

CEAS 2015 paper no. 185 Page | 1
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

A METHODOLOGICAL APPROACH FOR THE OPTIMISATION OF THE PRODUCT DEVELOPMENT
PROCESS BY THE APPLICATION OF DESIGN AUTOMATION
Bram Mulder* , ** (bram.mulder@ke-works.com)
Dr. ir. G. La Rocca**, Dr. ir. J. Schut*, Dr. ir. W.J.C. Verhagen** (Delft University of Technology)
*KE-works, Molengraaffsingel 12-14, 2629JD, Delft
**Delft University of Technology, Kluyverweg 1, 2629HS, Delft

ABSTRACT
A short lead time of the Product Development Process (PDP) is an important competitive advantage

for companies. Design automation solutions provide a means to reduce the lead time and improve
quality, but their development requires some investment. Before a company can commit to the
development of an automation initiative, it requires an estimation of the expected costs and benefits. The
objective of this research is the development of a decision support system, based on multi objective
optimization techniques and Discrete Event Simulation, to evaluate the effect of introducing automation
solutions in a given PDP. The system is able to generate Pareto fronts showing optimum combinations of
lead time reductions versus investment cost for automation. For each of the solutions on the Pareto front,
the system provides the suggested list of PDP activities to be automated and their level of automation.
The system functionality has been successfully demonstrated by means of a use case concerning the PDP
of an aircraft component.

1 INTRODUCTION
In the past decades a clear transition can be seen from fully human-based production techniques

towards more automated systems. This transition is focused on reducing lead time, decreasing process
cost and improving product consistency and quality. The same trend of adopting more automation can
also be seen in the Product Development Process (PDP), driven by a growing focus on PDP improvement
as a potential source of competitive advantage [3]. In particular, for many companies lead time duration
is the most important performance measure of the development process, because a reduced time-to-
market (i.e. lead time) results in a reduction in cost-of-delay and a larger market share [17]. Therefore a
reduction in lead time is worth an investment for companies. Design Automation (DA), Knowledge Based
Engineering (KBE), Artificial Intelligence (AI) and Computer Aided Design (CAD) are examples of
computer based technologies adopted to improve the PDP.

Automation is in literature often regarded as a binary option for process improvements, meaning that
a process either is fully automated or not at all. This is not a realistic point of view since automation can
be seen as an incremental innovation. In practice it is often not possible or even desirable to automate a
full process at once due to technology challenges, but also in consideration of the human side adoption of
the automated solution [20]. Another practical aspect playing in favour of incremental innovation is the
available budget of the company. Often concept proof of concept is generated before a whole process
can be automated. Another important challenge is the continuous adjustment in processes and products,
which lead to the need of extremely flexible automation solutions [24]. Furthermore it is difficult and
often impossible, to predict the impact of single changes in the configuration of a process (e.g. by the
introduction of automation solutions for specific tasks) of the overall PDP [7].

Before a company can commit to the development or acquisition of automation solutions,
management needs critical information such as the set of PDP activities to automate first, the expected
gain in lead time reduction, the cost associated to the implementation of different levels of automation or
to the reconfiguration of the whole process to a specific level of automation (LoA). Figure 1 qualitatively
displays the current situation where a company incrementally applies automation without knowledge of

CEAS 2015 paper no. 185 Page | 2
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

the shape of the Pareto front (i.e. the set of optimal lead time-investment cost combinations). Only a
perceived Pareto front (i.e. bold guestimates based on intuition) with a high uncertainty is available.
Figure 2 illustrates the desired situation in which a feasible region is known, consisting of many different
PDP architectures, each one consisting of the complete sequences of process activities, with their level of
automation and employed resources. Within this feasible region knowledge is available on the optimal
solutions on the Pareto.

For companies the process architectures on the Pareto front are those of highest interest since they

represent optimum combinations of lead time and required investment cost, i.e. PDP architectures for
which one of the two objectives (lead time and investment cost) cannot be improved without
deteriorating the other. The Pareto front can be used to estimate the investment costs necessary to
achieve a certain lead time reduction, or, vice versa, the amount of lead time reduction that can be
achieved with a given budget to invest in automation solutions.

Literature addresses aspects of these challenges but lacks two important aspects. Firstly, there are no
models able to predict the cost and benefit of automation on the PDP performance, whilst such
knowledge is of paramount importance for the management that must decide whether is convenient to
invest on the development of automation solutions [25]. Secondly, the automation solutions considered
in PDP literature generally do not take into account the option of selectively applying different levels of
automation on different (sub)activities in the PDP.

This paper proposes a novel methodology to predict the effects in the PDP performance produced by
the implementation of automation solutions. More specifically, the proposed methodology considers the
complete process in the current state (hence it does not aims at restructuring it) and evaluate the
influence of the application of specific automation initiatives, at single (sub) activity level, on the overall
process lead time and investment cost.

To achieve this objective a new methodology is developed (i) to model any PDP as a combination of a
pre-defined set of specific activities and (ii) to define different levels of automation for these activities.
Subsequently, metrics are developed to measure the impact of different levels of automation on different
activities, both in terms of activity lead time reduction and implementation cost. A discrete event
simulator is developed which utilises the proposed process model and metrics to analyse, among others,
the lead time and automation cost for the overall process (for a given process architecture). Finally, the
simulator is connected to an optimiser which tries to find the most convenient level of automation for
each of the PDP activities, in order to generate the Pareto front qualitatively illustrated in Figure 2.

Figure 1: Current trade-off between cost and lead
time in a PDP

Figure 2: Improved trade-off between cost and lead time in a PDP

CEAS 2015 paper no. 185 Page | 3
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

The proposed methodology and the analysis and optimization framework are demonstrated by
application to an industrial case study. The case study concerns the conceptual design phase of an
aircraft component (in particular the study of the rudder-fin connection) performed by a multinational
aerospace enterprise. The metrics used in this study to estimate the cost of automation (for various levels
of automation) and associated lead time reduction for different type of PDP activities are based on the
experience gained by KE-Works during the deployment of KE-Chain, their Workflow Management System,
in various aerospace PDPs. For the discrete event simulation and optimisation, Simpy and the Optimus®
toolkit are used, respectively.

