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Stellingen bij het proefschrift van Kees Wisse

. Het interpreteren van schokbuisexperimenten met behulp van een theorie die alleen

de axiale verplaatsingen modelleert is geoorloofd indien de spleet tussen het
gesteentemonster en de schokbuiswand minstens twee ordes van grootte kleiner is
dan de schokbuisdiameter. Het invoeren van effectieve parameters in geval van
grotere spleetbreedtes kan beschouwd worden als een noodoplossing.

Dit proefschrift.

. Partiéle verzadiging kan een sterke frequentieafhankelijkheid veroorzaken van de

golfsnelheden. Schokbuismetingen in het frequentiedomein kunnen nieuwe
perspectieven bieden om dit probleem te analyseren.

Dit proefschrift.

SMEULDERs, D.M.J., & M.E.H. vAN DONGEN. 1997. Wave propagation in
porous media containing a dilute gas- liquid mixture: theory and experiments. J.
Fluid. Mech. 343:351-373.

. Een nauwkeurige beschrijving van golfvoortplanting in een poreus medium zoals

gegeven door Biot impliceert een groot aantal materiaalparameters. In verband met
toepassing in inversieprocedures is het aan te bevelen om vereenvoudigde modellen
te ontwikkelen en te verifiéren met behulp van het model van Biot.

TANG, X.M.,, & C.H. CHENG, & M.N. Toks0z. 1991. Dynamic permeability
and borehole Stoneley waves: A simplified Biot-Rosenbaum model. J. Acous. Soc.
Am. 90:1632-1646.

. Huidige technisch-wetenschappelijke publicaties geven geen beschrijving van de

emoties die optreden tijdens het verkrijgen van de beschreven resultaten. In zekere
zin is dit een vorm van geschiedvervalsing.

n.a.v. A. VAN DEN BEUKEL. 1990. De dingen hebben hun geheim. Ten Have,
Baarn.

. Het gebruik van understatements is één van de weinige toegestane vormen van

humor in technisch-wetenschappelijke teksten. Het toepassen van meerdere vormen
van humor zou het lezen en schrijven van deze publicaties zeer veraangenamen.

. De uitspraak ‘men mag niet meten met twee maten’ betekent niet dat men geen

vrienden mag zijn met collega’s.

. Wie de Bijbel leest als ware het een computerprogramma verstaat niet hetgeen hij

of zij lecest.



10.
11.

. Een atheist die vloekt bezigt een taalgebruik dat niet consistent is met zijn

wereldbeeld.

In discussies over authentieke uitvoeringen van de muziek van Bach wordt
doorgaans geen rekening gehouden met het verschil in perceptie tussen tijdgenoten |
van Bach en de hedendaagse luisteraars. |

Een streng compositiesysteem is alleen vruchtbaar voor geniale componisten.

Een componist die citeert uit het werk van collega’s wordt geacht de geleende noten
in een andere context te plaatsen, dit in tegenstelling tot een wetenschapper die
rekenschap moet geven van het juiste gebruik van het geciteerde materiaal. Een
overeenkomst tussen beiden is dat plagiaat verboden is.
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Summary

For the interpretation of acoustic borehole logs a thorough understanding of the effects of
rock properties on acoustic wave propagation is required. Examples of these properties
are the porosity, permeability, lithology, and hydrocarbon saturation. For comparison of
seismic data with wireline logging data the frequency dependence of wave velocities and
damping coefficients is an important topic. In conventional acoustic borehole logging the
first arrival of the acoustic wave train can be used to determine porosity. The full wave
train is applied to determine mechanical properties, while one of the late arrivals, the
Stoneley wave, is used to obtain permeability data.

In this thesis acoustic wave propagation in porous cylinders is investigated both exper-
imentally and theoretically. The frequency and rock property dependence of both wave
velocities and damping coefficients were studied, together with surface waves.

In our experiments a shock tube was used. In the shock tube a pressure step with a
broad frequency content is generated in the test section in which the porous cylinder is
mounted. Between the porous cylinder and the wall of the shock tube a gap exists. Using
a large ratio of gap width to sample radius, it is possible to excitate the Stoneley wave.
Furthermore, a unique modification of the classical shock tube configuration was devel-
oped. With aid of a screw gear unit the equivalent of a large series of pressure transducers
was realized, while in the classical shock tube experiment only a limited number of pres-
sure signals could be recorded. The large number of pressure signals enabled us to apply
a special signal processing techique, the Prony’s method. In this way phase velocities,
damping and reflection coeflicients in the 1-120 kHz frequency range were derived from
the experiments.

The Biot theory is the basis for describing wave propagation. We reviewed the Biot the-
ory and a numerical code was developed which models one-dimensional wave propagation
in the shock tube, including internal reflections. The main part of our theoretical work
is concerned with the modelling of two-dimensional effects, including surface waves. To
obtain a thorough understanding of two-dimensional phenomena we studied flat interfaces
between elastic solids and fluids, and poroelastic solids and fluids. Due to the presence
of the slow Biot wave three types of surface waves occur. We extended the surface wave
model of Feng and Johnson (1983) for lossless media to lossy media, and as a result we
obtained a better describtion for the attenuation of surface waves.

