying undelayed MDP. Action selection itself, however, still
suffers from control delay.

When combining dQ-learning with eligibility traces, forming dQ(λ)-learning,
convergence is not guaranteed, since eligibility of preceding states is only valid
when the greedy policy is being followed. With delayed execution, this is generally
not the case. In our empirical evaluations in Section 2.4.4, we will indeed see that
the use of eligibility traces can lead to rapid divergence. However, dQ(0) is still
an interesting algorithm due to its convergence properties, and we expect it to be
an improvement over regular Q-learning.
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Behavior of dSARSA

Regular SARSA is an on-policy algorithm. Therefore, the estimated Q-function
is based on the policy’s action selection probabilities. In the case of dSARSA,
execution of actions is still delayed. Therefore, although we restored the temporal
match between states and actions in the updates, the actual policy still depends
on the history of the agent. The convergence proof of SARSA (Singh et al., 2000)
requires the policy to be either greedy in the limit with infinite exploration (GLIE;
e.g., ε-greedy with decaying ε), or restricted rank-based randomized (RRR; e.g.,
ε-greedy with fixed ε), both of which dSARSA cannot provide. dSARSA can
choose, but not execute, greedy actions with respect to its value function due to
the delayed execution of actions. This convergence proof therefore does not hold.
However, we expect that dSARSA is still an improvement over SARSA due to
the incorporation of knowledge about the delay. When combining dSARSA with
eligibility traces, forming dSARSA(λ), the eligibility of preceding states is in this
case justified because the action-value function is based on the actually executed
policy (the delayed policy). Therefore, dSARSA and dSARSA(λ) are expected to
give the same solution.

From the above reasoning and from existing convergence proofs, we can con-
clude that from the algorithms Q(λ), dQ(λ), SARSA(λ) and dSARSA(λ), only
dQ(0) (i.e., without eligibility traces) is guaranteed to converge in the delayed
case. More insight into the convergence of dSARSA(λ) and dQ(λ) remains im-
portant future work.

The actions that are selected prior to visiting a state s are responsible for
the action actually executed in s. While these actions can in principle not be
predicted from s, their probability distribution might contain structure when the
policy is quasi-stationary and the distribution of initial states is fixed. When the
learning rate α is reduced, the policy changes less rapidly, and Q-values represent
the average of a larger number of experiences. From this reasoning, we expect the
performance of memoryless policies to improve with decreasing α. In Section 2.4.4,
we will verify this hypothesis.

Note that although dSARSA and dQ are memoryless and model-free, they
can still benefit from a (learned) state transition model by using it to predict the
future state after τd steps and selecting the action for that predicted state.

Non-integer values of τd

We will now consider the case where τd is not an integer. From Figure 2.3, it can
be seen that the control action is a combination of the two previously selected
actions ak−dτde and ak−dτde+1 with dτde the smallest integer for which τd ≤ dτde.
Therefore, dSARSA and dQ cannot be directly applied in this case. We will
now show that in the special case where the system dynamics can be accurately
linearized at arbitrary states, over the length of one time step, it is possible to
estimate the effective action âk without knowledge of the system dynamics. In
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case Td < h, 6the state transition of the real system can be shown to be, in a first
approximation, equivalent to the case where the system would have executed the
following virtual effective action âk during the full time step:

âk = ak−1τd + ak(1− τd) (2.27)

Here we assume that the linear combination of two actions results in a new,
valid action, which is the case for, e.g., actions of type motor torque or voltage.
Switching to the continuous time notation, the locally linearized system at time
t = kh around state s(t) has the form

ṡ(t) = Fs(t) +Ga(t) (2.28)

with

a(t) =

{
ak−1 if kh ≤ t < kh+ Td

ak if kh+ Td ≤ t < kh+ h
(2.29)

and with F and G matrices. The exact solution to (2.28) in the delayed case with
Td < h is

s(kh+ h) = eFhs(kh) +
kh+Td∫
kh

eF (kh+h−t′) dt′Gak−1 +

kh+h∫
kh+Td

eF (kh+h−t′) dt′Gak

= eFhs(kh) + (2.30)

eF (kh+h)

 kh+Td∫
kh

e−Ft
′
dt′Gak−1 +

kh+h∫
kh+Td

e−Ft
′
dt′Gak



For small time steps, we can approximate the integrals of the form
t2∫
t1

e−Ft
′
dt′ as

t2∫
t1

e−Ft
′
dt′ ≈ I(t2 − t1)− 1

2
X(t22 − t21) ≈ I(t2 − t1) (2.31)

where the second order terms are neglected. Therefore, for small time steps, the
approximate solution to (2.28) in the delayed case becomes

s(kh+ h) = eFhs(kh) + eF (kh+h) ((Td)Gak−1 + (h− Td)Gak) (2.32)

6To avoid notation clutter, we make the assumption that Td < h. However, generalizing the
results to larger delays is straightforward.
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The effect of executing âk from (2.27) can be analysed by considering the exact
solution to (2.28) where a(t) = âk for kh ≤ t < hk + h:

s(kh+ h) = eFhs(kh) +
kh+h∫
kh

eF (kh+h−t′) dt′Gak−1
Td

h
+

kh+h∫
kh

eF (kh+h−t′) dt′Gak
h− Td

h

= eFhs(kh) +

eF (kh+h)

kh+h∫
kh

e−Ft
′
dt′
(
Gak−1

Td

h
+Gak

h− Td

h

)
(2.33)

When applying the small time step approximation from (2.31) to (2.33), it be-
comes equal to (2.32), showing that the delayed system behaves approximately as
a non-delayed system in which âk was active. In this special case, dSARSA and
dQ can again be applied using (2.27).

2.4.4 Empirical evaluations

In this section, we empirically evaluate the performance of dSARSA and dQ on
two test problems. We consider integer values of τd in a W-shaped maze – a
gridworld problem – and non-integer values of τd in the simulation of a two-link
manipulator – a robotic system.

Integer values of τd: the large W-maze

We first consider the large W-maze, see Figure 2.4b, in which τd is always an
integer. This is a modified version of the W-maze, see Figure 2.4a, that was
used in (Walsh et al., 2009) to empirically illustrate several approaches to delayed
MDPs. In the original W-maze, a delay of one time step easily results in the agent
missing the middle corridor that leads towards the goal. The larger corridors and
goal state of the large W-maze make the effect of delayed policy execution less
severe.

We evaluated the performance of dQ(0), dQ(λ) and dSARSA(λ) in compari-
son with Q(λ) and SARSA(λ). While dSARSA(0) is merely a slower version of
dSARSA(λ) and of less interest, dQ(0) is the only algorithm with convergence
guarantees (see Section 2.4.3) and we therefore include it. We set the delay to
2 time steps. The only reward in the system is −1 for every action, so that the
agent learns to reach the goal as fast as possible. We did not use discounting
(γ = 1). We used the ε-greedy policy (2.9) with ε = 0.1 (fixed).
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GOALG

Figure 2.4: The W-maze (left) and the large W-maze (right), which has larger corridors
and a larger goal region.

First, we compared the policy performance from the solutions found by all
methods, as a function of the learning rate α. While keeping α constant, the agent
was allowed to learn for 1 · 106 time steps. The policy performance was periodically
measured by letting the agent start a trial from each of the 60 possible positions in
the maze, execute the greedy policy until the goal was reached (with a maximum
of 300 steps), and summing up all trial times (ergo, smaller is better). The average
of all performance measurements during the last 5 · 105 steps is plotted against α
in Figure 2.5.

The graph shows that for all methods, except dQ(0), the performance is much
better for smaller values of α. This confirms the hypothesis that memoryless
policies for delayed MDPs can improve their performance by averaging over more
samples. This averaging is not needed by dQ(0). Despite its lack of eligibility
traces, dQ(0) can still learn fast because it allows for high values of α.

Furthermore, we can observe that at equal values of α, dSARSA(0.8) per-
formed at least twice as well as SARSA(0.8). Instability of dQ(0.8) occurred for
larger values of α (Q-values quickly went to infinity).
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Figure 2.5: Comparison of several memoryless TD algorithms on the large W-maze
problem, showing the final average performance (lower is better) at different values of α,
with α on a log scale (average of 20 runs).
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To compare the learning speed of all methods, we again kept ε and α constant.
However, we chose a different α for each method for the following reason. An
increase in α results in faster learning, but also in a decrease in final performance.
Therefore, we chose the largest values of α for which each method was able to
achieve approximately the same final performance of 800 or better. This resulted
in the following values: dQ(0): α = 1, dQ(0.8): α = 0.2, dSARSA(0.8): α =
0.02, Q(0.8): α = 0.02, SARSA(0.8): α = 0.2. dQ(0) is an exception; for this
method, the average performance did not drop below approx. 1000. The result
can be found in Figure 2.6. We can observe that in order to achieve the same
final performance, dSARSA(0.8) learns much faster than SARSA(0.8) and Q(0.8).
Although dQ(0) does not benefit from eligibility traces, in this particular test it
can learn as fast as dQ(0.8) and dSARSA(0.8) because it allows for much higher
values of α.
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Figure 2.6: Learning curves of several memoryless TD algorithms on the large W-maze
problem. The learn rate α for each method was set to a value that produced a performance
measure < 800 (average of 20 runs).

Non-integer values of τd: the two-link manipulator

We now consider the simulation of the two link manipulator - a robotic system
- depicted in Figure 2.7. This system has been used in previous work (see, for
example, (Buşoniu et al., 2007)), has limited complexity and is well reproducible.
In this system, the delay can be any non-integer multiple of the time step h,
which is generally the case for robotic systems. The system has two rigid links,
which are connected by a motorized joint. One end of the system is attached to
the world, also with a motorized joint. The system moves in the two dimensional
horizontal plane without gravity according to the following fourth-order non-linear
dynamics:

M(ϕ)ϕ̈+ C(ϕ, ϕ̇)ϕ̇ = τ (2.34)
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where ϕ = [ϕ1, ϕ2], τ = [τ1, τ2], M(ϕ) is the mass matrix and C(ϕ, ϕ̇) is the
Coriolis and centrifugal forces matrix.

m1

m2

l2

l1

motor1

motor2

1

2

φ

φ

Figure 2.7: Schematic overview of the two-link manipulator

We consider delay values of 0 <= Td <= h. The task of the system is to
accomplish ϕ1 = ϕ2 = ϕ̇1 = ϕ̇2 = 0 as fast as possible by choosing torque signals
for both motors. To this end, a reward is given when the angles and angular
velocities are within a small region around 0: |ϕ| < 0.17rad and |ϕ̇| < 0.2rad/s.
Furthermore, a time penalty is given at each time step. The reward function r is

rt =

{
100, if |ϕt| < 0.17 and |ϕ̇t| < 0.2
−1, all other cases (time penalty)

(2.35)

The sampling period h = 0.05s, the learning rate α = 0.4, the exploration
rate ε = 0.05 (again using the ε-greedy policy (2.9)), the discount factor γ = 0.98
and the trace decay rate λ = 0.92. We use tile coding function approximation
(Sutton and Barto, 1998) with 16 tilings to approximate the Q-function. The
state s = (ϕ1, ϕ2, ϕ̇1, ϕ̇2). The tile widths for the state space are 1

12 rad in the
ϕ1 and ϕ2 dimensions and 1

6 rad/s in the ϕ̇1 and ϕ̇2 dimensions. The tile widths
for the action space are 1Nm in both dimensions. The action space A = τ1 × τ2
is divided in 5 equidistant discrete steps in both dimensions, allowing for a total
of 5· 5 = 25 torque combinations. These parameters were selected empirically
because they produced stable learning; they were not systematically optimized.

We first tested the effects of a delay of one time step or less using regular
SARSA(λ). The results can be found in Figure 2.8. We can observe that for this
particular system and for α = 0.4, the system without delay smoothly converges.
Delay values of Td ≥ 0.025s (τd ≥ 0.5), however, slow down the learning process
or cause frequent divergence/unlearning. With a delay of a full time step, the
system hardly learns for this value of α.

Next, we tested dSARSA(λ), using (2.27) to calculate the effective action.
To this end, we set the delay to Td = 0.037s (τd = 0.74), a value which caused
convergence problems for regular SARSA(λ). We compared it against the ap-
proach of using augmented state space Iτd = S × Aτd with τd = 1, so that
saug = (s, τ1,k−1, τ2,k−1) (tile widths for τ1,k−1, τ2,k−1 are 1Nm). The results can
be found in Figure 2.9. We can observe that for both approaches, the delayed sys-
tem nicely converges to a solution, unlike with SARSA(λ) (see Figure 2.8). With
dSARSA(λ), the system learns faster than with SARSA(λ) with augmented state
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Figure 2.8: Learning curve of the two-link manipulator running regular SARSA(λ) for
τd = 0, 0.24, 0.50, 0.74 and 1.0 (average of 20 runs).

space, but slower than the original, non-delayed system with SARSA(λ). Both
methods have statistically indistinguishable final system performance. This sug-
gests that the possible performance increase from a model based approach, such
as in (Walsh et al., 2009), will only be marginal in this case.
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Figure 2.9: Learning curves of the two-link manipulator with a delay of τd = 0.74,
comparing dSARSA(λ) and SARSA(λ) with augmented state space, showing the average
of 60 runs. The shaded area shows the 95% confidence bounds on the mean.

2.4.5 Conclusions

In this work, we proposed new memoryless, model-free, online TD learning al-
gorithms for MDPs with delay – dSARSA(λ) being the most important one –
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that can perform better than classical TD algorithms by exploiting knowledge
about the delay. We showed in a gridworld problem that dSARSA(λ) can sig-
nificantly outperform Q(λ) and SARSA(λ) in terms of learning speed and final
policy performance.

We extended our algorithms to systems in which the delay is not an integer
multiple of the time step. We showed in a simulation of a robotic system that a
control delay of less than a single time step can already degrade learning perfor-
mance with classical SARSA(λ), while dSARSA(λ) can successfully learn in that
case. dSARSA(λ) learned faster than a memory based approach – SARSA(λ)
with augmented state space – while its policy performance did not degrade.

We can conclude that dSARSA(λ) is a better memoryless approach than clas-
sical SARSA(λ) for MDPs with delay, and that in some cases, it can compete
with memory based approaches.

2.5 Conclusions

In this chapter, the main framework for RL was introduced – the Markov Decision
Process – together with the main techniques that will be used throughout this
thesis: temporal difference learning and linear function approximation. In addi-
tion, techniques have been discussed that reduce the computational requirements
of RL in large state-action spaces, being tile coding, exploiting symmetry and
using hashing.

Finally, we showed that time delay in the control loop can have a strong nega-
tive influence on the convergence of TD learning. We proposed the new memory-
less TD algorithm dSARSA(λ) that can perform better than regular SARSA(λ)
while maintaining low computational complexity. If a system is accurately lin-
earizable at the time scale of a single state transition, the method can also be
applied when the control delay is not an integer multiple of the sampling period.



Chapter 3

Reinforcement Learning on a real
bipedal walking robot

Successful demonstrations of RL on real robots are much less common than suc-
cessful applications in simulation. One possible cause is the lack of suitable robotic
hardware specifically designed for RL. This chapter presents the design and ex-
perimental results of a bipedal walking robot specifically designed for RL: robot
Leo. We chose to develop a walking robot because walking is a complex and chal-
lenging task, of which we1 have extensive knowledge from previous work (Collins
et al., 2005; Hobbelen, 2008). In addition, the topology of a bipedal walking robot
creates the opportunity to learn other challenging tasks, such as walking stairs
and standing up. The hardware design of robot Leo, following from an analysis
of the requirements, is presented in Section 3.1. In Section 3.2, the software re-
quirements and design are presented, as well as the simulation environment. In
Section 3.3, experimental results in simulation and on the prototype are presented
for two tasks; a relatively simple task of stepping up a stairs step with one leg,
and the more complex task of learning to walk.

3.1 Hardware design

The specific properties and limitations of real robots have a large impact on their
suitability for RL experiments. In this section, we derive the main hardware and
software requirements that a RL robot should fulfill, and present our biped robot
Leo that was specifically designed to meet these requirements. We verified its
aptitude in autonomous walking experiments using a pre-programmed controller.
Although there is room for improvement in the design, the robot was able to walk,
fall and stand up without human intervention for 8 hours, during which it made
over 43, 000 footsteps. This section is based on (Schuitema et al., 2010b).

1The Delft Biorobotics Laboratory

35
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3.1.1 Introduction

To be able to model a learning task of a real robot as an MDP, the robot and its
environment need to meet certain requirements. For example, it should be possible
to obtain a state signal that has the Markov property. In addition, the learning
process itself – specifically the process of exploration – can be very straining for
the hardware. Most robotic hardware lacks the robustness to withstand a large
number of learning trials with random exploration. Although the limitations of
real hardware are known by experienced researchers, we found no publication that
explicitly maps the essential requirements of the RL framework onto hardware
and software requirements. This makes it difficult to develop robots suitable for
RL. Therefore, this section reports the design of prototype ‘Leo’, see Figure 3.1,
that we explicitly developed for online, autonomous RL research. Leo is a 2D
biped (two-legged) robot. We selected the bipedal walking motion as our example
task for two reasons. It is a complex, challenging task, and, we have extensive
experience with it from previous work (Collins et al., 2005).

In Section 3.1.2, we derive system requirements from the fundamentals of
RL. A system overview of Leo is provided in Section 3.1.3, followed by detailed
hardware and software requirements and their implementation in Section 3.1.4 to
3.1.8. We present our conclusions in Section 3.1.9.

Figure 3.1: Leo: a 2D walking robot designed for Reinforcement Learning. Leo is
equipped with seven motors (hips, knees, ankles and shoulder) and is connected to a
boom construction that provides power and lets it walk in circles. It is allowed to fall,
after which it stands up autonomously.
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3.1.2 Reinforcement Learning requirements

The concept of RL (see Chapter 2) has important implications for the hardware
and software design of a robot that is to be controlled online by RL. Here we
summarize the key properties of RL and the robot design requirements that follow
from it. The resulting requirements will be numbered for easy reference and will
be further explained in the subsequent chapters.

Robustness

A key aspect of on-line RL is that the learning agent explores, i.e., a (small) part
of its actions consists of suboptimal, often random actions with the goal to explore
new terrain and to gain new knowledge. Although exploration can be guided, it
can in principle lead to system damage. For a humanoid robot, the cause is usually
a fall or a self-collision. From simulation of a biped with a complexity comparable
to Leo (Schuitema et al., 2005; Troost, Schuitema, and Jonker, 2008), we know
that learning a walking behavior from scratch by controlling two hip motors takes
approximately 20 hours or more (without counting the time required to stand up)
and hundreds of falls. This leads to the following requirement:

1. The robot can walk over a period of days and is robust against falls and
self-collisions.

In Section 3.1.4, we discuss how this requirement has influenced the design of our
robot.

State transitions

The common approach in RL is to model the process of learning a task as a Markov
Decision Process (MDP) with discrete time steps k ∈ N and sampling period h,
see Section 2.1. The MDP defined as the 4-tuple 〈S,A, T,R〉. Here, S is a set of
states and A is a set of actions. The state transition probability density function T
defines the probability density over S for the next system state sk+1 ∈ S, reached
after executing action ak ∈ A in state sk ∈ S. The reward function R defines
the scalar reward of a state transition as rk+1 = R(sk, ak, sk+1). The goal of the
learner is to find a control policy that maps states to actions and that maximizes
the expected cumulative sum of rewards from R.

An MDP has the Markov property, which means that T and R only depend on
the current state-action pair and not on past state-action pairs, nor on information
excluded from s. The on-line learning robot will experience a stream of events
of the form s0, a0, r1, s1, a1, r2, s2, ... For the Markov condition to be true, every
observation [sk, ak, rk+1, sk+1] has to be in accordance with T at any moment
during a learning experiment, which might take days. In this period, T must be
stationary. This leads to the following robot design requirements:

2. The robot can observe state s, which holds all information relevant to the
learning problem.
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3. The effect of action a in every state s is predictable.

4. The sampling time is constant.

5. T must be stationary within a time frame of tens of hours.

In addition, within the MDP framework, a control action ak that is based on state
observation sk is assumed to take place immediately after the observation itself,
which poses an additional requirement:

6. The time between measurement sk and action ak is zero.

In a real robot, these conditions can only be met approximately. The system will
suffer from sensor and actuator noise, finite accuracy in the periodic timing, and
computational delays due to, e.g., running the learning algorithm. However, we
made specific design decisions that should keep the violation of these requirements
to a minimum. These are discussed in Section 3.1.5, 3.1.6, 3.1.7 and 3.1.8.

System complexity

For the learning system to discover the long term value of all actions a ∈ A in all
states s ∈ S, in principle, it should experience all actions in all states at least a
number of times. This search space can be limited in several ways by changing
the learning algorithm. Examples are restricting the allowed policies by param-
eterizing them (policy search and policy iteration methods), extracting recurring
tasks by using hierarchies of learning tasks (Hierarchical Reinforcement Learning),
and assuming that neighboring states and actions have related values (function
approximation and generalization). However, all current RL learning algorithms
have in common that they become intractable for very large state-action spaces.
For robots, the state-action space grows exponentially in the number of degrees
of freedom. Therefore, our robot design should meet the following additional
requirement:

7. The robot’s number of degrees of freedom, and thereby its state-action space,
is limited such that learning succeeds within a reasonable time frame.

This requirement is further discussed in Section 3.1.3.

3.1.3 System overview

The robot was designed by checking all 7 requirements, which are explained in
more detailed in Section 3.1.4 to 3.1.8. Although the complete system design is
the final result (i.e., the conclusion) of Section 3.1, we provide the overview here
at the start for ease of understanding.

Leo (see Figure 3.1) is small, approx. 50 cm in height, and light, approx. 1.7
kg. It has foam bumpers on both sides of the top of the torso and between the
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hip motors, thereby capable of taking numerous falls in a wide range of config-
urations. From simulation results on bipedal walking robot ‘META’ (Schuitema
et al., 2005; Troost, Schuitema, and Jonker, 2008), we know that learning to walk
can take place in an acceptable time frame of days for a robot with 7 degrees
of freedom. Therefore, to comply with requirement 7, we designed our robot to
have a number of degrees of freedom comparable to robot META. Leo has 7 servo
motors (Dynamixel RX-28; max. torque 3 Nm): two in the ankles, knees and hips
and one in its shoulder. The servo motors communicate with an embedded com-
puter (VIA Eden 1.2GHz CPU and 1GB RAM) over RS-485 serial ports. They
are capable of position control and voltage control, and can communicate their
current position and temperature. While previous research has shown the added
advantage of accurate torque control (Hobbelen, De Boer, and Wisse, 2008), which
these servo motors cannot accomplish, they are commercially available, all-in-one,
easily replaceable packages. Leo’s feet have pressure sensors that measure foot
contact. Furthermore, Leo has an arm that enables it to stand up after a fall.

Leo is connected to a boom (length 1.72m) with parallelogram construction.
This keeps the hip axis always horizontal, which makes it effectively a 2D robot
and thus eliminates the sideways stability problem. The boom also supplies power
to the robot and makes it walk in circles, which together guarantee long-term
continuous operation. An encoder in the hip joint measures the absolute angle
between the torso and the boom. The foot contact points can roll sideways, see
Figure 3.1, which is needed to counter the effects of running in circles.

A wide variety of learning tasks can be conducted, ranging from learning a
walking motion by actuating the two hip motors (keeping the ankles stiff; vir-
tual constraints on the knees), to learning optimal ankle push-off, to learning a
complete stand up behavior using all 7 motors.

To test the hardware, a controller was programmed (i.e., not learned) ac-
cording to the limit cycle walking paradigm (Hobbelen, 2008). Typical walking
strides of Leo controlled by this controller are shown in Figure 3.2 by means of
the evolution of the angles of both hip motors and the torso.

3.1.4 Robustness

In order to comply with requirement 1, the robot should be able to walk over a
period of days and be able to withstand falls and self-collisions. This has led to
the following design choices.

By keeping the robot small, approximately 50 cm in height, the impacts during
a fall are kept small as they scale more than cubically with the robot’s height.
By choosing ’smart’ actuators with internal protection against overloading and
overheating, the actuators are less likely to fail. In case they do fail, they are
easy to replace. To reduce the impact on the torso during a fall, foam was placed
on both sides of the top of the torso. A strong leaf spring with added foam
between the two hip motors protects them at all possible hip joint angles. In the
construction of previous robots, we used micro switches in the feet to detect foot
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Figure 3.2: The hip angles and torso angle for typical strides of Leo when using a limit
cycle walking controller. The strides are aligned at left heel strike.

contact, which were quite sensitive to failure. To increase the robustness of this
design, we used pressure sensors in the feet, which reduced the number of moving
parts.

Empirical verification and design improvements

The first tests with our robot exposed a number of weak mechanical links. The
weakest links were the aluminium brackets that were bought with the servo mo-
tors, which broke several times. In the hips, we replaced these with custom
designed brackets that had increased flange thickness (2.5mm) and were made of
higher quality aluminium; in the knees, we improved the mounting of the bracket
to the lower leg to decrease the chance of fatigue.

The single board computer formed a weak link as well. At each impact with
the floor, the inertia of the heavy CPU cooler caused significant bending of the
motherboard, which ultimately led to loose contacts in the motherboard area
around the CPU. To solve this, we improved the mounting of the CPU cooler and
the mounting of the motherboard to the robot.

After implementing the above mentioned changes, we tested the robustness of
the robot by letting it walk using a pre-programmed (i.e., non-learning) limit cycle
walking controller until it failed. The hip angle was controlled to a fixed reference
angle using voltage control until the detection of the next heel strike. Upon foot
contact, the back leg performed knee flexing while swinging forward. The torso
was controlled to a reference angle as well. The robot made over 43, 000 footsteps
and walked more than 6, 000 meters in a period of about 8 hours, of which 2.3
hours were spent to periodically let the motors cool down by resting on the floor.
The robot fell 30 times (mostly automatically, to cool down) and stood up by itself
afterward. The experiment stopped due to a rare software bug (that has now been
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fixed). Inspection of the machine revealed the failure of the potentiometer of an
ankle motor. One foot sensor also stopped working. In addition, the gearboxes
of the hip motors showed severe damage.

Although the operational lifetime of the robot is approaching the same order
of magnitude as our requirement – days of autonomous operation – this goal is
not met yet. To further increase the lifetime of the hardware, the potentiome-
ters inside the servo motors (also see Section 3.1.5) were replaced by contactless
magnetic encoders. To increase the lifetime of the gearboxes in the hip joints,
torsionally flexible coupling elements were placed between the outgoing motor
axle and the bracket to dampen high torques on the gearbox (see Section 3.3.2
for a more detailed explanation). These originate from the motor itself when
large voltage differences are suddenly applied (a learning controller may do this
regularly as exploratory actions) and from impact with the floor during walking
and falling.

3.1.5 Reliable state information

To produce reliable and reproducible state information (requirement 2), the robot
should be able to accurately measure its complete state and that of the environ-
ment. This section describes the robot’s sensors.

Sensors

The Dynamixel RX-28 servo motors use a potentiometer to record the angular
position. According to the specifications, positions can be measured in the range
[0, 300]◦ with 10-bits accuracy (i.e., 1024 discrete position values can be observed),
or 0.3◦. To verify this, we compared the position readout from 30 servo motors
with the readout from a 13-bit absolute magnetic encoder by means of a custom
made calibration device. This revealed a large spread in linearity and range
of the position information. Local deviations of up to 4◦ and linear deviations
resulting in at most 10◦ have been observed. A few typical error plots are shown
in Figure 3.3. In addition, at approximately 16% of the 1024 possible position
values, the sensor reading would only change after an angular deviation of 0.6◦

instead of 0.3◦, resulting in an effective accuracy of 9-bits at those positions.

While any (stationary) non-linearities in the position readout will not matter
for the learning process - the learning agent simply maps states to actions and
does not have a notion of absolute angles - it does pose a problem when a servo
motor needs to be replaced. In that case, the learning agent would have to adapt
to the new mapping from true angles to measured angles, which is typical for each
motor. We addressed this by creating a lookup table for each servo motor, which
maps the measured angles to the calibrated reference angles.

The servo motors also provide a velocity signal. However, we found the update
rate of that signal to be 7.5Hz, which is too low for our purposes. Therefore,
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Figure 3.3: Typical angle measurement errors from Dynamixel RX-28 servo motors
from calibration with a 13-bit absolute magnetic encoder. While some motors merely
showed local calibration errors, others showed an additional, systematic error that grows
linearly with the position.

we derive the velocity signal ourselves by differentiating the position signal and
filtering the result with a third order Butterworth filter.

A 13-bit absolute magnetic encoder in the hip joint measures the angle between
the torso and the parallelogram construction of the boom, which serves as our
vertical reference.

The robot lacks a sensor that would measure its elevation. Its state is only
fully determined from the other sensors if it is in contact with the floor with at
least one point. Therefore, we have to verify during learning experiments that
the robot touches the floor at all times.

The foot impact with the floor creates vibrations throughout the combined
construction of robot and boom. Such vibrations are visible in the form of large
state transitions, especially in the velocity state variables. The vibrations form a
disturbance on top of the average dynamics of the robot and can make the learn-
ing problem harder. The initial boom construction with two ∅25 × ∅23.5 mm
carbon composite tubes was not stiff enough and caused large vibrations, which
especially disturbed the torso angle measurements. The lower tube was replaced
with a ∅55×∅53 mm tube, which increased the stiffness of the construction. This
reduced the vibrations and increased their frequency. When calculating joint ve-
locities, we filter the differentiated position signal with a third order Butterworth
filter with a low cutoff frequency (10Hz). This further reduces the effect of the
vibrations on the velocity signals.

Environment

When the environment can be considered stationary, its properties are not part
of the state signal. This requires the floor to be flat and level over the whole
walking circle. We encountered problems with height irregularities in the floor;
although they are small - several millimeters - they are significant in relation to
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the leg length of the robot. This is a disadvantage of our small robot design.
Our tests have shown that the floor height variations have a significant negative
impact on the walking behavior. Since the position of the robot within the circle
is not measured (we do not want the robot to ’memorize’ this particular floor),
the floor height irregularities have to be treated as disturbances.

3.1.6 Actuation

The RX-28 servo motors provide position control, velocity control and an open
loop actuation mode. Although the manufacturer describes the latter as torque
control (literally denoted as “endless turn mode”), this mode is actually voltage
control. Below we discuss the available choices for the primitive action – the
control action of the RL agent.

Primitive actions

In the MDP framework, the learning agent chooses a primitive action from the
finite set A. We chose the primitive action a = (U1, U2, . . . , UM )T to be a vector
of desired voltages Ui for each motor (i.e., with the motors operating in voltage
control mode), with M the number of motors controlled by the agent. The volt-
ages are kept constant over the next sampling period h. Each voltage Ui is chosen
from a finite set of values, which is problem dependent. While Leo’s actuators
are servo motors, we chose not to use their internal position controllers, but to
directly set desired voltages, as position control of the joints could lead to unde-
sired behavior during walking. When the robot transitions from a single stance
state to a double stance state, e.g., when it makes a footstep or when its foot acci-
dentally hits the floor while swinging it forward, the extra foot contact results in
additional constraints. When attempting to control the joints towards positions
that are not in accordance with these constraints, the corresponding large forces
could lead to abrupt and undesired movements (e.g., a foot could suddenly lose
contact with the floor).