2 BACKGROUND
In this field of PDP research many definitions are used and multiple viewpoints on the same topic

exist. The goal of this section is to provide a clear overview and indicate how these are used in this
research.

2.1 Product Development Processes
The definition of the PDP used in this article is adopted from Krishnan et al. [11]: ”The product

development process is considered to be a process of transformation of input information about customer
needs and market opportunities into output information which corresponds to manufacturable designs,
and functional tooling for volume production.”

In this research the focus is on single company, multiple department projects, although the proposed
methodology can be extended as necessary.

In literature the PDP is often characterised by terms like ’creative’, ’iterative’, ’collaborative’ and
’innovative’ [45, 10, 13, 6]. These PDP specific characteristics provide specific challenges which differ
from those encountered, for example, in the manufacturing process. A selection of the characteristics
relevant to this research is discussed in the following sub-sections.

Iteration: The cause of iteration can differ; often a distinction is made between planned and
unplanned iteration [28]. Planned iterations occur when a task is attempted without a complete set of
information and hence assumptions are made that need to be verified later on. Unplanned iterations
occur when activities are repeated due to unexpected failure, for example due to a change in the
requirements or by failing to meet a requirement.

Rework: Repeating or refining a task (i.e. rework) is a consequence of iteration. In many cases,
iteration has a second order effect in terms of rework: if one task changes many subsequent tasks need
to be adjusted too. Literature discusses this effect extensively and methods are proposed to quantify the
probability of rework in the case of a change, and the extent of rework necessary for the whole task (e.g.
is it necessary to perform the full task again or only a selection of the task activities) [27]. Also the
concept of an improvement curve is discussed, meaning that the duration of a task decreases at each
iteration performed by a human resource, due to the cumulated experience and increased ability [4].

Collaboration: The PDP of complex engineering products is inherently a multidisciplinary process as
discussed by Reed et al. [16] in the context of aerospace industry. Multiple disciplines, often clustered in
departments, need to interact and exchange information and trigger each other to start an activity.
These collaborative activities have an influence on the performance of the PDP [5].

2.1.1 Process	modelling	of	product	development	
Many sources in literature propose methods to model the PDP taking into account, among others, the

characteristics mentioned in Section 2.1. All of these methods are based on the observation of specific
behaviours which attempt to capture. For example, models are proposed to account for the overlapping
of processes [23], iterative loops [21] and the dynamic and stochastic aspects of the PDP [8].

Most PDP models use an activity network as a fundamental framework [6]. Here the process is viewed
as a group of related activities that work together to create a result of value [9]. The PDP is a

CEAS 2015 paper no. 185 Page | 4
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

heterogeneous process, meaning that it consists of different types of activities, each having its own
characteristics. Most process models do not make a distinction about what the content of a task is (i.e. a
task is not decomposed into separate and different types of activity). For an extensive review on activity
network-based process model, see Browning and Ramasesh [6].

According to Browning the process architecture can be defined as the elements of process activities
and their pattern of interaction [4]. This means that the process architecture not solely defines the
elements of the activity itself, but also its interaction with the other activities.

The Design Structure Matrix (DSM) is frequently used to (re)structure a process by adjusting the
sequence of activities, while taking into account the input/output information relation between activities
[28]. Often, it is used to provide precedence constraints in simulations, but lacks the ability to efficiently
describe activity parameters such as activity lead time and resource type). Thereby, in order to perform
process simulation studies, DSMs are often combined with other modelling techniques, such as Business
Process Modelling Notation (BPMN).

2.1.2 Key	Performance	Indicators	
This research focuses on improvement of the PDP. Therefore it is important to define a suitable set of
performance indicators and look at strategies to improve them. In literature three common Key
Performance Indicators (KPI’s) are based on time, cost and quality [2, 12, 16, 33]. Upon investigating
these KPI’s, a few interesting observations can be made. Firstly, most of the authors do not quantify the
KPI’s. This is in particular the case for product quality, which is often mentioned, but virtually never
quantified to a measurable performance indicator during the PDP. Secondly, most authors focus on a
single KPI. Even when multiple KPI’s are addressed in one research, most of the optimization studies are
performed on a single KPI (i.e. no multi-objective optimisation). Since the previously mentioned KPI’s are
very broad the KPI’s used in this research are discussed in more detail in the following paragraphs.

Time: Two relevant KPI’s addressed in this research are lead time and process time. Lead time defines
the total time from the beginning of the project until the end and consists of process time and waiting
time [2]. Process time is defined as the time a resource is occupied by an activity over the course of a
process. Other examples of performance indicators used in literature are waiting time [12], iteration time
and time schedule risk [4].

Cost: Product cost, process cost and development cost are just some examples of cost indicators
discussed in literature. The main focus of this research is on process and investment cost. Process cost is
the cost of the resource being occupied by a task and is a recurring cost in the process. Investment cost
is the total cost for an investment (e.g. to develop an automation solution for a certain process activity)
and is a non-recurring cost.

2.2 Automation in the PDP
Automation can have a high impact on the performance of a process. Automation is a very broad term

and it is applied in many different industries and processes [40, 14]. Therefore it is important to have a
clear understanding of how to see automation in the PDP in this article.

2.2.1 Definition	of	automation	
Hart et al. [10] define automation as the ability of computer systems to perform a function without

human support. Within the complex structure of any (PD)process, a number of tasks can be identified,
each one implying the execution of a number of activities. In general, each one of these activities offers
the opportunity to be executed with a different amount of human intervention. In other words, each
activity offers the opportunity to implement a different level of automation. According to the authors,
design automation is about the process of transferring domain knowledge, in the broadest sense, from
the expert to a computerized system, such that the system can systematically (re)use the captured
knowledge to reduce, or eliminate the human involvement in some or all of the activities involved in the

CEAS 2015 paper no. 185 Page | 5
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

PDP. It appears that different levels of automation can be established, according to the granularity level
used to decompose a design process.

