
FIONA
A tailored fMRI
image processing
pipeline
Yidi CAO
Supervised by:
Emile Hendriks, from TUDelft
S.F.W. Neggers, fromBrain Science Tools BV

FIONA
A tailored fMRI image processing pipeline

by

Yidi CAO
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Tuesday August 30, 2016 at 14:00 PM.

Student number: 4527313
Project duration: March 7, 2016 – August 30, 2016
Thesis committee: Prof. Dr. Emile. Hendricks, Pattern Recognition & Bioinformatics, TU Delft

Dr. S.F.W. Neggers, Brain Center Rudolf Magnus, UMC Utrecht
Dr. Anna Vilanova, Computer Graphics & Visualization, TU Delft

This thesis is confidential and cannot be made public until December 31, 2016.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

This project was done under help from many people. Thanks Dr. Emile Hendriks for patient supervision.
Thanks Dr. Bas Neggers, Ms. Petar Petrov and Dr. Daan Baas for daily instructing, supervising and inspir-
ing. Thanks Myriam Coes for suggesting, sharing and collaborating. Thanks Dr. Anna Vilanova for being a
committee member. Thanks Erik Jansen for coordinating. Thanks my family for endless supporting.

Yidi CAO
Utrecht, August 2016

iii

Abstract

In neuroscience research, fMRI image analysis is a major approach to identify the relationships between
brain region and behavior. fMRI provides delayed real time brain activity signals non-invasively. Spatial
preprocessing and statistical analysis needs to be performed to find the brain region that is responsive to
certain tasks or stimulations. This project introduce an implementation of a tailored fMRI image processing
pipeline, FIONA (Functional Imaging Overlay for NAvigated TMS), based on Insight Toolkit (ITK). The major
functionalities of the software include preprocessing (realignment, co-registration, spatial smoothing), GLM
analysis, hypothesis testing and multiple comparison correction (mainly FDR). FIONA is designed for usual
clinical users or fMRI analyst who may not be an expert in neuroscience. It is designed for navigated TMS
as its intended use. We also did benchmarking on different ITK optimizers comparing their performance in
realignment section, to select an overall best optimizer. We test our whole implementation on different level
noisy fMRI datasets.

v

Contents

1 Introduction 1
1.1 Functional MRI . 1
1.2 FIONA . 1
1.3 TMS & Neural Navigator . 2
1.4 SPM. 2
1.5 Overview . 3

2 The Software Design 5
2.1 Software Design. 5
2.2 Functional Requirements . 5
2.3 Regulatory Requirements . 7

3 Pre-Processing 9
3.1 Slice-Timing Correction. 10
3.2 Realignment . 10

3.2.1 Rigid Body Transforms . 11
3.2.2 Similarity Metrics . 14
3.2.3 Optimizers . 15
3.2.4 Interpolation. 20
3.2.5 Implementation Details . 21

3.3 Co-Registration . 23
3.3.1 Multi-Stage Registration . 24
3.3.2 Mattes Mutual Information Metrics . 24
3.3.3 Multi-Resolution Approach . 24

3.4 Normalization . 25
3.5 Spatial Smoothing . 25
3.6 Temporal Filtering . 26

4 Benchmarking of Realignment 27
4.1 The Experiment . 27
4.2 Result and Discussion. 30

4.2.1 Accuracy . 30
4.2.2 Time Cost . 32
4.2.3 Robustness to Noise . 33

4.3 Conclusion . 35

5 Basic Statistic Analysis 37
5.1 General Linear Model . 37

5.1.1 Finite BOLD Response . 37
5.1.2 Correlation Method . 38
5.1.3 Parameter Estimation . 39

5.2 Hypothesis Testing . 40
5.2.1 Student’s t_Test . 41
5.2.2 Statistical Parametric Mapping. 41

6 Multiple Comparisons 43
6.1 Single Voxel Cases. 43
6.2 Bonferroni Correction. 43
6.3 False Discovery Rate . 44
6.4 The Whole Pipeline . 44

vii

viii Contents

7 Summary 47
A NIfTI Files 49
B Flowchart of Functions in FIONA 51
C Parameters Details in Optimizer Benchmarking 53
Bibliography 55

1
Introduction

fMRI images are widely used in neuroscience research. However, fMRI images directly from an MRI scanner
can not be interpreted directly. fMRI processing is needed to see the connection between brain activation
regions and behaviors. Our project FIONA, is a fMRI processing software based on the Insight Toolkit (ITK),
and intended to be used in stereotactic neural navigation of TMS (see section 1.3). In this chapter, we will
introduce some basic concept and background around FIONA.

1.1. Functional MRI
fMRI for functional magnetic resonance imaging, is a neuroimaing method, that detects brain activities non-
invasively. Traditional MRI registers anatomic structure, by detecting the density of water molecules. How-
ever, fMRI observes changes of blood flow in a brain, to detect brain activity. This measure of oxygen level in
blood flow is called BOLD, which stands for Blood-Oxygen-Level Dependent. fMRI records the BOLD changes
in real-time, or as in real-time as possible. There is a trade-off, compared to traditional MRI images, between
spatial and temporal resolution. A typical structural scan of MRI takes about 8-10 minutes and may have a
spatial resolution of less than 1mm. fMRI compensates spatial resolution for temporal resolution, and hence
the spatial resolution of fMRI is comparatively low, around 3mm.

Nowadays fMRI is widely used in many aspects of neuroscience research. One major application is to de-
termine which area on the cortex is related to a behavior. Previous research showed that the area in the brain
is more activated when its BOLD signal is higher. It is intuitive that this area need more oxygen to support its
metabolism. By analyze BOLD signals along time, together with task designed in the experiment, we can see
the correspondence in time.

1.2. FIONA
Our project, FIONA, short for Funtional Imaging Overlay for NAvigated TMS, is a fMRI processing application
under development at the company Brain Science Tools BV. It is designed to have two basic functional mod-
ules: Pre-Processing and GLM Analysis.

The main intention of developing FIONA, is to develop a simplified fMRI processing software, that is easy
to use for practical clinical users and fMRI analysts, who often do not have sufficient background in neuro-
science and image processing. FIONA allows clinical users to execute the whole pipeline of fMRI processing
and analysis in a few steps, where the pipeline makes the most difficult decisions for the user. That is, if the
user provides fMRI images and minimal and easy to understand information on the experimental paradigm
used for the fMRI session. FIONA is able to generate a statistical parametric map (SPM), showing brain-
behavior relationships, for a summary on the GLM approach to generate an SPM map of fMRI activation.[10]

Also, FIONA as a project at Brain Science Tools BV is designed to be used in conjunction with the Neural
Navigator. The Neural Navigator is the main product from Brain Science Tools BV that is used to stereotacti-

1

2 1. Introduction

cally navigate the coil in Transcranial Magnetic Stimulation sessions (See 1.3 below for more an introduction
into TMS), guided by MRI and fMRI scans. We designed and specified FIONA to meet the requirement of the
Neural Navigator.

1.3. TMS & Neural Navigator
The project is part of my internship at Brain Science Tools BV, Utrecht, The Netherlands. Brain Science Tools
BV is an innovative company specializing in MRI related technology and neuro-stimulation equipment for
neuroscience labs and clinical users. They also offer advice, training and courses in brain imaging and TMS.

TMS is short for Transcranial Magnetic Stimulation, which is a technique stimulating a small area on the
cortex, by a strong but short transcranial magnetic impulse generated from a coil [2]. TMS now is used in
some aspects of diagnosis or treatment. The major use of TMS is to treat depression [9], which is the only use
of TMS that is approved by FDA. Moreover, as introduced by [12], TMS is now starting to be used to improve
the recovery of function after stroke. [4] shows rTMS is effective in neuropathic pain treatment. Also, TMS
is used in clinical research to test the connection between some area on primary motor cortex and a corre-
sponding muscle, especially in cases of stroke, multiple sclerosis, amyotrophic lateral sclerosis, movement
disorders and so on.

TMS requires coil placement over a brain region with millimeter accuracy. Neural navigation is the tech-
nical solution allowing MRI guided TMS coil placement. Neuro-navigation displays the TMS coil and the
patients head and brain in real time on a screen, guiding the TMS coil to the planned location in the brain
for optimal placement. Neuro-navigation can increase the accuracy of target location and the repeatability
of the stimulation foci and motor evoked potential amplitudes compared to non-navigated TMS coil place-
ment. This is particularly important for rTMS protocols with daily sessions for several weeks. For example,
in the treatment of depressions, clinicians wish to target the Dorsolateral Prefrontal Cortex (DLPFC) in order
to alleviate symptoms [9]. Treatment effects are much larger when DLPFC is targeted based on an individual
MRI scan [17]. Without MRI guidance, DLPFC is often missed by several centimetres rendering the treatment
ineffective.

The neural navigator software (NeNa: http://www.neuralnavigator.com/) of Brain Science Tools supports
built-in pre-processing of structural MRI data, such as image registration and segmentation. Functional MRI
activation maps from packages such as SPM, FSL and AFNI can be loaded (for investigational purposes),
but for the clinical workflow an image processing algorithm for fMRI image registration and time analysis
still need to be build and tested. Because users with a clinical background frequently indicated they desire
a workflow, also for fMRI processing, that is native to the application or easy to use in conjunction with it,
as they are not comfortable using research grade software. Also, packages as SPM, FSL and AFNI cannot
legally be used for clinical purposes in most countries. Therefore, Brain Science Tools aims to develop and
certify medical grade fMRI processing software itself, in compliance with the IEC62304 industry standard for
medical device software. FIONA is a way to explore the feasibility of this ambition, and in general the steps
required in IEC62304 standard are followed.

Our project FIONA is designed to optimise the image analysis pipeline, build a graphic user interface and
test and document the developed software according to the aforementioned IEC62304 industry standard.

1.4. SPM
Statistical Parametric Mapping (SPM) is originally a MatLab toolbox for statistical processes used to test hy-
potheses on fMRI or other brain imaging data, developed by Wellcome Trust Centre for Neuroimaging, UCL,
London and released under the General Public License (GPL) for use in academic research. The latest release
can process not only fMRI images, but also PET, SPECT, EEG and MEG.

For our implementation SPM is used as a reference to test performance of our software against, in realign-
ment, co-registration, GLM analysis and FDR thresholding. FIONA is certainly not a copy of SPM nor does
it contain any source code derived from SPM. FIONA is designed to be used in conjunction with the Neu-

1.5. Overview 3

ral Navigator (NeNa), therefore, we implement those functionalities that we actually need for fMRI guided
coil placement in practice. For details on the use of (f)MRI for TMS coil placement see several papers by
Neggers et al [15]. For example, we did not apply normalization in FIONA, which a common procedure in a
typical fMRI preprocessing, because NeNa does not need the brain to be registered to a standard brain. More
importantly, typical normalization involves nonlinear deformations that change the shape of the head [7],
which renders stereotactic use of the resulting images impossible, as stereotactic navigation should only de-
ploy rigid body registrations between a patients head in the TMS setup and his/her MRI scan. SPM and other
MRI processing pipelines typically divide the whole process into different procedures. Users need to be very
well-informed about what they need to do in each step and need to be familiar with most scientific and math-
ematical details of these procedures. Also, users need to find files generated from one function and import
them into another. FIONA users will only need to import fMRI images from scanner and enter experimental
design informations to generate a parametric map. Most detailed choices are embedded in the software and
automized, and are guided by typical use cases in fMRI guided TMS.

1.5. Overview
The paper is structured in the order of typical fMRI image processing pipeline. In chapter 2, we introduce the
basic design of our software, FIONA. We will introduce the functionality requirements and system structure
of the design, and also the development tools we used in our implementation. The rest part of the paper is
structured around subsequent parts of typical fMRI processing. At first, in chapter 3, we introduce fMRI pre-
processing part consisting of 3 main parts: Realignment, Co-registration and Smoothing. For realignment,
we adopted different optimizers with different strength and weaknesses and compared their performance in
a benchmarking approach. The experiments and results of this benchmark are discussed in chapter 4. The
statistical analysis part consists of a basic General Linear Model method and some basic statistical thresh-
olding taking into account the multiple comparison problem, especially false discovery rate (FDR), which is
described in Chapter 5 and 6. A conclusion of the entire project is presented in chapter 7.

2
The Software Design

The FIONA software is written in C++, using the Microsoft Visual Studio compiler and associated libraries
and depends on the Insight Segmentation and Registration Toolkit (ITK: https://itk.org/) for image process-
ing and on the Visualization Toolkit (VTK: https://vtk.org/) as a visualization library and the QT set as the
user interface library. The FIONA runs on normal PCs with a 32 or 64 bit infrastructure. In this chapter we
introduce some brief information about our software FIONA, including the software design and the SRS.

2.1. Software Design
The main functions of the FIONA as listed above are each divided into 3 logical major software units or mod-
ules, governing the design of the entire software project. All classes defined in the project are used in either
one of these main units (we refer to them as ’Managers’). Below a list and a graphical representation of the
relationships between the units are outlined.

Pre-Processing This unit defines and implements the pre-processing part of fMRI analysis pipeline. It
performs realignment (re-slicing optional), co-registration and spatial smoothing. It takes MR images from
scanner as input and generate new NIfTI images as output. This unit depends on ITK library.

GLM This unit defines and implements the General Linear Model computation and thresholding meth-
ods in fMRI statistical analysis. This unit follows Registration unit. It takes realigned images as input, along
with user defined model, computes b-maps and t-map based on user’s hypothesis and reports significance.
This unit depends on ITK library.

Window Manager This unit defines and implements the user interface, consisting of the main window,
menu and tabbed interfaces. It processes all callback messages generated by the user and then calls proper
slot functions. This unit also implements visualization methods. This unit depends on the Qt and VTK li-
braries.

2.2. Functional Requirements
In software industry, a so-called Software Requirement Specifications (SRS) is needed for a software product.
FIONA is medical device software that processes fMRI data resulting in a 3D rendering of the activation pat-
terns and processed images. This process consists of pre-processing (realignment, co-registration, spatial
smoothing), fitting the GLM and creating an activation map. According to the demand, we defined the main
and optional functionalities of FIONA, listed here:

• Loading of (f)MRI Data
The FIONA software shall be able to load MRI data stored in the Nifti 1.0 and DICOM format into RAM.

