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Abstract—The health industry is a data-intensive do-
main. Sharing medical data between medical facilities
is necessary for providing good healthcare as well as for
research in the healthcare domain. However, due to the
sensitive and personal nature of health data, challenges
arise when sharing this data. Consent management is a
key aspect. The use of blockchain technology can enable
patients to be the owner of their data, and allow them to
manage who is able to view and process their data.

In this paper, we define the requirements for an ade-
quate consent management system for blockchain-based
medical data sharing. After that, we compare the related
work and identify limitations based on the require-
ments. Finally, we provide a highly dynamic consent
management system with fine-grained access control
using hierarchical structures, based on the Hyperledger
Fabric permissioned blockchain. The proposed solution
complies with the EU General Data Protection Regulation
and addresses important privacy issues.

Keywords—consent management; health data sharing;
blockchain; privacy

1 Introduction

The continuous generation of large amounts of health data
from a variety of sources makes the healthcare industry a
data-intensive domain [1]. This data is often highly confiden-
tial since it corresponds to patients’ personal data. It is impor-
tant that this medical data is shared between different medical
facilities for various purposes, such as in-depth analysis and
collaborative research [2]. Problems arise concerning the pri-
vacy and integrity of patient information, and therefore the
reliability and safety of the healthcare system as well.

As of 2018, the General Data Protection Regulation
(GDPR) [3] requires the security related to the collection,
sharing, and transferring of personal and sensitive informa-
tion to be enhanced, with consent management being a key
aspect [4]. The GDPR states that sensitive data always re-
quires explicit consent. Due to its personal nature, health
data is always deemed sensitive. Willingness to provide con-
sent requires a large amount of trust in the entity processing
the data. Trust is often deemed a measure for the willingness
of an individual to be vulnerable to the actions of an entity,

based on the trust that the entity will act according to expec-
tations [5]. Although healthcare instances usually have a high
degree of trust among the public, once lost it can be extremely
difficult to restore [5]. Reasons for losing trust are concerns
that an individual’s data might be used inappropriately, or a
lack of clarity [5].

The recent literature has shown that the use of blockchain
technology can help mitigate these concerns through its fea-
tures such as immutability, transparency and reliability [6].
Blockchain technology enables the patient to manage the dis-
tribution of their data [6], by giving the patient control over
who can access what data, at what time and for which pur-
pose. Additionally, the use of a public ledger gives the patient
full transparency on the use of their data, allowing entities to
be held accountable for inappropriate data usage.

Recently, research has been done on blockchain-based con-
sent management techniques, with Albanese et al. [7] propos-
ing a dynamic consent managing approach through the use of
a private blockchain. Furthermore, Pournaghi et al. [8] sug-
gest a technique in which symmetric cryptography is used to
preserve the confidentiality of medical data. Although the re-
cent research is promising, it is at initial stages, lacking tech-
nical detail.

In this paper, we will investigate how consent management
techniques can be integrated into blockchain-based medical
data sharing. We first describe the requirements for an ad-
equate consent management system (CMS) for medical data
sharing using blockchain technology. Next, we compare the
current state-of-the-art work and present its limitations. Fi-
nally, we propose the design of a role-based CMS with fine-
grained access control using hierarchical structures, built on
the Hyperledger Fabric (HF) framework [9], [10].

The structure of the paper is as follows. In Section 2 we
discuss the background information for medical data sharing,
blockchain and HF specifically. We then present the require-
ments for an adequate system in Section 3. Section 4 com-
pares the related work based on these requirements, and dis-
cusses its limitations. The design of the proposed CMS is
described in Section 5 and its implementation in Section 6.
In Section 7 the proposed CMS is evaluated based on the re-
quirements from Section 3. Section 8 discusses unresolved
challenges in the proposed work and provides future research
directions.



2 Background

2.1 Medical data sharing

The sharing of medical data is vital in developing better
healthcare. Digitizing, combining and using big data can lead
to benefits such as detecting diseases at earlier stages, better
management of individual and public health, and leaner and
faster development of drugs and medical devices [11].