2.2.2 Levels	of	automation	
Levels of automation have been researched in different application fields [22, 17]. Several models are

proposed in literature, which differ, also significantly, in the identified number of automation levels and
their granularity. For example, models are proposed with a number of automation level ranging from
three [1] up to ten [18]; models exist that account for the different activities that are included in a task,
whilst others see a task as one block, to which one level of automation can be assigned.

A general limitation of the level of automation metrics found in literature, also of those with higher
granularity, is the inability to address the collaborative aspects in the PDP. No existing model, for
example, defines levels of automation for typical PDP tasks such as “triggering next step”, “storing
information”, “reporting”, etc. In conclusion, none of the level of automation models available in literature
was deemed suitable for the purpose of this research; thereby a new one was devised, which is
elaborated in detail in section 4.2.

2.2.3 Information	automation	
In complex PDPs different departments are involved, often at different physical locations. These

departments interact by exchanging information. To be able to work efficiently and effectively it is
needed that this information is available in the right place, at the right time and in the right format [4].
Brandao and Wynn [2] estimated that 30% of the development time is spent on searching and
interpreting information. This already shows that there is a lot of potential for reducing waste in this
information flow by applying automation. The automation of the information flow is about improving the
information relevance and currency.

The information value automation concerns the automation of the activities directly adding value to
the information model of the product under development. This can be achieved by the application of
computer Design Automation systems (DA). DA includes all types of dedicated computer applications
ranging from tools to automate calculations (e.g. spreadsheets) to complex KBE applications able to
perform generative design based on a set of input parameters.

2.2.4 Effects	of	automation	
Automation has a lot of potential in improving the performance of the PDP in terms of lead time,

process cost and product quality. However, also risks exist in the application of automation. For example,
automation can negatively influence the complacency of the engineer and the situational awareness of
the engineer [26]. Furthermore automation provides an easy option to generate a design and does not
force the designer to think creatively for alternative solutions, hence reducing innovative and creative
ideas. These effects are important to take into account upon trading off alternative levels of automation,
however they are hard, if not impossible, to predict and quantify.

3 RESEARCH CONTEXT
This research follows the work performed by Schut et al. [19] and Verhagen et al. [41] into

development process optimisation. The research of Schut et al. resulted in a Value Scan for process
improvements by means of reducing wasted time and optimising the information flow. This method was a
very high level scan of the process (i.e. at low granularity). In the succeeding research by Verhagen et al.
the implementation of information flow automation in processes was assessed by using the IMPROVE
method [25].

Based on this research the following methodology for the assessment of the application of automation
in the Product Development Processes is proposed. This methodology consists of several steps and is
visualised in Figure 3.

CEAS 2015 paper no. 185 Page | 6
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

Figure 3: Steps involved in the proposed methodology

The primary focus of this research is the process analysis and optimisation. The objective is to develop
a trade-off method for the optimisation of the level of automation of the product development process by
using process simulation.

Optimisation of a given fixed process without restructuring proves to be of great relevance. Especially
in industries with certified processes it is costly, or even impossible, to modify the structure of their PDP,
hence the application of automation should be evaluated without restructuring the PDP. However, the
authors are aware of the fact that a global and comprehensive optimization of the PDP cannot be
achieved without considering the synergetic effect of automation solutions deployment and process
structure restructuring.

4 PROPOSED MODELLING FRAMEWORK
To be able to analyse and optimise the levels of automation of activities in the PDP a framework is

proposed which is able to transform process specific inputs into corresponding performance outputs, for
different process architectures. In a mathematical format, this is shown in Equation 1.
ࢠ ൌ ݂ሺ࢞, ሻ࢟ (1)

Here ࢠ is the output vector with the relevant information (KPIs) required to make a trade-off between
different options. These KPIs include, for example, lead time, automation investment cost and process
cost. ࢞ is the design vector containing all the adjustable process variables, such as the levels of
automation of the single process activities. ࢟ contains the input parameters used to model a given
process, such as the sequence of the various activities in the process and the parameters to compute the
development cost of different level of automation solutions and their lead time reduction on the process.
The function transforms the design vector and input parameters into the desired output. This is illustrated
in Figure 4, where also the position of the optimizer is shown, which will take care of finding the optimal
vector ࢞ yielding the best ࢠ.

Figure 4: Overview of the proposed PDP simulation and optimization framework

CEAS 2015 paper no. 185 Page | 7
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

Sections 4.1 and 4.2 will elaborate on the proposed methods to model a generic process as a network
of five predefined types of activity, and to define the levels of automation. The following sections (4.3,
4.4 and 4.5) describe the KPIs estimation methods used by the simulator. Chapter 5 discusses the set-up
of the PDP simulation system and its implementation in the optimization framework.

4.1 Process activities modelling
A process can be modelled at different levels of granularity. The structure proposed in this research is

illustrated by the example in Figure 5. Since the goal is to investigate the effect of automation on a
generic process, the model decomposes any specific process in identifiable specific tasks (the first two
levels in Figure 5), and, finally, each specific task into a set of generic activities. These activities can be
seen as the building blocks of any PDP.

Figure 5: Decomposition from process level to activity level

Based on extensive literature research and investigation of four industrial cases, five activities were
selected, from now on simply referred to as activities, as essential building blocks for any process. These
are Acquire, (Pre/Post-)Process, Analyse, Decide and Implement. A comprehensive definition of these five
activities is given in Table 1. It should be noted that no fixed sequence or amount of activities is
prescribed for a task. As examples, one could model the Task “determining bearing parameters” in Figure
5 as a combination of the activities Acquire, Decide and Implement. The Task “calculate lug parameters”
could be modelled as a combination of the activities Pre-process, Analyse and Post-process, where both
the Pre and Post-process activities are of the same ’Process’ type activity described in Table 1.