Finally, we studied the theory of guided wave modes in solid elastic cylinders. This
theory was applied to the porous cylinder in the shock tube. Some of the wave modes
that occur in the porous cylinder in the shock tube are equivalent to the ones in a solid
elastic cylinder. A surface mode occurs at the interface between the porous cylinder and
a relatively large water-filled gap. At high frequencies this wave is related to the pseudo-
Stoneley wave in case of a Bentheimer sandstone cylinder, which is a fast formation. For
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10 Summary

one specific synthetic slow formation we found that this wave corresponds to the true
Stoneley wave. An extra bulk wave mode type occurs due to the presence of the slow
Biot wave. The damping of the higher-order slow wave modes is at least as high as the
damping of the slow wave itself.

The surface mode is sensitive to both the permeability and the shear velocity. Be-
cause this conclusion is valid both for our shock tube set-up and also for the borehole
configuration, it has important implications for the analysis of permeability estimation
from acoustic logging data.

Experimental results were obtained for both air-filled and water-saturated pores. For air-
filled pores the transition from wave-like behaviour to diffusion-like behaviour of the slow
wave was demonstrated. For very high permeabilities (> 500 D) the shock wave charac-
ter is preserved and is detected at the end of the sample. For lower permeabilities the
diffusion effect dominates. The non-linear diffusion process is described by Forchheimer’s
equation.

We investigated water-satured samples extensively. Two configurations were used,
the so-called small gap and large gap experiment. Using the small gap experiment we
performed a large measurement series for samples with a wide range of properties. The
velocities calculated with Biot’s theory and derived from Wyllie’s equation were compared
with the experimental results. It was concluded that if the porosity is entered into Wyl-
lie’s equation, this model can be used as a first guess for the fast wave velocity.

In the frequency domain we measured reflection coefficients in the 1-100 kHz range. Gen-
erally, agreement was found with the Biot theory. Phase velocities were determined in the
1-120 kHz frequency range for natural and synthetic rocks. For the large gap experiment
the surface mode in Bentheimer sandstone was observed, as well as a number of bulk
modes. This is noteworthy, as most laboratory experiments either succeed in generating
multiple wave modes over a small frequency range, or in generating only one wave mode
over a broad frequency range. Agreement was found with the full modeling of the shock
tube configuration for the surface mode and the lowest-order bulk mode. The compari-
son between the experiments and theory is based on parameters which were determined
independently on core samples. For high Signal-to-Noise ratio’s reasonable results for the
damping coefficients can be obtained. Qualitative agreement between experimental and
theoretical attenuation data was found for synthetic rock.

Our experiments confirm the predictive power of Biot’s theory of wave propagation in
cylindrical configurations. Despite the geometrical differences with the borehole configura-
tion our results lead to a better understanding of borehole wave phenomena. Future work
should concentrate on different boundary conditions in order to investigate the influence
of the mud cake.




Samenvatting

Goed begrip van de invioed van gesteenteparameters op voortplanting van akoestische
golven is van groot belang voor de interpretatie van akoestische loggingdata. Enkele
voorbeelden van deze parameters zijn de porositeit, permeabiliteit, lithologie en de ver-
zadigingsgraad. Om seismische data te kunnen vergelijken met loggingdata is het tevens
belangrijk om goed inzicht te hebben in de frequentieafhankelijkheid van golfsnelheden en
dempingsfactoren. In de traditionele loggingpraktijk werd de eerste aankomst gebruikt
om de porositeit te bepalen. Het volledige signaal kan worden toegepast om de mechani-
sche eigenschappen te bepalen. De zogenaamde Stoneleygolf is één van de golven die het
laatst gedetecteerd wordt. Met behulp van deze golf is het mogelijk om de permeabiliteit
te bepalen.

In dit proefschrift is voortplanting van akoestische golven in een poreuze cilinder onder-
werp van studie. Het onderzoek bestaat uit een experimenteel en een theoretisch gedeelte.
Er wordt aandacht besteed aan zowel de frequentieafhankelijkheid als de parameterafhan-

kelijkheid van golfsnelheden en dempingscoéfficiénten. Tevens komen oppervlaktegolven
aan de orde.

In de experimenten is gebruik gemaakt van een schokbuis. In de schokbuis wordt een
drukstap met een brede frequentieband gegenereerd. In de testsectie is een poreuze ci-
linder aangebracht en tussen deze cilinder en de schokbuiswand bevindt zich een spleet.
Indien de spleet groot is ten opzichte van de inwendige diameter van de schokbuis is het
mogelijk de Stoneleygolf te exciteren. Gedurende het onderzoek is de klassieke schok-
buisconfiguratie op unieke wijze aangepast. Met behulp van een schroefspindel is het
equivalent van een groot aantal drukopnemers bereikt. In de klassieke schokbuisconfigu-
ratie was slechts een beperkt aantal drukopnemers beschikbaar. Door het grote aantal
drukopnemers was het mogelijk een speciale signaalverwerkingstechniek toe te passen: de
zogenaamde Prony’s methode. Op deze manier zijn fasesnelheden, dempingsfactoren en
reflectiecoéfficiénten verkregen in de range van 1 tot 120 kHz.

Voor de beschrijving van de golfvoortplanting werd gebruik gemaakt van het model van
Biot. In dit proefschrift wordt de theorie van Biot samengevat en becommentarieerd. Een
computerprogramma wordt beschreven dat de ééndimensionale golfvoortplanting model-
leert in de schokbuis, inclusief de interne reflecties. Het belangrijkste deel van de theorie
behandelt tweedimensionale effecten, tevens met betrekking tot oppervlaktegolven. Om
een goed beeld te krijgen van de tweedimensionale effecten zijn eerst grensvlakken be-
studeerd tussen elastische vaste stoffen en vloeistoffen. Vervolgens zijn ook grensvlakken
tussen poreuze media en vloeistoffen onderzocht. Tengevolge van de aanwezigheid van
de langzame golf zoals voorspeld door Biot treden er drie typen oppervlaktegolven op.
Het oppervlaktegolfmodel van Feng en Johnson (1983) is uitgebreid van verliesvrije me-
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12 Samenvatting

dia naar materialen inclusief demping. Het resultaat is een betere beschrijving van de
demping van oppervlaktegolven.