However, challenges emerge when sharing medical data.
Due to the sensitive nature of medical data, their security, in-
tegrity and privacy must be guaranteed. Further restrictions
are posed by legislation such as the GDPR [3] in Europe and
the Health Insurance Portability and Accountability Act [12]
in the US, which further restrict the capabilities when shar-
ing medical data. Additionally, data incompatibility between
medical facilities and data fragmentation (a single patient’s
data distributed across different facilities) make it difficult to
gather and process patient data. The use of blockchain tech-
nology can mitigate these challenges through features such as
immutability and transparency.

2.2 Blockchain

In 2009, blockchain technology emerged after Satoshi
Nakamoto proposed Bitcoin [13]. The distributed ledger or
block in blockchain technology adds a hash of the previous
block in each subsequent block, thus providing an immutable
chain of blocks. New blocks are validated and the ground
truth is established through consensus algorithms, with the
most popular algorithm being Proof of Work (PoW) [13],
[14]. While Bitcoin allows for very limited scripting, newer
blockchains such as Ethereum [15] enable the use of smart
contracts which provide Turing-complete programming on
the blockchain.

Bitcoin and Ethereum are both permissionless blockchains,
which means that anyone can participate in the system. Users
are pseudonymous, and the blockchain is public for everyone
to view. In another type of blockchain called permissioned
blockchain, users need to be accepted into the peer network.
Participants know each other’s identities, and the distributed
ledger remains private among the participants.

2.3 Hyperledger Fabric

Hyperledger Fabric (HF) [9], [10] is such a permissioned
blockchain. Similar to Ethereum, HF supports smart con-
tracts (called chaincode in HF). Due to its permissioned na-
ture, HF is able to run computationally lighter consensus al-
gorithms such as Practical Byzantine Fault Tolerance (PBFT)
[16]. HF has a membership service provider (MSP) which al-
lows different types of users to perform different types of ac-
tions. While going against the main principles of blockchain,
a centralized authority provides HF with capabilities that are
desired for use in enterprises, as well as governed systems.
These features make HF a promising candidate for
blockchain-based medical data sharing. It supports the gran-
ular access control we are looking for. Moreover, it allows for
entities to be held accountable for data misuse, as their iden-
tities are known. According to [17], the lighter consensus al-
gorithm permits 3000 transactions per second in HF, whereas
Bitcoin and Ethereum can only handle 7 and 15 transactions

per second respectively, thus providing HF with better scal-
ability. Additionally, HF does not require cryptocurrency-
based incentives, which drastically lowers transaction costs.

3 Requirements for an adequate CMS

In this section, we will present the requirements for an ade-
quate CMS. We need to have insight into these requirements
before we can evaluate the current state-of-the-art consent
management techniques and identify what is missing. The
goal of the proposed design is to meet all of these require-
ments.

In the explanation of the requirements, we will consider
three entities. The patient: the person that owns the data. In
medical data sharing, this would be the patient. Data asset:
a piece of data owned by the patient. And a data proces-
sor: an entity that can request access to a patient’s data for
processing. This could be a doctor, a researcher or a third
party wanting to access the data. Whether the data processor
has access to specific data is based on whether the patient has
given consent to the data processor to access that data asset.

We group the requirements for an adequate CMS into the
following five goals: (i) legal compliance; (ii) privacy; (iii)
transparency; (iv) usability; (v) accountability.

Legal compliance: According to the GDPR [3], consent
must satisfy the following conditions.

* Consent must be fully informed, unambiguous and will-
ingly given. The patient must understand to what they are
giving consent, and it should be recorded in writing. Con-
sent may not be implied through a pre-checked box or pa-
tient inactivity.

 The patient gives consent for a specific purpose. In medical
data sharing, this could be something like cancer research
or health check. If a data processor has already obtained
consent to process a data asset for a given purpose, and they
want to use the data asset for another purpose, they need to
obtain additional consent for that purpose.

» Consent must be granted for a specified time period with a
clear beginning and end.

* The patient can revoke consent at any time and for any rea-
son. After consent has been revoked, the data asset may no
longer be processed by the data processor. This however
does not affect the processing of data that happened before
revoking.

* The patient has the right to be forgotten. This means that
the data processor must erase all data concerning the patient
if they so request.

Additionally, the GDPR [3] states that consent can be over-
ruled in emergency situations or situations benefiting public
health. However, these will not be considered in this paper
due to their complicated and ambiguous nature.