Especially in the double stance phase of the robot, when the system is over-
actuated, position control of the joints could lead to undesirable behavior during
walking.

For a to have a reproducible effect on the system in every state, some hardware
properties need to be considered. Because of the backlash in each gearbox, the
previous action determines whether the motor will directly exert force on the joint,
or that the gears have to first bridge the backlash. Depending on the sampling
period h and the new action, the time needed to bridge the backlash is variable
and may be relatively large or small with respect to h. Although this topic
deserves further attention to see how backlash exactly influences state transition
probabilities, we did not further investigate the matter. The backlash we observed
in Leo’s motors was approximately 0.5◦. The second hardware property is the
temperature dependence of the DC motor, which we discuss in more detail below.



44 REINFORCEMENT LEARNING ON A REAL BIPEDAL WALKING ROBOT 3.1

Temperature compensation

Initial experiments with the prototype using the pre-programmed walking con-
troller showed that the robot’s walking gait – initially stable enough for the robot
to make 50 or more footsteps – would change significantly over a time span of 30
minutes, up to a point where the robot would typically fall after 5 footsteps. Dur-
ing this time span, the motors would reach a temperature of approximately 75◦C.
Allowing the motors to cool down to room temperature would restore the robot’s
initial stable walking behavior. This revealed the need for a better understanding
of the effects of the temperature of the DC motors on the robot’s actuation.

The motor torque at a given voltage U depends on the temperature of the mo-
tor, which is measured inside the RX-28. While temperature effects are probably
not noticeable when the motor uses its internal control loop for position or ve-
locity control, this effect is important in voltage control mode. In our robustness
test, the pre-programmed controller was based on voltage control.

To comply with requirement 3, we compensated for the temperature depen-
dency. We used the following model (omitting gear box friction) for the output
torque τ as a function of the voltage U :

τ(U) = KτG
U −KτGω

R
(3.1)

with Kτ the motor’s torque constant, R the winding resistance, G the gearbox
ratio and ω the joint angle velocity. However, R and Kτ are temperature de-
pendent. The winding resistance R will change with temperature θ according to

R(θ) = Rref(1 + (θ − θref)αCu) (3.2)

with αCu the thermal resistance coefficient of copper. The torque constant Kτ

will change according to

Kτ (θ) = KT,ref(1 + (θ − θref)NBr) (3.3)

with NBr the temperature dependency of the magnetic flux density of the perma-
nent magnets. The output torque τ can now be written as a function of U and θ:

τ(U, θ) = Kτ (θ)G
U −Kτ (θ)Gω

R(θ)
(3.4)

For voltage control, we can keep the generated torque at a given voltage Uref

constant by supplying a corrected, temperature dependent voltage Ucorr(θ). Its
formula can be obtained by solving the following equation for Ucorr using (3.2),
(3.3) and (3.4):

τ(Ucorr, θ) = τ(Uref , θref) (3.5)

This results in:

Ucorr(θ) = Uref
KT,ref

Kτ (θ)

R(θ)

Rref
+ ωKT,refG

(
Kτ (θ)

KT,ref
− KT,ref

Kτ (θ)

R(θ)

Rref

)
(3.6)
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The DC motor inside the RX-28 was identified as the Maxon RE-max 17, type
214897. We used catalog values for the motor parameters: Kτ = 9.92 · 10−3Nm/A
and G = 193. We used αCu = 3.93 · 10−3K−1. We chose NBr = 0, because its true
value is unknown and relatively small compared to αCu. Detailed experiments on
individual motors can further improve the model and its parameters.

We tested the temperature compensation by letting Leo walk using the pre-
programmed controller. With compensation according to (3.6), we observed quali-
tatively similar walking behavior in the temperature range of 45◦C to 70◦C. Above
70◦C, the robot would start to fall more frequently. Without compensation, the
robot noticeably fell more frequently at much lower temperatures. We can con-
clude that temperature compensation is important when using voltage control,
and that there is room for improvement in our model (parameters).

3.1.7 System invariability

The MDP framework is defined for a stationary state transition function T . For
this to be true for a robotic learning task, the robot and its environment should
be invariable during the length of a learning experiment (requirement 5), or at
least change slowly enough so that the learning system is able to adapt in time
to the changing situation.

To verify the robot’s invariability over time, we performed the following test
during the robustness experiment described in Section 3.1.4. After every 20 min-
utes of walking, we recorded a two minute data set Ψt of state measurements and
actuation patterns: Ψ1,Ψ2, ..,Ψ16. We used half of each data set, Ψt,m, to build
a state transition model using Local Linear Regression (LLR) (see, e.g., (Rencher
and Schaalje, 2000)), and the other half, Ψt,v, for validation. If the system behav-
ior does not vary over time, or changes slowly enough, the model built from any
Ψt1,m should be able to predict state transitions from any other data set Ψt2,v.

To calculate a measure for the predictive power of data set Ψt1,m with relation
to data set Ψt2,v, we did the following. For every state transition (sk+1|sk, ak)
from Ψt2,v, the 40 nearest neighbors around (sk, ak) in Ψt1,m were used to build a
local linear model. This model was then used to produce prediction (ŝk+1|sk, ak).
The root mean squared prediction error RMSE(Ψt2,v|Ψt1,m) over the total vali-
dation set (of N samples) then served as our measure:

RMSE(Ψt2,v|Ψt1,m) =

√√√√√N−1∑
k=0

||ŝk+1 − sk+1||2

N
(3.7)

This error can be compared with the cumulative prediction error from si-
multaneously recorded data by calculating RMSE(Ψtk,v|Ψtk,m). In Figure 3.4,
RMSE(Ψt2,v|Ψt1,m) is plotted for all combinations of the 16 data sets that were
recorded during the 8 hour test described in Section 3.1.4.
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Figure 3.4: Root mean squared error comparison between data sets recorded every 20
minutes during the robustness test. The RMSE generally grows when the time between
the model data set and validation data set becomes larger, which indicates that the system
is not time invariant. Data sets recorded at a later time generally produce larger RMSE
values.

From the results, two things become apparent. We can see that in general,
RMSE(Ψt2,v|Ψt1,m) increases when t1 and t2 are further apart. We can also see
that data sets recorded near the end of the testing period generally produce larger
cumulative error sums than data sets from the beginning of the experiment. In
both cases, the difference is approximately a factor three. We must conclude
that the system is not time invariant. Detailed inspection of the recorded data
revealed that the position signal from the right ankle’s servo motor was heavily
deteriorating during the experiment (the signal showed more and more random
spikes). This is the most likely cause of the observed time variance of the system.
To avoid this type of problem, the potentiometers inside the servo motors were
replaced by contactless magnetic encoders.

The noise in the graph can be (partially) explained by the difference in motor
temperatures (the robot cooled down after every 30 minutes of walking), floor
height variations, and by the fact that the robot would sometimes switch to a
slower walking gait during a significant part of the data recording time. These
sources of time variability can be decreased by improving the temperature com-
pensation model and by decreasing the floor height variations. For the latter, we
changed the robot’s walking surface as described in Appendix A.

3.1.8 Real-time control

In the MDP framework, it is assumed that state transitions occur periodically, i.e.,
that the sampling time is constant (requirement 4). Furthermore, there should be
no control delay, by which we mean the delay between the moment of measuring
the state and the moment of acting upon that state (requirement 6). In reality,
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these requirements can only be approximately satisfied.

Periodic sampling

When the length of a sampling period is not constant, this means that control
actions have varying length and therefore varying effect. This makes the learning
problem harder, because the more variation in sampling period, the more learning
experience is needed to learn the average effect of taking a control action in a
certain state. Good periodic behavior requires hard real-time behavior. For Leo,
we used Linux with the Xenomai real-time extension. On a sampling period of
6666.6µs, we measured an average standard deviation of 230µs (3.4%). Although
this is generally a good result, the magnitude and frequency of allowable sampling
time irregularities on RL are as of yet unknown.

Control delay

Control delay reduces the stability of a system and the possibility to accurately
control it. Control delay is also not modeled in the MDP framework. The con-
sequence of control delay for a RL system is that control actions take effect in
future states, instead of immediately. However, the learning update is by default
performed as if the control action was performed in the measured state. This can
cause convergence problems (see Section 2.4 and (Schuitema et al., 2010a)).

To minimize the control delay in our robot, all processing is done on-board,
which avoids transporting state and actuation signals over a network (transporting
all sensor and actuator lines individually over the central boom joint is imprac-
tical). The RX-28 motors are controlled by a serial link, through which they are
addressed one after another. Although this causes extra delay compared to a par-
allel connection, the serial bus needs only two data cables to address all motors.
Despite the relatively high bus speed of 0.5 Mbaud, the process of requesting po-
sition data and sending actuation commands still takes several milliseconds. By
operating two RS-485 serial ports in parallel, each port controlling the motors of a
single leg, this time was roughly cut in half while avoiding extra cabling. The foot
sensors and hip sensor are read out over a much faster Serial Peripheral Interface
(SPI) bus, causing a small delay in the order of microseconds. In total, measuring
the complete state of the system takes on average 1850µs with a maximum of
2350µs.

Delay in the context of RL has been studied, see e.g. (Walsh et al., 2009), but
not specifically in the context of robotics. In Section 2.4, it is shown that a delay
of less than a time step can already have a negative influence on the learning
performance of a robotic system. Both studies show the benefit of extending
the MDP framework to incorporate the delay. In Section 2.4, on-line temporal
difference learning algorithms are proposed that improve the learning performance
of a robotic system suffering from delay, while maintaining low computational
complexity.
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Software

Leo’s software architecture is event based. The controller software is separated
from the rest of the software. The robot produces state information at regular
intervals, to which a controller (and also a logger, visualization program, etc.) can
subscribe. The state information producing loop is the only periodic loop in the
system; controller calculations, actuation and logging are purely reactive because
the system is event based. The periodic state measurement loop does not wait for
actuation signals, which guarantees real-time periodic state information for all its
subscribers. The robot provides an actuation interface to the controller, contain-
ing functions that can change the actuation signals and return key properties of
the actuators.

Because of the abstraction of the state information interface and actuation
interface, these interfaces can be replaced by simulated versions. As a result,
the controller code can be used both on the robot and in simulation without
modification, which facilitates development. In addition, any controller, whether
pre-programmed or learning, can be connected to the state information and actu-
ation interfaces and can be replaced on-line. For example, during the process of
learning to walk, a pre-programmed stand up behavior can seamlessly take over
control after a fall. More detailed information about the software architecture
can be found in Section 3.2.

3.1.9 Conclusions

With Leo, we designed and built a bipedal walking robot specifically for online,
autonomous Reinforcement Learning experiments. Due to its boom construction
which makes it run in circles and supplies power, its fall protection and its ability
to stand up by itself, LEO can perform RL experiments without human assistance.

We checked the robustness of the system by letting it walk for 8 hours us-
ing a pre-programmed controller, during which it made 43, 000 footsteps and
fell 30 times before failing. Although this is an amount of effort comparable to
that needed for a learning experiment, it was desirable to further improve the
robustness. To this end, we replaced the position recording potentiometers in
the actuators with contactless magnetic encoders and added torsionally flexible
coupling elements to the joints to reduce gearbox damage.

We made the actuation more predictable by compensating for the temperature
of each motor. We verified the invariability of the system over a period of 8 hours
by periodically building a model from measured state transitions, and validating
this model with measurements recorded later. This showed that the system is not
completely time invariant, which was mostly caused by a deteriorating position
recording potentiometer in one of the actuators.

We discussed the timing characteristics of our real-time control loop. The
control delay between measuring the state and actuating the motors is signifi-
cant and negatively influences learning performance in simulation. Therefore, the
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framework of constant delay MDPs is more adequate for online RL experiments
on this robot, which requires different learning algorithms.

3.2 Software design and simulation

In this section, we present a motion control framework that is designed to fa-
cilitate the research on Reinforcement Learning (RL) for real humanoid robots.
By means of abstract interfaces for state observation and actuation, it facilitates
writing C++ controller code that can be tested in simulation first and then run on
the real robot without modifying the code. It provides real-time compatible im-
plementations of common temporal difference RL algorithms. We present results
on the application of this framework to our prototype Leo.

3.2.1 Introduction

The programming of humanoid robots is a challenging task. While the complexity
of the hardware of humanoid robots continues to grow, writing behavioral soft-
ware for them also becomes increasingly complex. Reinforcement Learning is one
of the promising paradigms to reduce this programming effort. Unfortunately,
the number of successful real world applications of Reinforcement Learning on
robots lags far behind theoretical and simulation results. In this work, we collect
the software requirements for doing efficient research on Reinforcement Learning
techniques for real robots. We deduce these requirements from the RL theory
as well as from our own experience with initial implementations on a real robot.
While most required parts of the software are publicly available as separate mod-
ules, to our best knowledge no current project integrates all of them. In our
implementation, we reused software libraries whenever possible for tasks such as
physics simulation and XML interfacing, and complemented it with new code such
as the real-time implementation of RL algorithms.

We tested our framework on prototype Leo, see Figure 3.5. At its core is a
single board computer with a 1.2GHz VIA Eden CPU and 1GB of RAM, run-
ning Linux with the real-time Xenomai extension (Gerum, 2004). All sensors and
actuators are interfaced through this single board computer. We present Leo’s
dynamic system model and compare the real robot with its simulation, as well as
the timing characteristics of the robot.

3.2.2 Software requirements

Reinforcement Learning often requires many trials, in which the robot will in-
evitably make mistakes, which can damage the hardware. Learning in a realistic
simulation can speed up the research by saving hardware maintenance time and
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(a) Robot Leo (b) Simulation of Leo

Figure 3.5: Leo: a 2D walking robot suitable for on-line RL research.

by running several tests in parallel, often faster than real-time2. Because creat-
ing learning controllers can result in complex code, efficient testing of such code
requires 1-on-1 controller code sharing between the real robot and its simulation.
This leads to the following requirements (which are essential, though not unique
for RL robots):

1. A realistic simulation of the robot and its environment can easily be created
and modified.

2. Controller code works in simulation as well as on the real robot without
additional modifications.

When the robot’s dynamics change due to wear and tear, e.g., frictions change,
parts slightly bend or actuator behavior changes over time, the learning problem
might change significantly or even become impossible. Continuing the learning
problem can overwrite and invalidate previous learning data and even damage the
machine. As it is not always possible (or desirable) for a human to continuously
monitor this process, the machine should be able to detect anomalies and call for
maintenance, which leads to the following requirement:

3. The software architecture facilitates the incorporation of a self-diagnostics
module that monitors the system dynamics.

2Here, real-time means that time in the simulation progresses at an equal pace with the
wall-clock time, i.e., the real world time experienced by humans.
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The common framework for RL is that of the Markov Decision Process (MDP)
(see Section 2.1). The learning system is modeled as an MDP with discrete time
steps labeled k = 0, 1, 2, . . .. At every time step, the system transitions from state
sk to sk+1 by taking control action ak. For an MDP to be constant (i.e., time
invariant), every observation sk+1 should only depend on the previous observation
sk and action ak, while ak should take place simultaneously with sk. This means
that the sampling time is constant (shorter or lengthier control actions will result
in different sk+1). Interruptions of the control loop are especially detrimental
in dynamically unstable systems, which may not be able to compensate with
subsequent actions. There also should be no delay between ak and sk, even
though ak is the result of calculations based on sk. In practice, on a real system
these assumptions are only met approximately. From Section 2.4, we know that
the larger the delay between sk and ak, the more difficult the learning process
becomes. However, knowledge about the length of the delay can improve the
learning performance again. This leads to the following software requirements:

4. The sampling period is constant, ergo, the system is real-time.

5. The delay between measurement sk and control action ak is minimal.

6. The delay between measurement sk and control action ak is measurable.

Each learning problem requires different state information (i.e., a different set
of sensor inputs), different learning parameters, rewards and a different training
environment. It should be easy to modify and test such settings, which leads to
the following requirement:

7. The robot’s RL problem can be easily defined and modified without recom-
pilation.

Note that in principle, communication middleware is not required for a RL
motion control system. However, when the gathering of sensor data for state
sk requires addressing multiple sources over various communication protocols, or
when it is desirable to remotely monitor the state of the robot, such middleware
can provide a solution.

3.2.3 Related Work

There is an abundance of software frameworks and toolboxes for robot control.
Some only target the communication infrastructure (two prominent examples of
the real-time and non-real-time variety are OROCOS RTT (Bruyninckx, Soetens,
and Koninckx, 2003) and ROS (Quigley et al., 2009), respectively), providing a
well-defined way for the various components in a robot system to communicate
with each other. Others, such as Player (Collett, MacDonald, and Gerkey, 2005),
are mainly concerned with sensor and actuator abstraction, allowing controllers to
become platform-agnostic. These two are often combined, like in YARP (Metta,



52 REINFORCEMENT LEARNING ON A REAL BIPEDAL WALKING ROBOT 3.2

Fitzpatrick, and Natale, 2006). The platform independence can then be further
exploited to allow a transparent interface to a simulator such as Stage (Vaughan,
2000), Gazebo (Koenig and Howard, 2004) for Player or Webots (Michel, 2004)
for URBI. Finally, there exist projects integrating these systems with additional
libraries for signal processing, visualization or user interfacing (RoboFrame (Pet-
ters, Thomas, and Von Stryk, 2007)) and higher-level scripting (OpenRAVE (Di-
ankov and Kuffner, 2008), URBI (Baillie, 2004)).

Learning systems are much scarcer. While it is easy to obtain implementations
of specific algorithms (FANN (Nissen, 2003)) or algorithmic classes (Reinforce-
ment Learning Toolbox (Neumann, 2005)), they lack integration with (general-
ized) simulators or robot interfaces, reducing their portability. PyBrain (Schaul
et al., 2010) is an exception, using the XML-based XODE (Denniss, 2004) lan-
guage to interface with the ODE (Smith, 2011) dynamics engine. However, since
PyBrain is written in Python, it cannot be used for on-line learning on a dynam-
ically unstable system such as a two-legged robot, as the real-time requirements
for motion control are broken by the garbage collector.

We can observe that the available software is mainly concerned with control
at a higher level than basic motion. This make sense, because there lies the
largest integration effort for most projects. However, for our particular case of
Reinforcement Learning for motion control of unstable systems, which requires
both hard real-time behavior (requirement 4) as well as transparent portability
between simulation and the real system (requirement 2), we needed to come up
with our own solution. It is not intended to replace the higher-level frameworks
or provide the breadth of lower-level algorithm libraries, but rather to integrate
with them and perform the specific task of on-line learning of motion control.

3.2.4 Implementation

Here we discuss the C++ implementation of our motion control framework and
its integration with existing software libraries.

Motion control architecture

The architecture of the motion control framework has three main classes; the
State Transition Generator (STG) that produces state information, the
Actuation Service that provides an interface to the actuators, and the Policy
Player that selects and executes a control policy. The STG and the Actuation
Service are abstract interfaces that form the abstraction layer between con-
trol software and the robot – whether real or simulated. A UML diagram of the
software architecture can be found in Figure 3.6.

The STG is responsible for producing periodic state information, either by
polling hardware sensors or by computing the next state in simulation. By
means of a publish/subscribe architecture (also found in, e.g., (Neumann, 2005)),
state information events are sent to a set of subscribers (derived from the STG
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Figure 3.6: Software architecture of the motion control framework. The State
Transition Generator sends periodic state information events to a collection of STG
Observers, such as the Policy Player and a Logger. The Actuation Service
provides an interface to the robot’s actuators. The STG and Actuation Service to-
gether form a Robot Interface, which can be implemented for a simulation and for
a real robot. Its timing is monitored by the STG Timing class. The Policy Player
selects a Policy from a collection and executes it by passing the state information from
the STG and by exposing the Actuation Service. An arrow points to a base class
(inheritance), a black diamond points to a container class (composition) and a hollow
diamond points to a container/’user’ class (aggregation). White blocks represent generic
classes, grey blocks represent robot specific implementations.
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Subscriber class), the most important one being the Policy Player. Other
possible subscribers are logging and visualization clients. On a real robot, state
events are generated on a real-time periodic basis. In simulation, they are gener-
ated directly after computing the next control action. State information events
are transported using POSIX queues, because these are available on a number of
platforms, including Linux with Xenomai extension.

The Actuation Service is responsible for exposing a generic interface to
the robot’s actuators, which are either simulated or real hardware actuators.
Through the service, the actuator signals can be changed at any time (i.e., in-
stantly, on demand), as opposed to the often used construction of actuating the
system at a fixed time, such as the start or end of the sampling period. Actuation
on demand minimizes the delay between observing the state and acting upon it
and thereby fulfills requirement 5. On the other hand, actuation does not need
to occur after every state information event, but can be done, e.g., every sec-
ond or third sample. In this way, a controller can collect state information more
frequently than it needs to actuate the system, which can be useful for filtering
and event detection. It also facilitates switching between controllers that need to
actuate at different frequencies while letting the STG run at a constant frequency.

The Policy Player is responsible for controlling the robot. It contains
a number of policies, as well as decision logic to switch between them. Based
on the robot state and the applicability of the policies (not all policies can be
executed in every state, e.g., a walking policy is not available when the robot fell
down), it decides which policy should be in control at any given moment. That
policy then receives the current robot state and is given access to the Actuation
Service to control the actuators. Policies can be pre-programmed or derived
from one of our provided TD learning policies. By adding several controllers to the
Policy Player and programming the switching logic, the robot can switch at
run-time between, e.g., a RL controller that learns to walk and a pre-programmed
controller that lets the robot stand up. The policy player can monitor the health
of the system and, if necessary, switch to a fail-safe controller in order to meet
requirement 3 (facilitation of self-diagnostics). Because the state information
events and the actuation interface do not contain properties specific to hardware
or simulation, control policies can be run on both the robot and in simulation,
which fulfills requirement 2.

When an STG and an Actuation Service are implemented in a single
interface, we speak of a Robot Interface. On a real robot, the most important
timing characteristics of this interface, such as the mean and standard deviation of
the sampling period, actuation period and actuation delay, can be automatically
measured by means of a generic STGTiming class, which fulfills requirement 6.

All base classes of the motion control framework can be compiled for Win-
dows, Linux and Linux with Xenomai extension (the latter being important for
requirement 4 of supporting real-time systems), 32-bit and 64-bit variants.
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Reinforcement Learning

Reinforcement Learning policies can be created by deriving from the generic
AgentQ class, see Figure 3.6, which is a real-time implementation of tempo-
ral difference learning3 where real-time means that the policy’s execution time is
bounded and not interrupted by, e.g., system calls.

The AgentQ class supports common TD learning variants such as Q-Learning,
SARSA, R-Learning (Sutton and Barto, 1998), dQ and dSARSA (see Section 2.4.3).
Additionally, Hierarchical Reinforcement Learning is supported in the form of
MAXQ-Q (Dietterich, 2000). To approximate the Q-function, we provide a real-
time implementation of tile coding (see Section 2.3.4), for which we optimized
execution time and memory access latency in order to reduce its computational
footprint on the robot’s embedded computer. An AgentQ instance can be con-
figured at run-time to set the desired algorithm, learning rate, discounting factor,
exploration rate and eligibility trace discounting factor. For tile coding, the max-
imum memory size and number of tilings can be specified, as well as the memory
initialization parameters. Classes inheriting from AgentQ can make additional
elements of the learning task configurable, such as the height of the implemented
rewards, the size of the tiles in each dimension and so on. If the STG supports
sensor and actuator lookup by name (currently only supported in simulation), it
is also possible to specify the sensors and actuators that form the state-action
space of the learning algorithm. Configuration is done by means of an XML
configuration file, which is discussed in more detail below.

Configuration In order to meet requirement 1 and 7, all configurable aspects of the
system, such as the Robot Interface, the Policy Player and its policies, are stored
in an XML file that is read and processed in the initialization phase. The con-
figuration data is made accessible by the Configuration class, see Figure 3.7.
It supplies ConfigSection interfaces to data collections, which in their turn
supply ConfigProperty interfaces to individual data values, such as integers,
booleans, floating point values and strings, as well as ConfigSection inter-
faces to nested data collections. Data sections and properties are identified by a
unique text string. The Configuration class is a generic interface, for which
we implemented a realization for XML files using the TinyXML library. In this
construction, it is easy to support multiple file formats while exposing a single,
stable configuration interface to the framework by means of the ConfigSection
and ConfigProperty classes. The XML configuration format is illustrated in
Listing 3.1. A special include tag allows sub-hierarchies to be read from ancil-
lary files that contain shared configuration data, for example a robot configuration
that is used in different learning environments. In a separate constants section,
numerical constants can be defined for use in mathematical expressions later in the

3We plan to support more RL algorithms using external libraries, but these are usually not
written with real-time processing in mind.
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document. We employ the muParser (Berg, 2010) library to evaluate mathemat-
ical expression in the configuration. Defining constants and using mathematical
expressions greatly facilitates the parameterized definition of robots, environments
and learning settings.

Listing 3.1: Example XML code used to configure the simulation environment and the
controller parameters. The code is pre-processed to substitute <include> tags and to
resolve mathematical constants and expressions.

<cons tant s>
<e u l e r e>2.718281828459</ e u l e r e>
<c t r l F r e q>30 .0</ c t r l F r e q>
<tauTask>4 .0</tauTask>
. . .

</ cons tant s>
<openDynamicsEngine>
<sampl ingper iod>1 .0/ c t r l F r e q</ sampl ingper iod>
<i n c lude>
<f i l ename>r o b o t c o n f i g u r a t i o n . xml</ f i l ename>
<path> l e o /</path>

</ inc lude>
. . .

</openDynamicsEngine>
<p o l i c y>
<a lgor i thm>s a r sa</ a lgor i thm>
<memorySize>1024∗1024∗8</memorySize>
<numTilings>16</ numTilings>
<alpha>0 .20</ alpha>
<e p s i l o n>0 .05</ e p s i l o n>
<gamma>e u l e r e ˆ(−1.0/( c t r l F r e q ∗ tauTask ) )</gamma>
. . .

</ p o l i c y>

Logging The logging of messages to both screen and disk is essential in controller
development for robots. To guarantee 1-on-1 controller code sharing between
the robot and its simulation, an abstract logging base class was created that
uses standard output streams on non real-time operating systems while using the
RTDK real-time printing library on Xenomai.

Simulation

The heart of our simulation environment is formed by the Open Dynamics En-
gine (ODE; (Smith, 2011)), a fast and stable rigid body dynamics simulator.
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Figure 3.7: Software architecture of the configuration framework. The
Configuration class provides an interface to a single configuration file by pro-
viding ConfigSection interfaces to data collections, which in their turn provide
ConfigProperty interfaces to individual data as well as ConfigSection interfaces
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diamond points to a container class (composition) and a hollow diamond points to a
container/’user’ class (aggregation). Line segments indicate association, such as object
creation or reference passing.
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We implemented the STG and Actuation Service interfaces on top of ODE
to integrate it in our motion control framework. Furthermore, we added XML
configurability through the ConfigSection interface for the robot’s physical
configuration, its initial condition and other simulation parameters in order to
fulfill requirement 1. We use an XML interface similar to existing ones (Koenig
and Howard, 2004; Denniss, 2004).

Basic 3D visualization of the simulation is automatically available by means of
a generic user-interface widget based on the Drawstuff library (part of ODE).
The visual representation of simulated objects is configurable in XML.

ODE servo motor model Servo motors are widely used in humanoid robots; our pro-
totype Leo is actuated by servo motors as well. Therefore, we added a generic
servo model to the simulation framework. We use the following simplified model
for a DC motor with gearbox to calculate the joint torque τ resulting from the
motor voltage U :

τ(U) = KτG
U −KτGω

R
(3.8)

with Kτ the motor’s torque constant, R the winding resistance, G the gearbox
ratio and ω the joint’s angular velocity. The voltage on the DC motor is clipped
to the region [−Umax, Umax] with Umax the maximum allowed voltage.

Any torque on the joint accelerates its connected body parts, as well as the
rotor of the DC motor. Although the DC motor’s rotor inertia Ir is usually small,
the gear box causes its effect to be equivalent to a differential inertia Ir,eqv =
G2Ir, i.e., an inertia that is only affected by joint torques, not by torques on the
attached body parts. The effects of Ir are modeled by adding a meta-object to
the simulation in the form of a ’virtual disc’, which has inertia, but no mass or
geometry, and only one degree of freedom: its angular position. Its inertia is
Ir,eqv, angular position xvd and angular velocity ẋvd. A PD controller calculates
the torque τvd necessary to adjust xvd and ẋvd towards the joint’s position xjoint

and angular velocity ω:

τvd = KP,vd(xjoint − xvd) +KD,vd(ẋjoint − ω) (3.9)

with adjustable parameters KP,vd and KD,vd. The torque τvd is applied to the
virtual disc, while −τvd is applied to the joint (action equals reaction). The total
torque applied to the joint as a function of U then becomes

τ(U) = Egb[τ(U)− τvd]− τf (3.10)

in which Egb is the limited gear box efficiency and τf is a friction term.

3.2.5 Results: bipedal walking robot Leo

In this section, we present the application of the proposed framework to our
prototype, robot Leo. We discuss a comparison between the behavior of the real
robot and its simulation, as well as the timing characteristics of the real robot.
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Creating Leo’s model in Open Dynamics Engine

The design of Leo (see Section 3.1 for an in-depth description of the hardware)
was done in the CAD program Solidworks, which allowed the straightforward
extraction of the most important mechanical properties of the machine’s parts,
such as mass, inertia and dimensions. A schematic drawing with model parameter
definitions is shown in Figure 3.8; model parameter values are given in Table 3.1;
locations of joints with respect to the body parts are reported in Table 3.2. Con-
tacts in ODE are modeled as a stiff spring-damper combination between two
intersecting (colliding) objects. We calibrated the simulation of foot contact with
the floor – important for realistic simulation – by first setting the stiffness param-
eter such that the robot in rest would sink into the floor by a realistic amount.
Next, we tuned the damping parameter such that the behavior of foot contact
was qualitatively the same in the real robot and in simulation during a walking
motion.
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Figure 3.8: Schematic overview of the two-dimensional 8-link simulation model of Leo.
The left model shows the parameter definitions; parameter values are given in Table 3.1.
The right figure shows the degrees of freedom of the model. The angle ϕtorso is measured
with respect to gravity; the other angles are relative joint angles.