5

6 2. The Software Design

• 3D Surface Rendering of MRI Data
The Software package shall surface render MRI data, using different presents for anatomical scan, seg-
mented gray matter scan, and fMRI activation map, and display it in 3D in the main render window.
Triangulation of MRI tissue intensities is to be used. The segmented image could be set color-coded by
statistical maps.

• Change Nifti Header
The FIONA software shall be able to change information in a NifTi header. NifTi header information
should be loaded and changes and then stored. The changed parts in NifTi header are the sform_code,
srow_x[4], srow_y[4] and srow_z[4].

• Save Nifti file
The FIONA software shall be able to save images as a NifTi file including the NifTi header and 4 bytes
extender.

• Realignment
The FIONA software shall be able to perform re-alignment of fMRI data. The realignment is performed
between images in the same fMRI series. Following images are registered to the first image. For each
image the translation (in x, y, z direction) and rotation (roll, pitch and yaw) with respect to the first
image is determined. Realignment apply the transform on the series of images to make the brains
being in a same spatial position. These six parameters are stored in a .txt file.

• Re-Slice
The FIONA software shall be able to re-slice fMRI images. During the procedure of re-slice, a series of
registered images will be matched voxel-to-voxel to the first image resulting in a new series of images.

• Co-Registration
The FIONA software shall be able to coregister functional fMRI images to structural MRI images. Co-
registration is performed in two stages. First a translation is performed and then a 3D Euler transform.
The translation (in x, y, z direction) and rotation (roll, pitch and yaw) of the anatomical image in respect
to the first image fMRI image is determined.

• Spatial Smoothing
The FIONA software shall be able to perform spacial smoothing on fMRI images. Spacial smoothing
is performed using a discrete Gaussian kernel. Spacial moothing can only performed in combination
with reslicing.

• Importing Models
The FIONA software shall be able to import different models for use in GLM. The software is able to
interpret the text file and convert the file into usable input for the GLM algorithm.

• Generate Models
The FIONA software shall be able to generate simple models for use in GLM. By asking for the onset
and TR, a GLM model is created.

• Import Contrast Vector
The FIONA software shall be able to import contrast vector for hypothesis testing in GLM. The software
is able to interpret the text file and convert the file into usable input for the GLM algorithm. Also, to
ordinary clinical users, FIONA will ask some simple question and auto-generate a contrast vector for
them.

• Generate Contrast Vector
The FIONA software shall be able to generate a contrast vector for hypothesis testing in GLM. FIONA
shall have an intuitive tool for making contrast vectors.

• Calculate β-Maps
The FIONA software shall be able calculate β-value maps for each model imported. The β-value maps
are save in NifTi files as well.

2.3. Regulatory Requirements 7

• Calculate t-Maps
The FIONA software shall be able calculate t-value map with provided contrast vector or proposed
hypothesis, and degrees of freedom. The t-value map is save in NifTi files as well.

• Compute Threshold
The FIONA software shall be able compute a threshold for T-map, to see the significance. The threshold
can be set by 3 different methods: setting plain threshold value; computed from Bonferroni correction;
and false discovery rate method.

• Apply Threshold
The FIONA software shall be able to apply the computed threshold on the t-map.

• Visualize
The FIONA software shall be able visualize the t-map with realigned or segmented anatomical brain
structure (from T1 image), with computed threshold.

2.3. Regulatory Requirements
The regulatory and statutory requirements applicable to medical device software need to be verified upon
software testing by verifying completion of current software documents in the design history file. This en-
sures that the regulatory requirements according to the medical device directive (MDD 93/42/EEC) that ap-
plicable to standalone medical devices, NEN-IEC 62304:2006 (Medical device software – Software life-cycle
processes), are met during release of the software.

3
Pre-Processing

In fMRI research, a most common target is to identify which area on cortex is activated because of a related
task. However, the images directly from the scanner has too much noise and defects. A pre-process should
be done before the dataset is going to statistical analysis. A typical pre-processing of fMRI data contains
6 steps: Slice-Timing Correction, Realignment, Co-Rgistration, Normalization, Spatial Smoothing, Temporal
Filtering[1].

In our project, some of these steps are applied and some of them not, according to special demands. We
will discuss them in detail in coming sections. A typical pipeline of fMRI pre-processing is shown in 3.1. Green
blocks are modules that we implemented in our project, yellow ones are that we did not apply.

Figure 3.1: Pipeline of fMRI Images Pre-Processing in Our Project

9

10 3. Pre-Processing

Apart from the 6 steps above, there are other optional steps that are less commonly used, for example,
Quality Assurance, Distortion Correction, Grand Mean Scaling. They are not implemented in our project and
we are not going to discuss them in this paper.

3.1. Slice-Timing Correction
MRI data are collected in slices. Every slice is a 2-D array of pixels. A typical spatial resolution of fMRI in
z-axis is like 3.25mm. Therefore, a scan of a whole brain may takes about 33 slices in total. These 33 slices
are actually not scanned at a same time, although they are combined into one 3-D image. The time between
2 scans is called Temporal Resolution or TR. A typical TR is about 2.5s. There is a trade-off between temporal
and spatial resolutions. Compared to traditional MRI, fMRI sacrifice spatial resolution for a better temporal
resolution.

Slice-Timing Correction is a step to compensate the differences in slices of a 3-D volume. Usually we use a
interpolation to compute the intensity of every slice, at the time when first slice is scanned. The interpolator
can be various, from linear to sinc. See 3.2.

Figure 3.2: Slice-Timing Correction by Interpolation, Image from Brain Voyager

However, slice-timing correction is less used in recent fMRI researches. We did not apply slice-timing
correction as well. The main reasons lies in three. First is that the scanning speed of MRI machines is much
higher today than it was. The effect from differences in slices decreases. Second, the interpolation computa-
tion may induce much noise, that makes the harm of the correction more than it helps, especially when a mo-
tion occurred during a TR. Third, in our testing datasets, all experiments are of block designs. In block-design
experiments, examinees are asked to do a task for several minutes, which make the correction unnecessary.
However, in event-related designs, the slices differences still matters.

3.2. Realignment
Realignment or Registration of fMRI images is the first core functionality in our project. Realignment is a task
to match two images into one coordinates system, by a spatial transform. In coming statistical analysis, all
computation are done voxel-wisely, which demands a series images to share a same coordinate grid. Realign-
ment is the most important and indispensable step in fMRI pre-processing. According to Huettel et al. (2004),
very slight movement may ruin a dataset badly. He gave an example that a movement of head in 5mm, influ-
ence the activation values by a factor of 5. Normally the result of registration should make the movement on
cortex less than 1mm, as the spatial resolution of fMRI images is like 3mm.

Usually consecutive images are registered to the first image or the mean image. In our implementation,
we realign following images to the first. We developed our software in Insight Toolkit (ITK), which provided
fantastic C++ libraries for image segmentation and registration, especially for medical images. In ITK, the
registration process are divided into 6 major blocks:[6]

3.2. Realignment 11

• Target, which we usually name as Fixed Image, is the image that we are registered to. In our implemen-
tation, we select first image in time series as Target.

• Reference, which we usually name as Moving Image, is consecutive images in a time series. Their spa-
tial information is varied and we need to match them to our target by applying a spatial transform.

• Transform, is the output of registration. A spatial transform alters Moving Image to Fixed Image.

• Metrics, is similarity measures to evaluate how well is transformed Moving Image matches Fixed Image.
In ITK, a metric object can be set as a cost function to an optimizer.

• Interpolator, is how we compute intensities at non-grid point.

• Optimizer, is the mathematical algorithm to update parameters in a transform iteratively, to minimize
a cost function. In image registration cases, the cost function could be metric objects.

In ITK architecture, there are 4 representations of data: Image, Point Set, Mesh and Spatial Object. In our
implementation, we represent our fMRI images in itk::Image. ITK provided many registration approaches
and we adopted itk::ImageRegistrationMethodv4 for our intensity-based realignment. In ITKv4 registration
framework, computations are all happen in a physical grid rather than a fixed image grid. That is, both fixed
image and moving images are re-sampled in a so-called virtual image. Metrics and their optimization are
done in the virtual image domain. The framework of ITKv4 registration is shown in 3.3

Figure 3.3: ITKv4 Registration Framework

In following subsections, we will discuss different transform prototypes, similarity metrics, optimization
algorithms and interpolation functions, that are often used in ITKv4 image registrations. We will also intro-
duce some implementation details of our software in realignment part.

3.2.1. Rigid Body Transforms
Transform is one of the six major parts in ITK registration. It maps moving images to fixed image. In reg-
istration, transform can be rigid and nonrigid. A typical rigid transform is affine transform that contains 12
parameters[8] in a homogeneous coordinate system. However, in fMRI pre-processing cases, a simpler trans-
form type: Rigid Body Transform is normally used. Rigid body transform uses six parameters to describe
motion of a head. Although some of representations of rigid body transform have more than 6 parameters, it
has a degree of freedom as 6. Rigid body transform assume heads to be rigid and can only perform transla-
tion and rotation movement, each consists of three parameters. In some definitions, reflecting are included

12 3. Pre-Processing

in rigid body transform as well. It excludes scaling, shearing from a full affine linear transform, which is intu-
itive for a head in scanner, for rigidity of heads.

Matrix-Offset Transform
In ITK, transforms are encapsulated in ITK::Transform. When computing a rigid body transform, or other
linear transforms with rotation part, like affine transform, ITK provides Matrix-Offset Transform classes.

As we discussed, 3 of the parameters are for translation part in a rigid body transform. They are usually
translations in three dimensions. The other 3 parameters is to represent a rotation. Here, we know about
the rotation direction and degrees, but we do not know which point the rotation is about, or what is the cen-
ter of the rotation. Matrix-Offset transforms defines a center. Notice that a center is not a "parameter" of
the transform, because it is fixed and could not be updated during optimization (except for those "centered"
transform whose center is changing).

The relationship between center, offset and translation is quite confusing. One can define an affine trans-
form by setting matrix and offset, or matrix, center, and translation. When we change a center, the offset is
automatically updated according to current matrix and translation. It is recommended to alter only matrix
and translation, and set the center fixed.x ′

y ′
z ′

=
M00 M01 M02

M10 M11 M12

M20 M21 M22

 ·
x −Cx

y −Cy

z −Cz

+
Tx +Cx

Ty +Cy

Tz +Cz

 (3.1)

Equation 3.1 shows an transform represented in translation and center. Here M is a matrix, C is for center
and T is for translation. If we expand the equation and express it in Matrix-Offset way[6], the equation will be:x ′

y ′
z ′

=
M00 M01 M02

M10 M11 M12

M20 M21 M22

 ·
x

y
z

+
Tx +Cx −M00Cx −M01Cy −M02Cz

Ty +Cy −M10Cx −M11Cy −M12Cz

Tz +Cz −M20Cx −M21Cy −M22Cz

= M ·
x

y
z

+
Ox

Oy

Oz

 (3.2)

In fMRI pre-processing, the center is automatically set to the origin of images, which is predefined in a
scanning session. Therefore, images from a same session shares a center. While we are co-register images
from multi-modality, we need to specify the center of rotation. We will discuss this in subsection 4.3 Co-
Registration.

Euler Angles
Here are many representation of a 3-D rotation. Euler Angles is one of the most classic ones. Euler angles
are named after Leonhard Euler. They are 3 angles around 3 axises in a Cartesian coordinates. Usually noted
as α, β and γ, or φ, θ and ψ. The convention of Euler angles definition in medical visualization and flight
dynamics are quite different. In traditional Euler angle naming system, the three angles are called attitude,
bank, heading.[5]

From a conventional Euler angle definition. α and γ are rotation angles around original direction of an
axis, and rotated same axis. Notice that although the axis are same, the direction has changed. In figure 3.4,
α is angle rotating about z axis, while γ is the angle rotating about Z axis, which is a new axis after two times
rotation.

Tait Bryan Angles
Tait-Bryan angles are derivation of Euler angles, named after Peter Guthrie Tait and George H. Bryan. The
main difference between them is that Tait Bryan angles rotate about 3 distinct directions,for example, in fig-
ure 3.5 x, y and z. While in a classic Euler angles rotation, the rotations is about z, x and z, the first and third
rotation are about a same axis.

Tait-Bryan angles are much more popular than classic Euler angles that many application including SPM
uses them to represent a 3-D rotation. In our project, we also uses Tait-Bryan angles. In ITK, the Euler angles
representation is encapsulated in ITK::Euler3DTransform object. Notice that it is not the classic definition of
Euler angle but Tait-Bryan angles. Also notice that in the later 2 rotations, the axises are not the original one
before any rotation. Therefore, the order of the rotation is rather important. ITK::Euler3DTranform provides

3.2. Realignment 13

Figure 3.4: Euler Angles, rotated about in z, N (x′), z′′, from Wikipedia

Figure 3.5: Tait Bryan Angles

a member function SetComputeZYX() to set the order between ZYX and ZXY. Our implementation is in ZYX
order. Therefore, the representation can be expressed in matrix equation 3.3.[15]x ′

y ′
z ′

=
1 0 0

0 cosψ si nψ
0 −si nψ cosψ

 ·
cosθ 0 −si nθ

0 1 0
si nθ 0 cosθ

 ·
 cosφ si nφ 0
−si nφ cosφ 0

0 0 1

 ·
x

y
z

+
Ox

Oy

Oz

 (3.3)

We usually name the 3 angles as Pitch, Roll, Yaw in Tait Bryan angles, instead of Attitude, Bank, Heading.
SPM takes this notion as well, see figure 3.6 to find the definition of these notions.

Euler angles representation are categorized into two groups: Static and Dynamic Euler angles. Static
Euler angle describes rotations around axes of the coordinate system, while dynamic Euler angle describes
rotations around the axes of the object. In our implementation we are using dynamic Euler angles. When we
are using dynamic Euler angle representation of a 3-D rotation, we may encounter the problem of Gimbal
Lock. Gimbal Lock occurs when the pitch rotation is ±90◦, the first rotation and the third become the same.
Therefore the object is limited in the vertical plane. The degree of freedom reduce from 3 to 2. However, in
fMRI realignment, a pitch angle as large as ±90◦ is incredible. In normal cases, we dont need to consider the
Gimbal Lock problem.