Privacy: The privacy of the patient must be guaranteed.
This means that consent should be dynamic; the patient
should be able to give permissions to some parts of their data
while withholding access to other parts. Additionally, the per-
missions set by the patient should only be visible to the pa-
tient. A data processor can only see whether they have been
granted permission to access the data, but not whether oth-
ers might have access to the data. This holds for transactions



as well; data processors and patients should not be able to
view what transactions are performed by others. Privacy can
be categorized by the following three parameters: (a) Confi-
dentiality: all data should remain confidential, unless granted
access. This includes transactions, as well as patients’ per-
missions and data assets. (b) Unlinkability: it should not be
possible to link various transactions or data to the same en-
tity, even if the identity of the entity is unknown. This is
necessary because multiple transactions can be linked to the
entity if their real identity is inferred by a transaction. (c)
Anonymity: Data should remain anonymous; this is, however,
infeasible as health data obviously has to be linked to a pa-
tient. The patient should however be able to withhold access
to their personal data.

Transparency: The system should be transparent. The
GDPR [3] requires that any patient must be able to view what
personal data has been collected. Moreover, the authors of [5]
state that their study reflects a greater desire for transparency
in the usage of data. Therefore, the patient should be able to
access their personal records, as well as audit what transac-
tions are performed on their data. This should include who is
accessing the data, at what time and for which purpose.

Usability: The system should support both primary and
secondary data usage. Primary data usage is the direct use of
data, where the data processor is familiar with the patient’s
identification, and the data is accessed by querying for a spe-
cific patient. A simplified example would be a doctor access-
ing a patient’s medical records. Secondary data usage im-
plies that data is requested without specifying a patient. The
data that is requested can correspond to groups of patients.
An example would be requesting data from cancer patients
for cancer research. Moreover, the CMS should not impede
the workflow of healthcare and research. It should not take
a patient extra effort to give consent to multiple parties, as
that would be an extra threshold resulting in less data being
shared, and thus impeding research and good healthcare.

Accountability: The system should enable data processors

to be held accountable for inappropriate data use. By audit-
ing the blockchain, it can be verified whether data has been
used in the correct time frame, for the specified purpose and
whether the data processor was given permission to access
the data. If data misuse is detected, legal consequences can
apply.

Scalability: The rapid growth of technology has led to a
significant increase in health data [1], and this growth is ex-
pected to continue, generating even more data in the years to
come. Therefore, the system must scale well in time com-
plexity with an increasing amount of data. Furthermore, the
system must scale well with an increasing number of partici-
pants, both patients and data processors.

4 Related work

Multiple designs have been proposed for a blockchain-based
CMS for medical data sharing, each fulfilling part of the re-
quirements from the previous Section.

Rouhani et al. [18] provide Medichain, a patient-centric de-
sign accessible through a browser or mobile interface. The
system is built upon the HF framework using discretionary
access control, meaning the patient has authority over their
own data. Data processors request transactions, and patients
can either accept the terms of the transaction, propose modifi-
cations or reject the transaction. However, they only support
the primary access of data and do not go into details regarding
consent. Also, they do not state how patients’ permissions are
kept private.

Azaria et al. [19] offer MedRec, a solution built on the
Ethereum blockchain. They utilize smart contracts to create
representations of medical records. The system is centered
around patient-provider relationship contracts (PPR), which
are smart contracts containing information about a relation-
ship between the patient and the entity storing and manag-
ing the patient’s data. The PPR contains pointers to where
the data is stored, as well as the permissions for viewership
by third parties. They use a DNS-like implementation that

Table 1: Comparison of related work based on requirements.
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maps an existing form of ID to the individual’s Ethereum ad-
dress. They propose two ways to incentivize miners to par-
ticipate in the network. MedRec however does not specify
what the consent rules look like, only allows primary usage
of data, and has some privacy issues. Additionally, their so-
lution is built on Ethereum, which uses the computationally
heavy PoW consensus algorithm.

Medicalchain [20] is a medical data sharing platform with
a dual blockchain structure based on HF and Ethereum. Pa-
tients can manage their permissions, as well as write informa-
tion to their health records. Privacy is ensured by encrypting
health records using symmetric key cryptography. However,
they do not go into details regarding consent, and it seems
that permissions are not kept private.