Table 1: Comprehensive description of activity types

Activity type Description
Acquire This type of activity is concerned with acquiring all the starting conditions for a subsequent task from an external source. A starting

condition is for example a trigger, knowledge or a physical product. These starting conditions are not transformed, but acquired and
transmitted in the raw format they were found available.

(Pre/Post‐)
Process

This activity structures the information and represents it in such a way to improve the relevance of the information. In this task no
information is added to the product model other than transforming the units or format of contained information. The selection and
extraction of a subset of the model information is also considered a pre/post process activity.

Analyse In an analysis activity information is transformed and new information is created. This information is added to the information model.
Knowledge is used to transform the inputs into outputs. Examples include modelling, simulating, calculating.

Decide This activity is a gateway where a decision is made with an impact on the process. At least two alternatives should be present to decide
between. In this task no information is added to the product model.

Implement This activity accounts for all the interaction with external (re)sources required to successfully continue the process. No new information is
created but it is stored at a location. This task also accounts for triggering the next task.

In practice, any process of any type of complexity can be split into tasks and eventually modelled as
collections of these five predefined activities. The “owner” of each task can define the given task as a

CEAS 2015 paper no. 185 Page | 8
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

sequence of (some or all of) these activities, with their relative duration distribution in the given task. For
example, the Task “determining bearing parameters” of total duration TD in Figure 5 can be defined as
follows: 0.60TD Acquire, 0.1TD Decide and 0.3TD Implement. By means of a Design Structure Matrix
(DSM) the interaction between the activities of the various tasks can be modelled.

4.2 Levels of automation modelling
In section 2.2 the need for a modelling method for levels of automation was discussed. The proposed

model is summarised in Table 2.

Table 2: Definition of levels of automation for the PDP activity types

LoA Acquire Process Analyse Decide Implement

4 The system is the sole
resource and
automatically executes
the activity and acquires
the required information

The computer is
responsible to structure the
information in such a way
that the next activity
accepts it to be in the right
format.

Computer is fully
responsible for this activity.
It is able to interpret the
provided information and
determine how to execute
this activity successfully.

The computer decides and
acts autonomously
without interference of the
human.

The computer is
responsible for the correct
execution of the
implementation activity.

3 The activity is defined
and the system suggests
what to acquire and
where it can be
acquired. The source is
responsible to acquire
the items from the
source. All information is
available from a single
source of truth.

The computer supports the
user in processing the
information. Hence the
knowledge for processing
the information is in the
system but the resource
needs to decide on how to
apply this knowledge.

Computer supports the
execution of the activity by
providing tools and
methods to perform
calculations. Human
interaction is still needed to
determine intermediate
steps or to verify the result.

Computer supports the
execution of the activity
by providing tools and
methods to perform
calculations. Human
interaction is still needed
to determine intermediate
steps or to verify the
result.

The human executes the
implementation activity.
The computer system
supports the human and
provides information on
what to do and how to do
it. System is actively
involved by preventing
certain actions or
promoting others.

2 The activity is defined
and the system suggests
what items need to be
acquired and where to
find them. Resource is
responsible to acquire
items from the source.

The human is responsible
to process the information.
It is defined how to
process the information for
example by using
templates.

The human is responsible
for this activity and is
assisted by handbook
methods and procedures.
The human remains the
main source for the
analysis.

Human is still responsible
but the computer shows
all relevant alternatives.

Human is responsible for
the implementation activity
but is supported by the
system. System provides
relevant information.

1 The human is the sole
resource for the activity.
Hence no assistance is
provided by a system,
manuals or procedures.

The human is responsible
for processing the
information. A computer or
other system with basic
features can be used to
enhance information
relevance.

Human is the only source
for the methods and
knowledge used in this
task.

The human is responsible
for the decision and the
system does not provide
assistance.

Human is fully responsible
for the implementation
activity. No assistance
offered by the computer.

For each one of the activity types defined in section 4.1, four levels of automation are proposed,

ranging from level 1, in which the human is the sole resource, to level 4, where full automation is
provided by a computer. On the basis of the definitions provided in Table 2, each task owner in the PDP
process should be able to describe the current level of automation, hence the type of resources involved
in the execution of the encompassed activities.

4.3 Activity duration estimation method
The influence of automation on the activity lead time can differ per task and per activity type. This

influence is captured in a coefficient accounting for the activity type and level of automation. This
coefficient represents the percentage of the time a task would take, measured with the normalised time
in a condition of a level 1 of automation.

∗ݐ ൌ
∗݆݅ܯܦ ∙ ݐ
݆݅ܯܦ

 (2)

CEAS 2015 paper no. 185 Page | 9
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

The coefficients are given in the Duration Matrix, ܯܦ௜௝, and used in determining the estimated activity
duration at another level of automation. In this matrix the subscript ݅ is the task activity type (e.g.
acquire) and subscript ݆ is the level of automation. The activity lead time is calculated by using Equation
2 where ݐ∗ and ݆∗ indicate the time and level of automation in the new case respectively.

Table 3: Example time estimation coefficients (DM)

 Level of automation
 1 2 3 4

Acquire 100% 80% 50% 10%

Process 100% 70% 40% 20%

Analyse 100% 90% 60% 15%

Decide 100% 65% 40% 30%

Implement 100% 60% 30% 5%

Table 4: Example Knowledge Acquisition cost coefficients (CMKA)

Level of automation
1 2 3 4

Acquire 0% 30% 70% 100%

Process 0% 40% 80% 100%

Analyse 0% 45% 90% 100%

Decide 0% 30% 60% 100%

Implement 0% 30% 70% 100%

In this research the coefficients of ܯܦ௜௝ were determined by performing a dedicated workshop. In this

workshop three response groups executed the same process four times, each time using a different level
of automation. The response groups varied in their level of expertise on the process used in the
workshop. The values provided in Table 3 are representative but fictitious. They are different than those
measured in the workshop, which cannot be published for confidentiality reasons.

The authors are aware that a correct determination of those coefficients is essential to the prediction
capability of the proposed method. It will be crucial for any company that is willing to adopt the proposed
method to properly estimate such values and continuously improve and update them, based on internal
project knowledge.