Quaternion and Versor
Another representation of 3-D rotation is Quaternion. Despite the degree of freedom in 3-D rotation is 3,
quaternion uses 4 parameters: one scalar and a vector of length 3. The basic idea of quaternion is to use one
unit rotating axis instead of 3 in Euler angle. Rotation was done in one time, not around one of x, y or z axis
but a composite unit axis.

ITK defines ITK::QuaternionRigidTransform for us. The parameters list contains 7 parameters. The first 4
are the components of the quaternion representing a 3-D rotation. And the other 3 parameters defines trans-

14 3. Pre-Processing

Figure 3.6: Representaion of Rigid Body Transform, in Tait Bryan Angles, Image from Matthew Brett and Rik Henson

lation in each dimension.

Versor is a normalized quaternion. We notate the scalar as q0, which stands for the rotation angle around
the composite axis. q0 is computed from vector v = {q1, q2, q3} by q2

0+q2
1+q2

2+q2
3 = 1. ITK provides ITK::Versor-

Rigid3DTransform to present a 3-D rigid body transform. There are 6 parameters in ITK::VersorRigid3D-
Transform. The first 3 are the components of versor vector. Notice that the vector is no longer a unit vector, as
it was in ITK::QuaternionRigidTransform. The conversion from quaternion or versor to 3 by 3 rotation matrix
is shown in 3.4.

M =
q2

0 +q2
1 −q2

2 −q2
3 2(q1q2 −q0q3) 2(q0q2 +q1q3)

2(q1q2 +q0q3) q2
0 −q2

1 +q2
2 −q2

3 2(q2q3 −q0q1)
2(q1q3 −q0q2) 2(q0q1 +q2q3) q2

0 −q2
1 −q2

2 +q2
3

 (3.4)

In NIfTI-1 image data format, the spatial information are store in 2 method. One is a 3 by 4 rotation ma-
trix. Another is a versor vector with a translation vector. According to convention, the new spatial information
after realignments is re-written and stored in the 3 by 4 rotation matrix. The code of qform_code should be
set to 2 which stands for Coregistered. While the versor parameters doesn’t change. The code of sform_code
is kept as 1, which demonstrates that the spatial information are from the scanner originally.

Rotation Matrix
An affine transform can be expressed in a 3 by 4 matrix. Rigid body transform is a special case of affine trans-
form can surely be presented in a 3 by 4 matrix as well. A 3 by 4 matrix representation uses 12 parameters
instead of 6. But it makes computation much easier. In our implementation, we use ITK::Euler3DTransform
in optimization. Then we convert the Tait Bryan angles into 3 by 4 matrix, to compute the new spatial matrix
after realignment and re-write it into NIfTI header. We will see details in 4.2.4.

3.2.2. Similarity Metrics
Metric is another important part in ITKv4 registration. They are objects evaluating how similar two objects
are. When used in image registration, it measures how well the two images matches. The method to compute
a metric is various. And ITK also implemented most of them. In ITKv4 registration, metrics are computed in
physical space, that is the virtual image domain.

In our implementation of realignment, we adopt ITK::MeanSquareImageToImageMetricv4 and ITK::Mattes-
MutualInformationImageToImageMetricv4. Optimizers depends on different metric types.

Mean Square Metrics
In intensity-based image registration, ITK::MeanSquareImageToImageMetricv4 is the most commonly used
one. The metric is defiend as Mean Square Error (MSE), as 3.5

3.2. Realignment 15

MS(F, M) = ∑
i∈ROI

(Fi −Mi)2 (3.5)

However, mean square error as metric is sensitive to noise and changing in brightness. In multi-modality
registration cases, the metrics works badly. We appeal to mutual information metric instead. See 4.3 Co-
registration.

Normalized Cross Correlation
Another common used similarity metric in image registration is Normalized Cross Correlation. It computes
pixel-wise cross correlation. To avoid effect from lighting conditions, a normalized version of cross correla-
tion is more used. See 3.6.

NC (F, M) =−
∑N

i=1(Fi ·Mi)√∑N
i=1 A2

i ·
∑N

i=1 B 2
i

(3.6)

In ITK, ITK::NormalizedCorrelationImageToImageMetric is provided for intensity-based image registra-
tion cases. Notice that this class does not have a ITKv4 version in recent ITK releases. That is the metric is
computed on grid of fixed image domain, not virtual image domain.

3.2.3. Optimizers
ITK::Optimizer are objects for optimization. It warps optimization algorithms from vnl_optimizers. An opti-
mizer takes a cost function or a metric object as input. And then iteratively find the minimum value of the cost
function or metric when a stopping criterion is satisfied. There are many optimization algorithms integrated
into ITK. Some of them return a single value, as defined in ITK::SingleValuedNonLinearOptimizer. On the op-
posite, some optimizers return multiple values are defined in ITK::MultipleValuedNonLinearOptimizer. See
4.1.

In the project, we not only developed a software for fMRI analysis, but also did a benchmarking on dif-
ferent single value returned optimizers in realignment. The experiment of benchmark are discussed in more
detail in chapter 5. Here we briefly introduces the theoretical basis of these optimization algorithms.

Regular Step Gradient Descent Optimizer
ITK::RegularStepGradientDescentOptimizerv4 is a variant of gradient descent optimizers, which attempts to
prevent it from taking steps that are too large. The method finds local optima.

The idea is not complex. Assuming we are driving on the direction of metric derivate descent, −OM(p),
at a speed step length of γ. Step length is set to 1 by default, which can be changed by setting the learning
rate. However, when the direction of metric derivative descent changes dramatically, we supposed that we
have passed a local optima. That is the local optima is near where we are. It is reasonable to slow down our
speed and search. The current step length is λmγ0 after we have passed a local optima m times. See 3.7.

pn+1 = pn −λmγ0OM(pn) (3.7)

Gradient Descent Line Search Optimizer
Line search in optimization is method to update step length or learning rate in every iteration. The step length
can be updated either in an exact way or in an inexact way. ITK::GradientDescentLineSearchOptimizerv4 is
also a variant of simple gradient descent line search optimizer. However, it update the learning rate by com-
puting a Golden Section Line Search.

pn+1 = pn −γnOM(pn) (3.8)

Where γn is chosen to satisfy:

γn = argmin
γn

M(pn −γnOM(pn)) (3.9)

A good guess of learning rate γn that satisfying golden section. The idea of golden section line search is
based on golden ratio. For example in our recent three iterations, we have metric value M(p1), M(p2), M(p3),

16 3. Pre-Processing

Figure 3.7: Golden Section Line Search

as shown in 3.7. It is apparent that there is a local optima between p1 and p2. A golden section search finds a
learning rate γ that makes p4 at the golden section point, satisfying c : a = a : b, which is thought to be most
efficient in optima searching.

b

a
= 1+p

5

2
≈ 1.618 (3.10)

The upper and lower limit below determine the range of values over which the learning rate can be ad-
justed by the golden section line search. While ε determines the accuracy of the line search. A smaller ε leads
to more accurate optimization, but costs more time.

Conjugate Gradient Line Search Optimizer
Similar as ITK::GradientDescentLineSearchOptimizerv4, ITK::ConjugateGradientLineSearchOptimierv4 also
update learning rate according to golden section line search. However, in this case the gradient −OM(p) is
replaced by Polak-Ribière Conjugate Gradient, see 3.11, d is for the conjugate gradient. Notice that learning
rate γn is still computed from golden section line search.

pn+1 = pn +γn sn (3.11)

Suppose we are using Mattes mutual information as our metric. The metric is twice differentiable at its
minimum. Similar as in a normal gradient descent method, the first step goes in a direction of negative gra-
dient. However, the direction changes in following iterations. For example, in nth iteration, we goes in a
conjugate direction sn , instead of −OM(pn). The conjugate gradient is computed from 3.12.{

s0 =−OM(p0)

sn =−OM(pn)+βsn−1
(3.12)

From 3.8 we can see that conjugate gradient method is much faster than traditional gradient descent
method. The conjugate gradient method prevents the zigzag trace, which makes the optimization more effi-
cient.

There are many method to compute β, Polak-Ribière is one of them. In ITKv4, Polak–Ribière formula is
adopted. See 3.1.

Fletcher–Reeves βF R
n = 4pT

n 4pn

4pT
n−14pn−1

Polak–Ribière βPR
n = 4pT

n (4pn−4pn−1)

4pT
n−14pn−1

Hestenes-Stiefel βHS
n = 4pT

n (4pn−4pn−1)

sT
n−1(4pn−4pn−1)

Dai–Yuan βDY
n = 4pT

n 4pn

sT
n−1(4pn−4pn−1)

Table 3.1: Formulas to compute β

Quasi Newton Optimizer
Quasi-Newton method is variant of well-known Newton-Raphson method, which is used to find roots or ex-

3.2. Realignment 17

Figure 3.8: Gradient Descent Linear Search Method & Conjugate Gradient Descent Line Search Method

treme values of a function[13]. like 1st order optimization in gradient descent, Newton’s method takes 2nd

order derivatives. Therefore Newton’s method takes more time and gives more accurate result. In Newton-
Raphson method, we expand the metric function into second order Taylor series as 3.13. Here H is our Hes-
sian matrix.

M(pn+1) ≈ M(pn)+4pT
n OM(p(n))+ 1

2
4pT H4p (3.13)

Hessian matrix is a square matrix consists of partial derivatives of a single valued function, see 3.14.

H =

∂2 f
∂p2

1

∂2 f
∂p1∂p2

· · · ∂2 f
∂p1∂pn

∂2 f
∂p2∂p1

∂2 f
∂p2

2
· · · ∂2 f

∂p2∂pn

...
...

. . .
...

∂2 f
∂pn∂p1

∂2 f
∂pn∂p2

· · · ∂2 f
∂p2

n

 (3.14)

Take gradient of this approximation with respect to 4p and set it to zero, we get 3.15. α is a parameter
satisfying Wolfe Condition. {

pn+1 = pn −αn H−1
n OM(pn)

yn =OM(pn+1)−OM(pn)
(3.15)

The full Newton-Raphson method requires Hessian matrix for optima searching. However, it is time cost-
ing and or unfeasible to compute Hessian matrix at every iteration. Quasi-Newton method provided a solu-
tion to estimate the matrices in an iterative way. In 3.15, yn is used to estimate Hessian matrix at next iteration
Hn+1 and its inverse H−1

n+1 using Sherman-Morrison formula[19].

• DFP (Davidon–Fletcher–Powell Formula):

Hn+1 = (I − yn4pT
n

yT
n 4pn

)Hn(I − 4pn yT
n

yT
n 4pn

)+ yn yT
n

yT
n 4pn

H−1
n+1 = H−1

n + 4pn4pT
n

4pT
n yn

− H−1
n yn yT

n H−1
n

yT
n H−1

n yn

• BFGS (Broyden–Fletcher–Goldfarb–Shanno Algorithm):

Hn+1 = Hn + yn yT
n

yT
n 4pn

− Hn4pn (Hn4pn)T

4pT
n Hn4pn

H−1
n+1 = (I − 4pn yT

n

yT
n 4pn

)H−1
n (I − yn4pT

n

yT
n 4pn

)+ 4pn4pyT
n

yT
n 4pn

18 3. Pre-Processing

• Broyden’s Method:

Hn+1 = Hn + yn−Hn4pn

4pT
n 4pn

4pT
n

H−1
n+1 = H−1

n + (4pn−Hn yn)4pT
n H−1

n

4pT
n Hn yn

• SR1 (Symmetric rank-one):

Hn+1 = Hn + (yn−Hn4pn)(yn−Hn4pn)T

(yn−Hn4pn)T 4pn

H−1
n+1 = H−1

n + (4pn−H−1
n yn)(4pn−H−1

n yn)T

(4pn−H−1
n yn)T yn

ITK::QuasiNewtonOptimizerv4 implements the algorithm with BFGS Hessian estimation. Notice that
ITK::QuasiNewtonOptimizerv4 does not support setting parameter scales manually. We used ITK::Registration-
ParameterScalesFromPhysicalShift to estimate parameter scales from metric function.

LBFGS Optimizer
LBFGS is short for Limited-Memory Broyden–Fletcher–Goldfarb–Shannon Algorithm. It is developed from
Quasi-Newton optimization method, estimating inverse Hessian matrix using limited computer memory. A
normal BFGS estimation of Hessian matrix takes too much resources in computation, especially when the
number of parameters is very large.

Consider 3.15 in Quasi-Newton optimizer, we need to compute −H−1
n OM(pn) in every iteration. In Quasi-

Newton optimizer it was stored in a n×n matrix, and it was computed from H−1
n−1 from last iteration. However,

in LBFGS, we computed them from last m iterations. Here we defined H−1(0)
n , as initial approximate inverse

Hessian matrix at nth iteration.

Opn = pn+1 −pn

yn =OM(pn+1)−OM(pn)

ρn = 1

yT
n 4pn

H−1(0)
n = yn−14pT

n−1

yT
n−1 yn−1

(3.16)

Then we start to compute −H−1
n OM(pn) from last m iterations. At first, we copy OM(pn) into a variable

qn . We loop from i = n −1 down to n −m, to update qn by 3.17.{
αi = ρi4pT

i qol d
n

qnew
n = qol d

n −αi yi

(3.17)

After we get updated qn in the beginning of every iteration, we store H−1(0)
n qn into a variable noted as zn .

Then we start another loop from i = n −m up to n −1, to update zn , see 3.18.{
βi = ρi yT

i zol d
n

znew
n = zol d

n +4pi (αi −βi)
(3.18)

Up to mow we have final zn in every iteration, this zn is estimation of H−1
n OM(pn). That is, in LBFGS, we

do not compute the multiplication of an n×n matrix and a gradient vector. We estimate the product of them
directly, using information from m past iterations instead 1. Above method is what called Two Loop Recursion.

ITK implements LBFGS algorithm in ITK::LBFGSOptimizerv4. And the memory size m is set to 5 by de-
fault.

LBFGSB Optimizer
LBFGSB is for Limited-BFGS-Bounded, which is a variant of LBFGS optimizers, whose parameters are limited
in upper and lower boundaries. We could add upper and lower boundaries to each of the parameters. It was
implemented in ITK::LBFGSBOptimizerv4. Notice that these two optimizers are variant of Quasi-Newton op-
timizer, thus we can not set the parameter scales manually.