Agarwal et al. [21] present Consentio, a general purpose
CMS, however not excluding use in the medical sector. They
propose a role-based design using the HF framework. Data
processors are grouped into roles, with a trusted third party
assigning the roles. Patients grant roles consent to access
specific data assets. Access requests are based on the data
asset type. Hence, data processors are not able to request
access to a specific patient’s data. By using an individual-
oriented world state, the system’s functions scale O(1) in
time complexity with increasing number of individuals. How-
ever, Consentio does not support direct data access through a
patient’s ID, which is difficult for healthcare. Also, consent
in Consentio does not include a purpose, which is required
by the GDPR [3], and they lack details on how privacy is pre-
served.

Similar to Consentio, Aldred et al. [22] propose a general
CMS based on HF. Permissions are identified by a hash of
the patient’s ID and the data processor’s ID, ensuring that
data processors are not able to view the permissions concern-
ing others, given that they do not know the IDs of other data
processors. These permissions contain Boolean flags corre-
sponding to whether the data processor is allowed access to
the respective information. However, it is unclear whether
both primary and secondary data usage are supported. Also,
they do not go into specifics regarding consent, and patients
are not able to see what transactions are being performed on
their data, thus lacking transparency.

Albanese et al. [7] provide a dynamic CMS to be used
for clinical trials, named SCoDES. The management of a
patient’s consent is automatically generated according to
the features of a given trial. Users communicate with the
blockchain infrastructure based on HF through a web applica-
tion. Assets in the system correspond to trials, which contain
details about the clinical trial, and contracts, which represent
the official agreement containing information about the data
processor, the patient and whether consent has been given. To
access a patient’s data, an investigator issues a contract. Pa-
tients can then give consent to all contracts that involve them.
The authors however do not specify how permissions are kept
private, and data can only be accessed by the people in charge
of the trial. It is unclear how third parties can access data.

4.1 Limitations

Table 1 compares the related work to the requirements set in
Section 3. Overall, the related work lacks technical detail re-

garding consent management. Additionally, almost none of
the analyzed systems support both the primary and secondary
usage of data. Progress can be made by ensuring the privacy
of permissions. To the best of our knowledge, there is no so-
lution that addresses all of the requirements from the previous
section, as well as provides technical detail on the implemen-
tation of the system.

S System design

This section will describe the design of the blockchain-based
CMS. We propose a fine-grained, role-based CMS, built on
the HF framework.

Patients have the role patient, whereas data processors can
have a variety of roles, such as doctor, nurse or researcher.
Note that an individual can have multiple roles, e.g. a person
can be a patient, a doctor and a researcher as well. Roles are
assigned by trusted third parties, hereafter called institutions.
These institutions are entities trusted by the public, such as
hospitals or government agencies. Roles are tied to the insti-
tution; this means that when hospital X assigns the role doc-
tor to an individual, then that individual is in effect a doctor
at hospital X. We make the assumption that institutions will
not give out inappropriate roles, because this would hurt their
good reputation.

5.1 Transactions

Each entity in the system is allowed to perform different
transactions. The transactions are listed per entity type below.

Patient:

* update_consent: This transaction generates a new consent
rule which can either grant or revoke access to a role, from
an institution, for a purpose, to a data type and for a specific
time period.

* view_data_asset: This transaction provides a data asset to
be viewed by a patient.

Data processor:

* request_access_by_patient_id: This transaction requests ac-
cess to a specific patient’s data asset. The data processor
must provide their role, institution and the ID of the patient
whose data they are requesting access to. Additionally, they
must provide for what purpose they are requesting access,
to what data type and for what time period. This transac-
tion corresponds to the primary usage of data as described
in Section 3.

* request_access_by_data_type: This transaction requests ac-
cess to data based on the type of data. The data processor
does not specify a patient; they request access to multiple
patients’ data. The data processor provides their role and
institution, as well as the purpose, data type and time period
they are requesting access for. This transaction corresponds
to the secondary usage of data as described in Section 3.
Note that labeling data with a type is essential to be able to
request data access this way.