4.4 Process cost estimation method
The process cost of an activity is based on the cost of employed resources and activity duration. If

multiple resources are involved in an activity the sum of the cost per resource determines the activity
process cost. In activities without human interaction (i.e. level 4 of automation) the resources are not
utilised and hence the activity process costs are assumed to be zero. Here costs such as Workflow
Management System licenses are considered to be an investment and are accounted for in the
investment cost.

In the background section it was discussed that the use of automation also enables the use of
different (e.g., cheaper) resources. No data was available on this topic and hence it is not accounted in
the proposed proof of concept. In the case of iteration some models assume a certain learning curve or
improvement curve, i.e. a human resource is likely to take increasingly less time to perform the same
activity again and again within an iterative process. For simplification, also this effect was not taken into
account in the proposed framework.

4.5 Automation investment cost estimation method
Another metric of importance in this framework is the investment cost required to automate an

activity to the level of automation as stated in the design vector. In order to provide a meaningful
estimation of the required investment cost, it is necessary to take into account the current level of
automation and the type of activity to be automated. Software cost estimation tools assessed in literature
research provided many different methods but remained solely applicable to large projects.

The cost estimation technique internally used at KE-works for knowledge engineering business was
therefore adopted and modified for use in this research. This technique uses both parametric relations
based on empirical data and expert judgement and a roll-up technique. Based on the analysis of several
projects performed by KE-works, the development efforts required to bring a certain process activity to a
target level of automation were defined. The resulting cost estimation method proposed in this research
uses a similar coefficient matrix as the one described in the section 4.3. For each type of activity, and for

CEAS 2015 paper no. 185 Page | 10
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

each delta in level of automation, a cost coefficient value was determined on the basis of the technical
exercises (e.g., knowledge acquisition, KBE applications development, etc.), required to produce and
deploy the given automation solutions. An example of knowledge acquisition cost coefficient matrix (CM1)
is given in Table 4, which was defined on the basis of Milton [13] and adjusted with empirical data
provided by KE-works. For each technical exercise a unique Cost coefficient Matrix (CM) is proposed.

Each coefficient in the matrix describes the percentage of the cost required for the full automation of
the activity. For some activity types at a specific level of automation a cost attribute does not need to be
taken into account, leading to a coefficient matrix with a more discrete nature (e.g. the cost of a software
license purchase is only taken into account at a level 4 of automation). The method takes into account
the current level of automation and estimates the extra cost to increase the current level of automation.

Some activities taken into account for the estimation of the investment cost have a reduced cost in
the case of frequent use of this activity. An example is the cost estimation of the integration of an
external application; this cost reduces if the same application is integrated multiple times in a project.
This effect is also taken into account for license cost and server cost.

5 SIMULATION AND OPTIMISATION FRAMEWORK
The aspects discussed in the previous sections represent the main ingredients of the integrated

framework for PDP analysis and optimization discussed here.

5.1 Simulation algorithm
By means of simulation the process performance is analysed in terms of lead time, process cost and

investment cost. Features are implemented in the simulator to account for important PDP characteristics,
such as (number of) iterations, interruption, resource constraints and waiting time.

The simulation PDP framework developed in this research is based on SimPy, a Discrete Event
Simulation library, in combination with Object Oriented Programming (OOP) in Python[15]. In Discrete
Event Simulation (DES) state variables only change at specified points in time, referred to as events. The
simulation jumps from event to event and skips the time when no events occur and hence no state
variables are changed. Furthermore DES is able to process parallel events without yielding a high
computing power. The simulation ending condition is when no events are to be executed or when no
event can be executed any more.

The model uses a class to model the activities in the workflow. These activities can be a regular
activity (i.e. implement, process, analyse, implement) or a gateway activity (i.e. decide), from now on
referred to as an entity and gateway entity respectively. In the case of a gateway entity it has a feedback
loop to another entity or multiple entities. Before the simulation starts an environment is created in
which the entities with corresponding properties and states are initiated based on the provided inputs.
Within this environment the entities are allowed to interact by for example sending signals as will be
discussed in section 5.1.2.

The entities are subject to multiple constraints. Resource constraints and precedence constraints are
the main constraints. At the start of the simulation (t=0, unless otherwise defined) all entities assess if all
their constraints are met; the process of assessing this is referred to as responding. Once all constraints
are met the entity starts and is completed after the duration. This duration is determined based on the
inputs and by means of the method explained in section 4.3. During the full duration the entity has
claimed the required resources from the resource pool, hence no other entity can claim the same
resource at the same time. Upon completion it interacts with other entities by sending a signal to the
succeeding entity, or entities, triggering them to respond.

The adopted DES simulation algorithm distinguishes from other algorithms by the way it deals with
complex PDP properties like iteration, rework and collaboration. These aspects are addressed in the
following subsections.

CEAS 2015 paper no. 185 Page | 11
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

5.1.1 Iteration	modelling	
During the initialisation, based on the inputs, the model determines whether an entity causes

feedback. If that is the case, the entity is of the type gateway. The decision whether or not to feedback is
made in the model based on the current state of the entity. The entity checks the total times the entity
has been completed and verifies if that is below the set amount of iterations. If this is the case then the
gateway entity sends a reset signal to the entities in the list of feedback accompanied with the ID of the
sender (i.e. the current gateway entity). The entities receiving this reset signal stop their process if they
are running. How this entity receiving the signal deals with this feedback is discussed in the next
paragraph on rework modelling.

5.1.2 Rework	modelling	
Rework is modelled by sending reset signals sent between entities. If an entity receives a reset signal

the entity is stopped and resets the progress of the activity to zero. Subsequently the entity forwards the
signal to its succeeding activities to cause a trickle-down effect. This trickle-down effect accounts for the
successive feed-forward rework as discussed by Cho and Eppinger [7]. This policy has been illustrated in
Figure 6. As soon as the gateway entity triggers the feedback, all the work performed by completed
activities 1, 2, 3 and 4 is reset. Also the work in progress in activity 5 is stopped and reset to zero. It is
important to note that it is assumed that rework in a task always leads to rework in its succeeding tasks if
the succeeding task has started or has already been completed before the reset signal.