3.2. Realignment 19

li ≤ pi ≤ ui (3.19)

In ITK::LBFGSBOptimizerv4 we are able to set how we apply the boundaries. There are 4 options: bounded
lower limit, bounded upper limit, bounded in both and unbounded.

Amoeba Optimizer
Amoeba optimization is also called Nelder–Meade method or Downhill Simplex method, which is a heuristic
method that does not compute derivatives of metric function. Simplex is an important concept in Amoeba
algorithm. Simplex is a polytope with (n +1) vertices in n dimensional space. It changes its shape and goes
down a hill and reach the basin of a function, that is why this method named Amoeba. In our case we have 6
parameters for rigid body transform, thus we have a polytope with 7 vertices.

There four basic process on the simplex and its vertices: Reflection, Expansion, Contraction, Shrink. The
pipeline of Amoeba algorithm is shown in 3.9. Pc , Pr , Pe represents replacing p7 by results from contraction,
reflection and expansion respectively.

Figure 3.9: Pipeline of Downhill Simplex Method

Reflection: Order the vertices according to metric value at the point. We have: M(p1) < M(p1) < ·· · <
M(p7). Here p7 is the worst vertex in the simplex, which needs to be replaced. The replacing candidate is
computed as reflection of p7, about centroid of p1 to p6.

pr e f lect i on = pcentr oi d +α(pcentr oi d −p7)(α> 0) (3.20)

Expansion: If the new point we get from reflection is even better than the best point p1, we will compute
the expanded point as 3.21. We replace the worst point by the expanded one and then start another reflection.

pexpanded = pcentr oi d +γ(pr e f lect i on −pcentr oi d)(γ> 0) (3.21)

Contraction: If the new point we get from reflection is still worse than the less worst point p6, we compute
the contracted point as 3.22.

pcontr acted = pcentr oi d +ρ(p7 −pcentr oi d)(0.5 > ρ > 0) (3.22)

Shrink: In the worst case, if the point after contraction is even worse than the original worst point. We
need to shrink the simplex as 3.23.

pi = p1 +σ(pi −p1)(i = 2,3, · · · ,7) (3.23)

α, γ, ρ, σ are reflection, expansion, contraction and shrink coefficients, which are set to 1, 2, 1
2 , 1

2 by de-
fault respectively. Notice that if an initial simplex is too small in size, it may be easier stuck in local optima.
Amoeba algorithm does not compute derivatives of a metric function. It is a heuristic search method, which

20 3. Pre-Processing

means it can converge to non-stationary points.

ITK::AmoebaOptimizerv4 implements Nelder–Meade algorithm. In our implementation, we generated
the initial simplex automatically. Parameter convergence tolerance Function convergence tolerance are two
stopping criterions. The first terminates iteration when the diameter of simplex is smaller than a value. The
latter terminates iteration when the difference in metric function is smaller than a value.

One Plus One Evolutionary Optimizer
ITK::OnePlusOneEvolutionaryOptimizerv4 searches for global optima in a very intuitive way. The terms come
from Darwin’s evolution theory. We search randomly for a mutation point. If the mutation makes the cost
function smaller, we keep it. If not, we search for another mutation point. Like this, we update our current
position and radius along iterations, finally stop at an optima. Figure 3.10 shows an example of how one plus
one evolutionary optimizer works[20].

Figure 3.10: Illustration of 1+1-ES algorithm on the Rosenbrock function, from Martin Styner

The searching process start with a position p0 in parameter space, and initial radius r0. Then we select a
random point around p0. The selection was according to an isotropic probability distribution function (PDF)
centered at p0. The PDF in this case is a Normal Ditribution, generated by ITK::NormalVariateGenerator,
based on the searching radius. Every time we find a new position, we may change our searching radius, by
grow factor cg r ow and shrink factor cshr i nk , see 3.24.

rn+1 =
{

rn · cg r ow , (M(pn+1) < M(pn))

rn · cshr i nk , (M(pn+1) ≥ M(pn))
(3.24)

According to Hans-Paul Schwefel, the best cg r ow value is between 1.0 and 1.1. And the best shrink factor
can be computer from 3.25. The process will stop when the stopping criterion is met. One is the number of
iterations exceeds a limitation. Another is that the shrinked radius is once too small compare to ε that we
defined.

cshr i nk = c
− 1

4
g r ow (3.25)

3.2.4. Interpolation
Interpolation is the last part in ITKv4 registration framework. We use interpolators to compute voxel values
at non-grid position. For image object in ITK, there are 4 types of interpolators: Nearest Neighbor Interpo-
lator, Linear Interpolator, B-Spline Interpolator, Windowed Sinc Interpolator. Users may define their custom
interpolation functions as well. ITK also provides interpolators for ITK::VectorImages, which is beyond the
boundary of our discussion.

Figure 3.11 is from Michael Unser, 2002, that compares the performance-cost ratio of different interpo-
lation algorithms. The result comes from a series of rotation in 15 times, each time 24 degrees. We see that
there is not an optimal interpolateor. Only a best suited one exists. However, B-Spline interpolators, generally
performs better than others.

3.2. Realignment 21

Nearest Neighbor Interpolator
Nearest neighbor interpolator is the most simple interpolation function. In ITK, it was implemented in
ITK::NearestNeighborInterpolateImageFunction, which copies the intensity of the nearest neighbor to a non-
grid position.

Linear Interpolator
Linear interpolator assumes the intensity at a non-grid position is decided only by 2n neighbor points, where
n is the dimension. It compute the intensity as a linear combination of those points, based on distance to
each point. In ITK, linear interpolators are implemented in ITK::LinearInterpolateImageFunction. Unlike
other scalar interpolators, ITK::LinearInterpolateImageFunction works for ITK::VectorImage as well.

B-Spline Interpolator
The term B-spline is short for basis spline, named by Isaac Jacob Schoenberg. It uses a polynomial function
to interpolate intensities of voxels. We take 1-D case as an example. The interpolation function of B-spline
with n control points, of order k, is defined as 3.26.

I (t) =
n∑

i=0
Ni ,k (t)Ii (3.26)

Here Ni ,k (t) is what we called Basis Function. It acts as weighting coefficients of intensities. The weighting
coefficient can be computed from Cox - de Boor Recursive Formula, as shown in 3.27. Ni ,0(t) is the zero-order
basis function, which is defined as 1 on interval [ti , ti+1). According to the formula, we may find that basis
function Ni ,k (t) is non-zero if t locates in interval [ti , ti+k+1). That is, in k-order interpolation, k +1 voxels
contribute to the interpolation.

Ni ,k (t) = t − ti

ti+k − ti
Ni ,k−1(t)+ ti+k+1 − t

ti+k+1 − ti+1
Ni+1,k−1(t) (3.27)

In ITK, B-spline interpolator is implemented in ITK::BSplineInterpolateImageFunction, in which we can
set the order from 0 to 5. In zero-order case, the interpolator becomes a floor interpolator. When order equals
1, it becomes linear interpolator. Notice that the order of interpolator should be set before setting an image.

Windowed Sinc Interpolator
As we know, the sinc function (si nc(t) = si n(πt)

πt) is the inverse Fourier transform of a ideal low-pass window
filter in frequency domain. Therefore, sinc function is a perfect interpolator if Nyquist frequency is satisfied.
However ,the support of sinc function is infinite. Windowed sinc function is to approximate sinc function in
a certain range of support to interpolate data.

There are many instances of windowed sinc function, depending on different window functions. For ex-
ample, Cosinus window, Welch window, Lancos window, Hamming window etc.. The interpolating kernel is
windowed sinc function, see 3.28.

I (x, y) =
bxc+m∑

i=bxc+1−m

byc+m∑
j=byc+1−m

I j ,k K (x − i)K (y − j) (3.28)

ITK::WindowedSincInterpolateImageFunction, by Paul A. Yushkevich, uses windowed sinc function to in-
terpolate. We are able to set the kernel radius (m in 3.28) and the window function. ITK provides some useful
window functions, for example Function::HammingWindowFunction, Function::LanczosWindowFunction,
Function::CosineWindowFunction, Function::WelchWindowFunction and Function::BlackmanWindowFunction.

3.2.5. Implementation Details
In our implementation of FIONA, we select Euler angle as our transform prototype, linear interpolator as our
interpolator. As for metric and optimizer, we did a benchmark on them of 10 experiments. From the result,
we decided to apply quasi-Newton optimizer and mean square metric for realignment.

22 3. Pre-Processing

Figure 3.11: Performance-Cost Comparison of Different Interpolation Algorithms, from Michael Unser, Splines: a perfect fit for medical
imaging

After realignment, we have parameters list of six column: Pitch, Roll, Yaw, Translation in X, Translation in
Y, Translation in Z. We have two options to apply the realigned parameters to moving images.

Re-Write NIfTI Header
Similar as functionality of "Estimate Only" in SPM, we can choose to only change the NIfTI header of a moving
image, without changing the image data. NIfTI is short for Neuroimaging Informatics Technology Initiative.
NIfTI-1 is a data format storing neuroimaging data (see http://nifti.nimh.nih.gov/). The suffix of NIfTI files
are .hdr or .img for compressed 4-D images, and .nii for single 3-D images.

As we introduced before, NIfTI files has a header of 348 bytes. It contains all the metadata about the im-
age, including transforms from voxel index (i, j, k) to spatial location (x, y, z). In this case, We only want to
change the fields that store this spatial transform, as well as a NIfTI form_code identifying the status of spatial
information of an image. We planned to perform the changing header task using ITK::ChangeInformation-
ImageFilter. However, some fields in the header will be changed by using ITK::NiftiImageIO. Thus, we pre-
ferred to write NIfTI files manually.

As in convention, we keep qform_code as 1, standing for "Scanner Position" not changing. Also we keep
all the fields in method 2, which uses a quaternion to store the transform. The things to to is listed here:

• Change sform_code from 1 to 2, which stand for "Coregistered".

• Re-Write the 3 by 4 matrix in method 3, which is stored in srow_x[4], srow_y[4], srow_z[4].

We compute the new transform matrix by a matrix multiplication in 4 by 4. We can export transform
matrix from ITK::Euler3DTransform directly. Notice that ITK uses LPS (Left, Posterior, Superior) coordinate
system, while NIfTI uses RAS (Right, Anterior, Superior) coordinate system. Therefore, we need to negate two
parameters before computation.

Also notice that there is a extender block of 4 bytes in NIfTI files, between the header and image data. Do

3.3. Co-Registration 23

not forget to allocate memories for them.

Re-Slice Moving Image
In most fMRI researches, only re-write headers of NIfTI files is not sufficient. We need to make images in a
same session share a same coordinate grid. Similar as "Estimate & Reslice" functionality in SPM, our project
also provide option to re-slice moving images.

In our implementation, the re-slice process is done by using ITK::ResampleImageFilter. We set the fixed
image as reference image, set the ITK::Euler3DTransform as transform, and set ITK::LinearInterpolateImage-
Function as an interpolator. The spatial informations, like spacing, origin, orientation and region of fixed
image are copied to moving images. The re-sliced images are basically ready for coming statistical analysis.

3.3. Co-Registration
Co-registration is a special case of registration, of images scanned from multi-modalities. Often we need to
match the structural data and the functional data, to obtain a better localization of activated area, and a better
visualization as well. Structural data are often a T1 weighted MR image, which was taken in the same session
of functional data.

The main problem in co-registration is that spatial resolution of structural data is much higher than func-
tional data. Because functional MR scans trade-off spatial resolution for a better temporal resolution. A TR
of functional MR image is about 2s, while a typical T1 image takes about 8 or 10 minutes.

In our implementation, we set functional image as fixed image, and anatomical image as moving image.
Because all the computation is done in virtual image domain Therefore, the spatially low resolution in fixed
image doesn’t matter. The framework of our co-registration functionality is shown in 3.12.

Figure 3.12: Multi-Stage Co-Registration Framework

In the framework, we applied some specific registration techniques. First, we used Mattes mutual in-
formation as similarity metric, for multi-modality case. Second, we used multi-stage registration for large
movement and centers apart distantly. Third, we used multi-resolution approach to speed up registration
and avoid local optima. In following subsections, we will illustrate them.

24 3. Pre-Processing

3.3.1. Multi-Stage Registration
The basic idea of multi-stage registration is first applying a coarse simple transform, to make the two images
closer. Then apply a finer complex transform to get accurate transform parameters. That is, there are multi-
ple registrations. Each has its own different transform, metric, optimizer and interpolator.

ITKv4 implements multi-stage registration by defining a class ITK::CompositeTransform. A composite
transform is an object consist of multiple transforms, in an order. It acts as applying each component trans-
form one by one. In our experiment, the original distance between centers of T1 image and of function image
is very large. We first need to apply a ITK::TranslationTransform, to match the two centers. And then we apply
a ITK::Euler3DTransform, as we did in realignment.

3.3.2. Mattes Mutual Information Metrics
In multi-modality registration, metrics we introduced in realignment, mean square metric and cross corre-
lation metric are not working well. However, mutual information works. Thus, we appeal to Mattes mutual
information as our metric. In Shannon information theory, mutual information is defined as a measure of
mutual dependency between two image intensities. The dependency is not defined explicitly. Therefore we
can use mutual information as metric in multi-modality registration.

Mattes mutual information, named after D. Mattes, is defined in 3.29[14]. p(ι,κ|µ) is the joint PDF (prob-
ability distribution function), pM (ι|µ) is marginal PDF of moving image and pF (κ) is marginal PDF of fixed
image. µ is the transform parameter.

S(µ) =−∑∑
p(ι,κ|µ)log (

p(ι,κ|µ)

pT (ι|µ)pR (κ)
) (3.29)

Mattes estimates the PDFs using B-spline Parzen window method, shown in 3.30. In the joint PDF, α is a
normalization factor which makes

∑
p(ι,κ) = 1.

p(ι,κ|µ) =α ∑
x∈V

β(0)(κ− fF (x)− f ◦
F

∆bF
)×β(3)(ι− fM (f (x|µ))− f ◦

M

∆bT
)

pM (ι|µ) =∑
κ

p(ι,κ|µ)

pF (κ) =α ∑
x∈V

β(0)(κ− fF (x)− f ◦
F

∆bF
)

(3.30)

β(3)(x) is a cubic spline Parzen window defined in 3.31. β(0)(x) is a zero-order spline Parzen window. β(0)

is defined as a unit pulse centered at x. f ◦
F and f ◦

M are minimum intensity values in fixed and moving images.
∆bF and ∆bM are intensity ranges of each bin in fixed and moving images.