All the joints in Leo are formed by Dynamixel RX-28 servo motors (see also
(Lima et al., 2009) on the modeling of the AX-12 servo motor). Besides the servo’s
internal position control loop, it allows an open loop “endless turn” mode, which
is documented as torque control, but which is in practice (very close to) voltage
control. We use this voltage control mode for both our pre-programmed walking
controller as well as our learning controllers. We modeled the servo by using
(3.10) with catalog values for the motor parameters (its DC motor was identified
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Table 3.1: Parameter values of the simulation model of Leo; the mass m, moment of
inertia I, length l, vertical center of mass offset c and horizontal center of mass offset
w of all body parts.

torso torso upper leg lower leg foot arm boom
+ mb,virt

m[kg] 0.913 1.231 0.180 0.127 0.073 0.095 0.860
I[gm2] 4.68 8.71 0.273 0.153 0.0488 0.873 319
l[mm] 212 212 116 105 81 -300 1700
c[mm] 131 97 63 61 31 148 0
w[mm] -1 0 3 8 0 14 835

Table 3.2: Locations of the joints of Leo, expressed as horizontal offsets from the centers
of the respective body parts.

horizontal vertical
offset offset

torso-shoulder[mm] -5 –
torso-hip[mm] 3 –
lo.leg-knee[mm] -4 –
foot-ankle[mm] -9 –
floor-ankle[mm] – 49

as the Maxon 214897), which are defined at room temperature. Because the servos
typically operate at temperatures in the range 40− 75◦C, the model quickly loses
its validity and temperature compensation on the real machine is desired; see
Section 3.1.6 for a derivation. To guarantee the same maximum torque at all
typical temperatures, the maximum voltage available to any controller resulted
in Umax = 0.76 ∗ Usupply with Usupply the power supply voltage. The friction
parameters were tuned to qualitatively match the simulation with the real robot.

The boom construction, illustrated in Figure 3.9, is connected to the robot
at the location of the hip axis and always keeps the hip axis horizontal, thereby
effectively making Leo a 2D robot. Because its significant mass, it has additional
effects on the robot that cannot be neglected in our simulation. By analyzing the
dynamics of the boom, it can be shown that the boom’s influence can be modeled
by adding a virtual point mass to the torso. To model the effects of gravity, an
additional external force needs to be modeled as well. The analysis is as follows.

When a force F is exerted by the robot onto the end of the boom, at distance
lb from the central pivot point and perpendicular to the boom, a torque τ is
generated:

τ = Flb (3.11)
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lb

wb

Ib mb

Figure 3.9: Schematic overview of Leo and its boom construction, showing all degrees
of freedom and the model parameter definitions of the boom.

that causes an angular acceleration θ̈ of the boom:

τ = θ̈Ib = θ̈
(
w2

bmb + Ib,w
)

(3.12)

where the boom’s mass mb is centered at distance wb from the central pivot
point and Ib,w is the boom’s inertia around the axis through its center of mass and

perpendicular to the boom. The angular acceleration θ̈ causes a linear acceleration
a = θ̈lb of the robot. Combining (3.11) and (3.12) and using a gives

Flb =
(
w2

bmb + Ib,w
) a
lb

(3.13)

from which we can derive (F = ma) that the boom adds a virtual mass mb,virt

to the torso:

mb,virt =

(
w2

bmb + Ib,w
)

l2b
(3.14)

Here we neglect the fact that vertical movement of the hip slightly changes the
distance lb. Because the boom construction is attached to the robot at the hip
axis and does not rotate when the torso does, the rotational inertia of mb,virt

in the robot plane is zero and mb,virt can therefore be modeled as a point mass
added to the torso.

When considering gravity, the boom causes a force Fg at the hip location:

Fg = mb
wb

lb
g (3.15)

with g the gravitational acceleration. The modeled point mass mb,virt, however,
will undergo a different gravitational force. The difference is compensated by
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modeling an external force Fext on the torso (at hip location), which is always
present:

Fext =

(
mb,virt −mb

wb

lb

)
g (3.16)

Comparison between the robot and its simulation

To verify that Leo is indeed capable of walking, we implemented a pre-programmed
(i.e., non-learning) limit cycle walking controller (Hobbelen, 2008) in our frame-
work and tested it on the real robot and on its simulation. The controller code
was exactly the same for robot and simulation. In Figure 3.10, we compare the
evolution of both hip joint angles and the torso angle by plotting the mean and
standard deviation of 15 typical subsequent footsteps of the robot, synchronized
at left heel strike.
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Figure 3.10: Comparison between robot Leo and its simulation using the same pre-
programmed limit cycle walking controller. Both hip angles and the torso angle are plotted
against time, showing the mean and standard deviation of 15 footsteps, synchronized at
heel strike.

One can observe that the walking behaviors on the robot and its simulation
are qualitatively similar in terms of the evolution of hip and torso angles. How-
ever, significant differences remain. Further calibration of the model parameters
can improve the model, which is in our case only necessary if future (learning)
controllers show qualitatively different behavior between robot and simulation.

Timing characteristics

In Section 3.2.2, we derived several timing requirements for on-line RL. We
evaluated the timing characteristics on Leo in two situations: running a pre-
programmed limit cycle walking controller and running a RL controller with
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the SARSA(λ) algorithm (see Section 3.3 for a thorough description of the con-
trollers). The results are presented in Table 3.3 and show the timing statistics
for the sampling period h, the actuation period ha and the actuation delay Td,
calculated over a period of 10 seconds of typical operation. Because actuation can
be performed on demand and is not compulsory every time step, ha may differ
from h, such as for the RL controller. All timing was measured using the generic
STGTiming class. We can observe that the timing is on average accurately peri-
odic, however, it contains significant but bounded jitter (minimum and maximum
values were calculated over a period of several minutes). Further investigation
pointed out that the serial communication link with the servo motors was the
most important cause of the timing jitter. The actuation delay is variable, but
measurable, and depends on the control algorithm.

Table 3.3: Timing statistics of the sampling period h, the actuation period ha and
the actuation delay Td for the pre-programmed limit cycle walking controller and the
(preliminary) RL controller using SARSA(λ). The statistics were calculated over a pe-
riod of 10 seconds of typical operation. State information was produced at 150Hz. The
pre-programmed controller was actuated at 150Hz, the RL controller at 30Hz.

Pre-programmed controller RL controller
Avg Stdev Min Max Avg Stdev Min Max

h [µs] 6667 229 6217 7116 6667 273 6213 7111
ha [µs] 6667 239 6165 7165 33348 449 32825 42362
Td [µs] 581 14 569 658 9538 373 584 9759

Other applications

The framework presented here has proved useful in the development of several
toy problems that aid the research on Reinforcement Learning algorithms. An
impression of the ‘Two-link manipulator’, the ‘Mountain car’, and the ‘Pole bal-
ancing cart’ projects can be found in Figure 3.11. Furthermore, the framework
has been used for the software implementation of a new robot prototype (Karssen
and Wisse, 2012).

3.2.6 Conclusion

We have derived the requirements for on-line Reinforcement Learning of motion
control for humanoid robots, and created a framework that satisfies them. The
provided simulation environment allows safe and realistic evaluation of controllers
and is highly configurable via XML in terms of the robot’s dynamics model, its
environment and the learning controller. Controller code – newly created or based
on the provided real-time implementations of temporal difference learning algo-
rithms – can be shared 1-on-1 between the simulation and the real robot. Using a
publish/subscribe architecture, state information is distributed to the controller
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(a) Two-link manipulator (b) Mountain car (c) Pole balancing cart

Figure 3.11: An impression of several Reinforcement Learning toy problems created
with the presented framework.

and additional modules such as logging and visualization services. The system
is real-time periodic when run under Linux with the Xenomai extension, with
both minimal and measurable control delay. We successfully applied our frame-
work to the modeling and control of a bipedal walking robot, thereby verifying
its characteristics.

3.3 Experimental RL results on Leo

The prototype ’Leo’ that was described in Section 3.1 and 3.2 has served as a
platform for a number of experiments, which are described in this section. First,
learning from scratch on the real robot is demonstrated by learning a stairs step-up
task in a simplified hardware setup, in which the torso was mounted onto a stand
and only one leg was used. After this experiment, we implemented hardware
changes to better protect the prototype against hardware damage. Next, we
describe the MDP design for the task of learning to walk and present simulation
results. We also verified that the prototype is capable of walking by using a pre-
programmed controller. While the simulation results indicate that learning to
walk from scratch is possible in a limited time span of several hours, the number
of falls occurring in that process is considered to be prohibitively large for our
prototype. Therefore, we explore a method in which the prototype starts the
learning process with a suboptimal but functional policy, which it continues to
improve using the same RL methods that were used to learn to walk from scratch
in simulation. This avoids the largely explorative and harmful initial period of
the learning process, but still allows us to study RL on the prototype.

3.3.1 The stairs step-up task

Learning a task from scratch on Leo was first performed using a simplified hard-
ware setup and a relatively simple task: to step up a stairs step with one leg.
While our ultimate goal is to let Leo learn more complex tasks, such as walking
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and standing up, the stairs step-up task has a much smaller state-action space and
is therefore more appropriate to test RL on the real robot. For the stairs step-up
task, we mounted the robot’s torso onto a stand with its feet hanging above the
floor at all times, see Figure 3.12. The task was performed using one leg only.
The hip and knee motor were controlled by the learning agent; the ankle motor
was controlled by a pre-programmed controller to keep the foot perpendicular to
the lower leg:

Uankle = Pankle(ϕankle,ref − ϕankle) (3.17)

with ϕankle,ref = 0 and Pankle = 10. In this way, the controller acts as a virtual
constraint.

The goal of the task is to place the foot onto the step as fast as possible.
The task is episodic and ends when both the toe and the heel make contact with
the step, which is detected by two separate contact sensors. To make the task
non-trivial, the step has a protrusion that requires the robot to first move its foot
backward before it can be lifted and placed onto the step. We used Q(λ)-learning
with the ε-greedy policy (2.9), combined with tile coding function approximation.
The MDP design, learning parameters and other details are discussed below.

(a) Robot Leo (b) Simulation of Leo’s leg

Start

Goal
20

50

30

(c) Schematic overview
(sizes in mm)

Figure 3.12: Robot Leo, attached to a stand, which fixates its torso and keeps its legs
above the floor at all times. Only the left leg is used to learn the stairs step-up task of
placing the foot onto a stairs step as fast as possible, starting with a stretched vertical
leg.
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State-action space

A Markovian state vector s was composed of the angle and angular rate of the
hip, knee and ankle joint – a total of 6 dimensions:

s =


ϕhip

ϕ̇hip

ϕknee

ϕ̇knee

ϕankle

ϕ̇ankle

 (3.18)

Although the ankle of the leg was controlled towards a fixed position using (3.17),
because of the relatively low gain, significant deviations from ϕankle,ref were pos-
sible. In addition, the ankle angle has a large influence on whether the foot makes
full contact with the step. Therefore, the state information on the ankle joint was
included in the state.

We chose the primitive action a to be a vector of desired constant voltages for
the hip and knee motor for the next sampling period h:

a =

(
Uhip

Uknee

)
(3.19)

While Leo’s actuators are servo motors, we chose not to use their internal position
controllers, but to directly set the desired voltages. While position control could
have been used for this task, it is less appropriate for the task of learning to walk,
see Section 3.3.3. Since this experiment serves as a ’primer’ for the task of learning
to walk, we chose to use the same type of primitive actions. To summarize, the
state-action space consists of 6 state dimensions and 2 action dimensions.

Function approximation

A tile coding function approximator was used to approximate the 8-dimensional
Q-function. It contained 16 tilings, displaced according to (2.22). It generalizes
only between states; Q-values for different actions are estimated independently.
The tile widths used for all state variables, i.e., the generalization widths, can
be found in Table 3.4. The feature parameters are trained in a gradient descent
fashion according to (2.15) and (2.18). The memory required for storing the
feature parameters was reduced through hashing, as described in Section 2.3.6.
To stimulate exploration and to break ties at the beginning, we initialized Q̂(s, a)
with random values between −1 and 1. Each time the experiment was repeated,
the randomization was different.

Learning parameters

We discretized the voltage range [−10.7, 10.7] of each actuator controlled by the
agent into 5 discrete voltages, giving a total of 52 = 25 elements in A. We chose
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Table 3.4: Tile widths (generalization widths) used in the tile coding function approxi-
mation of Q(s, a) for the stairs step-up task of robot Leo. Q-values for different actions
are estimated independently.

ϕ ϕ̇ U
Hip 1.8 · 10−1 rad 25 rad/s -
Knee 2.9 · 10−1 rad 34 rad/s -
Ankle 3.8 · 10−1 rad 42 rad/s -

a sampling period of h = 1
20 s. We estimated the characteristic time constant of

this task to be τtask = 1s and chose h such that the number of time steps in a
typical solution was small, but still large enough for the agent to receive feedback
on a 5% faster solution – a solution that is one sampling period faster on the
characteristic time scale of the task, and thus saves one time penalty. Because
the task is episodic, we chose γ = 1. The measured control delay of the RL agent
on the robot was Td = 1.4ms – 3% of the sampling period. In Section 2.4, it is
shown that when the control delay becomes too large, it can significantly violate
the Markov property and therefore cause convergence problems. However, for this
task, the control delay is relatively small and therefore neglected. The learning
rate was α = 0.25/16 (where 16 is the number of tilings and therefore the number
of simultaneously active features in the function approximator). The exploration
rate was ε = 0.05. The eligibility time constant was chosen τelig = 0.127s with
corresponding trace discounting factor λ = 0.674.

Reward function

The agent receives a reward of 100 for completing the task, i.e., to touch the step
with both the heel and the toe. Every step, a time penalty of −3.75 is given,
hence time is punished with −75s−1. In this way, solutions that take 1.33s or less
result in a positive total reward per episode. Since Q̂(s, a) was initialized around
0, the agent will prefer unexplored actions over actions that solve the task in more
than 1.33. This stimulates exploration.

Training program

The robot begins an episode with its leg in the straight down position and its
foot parallel to and above the floor. An episode ends when the task is completed,
i.e., when the robot’s heel and toe are in contact with the step4. The robot’s
leg is then brought back into its initial position by a pre-programmed controller.
To avoid that the agent spends too much time in uninteresting parts of the state
space, an episode is discontinued after 60 seconds, but not through a terminal

4In one experiment, the contact sensor in the toe was broken and always returned ’on’. The
robot discovered that it was possible to press the heel sensor by curving its leg backward, hitting
the lower torso. After a coffee break, we found that the robot learned to kick its own behind.
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absorbing state (see Section 2.1.1). Regarding the state of the robot after 60s
as terminal absorbing would result in an unexpected and unpredictable event of
defining rk+1 = 0 and Q(sk+1, ak+1) = 0. Instead, learning updates are discontin-
ued (or ’paused indefinitely’), eligibility traces are cleared and the robot continues
to learn from its initial configuration state.

Results

The result of learning the stairs step-up task both in simulation and on the real
robot is presented in Figure 3.13, showing the average episode length (i.e., task
completion time) against learning time. The learning curve from simulation shows
the average over 48 runs; the learning curve from the real robot shows the aver-
age over 12 runs. Unfortunately, the learning runs on the real robot were ended
prematurely after approximately 13 minutes or more due to inaccurate time book-
keeping in the software (while the runs had a fixed duration, the regular motor
cooling pauses were accidentally not subtracted from this duration). We can ob-
serve that the robot learns to perform the task in approximately 15 minutes. The
learning curves from simulation and from the real robot do not differ significantly,
at least up to 13 minutes, which is an indication that the simulation environment
is sufficiently accurate to predict learning results for this task. The learning runs
on the prototype are plotted individually in Figure B.1 to illustrate the learning
progress of individual runs.

Some learning runs on the robot had to be terminated due to hardware failure.
The gearbox in the hip motor was damaged a few times. Furthermore, the foot
sensor in the toe once got ’stuck’ due to a friction problem in the mechanical
construction that presses and releases the sensor. These runs were omitted from
the results.

3.3.2 Hardware changes

From the robustness test that was reported in Section 3.1.4 and from the robot
results described in Section 3.3.1, we discovered that the gearboxes of the joint
motors formed the weakest link of the hardware. During these experiments and
during preliminary tests with learning to walk (see Section 3.3.3-3.3.5), we regu-
larly observed gears with broken teeth, despite the fact that they are fully made
of metal. It is expected that sudden accelerations of the joint angle, e.g., due to
foot impact or due to random changes in actuation voltage when exploring, are
especially harmful for the gearbox. Therefore, to reduce impacts on the gearbox,
we placed elastic couplings between the motor shaft and the robot brackets for
the knee and hip joints; see Figure 3.14. By varying the material of the elastic
element within the coupling, the stiffness of the coupling can be varied. Unfor-
tunately, the elastic coupling introduces angular deviations between the motor
position and the joint position, which are not measured; only the motor position
is measured. The couplings used in the knees have a static torsional stiffness of
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Figure 3.13: Robot Leo learning the stairs step-up task, both in simulation and on
the real robot. The average episode length (lower is better) is plotted against learning
time. The learning curve from simulation shows the average over 48 runs; the learning
curve from the real robot shows the average over 12 runs, which were, unfortunately,
prematurely ended after approximately 13 minutes of learning.

150Nm/rad and a dynamic torsional stiffness of 300Nm/rad (manufacturer spec-
ifications). In a static situation where the motor exerts its maximum stall torque
of approximately 2.5Nm at 10.7V, this results in an angular deviation of approxi-
mately 1.7 · 10−2rad (one degree) between the motor shaft and the robot bracket.
Such deviations are in principle a violation of the Markov property. However,
they are of the same order of magnitude as the backlash (approximately 1 · 10−2)
and the sensor accuracy (approximately 1 · 10−2). While these couplings suffi-
ciently reduced the mean time between failures for the gearboxes in the knees –
they would not break for hours of experimentation time – the gearboxes of the
hip joints would typically break after 5 − 10min of learning to walk on the pro-
totype. Therefore, we used couplings with a lower stiffness in the hip joint – the
static torsional stiffness being 53Nm/rad and the dynamic torsional stiffness being
106Nm/rad. This increased the mean time between failures of the hip motors to
about 30min. Unfortunately, this causes a violation of the Markov property with
as of yet unknown effects. It was, however, the only adjustment we could make
without doing a complete redesign of the robot, which would be required when
switching to different actuators and/or transmission. The elastic couplings were
used in the experiments with the prototype described below, but they were not
modeled in simulation.
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(a) Improved hip joint (b) Improved knee joint (c) Elastic coupling

Figure 3.14: To reduce impacts on the gearboxes in Leo’s hip and knee motors, elastic
couplings were added between the motor shaft and the robot. Servo motors (black) are
connected to their bracket via two rigid elements with an elastic element (red) in between.
The coupling has a diameter of 25mm.

3.3.3 Learning to walk

For the task of learning to walk, we used SARSA(λ) with the ε-greedy policy
(2.9), combined with tile coding function approximation. Because SARSA is
an on-policy algorithm, the estimated Q-values take exploration into account,
which helps the robot choose actions that perform well on the real system while
continuing to explore. The MDP design, learning parameters and other details
are discussed below.

State-action space

We used a state space description that allows to exploit the robot’s mirror-
symmetry between its left and right side as illustrated in Section 2.3.6. This
is implemented by labeling the leg that touches the floor as stance leg and the
other leg as swing leg – regardless whether it is the left or right leg. When both
legs touch the floor, the stance leg is the leg whose foot is in front of the other.
This approach effectively reduces the memory required to store Q̂(s, a) by a factor
of two.

In order to make this task feasible in terms of computational requirements and
learning time, we restricted the number of actuators controlled by the learning
agent to three: the hip motors of the stance leg and the swing leg, and the swing
leg’s knee motor. The remaining four actuators for the stance knee, shoulder
and both ankle joints are controlled using simple position controllers (voltage
control) of the form (3.25), where the desired angular positions are kept constant
in time. In this way, the pre-programmed controllers pose a virtual constraint
on these joints; the desired stance knee angle ϕst.knee,ref = 0 keeps the stance leg
stretched, the desired shoulder joint angle ϕshoulder,ref = 0 keeps the arm parallel
to the torso and the desired ankle angles ϕst.ankle,ref = ϕsw.ankle,ref = 0.065rad
keep the feet almost perpendicular to the lower leg, with the toes slightly tilted
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upward. The proportional gains were chosen as Pankle = 42, Pst.knee = 21 and
Pshoulder = 21. The control law, its gains and desired angles resulted from manual
tuning in simulation and on the real robot with the goal to obtain simple and
stable controllers that resulted in the desired virtual constraints. A Markovian
state vector s was composed of the angle and angular rate of the torso, stance
hip, swing hip, stance knee and swing knee – a total of 10 dimensions:

s =



ϕtorso

ϕ̇torso

ϕst.hip

ϕ̇st.hip

ϕsw.hip

ϕ̇sw.hip

ϕst.knee

ϕ̇st.knee

ϕsw.knee

ϕ̇sw.knee


(3.20)

The shoulder and ankles are omitted from the state space due to their virtual
constraints5. The torso angle is absolute and thereby defines the pose of the
robot with respect to the gravity vector. The robot is assumed to always make
contact with the floor with at least one point; if this assumption would be violated,
the state signal should include the robot’s height and velocity vector with respect
to the floor as well. The floor is assumed to be level, flat and homogeneous across
the robot’s walking circle. While floor height differences do exist in the real setup,
as is shown in Figure 3.15, the robot’s position within the walking circle is not
included in the state space. Therefore, floor height differences are regarded as
noise by the agent. The influence of the floor height differences was tested in a
separate simulation experiment by adding a floor model based on the measured
floor height data from Figure 3.15.

We chose the primitive action a to be a vector of desired constant voltages for
all three motors for the next sampling period h:

a =

 Ust.hip

Usw.hip

Usw.knee

 (3.21)

While Leo’s actuators are servo motors, we chose not to use their internal position
controllers, but to directly set desired voltages. Especially in the double stance
phase of the robot, when the system is overactuated, position control of the joints
could lead to undesirable behavior. To summarize, the state-action space consists
of 10 state dimensions and 3 action dimensions.

5The angle and angular rate of the stance knee are included in the state space, because
ϕst.knee often significantly deviates from ϕst.knee,desired during operation, e.g., when the robot
makes a footstep with a bent swing leg, which then becomes the new stance leg.
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Figure 3.15: The height of the floor along the walking circle of robot Leo. The circle has
a perimeter of approximately 11m. The height is plotted relative to the lowest measured
point. The estimated measurement error is 1mm.

Function approximation

The tile coding function approximator used contained 16 tilings, displaced ac-
cording to (2.22). It generalizes between states as well as between actions, i.e.,
a 13-dimensional function approximator is used for the state-action space as a
whole. The tile widths used for all state and action variables, i.e., the gener-
alization widths, can be found in Table 3.5. The resolution for the torso state
information was doubled because of the torso’s relatively large influence on the
dynamics for small angular displacements, caused by its large mass and inertia
and its inherent instability during walking. The feature parameters are trained in
a gradient descent fashion according to (2.15) and (2.18). The memory required
for storing the feature parameters was reduced through hashing, as described in
Section 2.3.6. To stimulate exploration and to break ties at the beginning, we
initialized Q̂(s, a) with random values between 0 and 0.01. Each time the exper-
iment was repeated, the randomization was different, which caused the robot to
learn a slightly different walking strategy in each experiment.

Learning parameters

We discretized the voltage range [−10.7, 10.7] of each actuator controlled by the
agent into 7 discrete voltages, giving a total of 73 = 343 elements in A. We chose a
sampling period of h = 1

30 s. These choices are the result of maximizing h by trial
and error, while ensuring that the resulting learning controller could still let the
robot walk stably; an increase in h results in an exponential decrease in the size of
the solution space, which results in faster learning (see Section 2.1.2). The number
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Table 3.5: Tile widths (generalization widths) used in the tile coding function approxi-
mation of Q(s, a) for robot Leo’s task of learning to walk.

ϕ ϕ̇ U
Torso 0.14 rad 5 rad/s -
Stance hip 0.28 rad 10 rad/s 6.7V
Swing hip 0.28 rad 10 rad/s 6.7V
Stance knee 0.28 rad 10 rad/s -
Swing knee 0.28 rad 10 rad/s 6.7V

of elements in A should be limited, because when using (2.9) as action selection
policy, the computational time and resulting control delay rises exponentially with
the number of allowed discrete voltages per motor. The measured control delay
of the RL agent on the robot was Td = 10ms on average – 30% of the sampling
period. In Section 2.4, it is shown that when the control delay becomes too large,
it can significantly violate the Markov property and therefore cause convergence
problems. Therefore, the simulation experiments were done with and without
delay to verify its influence. The learning rate was α = 0.20/16 (where 16 is the
number of active features in the function approximator). The exploration rate
was ε = 0.05. We estimated the characteristic time constant of this task to be
τtask = 8.7s as to represent a time horizon of several footsteps, which typically
take between 0.5s and 1.0s. This resulted in a time discounting factor γ = 0.996
(see Section 2.1.2). The eligibility time constant was chosen τelig = 0.22s – roughly
25-40% of the footstep time, depending on the gait – with corresponding trace
discounting factor λ = 0.859.

Reward function

We used a reward function that has the goal to let the robot walk forward, where
time is punished to promote walking speed, and where energy usage is punished
to promote efficiency. The reward function is a dense function (feedback every
time step) and has the following components. To reward forward movement of
the robot, the displacement of the swing foot is measured every time step and
rewarded 300m−1 for positive displacement and −300m−1 for negative displace-
ment. When walking forward, this results in a total reward of 600m−1 because
alternatingly, both feet are moving forward. Every time step, a reward of −1 is
given, so that time is punished with −30s−1. When the robot falls, it receives a
reward of −125. Energy usage is punished every time step with −3J−1 propor-
tional to the total positive electrical work W+

total, which is the sum of W+ of both
hip motors and both knee motors:
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Wk = hUkIk

= hUk(Uk −KτGωk)/R

= hUk(Uk −KτG(ωk + ωk+1)/2)/R (3.22)

W+
k = MAX(0,Wk) (3.23)

W+
total,k = W+

st.hip,k +W+
sw.hip,k +W+

st.knee,k +W+
sw.knee,k (3.24)

where Uk is the motor voltage, Kτ = 9.92 · 10−3Nm the torque constant, G = 193
the gearbox ratio, R = 8.6Ω the winding resistance and ωk the averge joint angular
rate during time step k, which is approximated by averaging ωk and ωk+1 – the
joint angular rates measured at time t = kh and t = (k + 1)h, respectively.

The values for the components of the reward function were chosen in such
a way that for the resulting walking behavior, on average, the punishments for
energy and for time were of the same order of magnitude as to learn a tradeoff
between spending time and energy. The positive reward for forward movement
was chosen larger than the sum of the negative rewards for time and energy,
so that the net reward of walking was positive (i.e., larger than the initialization
value of Q̂(s, a)). The punishment for falling was chosen larger than the maximum
obtainable reward of a specific local maximum: completely extending the swing
leg, immediately followed by a fall. If the punishment for falling was chosen
lower than the rewards collected during this act, the robot would typically spend
large amounts of time exploring this local maximum while not exploring typical
walking.

Training program

The robot was trained as follows. The robot starts in an initial configura-
tion with zero angular rates and the following angles: ϕtorso,ic = −0.10rad,
ϕst.hip,ic = 0.10rad, ϕsw.hip,ic = 0.82rad, ϕst.knee,ic = 0rad, ϕsw.knee,ic = −1.27rad,
ϕst.ankle,ic = 0rad, ϕsw.ankle,ic = 0rad. This configuration is relatively easy to
accomplish on the real robot – the robot is balanced – and swinging the swing leg
is facilitated by the slightly lifted swing foot. This is illustrated in Figure 3.16(a).
An episode ends when the robot is doomed to fall, which is considered the case
when the torso angle becomes too large, |ϕtorso| > 1.0rad, or when the stance leg
angle becomes too large, |ϕtorso + ϕst.hip| > 1.13rad, see Figure 3.16(c). The lat-
ter is especially useful when the robot finds itself in a split, while its torso is still
upright, thereby not able to walk any further. To ensure regular practice of start-
ing to walk from the initial condition, the robot is put back in this configuration
after 25s of successful walking. Such an episode is not terminated with a terminal
absorbing state (see Section 2.1.1), but simply discontinued. Regarding the state
of the robot after 25s as terminal absorbing would result in an unexpected and
unpredictable event of defining rk+1 = 0 and Q(sk+1, ak+1) = 0. Instead, learning
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updates are discontinued (or ’paused indefinitely’), eligibility traces are cleared
and the robot continues to learn from its initial configuration state.

(a) Initial configuration (b) Learning to walk (c) Doomed to fall

Figure 3.16: Robot Leo in simulation, illustrating several situations during the process
of learning to walk.

Simulation results

The task of learning to walk was performed in simulation in three situations; on
a flat floor without control delay, on a flat floor with control delay of Td = 10ms,
and on a model of the real floor with control delay of Td = 10ms. The resulting
learning curve is shown in Figure 3.17(a), where the average distance walked per
episode, i.e., in max. 25s or until the robot falls, is plotted against learning time.
The curves show averages over 48 runs. It can be observed that without control
delay and on a flat floor, the robot learns to walk in 3 hours or less. Control delay
has a negative influence on the learning time, increasing it to approximately 5
hours, but does not prevent the robot from reaching the same final performance.
If a realistic model of the floor is used as well, based on the measured floor
height data from the real robot setup, the learning time is further increased to
approximately 6 hours – twice the learning time needed on a flat floor and without
control delay.

From the variance of the performance and after inspecting individual runs,
we observed that with the current learning parameters, the robot tends to find a
locally optimal solution that does not further improve within the duration of the
experiment. Given the size of the state space and the length of the experiment,
this is not surprising, for we did not fulfill one of the requirements for convergence
to the global optimum: visiting each state-action pair infinitely often. This can be
improved upon by altering the exploration strategy so that the robot more easily
explores a larger part of the state-action space, and by increasing the experiment
length. It can also be noted that the specific reward values used here are the
result of extensive experimentation, aiming for a short learning time and a natural
walking gait. Different values for the rewards would typically lead to different
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walking gaits, e.g., a very ’lazy’ gait with lots of foot scuff when the energy
penalty was relatively high, and a very inefficient gait in which the swing leg
was raised very high when the energy penalty was relatively low. Also, some
combinations of rewards, specifically high penalties for time and energy, could
increase the learning time by sometimes a factor of five or more if they would
hinder the initial exploration process of making the first footsteps.

From Figure 3.17, it can be seen that the number of times the robot falls before
it learned to walk is estimated to be at least 5000. Unfortunately, our current
prototype will not withstand that many falls. We decided to reduce the floor
height differences by creating a height map of the floor and leveling it with layers
of foam and a laminate top layer, as illustrated in Appendix A. This resulted in
a maximum floor height difference of approximately 3mm – an acceptable value
compared to the robot’s leg length. Below, we explore a method that avoid the
initial period of learning from scratch on the prototype, while still being able to
test the viability of the proposed RL approach, in order to further reduce the
number of falls the prototype has to withstand.

