Residual Stresses in Injection Molding

Basic understanding and measurement
1. Injection Molding
2. Simple stress model
3. Residual Stress measurements
4. Conclusions

1. Injection molding
Residual stresses in finished products
• Due to crystallization, thermal shrinkage and pressure
• Invisible
• Affects product performance
• More sensitive to stress cracking
• Warpage, tolerance problems
• Undesired optical effects (birefringence)

2. Simple stress model
With equations
• Solidification pressure: $p_f(z) = \frac{1 - 2\alpha}{2} [L(z) - \bar{L}]$
• Hydrostatic strain: $e_s = \frac{1 - 2\alpha}{2} [L(z) - \bar{L}]$
• Expansion upon ejection: $e_{e} = \frac{1 - 2\alpha}{2} [L(z) - \bar{L}]$
• Stress after ejection: $\sigma_z = \sigma_y = -\frac{1 - 2\alpha}{2} [L(z) - \bar{L}]$

Note: Thermal stresses vanish after ejection and cooling down
Reason: Prevention of in-mold shrinkage

2. Simple stress model
Validation studies
• Residual stresses
 $\sigma_z = \sigma_y = -\frac{1 - 2\alpha}{2} [L(z) - \bar{L}]$

• Shrinkage after molding:
 $\delta_{e} = \sigma_y = -\frac{1 - 2\alpha}{2} [L(z) - \bar{L}]$

Works amazingly well!
2. Simple stress model

Warpage due to uneven cooling

- Injection Molded plate
 - Low hold pressures warp to hot side; high to cold side

 \[
 \text{curvature} = -\frac{12(1-v^2)}{E} \frac{P_{\text{hot}} y}{h^3} \]

 \[
 \text{Curvature} = -\frac{12(1-v^2)}{E} \frac{P_{\text{hot}} y}{h^3} \]

- Model predicts correct trends, but
- Underpredicts warpage by factor 2

2. Conclusions about stress model

- Model is simple and gives a clear understanding
- For simple geometries model works as good as simulation tools
- Frozen-in cavity pressure profile determines stresses and shrinkage (not the thermal stresses!)
- Surface layer and core are in tension; sub-surface layer in compression

 - Shrinkage and warpage follow from same model
 - Shrinkage and warpage can be tuned with holding pressure and mold temperatures

3. Residual Stress Measurements

Overview of methods

- Birefringence
 - Sensitive to both orientation and stress (PC, PMMA more for stress, PS more for orientation)
 - Stresses relieve near cutting surface \(\rightarrow \) not useful
- Layer Removal
 - Elaborative
 - Stress relaxation due to milling heat
- Hole drilling method
 - Only "average" stress level possible \(\rightarrow \) not useful
- Environmental Stress Cracking test
 - Only "average" stress level possible \(\rightarrow \) not useful

3. Residual Stress Measurements

Outline of Layer Removal test

1. Mill top layer (50-200 \(\mu \)m)
2. Residual stresses are no longer balanced
3. Release from vacuum rig
4. Measure curvature \(\kappa \)

\[
\kappa = \frac{4}{h^2} \left(\frac{6}{h^2} - 2 \right) \left(\frac{ \Delta E}{E} \right) \]

\(\Delta E \) = deflection profiles, curvature profiles, stress distribution

(Tranting and Read, J Appl Phys 22, p.130 (1951))
3. Residual Stress Measurements

Layer Removal method: Problems and solutions

- Stress relaxation after production
 - Store in freezer before use
- Melting and stress release during milling
 - Use sharp tool and speed < 1500 rpm
- Creep effects after milling
 - Due to flattening in test rig! Wait 10 min (96% recovery)
- Resolution: milling <0.1 mm is difficult
 - Will give problems near surface
- Data analysis of $\kappa(z)$ curve: differentiation error
 - Do not fit a polynomial over all data points
 - but use a sliding window fit

3. Residual Stress Measurements

Why Excimer laser ablation

- KrF has high energy photons (3.5-8 eV)
- direct bond breaking; no melting!
- Pulsed operation: shockwaves remove debris
- Ultra thin layers possible (< 1 µm)

3. Residual Stress Measurements

Comparison between standard milling and laser ablation

- Stress levels of 5 MPa tensile to -10 MPa compression
- Typical error margin: ± 0.5 MPa
- Good consistency; differences only near surface (200 µm)
- 500-1000 rpm milling similar to laser ablation
- 2000 rpm not OK: surface stresses changed

3. Residual Stress Measurements

Comparison with model predictions

- Low viscosity; high P_h
 - Large tensile surface stress
 - "Inversion" of stress profile
 - Low stresses in core
 - Good match with model

- High viscosity; low P_h
 - Large compressive surface stress
 - Almost quenching like stress profile
 - Reasonable match with model

4. Conclusions

- Stresses in injection molding are mainly due to frozen-in pressure variations
- Warpage is due to asymmetric stress distribution
- Stress profile, warpage and shrinkage can be estimated in a relatively simple way

- **Layer Removal method** is suitable to measure stress profiles
 - but carefulness is required
- Depending on viscosity and holding pressure the frozen-in stress profiles can be tuned from compressive to tensile!