Figure 6: Illustration of rework policy

5.1.3 Collaboration	modelling	
Collaboration is modelled by using penalties for transactions between different resources. This penalty

is a delay before starting the actual activity and is determined by the user. The penalty is not applicable
to every activity. Each activity verifies if the resources of the previous tasks are a subset of its current
resources, if this is not the case then the time to wait is accounted for. This applies in the case human
resources are involved. In case of fully automated tasks, no delay is applied because of the assumption
that the automated system has always a computer resource available.

5.2 Optimisation strategy
The simulator described in the previous section is able to analyse any given process architecture and

output results important process KPIs like lead time and investment cost. The goal of this research is to
provide insight in the trade-off between costs and benefits for the use of automation. Because of the
multiple objective functions of interest, lead time and investment cost, a Multi-Objective Optimisation
(MOO) problem is at hand. As illustrated in Figure 5, the process simulator is connected with an
optimizer, with the final objective of finding the set of possible process architectures resulting in an

CEAS 2015 paper no. 185 Page | 12
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

optimal outcome for the multi-objective problem. These process architectures are those located on the
previously discussed Pareto front of Figure 2.

In order to generate such a Pareto front, a possibility is to perform an exhaustive search; this would
imply assessing all possible permutations of the design vector, hence all the possible combinations of
level of automation for each activity in each task of the process. The total amount of possible
permutation experiences a combinatorial explosion with an increasing number of activities. An exhaustive
search would therefore result in too long computational time for the proof of concept purpose of this
framework; hence a search algorithm is preferred.

Due to the discrete modelling of the levels of automation a gradient-based search method cannot be
used. An evolutionary or genetic algorithm is proposed, specifically a Non-dominant Sorting Evolution
algorithm. The algorithm from the OPTIMUS software application is used for implementation.

6 FRAMEWORK TECHNICAL IMPLEMENTATION AND FUNCTIONAL VERIFICATION
The elements discussed in previous paragraphs have been implemented in the integrated framework

illustrated in Figure 7. This integrated framework assists in the knowledge acquisition, structuring,
simulation and optimisation of the process architecture. In this case, the KE-chain tool was used for two
purposes: as a systems integrator and Workflow Management System (WFS). It integrates the system by
allowing all different modules and applications to exchange information. Furthermore it assists the user
as a WFS by guiding through the different phases of the full methodology (see Figure 3).

Figure 7: Integrated framework overview as part of the full methodology illustrated in Figure 3

In the first step the process is defined and its specific settings stated. To this purpose, Microsoft Excel in
combination with custom Visual Basic for Application (VBA) scripts was used to provide a user friendly,
and partly automated, interface to define the process to be analysed and optimized. In the second step
the process is analysed and optimised using the simulation algorithm and optimisation strategy discussed
earlier.
A number of simple test cases are discussed here to illustrate the functionality of the framework. A much
more complex test case from an industrial application is discussed later in section 6.
The following test cases are all based on the same process configuration, referred to as base case. In
each test case one characteristic is adjusted to demonstrate the difference in behaviour of the system.
Flowcharts of the test cases are illustrated in Figure 8. All activities have an initial duration of 20 hours.

CEAS 2015 paper no. 185 Page | 13
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

Figure 8: Flowcharts of multiple test cases

6.1.1 Test	case	1:	Iteration	
This case displays the effect of iteration in a process. One iterative loop is added where task 3

feedbacks to task 2. In Figure 9 it can be seen that the Pareto front has shifted. Due to the iteration the
process has a longer lead time. The slope of the Pareto front also has changed, implying that a larger
lead time reduction than the base case can be obtained for a certain investment in automation solutions.
This slope eventually matches with the slope of the base case when the iterative tasks have been fully
automated.

Upon inspection of the levels of automation on the various activities in Figure 10 it can be seen that
the points on the Pareto front correspond to process architectures with increasing levels of automation of
the tasks involved in the iteration. These results match the expectations of the interviewed experts. In
Figure 10 the points on ‘vertical lines’ correspond to a process architecture in Figure 9.

6.1.2 Test	case	2:	Parallelisation	
In this case the precedence constraints on activities are changed and 2 and 3 can be processed in

parallel. This case is investigated for two different scenarios since resource availability influences the
results. In scenario I only one resource is available, scenario II has two resources. In Figure 11 it can be
seen that the Pareto front of scenario I is similar to the base case. This is as expected since with only one
resource the process is not able to process parallel activities.

For scenario II, however, a different front can be seen. The Pareto front flexes at a lead time of 30
hours. Upon investigation of the automation initiatives this can be explained. In Figure 12 the average
levels of automation at different points on the Pareto of scenario II are plotted. Here it can be seen that
at higher lead times (i.e. on the lower right side of the Pareto front) the non-parallel activities are first
automated. Once these non-parallel activities have been (fully) automated the parallel activities (2 and 3)
subsequently increases the level of automation. This is in accordance with the expectations since a higher

50

70

90

110

130

150

170

190

0 5000 10000 15000 20000 25000

Le
ad

 ti
m

e
[H

ou
rs

]

Investment cost [EUR]

Iterative
case

Base case

Config. i

1

2

3

4

50 100 150 200

A
ve

ra
ge

 ta
sk

 L
oA

Lead time [Hours]

Task 1

Task 2

Task 3

Task 4

Config. i

Figure 9: Pareto front for the lead time and investment
cost for the base case and iterative case

Figure 10: Average level of automation per task

CEAS 2015 paper no. 185 Page | 14
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

level of automation for a parallel activity only becomes effective for a lower lead time if the other parallel
task is also automated.

6.1.3 Test	case	3:	Resource	cost	
In this case one task utilises a different resource with a higher resource cost (in this fictitious case
100%). In this case it would be of no use to perform the multi-objective optimisation (MOO) for lead time
and automation investment cost since resource cost has no effect on lead time and only a relative small
effect on automation investment cost. Hence a MOO for lead time and investment cost would yield a
similar Pareto front. Therefore a MOO for the lead time and the number of projects needed until Break
Even Point was performed.