β(3)(x) =

1

6
(4−6x2 +3|x|3) 0 ≤ |x| < 1

1

6
(2−|x|)3 1 ≤ |x| < 2

0 2 ≤ |x|

(3.31)

ITK provides ITK::MattesMutualInformationImageToImageMetricv4. In our implementation, we used
ITK::MattesMutualInformationImageToImageMetricv4 as our similarity metric in co-registration case. We
are able to set the bins in Parzen window estimation.

3.3.3. Multi-Resolution Approach
Multi-resolution approach will help a registration in speed, accuracy and robustness. The basic idea is first
to perform a registration process in a lower resolution image, with fewer voxels and more smoothing. Af-
ter a lower level registration, we start from the parameters we get as initial parameters in a higher level
registration[16]. The repetition ends when the highest resolution registration is finished. This is often called

3.4. Normalization 25

a Coarse to Fine Strategy.

ITK implements multi-resolution registration in ITK::ImageRegistrationMethodv4. We set a multi-resolution
pyramid by setting levels, and shrink factors or smoothing variance in each level. A figure of ITK multi-
resolution registration is shown in 3.13.

Figure 3.13: Multi-Resolution Registration Framework in ITK

3.4. Normalization
Human brains are very different from each other. We need to locate a task-related activation area onto an
anatomical cortex image. We surely can do this via co-registration in every single case. However, it is quite
time consuming and needs certain neuroanatomic skill. Another option is to register all the anatomical im-
ages into one standard brain or an atlas. Normalization is a process, to register structural images to structural
image.

The most widely used atlas is the one called Talairach atlas, which is come from an old French lady. An-
other most used atla is the MNI (Montreal Neurological Institute) one, which is generated from average of 152
different brains. Neuroimages can be converted between Talairach and MNI atlas.

Notice that the registration transform prototype is more complex than rigid body transform, that used in
realignment and co-registration. The transform in normalization can have non-linear part, to perform de-
formable shape transform. In most normalization algorithms, they adopted multi-stage registration as well.
The first step is a linear part of the composite transform. The second part is non-linear.

For the linear transform, affine transform is adopted instead of simple rigid body transform. Because we
need scaling, shearing between two head structures. For the nonlinear part, the transform is defined differ-
ently in different region, as the image is an elastic body. A typical non-linear registration may have thousands
of parameters in total.

In our project, we did not implement normalization. Because our project is designed for fMRI processing
before TMS Neural Navigator (NeNa). NeNa performs point-based registration between lab-space measure-
ments and MRI space of craniotopic landmarks, which requires the imaged head and real head to be register-
able with rigid body registration. Normalization deforms the MRI image, which precludes such a rigid body
registration.

3.5. Spatial Smoothing
Spatial smoothing assigns intensity at each voxel by a weighted average of neighboring BOLD response. We
used a traditional Gaussian smoother in our implementation.

We appeal to ITK::DiscreteGaussianImageFilter to perform a spatial smoothing. The smoothing process is
done optionally together with re-slice process. Notice that in "Estimate Only" mode, we can not apply spatial

26 3. Pre-Processing

smoothing, because image data are not touched in that mode.

3.6. Temporal Filtering
Spatial filtering smoothes data in each TR volume. On the contrary, temporal filtering smoothes voxels at
same spatial position by volumes in neighboring TRs. That is, spatial smoothing is done in 3 dimensions
while temporal smoothing is done in only one time dimension.

In our implementation we did not provide temporal filtering. The reasons are basically the same as why
we did not perform slice-timing correction. The time interval of a TR is about 2.5s. The error from interpola-
tion of TRs may produce much error. It always harms more than help. In today’s fMRI process applications,
less and less people are doing this.

If we insist on having a temporal smoothing, it can be applied in ITK::VectorImage more easily, which is
the basic datatype in following GLM analysis part. See chapter 6 for more details.

4
Benchmarking of Realignment

In Insight Toolkit (ITK), as introduced before, a typical registration framework consists of six parts: Target,
Reference, Transform, Metric, Interpolator and Optimizer. The basic idea is to regard a metric as cost function
and apply an optimizer to find its global extreme values and update parameters in the meanwhile. Many pre-
vious works were done already on different optimizers[11][18]. Types of optimizing algorithms decides the
registration quality, computation workload and robustness to noise largely.

In this chapter, we are going to test some frequently used optimizers in ITK and compare their perfor-
mance, mainly in ways of computing distance to standard motion parameters (from SPM), time cost in a
multi-resolution registration, and comparing their robustness to random noise. We will illustrate our experi-
ment design in section 5.1. Then we will analyze the result of registration and discuss optimizers in the three
aspects of evaluation in section 5.2. The conclusion is drawn in section 5.3.

4.1. The Experiment
In ITK, optimizers are encapsulated in ITK::ObjectToObjectOptimizer class. There are mainly 2 categories of
ITK::Optimizer. See figure 4.1.

The two main categories of itk::NonLinearOptimizer are itk::MultipleValuedNonLinearOptimizer who re-
turns multiple values, and itk::SingleValuedNonLinearOptimizer, who returns single value. However, in new
versions of ITK, only single valued optimizers are available in ITKv4. In the experiment, according to single
variable principle, we adopted 6 optimizers in the single-valued optimizer group. The 6 optimizers are:

• ITK::RegularStepGradientDescentOptimizerv4

• ITK::GradientDescentLineSearchOptimizerv4

• ITK::ConjugateGradientLineSearchOptimizerv4

• ITK::QuasiNewtonOptimizerv4

• ITK::AmoebaOptimizerv4

• ITK::OnePlusOneEvolutionaryOptimizerv4

We have introduce the basic mathematic theory of them in Chapter 4. Optimizers like itk::Levenberg-
MarquardtOptimizer are excluded from our experiment because it returns multiple values and then are not
implemented in ITKv4 registration method.

Because different optimizers are used under different conditions, for example line search optimizer can
not find valid points with a mean square metric. Also because mean squared metric is very sensitive to dif-
ferent levels of noise. We implemented our algorithms both with mean squared metric and Mattes mutual

27

28 4. Benchmarking of Realignment

Figure 4.1: Inheritance diagram of ITK::Optimizer classes, Image from itk.org

information. The experiment are designed in two groups, based on single variant analysis principle. The de-
sign is shown in table 4.1. Notice that most of these optimizers find a local extrema. Therefore we applied a
multi-resolution strategy of three resolution levels. Only One Plus One Evolutionary Strategy is a global opti-
mization method. We did not apply multi-resolution to them.

Optimizers Metrics
ITK::RegularStepGradientDescentOptimizerv4 ITK::MeanSquaresImageToImageMetricv4

ITK::QuasiNewtonOptimizerv4 ITK::MeanSquaresImageToImageMetricv4
ITK::AmoebaOptimizerv4 ITK::MeanSquaresImageToImageMetricv4

ITK::OnePlusOneEvolutionaryOptimizerv4 ITK::MeanSquaresImageToImageMetricv4
ITK::RegularStepGradientDescentOptimizerv4 ITK::MattesMutualInformationImageToImageMetricv4
ITK::GradientDescentLineSearchOptimizerv4 ITK::MattesMutualInformationImageToImageMetricv4

ITK::ConjugateGradientLineSearchOptimizerv4 ITK::MattesMutualInformationImageToImageMetricv4
ITK::QuasiNewtonOptimizerv4 ITK::MattesMutualInformationImageToImageMetricv4

ITK::AmoebaOptimizerv4 ITK::MattesMutualInformationImageToImageMetricv4
ITK::OnePlusOneEvolutionaryOptimizerv4 ITK::MattesMutualInformationImageToImageMetricv4

Table 4.1: Experiment Design

We apply the registration process using ITK::Euler3DTransform as our transform type, using ITK::Linear-
InterpolatorImageFunction as our interpolator function. As SPM does, we generate a parameter list in terms
of six parameters in a matrix-offset manner, three of them are Tait-Bryan Euler angles, pitch, roll and yaw.
The other three are translations in three dimensions. See figure 3.6.

In a real experiment, we don’t have access to know how exactly the motion of a patient’s head is in a scan-
ner. As SPM is a well-developed software for fMRI image processing, we choose the result from SPM, with
highest quality (7th order B-Spline interpolation), as our standard parameter list. We will compute the dis-
tances between our output parameters from different optimizers and those parameters SPM provides us, to
see which one performs better, or closer to SPM’s result. The smaller distance to the standard, the higher
quality of registration.

4.1. The Experiment 29

We define our distance between two parameter vectors in a rational way. It is intuitive to compare dis-
tances between two points, after applying spatial transfroms we got from different method respectively. The
point we select should be on the cortex. We choose a point on cortex because neural activities are mainly
distributed on a cortex, and it is meaningless to observe a position that is white matter inside a brain. After
comparing different scanning datasets, we assume a normal human head as a sphere of radius 63mm, cen-
tering at the origin of fMRI images. The image origins is also the rotation center of our Euler 3D transforms.
In this way, we calculate the new registered point, from the 6 parameters and the initial moving point as equa-
tion 4.1. Thus, different experiments each has its own new point.x ′

y ′
z ′

=
1 0 0

0 cosψ si nψ
0 −si nψ cosψ

 ·
cosθ 0 −si nθ

0 1 0
si nθ 0 cosθ

 ·
 cosφ si nφ 0
−si nφ cosφ 0

0 0 1

 ·
x

y
z

+
∆x
∆y
∆z

 (4.1)

Then we compute the Euclidean distance between new points we calculated, defined as equation 4.2.
This distance in mm shows how much the two method differ. For a long series of fMRI session images, we
simply compute the average of distance over time. Generally, as the space resolution of fMRI images is about
3mm, we assume that an error less than 3mm is acceptable.

D(SP M , I T K) = |(x ′
SP M , y ′

SP M , z ′
SP M), (x ′, y ′, z ′)| (4.2)

To observe the robustness of different optimizers, we generate new fMRI images by adding white noise of
different variance. The noising process is done by ITK::AdditiveGaussianNoiseImageFilter. At first we set a
threshold to roughly segment our head, to exclude the voxels that are other stuff like air. Then we compute
average intensity of these voxels and set the standard deviation of white noise to a percentage of this average
intensity value. We set the percentages in a row of power of 2, that is 1%, 2%, 4%, 8%, 16%, 32%, 64%. There-
fore, we have 8 datasets (including original one) in increasing white noise in each case. See figure 4.2.

Figure 4.2: Different Level of White Noise, Generated by ITK::AdditiveGaussianNoiseImageFilter

Our experiment was on a series of 152 fMRI images. We select this dataset for its large and abrupt move-
ment. The largest translation is about 5mm, while the largest rotation is about 0.06rad.See subsection 5.2.1
for more details.

The experiment was test on a laptop PC of i7-4700MQ CPU @2.40GHz, 8.00GB RAM, with Window 10 64-
bits system.

30 4. Benchmarking of Realignment

4.2. Result and Discussion
As defined before, we discuss the performance of different optimizers in three aspect: Accuracy, Time and
Robustness. We will illustrate them in coming three subsections.

4.2.1. Accuracy
The result from SPM on our dataset is shown in figure 4.3 and figure 4.4.

Figure 4.3: Rotation in 3 Dimensions of the Dataset from SPM, in rad

Figure 4.4: Translation in 3 Dimensions of the Dataset from SPM, in mm

As discussed before, our dataset is one with large but abrupt movement in the scanner. We selected 6
points where these abrupt movements took place. They are at 52nd , 62nd , 73r d , 102nd , 123r d images. These
points are useful for our discussion on performance of different optimizers. We divided the whole image se-
ries into 6 blocks. These blocks each has its own properties on 6 Euler transform parameters:

4.2. Result and Discussion 31

• Block 1: Small rotations (less than 0.01r ad) and small translations (less than 0.5mm);

• Block 2: Large rotations (greater than 0.02r ad) and small translations (less than 1mm);

• Block 3: Moderate rotations (about 0.02r ad) and moderate translations (about than 2mm);

• Block 4: Small rotations (less than 0.01r ad) and moderate translations (about than 2mm);

• Block 5: Small rotations (less than 0.01r ad) and large translations (about 3mm);

• Block 6: Large rotations (greater than 0.02r ad) and very large translations (about 4mm);

As we introduced in the experiment design, we evaluate accuracies of optimizers in term of Euclidean dis-
tance between points obtained from different methods, see equation 4.2. We set result from SPM realignment
with 7-order B-spline interpolation as our standard, or "The True Movement". From the dataset, we choose a
point of [0,0,63] as our testing landmark, which we assumed located on the cortex. For every volume images
in the time series, one distance is computed. These distances are plotted along image index in figure 4.5.

Figure 4.5: Spatial Distance of Different Optimizers with Mattes Mutual Information to SPM in mm

To compare optimizers’ performance under different movement cases. We computed average distances
in each blocks. The result of blocked analysis is shown in table 4.2.

Optimizers Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 All Blocks
Regular Step Gradient Descent 0.0858 0.0901 0.1051 0.0940 0.0888 0.1351 0.0989

Golden Section Line Search 0.0520 0.0616 0.0617 0.0650 0.0588 0.1203 0.0698
Conjugate Gradient Line Search 0.0477 0.0913 0.0683 0.0617 0.0543 0.1027 0.0661

Quasi-Newton 0.0699 0.0901 0.1051 0.0940 0.0873 0.1351 0.0932
Amoeba 0.0359 0.1584 0.3383 0.1726 0.1002 0.2963 0.1505

One Plus One Evolutionary 0.0491 0.1101 0.0984 0.1155 0.1711 0.0767 0.0915
Best Accurate Optimizer Amoeba GSLS GSLS CGLS CGLS (1+1)ES CGLS

Worst Accurate Optimizer RS Amoeba Amoeba Amoeba (1+1)ES Amoeba Amoeba

Table 4.2: Blocked Analysis of Different Optimizers, on Average Distance in Each Block in mm

From the blocked analysis, we can draw some conclusion about the properties of these 6 ITKv4 optimiz-
ers, working with Mattes mutual information as metric.

32 4. Benchmarking of Realignment

ITK::RegularStepGradientDescentOptimizerv4, generally performs bad in accuracy. However, it is still the
most popular one in ITK applications, because of its speed, we will show it in next subsection.