Het laatste deel van de theoretische analyse behandelt golfmodes in een cilinder die
bestaat uit een elastische vaste stof. Deze theorie is vervolgens toegepast op een poreuze
cilinder in de schokbuis. Enkele van de golfmodes die voorkomen in de poreuze cilinder
zijn vergelijkbaar met de modes in een elastische cilinder. Op het grensvlak van de poreuze
cilinder en een relatief grote vloeistofgevulde spleet treedt een oppervlaktegolfmode op.
Voor een cilinder die bestaat uit Bentheimer zandsteen is bij hoge frequenties de laatst-
genoemde golf gerelateerd aan de pseudo-Stoneleygolf. Voor één specifieke synthetische
steensoort is de oppervlaktegolf bij hoge frequenties gerelateerd aan de true-Stoneleygolf.
Bentheimer zandsteen is een zogenaamde ’fast formation’, terwijl het synthetische steen
correspondeert met een 'slow formation’. Tengevolge van de langzame Biotgolf treedt er
een extra type golfmode op. De demping van deze hogere-orde langzame-golfmodes is
minstens even groot als de demping van de langzame Biotgolf zelf.

Zowel de permeabiliteit als de snelheid van de schuifgolf beinvloeden de eigenschappen
van de oppervlaktegolf in de schokbuis. Ze beinvloeden tevens de oppervlaktegolf in een
boorgat, met als gevolg dat analyse van de schokbuisresultaten van belang is voor de
bepaling van de permeabiliteit uit akoestische loggingdata.

Experimentele resultaten werden verkregen voor monsters met luchtgevulde porién en
voor waterverzadigde monsters. Voor monsters met luchtgevulde porién is de overgang
van golfgedrag naar diffusiegedrag zichtbaar gemaakt. Voor hoge permeabiliteiten (> 500
D) is het schokgolfgedrag nog steeds aanwezig in het poreuze monster. Aan het eind
van het monster is het schokgolfgedrag gedetecteerd. Voor lagere permeabiliteiten is
het diffusie-effect dominant. Het niet-lineaire diffusieproces kan beschreven worden met
behulp van de Forchheimervergelijking.

Waterverzadigde monsters zijn uitgebreid bestudeerd. Er werd gebruik gemaakt van
twee configuraties: het kleine-spleetexperiment en het grote-spleetexperiment. Met be-
hulp van de kleine-spleetconfiguratie werd een groot aantal experimenten uitgevoerd met
monsters met een breed scala aan gesteente-eigenschappen. De golfsnelheden zoals voor-
speld door de theorie van Biot en door de vergelijking van Wyllie zijn beide vergeleken
met de experimentele resultaten. Op grond van de resultaten werd geconcludeerd dat
de vergelijking van Wyllie met gebruik van de porositeit toegepast kan worden als een
eerste-orde benadering voor de snelheid van de snelle Biotgolf.

In de range van 1 tot 100 kHz zijn reflectiecoéfficiénten gemeten. Behoudens enkele af-
wijkingen was er goede overeenkomst met de theorie van Biot. Voor zowel natuurlijk
zandsteen als synthetisch gesteente zijn golfsnelheden bepaald in de range van 1 tot 120
kHz. In het geval van de grote-spleetconfiguratie zijn de oppervlaktegolfmode en een
aantal hogere-orde golfmodes waargenomen. Dit is een belangrijk resultaat omdat in
veel laboratoriumexperimenten men er in slaagt slechts één golfmode over een brede fre-
quentieband waar te nemen. In geval van meerdere golfmodes is de frequentieband vaak
smal. De experimentele resultaten zijn in overeenstemming met de volledige modellering
van de schokbuisconfiguratie met betrekking tot de oppervlaktemode en de laagste-orde
bulkmode. De vergelijking tussen de experimenten en de theorie was gebaseerd op gesteen-
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teparameters die onafhankelijk bepaald werden met behulp van kleine samples. Voor hoge
signaal-ruisverhoudingen bleek het mogelijk om aanvaardbare resultaten te behalen voor
de dempingsfactoren. Voor het synthetische gesteente was er kwalitatieve overeenkomst
tussen de theorie van Biot en de experimenten.

De huidige experimenten bevestigen de voorspellende kracht van de theorie van Biot
voor golfvoortplanting in cilindrische configuraties. Ondanks verschillen tussen de schok-
buisgeometrie en de boorgatconfiguratie leiden de resultaten van dit proefschrift tot een
beter begrip van golfverschijnselen in boorgaten. Het is aan te bevelen in de toekomst aan-
dacht te schenken aan de verschillende randvoorwaarden, dit in verband met de inviced
van de zogenaamde mud cake.
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Chapter 1

Introduction

1.1 Background and problem statement

Acoustic wave propagation is very important for the oil industry to determine the differ-
ent properties of an oil reservoir. The storage space (porosity), hydraulic conductivity
(permeability), and lithology (rock type), and hydrocarbon saturation are properties of
interest. Several subsurface interpretation techniques are involved with acoustic wave
propagation: surface seismic, borehole seismic, acoustic borehole logging and borehole
imaging. For an introduction to these techniques we refer to Ellis (1987). The common
aim of these techniques is to deduce the rock properties from the wave velocities, am-
plitudes, damping and reflection coefficients. This is performed via a so-called inversion
procedure, for which a model is required that describes wave propagation and reflection
in (porous) rock. However, each of the mentioned techniques operates in a different fre-
quency range. The frequency ranges vary from about 100 Hz for seismic applications to
the MHz region in case of borehole imaging. Frequency dependence of wave velocities,
damping and reflection coefficients has to be understood in order to compare the data of
the different disciplines.