* add_data_asset: This transaction uploads a patient’s data to
the blockchain. The data processor labels parts of the data
with the correct data type. The data is split into multiple



data assets based on data type. Additionally, the data pro-
cessor provides a pointer that can be used to retrieve the
actual data.

After performing any of these actions, if permission is
granted, the data processor will be able to retrieve the data.
Note, however, that the mechanics of pointer creation and
data retrieval will not be considered, as they are beyond the
scope of this paper.

Institution:

* assign_role: This transaction assigns a role to a data pro-
Cessor.

* revoke_role: This transaction revokes a role from a data
processor.

These transactions are validated and the outcomes are
stored in the distributed ledger.

5.2 Privacy

To ensure privacy as described in Section 3, we define what
the different entities are able to view in terms of transactions
and data. In Section 6.3, we describe how this is achieved.

Transactions in the distributed ledger are only viewable by
the entities that are involved in them. Patients are able to view
what transactions they have performed, as well as what trans-
actions data processors have performed on their data. Data
processors are able to view what transactions they have per-
formed on patients’ data, as well as the roles that have been
granted to or revoked from them. Note that to protect the
patient, data processors are not able to view any of the per-
missions, even if they are assigned the role that is specified
in the permission rule. Institutions are only able to view what
roles they have granted or revoked.

The data that is stored in HF’s world state, which is used to
execute chaincode, cannot be viewed by anyone. This ensures
that not even the peers that validate the transactions are able
to view a patient’s permissions or data pointers.

5.3 Hierarchical roles, institutions, purposes and
data types

A consent rule created by a patient must contain the follow-
ing: role, institution, purpose, data type and time period. For
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highly dynamic consent, it is necessary that the patient can
be as specific as they want. A trusting patient will likely want
to give consent to all medical staff, for multiple purposes and
to the majority of their data. Contrarily, a distrustful patient
may want to give consent to only their own doctor, for few
purposes and to little data. Data from trusting patients is nec-
essary for good healthcare and research, however, it is a pa-
tient’s right to choose precisely what they share. Problems
arise when increasing the specificity of consent rules, because
it might discourage a trusting patient from sharing data if they
have to give additional consent to each individual doctor and
researcher. To enable distrustful patients, without discour-
aging trusting patients, we propose that the role, institution,
purpose and data type fields of the consent rule are structured
hierarchically, in a tree-like fashion.

Figure 1 presents a simplified example of such a hierar-
chical role structure. Every parent node in the tree encapsu-
lates its children. Only the leaves of the tree are assigned as
roles, whereas consent can be given to any of the nodes in
the tree. Thus, patients are able to be extremely specific in
whom they are giving consent, while still being able to give
multiple roles consent with one consent rule. After the tree
is constructed, the leaves are numbered in increasing order.
For each parent node a range is computed which contains all
the leaves for that node. Hence, the system is able to check
whether the node is the parent of a given role without having
to traverse the entire tree, limiting the computation needed.
Note that the participating entities need to decide on the hi-
erarchical structure of the roles before the system is able to
operate. The structures of institution, purpose and data type
are constructed in a similar fashion.

6 System implementation

This section will explain how the design described in Section
5 will be implemented. As mentioned in Section 2, the HF
framework best fits the needs of our system, and therefore we
will be basing our implementation on HE.

6.1 Identification

In HF, the certificate authorities (CA) provide identification
for the entities participating on the network. Additionally,
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Figure 1: Hierarchical structure of roles.



Patients
Patient client_id | existing_id
Roles
Role client_id (data processor) role_id institution_id
Tree nodes
Role role_id tag is_leaf range | integer
Institution institution_id tag is_leaf range | integer
Purpose purpose_id tag is_leaf range | integer
Data type data_type_id tag is_leaf range | integer
Data
Data Asset asset_id data_type_id client_id (patient) client_id (data processor) pointer |
Permissions
client_id (patient) role_id institution_id | purpose_id | data_type_id |
Permission
time_from time_to

Figure 2: Objects in Hyperledger Fabric’s world state.

a membership service provider (MSP) governs which identi-
ties are allowed to perform what transactions. Identities that
are performing transactions are called clients. In our system,
there will be three types of clients; these are patient, data pro-
cessor and institution, as mentioned in Section 5.1. When a
client performs a transaction, they sign the transaction with
their certificate. The MSP then ensures that these three types
of clients are only allowed to perform the transactions corre-
sponding to their type, as specified in Section 5.1.