ITK::GradientDescentLineSearchOptimizerv4, which applies Golden Section Line Search, perform better
in cases with large rotation. Not apparent preference shown in scale of translation. Therefore, this optimzier
works best in those blocks with large rotation and small translation (Block 2 and Block 3).

ITK::ConjugateGradientLineSearchOptimizerv4, which applies Polak-Ribière formula, performs well all
along the way, especially those blocks with large or very large translation (Block 4, Block 5 and Block 6).

ITK::QuasiNewtonOptimizerv4, which uses BFGS method to compute inversed Hessian matrix, performs
very same as ITK::RegularStepGradientDescentOptimizerv4, in some block they even have the complete same
parameter lists. However, it surpass regular step method in the starting few images in a series. Normally say,
Quasi-Newton optimizer is as bad as regular step optimizer in accuracy.

ITK::AmoebaOptimizerv4, which applies heuristic method to find a local optima, performs worst among
these 6 optimizers. However, in a block of small movement, both in rotation and translation, it works best.
We can say that this method is suitable for some small movement dataset, like in Block 1.

ITK::OnePlusOneEvolutionaryOptimizerv4, which applies evolutionary strategy to find a global optima,
performs acceptable all along the image series. One surprising observation is that it performs best in the
most large movement block (Block 6), which is both large in rotation and translation. We conclude that this
method is suitable for large movement dataset, contrary to Amoeba method.

4.2.2. Time Cost
Apart from the accuracy, efficiency of an optimizer is another important criterion to evaluate its performance.
We recorded time spent on a whole three levels multi-resolution registration (except for evolutionary opti-
mizer) in each realignment process, on our original (without noise) dataset. All the experiments were done
on the same laptop PC.

To make the results from different optimizers comparable, for 7 local optimization methods, we setup a
three level multi-resolution pyramid. The shrink factors at each level are 1, 1, 2. And the smoothing factors σ
at each level are 0, 1, 2. For one plus one evolutionary optimizer, which is a global optimization method, we
did not apply a multi-resolution strategy. Instead, we set the maximum number of iteration to 5000, to make
sure convergence. Other setups of optimizers can be found in section 5.1.

Table 4.3 shows time cost and accuracy both in different optimizer-metric pairs. Time costs are in seconds,
and accuracies are in mm, which stands for the spatial distance between registered points, obtained from
optimizer-metric pairs and SPM, as the "True Movement" standard.

Optimizers Metrics Time Accuracy
Regular Step Gradient Descent Mean Squares 7.85s 0.0671mm

Quasi-Newton Mean Squares 3.79s 0.0667mm
Amoeba Mean Squares 12.94s 0.0865mm

One Plus One Evolutionary Mean Squares 67.37s 0.1054mm
Regular Step Gradient Descent Mattes Mutual Information 14.19s 0.0989mm

Golden Section Line Search Mattes Mutual Information 106.21s 0.0698mm
Conjugate Gradient Line Search Mattes Mutual Information 79.29s 0.0661mm

Quasi-Newton Mattes Mutual Information 11.25s 0.0932mm
Amoeba Mattes Mutual Information 23.71s 0.1505mm

One Plus One Evolutionary Mattes Mutual Information 55.85s 0.0915mm

Table 4.3: Result of Experiment test on Original (0-Noise Level) Dataset

4.2. Result and Discussion 33

We plotted time cost and accuracy (in spatial distance) in every case in figure 4.6. From the figure, we un-
derstand why ITK::RegularStepGradientDescentOptimizerv4 and ITK::MeanSquareImageToImageMetricv4
pair is the most popular optimizer-metric pair in ITK applications. It works pretty good in accuracy and it
is very efficient in time. ITK::QuasiNewtonOptimizerv4 has a better performance than regular step one. It is
faster and a little more accurate than regular step optimizer.

However, in very noisy images, or multi-modality image registration. Means square metric is not suffi-
cient in accuracy any more. When we adopted ITK::MattesMutualInformationImageToImageMetricv4 as our
metric, the choice is harder to make. As normal, there is a trade-off between quality and speed. Line search
methods will take much longer time, but give a better registration.

In our case, the spatial distance is around 0.1mm, which is much smaller than a typical spatial resolution
of fMRI images. Therefore, all the registrations are acceptable. An optimizer that takes less time is preferred.

Figure 4.6: Spatial Distance and Time Cost for a Registration of Different Optimizers

4.2.3. Robustness to Noise
The third important measure of performance is robustness to noise of optimizers. As we introduced before,
the experiments are in 8 groups, each group using a dataset generated by adding different levels of white
noise to the original one.

We have 8 dataset as 0% (original), 1%, 2%, 4%, 8%, 16%, 32%, 64%. All the ten experiments described
in table 4.1 are done. Also, we used SPM as our 11th experiment. Therefore we have 88 tests in total. We
computed distance to the true movement in each case. As we said, the true movement is obtain from SPM
with original dataset. The results are shown in table 4.4.

We plot the results in a figure to show their robustness to noise in figure 4.7 (left). We selected all the
experiments with derivative-based optimizers in 4.7 (right). From the figures we can find following:

• When same optimizer is applied, Mattes mutual information metric shows better robustness to noise,
compare to mean square metric.

• Amoeba optimizer and one plus one evolutionary optimizer have a bad robustness to noise. especially
Amoeba methods. That is derivative-based methods are more robust than heuristic methods.

34 4. Benchmarking of Realignment

Experiments 0% 1% 2% 4% 8% 16% 32% 64%
RS+MS 0.0671 0.0663 0.0707 0.0641 0.0652 0.0749 0.0777 0.1832
QN+MS 0.0667 0.0663 0.0703 0.0641 0.0647 0.0749 0.0768 0.1832

Amoeba+MS 0.0865 0.0897 0.0925 0.1021 0.1923 0.3281 1.4617 4.6412
(1+1)ES+MS 0.1054 0.1023 0.1020 0.0983 0.0979 0.2193 1.1270 1.5005

RS+MI 0.0989 0.1009 0.1211 0.1077 0.1015 0.0989 0.0959 0.1469
GSLS+MI 0.0698 0.0636 0.0581 0.0636 0.0799 0.0911 0.1942 0.3364
CGLS+MI 0.0661 0.0625 0.0599 0.0701 0.0955 0.1101 0.2256 0.8279

QN+MI 0.0932 0.0967 0.1122 0.1062 0.1007 0.0987 0.0958 0.1602
Amoeba+MI 0.1505 0.1091 0.1086 0.1704 0.2897 0.7886 3.0343 4.1101
(1+1)ES+MI 0.0915 0.0972 0.0927 0.1015 0.1044 0.1181 0.4005 1.5045

SPM N.A. 0.0487 0.0497 0.0488 0.0473 0.0660 0.0877 0.1964

Table 4.4: Result of Robustness Experiment test on Small Movement Dataset, all results in mm, which stands for the distance between
registered points from tested optimizer and SPM.

• Generally, mean square metric works better than Mattes mutual information in accuracy. That is im-
ages in our dataset the are from a same scanning session, and the scanning conditions are not varies
much. Mattes mutual information uses Parzen estimation to compute probability distributions, that
may lead to more errors. However, in a more general case, Mattes mutual information metric

• In all the derivative-based methods we tested, regular step gradient descent and quasi-Newton method
works much better in robustness. Although the accuracy of them is worse than line search methods in
low noise datasets, the accuracy became comparable even less than line search methods.

• SPM has its high-performance algorithms for realignment, with a good robustness to noise. However,
our experiments showed that gradient descent and quasi-Newton methods have a better robustness.
In high-noise dataset, the accuracies of them are even better than SPM.

Figure 4.7: Spatial Distance and Time Cost for a Registration of Different OptimizersRobustness of Optimizers to Different Level Noise

After compared these experiments, we obtained some instructions on how to select a proper (accurate
and efficient) optimizer-metric pair when the dataset is ruined by noise.

When we are facing low-noise dataset, heuristic methods and derivative-based methods both works fine.
Line search methods have the best accuracies.

When we are facing high-noise dataset, we prefer derivative-based method. When the noise level is grow-
ing up to 8% to 16%, Amoeba optimizer and evolutionary optimizer start to fail. When the noise level is higher

4.3. Conclusion 35

than somewhere near 16%, line search methods starts to have a larger error than regular step gradient descent
optimizer do.

4.3. Conclusion
From the experiments, we have some conclusion on in some case which optimizer is preferred to be the best
choice in realignment:

In low-noise dataset, line search optimizers generally have the best accuracies, but cost too much time.
Amoeba and evolutionary optimizers are used in some extreme cases. Amoeba optimizer performs best in
very small movement dataset, while evolutionary optimizer performs best in very large movement dataset.
In normal cases, regular step gradient descent or quasi-Newton optimizer would be a better choice. Quasi-
Newton optimizer is better than regular step gradient descent optimizer in every sense.

In high-noise dataset, that is the noise level is higher than 16% of the average intensity of the subject, line
search methods and heuristic methods both fail.

To conclude, if we don’t have any information or clues of a dataset before realignment, quasi-Newton op-
timizer is always a good choice, in accuracy, in speed and also in robustness to noise.

5
Basic Statistic Analysis

After pre-processing, we obtained fMRI images that are re-sliced into a same spatial grid. We then move to
some basic statistical analysis of fMRI data.

In this chapter, we first introduce the most widely used General Linear Model method. In GLM, we esti-
mate the fitting parameters to minimize squared error. We will also introduce hypothesis testing methods,
mainly the statistical parameteric mapping of student’s t_distribution. We can estimate a t-map of a 3-D
brain image, to see the significance of activation related to task or events. Notice that all discussions and
implementations in this chapter are in sense of individual voxels. When we like to analyze the brain activities
dependently, that is a multiple comparison problem, we will discuss them in chapter 7. All methods above
iterates an image and analyze one voxel at a time. This is called univariate methods. If we analyze more than
one voxel simultaneously, that is multivariate method, which is beyond this project.

5.1. General Linear Model
General Linear Model (GLM) is a generalization of linear regression method. We want to find how much is a
BOLD signal significantly related to the task model. The method helps find Brain regions show strong task-
related activity.

Two popular methods that models BOLD signal are introduced in this chapter: correlation-based meth-
ods and finite BOLD response. These two model both lead to a linear regression problem. We will first intro-
duce the two modeling methods, and then discuss how to estimate parameters in the regression problem.

5.1.1. Finite BOLD Response
Finite BOLD Response (FBR) is similar as FIR in signal theory. "Finite" means that FBR is non-zero only at
limited number of TRs. The influence of a BOLD response is constrained in time[1]. Suppose an event or task
influences the BOLD signal in following t seconds, that is t

T R TRs in an fMRI image series. On the contrary,
observed BOLD signal at one TR has contribution from several events or tasks occur at previous TRs. Suppose
event E1 has an FBR last 5 TRs. The values are β1i , i ∈ [1,5]. And event E2 has an FBR last 3 TRs. The values are
β2 j , j ∈ [1,3]. We can sum up contributions of each events to BOLD signal at each TR. See a table 5.1 below:

In the table we added two rows: a constant BOLD and a linear drift BOLD. When we apply a constant
BOLD, the β will become near zero if the voxel is not event-related. We added a drift vector to compensate
the non-stationarity of magnetic field in a scanning session. The variance becomes larger along the scanning
session. The design can be written in a linear matrix equation 5.1. By solving this GLM equation at each voxel,
we can get these β parameters that shows how significant the voxel is activeted by the events or tasks.

We can assume a large upper bound for an FBR, to make sure the response is not truncated. This gen-
erates more parameters, which will reduce the degree of freedom in following t-map hypothesis testing. See

37

38 5. Basic Statistic Analysis

TR: T R1 T R2 T R3 T R4 T R5 T R6 T R7 T R8

Events: E1 E2 E2 E1

BOLD of 1st E1 β11 β12 β13 β14 β15

BOLD of 1st E2 β21 β22 β23

BOLD of 2nd E2 β21 β22 β23

BOLD of 2nd E1 β11 β12

Constant BOLD B0 B0 B0 B0 B0 B0 B0 B0

Drift BOLD ∆ 2∆ 3∆ 4∆ 5∆ 6∆ 7∆ 8∆

Table 5.1: An Example of Event-Related Design Experiments and its BOLD Constitution

6.2 for more details. It will also increase the computation complexity. However, it is even worse if the upper
bound of an FBR is less than what it should be. A small upper bound truncated the response. This lost re-
sponse will be absorbed by following events or error terms. If we are using FBR method, we should always
keep conservative to avoid underestimation of FBR duration.

B(T R1)
B(T R2)
B(T R3)
B(T R4)
B(T R5)
B(T R6)
B(T R7)
B(T R8)

=

1 0 0 0 0 0 0 0 1 1
0 1 0 0 0 1 0 0 1 2
0 0 1 0 0 0 1 0 1 3
0 0 0 1 0 0 0 1 1 4
0 0 0 0 1 1 0 0 1 5
0 0 0 0 0 0 1 0 1 6
1 0 0 0 0 0 0 1 1 7
0 1 0 0 0 0 0 0 1 8

·

β11

β12

β13

β14

β15

β21

β22

β23

B0

∆

+

ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

(5.1)

In our implementation, we did not use FBR method. We applied correlation method instead.

5.1.2. Correlation Method
Apart from FBR, another frequently used modeling method is correlation method. Correlation-based meth-
ods was invented earlier than FBR in 1990’s. The idea of correlation method is to combine all events of same
stimulation to a neural activation function. Then convolve this neural activation function with a predefined
Hemodynamic Response Function (hrf). We sample the convolution at each TR as our predicted BOLD value.
See 5.2, neural activation function N (t) is the boxcar shape neural activation function, and h(t) is a prede-
fined hrf.

x(t) = N (t)∗h(t) =
∫ t

0
N (τ)h(t −τ)dτ (5.2)

The predefined hrf h(t), there are many options. According to the real response properties of a BOLD
signal, a γ function by Boynton et al (1996) is sometimes preferred, see figure 5.1 left. Friston et al. (1998)
assumes hrf to be a linear combination of some fixed basis functions (for example γ funxtion). In SPM, a
function spm_hrf let users to define their own hrf by setting some parameters like onset, delay of response
etc.