3.3.4 Pre-programmed limit cycle walking

To verify that Leo is physically capable of walking, a manually programmed limit
cycle walking controller (Hobbelen, 2008) was used. The most prominent char-
acteristic of the limit cycle walking paradigm is that the robot is allowed to be
unstable at every instant in time; however, over the course of several footsteps,
its behavior is stable as a whole and converges to a limit cycle in the form of
periodic walking. There is no pre-described trajectory in time for all joints that
needs to be accurately tracked by the controller to guarantee stability. Individual
footsteps are allowed to differ significantly from each other without jeopardizing
stability, which is obtained at the time scale of multiple footsteps instead of a
single footstep. When the robot’s walking gait is too fast, this will lead to larger
footsteps, which dissipate more energy at heelstrike. This automatically reduces
the walking speed and stabilizes the gait. Because joint angles are allowed to
be less strictly controlled with this paradigm, a limit cycle controller usually re-
sults in less energy usage compared to control approaches that aim for full local
controllability, such as ’Zero Moment Point’ based control (Vukobratovic, Frank,
and Juricic, 1970; Vukobratovic and Borovac, 2004). However, the choice of the
control paradigm is subordinate in this experiment; we merely want to verify the
robot’s ability to walk.

Controller parameters

The limit cycle walking controller is composed of several simple position con-
trollers of the form

U = P (ϕref − ϕ) (3.25)
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Figure 3.17: Robot Leo learning to walk in simulation. The learning performance is
shown for three situations: on a flat floor without control delay, on a flat floor with
control delay of Td = 10ms, and on a model of the real floor with control delay of
Td = 10ms. The learning curves show the average over 48 runs. Both the control delay
and the realistic floor have a negative influence on the learning speed.
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where the motor voltage U is proportional with gain P to the error between a
measured angle ϕ and a desired (relative) constant joint angle ϕref . The individual
control rules and their purpose for all motors are as follows. The stance hip motor
controls the torso angle towards a fixed value, ϕtorso,ref = −0.09rad. Both hip
motors control the inter-hip angle ϕinterhip = ϕsw.hip − ϕst.hip towards a fixed
value, ϕinterhip,ref = 0.68rad. The control laws for the hip motors are:

Ust.hip = P1(ϕinterhip,ref − ϕinterhip) + P2(ϕtorso,ref − ϕtorso)
Usw.hip = P3(ϕinterhip,ref − ϕinterhip)

(3.26)

with P1 = −3.4, P2 = −59 and P3 = 17. The stance knee motor keeps the stance
leg stretched, ϕst.knee,ref = 0rad. In the early swing phase, defined as the first
0.184s after heel strike, the swing knee motor bends the knee as quickly as possible
using the maximum allowed voltage. After the early swing phase, the swing knee
motor stretches the swing leg again towards ϕsw.knee,ref = 0rad. The control laws
for the knee motors are:

Ust.knee = P4(ϕst.knee,ref − ϕst.knee)

Usw.knee =

{
−10.7 , early swing
P5(ϕsw.knee,ref − ϕsw.knee) , late swing

(3.27)

with P4 = 21 and P5 = 65. The feet are kept almost perpendicular to the lower
legs, with the toes slightly tilted upward, ϕst.ankle,ref = ϕsw.ankle,ref = 0.065rad.
The arm is kept parallel to the torso, ϕshoulder,ref = 0rad. The control laws for
the ankles and shoulder are:

Ust.ankle = P6(ϕst.ankle,ref − ϕst.ankle)
Usw.ankle = P7(ϕsw.ankle,ref − ϕsw.ankle)
Ushoulder = P8(ϕshoulder,ref − ϕshoulder)

(3.28)

with P6 = P7 = 42 and P8 = 21.

Results

The typical behavior of the prototype while being controlled by the limit cycle
walking controller is illustrated in Figure 3.18, in which the angles of the torso,
the hips and the knees are plotted against time. The prototype walked on the
leveled floor as described in Appendix A. One can observe that the prototype
walks stably. A slight asymmetry is visible between left and right footsteps; the
left and right hip angles have different minimum values, and the torso angle has
a different maximum value for left and right footsteps. This can be caused by
the fact that the robot is connected to the boom construction with one side, and
due to differences in friction between the joints. We can also observe that during
the 25s shown, in which the robot walked along approximately 75% of its walking
circle, its behavior varies only slightly, indicating that remaining floor height
differences do not have a big impact on the prototype’s behavior. This contrasts
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with the prototype’s behavior on the original, unleveled floor, on which it would
show significant variations in walking speed, frequently leading to a standstill or
fall at specific locations.

3.3.5 Initializing the learning controller with a pre-programmed solution

An apparent and often used approach to initialize the learning controller on a real
robot is to estimate the action-value function in simulation and transfer it to the
real robot, where it continues to be updated using real experience. This approach
avoids the tedious initial period of the learning process, where movements are
mostly random and frequently lead to falling, which is potentially harmful for
the prototype. However, sometimes, an accurate simulation model of a robot is
not available or hard to obtain. From our experience with some prototypes, e.g.,
robot Flame (Hobbelen, De Boer, and Wisse, 2008), we learned that creating an
accurate and reliable simulation model can be more difficult than programming
its controller. In this experiment, we present an alternative approach with the
same goal, which does not need a simulation environment. Instead, it is assumed
that a pre-programmed policy πpp is available, which may be suboptimal.

The learning process is as follows. During a short initial period – the observa-
tion period – the prototype is controlled by a pre-programmed policy, while the
learning agent estimates the action-value function Q̂(s, a) under that policy. After
the observation period, actuation is continued according to the ε-greedy policy
based on Q̂(s, a), which is further updated using SARSA(λ). It is expected that
even after relatively short observation periods, the policy derived from Q̂(s, a) is
good enough to avoid the frequent falling that occurs when learning from scratch.
Because the initialization of the action-value function can be arbitrary without
changing the global optimum that it converges to, there are no additional re-
quirements for the pre-programmed policy. If πpp is deterministic, controlling the
robot purely according to πpp during the observation period would expose the
system to only a very small part of the state-action space; the system would show
nearly (or in simulation, exactly) the same state evolution each time it starts a
trial from the same initial condition. Since this would lead to a relatively poor
initialization of Q̂(s, a), we use a policy similar to the ε-greedy policy during the
observation phase in which actions according to πpp are alternated with random

actions: πε−pp. Learning updates are applied to Q̂(s, a) to estimate Qπε−pp(s, a),
i.e., the action-value function under πε−pp. This is done by using the original
SARSA(λ) update rule (see (2.11) and (2.12)) where ak and ak+1 are computed
according to πε−pp.

We tested our approach in simulation first, followed by repeating the experi-
ment on the prototype. For the pre-programmed policy πpp, we chose the policy
presented in Section 3.3.4, which proved to result in good walking behavior on
the prototype.



80 REINFORCEMENT LEARNING ON A REAL BIPEDAL WALKING ROBOT 3.3

Time [s]

A
n
g
le

 [
ra

d
]

0 5 10 15 20 25

-0.4

-0.3

-0.2

-0.1

φtorso

(a) Torso angle.

Time [s]

A
n
g
le

 [
ra

d
]

0 5 10 15 20 25

-0.5

0

0.5

φhipleft φhipright

(b) Hip angles.

Time [s]

A
n
g
le

 [
ra

d
]

0 5 10 15 20 25

-1.5

-1

-0.5

0

φkneeleft φkneeright

(c) Knee angles.

Figure 3.18: Evolution of the joint angles of prototype Leo while being controlled by a
pre-programmed limit cycle walking controller. One can observe that the prototype walks
stably, with a slight asymmetry between left and right.
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Simulation results

For this simulation experiment, we chose the observation period to be 3 minutes
during with the robot was controlled by πε−pp with ε = 0.05. We ignored con-
trol delay and assumed the floor is flat and level. The results are presented in
Figure 3.19, showing the average over 48 runs. It can be seen that for a short
period after the observation period, the agent performs worse than πpp. This is
probably the result of the limited number of updates that were performed while
following πpp, which were not enough to let Q̂(s, a) converge. When the agent

switches to executing the ε-greedy policy based on Q̂(s, a), this leads to a tem-
porary drop in performance. Furthermore, when following πpp, actions are not
discretized as is the case for the ε-greedy policy. This means that Q-values for
the discretized actions may be inaccurate because they are rarely selected. After
approximately 1 hour of learning, the initial drop in performance is turned into
a significant increase in performance over the pre-programmed policy πpp. After
approximately 5 hours of learning, however, this increase becomes insignificant,
although the agent never performs significantly worse than πpp. The solution
found is also significantly better than the average performance of the policies
learned from scratch, which is added to Figure 3.19 for reference. It can be noted
that when learning from scratch, individual runs would occasionally achieve a
performance comparable to the pre-programmed one, albeit with quite a different
gait. However, on average, learning from scratch performed worse. This illustrates
that guiding the robot to interesting parts of the state space can significantly in-
crease the average performance achieved in a limited time span. Nonetheless, the
fact that learning from scratch can result in a solution that is comparable to the
pre-programmed solution, which embodies extensive expert knowledge on bipedal
walking, illustrates the potential of the applied methods.

Prototype results

From the simulation results, it was observed that an initial drop in performance
occurred. With the aim to make this dip smaller, we increased the observation
period to 5 minutes and kept the other parameters the same as in simulation. Due
to the high resource costs in terms of materials and repair time, the experiment
was performed only once for a duration of 4.5h. The result is shown in Figure 3.20.
One can observe that, initially, the robot shows a dip in its performance (as was
observed in simulation), after which it learns to walk approximately as well as
the pre-programmed controller, showing occasional periods in which it performs
better than the pre-programmed controller. During the experiment, the prototype
broke on average every 30min, usually due to a failing gearbox in one of the hip
joints.

Unfortunately, due to the lack of additional learning runs and the stochastic
nature of the experiment, we cannot draw conclusions on the significance of the
demonstrated performance, nor on the convergence of the learning process on
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Figure 3.19: Robot Leo learning to walk in simulation. During an initial period of 3
minutes, Q̂(s, a) is estimated for a pre-programmed controller, after which actuation and
learning is continued by the learning agent. The average walked distance per episode is
plotted against simulation time and compared with the SARSA(λ) approach from Sec-
tion 3.3.3. The learning curves show the average over 48 runs.
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the prototype. However, we can conclude that this initial result shows that the
prototype and the presented RL techniques form a promising start for further
experimentation; for the duration of the experiment, in which it performed more
than 4 · 105 learning updates, learning did not divergence, despite the fairly large
values for the exploration rate (ε = 0.05) and the learning rate (α = 0.2/16 with
16 being the number of tilings).
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Figure 3.20: Robot Leo learning to walk using the real prototype. During an initial
period of 6 minutes, Q̂(s, a) is estimated for a pre-programmed controller, after which
actuation and learning is continued by the learning agent. The walked distance per
episode is plotted against learning time. The initial performance of the pre-programmed
controller is shown by the horizontal dashed line. The vertical dash-dotted lines indicate
moments of hardware repair; usually, a hip motor was replaced due to a broken gearbox.

3.3.6 Conclusions

In this section, we presented learning results obtained with robot Leo (described
in Section 3.1 and 3.2) in simulation as well as on the prototype. We started
with a relatively simple learning task that involved only one leg (the other body
parts were statically mounted): the stairs step-up task. In this task, which had
6 state dimensions and 2 action dimensions, the robot had to learn to place its
foot on a plateau. We showed that the robot is able to learn this task from
scratch in approximately 15 minutes. The results obtained in simulation and in
hardware did not differ significantly. This showed that the prototype’s hardware
and software are suitable for RL experiments of short duration. It also revealed a
weakness in the prototype’s construction: the gearboxes of the actuators quickly
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wore down due to the large (alternating) forces they were exposed to. Because
the gearboxes wore down even faster in preliminary experiments of learning to
walk on the real robot, we decided to add elastic couplings between the actuators
and the robot brackets to reduce the peak forces on the gears. This significantly
increased the mean time between failures.

Next, we defined the MDP of learning to walk – a task with 10 state dimensions
and 3 action dimensions for our prototype – and presented simulation results. The
robot was able to learn to walk from scratch in 3 hours or less when control delay
and floor height differences were ignored. When control delay was included in the
simulation, the learning time increased to approximately 5 hours. When the floor
height differences measured in the real robot setup were included in the simulation,
the learning time further increased to approximately 6 hours. Additionally, the
number of times the robot fell before learning to walk approximately doubled due
to the floor height differences. While our prototype was kept small to reduce the
impact of falling, ironically, this decision heavily increased the number of falls
since existing floor height differences become more significant in relation to the
small legs. Therefore, the floor was leveled using a laminate floor, which reduced
the floor height differences to acceptable values. We verified that the prototype
with elastic couplings and leveled floor was able to walk by controlling it with a
pre-programmed controller, which resulted in a stable walking gait.

The simulation results showed that the prototype would have to withstand
thousands of falls before learning to walk from scratch. Unfortunately, in its
current form, the prototype was not deemed capable of withstanding that many
falls. To be able to study the presented RL techniques of learning to walk on the
current prototype, we initialized the learning controller with a pre-programmed
solution, thereby avoiding the initial learning period in which the robot falls
frequently. During a short period of time, the robot was controlled by a pre-
programmed controller, for which it estimated the action-value function. After
this initial observation period, the robot continued the learning process. The
robot learned to walk at least as well as with the pre-programmed controller,
while the number of falls was greatly reduced compared to learning from scratch.
After obtaining these positive results in simulation, the experiment was repeated
on the prototype. This showed that the prototype was able to learn a suboptimal
policy in a matter of minutes by observing the pre-programmed controller, after
which it was able to improve its policy with the same techniques used when
learning to walk from scratch in simulation. Unfortunately, significant results on
the average performance and convergence could not be obtained due to the large
resource costs of the experimental setup in its current form. Therefore, this result
can best be regarded as a proof of concept.
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3.4 Conclusions

In this chapter, we presented the hardware and software design of robot Leo
and presented learning results in simulation and on the prototype. The robot
was able to perform learning experiments in real-time, on its embedded hard-
ware, without human support or intervention – with the exception of hardware
failures, which, unfortunately, limited the maximum consecutive experimenta-
tion time with the prototype to approximately 30 minutes. Numerous design
improvements have greatly increased its fitness with respect to the hardware re-
quirements derived from the RL framework used in this thesis. To improve the
state signal, we increased the stiffness of the boom construction to reduce vibra-
tions, replaced potentiometers with magnetic encoders, applied low-pass filtering
to the signals from the joint position encoders and leveled the floor to reduce the
floor height differences. To withstand the peak forces from foot impact, random
actuation signals due to exploration and frequent falls, we improved the mother-
board mounting, added damping foam in key locations, increased the thickness
and material strength of the brackets and added elastic couplings between the ac-
tuators and the robot brackets to protect the gearboxes. To make actuation more
predictable, we compensated the actuation signals for the temperature of each
motor. It was striking to see how an initial version of the prototype would last 8
hours before breaking down when walking with a ’traditional’, pre-programmed
controller, while it would last only 5 minutes when applying learning control to
learn to walk. Eventually, after the aforementioned improvements, the prototype
would typically have a mean time between failures of 30 minutes when learning
to walk, with the weakest link being the gearboxes of the motors in the hip joints.

The motion control software developed for the prototype contained a clear
abstraction layer, which made it possible to write controller code that could be
compiled without modification for both the simulation environment and the real-
time environment on the robot, including facilities for logging to screen and file.
Using a publish/subscribe architecture, state information was distributed to the
controller and additional modules such as logging and visualization services. By
means of a separate actuation service, which allowed changing the actuator signals
at any time, control delay could be kept to a minimum. To achieve deterministic
timing on the prototype, we used Linux with real-time Xenomai extension. The
simulation environment, based on the fast and stable Open Dynamics Engine, was
extended with convenient XML configurability and allowed controllers – both
conventional and learning – to be tested safely before being deployed onto the
robot.

The first RL experiment on the prototype consisted of a relatively simple
learning task that involved only one leg (the other body parts were statically
mounted) – the stairs step-up task – and showed that the robot was able to
learn from scratch to place its foot on a plateau in approximately 15 minutes.
The results obtained in simulation and in hardware did not differ significantly.
This showed that the prototype’s hardware and software were suitable for RL
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experiments of short duration. Subsequently, we defined the MDP of learning to
walk – a task with 10 state dimensions and 3 action dimensions for our prototype
– and presented simulation results. In simulation, the robot learned to walk
from scratch in 3 hours or less. We showed that both control delay and floor
height differences increased the learning time (up to a factor of two), as well as
the number of falls occurring during the learning process. To reduce the latter,
we adjusted the robot setup by leveling the floor. The simulation results also
showed that the prototype would have to withstand thousands of falls before
learning to walk from scratch. Since our prototype was not robust enough for
that, we applied a method to speed up the initial learning period in which the
robot falls frequently, in order to still be able to study the presented RL techniques
of learning to walk on the current prototype. During an initial period of a few
minutes, the prototype was controlled by a pre-programmed controller. For this
demonstrated solution, the action-value function was estimated on-line, which
then served as an initialization for the remainder of the learning process. After
successfully testing this method in simulation, we executed the method on the
prototype for 4.5 hours, in which it learned to perform at least as well as the
demonstrated pre-programmed solution. To the best of our knowledge, this is the
first demonstration of Temporal Difference learning in real-time, on embedded
robot hardware involving a non-trivial task and a high-dimensional state-action
space.



Chapter 4

The effects of large disturbances on
learning to walk

An important difference between the real world and simulation is the presence of
disturbances. In Reinforcement Learning, disturbances are typically regarded as
stochastic variations of state transitions and actions. However, large and infre-
quent disturbances do not fit well in this framework; essentially, they are outliers
and not part of the underlying (stochastic) Markov Decision Process. In this
chapter, we investigate the effects of large and infrequent disturbances on the
on-line learning process of a simple walking robot in simulation. This section is
based on (Schuitema et al., 2010c).

4.1 Introduction

In an attempt to close the gap between RL in simulation and on real robots, this
chapter investigates the effects of large disturbances on the RL task of learning
to walk. For our prototype Leo – see Chapter 3 – we have found the main sources
of disturbance to be sensor noise, sampling period irregularities, the temperature
dependence of the actuators and unpredictable interactions with the environment
such as floor height irregularities. Disturbances can be (virtually) instantaneous,
such as sensor noise and sampling time irregularities, or lengthier such as wind,
changing floor slope, or (temporary) sensor drift.

Within RL, the learning agent and its environment are usually modeled as
a Markov Decision Process or MDP; see Section 2.1. It is common practice for
RL algorithms to allow stochastic state transitions (and rewards) in the MDP
(Bertsekas, 1987; Jaakkola, Jordan, and Singh, 1994; Tsitsiklis, 1994). Usually,
averaging over sufficient experiences will allow the algorithm to find an optimal
solution to such a stochastic MDP. However, not all disturbances can be con-
sidered to be part of the stochastic nature of the problem. Some disturbances,
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especially large and infrequent ones, should be considered as outliers. While
some algorithms – particularly off-line ones – are robust against outliers, to our
knowledge no in-depth study has been made of the effect of realistic outliers on
learning a control policy for real-time dynamic systems. In this chapter, we focus
on on-line Temporal Difference (TD) learning as described in Section 2.2.

Dealing with outliers involves several steps. The first step is to detect the
outlier. Once it is detected, the system can reject the outlier, excluding it from
the learning process. A possible further step is correction, i.e., to try and counter
the disturbance while it is active, which is only possible when the disturbance has a
significant duration. Appropriate correction requires classification of the outlier to
predict its evolution. The final step is recovery, during which the system abandons
the undesirable state (region) that resulted from the disturbance. Deliberately
including disturbances in the learning process might result in a solution that is
more robust against disturbances. However, this is only possible if they occur
often enough, i.e., if they are part of the stochastic nature of the system.

Several techniques have been studied to make RL more robust against distur-
bances (Singh et al., 1994; Kretchmar et al., 2001; Doya, 2001; Anderson et al.,
2007). While this work offers important and useful techniques, the difference in ef-
fects of various types of disturbances remains unknown. We explore the influence
of several types of outliers on the learning process of a simple simulation1 model
of a walking robot – the simplest walker model (see Section 4.3.1) – in order to
assess the need for further steps such as detection and classification. We use this
simple model instead of the fairly complex simulation model of robot Leo because
its low computational complexity allows us to more easily produce statistically
significant results. To illustrate the benefit of being able to detect outliers, we test
the effect of excluding the outliers from the learning process – a relatively simple
operation in TD learning. We do not look into the ability of the learning agent
to withstand stochastic disturbances, e.g. normally distributed disturbances of
moderate size; we only consider large, infrequent disturbances that can best be
regarded as outliers. We also do not look into slow and permanent changes in
the system or its environment, because this requires different properties of the
learning algorithm: the ability to adapt to new situations.

4.2 Large disturbances during RL

For a real-time dynamic system such as a humanoid robot, the main sources
of outliers are sudden changes in the dynamics, sensor and actuator noise and
sampling time irregularities. We now discuss the effect of each of these categories
of outliers on the learning process of RL, as well as disturbance rejection and
detection.

1While in simulation one can choose when and how to apply a disturbance, on a real robot,
this happens mostly involuntarily. Therefore, we use simulations throughout this section to
show the effects of several types of large disturbances.
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Figure 4.1: Effect of disturbances. © is the actual state, × is the measured state, and
• is the state on which the effective action at that timepoint is based. (a) Instantaneous
push. (b) Erroneous sensor reading. (c) Missing sample (incidental sampling period
doubling).

4.2.1 Outliers due to unexpected interactions with the environment

An external disturbance such as an instantaneous push or a step-up or step-
down in the floor can cause an outlier in the state transitions and bring the
learning agent into an exotic state sk,exo; see Figure 4.1a for a one-dimensional
example. In the learning updates that follow, the agent will erroneously relate
Q(sk−1, ak−1) to Q(sk,exo, ak) and a reward related to the transition to sk,exo.
Especially when sk,exo has an associated negative reward or will eventually but
surely lead to negative rewards, states on good solution paths might be linked
to the negative results of the disturbance. The agent cannot relate and thus not
reward its behavior before the disturbance to the reward that it actually deserves.

When the agent almost never suffers from such disturbances, it probably does
not have enough experience to recover from the resulting exotic states. However,
when it is disturbed frequently, it is able to practice in these regions of the state
space as well, so that it automatically learns to recover from these outliers. Note
that this is likely to lead to a longer learning time, since the robot visits a larger
part of the state space.

The effect of actuator noise is similar. However, actuator noise is likely to bring
the system in a state that it also could have visited under normal conditions, e.g.
due to exploration. Therefore, this type of outlier is less interesting and we do
not further look into it.

In summary, the learning problem becomes larger because a larger part of the
state space is visited. Furthermore, with every outlier, parts of the state space
are connected that are in principle not related, which can negatively influence
learned behavior in frequently visited parts of the state space.

4.2.2 Outliers due to sensor noise

In case of an outlier in the sensor reading, the agent will perceive a state sk,err
and reward rk,err that are different from the actual sk and rk. Here, rk (and thus
rk,err) is computed by the controller from sk−1, ak−1 and sk. Because of this, the
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agent will experience two erroneously perceived state transitions; (sk−1, ak−1)→
sk,err and (sk,err, ak) → sk+1, see Figure 4.1b for a one-dimensional example.
When the agent is estimating the action-value function of the MDP, the result is
that Q(sk−1, ak−1) will be related to Q(serrk , ak), the latter most probably having
a Q-value unrelated to the problem with sk,err being an outlier. Next, Q(skerr, ak)
is related to Q(sk+1, ak+1). When using temporal difference (TD) learning with
eligibility traces, however, it is likely that the subsequent TD updates (see (2.11))
largely cancel each other out. When using SARSA, for example, the two subse-
quent errors in the TD updates are:

∆δTD,k−1 = δerrTD,k−1 − δcorrectTD,k−1 = γ(Q(sk, ak)−Q(serrk , ak)) + rerrk − rk
∆δTD,k = δerrTD,k − δcorrectTD,k = Q(serrk , ak)−Q(sk, ak)

(4.1)
When using eligibility traces, both incorrect TD updates are applied to all Q(s, a)
in the trace, with maximum net error ∆max for Q(sk−1, ak−1) (all other (s, a)
pairs have smaller values of e(s, a)):

∆max = α(∆δTD,k−1 + γλ∆δTD,k)
= α(rerrk − rk + γ(1− λ)(Q(sk, ak)−Q(serrk , ak))

(4.2)

In the special case of using a simple reward function in which rk is constant in
large parts of the state-action space (this is true, e.g., when rk equals a constant
time penalty except for goal states and terminal states), rerrk and rk+1 are often
equal. For such simple reward functions, the remaining error approaches 0 when
λ approaches 1, i.e., for lengthy eligibility traces.

However, the agent will base ak on Q(sk,err, ∗), which results in a suboptimal
action. This action can remove the agent from its optimal path - but not worse
than when an exploratory action was chosen. Unlike with a dynamics disturbance,
the agent has a fair chance to successfully continue its episode and receive the
reward it deserves based on its behavior before the disturbance.

In summary, the most prominent effect of a sensor outlier are two learning
updates with an erroneous TD-error (with eligibility traces, the effect is usually
very small) and one extra suboptimal action.

4.2.3 Outliers due to sampling time irregularities

When the sampling time is suddenly disrupted, e.g., due to calculations taking
longer than normal, the dynamics of the system evolve longer (or shorter) than
normally. Depending on the type of action that the agent executes, the action
itself will be shortened or extended, which results in a different resulting state.
This is true for actions like motor torque or voltage when they are maintained
until other actions overwrite them. However, unless the disruption lasts a large
multiple of the sampling time, the effect is expected to be limited. See Figure 4.1c
for a 1-dimensional example.
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In summary, an outlier in sampling time is expected to have a limited effect,
unless it lasts a large multiple of the sampling time.

4.2.4 Disturbance rejection and detection

For on-line TD-learning, simply skipping the learning update for state transitions
that include outliers is enough to exclude the outlier from the learning process.
When eligibility traces are used, the traces can simply be cleared once an outlier
is detected. This skips the faulty learning update. Note that clearing eligibility
traces can slow down the learning process.

In this work, we do not focus on the subject of outlier detection. In our simula-
tions, we simply signal the learning algorithm that an outlier was detected at the
moment we apply the disturbance. For on-line disturbance detection on robotics
systems, a state transition model of the robot and its environment is needed,
preferably learned on-line. Model learning techniques that might be appropriate
for such systems are Locally Weighted Learning (LWL) (Atkeson, Moore, and
Schaal, 1997), a local linear regression technique, and SmartSifter (Yamanishi
et al., 2000). Once a model is available, every state transition can be compared
to the expected state transition based on the model. If a measured state differs
significantly from its prediction, the measurement can be labeled as an outlier.
Prediction intervals can serve as a significance measure and are easily calculated
for LWL.

4.3 Experimental setup

In order to evaluate the effect of several types of outliers on the learning process
and the efficacy of skipping the learning update, we have performed simulations
of a simple two-dimensional system - the simplest walker - that learns to walk
using SARSA(λ). To simulate a disturbance, the walking system was severely
perturbed for a single time step. Because we do not focus on the outlier detection
aspect, we simply signal the learning algorithm of the presence of the outlier when
the disturbance was applied. To reject the outlier, the learning update for this
time step is not performed and eligibility traces are cleared. We tested three types
of disturbances:

1. An ‘instantaneous’ push, which is a perturbation of the real state due to an
unexpected interaction with the environment.

2. An erroneous sensor reading (spike noise).

3. A sampling time irregularity, resulting in a sample that takes longer to
acquire.
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4.3.1 The simplest walker

The simulated system is a compass walker (Garcia et al., 1998) consisting of two
rigid legs of unit length connected by a frictionless hinge at the hip (Figure 4.2).
A mass of unit size is located in the hip of the walker. The legs are massless,

ϕh

ϕst

σ

Figure 4.2: The simplest walker – the most elementary model that describes walking
behavior.

while the feet contain an infinitesimally small mass. This results in pendulum-
like behavior of the swing leg. We allow the swing foot to be briefly below floor
level during its swing, which is inevitable for a walker without knees; the second
time the swing foot is at floor level height, the walker makes a step and the
swing leg becomes the new stance leg. The system is described by the following
equations of motion:[

ϕ̈st

ϕ̈h

]
=

[
sin(ϕst − σ)

sin(ϕh)(ϕ̇2
st − cos(ϕst − σ)) + sin(ϕst − σ)

]
(4.3)

in which ϕst is the angle between the stance leg and the floor normal, ϕh is the
relative hip angle and σ is the floor’s slope angle. We used 4th order Runge-Kutta
to integrate (4.3) with a time step of 0.0125s. At heel strike, the collision with the
floor causes the system to lose energy, and the swing leg becomes the new stance
leg and vice versa. The impact is modeled as an instantaneous velocity change
from the pre-collision state(–) to the post-collision state (+) by:[

ϕ̇+
st

ϕ̇+
h

]
=

[
cos(2ϕ−st)

cos(2ϕ−st)(1− cos(2ϕ−st))

]
ϕ̇−st (4.4)

This unactuated system is able to passively and stably walk down a slope in a
gravity force field with unit magnitude. The slope angle σ is 0.004rad. For this
passive walking gait, a footstep takes around 4 seconds (20 time steps).

4.3.2 Learning to walk

Its stability and walking speed can be increased by adding actuation. Because
the legs are virtually massless, the action consists of an acceleration of the swing



4.3 EXPERIMENTAL SETUP 93

leg instead of a torque. This acceleration has no effect on the movement of the
stance leg, only on the swing leg. The agent can choose its action from the range
[−1.2, 1.2]rad/s2 in 15 uniformly spaced steps. The state space of the learning
agent is spanned by ϕst, ϕ̇st, ϕh and ϕ̇h. At the start of an episode, the walker
is randomly set to an initial condition that is known to contain enough energy to
start walking (but not necessarily leads to a stable walking pattern). An episode
ends when the walker fell down or after 100 seconds. The rewards are −1 for
every action, 50 per meter of footstep length at every footstep and −50 when it
falls. By rewarding traveled meters and punishing time, the walker will optimize
towards maximum walking speed. In most gaits we observed, a footstep took
around 1.6 seconds.

The relevant learning parameters are the learning rate α = 0.4/16 where 16 is
the number of tilings in the tile coding function approximator used to estimate
Q(s, a), the exploration rate ε = 0.05 (discounted such that it is 0.01 after 30
simulated hours), time discounting factor γ = 0.99 and trace decay rate λ = 0.92.
The sampling period was 0.2s. We kept the learning rate constant, which is
realistic for a learning robot; it can then continuously adapt to possible slow
changes in the environment or its own dynamics, such as changes in friction due
to wear and tear of the system.

4.3.3 Test scenarios

We analyzed three types of large disturbances. In each test, we added a specific
type of disturbance to the system at random time intervals with an average of
one disturbance every 50 time steps.