Theoretically, wave propagation and reflection characteristics were investigated for
each particular frequency range. However, laboratory experiments that cover a broad
frequency range are scarce. Most experiments were performed in the ultrasonic frequency
range (0.5-5 MHz), while many applications use much lower frequencies. In this thesis we
study the frequency dependence of the wave velocities, damping and reflection coefficients
in the 1-120 kHz range, both experimentally and theoretically. This frequency range is
relevant for acoustic borehole logging. Therefore, we give a short introduction to the
principles of this technique.

Acoustic-logging probes such as illustrated in Fig. 1.1 measure the signal transmitted
from a source T via the borehole fluid and through rock along the borehole wall to a set
of receivers R located at some distance away. A typical diameter of the borehole is 30 cm,
while a typical value for the tool diameter is 10 cm. The transmitter-receiver distance is
about 1 m. The centre frequency of the acoustic pulses is around 20 kHz for conventional
tools. A typical example of the recorded wavetrain is given in Fig. 1.2. The first arrival
is the compressional head wave, while the second wave to arrive is the shear head wave.
The third wave to arrive has a large amplitude and corresponds to the Stoneley wave,
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Figure 1.2: Typical example of the received signal in a borchole (Ellis 1987)




1.2 Approach and thesis outline 17

which is also called the tube wave. The velocity of the compressional wave is determined
with the first arrivals of the wave train at the two receivers. Subsequently, Wyllie's
equation (Wyllie et al. 1956, Wyllie et al. 1958) can be used to relate the compressional
wave velocity to the porosity. New techniques have been developed to exploit the full
wave train for the determination of the shear velocity and permeability. For estimation
of the shear velocity in slow formations (shear velocity < compressional borehole fluid
velocity), dipole and multiple sources are used. The permeability is estimated from the
Stoneley wave (Tang and Cheng 1996, Tang 1998). An overview of these techniques and
its applications can be found in the work of Paillet et al. (1991,1992).

A literature survey of the studies concerned with the relation between the Stoneley
wave and the permeability is given below. Experimental and theoretical evidence was
found for the relation between the Stoneley wave properties and the permeability. The
presence of the mud-cake and anisotropy remain however a problem. The mud-cake
changes the boundary conditions at the wall of the borehole such that the Stoneley wave
is less affected by the permeability. Furthermore, the interpretation of the full wave
train is complicated by the presence of the logging tool and /or diameter variations of the
borehole. These problems were covered by theoretical studies, but laboratory experiments
are scarce in the frequency range which is relevant for acoustic logging.

As mentioned above frequency dependence of the wave velocities, damping and re-
flection coefficients are subject of research. More specifically, we investigated frequency-
dependent wave propagation in a liquid-loaded porous cylinder. Both bulk and surface
waves were considered for several diameters of the cylinder, and a wide range of rock
properties. We concentrated on the effect of the permeability and the shear modulus
on wave propagation parameters such as velocity and attenuation. An analogy for the
presence of the logging tool in a borehole was obtained by using different values for the
diameter of the porous cylinder.

We limited ourselves to the description of the rock property and frequency dependence
of the phase velocities and damping coefficients. The inversion process itself was not
considered. It is important to note that the approach of the inversion process is different
from the modelling. In the inversion process the recorded acoustic signals are used to
predict the reservoir properties. The predicted results can be validated by data of other
wireline logging techniques or core samples. In the modelling the rock properties together
with a wave propagation model are used to predict the acoustic signals. The predicted
signals are compared with signals recorded during laboratory experiments.

1.2 Approach and thesis outline

In our experimental set-up, a so-called shock tube, it is possible to measure the progress
of a pressure stepfunction through a water-saturated porous cylinder (Fig. 1.3). A shock
wave in air is generated, which is transmitted into the water column on top of the sample.
The step wave in the water partially reflects, partially transmits into the sample. Several
pressure transducers are mounted in the wall of the shock tube. Between the porous
cylinder and the wall of the shock tube a gap exists. Using a large value for the ratio
of gap width to sample radius it is possible to excitate both Stoneley and bulk waves.
We performed a large series of measurements on samples with a wide range of porosi-
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Figure 1.3: Shock tube configuration. P1, P2, P3 and P4 indicate the positions of the pressure
transducers.

ties, permeabilities and lithologies. Furthermore, we modified the classical shock tube
configuration in such a way that data were obtained in the frequency domain.

With our shock tube it is possible to study also non-linear phenomena. For these
studies we used an air-filled test section, and also the pores were filled with air. Due to
the high velocities of air flow in the pores, non-linear effects occur, and Darcy’s law is
not valid any more. Different permeabilities were used to investigate the limits of Darcy’s
law.

In our theoretical considerations we analyzed Biot’s theory on waves in porous media.
As surface waves play an important role in our research project, we first investigated the
surface wave phenomena on flat interfaces between elastic solid formations and liquids.
Following Feng and Johnson (1983), we extended this theory to a lossless poroelastic solid,
and finally we applied the full Biot model, including damping.