The neural activation functions N (t) are always chosen as a boxcar function. Because the time points of
TRs are discrete, we define the activation function equals to 1 from a TR where an event occur to the begin-
ning of next TR. If at a consecutive number of TRs occurs a same event, the activation function becomes 1
during these TRs. That is what called a block design, which is actually a special case of event-related design.
Our experiments were done under a block design. The experiment was designed to find the brain region that
is related to stimulations to left and right eyes. In the experiment, every stimulation last for 20 seconds. The
stimulations to left eye onsets on [0,40,80,120,160,200,240,280,320], while the rest time was occupied by
stimulations to right eye. The stimulation pairs are repeated for nine times, thus the total time of the session
is 360 seconds. We took 195 EPI images during this 360 seconds, the TR was 1.89 seconds. Figure 5.1 mid
shows the neural activation function in our testing dataset. Figure 5.1 right shows the convolution of neural

5.1. General Linear Model 39

Figure 5.1: Left is a Typical Hemodynamic Response Function: A Gamma Function by Boynton 1996. Mid is Neural Activation Function
in Our Experiments Dataset. Right is Convolution of N (t) and h(t), the Predicted BOLD Signal

activation function and hrf, which is our predicted BOLD signal.

An observed BOLD signal is also a combination of different models. We write it in a form of matrix equa-
tion as 5.3. We see that the number of parameters reduces compared to FBR methods, and the assumptions
in correlation methods is also more strict than in FBR methods. We define the model matrix before we esti-
mate a most fitting β vector, which minimize ε terms. We will see in next section.

B(T R1)
B(T R2)
B(T R3)
B(T R4)
B(T R5)
B(T R6)
B(T R7)
B(T R8)

=

x1(T R1) x2(T R1) 1 1
x1(T R2) x2(T R2) 1 2
x1(T R3) x2(T R3) 1 3
x1(T R4) x2(T R4) 1 4
x1(T R5) x2(T R5) 1 5
x1(T R6) x2(T R6) 1 6
x1(T R7) x2(T R7) 1 7
x1(T R8) x2(T R8) 1 8

·

β1

β2

B0

∆

+

ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

(5.3)

5.1.3. Parameter Estimation
From the two previous sections, both in FBR method and correlation method cases, we need to estimate a
best fitting β vector to minimize the error terms ε.

We define the observed BOLD signal, as Y . The model matrix as X . Y is a vector of intensity scalars in
fMRI images. Each column in X is a predicted BOLD response of a certain task. Thus the matrix equation can
be written as equation 5.4. Y = Xβ+ε

β= argmin
β

[(Y −X β̂)′(Y −X β̂)] (5.4)

We want to minimize the error term ε. We compute the Sum of Squared Error (SSE). According to Gauss-
Markov Theorem, we can estimate β vector value as equation 5.5.

β̂= (X ′X)−1X ′Y (5.5)

In our implementation, we adopted ITK::VectorImage to store all the 195 EPI images in one ITK ob-
ject. The ITK::VectorImage shares spatial information with all the re-sliced fMRI images. The only differ-
ence is that the value at each voxel is a vector of length 195 instead of a single intensity scalar. We used

40 5. Basic Statistic Analysis

ITK::ComposeImageFilter to push intensities into the vector along TRs.

As for the model matrix X , we used eight models. The first model is the neural activation function N (t)
(figure 5.1 mid) sampled at each TR, as an approximation of real predicted BOLD response x(t) (figure 5.1
right). The second and third model are a constant model and a drift model, which are often used. The last
5 models are generated from Discrete Cosine Transform (DCT) basis set, as a temporal high-pass filter. We
applied DCT basis in order of 5.

I (T R1)
I (T R2)
I (T R3)

...
I (T R195)

=

N (T R1) 1 1 cos(π/195) cos(2π/195) · · · cos(5π/195)
N (T R2) 1 2 cos(2π195) cos(4π/195) · · · cos(10π/195)
N (T R3) 1 3 cos(3π/195) cos(6π/195) · · · cos(15π/195)

...
...

...
...

...
. . .

...
N (T R195) 1 195 cos(π) cos(2π) · · · cos(5π)

 ·

β

B0

∆

β(1)

β(2)

β(3)

β(4)

β(5)

+

ε1

ε2

ε3
...

ε195

(5.6)

The DCT basis function of lowest frequency takes time of the whole session (360 seconds) as half of its
period. And the upper bound of frequency is normally decided by the double time between same onset in
experiment block designs. In our case, the stimulations are repeated every 40 seconds. Thus the shortest
period should be larger than 80 seconds. See figure 5.2.

Figure 5.2: Discrete Cosine Transform Basis Functions, visualized with SPM

We iterated all the voxels in the ITK::VectorImage (151552 voxels in our experiments) and computed β

vectors for each of them. Thus we generated 8 β-maps. The value of B0-map is around the average intensity
of this voxel along TRs. We call it baseline activation. ∆ and β(i) absorbed unexpected noises from β-map.
The value of β-map shows if the voxel is significantly related to the eye stimulation. A β near zero shows the
voxel is less related to the eye stimulation. A β that is apparently larger than zero implies that the voxel is
activated when left eye stimulation is conducted. On the contrary, A β that is apparently smaller than zero
implies that the voxel is activated when right eye stimulation is conducted.

5.2. Hypothesis Testing
To see the significance of the relation between activation and task, we appealed to statistical hypothesis test-
ing. In fMRI cases, the alternative hypotheses are often chosen as "a brain region is related to a task or stimu-
lation", on the opposite, a null hypothesis is chosen as "a brain region is uncorrelated with a task or stimula-
tion". If a region that is actually unrelated to a task, but we regarded it as related, we are making Type I Error
(False Positive). On the contrary, if a region that is actually related to a task, but we regarded it as unsignifi-
cant, we are making Type II Error (False Negative). In our experiment, we setup our hypothesis like 5.7. The
motation of β here is a value of first model (N (t)), not a β vector.

5.2. Hypothesis Testing 41

{
H0 :β≈ 0

H1 :β> 0
(5.7)

In more complex conditions, for example more than one task or stimulation, the hypotheses also be-
comes more complicated. A simple saying is not sufficient. Here we introduce a contrast vector over models.
The contrast vector has a length of number of models. Although we only have on task, we generalized our
hypotheses to 5.8, where [1,0,0,0,0,0,0,0] is the contrast vector, denoted as c.{

H0 : c ′β≈ 0

H1 : c ′β> 0
(5.8)

5.2.1. Student’s t_Test
Before we move on, we would introduce Student’s t_Distribution a bit. Student’s t_Distribution, invented by
William Sealy Gosset, is a variant of normal distribution. It is applied when small population of samples are
available. While normal distribution describe the full population, t_distribution describes a set of samples
from full population. When the amount of samples gets larger, the shape of t_distribution gets more similar
to normal distribution. The measure of amount of samples is notated as concept of Degree of Freedom.

Back to our experiment, we compute the distribution of c ′β, under the null hypothesis H0. However,
c ′β= c ′(X ′X)−1X ′B , where c and X are all constants. c ′β is actually a linear transform of B = Xβ+ε. There-
fore, the expectation of c ′β is zero under null hypothesis. We then compute the variance of c ′β. See 5.10, here
DFE is degree of freedom, which is defined as number of images minus number of models.

V ar [c ′β] = c ′(X ′X)−1cV ar [Xβ+ε]

V ar [Xβ+ε] = 1

DFE
(B −X β̂)′(B −X β̂)

(5.9)

Therefore, we can compute a t-value at each voxel, from its β vector and our predefined contrast vector c.

t = c ′β√
1

DFE
(B −X β̂)′(B −X β̂)c ′(X ′X)−1c

(5.10)

It is notated as t-value because it satisfies a t_distribution whose degree of freedom is number of TRs mi-
nus number of models. In our experiment, the degree of freedom is 195−8 = 187.

5.2.2. Statistical Parametric Mapping
Up to now, we have computed a t-value for each voxel in a 3-D image. We map them to generate a t-map.
We here simply apply 3 as an rough thresholding and see the brain region that is significant related to the sys
stimulation tasks. The region that is identified as unrelated to task has a value thresholded to 0. Regions with
a negative value less than −3 is identified as significantly related to left eye stimulation, which is in red, while
regions with a positive value larger than 3 is identified as significantly related to right eye stimulation, which
is in blue. We visualize them together with the co-registered anatomical image we gained from co-registration
in figure 5.3.

Figure 5.3: Localization of Activated Region with a Higher T -Value than 3, from left to right coronal, axial and sagittal.

42 5. Basic Statistic Analysis

We can see from the localization that the region related to eye stimulation is at rear part of a brain, which
is identical to what neuroanatomy tells us. Also, the activation region related to left-eye stimulation located
at the right half of the brain, while the activation region related to right-eye stimulation located at left half of
the brain, as predicted.

Figure 5.4: Illustration of Vision Cortex

We also tested on noisy datasets. The noisy datasets are generated by ITK::AdditiveGaussianNoiseImage-
Filter as well. The noise level are also the same as we did in realignment benchmarking. From figure 5.5 we
may notice that the activation region is getting smaller when a dataset becomes more noisy. When the noise
level is higher than 16%, we basically can not see a significant region that is related to the task.

Figure 5.5: t-Maps of Datasets with Different Noise Levels, Thresholded at 3, from left to right the noise levels are 0%,1%,2%,4%,8%,16%

However, simply apply a plain digit as threshold is not sufficiently convincing in fMRI researches. There
are many more scientific methods to select a proper threshold for a t-map to identify significance. We will
discuss them in next chapter.

6
Multiple Comparisons

In chapter 6, we are already able to construct a t-map of a brain, from an fMRI series. What we did is simply
choose a plain value, 3, as a threshold. In statistics, we often compute the threshold by limiting a false-positive
rate. This chapter will discuss how do we use this t-map to find a robust threshold, revealing if a voxel is re-
lated to a task or stimulation.

6.1. Single Voxel Cases
In our experiments we have 151552 voxels in a t-map, thus we have 151552 same t-distributions as well.
These distributions, whose mean is zero, and shape decided by the degree of freedom, was constructed un-
der the null hypothesis that one particular voxel is not responsive to the task or stimulation. The observed
t-value is a random variable. When an absolute t-value is higher than threshold somewhere, we reject null
hypothesis at this particular voxel, then say this voxel as responsive.

However, although the simple t-statistics works for single voxel, it fails when there is a large amount of
voxels. Suppose we have a t-map generated from a very noisy fMRI series, like 64% noise in our experiments.
Not point is showing significance. However, if we set a threshold based on false-positive rate, for example
α = 0.05, there will be a smaller threshold and over 7500 voxels are randomly identified as significantly re-
lated to task, which is actually not. Bennett did a famous dead salmon experiment to show this ridiculous
results: a dead salmon shows activation to some stimulations. Separately doing statistical analysis for each
voxel may lead to a Multiple Comparisons Problem. To prevent from this problem, a new criterion was pro-
posed, experiment-wise false-positive rate,αE , instead of a simple false-positive rateα. In next three sections,
we will discuss some frequently used methods in multiple comparison correction.

6.2. Bonferroni Correction
Suppose all the voxels are independent mutually, Bonferroni correction was proposed. See equation 6.1, N is
the amount of separate and independent tests. In our case, N is 151552, the number of voxels.

αt = 1− (1−αE)1/N ≈αE /N (6.1)

If we choose experiment-wise false-positive rate αE = 0.05, the real threshold on t-value αt is approxi-
mately 3.3×10−7, whose corresponding t-value is 5.149, which is much larger than 1.653 in single voxel case.

Bonferroni correction has an assumption that all voxels are independent mutually. However, this assump-
tion is not satisfied in fMRI images. fMRI images are spatially correlated. It is intuitive that neighboring voxels
of an activated voxel is more potential to be activated. Assuming independent makes Bonferroni method too
strict and conservative when choosing a threshold on t-value.

43

44 6. Multiple Comparisons

6.3. False Discovery Rate
Before, we threshold t-values by satisfying an experiment-wise false-positive rateαE , which is the probability
that at least one false-positive occurs in the whole volume. However, Benjamini and Hochberg proposed that
another proportion is more important[3]. It is the false-positive in all significant voxels, which is called FDR
(False Discorvery Rate). See table 6.1. We define the FDR as equation 6.2.

Accept Reject Total
Non-Activated U V N0

Activated T S N1

Sum W R N

Table 6.1: Outcomes of N Tests of the Null Hypothesis of Non-Activated

F DR = E [
V

R
] (6.2)

Here is how Benjamini and Hochberg algorithm works. At first, convert all t-values in to its probabilities
p-values. Each voxel has one pi . Then we order these pi increasingly in a vector (P [1],P [2],P [3], . . . ,P [N]).
At last, find the largest k that satisfying 6.3. Here q is our threshold. Voxels whose index is less than q are
identified as significant, where we reject our null hypothesis. Voxels whose index is larger than q are regarded
as non-activated.

P [k] < qk/N (6.3)

Our project implemented multiple comparison correction using FDR. We applied Boost C++ libraries to
support conversion between t-values and probabilities.

6.4. The Whole Pipeline
Up to now the whole pipeline of fMRI pre-processing and basic statistical analysis is constructed. We did an
experiment to test the whole pipeline, from original data directly from scanner, to our activation map. The
experiments are also designed in different levels of noise, from 1% to 16%.

For the realignment part, we applied ITK::QuasiNewtonOptimizerv4 for its overall best performance. We
re-sliced the fMRI images and computed β-maps and t-maps, according to the onsets and TRs of the eye
stimulation experiment, see chapter 6. The t-maps we generated from FIONA is shown in figure 6.1.

Figure 6.1: Noisy t-Maps Used to Test FDR Implementation, the t-maps are generated by FIONA.

Then we applied our FDR implementation to these t-maps and computed threshold of t-values in each
case. We may see them in table 6.2.

6.4. The Whole Pipeline 45

t-Map t Threshold p-Value
Original fMRI 3.63018 0.000182752

1% Noise fMRI 3.73879 0.000122832
2% Noise fMRI 3.91150 0.000064130
4% Noise fMRI 4.19512 0.000021040
8% Noise fMRI 4.69725 0.000002547

16% Noise fMRI No Significant Activation

Table 6.2: Outcomes of N Tests of the Null Hypothesis of Non-Activated

From the results,we can find that the software FIONA works against a noise level somewhere between 8%
and 16%. From 16% on, the original fMRI data are seriously corrupted and the FIONA stops working. Gener-
ally the intensity noise in original fMRI data is less than 5%. Thus, the robustness against noise of the whole
pipeline is acceptable.