The first type of large disturbance is a physical perturbation of the system in
the form of an instantaneous push, which leads to an outlier in the state transi-
tions (Figure 4.1(a)). In our simulation this was effected by applying a random,
instantaneous change in angular velocity of the stance leg, drawn from a uniform
distribution over the ranges [−0.044,−0.038]rad/s and [0.038, 0.044]rad/s. This
corresponds to a change in its velocity of roughly 25%-100% depending on the
moment of application.

The second type of large disturbance is sensor spike noise. Potentiometers
commonly applied to measure joint angles (as a cheaper alternative to magnetic
or optical angular sensors) can occasionally lose contact, resulting in spikes in the
measurements. Such a disturbance only changes the state reported to the learning
module, while the physical system itself remains unchanged (Figure 4.1(b)). In
our simulation, an outlier was implemented by replacing the sensor reading of the
hip angle by a random value distributed uniformly over the range [−π2 ,

π
2 ]rad. In

addition, we changed the perception of the hip angular velocity as well, as if it
resulted from differentiating the faulty position signal. Note that this results in
two samples with a faulty state signal.

The third type of large disturbance is sampling time irregularity. While the
motor control policy of most robots runs on a proper real-time operating system,
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samples may still be delayed or lost due to communication errors or algorith-
mic calculations taking occasionally longer than normal. This was simulated by
omitting samples at random, causing the last chosen action to take twice as long.

4.4 Results and discussion

We present our test results as learning performance graphs, showing the average
traveled distance of the walker versus simulation time. After every 20 episodes,
a series of 11 test runs – each 100 seconds long – was performed. By measuring
traveled distance, an increase in performance in terms of faster walking shows
an increase in traveled distance. On the other hand, equally fast but unstable
walking results in the walker falling easily, resulting in on average a decrease in
traveled distance. Each point in the graph is an average of 20 tests and includes
the 95% confidence interval of the average. Usually, the walker quite quickly
learns to walk, after which it (slowly) continues to optimize for walking speed. It
must be noted that an episode ends immediately when the walker falls, resulting
in a (very) low traveled distance. Because these runs are averaged with successful
runs, the variance of the performance graphs is quite large.

The performance of learning to walk using the SARSA algorithm without
disturbances is shown as baseline in, e.g., Figure 4.8. We see that the walker
learned to walk after about 1.5 hours, after which it slowly keeps increasing its
average walking speed, which increases its traveled distance during the 100 second
test runs. We now compare this result to our different disturbance scenarios.

4.4.1 Push

We first compared a learning process disturbed with random pushes – but undis-
turbed during the test runs – to undisturbed learning. This allows us to ascertain
how well we do on learning the underlying undisturbed problem. In Figure 4.3
we can see that by skipping the learning update for state transitions involving
an outlier as described in Section 4.2.4, we do indeed learn the optimal policy.
Without rejection however, the performance is significantly worse. Apparently,
Q-values of states that regularly visited during walking are severely affected. Fig-
ure 4.4 shows the more realistic scenario we get when we include disturbances in
the test runs. Again, undisturbed learning and outlier rejection perform similarly
(but worse than testing without disturbances, of course), while regular learning in
the disturbed system has a lower performance. This indicates that the SARSA(λ)
algorithm is unable to treat the infrequent state perturbations as stochastic vari-
ations (at the learning rate used here, which proved to be appropriate for undis-
turbed learning). When disturbing the test runs, learning without disturbances
performs slightly worse than learning with disturbances and rejecting them. This
can be explained by the fact that the disturbed learner visits a larger part of the
state space (i.e., more exotic states), from which it learns to recover, than the
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undisturbed learner. Note that it might be expected that not rejecting outliers
could eventually improve performance in the disturbed test runs over rejection,
because the system could possibly learn a more cautious walking gait (at the cost
of walking speed). In our simulations this was not the case. This effect is more
likely to appear when using a lower learning rate and for smaller, more frequent
disturbances.

Although we motivated our choice of keeping the learning rate constant (see
Section 4.3.2), we tested the effect of slowly reducing the learning rate over time
(results not shown here). The low learning rate at the end of the runs allowed
regular SARSA(λ) to perform enough averaging to endure the disturbances and
reach the same level of performance as outlier rejection. However, it converged
more slowly. We also compared the performance of Q(λ)-learning and SARSA(λ),
but could not find a significant difference between the two, indicating that outlier
rejection is equally applicable to both algorithms.

Instantaneous push, undisturbed test runs
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Figure 4.3: Performance comparison for the push scenario using SARSA and undis-
turbed test runs. Learning with outlier rejection is compared to regular learning and to
the baseline (i.e., undisturbed learning). Outlier rejection restores optimal performance
over regular learning for undisturbed test runs.

4.4.2 Sensor spike noise

Our second testing scenario is sensor spike noise. In Figure 4.5 we see that one
spike every 50 time steps (on average) does not significantly reduce the perfor-
mance from the baseline. As described in Section 4.2.2, the use of eligibility traces
is likely to mask the disturbances. The situation changes when we increase the
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Instantaneous push, disturbed test runs
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Figure 4.4: Performance comparison for the push scenario using SARSA and dis-
turbed test runs. Learning with outlier rejection is compared to regular learning and to
undisturbed learning. Outlier rejection performs better than undisturbed learning and
regular learning. However, all learning schemes show a significantly lower performance
compared to undisturbed test runs.

frequency of the spikes to once every 5 time steps on average: overall performance
drops, and only regular learning learns to deal with the disturbances (Figure 4.6).
Both outlier rejection and undisturbed learning plateau at a significantly lower
performance level. Additionally, the convergence of learning with outlier rejec-
tion is slowed by the clearing of the eligibility traces. This shows that for certain
disturbances, outlier rejection can actually have a negative effect.

4.4.3 Sampling time irregularity

The final scenario involved omitting samples. As can be seen in Figure 4.7, there
is again no significant difference from the baseline. More interestingly, even in
the unrealistic case of one lost sample every 5 time steps (on average), the regu-
lar learning process achieves only a slightly lower performance than the baseline
(Figure 4.8). This indicates that our walking system is quite robust against sam-
pling time irregularity by default and becomes slightly more robust when learning
under the influence of disturbances. The frequency of the disturbance now allows
it to be treated as stochastic noise.
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Sensor spike noise
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Figure 4.5: Performance comparison for the sensor spike noise scenario using SARSA
and disturbed test runs. Learning with outlier rejection is compared to regular learning
and to the baseline (undisturbed learning and test runs). The disturbances have a small
effect on the learning performance.

Sensor spike noise, unrealistic case
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Figure 4.6: Performance comparison for the sensor spike noise scenario using SARSA
and disturbed test runs. Disturbances occurred unrealistically often. Learning with outlier
rejection is compared to regular learning and to undisturbed learning. Rejecting outliers
performs worse than regular learning. Regular learning performs better than undisturbed
learning.
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Sampling time irregularity
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Figure 4.7: Performance comparison for the sampling time irregularity scenario using
SARSA and disturbed test runs. Learning with outlier rejection is compared to regular
learning and to the baseline (undisturbed learning and test runs). The disturbances have
an insignificant effect on the learning performance.

Sampling time irregularity, unrealistic case
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Figure 4.8: Performance comparison for the sampling time irregularity scenario using
SARSA and disturbed test runs. Disturbances occurred unrealistically often. Learning
with outlier rejection is compared to regular learning, undisturbed learning and to the
baseline (undisturbed learning and test runs). Outlier rejection has the worst perfor-
mance, while regular and undisturbed learning perform surprisingly well.
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4.5 Conclusions

Stochastic system behavior is part of the stochastic MDP framework and poses
no problem for most learning algorithms, other than that it usually results in the
need to average over more experience (i.e., using a lower learning rate) and thus
longer learning times. However, the effect of large and infrequent disturbances
– or outliers – is relatively unknown. Every real system will suffer from outliers
to some degree. They can occur in sensor readings, timing or in unexpected
interactions with the environment. In this chapter, we evaluated the effects of
outliers on a simple simulation model of a walking robot, which learned to walk
using SARSA(λ). We tested the effects of three types of outliers: an instantaneous
push, a sensor reading outlier, and a sampling time irregularity.

Pushing the walker at random moments, on average once in approx. 6 foot-
steps, had a dramatic effect on the learning time and system performance. Re-
jecting the outliers by excluding the faulty state transitions from the learning
process completely restored the performance of the walker. After an equal num-
ber of practicing hours, the ’ignorant’ walker that included the outliers in the
learning updates performed roughly half as well as the outlier rejecting walker.
This contrasts with the possible expectation that learning under the influence of
disturbances would produce a more robust policy; apparently, the size and fre-
quency of the disturbances in this experiment did not allow for them to be treated
as stochastic variations of the underlying MDP.

The introduction of random spike noise on the sensor reading of the hip angle,
on average once every 50 measurements, had an undetectable effect on the learn-
ing agent. When their frequency was increased ten times (unrealistic), outlier
rejection actually resulted in a decrease in learning speed. This can be explained
by the fact that we excluded outliers in SARSA(λ) by clearing the eligibility
traces, thus on average once in 5 samples, which slowed down learning. Doubling
the sampling time randomly, on average every 50th sample, also had an unde-
tectable effect on the learning agent. When increasing their frequency ten times
(unrealistic), the effect became noticeable but was still surprisingly small. Again,
rejecting outliers by clearing the eligibility traces led to a large drop in learning
speed. The rejection process had a much more negative impact on the learning
performance than the outliers themselves.

We can conclude that for this simple model, large disturbances of the actual
system state through unexpected interaction with the environment have by far the
largest influence on the learning process, compared to timing and sensor outliers.



100 THE EFFECTS OF LARGE DISTURBANCES ON LEARNING TO WALK 4.5



Chapter 5

Using Independent Learners for
individual actuators

Section 2.4 showed that control delay can slow down the learning process and
at worst make it diverge. The experiments in Section 3.3 on simulation of robot
Leo confirmed this. In this chapter, we take a multiagent RL approach in which
each actuator of the robot is controlled by a separate learning agent. Because
each agent has a smaller, one dimensional action space, consulting the policy
requires much less computation, which reduces the control delay in real systems.
In addition, memory requirements are reduced. This chapter is based on (Troost,
Schuitema, and Jonker, 2008).

5.1 Introduction

A well known problem in scaling RL towards more complex systems, like humanoid
robots, is the large number of inputs (sensors) and outputs (actuators) that are
spanning the state-action space of these systems. Generally, the larger the state-
action space of a system, the longer it takes and the more memory is required
to find a satisfactory control policy with RL. For RL methods that derive the
policy directly from the (action-)value function, a large action space possesses an
additional computational disadvantage. Suppose a robot has M motors, each of
which can be controlled in N discrete actuation steps. Selecting the best action in
a certain state involves evaluating the (action-)value function NM times. This can
become computationally heavy, especially when using computationally intensive
function approximation techniques to learn in continuous state spaces. A lengthy
computation causes control delay – delay between the state measurement and
the execution of the selected action – which was shown to be detrimental to the
learning process (Section 2.4).

In this chapter, we present an approach in which the action space is decomposed
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by assigning a learning agent to each individual actuator. These heterogeneous
agents with differing action spaces learn to achieve the overall system goals by
implicitly cooperating to achieve their common goal: the global reward function.
Together the agents form a multiagent system (MAS). Each agent’s state space
consists of the full state space as would be used in single agent solutions, but does
not include any information on action selection done by the other agents. Claus
and Boutilier (1998) call this approach Independent Learners (IL). During policy
evaluation, each agent selects its own action, without any form of negotiation or
central coordination. In our example of M motors with N discrete actions each,
this will lead to evaluating and storing M ·N values instead of NM ; an increase
that is linear in the number of actuators instead of exponential. Thereby, this
MAS approach offers a reduction in computational and memory requirements.
Furthermore, it is suitable for parallel or distributed computing implementations,
where the agents learn and select actions simultaneously (Stone and Veloso, 2000).

In the IL approach, the state transitions for each agent do not only depend on
the actions taken by that agent itself, but also on the actions of the other agents.
Since these are not included in the agent’s state signal, the state transition func-
tion for each independent agent is in effect non-stationary (Laurent, Matignon,
and Fort-Piat, 2011), thereby violating the Markov property. Therefore, problems
can be expected when individual agents are using an RL algorithm that assumes
a stationary MDP. Nevertheless, this approach has been successfully applied to
a number of simulation domains, including elevator group control (Crites and
Barto, 1998), the control of a two-link manipulator (Buşoniu, De Schutter, and
Babuška, 2006) and distributed micro-manipulation (Matignon et al., 2010).

We test the IL approach on three different simulations of robotic setups, with
the aim to reduce computational and memory requirements: a two-link manipu-
lator, and bipedal walking robots META and Leo. Whereas the two-link manip-
ulator and META have two motors, Leo has three actuators under RL control1.
We compare classical (single-agent) Q(λ) and SARSA(λ) with their multiagent
counterparts using the IL approach. We also test two modifications to IL: using
synchronized exploration, where explorative actions of all agents coincide, and
using Lenient Learning (Panait, Sullivan, and Luke, 2006), a method for mul-
tiple agents to be lenient to each other’s actions. Since all three systems have
continuous state spaces, we use tile coding function approximation to estimate
action-value functions.

This chapter is organized as follows. In Section 5.2, we explain the theory
of multiagent RL (MARL) and the proposed IL method. In Section 5.3, we
present the results obtained with the simulation of a two-link manipulator. In
Section 5.4, the results for simulated bipedal walking robot META are presented
and Section 5.5 presents the results obtained with the simulation of Leo. We
finally present a discussion in Section 5.6 and our conclusions in Section 5.7.

1Leo has 7 servo motors, of which 3 are controlled by RL and 4 by conventional control laws.



5.2 THEORY 103

5.2 Theory

In this section, we outline our approach, formalize it and discuss the available
theory.

5.2.1 Approach

Reinforcement Learning (RL) is designed to find optimal control policies for
Markov Decision Processes (MDPs, see Section 2.1). We propose to decompose
the action space of the system as defined in the original MDP. We do this by
assigning a learning agent to each actuator, thereby creating a multiagent system
(MAS). The agents act in a fully cooperative setting, i.e., they have the same
objective by means of the single, global reward function from the original MDP;
all agents receive the same reward, which depends on the actions of all agents to-
gether. However, each agent learns to control its actuator without communicating
with the other agents. Therefore, coordination between the agents – needed to
select the globally optimal action – is not explicit, as can be achieved through
communication or social convention, but needs to emerge through learning and
interaction. Each agent receives the full state of the system (which excludes the
actions chosen by the other agents).

We are considering (robotic) systems with a continuous state space and M ac-
tuators, each allowing a set of discrete action commands Am. A single agent would
have to learn to control the joint action space containing |A1| · |A2| · . . . · |AM | =
M∏
m=1
|Am| action combinations. To this end, the agent needs to store an equal

number of Q-values and evaluate these Q-values when consulting its policy. In
the multiagent case, where each actuator is controlled by a separate agent, there

are M agents that together store and consult |A1|+ |A2|+ . . .+ |AM | =
M∑
m=1
|Am|

Q-values. Memory requirements 2 and computation time thereby become linear
instead of exponential in M . Memory requirements and computation time during
action selection are reduced by a factor:

M∏
m=1
|Am|

M∑
m=1
|Am|

(5.1)

We now formalize this idea and discuss temporal difference learning algorithms
for this setting.

2At this point, we do not consider function approximation with generalization between ac-
tions.
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5.2.2 MMDP

For our proposed approach, the MDP framework needs to be extended to a mul-
tiagent version – the MMDP – in which several learning entities are active in the
same environment. This is done by Boutilier (1996) by including all agents in the
tuple:

〈S,M, {A1, ..., AM}, T,R〉, (5.2)

where M is the number of agents, Am is the action space available to agent m,
T : S × A1 × . . . × AM × S → [0, 1] is the state transition probability density
function and R : S ×A1 × . . .×AM × S → R is the real-valued reward function.

One can attempt to solve this MMDP by solving a set of local decision pro-
cesses, one for each agent m, defined by a 4-tuple containing partial action space
Am, the entire set of states S, a time-dependent state transition probability den-
sity function Tmk : S × Am × S → [0, 1] and a time dependent reward function
Rmk : S ×Am × S → R:

〈S,Am, Tmk , Rmk 〉. (5.3)

While T and R are global, stationary functions, the individual functions Tmk and
Rmk are non-stationary; they depend on time step k for the following reason. When
the system state sk transitions to sk+1, this is the result of the joint action of
all agents. However, because the agents’ policies are continually adjusted during
learning, the actions of the agents vary over time. Therefore, from a single agent’s
perspective, state transitions and rewards also change over time, even though they
are generated by the global and stationary functions T and R. These 4-tuples,
thus, do not possess the Markov-property (Laurent, Matignon, and Fort-Piat,
2011). Below we propose learning algorithms for these agents and discuss whether
convergence can be expected.

5.2.3 MA-Q(λ) and MA-SARSA(λ)

Q-learning (see Section 2.2) is an off-policy method, which can be extended to
a multiagent version – MA-Q – with the aim to solve the previously proposed
MMDP. We propose to let a set of M Independent Learners (IL) (Claus and
Boutilier, 1998) estimate their own action-value function Qm(s, am), spanned by
S × Am, using a local Q-learning update rule. Each agent calculates its local
TD-error δmTDQ

according to:

δmTDQ,k+1 = rk+1 + γ max
a′∈Am

Qmk (sk+1, a
′)−Qmk (sk, a

m
k ) (5.4)

This approach is equivalent to Distributed Q-learning (Lauer and Riedmiller,
2000). To simplify the discussion, we assume that each Qm(s, am) is estimated
using linear function approximation. This can be done by updating every element
θm,i of each agent-specific feature parameter vector θm every time step according
to:

θm,ik+1 = θm,ik + αδTD,k+1φ
m,i(sk, ak) (5.5)



5.2 THEORY 105

with φm(sk, ak) the vector of agent-specific features (basis functions) and θm,i0

arbitrarily initialized. Eligibility traces can be implemented analogously to (2.20)
and (2.21) – thereby creating MA-Q(λ) – by using an agent-specific vector em of
eligibility traces.

SARSA, an on-policy algorithm, estimates the total expected sum of rewards
of choosing action a in state s and following the current policy afterwards. A
multiagent, IL version – MA-SARSA – can be defined by using (5.5) with the
following TD-error definition:

δmTDQ,k+1 = rk+1 + γQmk (sk+1, a
m
k+1)−Qmk (sk, a

m
k ) (5.6)

MA-SARSA can be extended with eligibility traces analogously to (2.20) and
(2.21) to create MA-SARSA(λ).

5.2.4 Policy

Several action selection policies can be used during learning to incorporate differ-
ent exploration strategies. We used the ε-greedy policy, denoted πε−greedy, with
exploration rate ε according to (2.9). In the case of MA-Q(λ) and MA-SARSA(λ),
each agent m has its own policy and thus independently decides which action am

to take. Therefore, exploration is also independent. An IL version of the ε-greedy
policy is:

πmε−greedy(sk, a
m
k ) =

{
1− ε+ ε/|Am| if amk = amk,greedy

ε/|Am| if amk 6= amk,greedy

(5.7)

with amk,greedy the agent-specific greedy action at time step k:

amk,greedy = arg max
a′∈Am

Qm(sk, a
′) (5.8)

In practice, action amk is selected as follows:

xm ∼ U(0, 1),

amk =

{
∼ U(Am) if xm < ε
amk,greedy if xm ≥ ε

(5.9)

where xm ∈ [0, 1] is an agent-specific random number drawn from a uniform
distribution. Multiagent Q-learning for stateless systems with the ε-greedy policy
is described by Gomes and Kowalczyk (2009).

Alternatively, one may choose to synchronize exploration between the agents
by always exploring simultaneously:

x ∼ U(0, 1),

amk =

{
∼ U(Am) if x < ε
amk,greedy if x ≥ ε

(5.10)
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with x ∈ [0, 1] a random number drawn once per time step. Strictly speaking,
synchronizing exploration breaks the independence of the agents. However, the
goal of our approach is not the independence of the agents per se, but the compu-
tational benefits this approach offers, which are unchanged by this modification.

5.2.5 Problems of ILs

Theoretical literature on heterogeneous ILs mainly focuses on single state MMDPs
with two or three actions available to each agent (Claus and Boutilier, 1998; Lauer
and Riedmiller, 2000; Panait, Sullivan, and Luke, 2006; Panait, Tuyls, and Luke,
2008). The problems faced and sometimes solved in these papers may also (at least
to some extent) occur in our proposed method. Because the learning problem for
each agent is not stationary (see Section 5.2.2), each agent is faced with a moving
target learning problem: the best policy depends on the other agents’ policies. If
there is no coordination between the agents, which is the case for ILs, some specific
situations may give rise to convergence problems. Below we give an example in
which convergence to a suboptimal solution is likely to occur.

One problem often occurring in multiagent RL is the problem of obtaining
full state information. Most literature on multiagent RL is about multiple, often
homogeneous robots having to work together to solve a problem (see, e.g., Panait
and Luke (2005)). Obtaining full state information involves (synchronized) com-
munication between all robots and can be cumbersome. In our approach, this
problem is not present. We use heterogeneous Independent Learners that are
active within a single robot; obtaining full state information is not more difficult
than in single agent approaches.

Convergence to suboptimal solutions

To illustrate the problem of convergence to suboptimal solutions, we borrow an
example from (Claus and Boutilier, 1998): the ’climbing game’. It is a determin-
istic, stateless (i.e., single state) learning system with two agents. The two agents
– one with action space a1, a2, a3, the other with action space b1, b2, b3 – choose
an action independently, resulting in a global reward for both agents, after which
the game ends. The reward scheme is given in Table 5.1.

In this game, two Nash equilibria exist: an optimal one at (a1, b1) (with re-
ward 11) and a suboptimal one at (a2, b2) (with reward 7). A Nash equilibrium
(Nash Jr, 1951) in this context is formed by a set of agent policies such that
no individual agent can improve its policy if the other agent’s policy remains
the same. Instead of always reaching the optimal equilibrium, the IL agents can
converge to a suboptimal solution, depending on the specific learning parame-
ters used. Suppose that both agents start with policies in which all actions have
equal probabilities (i.e., uniformly random action selection). Learning will quickly
lead to new policies in which (a3, b3) is the preferred joint action, since it results
in the highest average reward under the agent’s initial policies. From this new
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Table 5.1: The rewards belonging to actions in the ’climbing game’: a stateless learning
problem with two agents that is known to give convergence problems when solved by
Independend Learners. One agent has action space a1, a2, a3, the other has action space
b1, b2, b3.

a1 a2 a3

b1 11 -30 0
b2 -30 7 6
b3 0 0 5

equilibrium, a unilateral change in the second agent’s policy from b3 to b2 is an
improvement, which can be easily reached by exploration. Similarly, from this
new policy, a unilateral change in the first agent’s policy from a3 to a2 is again
an improvement. However, because of the high penalties of −30 at (a1, b2) and
(a2, b1), it is unlikely that the agents will further change their policies. Unless
both agent’s policies simultaneously change into preferring (a1, b1), the agents will
keep preferring (a2, b2). This change is unlikely to happen, especially for small
values of the exploration rate and learning rate. This illustrates that ILs can have
a tendency to ’settle’ for suboptimal solutions. Depending on the initial policies
and the learning parameters, the specific suboptimal solution reached may vary.
Situations similar to the ’climbing came’ can occur in multi-state (i.e., sequential
decision making) systems as well.

The optimistic assumption

Lauer and Riedmiller (2000) adjust the IL with the aim to cope with such problems
without adding coordination. Instead of the update rule in (5.5), an ’optimistic’
assumption is made where Q-values are only updated if the TD-error is positive,
thereby ignoring mistakes by other agents that lead to a lower expected return.
This idea can be extended to systems with multiple states and function approxi-
mation. Updating feature parameter values with this optimistic assumption can
be done as follows:

θm,ik+1 =

{
θm,ik + αδTD,k+1φ

m,i(sk, ak) if δTD,k+1 > 0

θm,ik if δTD,k+1 ≤ 0
(5.11)

This takes care of the problem in the climbing game. Lauer and Riedmiller (2000)
describe a way to keep track of the first best policy in each agent to make sure that
in a penalty game, both agents choose the same (the first encountered) optimum.
With these two additions, convergence to the optimal solution is again guaranteed
under the same conditions as with the single-agent MDP.

Within a stochastic MMDP, fluctuations of Q-values occur due to stochastic
state transitions and stochastic rewards. Such fluctuations, i.e., positive and neg-
ative adjustments, cannot be distinguished from fluctuations due to the changing
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policies of the other agents. Using the optimistic assumption of (5.11) in this
case leads to an overestimation of the total expected reward, resulting in a loss of
convergence (Lauer and Riedmiller, 2000).

Panait, Sullivan, and Luke (2006) propose Lenient Learning for stateless prob-
lems. This is a combination of the update rules (5.5) and (5.11). In the beginning
of the learning trial, the optimistic assumption is made to make sure optimal
equilibria are found. After these are discovered, the lenience towards the other
agents is tuned down, returning the update to the original one (5.5). This transi-
tion is smoothly made with a Boltzmann probability that depends on the number
of times a state-action pair is visited. Here we extend Lenient Learning to a
multi-state method with linear function approximation as follows:

x ∼ U(0, 1),

θm,ik+1 =

{
θm,ik + αδTD,k+1φ

m,i(sk, ak) if δTD,k+1 > 0 or x > `m,ik

θm,ik otherwise

(5.12)

with x ∈ [0, 1] a random variable, and `m,ik the feature dependent lenience defined
as:

`m,ik = 1− e−κτ
m,i
`,k

τm,i`,k = βτm,i`,k−1

(5.13)

where κ is the lenience parameter and τm,i` the lenience temperature of feature
φm,i, which is decreased with a discounting factor β ∈ [0, 1] each time φm,i is
visited. At initialization, τm,i`,0 = 1.

Implications for our robots

For multi-state problems such as robots, convergence to the optimal solution is
not guaranteed when using ILs due to the problems just described. Especially in
situations where an improvement in the expected return requires a simultaneous
change of all agents’ policies, whereas a unilateral policy change of a single agent
would decrease the expected return, it is probable that the ILs converge to a
suboptimal solution. Therefore, care needs to be taken when implementing ILs as
a substitute for single agent RL. At this point, however, we cannot fully predict
the complications of ILs in multi-state systems; the behavior of multi-state ILs is
a topic of recent research (Vrancx, Tuyls, and Westra, 2008; Hennes, Tuyls, and
Rauterberg, 2008; Hennes, Tuyls, and Rauterberg, 2009). In the following sections,
we show the differences between ILs and single agent RL empirically by means of
experiments with several robot simulations. To help solve the possible convergence
problems discussed in this section and in Section 5.2.5, Lenient Learning according
to (5.12) is tested on one of the test setups: the two-link manipulator.
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5.3 Two-link manipulator

In this section, we compare the performance of MA-Q(λ) and MA-SARSA(λ)
against their single agent counterparts for the two-link manipulator, a robotic
setup with two actuators, shown in Figure 2.7. We show the performance of
synchronized exploration and Lenient Learning as well. Whereas Buşoniu, De
Schutter, and Babuška (2006) applied decentralized value iteration to this setup,
here we apply temporal difference learning. Its fourth-order non-linear dynamics
are given in (2.34); see, e.g., (Buşoniu et al., 2007) for a more detailed description
of the system. We numerically integrated (2.34) using the Runge-Kutta algorithm
with time step Ti = 0.01s.

5.3.1 Learning

In our learning setup, we define two agents, one for each motor. Both agents
receive the complete system state, but no information about the other agent’s
action. Their state vectors si are:

s1 = s2 =


ϕ1

ϕ̇1

ϕ2

ϕ̇2

 (5.14)

Each agent controls a single motor through their action ai:

a1 = τ1 (5.15)

a2 = τ2 (5.16)

The task of the system is to accomplish ϕ1 = ϕ2 = ϕ̇1 = ϕ̇2 = 0 as fast as possible.
To this end, a reward is given when the angles and angular velocities are within
a small region around 0: |ϕj | < 0.17∧ |ϕ̇j | < 0.2, ∀ j ∈ {1, 2}. Furthermore, each
time step a time penalty is given. The reward rik is equal for both agents:

r1
k = r2

k =

{
100, if |ϕj,k| < 0.17 ∧ |ϕ̇j,k| < 0.2, ∀ j ∈ {1, 2}
−1, all other cases (time penalty)

(5.17)

The agents perform a Q-learning update rule simultaneously at each time
step according to (5.5). The the sampling period h = 0.05s. The learning rate
α = 0.4, the exploration rate ε = 0.05, the discount factor γ = 0.98 and the trace
discount factor λ = 0.92. Both agents use tile coding function approximation
with 16 tilings to approximate Qi(s, ai). The action space is discrete. There is
no generalization between actions, only between states. The tile widths for the
state space are 1/12rad in the ϕ1 and ϕ2 dimensions and 1/6rad/s in the ϕ̇1 and
ϕ̇2 dimensions. The learning results will be compared with the single-agent case
in which one agent controls both motors, i.e., where a = (τ1, τ2)T .
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5.3.2 Results

In order to test the learning performance of the two-link manipulator task, we
defined a test set of 15 different initial conditions from which the manipulator has
to complete its task. We regularly let the system perform all the tasks from the
test set and monitor the number of successfully completed tasks. During test runs,
exploration is disabled. In the next sections, we test various learning algorithms
and settings and compare their performance. The learning process is repeated
several times with different random initializations of the action-value function.

Single-agent vs. multiagent Q(λ)

In this test we compare the performance of single-agent Q(λ) against multiagent
Q(λ) on the two-link manipulator task. Each actuator’s action space is uniformly
discretized into 7 steps. The result can be found in Figure 5.1. The learning
curve of the SA case is slightly, but barely better than the MA case. In terms of
performance, MA-Q(λ) proves to have no significant disadvantage over SA. The
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Figure 5.1: Single-agent (SA) Q(λ) compared with multiagent (MA) Q(λ) for the two-
link manipulator task. The average over 400 independent runs is plotted, including 95%
conficence bounds on the average.

advantage of MA-Q(λ) in terms of reduced memory requirements is illustrated
in Figure 5.2, showing the relative memory requirements for several sizes of the
action space, where the required memory is computed from the number of function
approximation feature parameters involved in the learning updates. Because we
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use an equal number of discrete actions m for both agents, according to (5.1)
we can expect a memory reduction of m

2 in the multiagent case compared to
the single-agent case. As can be seen from the figure, the simulations follow the
expected memory reduction factor. The second advantage of the MA approach,
a reduction of computation time, becomes clear in Table 5.2, where the relative
computation time of an average learning step is shown for SA and MA learning. It
follows the same trend as for the memory reduction, with a bias for the overhead
of other calculations than the best action search.
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Figure 5.2: Relative memory use of single-agent (SA) Q(λ) versus multiagent (MA)
Q(λ) setup for the two-link manipulator task, for several sizes of the action space (equal
for both agents). The average over 25 independent runs is shown, including 95% error
bars. In this system with two actuators, the MA approach realizes a memory reduction
that is linear in |Ai|.