The Stoneley wave can be modelled using the theory of wave modes. We started
by giving an analysis of the wave mode theory for an elastic cylinder, after which we
incorporated also the poroelastic effects. In our final model of the wave motion in porous
cylinder, the liquid-filled gap and the elastic wall of the shock tube were taken into account.
We present the afore mentioned topics in the following way:

o In the Chapter 2 and 3 Biot’s theory of wave propagation in porous media is dis-
cussed. Equations of motion are given, as well as the boundary conditions.

e In Chapter 4 we discuss one-dimensional wave propagation in multiple layers as
function of the different boundary conditions. In this way we can understand the
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basic features of Biot’s theory. The fundamentals of a numerical code are presented.
With this numerical code we can analyze one-dimensional wave propagation in the
shock tube configuration.

e In Chapter 5 the principle of the shock tube measurements is explained. Using
a large measurement series on water-saturated samples we evaluated both Biot’s
theory and Wyllie’s equation. For air-filled pores results for samples with different
permeabilities are presented, together with an evaluation of Darcy’s law and a non-
linear model, the Forchheimer equation.

e Surface wave phenomena are discussed in Chapter 6 for elastic and poroelastic
media. The theory of elastic wave guides is given in Chapter 7. Both topics are
used in Chapter 8 to explain the theory of wave modes in the porous cylinder in the
shock tube. The analysis is based on both the wave mode theory and Biot’s theory.
Finally, the parameter dependence of the Stoneley mode is analysed.

e An advanced signal processing technique, the so-called Prony’s method is used to
obtain phase velocities and damping coefficients in the frequency domain. The main
properties of this theory are discussed in Chapter 9.

o Experimental results for the phase velocities and damping coefficients of the Stone-
ley mode and higher-order modes are presented in Chapter 10. Both natural and
synthetic rock are considered. The results are compared with the theoretical model
of Chapter 8.

1.3 Literature survey

First, we give a short review of the models which are commonly used in field and laboratory
studies, the Wyllie equation and the Biot model. Subsequently, we focus on the relation
between the borehole Stoneley wave and the rock properties, after which a more general
consideration of surface waves is given. Our last topic in this survey is formed by the
theoretical and experimental results for poroelastic waveguides.

1.3.1 Waves in porous media

As mentioned above Wyllie’s equation can be used for porosity evaluation. The velocity
of the compressional wave is based on an avaraging of the inverse sound velocities of the
grains and the saturant fluid, where the porosity is used as the weighting factor. The
model is based on a system of solid parallel plates with different properties. It is therefore
a simplified model of wave propagation in a porous solid, but it can easily be implemented
in an inversion procedure. Wyllie et al. (1956,1958) observed good agreement between
their model and their experiments for pressurised sandstone samples.

A more complete theory to describe wave propagation through porous media was
given by Biot (Biot 1956a, Biot 1956b). He presented his theory around the same time as
Wryllie, but his theory is less popular in field applications. The complexity of the equations
and the large number of rock parameters that are required produce a very complicated
inversion procedure.
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Theory

The most striking feature of Biot’s theory is that it predicts two compressional waves and
a shear wave in a poroelastic solid. This is in contrast to an elastic solid, where only
one compressional wave and a shear wave occur. The first wave of a wave train to arrive
in a poroelastic solid is called the fast wave, and corresponds to the in-phase motion
of the solid and the fluid. The second compressional wave is called the slow wave, and
corresponds to out-of-phase motion of the solid and the fluid. The latter is characterized
by a high damping coefficient and diffusive behaviour in the low-frequency limit. The first
experimental observation of the slow wave was reported by Plona (1980). Independently
of Biot, De Josselin de Jong (1956) described acoustic wave propagation through porous
sandstone saturated with water, and he also predicted the occurence of two compressional
waves and a shear wave.

In the frequency domain Biot’s theory contains two limiting cases, the high-frequency
and the low-frequency limit. In the high-frequency limit inertia forces play a dominant role
and both the fast and the slow compressional wave are propagatory. In the low-frequency
limit the viscous forces in the fluid dominate the inertia forces and the slow wave shows
diffusive behaviour. This limit is also called the Biot-Gassmann result (Gassmann 1951).
Boundary conditions for poroelastic media were given by Deresiewicz and Skalak {1963).
They proposed the so-called open pore and sealed pore conditions as two limiting cases
and introduced the concept of interface permeability.

An important contribution to Biot’s theory was given by Johnson et al. (1987). They
developed the model for the dynamic permeability. In between the low-frequency and the
high-frequency limit both inertia and viscous forces play an important role. With their
proposal Johnson et al. incorporated these two effects in one model, which satisfied both
limits. They derived their results using energy considerations. Smeulders et al. (1992)
derived the same results from the micro-structural approach.

Wave propagation in porous media is strongly influenced by the fluid saturation. Par-
tially saturated pores were studied by Smeulders and Van Dongen (1997). Air-filled pores
were investigated by several authors (Attenborough 1987, Allard 1993, van Dongen et al.
1995). Deviations from Darcy’s law for this case were observed by Van de Grinten et al.
(1985) and Wilson et al. (1988).

Laboratory experiments

Experimental results show the strong predictive power of Biot’s theory. As already men-
tioned, Plona (1980) reported the first observations of the slow wave. Using a spectral
ratio technique and synthetic rock samples Johnson and Plona (1994) measured phase
velocities of the three Biot waves and damping coefficients of the slow wave in the 0.1 - 1
MHz frequency range. Kelder (1998) used a similar experimental technique, but presents
also data on natural rock samples. Experiments to measure dynamic permeability were
presented by Johnson et al. (1994), Smeulders et al. (1992) and Kelder (1998).