Figure 13 displays a selection of architectures on the Pareto front where it can be seen that all tasks
are incrementally automated. When the cost of the resource of Task 3 is increased, a different graph is
generated. This is illustrated in Figure 14, where it can be seen that Task 3 (using the expensive
resource) is always fully automated. Hence, as expected, the optimization framework suggests
automating first the task with high resource cost, ceteris paribus.

6.2 Industrial application case
The proposed methodology and optimization framework is applied to an industrial Product

Development Process (PDP). The selected case is the conceptual design process of the hinge connections
of a rudder assembly on the vertical tail of a business jet aircraft. This case provides a representative
case of complex PDP, featuring many interesting characteristics: iterative loops resulting in rework, many
involved departments and a mix of creative and repetitive tasks to name just a few.

0

20

40

60

80

100

0 10000 20000 30000 40000

Le
ad

 ti
m

e
[H

ou
rs

]

Investment cost [EUR]

Base case

Scenario I

Scenario II

1

2

3

4

15 25 35 45 55 65
A

ve
ra

ge
 ta

sk
 L

oA
 [-

]
Lead time [Hours]

Task 1

Task 2

Task 3

Task 4

1

2

3

4

20 40 60 80

A
ve

ra
ge

 ta
sk

 L
oA

 [-
]

Lead time [Hours]

Task 1

Task 2

Task 3

Task 4

1

2

3

4

20 40 60 80

A
ve

ra
ge

 ta
sk

 L
oA

 [-
]

Lead time [hours]

Task 1

Task 2

Task 3

Task 4

Figure 11: Pareto front for lead time and investment cost for
parallelisation cases and base case

Figure 12: Selection of architectures on the Pareto
front for Scenario II with average levels of automation

Figure 13: Average level of automation per task for base case
for configuration on the Pareto front

Figure 14: Average level of automation per task for
test case 3 for configurations on the Pareto front

CEAS 2015 paper no. 185 Page | 15
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

The process consists of 14 tasks for a total of 65 activities. The involved departments are stress
engineering, design engineering, cost engineering and weight engineering. In total eight resources are
involved, ranging from cost engineers to the project manager.

A summary of the inputs defining the process is provided in Figure 15 and 16. A full description of the
input data is not relevant to this discussion, but can be found in [14].

The simulation of the process architecture in the current state results in a lead time and total process

time less than 5% different from the lead time and total process time estimated by the experts during
interviews. While the estimation provided by the simulation framework is a bottom-up estimation, the one
provided by the experts was top-down.

The result of the MOO can be seen in Figure 17, where a clear Pareto front is identified.

Figure 17: Pareto front for the Multi-Objective Optimisation for lead time and total investment cost

 The outcome of three different process architectures on the Pareto front (indicated with A, B and C)
is displayed in Table 5.

Table 5: Normalised overview of KPI’s of selected architectures

 Architecture A Architecture B Architecture C

Lead time [Hours] 100 62,35 31,93

Process time {Hours} 100 49,75 22,27

Process cost [EUR] 100 51,45 23,28

Investment cost [EUR] 0 10,1 57,87

A

B

C30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

N
or

m
al

is
ed

 le
ad

 ti
m

e
[E

U
R

]

Normalisedinvestment cost [hours]

Feasible
solutions

Pareto front

Figure 15: High level task inputs of the case study Figure 16: Activity-based Design Structure
Matrix of the case study

CEAS 2015 paper no. 185 Page | 16
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

By investigating all the process architectures on the Pareto front some interesting findings can be
done. Some tasks are not increased in their level of automation, whilst others are on a higher level of
automation in most of the Pareto points. It can be seen that the iterative tasks are automated more
frequently and the tasks outside the iterative loops (e.g. preparation) are only automated in the upper
left region of the Pareto front (i.e. high investment cost, low lead time). Furthermore it can be observed
that the ”Process” activities are the most frequently automated in the architectures on the Pareto front.

7 DISCUSSION
The results show that the proposed methodology is able to analyse a given process architecture and

perform a multi-objective optimisation. The simulator is able to provide an estimation of the total lead
time and investment cost for any process architecture, including different levels of automation on an
activity level. A Pareto front trading off lead time and investment cost is generated by using a Non-
dominant Sorting Evolution Algorithm.

The research has shown that the impact of automation can be estimated a priori, thereby offering the
possibility to estimate the effect of automation in terms of lead time reduction and investment cost, on a
given process architecture.

The methodology shows the potential for incremental innovation. It is able to simulate automation
initiatives on different activities with different levels of automation. This methodology assists in
determining what tasks and activities show the highest potential for this incremental innovation.

7.1 Limitations of the methodology
The authors are aware of some limitations of the presented methodology. Firstly, the model assumes

deterministic activity durations, whilst in reality activity durations in the PDP are stochastic. Unfortunately,
the computational cost would severely increase when accounting for stochastic effects.

This research uses deterministic rework modelling, hence a change always leads to rework in
subsequent tasks. Rework probability, being the chance of a change leading to rework, is thus not taken
into account. Furthermore it is assumed that rework has a constant duration equal to the initial duration,
hence no learning effect is taken into account in the case studies. For this research it has been decided
that the activities causing iterations and the number of times they cause iteration are predetermined in
order to be able to have a deterministic model.

7.2 Model validity
Smith and Morrow [22] use the term ’face validity’ as a measure of validity of a PDP model. According

to the described criteria this methodology would have high face validity. The proposed methodology and
all underlying assumptions, theories and outcomes have been discussed with experts and according to
their judgement the methodology is valid. Smith and Morrow define the next level of validation as the
application of the methodology on existing but retrospective data in industry. The case study has shown
that the methodology is applicable and can be used but due to insufficient retrospective data this was not
validated completely.