Table 5.2: Relative computation time of the learning step of SA-Q(λ) versus MA-Q(λ)
for the two-link manipulator with m actions for each agent.

m = 5 m = 7 m = 15
SA/MA 2.1 3.2 7.1
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MA-SARSA(λ) vs. MA-Q(λ)

It could be that using on-policy SARSA(λ) for each agent increases its ability
to perform and learn under the changing policy of the other agent. A compari-
son between single-agent SARSA(λ) and multiagent SARSA(λ) can be found in
Figure 5.3. As with Q(λ), SA-SARSA(λ) is slightly, but significantly faster in
reaching the final performance. Furthermore, the effect of using SARSA instead
of Q-learning in the MA case can be seen in Figure 5.4. There is no significant
difference between SARSA and Q-learning.
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Figure 5.3: Single-agent (SA) SARSA(λ) compared with multiagent (MA) SARSA(λ)
for the two-link manipulator task. The average over 400 independent runs is shown,
including 95% confidence bounds on the average.

Synchronized exploration

In the Independent Learner MA setup, all agents explore independently according
to (5.9). However, it could be beneficial to synchronize exploration by letting
both agents solely perform explorative actions simultaneously using (5.10). This
possibly reduces the uncertainty in the policy of the other agents. Additionally,
chances of escaping from a local maximum (for instance in situation like the
’climbing game’ in Table 5.1b.) are possibly increased when all agents deviate from
their current policy simultaneously. We compared the independent exploration
strategy with the synchronized exploration strategy. The result can be found in
Figure 5.5. It however, did not result in significantly better results. Apparently,
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Figure 5.4: Multiagent (MA) Q(λ) compared with multiagent (MA) SARSA(λ) for the
two-link manipulator task. The average over 400 independent runs is shown, including
95% confidence bounds on the average.

the uncertainty in each agent’s policy due to learning is more prominent than
the exploration component, at least at the start of learning where performance
is still climbing rapidly. Another explanation could be that there are not many
suboptimal (Nash-)equilibria in this action-value function.

Lenient learning

As explained in Section 5.2.5, Lenient Learning might help the learning process by
ignoring negative value updates in the beginning of learning. This would prevent
one mistake of an agent to discourage the right policy of the other agent. A com-
parison between multiagent Q(λ) and multiagent Lenient Q(λ), with a lenience
factor `(s, a) for each state-action pair, with κ = 2.0 and a lenience temperature
discounting factor β = 0.95, discounting at each visit, can be found in Figure 5.6.
As can be seen, Lenient Learning can result in a significant improvement. Tun-
ing of the lenience parameters could potentially increase this improvement even
further.
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Figure 5.5: Multiagent (MA) Q(λ) on the two-link manipulator comparing indepen-
dent exploration and synchronized exploration between the agents. The average over
400 independent runs is shown, including the 95% confidence bounds on the average.
Synchronized exploration has no significant benefit over independent exploration.
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Figure 5.6: Multiagent (MA) Q(λ) compared with multiagent (MA) Q(λ) with lenience
for the two-link manipulator task (average over 400 independent runs).
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5.4 Meta: a bipedal walking robot

The second test setup on which we evaluate ILs is the simulation of META, a limit
cycle walking prototype. Like the two-link manipulator, META has two actuators.
However, its state space is of much higher dimensionality and its dynamics are
more complex.

5.4.1 Model

The construction of META (Schuitema et al., 2005), see Figure 5.7(a), is based
on the concept of limit cycle walking (Hobbelen, 2008). With the concept of limit
cycle walking, it is possible to construct a fully passive walking robot that can
walk down a shallow slope (for energy input) without any actuation or control
(Collins, Wisse, and Ruina, 2001; McGeer, 1990), by carefully choosing the mass
distributions and leg lengths. By adding actuation, the robustness increases and
the energy input can come from an external source so that the robot can walk
on flat terrain. Because META was designed according to the limit cycle walking
concept, walking is a natural movement for the robot. META is effectively a two-
dimensional walking robot by using two pairs of parallel legs, which remove the
sideways stability problem. The version of META that was modeled in (Schuitema
et al., 2005) had one hip motor and a special mechanical construction that always
kept the upper body upright, at an angle that bisects the angle between both
upper legs. The prototype we model here has undergone hardware modifications
to equip it with two hip motors. One motor controls the joint between the upper
body and the left upper leg, the other motor controls the joint between the upper
body and the right upper leg. Each motor can apply a torque to its joint between
−10Nm and +10Nm. The prototype was modeled in the Open Dynamics Engine
rigid body simulator (Smith et al., 2006) as a 7-link 2D model, see Figure 5.7(b).
The joints are modeled by stiff spring-damper combinations. The knees are pro-
vided with a hyperextension stop and a locking mechanism which is released just
after the start of the swing phase (i.e. right after making a footstep). Contact
between the foot and the ground is also modeled by a tuned spring-damper com-
bination which is active whenever part of the foot is below the ground. The model
of the foot mainly consists of two cylinders at the back and the front of the foot.
A set of physically realistic parameter values were derived from the prototype,
see Table 5.3.

5.4.2 Learning

The full state space of the robot consists of the angle and angular velocity of
all seven body parts, i.e. 14 state dimensions. Because the feet have relatively
small mass and inertia, we assume that the state transitions and the rewards of
the system do not significantly depend on the angles and angular velocities of
the feet. Therefore, we do not include them in the state space, which leaves 10
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(a) (b)

Figure 5.7: Bipedal walking robot META. a. The prototype. b. Two-dimensional 7-link
model; left the parameter definition, right the degrees of freedom (DoFs). Only the DoFs
of the swing leg are given, which are identical to the DoFs of the other leg.

Table 5.3: Physical parameters of the model of META.

Body(b) Up.leg(u) Lo.leg(`) Foot(f)
Mass m [kg] 8 0.7 0.7 0.1

Mom. of in. I [kgm
2
] 0.11 0.005 0.005 0.0001

Length l [m] 0.45 0.3 0.3 0.06
Vert. offset CoM c [m] 0.2 0.15 0.15 0
Hor. offset CoM w [m] 0.02 0 0 0.015
Foot radius fr [m] - - - 0.02
Foot hor. offset fh [m] - - - 0.015
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input dimensions. We assign a separate learning agent to each motor to create a
multiagent system with two agents. Each agent has the same state space consist-
ing of 10 input dimensions and an action space consisting of one motor torque,
discretized in 7 steps between −10Nm and +10Nm.

The task of META is to learn to walk with the highest possible forward velocity
by actuating both hip motors. This requires the simultaneous coordination of the
legs to make correct footsteps, as well as the coordination of the upper body; a
task that is much more difficult than the learning task solved in (Schuitema et al.,
2005).

The following rewards are used. Whenever the robot makes a footstep, a
reward is given that is proportional to the length of the footstep. Together with a
time discount factor γ close to 1, the robot will optimize for progressing as many
meters in as little time as possible. A footstep is defined as the moment when
the foot of the swing leg touches the ground while the hip angle is between 0.1rad
and 0.61rad. These values are the minimum and maximum size of a step that
allow walking in our model. Furthermore, a penalty is given when the robot falls.
The rewards are based on the performance of the system as a whole, not on the
behavior of a single-agent. To make a footstep, cooperation between both agents
is required. Both agents receive the same reward rk:

r1
k = r2

k =

{
500 per meter, if footstep made, 0.1 < |ϕhip,k| < 0.61

−10, if the robot falls
(5.18)

The agents perform a Q-learning update rule simultaneously at each time
step according to (5.5). The sampling period h = 0.018s. The learning rate
α = 0.5, the exploration rate ε = 0.05, the time discount factor γ = 0.995 and the
trace discount factor λ = 0.92. Both agents have their own tile coding function
approximator with 16 tilings. Generalization is present between states as well as
between actions. The tile widths are the same for both agents; for the upper leg
angles: 1/6rad, the upper leg angular velocities: 1/2rad/s, the lower leg angles:
1/2.1rad, the lower leg angular velocities: 1/1.65rad/s, the body angle: 1/5.5rad,
the body angular velocity: 1/1.2rad/s and the output torque: 5Nm.

The learning results will be compared to the single-agent case in which one
agent controls both motors, i.e., a = (τ1, τ2)T .

5.4.3 Results

In order to test the learning performance of META’s walking task, we regularly
perform a walking run and monitor the number of footsteps the robot made.
When 16 footsteps are made, we assume that it can walk stably and we end the
trial. Therefore, the maximum performance of a test run is 16 footsteps. During
test runs, exploration is disabled. In the next sections, we test various learning
algorithms and settings and compare their performance. The learning process
is repeated several times with different random initializations of the action-value
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space. Contrary to the results obtained with the two-link manipulator in Sec-
tion 5.3, preliminary experiments with Lenient Learning for Meta have not yet
led to an improvement of the results.

Single-agent vs. multiagent Q(λ)

In this test we compare the learning result of META’s walking task in the single-
agent case (SA) with the multiagent case (MA), where all agents use Q(λ). The
result can be found in Figure 5.8. First of all, we can conclude that the walking
task is successfully learned in both the single-agent Q(λ) and multiagent Q(λ)
case. The robot is able to walk after about 15 hours. Second, we can conclude
that the difference in learning speed between the SA case and the MA case is
negligible. However, in the end, the performance in the multiagent case is slightly
less than in the single-agent case.
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Figure 5.8: Single-agent (SA) Q(λ) compared with multiagent (MA) Q(λ) for META.
The average over 96 independent runs is shown, including the 95% confidence bounds
on the average.

Multiagent SARSA(λ) vs. multiagent Q(λ)

Because SARSA is an on-policy learning algorithm, it could be the case that when
the agents learn with SARSA, each agent is better able to deal with the changing
policy of the other agent. A comparison between the MA case using SARSA(λ)
and the MA case using Q(λ) can be found in Figure 5.9. The learning curves do
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not differ significantly and the SARSA algorithm has no added value in this case.

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

Simulated time (hours)

N
um

be
ro

fs
te
ps

MA Q−learning
MA SARSA−learning

Figure 5.9: Multiagent (MA) Q(λ) compared with multi-agent (MA) SARSA(λ) for
META. The average over 96 independent runs is shown, including the 95% confidence
bounds on the average.

Synchronized exploration

In the Independent Learner MA setup, all agents explore independently accord-
ing to (5.9). However, it could be beneficial to synchronize exploration by letting
both agents solely perform explorative actions simultaneously using (5.10). Per-
haps the chances of escaping from a local maximum as in the ’climbing game’ of
Section 5.2.5 increase, when all agents deviate from their current policy simultane-
ously. We compared the independent exploration strategy with the synchronized
exploration strategy. The result can be found in Figure 5.10. The learning graphs
do not differ significantly. In this case, synchronized exploration does not increase
learning speed or performance.

Reduced state space

Now that we have created a multiagent setting in which each agent controls one
actuator, it might be the case that each agent does not need the full state of
the robot in order to control its own actuator. Note that we then violate the
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Figure 5.10: Multiagent (MA) Q(λ) for META, comparing independent exploration
with synchronized exploration between the agents. The average over 96 independent runs
is shown, including the 95% confidence bounds on the average. Synchronized exploration
has no significant benefit over independent exploration.
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Markov property not only because all agent-specific transition functions are time-
dependent (see Equation (5.3)), but also because we have hidden state variables.
In this test, the agent that controls the joint between the upper body and the
stance leg does not include the angular velocity of the lower swing leg in its state
space. The agent that controls the joint between the upper body and the upper
swing leg still uses the full state space of 10 dimensions. The result can be found
in Figure 5.11. From this graph, it is clear that the performance of the reduced
state space case is far worse than the original MA case, but not failing completely.
It is clear that divergence issues occur later on in the graph. Apparently, the
incomplete state space is violating the Markov property too much.
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Figure 5.11: Multiagent (MA) Q(λ) for META. The original MA setting is compared
with a MA setting in which one agent has an incomplete state space. The average over
96 independent runs is shown, including the 95% confidence bounds on the average. The
incomplete state space results in decreased performance and divergence.

5.5 Leo

The third and last test setup on which we evaluate ILs is the simulation of Leo, a
bipedal walking robot, shown in Figure 3.5. Its state space is comparable to that
of META. However, Leo has three actuators, whereas the two-link manipulator
and META have only two. A detailed description of the simulation model of Leo
can be found in Section 3.2.5. In Section 3.3.3, it became clear that with regular
SARSA(λ), control delay had a negative effect on the learning process. The
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control delay is dominated by the action selection calculation; the learning update
itself (i.e., changing the feature parameter values) can be performed afterwards,
while the action is being executed. Therefore, for this test setup, we focus on
the learning performance of MA-SARSA(λ) and the reduction in computation
time compared to SARSA(λ); we omit the evaluation of MA-Q(λ), synchronized
exploration and lenient learning.

5.5.1 Learning

A detailed description of Leo’s task of learning to walk can be found in Sec-
tion 3.3.3. The single agent learning setup uses SARSA(λ). The multiagent case
uses three agents to control Leo: one for the stance hip motor, one for the swing
hip motor and one for the swing knee motor. Within each agent, the Q-function is
approximated using tile coding with 16 tilings. Generalization is present between
states as well as between actions. The action space Ai of each actuator consists of
7 discrete actions. Therefore, according to (5.1), the reduction in action selection

computation time is predicted to be a factor 73

3 · 7 ≈ 16.3.

5.5.2 Results

The learning performance of MA-SARSA(λ) is compared with SARSA(λ) in
Figure 5.12, showing the average walked distance per episode of 25s (or until
falling) against simulated time. We can observe that MA-SARSA(λ) initially
learns slower, but reaches its final system performance approximately as fast as
SARSA(λ). With MA-SARSA(λ), the system’s final performance is slightly, but
significantly lower than when using SARSA(λ).

We compared the computation time that MA-SARSA(λ) and SARSA(λ) re-
quire to perform a learning step, as well as the computation time needed to consult
the policy. Only the latter contributes to the control delay. The results are shown
in Table 5.4. It can be observed that the policy consulting time has been reduced
with a factor 12.4. This factor deviates somewhat from the theoretical factor of
16.3 due to overhead in the calculation. Furthermore, the computation time of
the total learning step is reduced with a factor 7.4 by the multiagent approach,
despite the fact that three agents need to update their feature values instead of
one.

We implemented MA-SARSA(λ) on the real robot as well. This reduced the
control delay of 10ms using SARSA(λ) to 2.5ms using MA-SARSA(λ), on average;
a reduction of 75%. Note that the control delay is not only caused by consulting
the policy, but also by other factors, such as the communication with the motors
over a serial bus.
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Figure 5.12: Single-agent (SA) SARSA(λ) compared with multiagent (MA) SARSA(λ)
for the simulation of Leo. The average over 24 independent runs is shown, including the
95% confidence bounds on the average. MA-SARSA(λ) learns slightly slower and has
slightly lower final performance.
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Table 5.4: Relative computation time of the total learning step and the policy consulting
step of single-agent (SA) SARSA(λ) versus MA-SARSA(λ) for the simulation of Leo.

Total learning step Policy consulting step
SA/MA 7.4 12.4

5.6 Discussion

In this chapter, we used a multiagent approach to make reinforcement learning
more scalable for learning complicated robotic tasks. When adding actuators to a
learning agent, its action space increases exponentially, requiring a longer learning
time, more storage space and more computation time for action selection. The
latter can cause control delay on real robots, which can slow down the learning
or let it diverge. Decomposing the combined action space of these actuators
by splitting it up over different agents solves the last two problems: instead of
exponentially increasing in size of the action space, it now becomes linear in
the number of actuators. Unfortunately our approach is not proven to converge
to the optimal solution. Current theory on convergence, focusing on single state
problems, shows that certain situations can cause ILs to converge to a suboptimal
solution. We showed however that in our simulations these problems did not result
in bad performance.

We implemented Independent Learner algorithms for three simulated robots:
a two-link manipulator, and bipedal walking robots META and Leo. The two-link
manipulator had to learn to return its two links to the zero position with zero
velocity. META and Leo had to learn to walk. Where the two-link manipulator
and META had two actuators, and thus two agents in the multiagent approach,
Leo had three. In a direct comparison between single-agent and multiagent Q-
learning, the performance of cooperative, heterogeneous independently learning
agents was not very different from the single-agent case, while memory require-
ments and action selection computation time decreased with a factor m

2 for the

two-link manipulator and META, and with a factor m2

3 for Leo, in which m is
the number of discrete actions per actuator (equal for all actuators).

With single-agent learning, SARSA(λ) and Q(λ) performed equally well on
both the two-link manipulator and META. Because SARSA has an on-policy
update rule, we tested the hypothesis that it would perform better than Q-learning
with multiagent learning. However, for the two-link manipulator and META,
SARSA(λ) and Q(λ) showed similar learning performance.

We proposed an idea to get out of local, suboptimal (Nash) equilibria more
quickly by synchronizing the exploration of the agents. However, this did not
result in significantly different results for the two-link manipulator and META.
This could be because in their state-action value functions there are not many
suboptimal (Nash)equilibria.

In recent literature the Lenient Learning algorithm was proposed as a method
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to learn under the influence of suboptimal actions of other agents in stochastic
environments. It was implemented for the two-link manipulator and a significant
improvement was found in learning speed and performance. Tuning of the lenience
parameters could potentially further increase this improvement. For Meta and
Leo, good results with Lenient Learning have not yet been achieved. This subject
deserves further attention.

5.7 Conclusions

We successfully employed Independent Learners to control the individual actua-
tors of three robotic setups in simulation: a two-link manipulator, and the two
bipedal walking robots META and Leo. In all simulations, learning speed and
final system performance using the multiagent approach were comparable to the
classical, single-agent approach, while the computational time needed for learning
updates and the amount of memory needed to store the state-action space were
significantly decreased; from an exponential problem in the number of actuators,
it became a linear problem. For robot Leo, the time to complete a learning step
was reduced with a factor 7.4, while the policy consulting time was reduced with a
factor 12.4. This reduced the control delay on the real robot by 75%, from 10ms
to 2.5ms in the current implementation. In addition, in the simulation setup
of the two-link manipulator robot, we showed that using Lenient Learning for
the independent learners has the potential to significantly increase learning speed
compared to single agent learning. The downside of the proposed method is the
lack of convergence guarantees; in certain situations, Independent Learners are
known to converge to a suboptimal solution. We can conclude that the proposed
method is promising and performed well on the three robotic setups tested in this
chapter, but more research remains be done on its convergence behavior to make
it a reliable method. The method also offers good perspective for future parallel
implementations, such as on multi-core processors and robots with distributed
computing.
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Chapter 6

Reducing system damage using
Modular Reinforcement Learning

In Section 3.3, the experiments showed that the learning process was very strain-
ing for the hardware. In this chapter, we propose a method based on Modular
Reinforcement Learning to reduce the exposure of the robot to risky situations,
such as a fall. Initial work on this topic has been done by Van Diepen (2011).
The work presented here has been done in cooperation with Wouter Caarls1.

6.1 Introduction

Reinforcement Learning allows a robotic system to autonomously learn new tasks.
With techniques such as temporal difference (TD) learning, this can be done from
scratch and model-free. During learning, the system regularly takes suboptimal
and sometimes completely random actions due to intentional exploration and as
long as it has not reached the optimal solution. A particular challenge for real
robots using RL is how to cope with this trial-and-error nature of the learning
process, which can be stressful and harmful for the robot’s hardware and its envi-
ronment, especially when learning from scratch. When this explorative behavior
causes frequent collisions, for example, this will eventually damage the robot or its
environment. Controlling and limiting the strain on the hardware and its environ-
ment is an important prerequisite for RL on real robots. Besides the existence of
states that are certain to lead to damage – so called failure states or error states
– some states and actions might only increase wear and tear or have a chance
of failure. Therefore, we strive to minimize the cumulative risk exposure during
learning, where risk, expressed as a scalar negative reward, is a measure for the
chance of and the severity of future damage, similar to the definition by Geibel

1Wouter Caarls is with the Delft Biorobotics Lab, Delft University of Technology, Faculty
Mechanical, Maritime and Materials Engineering, The Netherlands.
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(2001). Note that this is different from the notion of risk as the variance on the
return, where the learning agent runs the risk of not getting a positive return (see,
e.g., (Mihatsch and Neuneier, 2002)). We also do not strive to completely avoid
risk; we believe taking risk is an inherent component of trial-and-error learning
from scratch. We merely want to reach the learning objective with minimum risk
of damage. In this work, we focus on the task of learning to walk for a bipedal
robot. For our prototype (see Chapter 3), this task has no ’fatal’ states, but has
many states, such as collisions, that increase wear and tear and will eventually
lead to failure.

Traditionally, RL algorithms are judged on how fast the system’s behavioral
performance (e.g., expressed as the average return or in a physical performance
measure) grows against learning time, expressed either in seconds or in numbers of
trials. For real robots that can learn without human assistance, however, system
damage might be more ’expensive’ than pure time, when down time and repair
costs are unwanted. From this perspective, we propose to consider cumulative risk
exposure as an additional measurement axis for RL on real robots and evaluate
RL algorithms based on their behavioral performance against cumulative risk
exposure.

In this work, we propose a model-free RL technique based on Modular Rein-
forcement Learning (MRL), which can reduce cumulative risk exposure without
the need for prior knowledge on task solutions. We employ two learning agents,
one of which quickly, but imprecisely, learns the expected return of large negative
rewards that indicate risk, while another agent learns the return of performance
related positive rewards with higher precision, at a slower pace. The expected
return of negative rewards is learned faster by using a coarser state space repre-
sentation for this agent when approximating the action-value function. The goal
of this approach is to have the system quickly and coarsely learn to avoid risky
states and let it learn the actual task solution in more detail in a safer manner.
We test our approach on simulations of two systems: the simplest walker model
(see Chapter 4.3.1), and a simulation of bipedal walking robot Leo (see Chap-
ter 3). To empirically prove that our proposed modular approach is effective, we
compare it to similar techniques that use a coarser state space representation to
learn faster, but which do not make a distinction between positive and negative
rewards.

6.2 Related work

The challenge of reducing risk during learning can be approached from several
angles. Here, we assume that the robot’s hardware design contains as much me-
chanical and electrical protection as is possible and appropriate for the robot’s
purpose, and restrict ourselves to solutions from a RL perspective. Furthermore,
we restrict the discussion to RL techniques that do not require prior knowledge on
the task solution, with the aim to create robots able to learn various tasks without
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human assistance. This excludes policy restricting methods such as policy gradi-
ent RL (Peters, Vijayakumar, and Schaal, 2003; Kohl and Stone, 2004; Tedrake,
Zhang, and Seung, 2004), which do provide a convenient way of limiting the so-
lution space to possibly safe and stable solutions, but at the price of requiring
prior knowledge on the task solution. Within these boundaries, we identified two
apparent approaches to risk minimization; learning faster, and smart exploration.

Learning faster makes the uncertain and explorative initial learning period
shorter, which is likely to reduce the cumulative risk exposure. Without meaning
to give a complete overview of how to speed up the learning – a general goal in RL
research – we give several relevant approaches within our context. Most speedup
methods make better use of individual observations, i.e., they increase the sample
efficiency, usually at the cost of lengthier computation. More sample efficient
methods that do not require an a priori model are eligibility traces (Sutton and
Barto, 1998), experience replay (Lin, 1993), the Dyna architecture and prioritized
sweeping (Sutton, 1991; Moore and Atkeson, 1993; Sutton et al., 2008), LSPI
(Lagoudakis and Parr, 2003) and fitted Q-iteration (Ormoneit and Sen, 2002).
A speedup can also be accomplished by using more generalization in the state-
action space, i.e., by using state aggregation; information is quickly shared with
similar system states and actions. The disadvantage of that approach is that
it is likely to reduce the performance of the learned policy due to the loss of
resolution in the action-value function2. To avoid this, an adaptive-resolution
(AR) method could be applied, which starts with a coarse resolution of the action-
value function for a quick start, while gradually increasing it as learning progresses
for more accuracy. Grzes and Kudenko (2010) apply this in the context of reward
shaping (Ng, Harada, and Russell, 1999; Marthi, 2007), where a shaping reward
is derived from a value function that is estimated in parallel using aggregated
states. They also introduce a mixed resolution case, in which both large and small
features are used within a single agent. Both methods increase learning speed,
with their combination having the best performance. This approach is closely
related to variable resolution discretization (see, e.g., Munos and Moore (2002)
and Whiteson (2010)), where states are automatically split in regions where the
policy needs improved resolution. Bernstein and Shimkin (2010) use the specific
scheme of splitting states based on the number of visits. While all mentioned
speedup methods are likely to reduce risk exposure, they leave room for additional
methods that are specifically designed to reduce risk exposure. Therefore, from
here on, we focus on such additional methods and consider it advisable to apply
general speedup techniques whenever possible.

The second approach – smart exploration – has the goal to focus exploration
on states that are considered safe. In ‘safe exploration’ (Hans et al., 2008) and
’safe RL’ (Garca and Fernndez, 2011), a safety function is either defined (using
prior knowledge) or learned, which indicates the safety of an action in a particular

2When using tile coding function approximation, a high resolution can be combined with
large generalization by using many tilings. This, however, has a computational cost, which
could lead to intolerable control delay (see Chapter 2).



130 REDUCING SYSTEM DAMAGE USING MODULAR RL 6.3

state. Additionally, a backup policy, either pre-programmed or learned, has the
function to return the system to a safe state when the agent is not able to reliably
choose a safe action. Although promising, learning both the safety and the backup
functions from scratch is expected to be difficult. For inherently unstable robots
such as walking robots, many states are risky as long as the agent has not yet
learned to keep its balance from these states, making learning the safety function
difficult. Learning the backup policy is similar to learning the task of walking
itself; it is far from trivial to learn a safe walking gait faster than to learn the
optimal gait according to the reward scheme.

6.3 Approach

In this work, we propose a method that specifically aims at reducing cumulative
risk exposure, without reducing learning speed or final system performance. This
is done by making only mild additional assumptions on the learning problem.
The main assumption is that the reward at each time step is composed of several
partial rewards, some of which provide feedback on the level of success of the
robot (usually positive rewards), while others provide feedback on risky behavior
(usually large negative rewards). In addition, it is assumed that the agent can
deduce from its rewards (either given in composed or decomposed form) whether
its state and action are related to risky behavior (e.g., by relating rewards below
a certain threshold to risk exposure, such as in (Hans et al., 2008)). This dis-
tinction in rewards creates the opportunity for the robot to learn to avoid risky
states more quickly – and perhaps less accurately – while learning to accomplish
the actual goal(s) of the task with more precision in more time, thereby reduc-
ing cumulative system damage. To this end, we apply Modular Reinforcement
Learning (MRL) (Uchibe, Asada, and Hosoda, 1996; Sprague and Ballard, 2003;
Russell and Zimdars, 2003; Samejima, Doya, and Kawato, 2003; Bhat, Isbell, and
Mateas, 2006) – a generic approach with various applications – in the specific way
described below.

The common approach in RL is to not make any distinction between rewards
for different events, but to learn a single action-value function of the expected total
sum of future rewards. In contrast, MRL aims to solve a complex task through a
set of learning agents that each optimize a subset of a composed reward signal (i.e.,
the reward is a superposition of partial rewards), while control actions result from
coordination between the agents. Each agent has its own (reduced) state space
and (reduced) reward function. Using MRL, we create one agent with a coarse,
more generalizing representation of the state space, learning the return of rewards
of risk imposing states, and another agent with a finer representation of the state
space that learns the return of rewards related to the task’s goal(s). The coarser
representation of the agent learning risk can result in faster learning, as well as
provide an ’early warning’ that risk is near, thanks to its broad generalization. All
modules share the same action space, and action selection is done based on the
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sum of the expected return of all agents. This removes the need for negotiation
techniques. We compare the proposed MRL method to a simple AR method, as
well as to several other multi-resolution approaches that are directly related to
the MRL method we propose.

6.4 Theory

The learning process is modeled as an MDP as described in Section 2.1. The goal
of the learning agent is to find an optimal policy π∗ by estimating the action-value
function Q(s, a). The reward function R : S × A× S → R is assumed to consist
of a superposition of P partial reward functions R(p) : S × A × S → R, so that
the reward rk+1 at time k + 1 becomes

rk+1 =

P∑
p=1

R(p)(sk, ak, sk+1) = r
(1)
k+1 + r

(2)
k+1 . . .+ r

(P )
k+1 (6.1)

Each R(p) returns feedback on a different aspect of the learning task. Examples
of rewards of different nature for a walking robot are a large negative reward for
a risky state such as falling, a positive reward for a (sub-)goal such as a footstep,
and a small negative reward for time or energy usage. The action-value function
can now be rewritten as

Qπ(s, a) = Eπ

{ ∞∑
i=0

γirk+i+1

∣∣∣∣∣ sk = s, ak = a

}

= Eπ

{ ∞∑
i=0

γi
P∑
p=1

r
(p)
k+i+1

∣∣∣∣∣ sk = s, ak = a

}

=
P∑
p=1

Eπ

{ ∞∑
i=0

γir
(p)
k+i+1

∣∣∣∣∣ sk = s, ak = a

}

=
P∑
p=1

Q(p),π(s, a)

in which each Q(p),π(s, a) returns the estimated total discounted sum of rewards
from partial reward function R(p) under the global policy π. This reformulation
allows each partial Q-function to be estimated in a separate way. In principle,
one can choose a different state space representation and, if desirable, a different
learning algorithm3 for estimating each Q(p),π(s, a).

3A possible scenario that could benefit from different learning parameters for eachQ(p),π(s, a)
is a scenario in which some rewards are more stochastic than others; a Q(p) that estimates the
return of highly stochastic rewards could benefit from a lower learning rate. In this work,
however, we only consider deterministic rewards.
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We restrict the discussion to linear function approximation for continuous state
spaces, in which we use different features for the representation of each Q(p),π(s, a)

by assigning a vector of basis functions φ(p)(s, a) and corresponding parameter

vector θ(p) of length n(p) to each Q(p)(s, a) (we drop the dependence of Q on
the policy π in the notation and write Q(s, a) instead of Qπ(s, a) for the sake of
clarity):

Q̂
(p)
k (s, a) = θ

(p)
k

T
φ(p)(s, a) =

n(p)∑
i=1

θ
(p)i
k φ(p)i(s, a)

Q̂k(s, a) =
P∑
p=1

Q̂
(p)
k (s, a) =

P∑
p=1

θ
(p)
k

T
φ(p)(s, a)

(6.2)

More specifically, the agent could benefit from broader generalization – larger
features – in the Q(p)-function that estimates the return of large negative rewards
coming from risky states, for which fast learning might be more important than
accurate learning. Note that in order to obtain the same level of final system
performance as in the regular, single Q-function solution, it is logical to use a
value for each n(p) comparable to the number of features n chosen in the regular
approach. This means that the modular approach is likely to increase the require-
ments for memory and computation time. Below we discuss a temporal difference
(TD) algorithm to estimate the partial Q-functions: MRL-SARSA.