6.2 World state

In order not to have to traverse all the transactions to retrieve
the state of an entity, as is done in Bitcoin [13], HF maintains
a world state. The world state is stored in a database that
each of the peers maintains. Once transactions are validated
and added to the blockchain, the world state is updated, based
on the chaincode in the transaction. In our design, the world
state will consist of the following aspects, which can also be
seen in Figure 2:

Patients: A mapping of existing identification, such as social
security number, to patients’ IDs. This is necessary for pri-
mary data usage.

Roles: Contains mappings of a data processor to a role and
the institution that granted it. Note that a data processor can
possess multiple roles.

Tree nodes: Contains the tree nodes, as described in Sec-
tion 5.3. For example, the nodes of the tree corresponding
to roles are structured as follows. Each role has an ID and a
tag corresponding to the type of role, for example DOCTOR.
Additionally, it indicates whether it is a leaf or a node in the
tree. If the role is a leaf, it contains an integer; if it is a node
it contains a range. The tree nodes of institution, purpose and
data type are structured in a similar fashion.

Data: Contains all the data assets. Each asset has an ID and
the ID of the data type it corresponds to. Additionally, it con-

tains the ID of the patient that owns the data asset, the ID of
the data processor who uploaded the data asset, and a pointer
to the location of the actual data.

Permissions: Contains all the permissions. Each permission
contains an ID corresponding to the patient, the ID of the role
that is granted access and the ID of the institution it is issued
by. Additionally, it contains the ID of the purpose for which
permission is given and the ID of the data type. It also con-
tains the time from and to which the permission is issued.
Note that the role, institution, purpose and data type can cor-
respond to nodes or leaves in the permissions.

6.3 Privacy

To provide the privacy on transactions as described in Section
5, we use trusted execution environments (TEE) [23], [24],
as well as cryptographic methods. In other blockchain plat-
forms, zero-knowledge proofs (ZKP) [25], [26] are often used
to ensure privacy; they are however not applicable for our sys-
tem, as ZKPs do not support chaincode with unknown data
from multiple parties [27].

Trusted Execution Environment

As described in Section 5, not even the validating peers
should be able to see the inputs of a transaction, nor the
data in the world state. Therefore, each peer will execute the
chaincode in a TEE. The authors of [23] define a TEE as “a
tamper-resistant processing environment that runs on a sepa-
ration kernel. It guarantees the authenticity of the executed
code, the integrity of the runtime states (e.g. CPU registers,
memory and sensitive I/O), and the confidentiality of its code,
data and runtime states stored on a persistent memory.” TEEs
have been developed by multiple parties, such as [28-30].
The world state of HF will be encrypted using a public key
that is shared by all TEEs. When chaincode is executed on
the TEEs, world state data is accessed and decrypted using



the private key which is stored inside the TEE and therefore
unaccessible by the peers.

Encryption

All outputs from the chaincode executed on the TEE:s is en-
crypted as well. Due to the properties of encryption, the vali-
dating peers in the network will still be able to compare out-
puts based on the encrypted text. The outputs are encrypted
using a symmetric key, which is sent to all entities involved
in the transaction. This way, only the entitled entities are able
to view the outputs of the transaction.

6.4 Messaging

In HF, transactions can trigger messages to inform partici-
pants of events. In our system, patients receive messages
when new data is uploaded that concerns them. They are then
able to view the data, and provide new consent rules based
on the data. Additionally, they receive a message when ac-
cess has been requested to their data. Data processors receive
messages when consent has been revoked for data they have
requested access to. When the data processor receives this
message, they are obligated to delete the data if they have it
stored in their own database. This way, the right of erasure
is guaranteed if a patient revokes consent. Patients, data pro-
cessors and institutions all receive messages stating whether
their transactions have succeeded or failed.

6.5 Chaincode

Chaincode, which is called smart contracts in other
blockchains like Ethereum [15], manipulates the world state.
Transactions can trigger chaincode, and the transaction and
its inputs are added to the ledger. The pseudocode for the
transactions to be performed by the patient, data processor
and institution can be seen in Listings 1, 2 and 3 respectively.
Note that the pseudocode is meant to be explanatory, and it is
not optimized for time complexity.