Shock tube experiments provide data in a lower frequency range due to the low fre-
quency content of a step wave. Van der Grinten et al. (1985,1987), Sniekers et. al.
(1989), and Smeulders and Van Dongen (1997) performed shock tube experiments on
water-saturated, partially saturated, and dry samples. Nakoryakov et al. (1989) studied
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the propagation of both step waves and bell-shaped waves in a shock tube configuration.
Up to now shock tube data were presented in the time domain, while the frequency de-
pendence is an important point of interest. In this thesis we present a technique to obtain
phase velocities and damping coefficients in the frequency domain, using a shock tube.
The initial results were reported earlier (Wisse et al. 1998).

Van der Grinten et al. (1985) report also shock tube experiments on air-filled porous
media. Due to the strong shock wave, in that configuration, non-linear effects were
observed, which were described by Forchheimer’s equation. For other experiments on
air-filled pores, we refer to Allard (1993) and Nagy and Adler (1990). They reported
measurements of reflection coefficients and tortuousity factors.

In this short review of the models of porous media we have concentrated on Wyllie’s
equation and Biot’s model. For more extensive reviews and and other available models
we refer to Stoll (1974), Bourbié et al. (1987) and Allard (1993).

1.3.2 Borehole Stoneley waves and parameter dependence

Acoustic wave trains in a borehole were studied with Biot’s theory by Rosenbaum et al.
(1974). He was one of the first authors to indicate the relation between the Stoneley
wave and the permeability effects. Williams et al. (1984) used field data to show a
correlation between the core-measured permeability, the Stoneley wave velocity and the
Stoneley wave amplitude. The data of Williams et al. were evaluated with Biot’s theory
by Cheng et al. (1987), who confirmed the correlation between the permeability and
Stoneley wave properties. They did, however, not take into account the variations of
the elasticity. Burns et al. (1988) incorporated the variations of the shear modulus and
obtained a better correlation. Theoretically, Schmitt et al. (1988a,1988b) and Winkler
et al. (1989) investigated the relation between the Stoneley wave properties and the
permeability. Schmitt et al. also mentioned the influence of the shear wave velocity on
the Stoneley wave. Hence, a good estimation of the shear modulus is needed to obtain a
reliable permeability evaluation. Burns and Cheng (1987) reported a method to obtain
shear attenuation values from guided waves such as the Stoneley wave. In slow formations,
where no shear wave arrival is observed, the Stoneley wave is used to obtain the shear
velocity.

Simplified models are needed to perform the inversion process. White (1983) and
Hsui and Toksbz (1986) derived a low-frequency model for the tube wave. Chang et al.
(1988) compared the White approximation with the full modelling with Biot’s theory.
Tang et al. (1991) developed a simplified expression for the Stoneley wave, and showed a
comparison between their model and the full Biot modeling. Agreement was found with
the laboratory data of Winkler et al. (1989). Tang et al. (1995) presented a processing
techique for the estimation of the formation shear velocity from Stoneley waveforms. The
simplified model for the Stoneley wave was incorporated in an inversion procedure (Tang
et al. 1995, Tang and Cheng 1996), from which the permeability could be obtained using
the Stoneley wave. In this inversion procedure the influence of the shear velocity on the
Stoneley wave was also taken into account. The results clearly demonstrate a succesfull
use of the Stoneley wave for permeability estimation.

The permeability estimation from the Stoneley wave can be disturbed by mud particles
in the borehole fluid. The first problem caused by the mud is that the viscous effects of
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the borehole fluid cannot be neglected (Burns 1988). Furthermore, it is not entirely clear
which boundary conditions have to be applied. This is due to the mud-cake, which is an
aggregate of mud particles that collect on the borehole surface. Recently, Liu and Johnson
(1997) proposed a set of boundary conditions for the mud-cake. They also analysed the
influence of these boundary conditions on the Stoneley mode.

1.3.3 Surface waves and flat interfaces.

The Stoneley wave on the borehole wall corresponds at high frequencies (above 10 kHz)
to a surface wave, while at low frequencies (below 1 kHz) it corresponds to the so-called
'water-hammer’. The acoustic pressure of a surface wave falls off exponentially as it
departs from the boundary. For a general treatment of surface waves in acoustics, we
refer to Uberall (1973), Viktorov (1967) and Brekhovskikh (1980). The surface wave at
a flat interface between an elastic half space and a vacuum is the well-known Rayleigh
wave. On a flat liquid-solid interface not only the Stoneley wave is present, but also the
pseudo-Rayleigh wave. (Uberall 1973). The velocity of the Stoneley wave is lower than
the liquid sound velocity, while the velocity of the pseudo-Rayleigh wave is in between the
liquid sound velocity and the shear velocity of the elastic formation. It should be noted
that there is a difference between this pseudo-Rayleigh wave and the so-called pseudo-
Rayleigh modes in a borehole. The latter are higher-order borehole modes (Paillet and
Cheng 1991), which are strongly dispersive, and the high-frequency limit of the phase
velocity is the shear velocity. Below a certain frequency they are cut off.