6.4.1 MRL-SARSA

For the widely used SARSA learning algorithm, a modular version is available
called ‘local Sarsa’ (Russell and Zimdars, 2003). We can apply this algorithm,
from hereon denoted as MRL-SARSA, to the linear function approximation case

by defining a partial TD error δ
(p)
TDSARSA

for each Q(p):

δ
(p)
TDSARSA,k+1 = r

(p)
k+1 + γQ̂

(p)
k (sk+1, ak+1)− Q̂(p)(sk, ak) (6.3)

Using the partial TD error, every θ(p) is updated as follows:

θ
(p)
k+1 = θ

(p)
k + αδTD,k+1φ

(p)(sk, ak) (6.4)

When each Q̂(p) uses the same features, i.e., φ(p) = φ(q), ∀p, q ∈ {1..P}, MRL-
SARSA estimates Q̂ equivalently to SARSA, albeit stored in partial parameter
vectors θ(p). For full equivalence, the learning rate should be chosen such that
αMRL−SARSA = 1

P αSARSA.
Eligibility traces (see, e.g., (Sutton and Barto, 1998)) can be implemented in

a straightforward matter, creating MRL-SARSA(λ).
The greedy action, as used in, e.g., the ε-greedy action selection scheme, is

selected using the composed Q-function from (6.2), which is also called “greatest
mass” action selection (Sprague and Ballard, 2003):

ak,greedy = arg max
a′

Q̂(sk, a
′) (6.5)
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Equivalently to MRL-SARSA, we can define MRL-Q-learning using the fol-
lowing partial TD error:

δ
(p)
TDQ−learning,k+1 = r

(p)
k+1 + γQ̂

(p)
k (sk+1, ak+1,greedy))− Q̂(p)

k (sk, ak) (6.6)

However, we do not further discuss or use this algorithm in the remainder of this
chapter. Note that this update rule differs from ‘local Q-learning’ (Russell and
Zimdars, 2003) – which is known not to converge – in the sense that ak+1,greedy is

greedy with respect to Q̂, whereas ’local Q-learning’ uses the greedy action with
respect to Q̂(p) when computing the partial TD error.

Thus far, we assumed that the agent can make a distinction between different
’types’ of rewards, which requires prior knowledge on the composition of the
reward function. When this knowledge is not available to the agent, we can
reduce the general scheme above to a slightly more specific one, in which rewards
below a certain threshold rthres are considered to indicate risk. For this type of
scenario, we can define two Q-functions of which one, Q(+)(s, a), estimates the
return of R+ that contains rewards above rthres, and another, Q(−)(s, a), estimates
the return of R− that contains rewards below rthres:

Q(s, a) = Q(+)(s, a) +Q(−)(s, a) (6.7)

using coarse features φ(c) for Q(−)(s, a) and fine features φ(f) for Q(+)(s, a). We
use this scenario in our experiments in Section 6.5 and 6.6.

6.4.2 Related methods

The approach described above is expected to reduce the cumulative risk exposure
during the learning process by making a distinction between rewards related to
risk and other rewards. This is implemented using function approximation with
features of different size. To verify that making a distinction between rewards is
the key element to effectively reduce risk exposure, we compare our method to a
series of methods that only capture one element of our MRL method, while using
the complete reward function to estimate Q(s, a):

1. Multi-resolution (MR)

Our proposed MRL approach uses features of different sizes. Possibly this is
sufficient to reduce risk exposure. We verify this hypothesis by also testing the
following method. We use SARSA(λ) to train a single function approximator to

estimate Q(s, a), containing the same coarse features φ(c) that are used in MRL

to estimate Q(−)(s, a), as well as the fine features φ(f) used in MRL to estimate
Q(+)(s, a):

Q̂k(s, a) = θ
(c)
k

T
φ(c)(s, a) + θ

(f)
k

T
φ(f)(s, a) (6.8)
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2. Coarse resolution (CR)

The use of larger features introduces broader generalization and faster learning.
However, it is likely to reduce the accuracy of the final solution, which may result
in worse final behavioral performance. To verify this, we compare our method to
SARSA(λ) using a single function approximator to estimate Q(s, a), using only

the coarse features φ(c)(s, a):

Q̂k(s, a) = θ
(c)
k

T
φ(c)(s, a) (6.9)

3. Adaptive resolution (AR)

In the MRL approach, the beginning of the learning process is dominated by the
use of Q(−)(s, a) in action selection, due to mostly random and risky behavior.
When the agent becomes more experienced, Q(+)(s, a) becomes dominant. Possi-
bly, starting the learning with broad generalization, while reducing it as learning
progresses, is the key effective element in the MRL approach. We verify this with
the following alternative adaptive resolution approach. We use two function ap-
proximators to estimate Q(s, a) in parallel, one using the coarse features φ(c) and

one using the fine features φ(f); action selection is based on Q̂k(s, a), which is the

weighted sum of the coarse estimate Q̂
(c)
k (s, a) and the fine estimate Q̂

(f)
k (s, a):

Q̂
(c)
k (s, a) = θ

(c)
k

T
φ(c)(s, a)

Q̂
(f)
k (s, a) = θ

(f)
k

T
φ(f)(s, a)

Q̂k(s, a) = wk(s, a)Q̂
(f)
k (s, a) + (1− wk(s, a))Q̂

(c)
k (s, a) (6.10)

The weight factor wk(s, a) ∈ [0, 1] grows with the number of times the agent vis-
ited that point in state-action space: the relative weight of the smaller features
is increased after every visit. For points in state-action space that are newly
encountered or infrequently encountered, such as risky states, action selection

is predominantly based on Q̂
(c)
k (s, a). For frequently visited points, such as the

points on the optimal solution, Q̂
(f)
k (s, a) becomes dominant in the estimation.

Because the state-action space is continuous, we approximate (and thus general-

ize) the number of visits nv,k(s, a) with a third parameter vector θ(w) using the
fine features:

nv,k(s, a) = θ
(w)
k

T
φ(f)(s, a) (6.11)

We update θ
(w)
k each time step such that nv,k(sk, ak) is incremented by 1 after

visiting (sk, ak):

θ
(w)
k+1 = θ

(w)
k +

1

||φ(f)(sk, ak)||2
φ(f)(sk, ak) (6.12)
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with θ
(w)
0 = 0. The changing weight factors continually change the approximation

and therefore the policy as well, which is potentially detrimental to the conver-
gence speed during this transient period. Therefore, we let wk(s, a) grow linearly
in nv,k(s, a) until wk(s, a) = 1:

wk(s, a) = max(
nv,k(s, a)

β
, 1) (6.13)

with β a visit count threshold. In this way, when all states and actions have been
visited β times, wk(s, a) = 1, ∀s ∈ S,∀a ∈ A and the approximation is completely
described by the fine features.

6.5 Test setup 1: The simplest walker

We evaluate the effectiveness of MRL-SARSA(λ) in reducing risk exposure on a
simple simulation system - the simplest walker - that learns to walk, and compare
against the alternative methods presented in Section 6.4.2. A description of the
simplest walker model is given in Section 4.3.1; a description of the MDP and
learning parameters can be found in Section 4.3.2.

At the start of a learning episode, the walker is set to a random initial condition
that is known to contain enough energy to start walking (but not necessarily leads
to a stable walking pattern). This will cause the walker to fall frequently at the
beginning of the learning process.

We set the reward threshold that splits R into R+ and R− to rthres = −2
so that R− only contains the negative rewards of −50 for falling, while the time
penalty of −1 for every action and the reward of 50 per meter at every footstep
are returned by R+. For now, we assign the same risk level to each fall, no
matter the energy of the impact, which makes the number of falls accumulated
during learning equivalent to the cumulative risk exposure. A more accurate
representation of the amount of risk of each specific fall can make the reduction
of risk exposure more effective, but this is outside the scope of this chapter.

6.5.1 MRL-SARSA(λ)

We compared regular SARSA(λ) with our MRL approach. For regular SARSA(λ),
we approximated its single Q-function using tile coding function approximation
with a feature size that was obtained experimentally and that resulted in satis-
factory system performance and learning convergence4. This resulted in a feature
size of 0.084rad×0.111rad/s×0.105rad×0.222rad/s×0.5rad/s

2
in the dimensions

θ, θ̇, φ, φ̇ and τ . We used 16 tilings. Next, we applied MRL-SARSA(λ) using 16
tilings for approximating Q(+)(s, a) and 16 for approximating Q(−)(s, a). We used
the feature size used for regular SARSA(λ) to estimate Q(+)(s, a), while scaling

4To the best of our knowledge, there exists no method to determine the feature size that
gives the best trade-off between learning speed, system performance and memory usage.
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the resolution for estimating Q(−)(s, a) with a factor Kr = 0.5 in all dimensions
(i.e., increasing the feature size). The result can be found in Figure 6.1, show-
ing the average walked distance per episode (ending after 100s or when falling)
against the cumulative number of falls that occurred during the learning process
required to reach that performance. To discover the sensitivity of our approach
with respect to the resolution scaling factor Kr, we tested three different values of
Kr for estimating Q(−)(s, a): Kr = 0.8, Kr = 0.5 and Kr = 0.2. The comparison
can be found in Figure 6.2(a).
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Figure 6.1: Performance of the simplest walker learning to walk, expressed as the
average walked distance in 100s (or until falling) plotted against the cumulative number
of falls that occurred during the learning process required to reach that performance. The
average of 200 runs is shown, including the 95% confidence bounds of the average. MRL-
SARSA(λ) achieves superior system performance over SARSA(λ) after any number of
falls.

We can observe from Figure 6.1 that with MRL-SARSA(λ), the walker reaches
a significantly larger average walked distance than with SARSA(λ) for any number
of falls accumulated in the learning process, while the final performance is equal.
Table 6.1 shows a 26% reduction in the number of falls required to reach 1 −
1/e ≈ 63% of the final performance. Figure 6.2(a) shows that using Kr = 0.2
(i.e., very large features for estimating risk) resulted in faster learning at the
beginning, but also in worse final performance. Using Kr = 0.8 had no significant
effect. Therefore, when comparing the MRL approach with related methods in
the following section, we use Kr = 0.5 as the default resolution scaling of coarse
approximations.
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6.5.2 Related methods

We compared our approach to the related methods described in Section 6.4.2. The
’multi-resolution’ (MR) method was applied using 32 tilings in total, of which 16
had the full resolution and 16 had a lower resolution (Kr = 0.5). The ’coarse
resolution’ (CR) method was applied with 16 tilings with the lower resolution.
The ’adaptive resolution’ (AR) approach was implemented using a weight factor

wk(s, a) = max(
nv,k(s,a)

40 , 1), i.e., the approximation is solely composed of fine
features for states visited more than 40 times.

The results are presented in Figure 6.2 and Figure 6.3. We can observe that
the hypothesis that merely using a coarser resolution (CR) is sufficient to reduce
risk exposure, is false; CR results in poor final system performance. Apparently,
the low resolution results in an inferior policy, resulting in high risk exposure (i.e.,
cumulative number of falls) during learning (Figure 6.2(b)) and many falls per unit
time (Figure 6.3(b)). The MR approach performs better than MRL-SARSA(λ)
at the beginning, but has slightly lower final performance (Figure 6.3(a)). This
manifests itself as a higher fall rate per unit time than MRL-SARSA(λ) (Fig-
ure 6.3(b)). Therefore, the hypothesis that using features of different size is key in
reducing risk exposure, is partially true; the large features help speed up the learn-
ing process in the beginning by also generalizing the expected return of positive
rewards, but reduce the final system performance. The AR approach is superior
in terms of system performance against cumulative risk exposure (Figure 6.2(b)).
In addition, the AR approach results in faster learning (Figure 6.3(a)) than with
MRL-SARSA(λ). The hypothesis that starting the learning with a coarser reso-
lution and gradually increasing it is key in reducing risk exposure can therefore
be accepted. Of all methods, however, MRL-SARSA(λ) has the lowest number
of falls per unit time in the long run. A possible explanation is that the walker
walks more cautiously due to the large generalization around risky states, while
the estimate of performance related rewards is made using only fine features. This
aspect is only present in the MRL approach. In addition, AR needs an appro-
priate weighting function, which we found much more difficult to tune than the
reward threshold parameter used in MRL-SARSA(λ).

Table 6.1: Cumulative number of falls the simplest walker required to reach (1−1/e) ≈
63% of its final performance.

No. of falls Difference with SARSA(λ)
SARSA(λ) 118.3± 3.2 -
MRL-SARSA(λ) 87.9± 2.4 −26%
MR 72.2± 2.7 −39%
CR 80.1± 4.5 −32%
AR 64.5± 3.5 −45%
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(a) Comparison of SARSA against MRL-SARSA for three values of the resolu-
tion scaling factor Kr.
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(b) Comparison of SARSA against MRL-SARSA (Kr = 0.5) and SARSA with
coarse resolution (CR), multi-resolution (MR) and adaptive resolution (AR).

Figure 6.2: Performance of the simplest walker learning to walk, comparing regular
SARSA(λ) against alternative approaches. The average walked distance in 100s (or
until falling) is plotted against the cumulative number of falls. The average of 200 runs
is shown, including 95% confidence bounds.
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(a) Comparison of SARSA against MRL-SARSA (Kr = 0.5) and SARSA with
coarse resolution (CR), multi-resolution (MR) and adaptive resolution (AR).

Simulated time (h)

C
um

ul
at

iv
e

nu
m

be
ro

ff
al

ls

0 2 4 6 8 10
0

50

100

150

200

SARSA

MRL

CR

MR

AR

(b) Comparison of SARSA against MRL-SARSA (Kr = 0.5) and SARSA with
coarse resolution (CR), multi-resolution (MR) and adaptive resolution (AR).

Figure 6.3: Performance of the simplest walker learning to walk, comparing regular
SARSA(λ) against alternative approaches. The average walked distance in 100s (or
until falling) and the cumulative number of falls are plotted against simulated time in
(a) and (b), respectively. The average of 200 runs is shown, including 95% confidence
bounds.
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6.6 Test setup 2: Leo

In Section 3.3.3, the setup is described of robot Leo learning to walk in simulation
using regular SARSA(λ). Here, we compare these results with MRL-SARSA(λ)
and the alternative methods from Section 6.4.2. As with the simplest walker,
we assign the same risk level to each fall, no matter the energy of the impact,
which makes the number of falls accumulated during learning equivalent to the
cumulative risk exposure.

6.6.1 MRL-SARSA(λ)

To implement MRL-SARSA(λ) for Leo, we scaled the resolution for Q(−) with
Kr = 0.7 in all dimensions. For Q(+), we used the resolution of the Q-function of
regular SARSA(λ) from Section 3.3.3. From the set of resolution scaling factors
{0.5, 0.6, 0.7, 0.8}, best results were obtained with 0.7. We set the reward thresh-
old that splits R into R+ and R− to rthres = −50 so that Q(−) solely estimates
the return of the fall penalty and Q(+) estimates the return of all other rewards
(i.e., the time and energy penalties and the reward for forward movement).

In initial experiments, MRL-SARSA(λ) did not perform significantly better
than regular SARSA(λ) with the MDP setup from Section 3.3.3. Visual inspection
of the learning process revealed that the robot spent an unusual amount of time
(compared to SARSA(λ)) in a local optimum where it would practically stand
still, preferring balancing (i.e., not falling) over making footsteps. The robot
seemingly learned to prevent falling quicker than it learned to make footsteps.
Since it costs an initial ’investment’ in the form of an energy penalty to explore
making footsteps by swinging the leg forward, we decided to boost this exploration
process by initializing both Q̂(+) and Q̂(−) pessimistically with random values
in the range [−20.01,−20]. This would remove the disadvantage that already
explored state transitions have over unexplored actions when they would lead to
walking, but at the cost of an energy penalty. With pessimistic initialization, we
obtained the results shown in Figure 6.4, showing the average walked distance
per episode (ending after 25s or when falling) against cumulative risk exposure.
We can observe that our MRL approach significantly reduces the number of falls
over regular SARSA(λ). Table 6.2 shows a 47% reduction in the number of falls
required to reach 1−1/e ≈ 63% of the final performance. The need for pessimistic
initialization showed that the simultaneous processes of learning not to fall and
learning to make footsteps have to occur at a balanced pace in order not to spend
a long time in a local optimum.

6.6.2 Alternative methods

We applied the CR, AR and MR methods from Section 6.4.2 in the following way.
The ’multi-resolution’ (MR) method was applied with 32 tilings in total, of which
16 had the full resolution and 16 had a lower resolution (Kr = 0.7). The ’coarse
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Figure 6.4: Performance of Leo learning to walk in simulation, expressed as the average
walked distance in 25s (or until falling) plotted against the cumulative number of falls
that occurred during the learning process required to reach that performance. MRL-
SARSA(λ) achieves superior system performance over SARSA(λ) after any number of
falls. The average of 48 runs is shown, including 95% confidence bounds of the average.

Table 6.2: Cumulative number of falls Leo required to reach (1−1/e) ≈ 63% of its final
performance. †With the AR method, the final performance was not well defined; it did
not stabilize, but dropped frequently.

No. of falls Difference with SARSA(λ)
SARSA(λ) 1561± 105 -
MRL-SARSA(λ) 834± 59 −47%
MR 981± 59 −37%
CR 1012± 68 −35%
AR 1076± 105† −31%
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resolution’ (CR) method was applied using 16 tilings with the lower resolution.
The ’adaptive resolution’ (AR) approach was implemented using a weight factor

wk(s, a) = max(
nv,k(s,a)

10 , 1).

The results can be found in Figure 6.5 and Figure 6.6. We can observe that
the CR and MR methods perform comparable to MRL-SARSA(λ) in terms of
system performance against cumulative risk exposure (Figure 6.5), while achieving
a slightly, but significantly, higher final performance in terms of the average walked
distance (Figure 6.6(a)). However, with MRL-SARSA(λ), Leo has the lowest
number of falls per unit time in the long run (Figure 6.6(b)) compared to CR
and MR. As with the simplest walker, a possible explanation is that the walker
walks more cautiously due to the large generalization around risky states. This
could also explain why on average, Leo walks slower (less traveled meters per
episode) when learning with MRL-SARSA(λ) than with MR or CR. Again, these
experiments confirm that merely using coarse features or a combination of coarse
and fine features does not perform as well as the MRL approach.
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Figure 6.5: Performance of Leo, comparing regular SARSA against MRL-SARSA
(Kr = 0.7) and SARSA with coarse resolution (CR), multi-resolution (MR) and adaptive
resolution (AR). The average walked distance in 25s (or until falling) is plotted against
the cumulative number of falls that occurred during the learning process required to reach
that performance. The average of 48 runs is shown, including 95% confidence bounds of
the average.

Using AR, we could not obtain a stable solution within 20h learning, despite
several attempts using different weight functions wk(s, a). Inspection of individ-
ual runs revealed that the robot regularly switched to a slightly different gait
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Figure 6.6: Performance of Leo, comparing regular SARSA against MRL-SARSA
(Kr = 0.7) and SARSA with coarse resolution (CR), multi-resolution (MR) and adaptive
resolution (AR). The average walked distance in 25s (or until falling) and the cumula-
tive number of falls are plotted against simulated time in (a) and (b), respectively. The
average of 48 runs is shown, including 95% confidence bounds of the average.
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every several hours. This new gait would typically result in higher performance,
but only after a period of reduced performance, which not seldom took just as
long as the robot needed to learn the initial solution, i.e., in the order of 2h. This
resulted in bad average performance (Figure 6.6(a)), also in terms of cumulative
risk exposure (Figure 6.5). A typical learning run with AR is shown in Figure 6.7,
showing very high peak performance on occasions compared to SARSA(λ). Due
to the complex interaction of AR with this learning problem, we cannot con-
clude whether it can eventually perform equal or better than MRL-SARSA(λ).
However, we can conclude that in practice, it is more difficult to apply it suc-
cessfully. Although MRL-SARSA(λ) needed pessimistic initialization in order to
significantly outperform SARSA(λ), it was relatively easy to improve its results
and it never underperformed compared to SARSA(λ).
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Figure 6.7: Typical runs of Leo, comparing regular SARSA(λ) against SARSA(λ) with
adaptive resolution (AR), illustrating the time varying performance of AR.

6.7 Conclusion

In this chapter, we introduced a new model-free approach to learning from scratch
with the aim to reduce the risk exposure that is accumulated during the learning
process. The approach assumes that the reward function is composed of a set of
partial rewards, of which the large, negative rewards give feedback on the risk
of state transitions. Under this assumption, it is possible to learn the expected
return of risk exposure separately from the expected return of performance related
rewards. By using a coarser resolution in the function approximation of the
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risk related action-value function, the agent quickly and imprecisely learns to
avoid risky behavior, while a finer representation is used to more accurately learn
the action-value function of positive rewards. We implemented this idea using
MRL-SARSA(λ). For two simulations of walking bipeds – the simplest walker
model and a model of robot Leo – that learned to walk while avoiding the risky
event of falling, this approach resulted in a higher behavioral performance against
cumulative risk exposure. Using MRL-SARSA(λ), the simplest walker required
26% fewer falls and Leo required 47% less falls over SARSA(λ) to reach 63%
of the final system performance. We compared our approach to three related,
alternative methods: a coarse resolution method, a multi-resolution method and
an adaptive resolution method. From these experiments, we can conclude that
merely using a coarse resolution is likely to lead to an inferior policy, leading to
increased cumulative risk exposure. The multi-resolution method, that combined
a coarse and fine resolution, showed an improvement over merely using a coarse
resolution. However, compared to MRL-SARSA(λ), it still suffered from increased
risk exposure in the long run. The adaptive resolution method weighed a coarse
and fine approximation, starting with the coarse approximation and assigning
more weight to the fine approximation in more frequently visited states. This
proved to be more effective than MRL-SARSA(λ) for the simplest walker, but
could not be successfully applied to the simulation of Leo; it proved more difficult
to set the key parameter value for AR than for MRL-SARSA(λ). In summary,
we can conclude that our MRL approach is an effective, model-free, easy to apply
method to reduce cumulative risk exposure for walking robots.
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Chapter 7

Discussion, conclusions and future
directions

7.1 Research goal

The market for service robots is expected to increase dramatically in the coming
years. Because service robots need to operate in largely unstructured, highly
diverse and renewing environments, it is difficult to provide them at production
time with manually programmed controllers that enable them to perform a large
variety of tasks in various environments. Having robots learn motor control tasks
autonomously forms an attractive alternative to manual programming by experts.
Reinforcement Learning (RL) has the potential to allow robots to learn motor
control tasks autonomously from interaction with the environment in a largely
unsupervised way, without the need for a model or an initial solution, and is
therefore a promising paradigm. Despite the fact that RL has been successfully
applied to a wide set of problems, the number of successful demonstrations of real
robots using RL to learn motor control tasks in real-time on embedded hardware
is only in the order of 10 worldwide. Currently, both theoretical and practical
difficulties are impeding wide scale application of RL to real robots. Therefore,
the research goal of this thesis was to identify and address difficulties in hardware
design, software design and RL theory that currently prevent the application of
RL to real, autonomous service robots. Below, we present the conclusions of this
thesis in reply to the research questions posed in Chapter 1.
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7.2 Discussion and conclusions

7.2.1 RL techniques

In Chapter 2, we presented the main RL techniques that have been used through-
out this thesis in an answer to research question 1:

“What are suitable RL techniques for real-time, autonomous learning
of low-level motor control tasks on a real robot without the need for
prior knowledge on the task or its environment?”

The Markov Decision Process (MDP) is the common framework within RL to
describe learning problems. To solve MDPs, we chose Temporal Difference (TD)
learning for the following reasons: it does not require a model of the system
and its environment, nor does it need an initial solution from an expert; it has
been successfully applied in simulation to learn robotic tasks; algorithms with
low computational complexity are available, such as SARSA(λ) and Q(λ); and,
under the right conditions, it converges to the globally optimal solution. To learn
in continuous state spaces, we chose tile coding, a linear function approximation
technique with low computational complexity – also in high dimensional state
spaces – that showed important successes in the past. In addition, techniques
have been discussed that reduce the computational requirements of RL in large
state-action spaces, such as exploiting symmetry and using hashing for the storage
of the function approximation’s data.

We showed in simulation that time delay in the control loop – not included
in the standard MDP framework – can have a strong negative influence on the
convergence of TD learning. We proposed the new memoryless TD algorithm
dSARSA(λ) that can perform better than regular SARSA(λ) while maintaining
low computational complexity. If a system is accurately linearizable at the time
scale of a single state transition, the method can also be applied when the control
delay is not an integer multiple of the sampling period.

Throughout the thesis, the techniques introduced in Chapter 2 have proved to
perform satisfactorily in learning high dimensional, realistic robotic tasks such as
bipedal locomotion, requiring little task-specific knowledge and being able to run
in real-time on embedded robot hardware. One particular boundary condition can
be considered key in this success: the computational power of nowadays’ computer
hardware. Despite the fact that the techniques used are not very novel, they
simply could not have been employed in real-time with acceptable control delay
without modern computer hardware (and an efficient software implementation).
Perhaps this partly explains why these techniques have thus far been unpopular
in real robot applications.

7.2.2 Hardware and software requirements

In Chapter 3, we first addressed research question 2:
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“What are the hardware and software requirements for a real robot in
order to be suitable for these RL techniques?”

We derived hardware and software requirements from the MDP framework in the
context of a walking robot with the goal to create a suitable research platform for
RL. The following hardware requirements have been derived:

1. The robot can walk over a period of days and is robust against falls and
self-collisions.

2. The robot can observe state s, which holds all information relevant to the
learning problem

3. The effect of action a in every state s is predictable.

4. The sampling period is constant.

5. The state transition probability density function T must be stationary within
a time frame of tens of hours.

6. The robot’s number of degrees of freedom, and thereby its state-action space,
is limited such that learning succeeds within a reasonable time frame.

With real hardware, most of these requirements can only be met approximately.
The following software requirements have been derived:

1. A realistic simulation of the robot and its environment can easily be created
and modified.

2. Controller code works in simulation as well as on the real robot without
additional modifications.

3. The software architecture facilitates the incorporation of a self-diagnostics
module that monitors the system dynamics.

4. The system is real-time (a direct consequence of the requirement of a con-
stant sampling period).

5. The delay between measurement sk and control action ak is minimal and
measurable (this is a hardware requirement as well)

6. The robot’s RL problem can be easily defined and modified without recom-
pilation.

With prototype ‘Leo’, we presented a bipedal walking robot specifically designed
according to the aforementioned requirements for online, autonomous Reinforce-
ment Learning. Leo is small and light (approximately 50cm in height and 1.7kg)
and has 7 servo motors: two in the ankles, knees and hips and one in its shoul-
der. The servo motors measure their position and temperature, and communicate
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over serial ports with an embedded computer (VIA Eden 1.2GHz CPU and 1GB
RAM). Force sensors in the toes and heels detect foot contact. Sideways stability
is enforced by a boom construction, which makes it effectively a 2D robot. Leo
has foam bumpers in crucial places to protect it against falls in a wide range of
configurations. Due to its boom construction which makes it run in circles and
supplies power, its fall protection and its ability to stand up by itself, Leo can
perform RL experiments without human assistance.

7.2.3 Identification of practical complications

Through experimentation, we addressed research question 3:

“What are the practical complications that arise from applying these
RL techniques to a real robot?”

Using a ‘conventional’, pre-programmed controller, we checked the robustness of
the system by letting it walk for 8 hours, during which it made 43, 000 footsteps
and fell 30 times before failing. Although this is an amount of effort comparable
to that needed for a learning experiment (albeit with less falls), it was desirable to
further improve the robustness. To this end, we replaced the position recording
potentiometers in the actuators with contactless magnetic encoders and added
torsionally flexible coupling elements to the joints to reduce gearbox damage. We
made the actuation more predictable by compensating for the temperature of
each motor. We verified the invariability of the system over a period of 8 hours
by periodically building a model from measured state transitions, and validating
this model with measurements recorded later. This showed that the system is not
completely time invariant, which was mostly caused by a deteriorating position
recording potentiometer in one of the actuators. We addressed this issue by
replacing the potentiometers with magnetic encoders.

We measured the timing characteristics of our real-time control loop and found
that the control delay between measuring the state and actuating the motors is
significant. Since we found in Chapter 2 that control delay can negatively influence
learning performance, we included control delay in simulations of ‘Leo’.

To support the research on on-line RL on real robots, we created a generic
motion control software framework with tight integration of a simulation environ-
ment. The developed simulation environment allows safe and realistic evaluation
of controllers and is highly configurable via XML in terms of the robot’s dy-
namics model, its environment and the learning controller. Controller code –
newly created or based on the provided real-time implementations of temporal
difference learning algorithms – can be shared one-on-one between the simulation
and the real robot. Using a publish/subscribe architecture, state information is
distributed to the controller and additional modules such as logging and visual-
ization services. The system is real-time periodic when run under Linux with the
Xenomai extension, with both minimal and measurable control delay.
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We performed several RL experiments on our prototype with increasing diffi-
culty. The first RL experiment on the prototype consisted of a relatively simple
learning task that involved only one leg (the other body parts were statically
mounted) – the stairs step-up task – and showed that the robot was able to learn
from scratch to place its foot on a plateau in approximately 15 minutes. The
results obtained in simulation and in hardware did not differ significantly. This
showed that the prototype’s hardware and software were suitable for RL experi-
ments of short duration. Subsequently, we defined the MDP of learning to walk
– a task with 10 state dimensions and 3 action dimensions for our prototype –
and presented simulation results. In simulation, the robot learned to walk from
scratch in 3 hours or less. We showed that both control delay and floor height dif-
ferences increased the learning time (up to a factor of two), as well as the number
of falls occurring during the learning process. To reduce the latter, we adjusted
the robot setup by leveling the floor. The simulation results also showed that the
prototype would have to withstand thousands of falls before learning to walk from
scratch. Since our prototype was not robust enough for that, we applied a method
to speed up the initial learning period in which the robot falls frequently, while
still being able to study the presented RL techniques of learning to walk on the
current prototype. During an initial period of a few minutes, the prototype was
controlled by a pre-programmed controller. For this demonstrated solution, the
action-value function was estimated on-line, which then served as an initialization
for the remainder of the learning process. After successfully testing this method
in simulation, we executed the method on the prototype for 4.5 hours, in which it
learned to perform at least as well as the demonstrated pre-programmed solution.
To the best of our knowledge, this is the first demonstration of Temporal Differ-
ence learning in real-time, on embedded robot hardware involving a non-trivial
task and a high-dimensional state-action space.

In summary, we can conclude that the main practical complications of on-line
TD learning on a walking robot are the robustness and stationarity of the hard-
ware with respect to the explorative nature of RL, control delay due to the compu-
tational complexity of the learning algorithm, and disturbances of various kinds,
such as sensor disturbances and unmeasured irregularities in the environment.
Despite these difficulties, it was shown that it is possible to employ autonomous
TD learning in real-time and on a real robot to learn an non-trivial task.