Encryption and decryption, as specified in Section 6.3,
are left out of the pseudocode for the sake of simplicity.
Moreover, the identity of the client that calls the chaincode is
verified by the MSP before chaincode execution, and is thus
also omitted below.

Listing 1: Pseudocode for transactions performed by patient.

Input: patient_id, role.id, institution_id, purpose.id, data.type.id,
time_from, time_to, is_granted
Transaction UpdateConsent:
if (is_granted = True)
then add permission with {dinput as fields to world state

else if (permission with dinput as fields exists)
then remove the permission from world state
send message to data processors

Input: patient.id, asset.id
Transaction ViewDataAsset:
if (data.asset with asset.-id exists &
data.asset.patient.id == patient_id)
then return pointer to data

Listing 2: Pseudocode for transactions performed by data processor.

Input: data-processor.id,
patient_id, purpose.id, data-type.id, time_-from, time_to
Transaction RequestAccessByPatientId:
forall permissions p of patient with patient.id
if (p.role.id == data.-processor-role.id &

.institution.id == data_processor.institution.id &
.purpose == purpose_id &
.data_type == data_-type_id &
.time_from < time_from &
.time_to > time_to)

then if (data processor has role

and institution specified in permission)

then send message to patient
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pointers = getDataPointers(patient.id, data-type.id)

return pointers

Input: data.-processor.id,
purpose_id, data-type._id, time_from, time_to
Transaction RequestAccessByDataType:
pointers = []
forall patients:
forall permissions p of patient
if (p.role.id == data_processor.role.id &
p.institution.id == data_processor.institution.id &
p.purpose == purpose._id &
p.data_type == data_type_id &
p.time_from < time_from &
p.time_to > time_to)
if (data processor has role
and dinstitution specified in permission)
then send message to patient

pointers += getDataPointers(patient_id, data-type.id)

return pointers

Input: patient.id, data-type_id, data_pointer
Transaction AddDataAsset:
add data asset with data-type.id, patient_id
and data_pointer to world state
send message to patient with patient.id

Listing 3: Pseudocode for transactions performed by institution.

Input: data._processor.id, role_id, institution.id

Transaction AssignRole:
add role with role.id and institution.id to data processor
with data_-processor_id

Input: data-processor.id, role_id, institution.id
Transaction RevokeRole:
if (hasRole(data.-processor-id, role.id, institution-id))
then remove role with role.id and institution.id
from data processor with data.processor.id

7 Evaluating the CMS

To evaluate the proposed CMS, we go over the requirements
from Section 3 to check whether they have been met. How the
proposed CMS compares to the related work from Section 4
can be viewed in Table 1.

Legal compliance: The proposed CMS meets all the re-
quirements for legal compliance. The patient has full control
over who is given consent, this consent is willingly and ex-
plicitly given, and this consent is recorded in written form.
Permission rules contain a purpose and time period, which
are enforced when requesting access. Also, revoking consent
is as easy as granting consent and the patient has the right of
erasure, thus meeting the requirements set by the GDPR.

Privacy The privacy requirement is met by the CMS, as the
consent is highly dynamic. Also, due to the use of encryption
no entity is able to view transactions that do not involve them.
The use of TEEs ensures the confidentiality of the data in the
world state. This achieves the confidentiality metric as well
as unlinkability, as no participant is able to link transactions
or data to an entity unless the transaction involves them. Ad-
ditionally, anonymity is preserved, as the patient is able to
withhold access to whatever data they please.



Transparency: The system meets the transparency re-
quirement, since the patient is able to view all data that is
collected, as well as receives a notification when new data is
added. Additionally, patients receive a message when their
data is accessed, and are able to view the parameters of the
transaction.

Usability: Usability is achieved in the system, because
data processors are able to retrieve data for a specific patient
as well as by searching for a specific data type. Thus, both
primary and secondary usage of data are supported. Further-
more, the way the roles, institutions, purposes and data types
are structured enables patients to share information with mul-
tiple parties without any extra effort, while still being able
to be specific. Therefore, patients are not discouraged from
sharing data for research or improved healthcare.