Figure 6.2: t-Maps of Datasets with Different Noise Levels, Thresholded at their threshold computed from FDR algorithm, from left to
right the noise levels are 0%,1%,2%,4%,8%.

For the 16% dataset, after FDR not even one voxel is assumed as significantly responsive, to control the
false discovery rate. Although the activated voxels are less, the responsive regions are smaller, the possibilities
of a voxels that is out of the responsive area to be regarded as significant is much smaller. We can see from
these five figures that almost all activated voxels are located in the region, which is the actual ones responsive
to eye stimulation. Remember figure 5.5, the activation regions are larger, but there are much more voxels
outside of the region are assumed to be activated.

7
Summary

Current version of FIONA is ready for clinical uses in conjunction with Neural Navigator, even though there
are many things could be added on in the future.

We designed FIONA with preprocessing functionalities including realignment, co-registration and spa-
tial smoothing. We found the overall best ITKv4 optimzier, the ITK::QuasiNewtonOptimizerv4, via a bench-
marking, and implemented in FIONA. Also, we applied the most proper optimizers in our multi-stage co-
registration implementation. We applied spatial smoothing when we re-slice realigned images. In the future,
we may incorporate time-slicing correction and normalization into coming versions of FIONA.

We also designed a basic statistical analysis implementation, General Linear Model, and multiple com-
parison correction, False Discovery Rate Correction. FIONA is able to generate statistical parametric maps, if
models and contrast are provided. The map directly shows the brain region of the patient, that is responsive
to tasks or stimulations in the experiment. In the future, we may provide other statistical analysis methods,
for example DCM or other multiple comparison correction approach, like Gaussian Random Filed Correction
from FIONA.

We designed and developed an UI for FIONA. Users are able to interact with FIONA in an easy way.
FIONA can visualize the statistical parametric maps together with high resolution anatomical MRI scans.
Also, FIONA is able to color map the statistical parametric maps to a reconstructed brain cortex.

47

A
NIfTI Files

The data we test for our implementation were in format of NIfTI. NIfTI is short for Neuroimaging Informat-
ics Technology Initiative. NIfTI-1 is a data format storing neuroimaging data (see http://nifti.nimh.nih.gov/).
The suffix of NIfTI files .hdr/.img or .nii. In our implementation, we used NIfTI-1 data format as default.
Other format like DICOM can be easily converted to NIfTI-1 file.

The NIfTI-1 format comes from previous ANALYZE 7.5 data format, who lacks adequate information
about orientation is space. As inherited from ANALYZE 7.5 format, NIfTI also uses .hdr file to store meta-
data in a header, uses .img to store the image data, together with a extension of 4 bytes. Surely these two files
should be used in pairs. A more convenient way is to store the image and header in a single .nii file.

A NIfTI header is import to store spatial information of an image. A NIfTI header has 348 bytes. Between a
header and image data, there is an extension, which is always 4 bytes. The fields of 348 bytes header is shown
in table A.1. The detail info of each field can be found at nifti.nimh.nih.gov/nifti-1. Here, we only discuss
some fields accessed in our implementation.

The spatial orientation information are stored in the header from 252 bytes to 327 bytes. There are
two representation of the spatial information: a quaternion expression and a rotation matrix expression.
qform_code and sform_code specify what is the expression used for respectively. Normally is the spatial infor-
mation of an image stored is directly from the scanner, the code is 1. If the expression stored is a co-registered
one, the code is 2. Conventionally, we store the original orientation from scanner in the quaternion, and store
the registered orientation in rotation matrix, after realignment. We will introduce how we re-write a NIfTI-1
header in 4.2.5.

49

50 A. NIfTI Files

TYPE NAME OFFSET SIZE DESCRIPTION
int sizeof_hdr 0B 4B Size of the header. Must be 348 (bytes).

char data_type[10] 4B 10B Not used; compatibility with analyze.
char db_name[18] 14B 18B Not used; compatibility with analyze.
int extents 32B 4B Not used; compatibility with analyze.

short session_error 36B 2B Not used; compatibility with analyze.
char regular 38B 1B Not used; compatibility with analyze.
char dim_info 39B 1B Encoding directions (phase, frequency, slice).
short dim[8] 40B 16B Data array dimensions.
float intent_p1 56B 4B 1st intent parameter.
float intent_p2 60B 4B 2nd intent parameter.
float intent_p3 64B 4B 3rd intent parameter.
short intent_code 68B 2B nifti intent.
short datatype 70B 2B Data type.
short bitpix 72B 2B Number of bits per voxel.
short slice_start 74B 2B First slice index.
float pixdim[8] 76B 32B Grid spacings (unit per dimension).
float vox_offset 108B 4B Offset into a .nii file.
float scl_slope 112B 4B Data scaling, slope.
float scl_inter 116B 4B Data scaling, offset.
short slice_end 120B 2B Last slice index.
char slice_code 122B 1B Slice timing order.
char xyzt_units 123B 1B Units of pixdim[1..4].
float cal_max 124B 4B Maximum display intensity.
float cal_min 128B 4B Minimum display intensity.
float slice_duration 132B 4B Time for one slice.
float toffset 136B 4B Time axis shift.
int glmax 140B 4B Not used; compatibility with analyze.
int glmin 144B 4B Not used; compatibility with analyze.

char descrip[80] 148B 80B Any text.
char aux_file[24] 228B 24B Auxiliary filename.
short qform_code 252B 2B Use the quaternion fields.
short sform_code 254B 2B Use of the affine fields.
float quatern_b 256B 4B Quaternion b parameter.
float quatern_c 260B 4B Quaternion c parameter.
float quatern_d 264B 4B Quaternion d parameter.
float qoffset_x 268B 4B Quaternion x shift.
float qoffset_y 272B 4B Quaternion y shift.
float qoffset_z 276B 4B Quaternion z shift.
float srow_x[4] 280B 16B 1st row affine transform
float srow_y[4] 296B 16B 2nd row affine transform.
float srow_z[4] 312B 16B 3rd row affine transform.
char intent_name[16] 328B 16B Name or meaning of the data.
char magic[4] 344B 4B Magic string.

Table A.1: Fields of NIfTI-1 Format Header, from https://brainder.org/2012/09/23/the-nifti-file-format/

B
Flowchart of Functions in FIONA

Figure B.1: A flowchart of the pipeline is made to clarify the information flow and functions incorporated into the software.

51

C
Parameters Details in Optimizer

Benchmarking

• ITK::RegularStepGradientDescentOptimizerv4
Learning rate to 1 as default;
Relaxation factor to 0.5 as default;
Maximum number of iterations to 500;
Minimum step length to 10−6;
Parameter scales to [1, 1, 1, 10−3, 10−3, 10−3];
Multi-resolution level to 3;
Multi-resolution shrink factors to [1, 1, 2];
Multi-resolution smoothing factors to [0, 1, 2];

• ITK::GradientDescentLineSearchOptimizerv4
Learning rate to be estimated at each iteration;
Maximum number of iterations to 500;
Minimum convergence value to 10−6 as suggested;
ε (Accuracy of line search) to 0.001;
Upper limit to 2 as default;
Lower limit to 0 as default;
Convergence window size to 50 to pass all tests;
Parameter scales to [1, 1, 1, 10−3, 10−3, 10−3];
Multi-resolution level to 3;
Multi-resolution shrink factors to [1, 1, 2];
Multi-resolution smoothing factors to [0, 1, 2];

• ITK::ConjugateGradientLineSearchOptimizerv4
All setting to the same as in ITK::GradientDescentLineSearchOptimizerv4;

• ITK::QuasiNewtonOptimizerv4
Learning rate to be estimated at each iteration;
Maximum number of iterations to 500;
Minimum convergence value to 10−6 as suggested;
Convergence window size to 50 to pass all tests;
Parameter scales to be estimated by ITK::RegistrationParameterScalesFromPhysicalShift<Metric>;
Multi-resolution level to 3;
Multi-resolution shrink factors to [1, 1, 2];
Multi-resolution smoothing factors to [0, 1, 2];

• ITK::AmoebaOptimizerv4
Initial simplex to be generated automatically;
Maximum number of iterations to 500;

53

54 C. Parameters Details in Optimizer Benchmarking

Parameter convergence tolerance to 10−6;
Function convergence tolerance to 10−6;
Parameter scales to [1, 1, 1, 10−3, 10−3, 10−3];
Multi-resolution level to 3;
Multi-resolution shrink factors to [1, 1, 2];
Multi-resolution smoothing factors to [0, 1, 2];

• ITK::OnePlusOneEvolutionaryOptimizerv4
Normal variate generator generated by ITK::Statistics::NormalVariateGenerator;
Initial radius to 0.625 according to registration.optimizer.OnePlusOneEvolutionary class in MATLAB;
Grow factor to 1.05 according to registration.optimizer.OnePlusOneEvolutionary class in MATLAB;
Shrink factor to 0.95 according to Martin Styner;
ε (Minimum radius) to 10−4;
Maximum number of iterations to 5000;
Multi-resolution level to 1 (Multi-resolution not applied).

Bibliography

[1] F. Gregory Ashby. Statistical Analysis of fMRI Data. The MIT Press, 2011. ISBN 978-0-262-01504-2.

[2] Barker AT, Jalinous R, and Freeston IL. Non-invasive magnetic stimulation of human motor cortex.
Lancet (London England), 325(8437):1106–1107, 1985.

[3] Yoav Benjamini and Joseph Hochberg. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57(1):289–300, 1995.

[4] Michael A. Dimyan and Leonardo G. Cohen. Contribution of transcranial magnetic stimulation to the
understanding of mechanisms of functional recovery after stroke. Neurorehabil Neural Repair, 24(2):
125–135, 2010.

[5] Fletcher Dunn and Ian Parberry. 3D Math Primer for Graphics and Game Development. Wordware Pub-
lishing, Inc, 2002. ISBN 1-55622-911-9.

[6] Luis Ibanez and William Schroeder. The ITK Software Guide. Kitware, Inc., 2015. ISBN 978-1930934276.

[7] Ashburner J and Friston KJ. Nonlinear spatial normalization using basis functions. Human Brain Map-
ping, 7(4):254–266, 1999.

[8] Mark Jenkinson and Stephen Smith. A global optimisation method for robust affine registration of brain
images. Medical Image Analysis, 5:143–156, 2001.

[9] O’Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg KE, Nahas Z, McDonald WM, Avery D,
Fitzgerald PB, Loo C, Demitrack MA, George MS, and Sackeim HA. Efficacy and safety of transcranial
magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled
trial. Biological Phychiatry, 62(11):1208–1216, 2007.

[10] Friston KJ. Models of brain function in neuroimaging. Annual review of psychology, 56:57–87, 2005.

[11] Stefan Klein, Marius Staring, and Josien P. W. Pluim. Evaluation of optimization methods for nonrigid
medical image registration using mutual information and b-splines. IEEE Transaction on Image Process-
ing, 16(12):2879–2890, 2007.

[12] Jean-Pascal Lefaucheur, Nathalie André-Obadia, Andrea Antal, Samar S. Ayache, and Chris Baeken.
Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rtms).
Clinical Neurophysiology, 125(11):2150–2206, 2014.

[13] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an application to stereo
vision. Proceeding DARPA Image Understanding Workshop, pages 121–130, 1981.

[14] David Mattes, David R. Haynor, Hubert Vesselle, Thomas K. Lewellen, and William Eubank. Pet-ct image
registration in the chest using free-form deformations. IEEE Transaction on Medical Imaging, 22(1):
120–128, 2003.

[15] S.F.W. Neggers, T.R. Langerak, D.J.L.G. Schutter, R.C.W. Mandl, Ramsey NF, Lemmens PJ, and Postma
A. A stereotactic method for image-guided transcranial magnetic stimulation validated with fmri and
motor-evoked potentials. NeuroImage, 21(4):1805 –1817, 2004.

[16] Yan Niu, Zhiwen Xu, and Xiangjiu Che. Dynamically removing false features in pyramidal lucas–kanade
registration. IEEE Transaction on Image Processing, 23(8):3535–3544, 2014.

[17] Fitzgerald PB, McQueen S Hoy K, Maller JJ, Herring S, Segrave R, Bailey M, Been G, Kulkarni J, and
Daskalakis ZJ. A randomized trial of rtms targeted with mri based neuro-navigation in treatment-
resistant depression. Neuropsychopharmacology, 34(5):1255–1262, 2009.

55

56 Bibliography

[18] Josien P. W. Pluim, J. B. Antoine Maintz, and Max A. Viergever. Mutual-information-based registration of
medical images: A survey. IEEE Transaction on Medical Imaging, 22(8):986–1004, 2003.

[19] D. F. Shanno. Conditioning of quasi-newton methods for function minimization. Mathematics of Com-
putation, 24(111), 1970.

[20] Martin Styner, Christian Brechb ühler, Gàabor Szèkely, and Guido Gerig. Parametric estimate of intensity
inhomogeneities applied to mri. IEEE Transaction on Medical Imaging, 19(3):153–165, 2000.

	Introduction
	Functional MRI
	FIONA
	TMS & Neural Navigator
	SPM
	Overview

	The Software Design
	Software Design
	Functional Requirements
	Regulatory Requirements

	Pre-Processing
	Slice-Timing Correction
	Realignment
	Rigid Body Transforms
	Similarity Metrics
	Optimizers
	Interpolation
	Implementation Details

	Co-Registration
	Multi-Stage Registration
	Mattes Mutual Information Metrics
	Multi-Resolution Approach

	Normalization
	Spatial Smoothing
	Temporal Filtering

	Benchmarking of Realignment
	The Experiment
	Result and Discussion
	Accuracy
	Time Cost
	Robustness to Noise

	Conclusion

	Basic Statistic Analysis
	General Linear Model
	Finite BOLD Response
	Correlation Method
	Parameter Estimation

	Hypothesis Testing
	Student's t_Test
	Statistical Parametric Mapping

	Multiple Comparisons
	Single Voxel Cases
	Bonferroni Correction
	False Discovery Rate
	The Whole Pipeline

	Summary
	NIfTI Files
	Flowchart of Functions in FIONA
	Parameters Details in Optimizer Benchmarking
	Bibliography