While our prototype was able to meet (after various improvements) the major-
ity of the posed hardware and software requirements, in the end, its transmission
proved to be inadequate: gearboxes would break frequently. When taking into
account that the motors would typically heat up to their maximum allowable tem-
perature within 30 minutes, one could conclude that the combination of motor
and gearbox was simply undersized. However, merely placing a heavier duty mo-
tor and gearbox in the current design would not necessarily solve the issues: the
robot’s mass would increase, leading to larger impacts on all robot parts. Though
not trivial, a redesign of the prototype – in which other types of actuation can
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be considered as well, such as direct drive and harmonic drive mechanisms – is
expected to increase the robustness of the hardware to an acceptable level.

It is undeniable that the trial-and-error nature of TD learning draws heavily on
the hardware. The strength of TD learning – convergence to the global optimum
without having to restrict the policy space to a task-specific class of solutions –
is also its weakness: random actuation patterns and exotic system states put a
heavy load on the robot’s hardware. It remains a challenge how to reduce the
likelihood of experiencing harmful actuation patterns and system states, without
jeopardizing the convergence properties. The method presented in Chapter 6 sets
a step in this direction.

7.2.4 Reducing practical complications

In Chapters 4, 5 and 6 we addressed research question 4:

“How can these practical complications be addressed?”

From the experiments in Chapter 3, it became clear that disturbances, for example
floor height variations, can have a negative impact on the learning performance.
In Chapter 4, we researched the impact of large and infrequent disturbances –
or outliers – on the learning process. Stochastic system behavior is part of the
stochastic MDP framework and poses no problem for most learning algorithms,
other than that it usually results in the need to average over more experience (i.e.,
using a lower learning rate) and thus longer learning times. However, the effect of
large and infrequent disturbances is relatively unknown. Every real system will
suffer from outliers to some degree. They can occur in sensor readings, timing
or in unexpected interactions with the environment. We evaluated the effects of
outliers on a simple simulation model of a walking robot, which learned to walk
using SARSA(λ). We tested the effects of three types of outliers: an instantaneous
push, a sensor reading outlier, and a sampling time irregularity.

Pushing the walker at random moments, on average once in approx. 6 foot-
steps, had a dramatic effect on the learning time and system performance. Re-
jecting the outliers by excluding the faulty state transitions from the learning
process completely restored the performance of the walker. After an equal num-
ber of practicing hours, the ’ignorant’ walker that included the outliers in the
learning updates performed roughly half as well as the outlier rejecting walker.
This contrasts with the possible expectation that learning under the influence of
disturbances would produce a more robust policy; apparently, the size and fre-
quency of the disturbances in this experiment did not allow for them to be treated
as stochastic variations of the underlying MDP.

The introduction of random spike noise on the sensor reading of the hip angle,
on average once every 50 measurements, had an undetectable effect on the learn-
ing agent. When their frequency was increased ten times (unrealistic), outlier
rejection actually resulted in a decrease in learning speed. This can be explained
by the fact that we excluded outliers in SARSA(λ) by clearing the eligibility
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traces, thus on average once in 5 samples, which slowed down learning. Doubling
the sampling time randomly, on average every 50th sample, also had an unde-
tectable effect on the learning agent. When increasing their frequency ten times
(unrealistic), the effect became noticeable but was still surprisingly small. Again,
rejecting outliers by clearing the eligibility traces led to a large drop in learning
speed. The rejection process had a much more negative impact on the learning
performance than the outliers themselves.

We can conclude that for the simple model used, large disturbances of the
actual system state through unexpected interaction with the environment have
by far the largest influence on the learning process, compared to timing and sensor
outliers.

Chapter 2 and 3 showed that control delay can slow down the learning pro-
cess and at worst make it diverge. In Chapter 5, we adopted a multiagent RL
approach in which each actuator of the robot is controlled by an independent,
separately learning agent. Because each agent has a smaller, one dimensional
action space, consulting the policy requires much less computation, thereby re-
ducing the control delay on the real robot. In addition, memory requirements
are reduced. The difficulty introduced is the lack of coordination between the
agents. However, due to the cooperative nature of the multiagent system, the
system is still capable of finding (possibly suboptimal) solutions. We tested the
approach on three robotic systems in simulation: a two-link manipulator, and
bipedal walking robots Meta and Leo. While the learning performance proved to
be similar to the single-agent case, the computational time needed to complete
learning and the amount of memory needed to store the state-action space were
significantly decreased; from an exponential problem in the number of actuators,
it became a linear problem. For robot Leo, the shorter computation time needed
for action selection resulted in a reduction of the control delay with 75% on the
prototype. In addition, in one of the test setups, we showed that using Lenient
Learning for the independent learners has the potential to significantly increase
learning speed compared to single agent learning. The downside of the method is
that in its current form, convergence is not guaranteed and some situations are
known to lead to suboptimal solutions. Altogether, the multiagent approach is
a promoising alternative to single-agent learning, and deserves further theoreti-
cal attention. It has perspective for future parallel implementations, such as on
multi-core processors and robots with distributed computing, for example, in the
form of actuators equipped with their own computing hardware.

The frequent hardware failures were the largest impediment in the experiments
with prototype Leo (see Chapter 3). While hardware improvements form an im-
portant solution to increasing the robustness of robots using RL, we researched
in Chapter 6 how a different formulation of the RL problem can contribute to
reducing system damage. We introduced a new model-free approach to learning
from scratch, based on Modular Reinforcement Learning (MRL), with the aim to
reduce the risk exposure that is accumulated during the learning process. The ap-
proach assumes that the reward function is composed of a set of partial rewards,



154 DISCUSSION, CONCLUSIONS AND FUTURE DIRECTIONS 7.3

of which the large, negative rewards give feedback on the risk of state transitions.
Under this assumption, it is possible to learn the expected return of risk exposure
separately from the expected return of performance related rewards. By using a
coarser resolution in the function approximation of the risk related action-value
function, the agent quickly and imprecisely learns to avoid risky behavior, while
a finer representation is used to more accurately learn the action-value function
of positive rewards. We implemented this idea using MRL-SARSA(λ). For two
simulations of walking bipeds – the simplest walker model and a model of robot
Leo – that learned to walk while avoiding the risky event of falling, this approach
resulted in a higher behavioral performance against cumulative risk exposure. Us-
ing MRL-SARSA(λ), the simplest walker required 26% less falls and Leo required
47% less falls over SARSA(λ) to reach 63% of the final system performance. We
compared our approach to three related, alternative methods: a coarse resolution
method, a multi-resolution method and an adaptive resolution method. From
these experiments, we can conclude that merely using a coarse resolution is likely
to lead to an inferior policy, leading to increased cumulative risk exposure. The
multi-resolution method, that combined a coarse and fine resolution, showed an
improvement over merely using a coarse resolution. However, compared to MRL-
SARSA(λ), it still suffered from increased risk exposure in the long run. The
adaptive resolution method weighed a coarse and fine approximation, starting
with the coarse approximation and assigning more weight to the fine approxi-
mation in more frequently visited states. This proved to be more effective than
MRL-SARSA(λ) for the simplest walker, but could not be successfully applied
to the simulation of Leo; it proved more difficult to set the key parameter value
for AR than for MRL-SARSA(λ). In summary, we can conclude that our MRL
approach is an effective, model-free, easy to apply method to reduce cumulative
risk exposure for walking robots.

7.3 Future directions

7.3.1 Autonomously learning from scratch

In this thesis, we chose the approach of learning a task completely from scratch,
without the need for an initial solution from an expert or prior knowledge on the
specific task at hand. While this approach has practical disadvantages – the most
important one being the often long initial learning period in which behavior is
mostly random and particularly straining for the hardware – the ultimate result
of this approach is very powerful: machine learning techniques that do not have
a dependency on the specific robotic system, nor on the task that it needs to
perform. The techniques used throughout this thesis showed that this is possible
to a large extent, but configuring the learning system – choosing the state-action
space, function approximation resolution, learning parameters and rewards – still
requires expert knowledge, especially when learning time and final system perfor-
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mance need to meet specific values. Below, we discuss research directions as to
further reduce the need for expert knowledge.

While the state variables of the robot itself are known beforehand, state vari-
ables belonging to the specific task at hand, such as the location and orientation of
objects that the robot needs to interact with, need to be manually specified with
the RL techniques presented in this thesis. Automatically discovering these addi-
tional state variables forms a large challenge and involves automatically finding a
state-action space in which both state transitions and rewards become predictable.
State abstraction from raw sensor data, such as visual input from a camera sensor,
is part of this challenge.

Once the state-action space of a learning task is known, the location and
shape of the basis functions for approximating the action-value function need
to be chosen. A large body of literature exists on methods that automatically
choose these parameters, mostly based on heuristics, such as reducing the error
or variance of the estimated function values by moving, splitting or aggregating
basis functions. To the best of our knowledge, no method exists yet that can
consistently produce satisfactory results for a wide range of learning problems.
This is unfortunate, since choosing the size and location of the basis functions
(the tile widths when using tile coding) formed a large – if not the largest –
part of the effort spent on choosing learning parameters for the experiments in
this thesis. Therefore, a break-through in this field would greatly speed up RL
research.

Choosing the learning rate and exploration rate proved not to be difficult;
approximately the same values were used for all experiments. Choosing the time
discounting factor and eligibility trace discounting factor also proved not difficult,
provided that the characteristic time scale of the learning problem was known.
Finding methods to automatically discovering the characteristic time scale of a
task can therefore help automatically choosing these learning parameters. Choos-
ing the sampling period is related to choosing the action space and was more
difficult. Although some initial guidelines were provided in this thesis for choos-
ing sensible values, further research is needed to automate this process.

The reward function determines what is being learned. In addition, different
reward functions can lead to (approximately) the same solution, while resulting in
a greatly differing learning speed. In the envisioned environment of service robots,
it is likely that rewards are generated both by the robot itself, such as penalties
for energy usage and time, as well as by the environment in the form of the robot’s
supervisor (or trainer, or teacher), giving feedback on the robot’s behavior. While
some research is targeted towards engineering the reward function in detail with
the goal to increase the learning speed, ultimately, one of the biggest advantages of
RL is that it has the potential to learn from coarse feedback from its environment
without requiring engineering or programming skills to specify the rewards in
detail. Efforts into making RL more robust against variations in the rewards are
therefore considered more valuable than ’optimizing’ the reward function. From
that point of view, a weakness in the current formulation is that the reward
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function has to be stationary and consistent; in other words, if the robot once
received a reward for good behavior, it needs to receive the same reward every
time it exercises that same behavior – as long as it is learning, even when its
behavior is already optimal. This requirement could be relaxed by letting the
robot estimate the reward function that its trainer is trying to communicate,
interpreting feedback from the trainer as corrections only, i.e., once behavior
is valued by the trainer, this value remains valid until additional feedback is
provided. Interpreting feedback from humans – through natural or body language
– forms another challenge in this respect.

7.3.2 Algorithmic improvements

The work in this thesis concentrated on Temporal Difference learning and used
algorithms, such as SARSA(λ) and Q(λ), that have existed for almost two decades.
It should be noted that new RL algorithms are continuously being developed.
While in general, these developments do not address the research questions posed
in this thesis, naturally, they are responsible for important progress in the RL
research field, e.g., by algorithms with improved convergence properties, especially
with respect to function approximation and off-policy learning. In particular,
new actor-critic and policy gradient methods have become increasingly popular
in recent years. Although we excluded these algorithms from our analysis due to
their need for an initial solution upon which they improve, they form a welcome
addition to methods designed to learn from scratch. Their advantages, such as the
smooth way in which they improve the policy, are desirable in situations where
an initial solution is available, e.g., through imitation learning, or when learning
to improve a rough solution that was obtained by learning from scratch. In that
sense, algorithmic improvements form a research trajectory parallel to the more
practical one addressed in this thesis.

A research direction that has not yet received extensive attention, but might
become increasingly relevant, is to develop algorithms that can benefit from par-
allel computation. The general trend in computer hardware development is an
increase in the number of parallel computing elements (or cores). To be able to
benefit from this increase in computing power, more research is needed to adapt
current RL algorithms or to develop new ones.

The algorithms employed in this thesis have a particular weakness that is ad-
dressed in newer algorithms: they are not very sample efficient, i.e., the improve-
ment in the action-value function estimate per sample (i.e., a state transition and
accompanying reward) is limited. Several new algorithms, such as Least Squares
Temporal Difference (LSTD) learning, are able to achieve a higher sample effi-
ciency. A promising research direction that improves the sample efficiency – apart
from developing new algorithms that directly learn the policy – is model learning.
When models of the state transition probability density function and the reward
function are learned using real experience, a background process (preferably ex-
ecuted in parallel, to make use of parallel computing hardware) can use these
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models to simulate experience and perform additional learning updates, which
can increase the learning speed. Learning a state transition model has several
other valuable applications. In Section 3.1.7, we used Local Linear Regression
(LLR) to learn a state transition model and employed it to verify hardware sta-
tionarity. A state transition model can also be used to detect disturbances with
the aim to exclude them from the learning process, as mentioned in Chapter 4.
Finally, a state transition model can be used to predict future states, which can im-
prove action selection under control delay. Therefore, model learning techniques
are a particularly interesting future research direction to address the practical
complications discussed in this thesis. Recently, new actor-critic algorithms have
been introduced in which the actor, the critic, the state transition model, and a
reference model are all approximated using LLR (Grondman et al., 2012).

While this thesis showed that under the right conditions, RL can solve tasks
in high dimensional state-action spaces, ultimately, it becomes inefficient to learn
every complex task from scratch. Many tasks share common skills, such as navi-
gating to a new location, or moving certain robot extremities to a desired location
in space. Several approaches exist in literature that extend the RL framework to
one in which the action space of a learning task consists of commanding other,
simpler tasks. One of those approaches is Hierarchical Reinforcement Learning
(HRL). In addition, methods exist to automatically detect such task composi-
tions and hierarchies automatically from experience. In (Van Vliet et al., 2011),
we adopted a hierarchical learning approach to the stairs step-up task presented
in Section 3.3 and presented results obtained on prototype Leo.

Despite the large body of RL research, RL on real robots is still in its infancy,
and the learning capabilities that have thus far been realized cannot compete with
those of humans. But watching a humanoid robot learn its first footsteps without
human intervention is truly exciting. Its steady progress with the occasional falls
looks exemplary for the long but promising research path that lies ahead.
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Appendix A

Leveling the floor

Floor height differences, when left unmodeled, violate the Markov property and
can slow down the learning process (see Section 3.3.3). Therefore, the 4m by 4m
floor that Leo walks on was leveled. The height of the floor with respect to a
laser level was measured at 441 equidistant grid points, 20cm apart. To correct
for the systematic error of the laser level device, several points were measured
twice, making a total of 496 measurements. The floor was then leveled with 5
layers of 3mm foam sheet, topped with a laminate floor. The illustrations in
Figure A.1-A.6 describe the process step by step.

Figure A.1: Using a laser level and a ruler (caliper), the relative height of the floor was
measured at 441 equidistant points on a 4m by 4m area. From each corner, 121 points
close to the laser level were measured.
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(a) Height map (b) Contour plot with isolines at 3mm steps

Figure A.2: Measurement result. The data is corrected for the laser measurement
error, which was determined from redundant measurement data, i.e., points that were
measured multiple times from different corners. The laser error is 0mm at 4m at its
leftmost corner and +2mm at 4m at its rightmost corner. The difference between the
lowest and highest measured point is 15mm.

Figure A.3: The contour plot from Figure A.2(b) was copied to the floor.
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(a) (b)

(c) (d)

Figure A.4: Layers of 3mm thick foam were placed on the floor to level it.

(a) (b)

Figure A.5: Laminate was placed on top of the foam layers.
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Figure A.6: Leo on the new level floor. After leveling, the difference between the lowest
and highest measured point (randomly sampled) was 3mm.



Appendix B

Additional results

In Section 3.3.1, an experiment was conducted in which robot Leo learned to
perform a stairs step-up task. This experiment was repeated 12 times on the
prototype. Due to a software flaw in the experiment length computation, however,
the experiments are of unequal duration. Figure 3.13 therefore only shows the
average learning performance up to approximately 13 minutes of experimentation
time – the duration of the shortest experiment. To illustrate the convergence
behavior of individual runs – and to illustrate the spread between individual
learning experiments in general – this appendix presents the learning curves of all
stairs step-up learning experiments performed on robot Leo. They are presented
in Figure B.1.
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Figure B.1: Robot Leo learning the stairs step-up task (real robot results), showing the
learning performance of individual experiments. The episode length (lower is better) is
plotted against learning time. Due to a flaw in the experiment length computation (the
regular motor cooling pauses were accidentally included when computing the experiment
length), individual experiments are of unequal length.
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Summary

The assistance of service robots in households, health care and other labour in-
tensive environments is expected to become increasingly important in the near
future. Whereas factory robots are widely employed in production facilities world-
wide, service robots are still a novelty and are currently only capable of simple
tasks such as vacuum cleaning and lawn mowing. The main difference lies in
the environment: where factories are structured and predictable, domestic envi-
ronments are typically unique and continually changing. For service robots to be
successful, they need to be versatile and able to perform emerging tasks in various
environments. Since this variety of tasks and environments cannot be completely
foreseen and tested at the robot’s production time, manually programming such
robots becomes complicated. Having robots learn task solutions autonomously
through interaction with the real world forms an attractive alternative.

Reinforcement Learning (RL) is a generic machine learning paradigm that has
been applied to a wide range of problems. Through interaction with the environ-
ment, an RL system is able to autonomously learn task solutions by continuously
improving its behavior using only coarse feedback: desired behavior is reinforced
by positive rewards; undesired behavior is punished by negative rewards. Be-
cause of its generic formulation and ability to learn from real experience, RL is a
promising candidate for adding learning capabilities to service robots.

Unfortunately, relatively little is known on how to successfully apply RL to
real robots. The goal of this thesis is to identify and address the difficulties
in hardware design, software design and RL theory that currently prevent the
application of RL to real, autonomous service robots. To this end, RL techniques
are selected from the literature that are considered suitable for our particular
purpose, based on their theoretical properties and on existing simulation results.
The requirements that these RL techniques pose on the hardware and software
are first identified and then realized in a prototype: bipedal walking robot Leo.
The central learning task in this thesis is the task of learning to walk for a bipedal
robot, which is both challenging and interesting to solve with RL.

This thesis starts by motivating the choice for Temporal Difference (TD) learn-
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ing, followed by additional techniques, such as tile coding function approximation,
that enable it to be applied specifically to robotic tasks. In addition, it is shown
that control delay, i.e., the time delay between sensing and acting, is likely to occur
on real robots and can have a strong negative effect on the learning performance.
A new TD learning algorithm is introduced – dSARSA(λ) – that can perform
better than its ’vanilla’ counterpart SARSA(λ) by taking into account the control
delay in the learning updates without adding computational complexity.

After deriving the hardware and software requirements that follow from the
selected RL techniques, the design of bipedal walking robot Leo is presented. This
prototype serves as a RL research platform throughout the thesis for a number
of experiments and is accompanied by a realistic simulation environment. Exper-
iments conducted in simulation and on the real robot show that it is possible to
employ TD learning to learn non-trivial tasks such as walking (in 5 hours on aver-
age) and placing a foot on a step of stairs (in 15 minutes on average), in real-time,
on embedded hardware, despite the high dimensional state-action spaces of these
tasks. While the prototype met most of the derived requirements, its robustness
fell short in facing the trial-and-error nature of TD learning – it required repair
every 30 minutes on average – which prevented repeating the experiments on the
real robot up to statistical significance. The experiments revealed a number of
practical complications, which are addressed in the remainder of the thesis.

The effects on the learning process of large and infrequent disturbances, such
as floor irregularities and unexpected interactions with the environment such as a
push, are relatively unknown. This thesis presents simulation results on a simple
walking model that show that large and infrequent disturbances of the actual
system state, e.g., by means of pushing the robot, have a dramatic effect on the
learning time and system performance. Outliers in the sampling period of the
system and in sensor readings, on the other hand, have a negligible effect on the
learning process. A method is presented that restores the learning performance
by excluding the outliers from the learning process.

To reduce the control delay caused by the learning controller, this thesis pro-
poses to use Independent Learners (IL) for the individual actuators of a robot,
creating an architecture in which individual, independent learning systems each
control a single actuator. This decentralized approach reduces the computation
time of the learning system’s decision making process and thus the control delay.

In order to reduce the hardware strain of TD learning, this thesis presents
a solution based on Modular Reinforcement Learning (MRL) in which the robot
coarsely but quickly learns about the risk of its behavior. This reduces the robot’s
cumulative risk exposure while learning the actual task solution.

In summary, this thesis shows that TD learning has potential to let real robots
autonomously learn non-trivial tasks. The main complication is that TD learning
requires very robust hardware due to its trial-and-error nature. Furthermore,
it is sensitive to control delay and infrequent, unexpected interactions with the
environment. Solutions in the form of IL and MRL are presented that have the
potential to reduce control delay and the risk of hardware strain.



Samenvatting

Reinforcement Learning op autonome mensachtige robots

De verwachting bestaat dat in de nabije toekomst de assistentie van dienstver-
lenende robots in huishoudens, gezondheidszorg en andere arbeidsintensieve om-
gevingen steeds belangrijker wordt. Hoewel fabrieksrobots reeds op grote schaal
worden ingezet in productiefaciliteiten over de hele wereld, zijn dienstverlenende
robots betrekkelijk nieuw en vooralsnog alleen in staat om simpele taken uit te
voeren zoals stofzuigen en grasmaaien. Het belangrijkste verschil ligt in de om-
geving: waar fabrieken gestructureerd en voorspelbaar zijn, is een huishoudelijke
omgeving typisch uniek en aan verandering onderhevig. Om succesvol te kunnen
zijn moeten dienstverlenende robots veelzijdig zijn en in staat zijn om nieuwe, op-
komende taken te vervullen in verscheidene omgevingen. Deze veelzijdigheid aan
taken en omgevingen is niet vooraf te voorzien en te testen op het moment dat
de robot wordt geproduceerd, waardoor het handmatig programmeren van zulke
robots problematisch is. Robots die zelf leren taken te vervullen door interactie
met de echte wereld vormen een aantrekkelijk alternatief.

Reinforcement Learning (RL) is een generiek paradigma voor machinaal leren
dat reeds voor een breed scala aan problemen is ingezet. Door interactie met de
omgeving kan een RL systeem autonoom leren om taken op te lossen. Dit gebeurt
door continu zijn gedrag te verbeteren op basis van enkel grofmazige terugkoppe-
ling: gewenst gedrag wordt versterkt door positieve beloningen, ongewenst gedrag
wordt bestraft door negatieve beloningen. Door zijn generieke formulering en ver-
mogen om van echte ervaringen te leren is RL een veelbelovende kandidaat om
lerende vaardigheden aan dienstverlenende robots toe te voegen.

Helaas is er relatief weinig bekend over hoe RL succesvol kan worden toegepast
op echte robots. Het doel van dit proefschrift is om de moeilijkheden te identi-
ficeren en aan te pakken op het gebied van hardware-ontwerp, software-ontwerp
en RL theorie, welke op dit moment het toepassen van RL op echte, autonome
dienstverlenende robots verhinderen. Hiertoe zullen RL technieken worden gese-
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lecteerd uit de literatuur die geschikt worden geacht voor ons specifieke doel, op
basis van hun theoretische eigenschappen en bestaande simulatieresultaten. De
eisen die deze RL technieken stellen aan de hardware en software worden eerst
gëıdentificeerd en vervolgens gerealiseerd in een prototype: de tweevoetige, lo-
pende robot Leo. De centrale leertaak in dit proefschrift is de taak van het leren
lopen voor een tweevoetige robot, een taak die zowel uitdagend als interessant is
om met RL op te lossen.

Deze thesis begint met een motivatie van de keuze voor Temporal Difference
(TD) leren, gevolgd door een uitleg van additionele technieken zoals functie-
approximatie door tile coding, die het specifiek toepasbaar maken voor roboti-
sche taken. Daarnaast wordt aangetoond dat vertraging in de regellus, oftewel
de tijdvertraging tussen het meten van de toestand en de actuatie, waarschijnlijk
optreedt bij echte robots en dat het een sterk negatieve invloed kan hebben op
de prestaties van het leren. Een nieuw TD leeralgoritme wordt gëıntroduceerd –
dSARSA(λ) – dat beter kan presteren dan zijn klassieke tegenhanger SARSA(λ)
door de vertraging in de regellus mee te nemen in de leerstappen zonder computa-
tionele complexiteit toe te voegen.

Nadat de eisen aan hardware en software zijn afgeleid die voortvloeien uit de
geselecteerde RL technieken, wordt het ontwerp van de tweevoetige, lopende ro-
bot Leo gepresenteerd. Dit prototype dient als RL onderzoeksplatform voor een
aantal experimenten in de thesis en wordt vergezeld van een realistische simulatie-
omgeving. Experimenten uitgevoerd in simulatie en op de echte robot laten zien
dat het mogelijk is om TD leren in te zetten om niet-triviale taken in te leren,
zoals lopen (in ongeveer 5 uur) en het plaatsen van een voet op een traptrede
(in ongeveer 15 minuten), real-time, op embedded hardware, ondanks de hoogd-
imensionale toestand-actie-ruimte van deze taken. Hoewel het prototype aan de
meeste afgeleide eisen voldeed, schoot de robuustheid tekort bij de confrontatie
met het trial-and-error karakter van TD leren – een reparatie was gemiddeld elke
30 minuten nodig – wat verhinderde dat de experimenten op de echte robot her-
haald konden worden tot aan statistische significantie. De experimenten legden
een aantal praktische complicaties bloot, die in het resterende deel van de thesis
worden aangepakt.

De effecten op het leerproces van grote en infrequente verstoringen, zoals on-
gelijkheden in de vloer en onverwachte interacties met de omgeving zoals een duw,
zijn relatief onbekend. Deze thesis presenteert simulatieresultaten van een simpel
loopmodel dat laat zien dat grote en infrequente verstoringen van de daadwerke-
lijke systeemtoestand, bijvoorbeeld door de robot te duwen, een dramatisch effect
hebben op de leersnelheid en systeemprestaties. Aan de andere kant hebben uit-
schieters in de bemonsteringsperiode van het systeem en in de sensorwaardes een
verwaarloosbaar effect op het leerproces. Een methode wordt gepresenteerd die
de leerprestaties herstelt door de uitschieters uit te sluiten van het leerproces.

Om het deel van de vertraging in de regellus dat veroorzaakt wordt door de
leerregelaar te verkleinen, stelt deze thesis voor om Independent Learners (IL) te
gebruiken voor de afzonderlijke actuatoren van een robot, om zo een architectuur
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te creëren waarin individuele, onafhankelijke leersystemen elk een enkele actuator
aansturen. Deze gedecentraliseerde aanpak verkleint de rekentijd benodigd voor
het beslissingsproces van het leersysteem en daarmee ook de vertraging in de
regellus.

Om de belasting van de hardware door TD leren te verminderen, stelt deze
thesis een oplossing voor gebaseerd op Modular Reinforcement Learning (MRL)
waarmee de robot grof maar snel leert over het risico van zijn gedrag. Dit vermin-
dert de cumulatieve blootstelling aan risico voor de robot tijdens het leren van de
daadwerkelijke taakoplossing.

Samenvattend laat deze thesis zien dat TD leren potentie heeft om echte robots
autonoom niet-triviale taken te laten leren. De belangrijkste complicatie is dat TD
leren erg robuuste hardware nodig heeft door zijn trial-and-error karakter. Verder
is het gevoelig voor vertraging in de regellus en voor infrequente, onverwachte
interacties met de omgeving. Oplossingen in de vorm van IL en MRL worden
gepresenteerd die de potentie hebben om de vertraging in de regellus en het risico
op belasting van de hardware te verminderen.



182 SAMENVATTING



Dankwoord

Dit proefschrift betekent het einde van een roerige tijd, met flinke contrasten door
de onderzoeksjaren heen. Na een aanloop van ambitieuze plannen en initiatieven
zorgde het werken met experimentele robothardware voor langdurige perioden van
tegenslag. Hoewel ik lang niet heb kunnen afmaken wat ik oorspronkelijk wilde,
geeft het eindresultaat toch enorme voldoening. Na veel ploeteren, nadenken,
repareren en verbeteren heb ik mijn doel kunnen bereiken: een lerende robot.

Ik heb daarbij uiteraard van veel kanten hulp gehad, in de eerste plaats van
mijn promotoren en copromotor. Pieter, je hebt een grote invloed gehad op mijn
jaren aan de TU en ik heb een hoop aan je te danken. Als afstudeerbegeleider en
vervolgens als promotor heb je me altijd in alle vrijheid onderzoek laten doen en
groot vertrouwen getoond in wat ik deed. Ook deelden we dezelfde langetermijn-
doelen en konden we open en inspirerend overleggen over de te varen koers. Mijn
fantastische stagetijd in Japan had je snel voor me geregeld en ook onze robot-
demonstratie in de Ridderzaal op het Binnenhof zal ik nooit vergeten. Robert,
jij hebt mijn onderzoek en proefschrift naar een hoger niveau getild. Dankzij jou
heb ik mijn onderzoek in een breder (theoretisch) perspectief kunnen plaatsen.
Door je zeer scherpe oog voor detail heb je veel onvolkomenheden uit mijn proef-
schrift gehaald waar ik inmiddels (soms al jaren) overheen las. Martijn, je passie
om een goed lopend robotlab op te starten en te laten groeien en bloeien heeft
zijn vruchten afgeworpen. In het DBL heb ik ongestoord onderzoek kunnen doen
tussen de mooiste machines, met alles binnen handbereik: apparatuur, onderde-
len, enthousiaste mensen, eten, bier.. ik heb me er erg op mijn gemak gevoeld.
Ook heb je mijn wetenschappelijke schrijfstijl enorm vooruit geholpen. Bedankt
voor je dagelijkse begeleiding! Ook wil ik Frans bedanken voor zijn brede kijk en
inspirerende inbreng in mijn onderzoek tijdens de opstartperiode. Als laatste wil
ik Lucian, Gabriel en Wouter bedanken voor hun hulp en samenwerking in het
onderzoek. Wouter, ik vond het erg fijn om met je te kunnen sparren en samen
mooie code te schrijven!

Voor de ontwikkeling van de robot ben ik veel dank verschuldigd aan Guillaume,
die een belangrijk deel van het ontwerp heeft gemaakt, aan Jan van Frankenhuyzen,

183



184 DANKWOORD

die naast adviseren ook samen met mij heeft staan zweten boven de robot toen
deze elke 10 minuten gerepareerd moest worden, en aan Ad, John, Dries en Guus
die hebben geholpen met het maken van de mechanische en elektrische hardware.

Natuurlijk wil ik de mensen in het lab en in de vakgroep bedanken voor de sa-
menwerking, leuke tijden, interessante discussies en mooie avonden. Daan, Tomas,
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