The theory of surface waves and pseudo-surface waves for elastic media has been ex-
tended to poroelastic media by Feng and Johnson (1983). Their analysis was based on
the high-frequency limit of Biot’s theory. The viscous dissipation was not taken into
account and a lossless medium was considered. In the case of a fast formation three
types of surface waves exist: the true Stoneley wave, the pseudo-Stoneley wave and the
pseudo-Rayleigh wave. The true Stoneley wave has a phase velocity which is lower than
the slow wave velocity, and is therefore lower than all the bulk velocities in the system.
The velocity of the pseudo-Stoneley wave is in between the slow wave velocity and the
liquid velocity, while the pseudo-Rayleigh wave velocity is in between the liquid velocity
and the shear wave velocity. The pseudo-Stoneley wave is the wave which is related to
the permeability. Generally, in borehole applications this wave is called the Stoneley wave.

1.3.4 Wave modes in poroelastic waveguides

A review of the wave mode theory in boreholes is given by Paillet and Cheng (1991).
In this subsection we focus on the wave mode theory in cylinders. Waves in elastic
cylinders have been investigated by many authors. The research was already started by
Pochhammer in 1876, but due to the complexity of the equations it took half a century
to obtain computational results. For details of the historic development we refer to Onoe
et al. (1962) and Meeker and Meitzler (1964). Experimental data on this subject were
provided by Fox et al. (1958) and Zemanek (1971). The main result of the Pochhammer
theory is that a finite number of undamped modes occur, which have the shear velocity
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as their high-frequency limit and are cut off below a certain frequency. The lowest-order

mode is propagatory over the entire frequency range and its low-frequency limit is called
the "bar’-velocity.

Theory

The theory of wave modes in elastic cylinders can be used together with Biot’s theory for
the modelling of porous cylinders. From a theoretical point of view an interesting question
is whether the slow Biot wave gives rise to an extra wave mode type. This is indeed
the case, as indicated by several authors. We summarize their results chronologically.
Gardner (1962) was the first to apply the wave mode theory to porous cylinders. He used
the long-wavelength approximation together with the low-frequency limit of Biot’s theory.
He studied the case of an isolated porous cylinder, i.e. the pressure of the surrounding
medium is zero. He predicted the presence of two types of wave modes, one due to the
fast wave and one due to the slow wave. Because of the approximations in the theory,
his expression for the second wave type is not generally valid. Berryman (1983) used
the full Biot theory to study the wave modes in an isolated cylinder. For the open pore
conditions he presented three wave modes of the same type which are similar to the elastic
wave modes. For the open pore conditions he did not find the slow wave mode type. For
the sealed pores he found such a wave type with a phase velocity lower than the slow wave.
It was suggested that this wave type is related to the true surface wave which was discussed
by Feng and Johnson (1983). Liu (1988) analysed the wave modes in the configuration of
Winkler et al. (1989) which is drawn in Fig. 1.4 (LHS). In this configuration the borehole
in the porous cylinder is filled with liquid. The porous cylinder is saturated with liquid
and immersed in liquid. Liu (1988) found two wave mode types, one due to the fast wave,
and one due to the slow compressional wave. The existence of a second mode type is also
confirmed by the results of Hsu et al., who modelled the configuration as given in Fig. 1.4
(RHS). Further work on porous cylinders has been carried out by Johnson and Kostek

(1995), that provided a comparison between the approximation of Gardner and the full
Biot theory for the first mode type.

Laboratory experiments

Laboratory data on wave modes which cover a broad frequency range are scarce. The
quasi-static experiments in the 0.2-200 Hz range of Dunn (1986,1987) are difficult to in-
terpret due to boundary effects. Resonant bar techniques on rod shaped rock samples
provide data in the 1-20 kHz range, but these data are limited to the lowest-order wave
mode. Due to the long-wavelength approximation it is difficult to operate this technique
above 20 kHz (White 1983, Tang 1993). Furthermore, the interpretation is also compli-
cated by boundary effects. Tang (1993) used a waveform inversion technique for an elastic
solid cylinder. He obtained data in the 10-150 kHz frequency range for the lowest-order
mode. His technique is also applicable to porous cylinders.

Winkler et al. (1989) reported experiments on Stoneley waves in both artificial and
natural (Berea sandstone) samples in the 10-90 kHz frequency range. We explain their
experiment in more detail because of the similarties with our experimental technique.
Their set-up is shown in Fig. 1.4 (LHS). A monopole source is placed in the borehole
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Figure 1.4: Experimental configurations of Winkler et al. (1989) and Hsu et al. (1997)

which penetrates a porous cylinder. The receiver is moved vertically in one centimeter
increments, and a waveform is recorded at each position. A typical scan contains 15
to 20 waveforms, of which each is the avarage of 100 waveforms per station. Using
Prony’s method (Marple 1987, Lang et al. 1987) Winkler et al. obtained phase velocities
and damping coefficients of the Stoneley wave. Excellent agreement was found between
modelling and experimental results. The model parameters for the compressional and
shear waves were measured under saturated conditions. They only report data of the
Stoneley wave, most likely because other mode types were weakly excitated.

Recently Hsu et al. (1997) investigated the characteristics of tube waves in an elastic
solid formation, with and without a cylindrical mandrel (Fig. 1.4 (RHS)). Porous and
elastic mandrels were used. In case of a porous mandrel, this configuration is very similar
to ours. Using synthetic porous samples, they found excellent agreement with their mod-
elling for the phase velocity of the tube wave in the 10-100 kHz frequency range. Between
50 and 90 kHz a bulk mode could be recorded. Due to the way they set up the experi-
ment only the modes with appreciable energy in the fluid annulus could be detected. The
dimension of the fluid annulus that they used was quite large, the ratio of the diameter
of the mandrel to the diameter of the borehole is equal to 0.6. Attenuation data were
also presented, but the scatter is such that it is difficult to compare the results to their
modelling.