Accountability: The system supports accountability as pa-
tients are able to audit all the transactions that are performed
on their data, including timestamps. Because the granting and
revoking of consent is also stored in the distributed ledger,
misuse of data can result in legal consequences, for example
if a data processor were to process data after the patient has
revoked consent.

Scalability: Unfortunately, due to time constraints, we
have not been able to test the scalability of the CMS. How-
ever, the use of HF provides a promising prospect, as HF is
capable of handling 3000 transactions per second, according
to the authors of [17]. The authors of [21] even report being
able to handle upward of 6000 transactions per second.

Implementation details: We provide details on how to in-
tegrate the CMS into the HF framework; however, the actual
implementation of the system is missing. Thus, we satisfy the
implementation details metric in Table 1 partially.

8 Discussion and future research directions

Despite satisfying most of the requirements set in Section 3,
the proposed work remains incomplete. The solution we pro-
vide is merely theoretical, and the actual implementation of
the CMS is missing due to time constraints. Additional work
is required to implement and test the actual CMS.

To implement the proposed CMS, additional research
needs to be done. Firstly, HF’s world state is pluggable, thus
supporting different databases. Therefore, the compatibility
as well as the performance of different databases needs to be
explored. The different available TEEs need to be investi-
gated as well. Another research direction is the creation of
the data pointer. An important consideration here is that a
data processor must not be able to retrieve data after access is
revoked.

Additionally, the scalability of the system should be tested,
analyzing performance with an increasing number of nodes
in the system, as well as an increasing number of patients,
assets and permissions in the world state.

Furthermore, different attacks on the system should be ex-
plored. The usage of TEEs is a promising prospect for achiev-
ing complete privacy in the system; however, they are prone
to some attacks, as explained by the authors of [24], [31].
Other well-known attacks on HF must be explored as well.
The authors of [32] provide a survey of the known attacks.

Lastly, to maximize the potential of the hierarchical struc-
tures throughout the system, additional research needs to be
done on appropriate structures for roles, data type, purpose
and institutions.

9 Responsible research

In this section, we discuss the integrity and reproducibility of
our research.

9.1 Integrity

We have not done any experiments throughout the research,
therefore discussing data fabrication, falsification and data
trimming is irrelevant to the integrity of this research. More-
over, no experimentation on human subjects has been done.
All data that has been gathered is in the form of publica-
tions, which are properly referenced throughout this paper.
Noteworthy, however, is that to ensure integrity we first set
the requirements for a consent management system before
comparing the related work. This has been done so that the
requirements remain unbiased toward related work; else re-
quirements might have been selected based on what the re-
lated work is missing. Additionally, requirements have re-
mained the same throughout the research. We did not remove
any requirements if our proposed solution did not meet them,
although the proposed solution might have seemed more im-
pressive if we had.

9.2 Reproducibility

The absence of an experiment or results based on data makes
it difficult to discuss the reproducibility of the research. How-
ever, a way to improve on the reproducibility might be related
to the comparison of related work. The gathering of related
work can be done in a more systematic manner, for exam-
ple by using a specified search query and exclusion criteria.
However, because the area of consent management for medi-
cal data sharing using blockchain technology is so recent and
diverse, it might be difficult to find all the relevant work based
on a single query. In this paper, we picked some of the more
well-known work. The research could be extended upon by
comparing additional related work based on the set require-
ments.

10 Conclusion

In this paper, we proposed the design of a role-based consent
management system with fine-grained access control using
hierarchical structures. The system provides dynamic con-
sent management for blockchain-based medical data sharing,
enabling the patient to be the owner of their own data. The
system will be implemented in Hyperledger Fabric, a permis-
sioned blockchain.

The proposed design satisfies the requirements for legal
compliance, privacy, transparency, usability and accountabil-
ity. We provided details regarding the integration of the sys-
tem into the Hyperledger Fabric framework by describing the
interaction between the different components. Additionally,
we presented pseudocode for the available transactions by the
clients in the system. We diverged from the state-of-the-art
work by enabling patients to give consent to multiple parties



without any extra effort through the use of hierarchical struc-
tures. Moreover, we provided additional privacy through the
integration of trusted execution environments, and the pro-
posed design supports both primary and secondary data us-

age.

Open challenges remain regarding the scalability of the

system.
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