7.3 Future research
The integrated framework has been developed in a modular way and can easily be extended and

adjusted when needed. Process restructuring, as discussed in section 3, has not been formally
implemented in the integrated framework. This topic will be addressed in research following this article.

Furthermore it is of great relevance to perform a sensitivity study on the input parameters. Based on
this information the uncertainty of the generated Pareto front can be discussed.

Finally, time and cost coefficients for the proposed framework have been estimated using expert
opinion, an inherently subjective approach. Quantitative approaches to determination of coefficients are
currently being investigated.

CEAS 2015 paper no. 185 Page | 17
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

REFERENCES
[1] Balogh, I., Ohlsson, K., Hansson, G. Å., Engström, T., & Skerfving, S. (2006). Increasing the degree
of automation in a production system: consequences for the physical workload. International Journal of
Industrial Ergonomics, 36(4), 353-365.

[2] Brandao, R., & Wynn, M. (2009, February). Improving the New Product Development Process through
ICT Systems in the Aerospace Industry–a Report on Case Study Research. In Information, Process, and
Knowledge Management, 2009. eKNOW'09. International Conference on (pp. 147-152). IEEE.

[3] Brown, S. L., & Eisenhardt, K. M. (1995). Product development: Past research, present findings, and
future directions. Academy of management review, 20(2), 343-378.

[4] Browning, T. R., & Eppinger, S. D. (2002). Modeling impacts of process architecture on cost and
schedule risk in product development. Engineering Management, IEEE Transactions on, 49(4), 428-442.

[5] Browning, T. R. (1998). Use of Dependency Structure Matrices for Product Development Cycle Time
Reduction. Paper presented at the Proceedings of the 5th ISPE International Conference on Concurrent
Engineering: Research and Applications (Japan), Tokyo, July 15-17, pages 1–8.

[6] Browning, T. R., & Ramasesh, R. V. (2007). A survey of activity network-based process models for
managing product development projects. Production and Operations Management, 16(2), 217-240.

[7] Cho, S. H., & Eppinger, S. D. (2005). A simulation-based process model for managing complex design
projects. Engineering Management, IEEE Transactions on, 52(3), 316-328.

[8] Ha, S., & Suh, H. W. (2008). A timed colored Petri nets modeling for dynamic workflow in product
development process. Computers in industry, 59(2), 193-209.

[9] Hammer, M. (2001, March). Seven insights about processes. Paper presented at the Proceedings of
the Conference on Strategic Power Process Ensuring Survival Creating Competitive Advantage, Boston,
MA, US.

[10] Hart, J. J., & Valasek, J. (2010). Methodology for prototyping increased levels of automation for
spacecraft rendezvous functions. Texas A&M University.

[11] Krishnan, V., & Ulrich, K. T. (2001). Product development decisions: A review of the
literature. Management science, 47(1), 1-21.

[12] Millson, M. R., Raj, S. P., & Wilemon, D. (1992). A survey of major approaches for accelerating new
product development. Journal of Product Innovation Management, 9(1), 53-69.

[13] Milton, N. R. (2007). Knowledge acquisition in practice: a step-by-step guide. London, England:
Springer Science & Business Media.

[14] Mulder, B. (2015). A methodological approach for the optimisation of the product development
process by the application of design automation. Unpublished MSc thesis, Delft University of Technology,
Delft, Netherlands

[15] Muller, K., & Vignaux, T. (2003). Simpy: Simulating systems in python. ONLamp. com Python
Devcenter.

CEAS 2015 paper no. 185 Page | 18
This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2015 by author(s).

[16] Reed, J. A., Follen, G. J., & Afjeh, A. A. (2000). Improving the aircraft design process using Web-
based modeling and simulation. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 10(1), 58-83.

[17] Reinertsen, D. G. (2009). The principles of product development flow: second generation lean
product development (Vol. 62). Redondo Beach, Canada: Celeritas.

[18] Sheridan, T. B., & Verplanck, W. L. (1978). Human and computer control of undersea teleoperators.
Man-machine Systems Lab. Dept. of Mech. Eng.

[19] Schut, E. J., Kosman, S., & Curran, R. (2013). A Value Scan Methodology to Improve Industrial
Operations. In Concurrent Engineering Approaches for Sustainable Product Development in a Multi-
Disciplinary Environment (pp. 411-423). Springer London.

[20] Sheridan, T. B., & Parasuraman, R. (2005). Human-automation interaction.Reviews of human factors
and ergonomics, 1(1), 89-129.

[21] Smith, R. P., & Eppinger, S. D. (1997). A predictive model of sequential iteration in engineering
design. Management Science, 43(8), 1104-1120.

[22] Smith, R. P., & Morrow, J. A. (1999). Product development process modeling.Design studies, 20(3),
237-261.

[23] Terwiesch, C., Loch, C. H., & Meyer, A. D. (2002). Exchanging preliminary information in concurrent
engineering: Alternative coordination strategies. Organization Science, 13(4), 402-419.

[24] Van der Velden, C., Bil, C., & Xu, X. (2012). Adaptable methodology for automation application
development. Advanced Engineering Informatics, 26(2), 231-250.

[25] Verhagen, W. J., de Vrught, B., Schut, J., & Curran, R. (2015). A method for identification of
automation potential through modelling of engineering processes and quantification of information
waste. Advanced Engineering Informatics.
[26] Wickens, C. D., Li, H., Santamaria, A., Sebok, A., & Sarter, N. B. (2010, September). Stages and
levels of automation: An integrated meta-analysis. Paper presented at the Proceedings of the Human
Factors and Ergonomics Society Annual Meeting(Vol. 54, No. 4, pp. 389-393). SAGE Publications.

[27] Wu, Z., Li, L., & Zhao, H. (2010, June). Simulation and analysis of schedule and cost of product
development. Paper present at the Proceedings of the Mechanic Automation and Control Engineering
(MACE), 2010 International Conference on (pp. 228-233). IEEE.

[28] Yassine, A., & Braha, D. (2003). Complex concurrent engineering and the design structure matrix
method. Concurrent Engineering, 11(3), 165-176.