Summarizing these laboratory experiments, we may say that they either succeed in
generating multiple wave modes over a small frequency range, or in generating only one
wave mode over a broad frequency range.



Chapter 2

Constitutive relations and momentum
equations

In next two chapters we discuss the main features of Biot’s theory of wave propagation
in porous media. Developed by Biot (Biot 1956a,Biot 1956b) some forty years ago, it
is widely used now in the field of porous media. The experimental observation of the
predicted second compressional wave by Plona (1980), the re-derivation of the equations
from the microstructure by Burridge and Keller (1983) and the concept of dynamic per-
meability, developed by Johnson et al. (1987) contributed to the acceptance of Biot’s
theory.

The approach of this chapter is as follows. First, we discuss definitions and assump-
tions followed by the stress-strain relations for a porous solid. Subsequently, the elasticity
coefficients occuring in the constitutive relations are related to measurable quantities. To
obtain a thorough insight in the phenomena described by Biot’s theory we discuss the
so-called rigid frame limit, which is followed by the introduction of the concept of dynamic
permeability.

2.1 Continuum theory

Considering a fluid-filled elastic skeleton with a statistical distribution of interconnected
pores, the porosity can be expressed by:

=7 21
where V; is the volume occupied by the fluid and V;, is the total volume. For a statistically
isotropic porous material this is equal to the ratio of the surfaces Ay and A4, (Fig. 2.1). In
this definition only interconnected pores contribute to the porosity. The closed pores are
considered as part of the solid. For long-wavelength disturbances (A > a, where a is a
typical pore size and A is the wavelength) propagating through such a porous medium, it
makes sense to define average values of the (local) displacements in the solid and in the
fluid. For further discussions on the relation between the microscopic and the macroscopic
level, the reader is referred to the publications of Burridge and Keller (1983), Smeulders
(1992), and Kelder (1998). In this chapter we use macroscopic properties, and if necessary
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Figure 2.1: Cube of unit size. The intergranular forces are denoted by F;j, the pore pressure
by p.

a link shall be made to the microscopic structure. Furthermore, we make the following
assumptions in this chapter:

& The displacements of both the fluid and solid phases are assumed to be small. The
equations are presented in their linearized form.

o The fluid neither transmits nor reacts to a shear force in the solid. This is in
accordance with the assumption that the fluid has no shear strength.

e The matrix is assumed to be elastic and isotropic, and dissipation related to the
matrix is neglected. Only dissipation due to the interaction between the solid and
the fluid is taken into account.

e The absence of thermo-elastic and chemical reaction effects is assumed.

2.1.1 Stresses and strains

The average displacement vector for the solid frame is u,, while that for the pore fluid is
uy. Within the restrictions of the linearized theory the strains e;; for the solid and €;; for
the fluid can be described as follows:

_ 1 6us,- c?usj
€ij = 5 (a-z] -+ ‘5;:) ) (22)

- 1 Gufi 6’u”‘
fii = 2 (6:0, + 81‘,- ' (2.3)

When defining the stress tensor in a porous medium one has to be strict on notation.
This is especially important when the work of several authors is compared. The total
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stress tensor of the porous material can be written in the following way:

m+T T2 T13
To1 T2 +T T3 ) (2.4)
T31 T3z Tas+ T
with the symmetry property 7;; = 7j. If a cube of unit size of the bulk material is

considered (Fig. 2.1), 7 represents the total normal tension force per unit bulk area A,
applied to the fluid part of the faces of the cube. Denoting by p the pressure of the fluid
in the pores we may write:

_ _pAy
T=—g = ép. (2.5)

The remaining components 7;; of the total stress tensor are the forces per unit bulk area
A, applied to that portion of the cube faces occupied by the solid. Both the intergranular
forces F;; and the pressure p contribute to the stress 7;;:

Tij Ay = — Z Fij — pAsdij, (2.6)

where the Kronecker symbol §;; is introduced because the pore fluid cannot exert nor

sustain any shear forces on the macroscopic scale. With the intergranular stress o;; =
Y Fi;/Ap we write:

i = —0i; — (1 — $)pdy;. (2.7)

We notice that the additional intergranular stresses o;; are defined negative in tension.
They are referred to as ’additional’ because they add up to the fluid pressure-induced
stresses in the solid. From these considerations it follows that the total stress tensor for
the porous material may be written as:

—01—P —012 —013
—021 —022 — P —023 . (2-8)
—031 —032 —0O33 — P

The formulation of the total stress tensor is also given by Verruijt (1982); it must however
be noted that he denotes the total stress tensor by o,; and the intergranular stress by 0.

2.1.2 Stress-strain relations

We now proceed to establish the relation between the stress and strain components of the
porous medium as defined before. Biot (1955) developed the stress-strain relationships by
generalization of the procedure followed in the classical theory of elasticity (Love 1944).
In a previous paper (Biot 1941), the relations were derived for an isotropic solid using a
kind of 'gedanken’ experiment. In this section we summarize the derivation presented in
the paper of 1955. The elastic potential energy V of the porous system can be written as:

2V = 1y1eyy + Taneny + Tasess + 27Tipeqn + 2Tizer3 + 2Tozen; + e, (2.9)
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with € = €11 + €32 + €33. If it is assumed that the seven stress components are linear
functions of the seven strain components, the expression 2V is a homogeneous quadratic
function of the strain. This function is a positive definite form with 49 coefficients. Due to
the symmetry of the seven-by-seven matrix of elasticity coefficients the number of distinct
coefficients equals 28:

T11 Ci1 C2 €G3 Ci4 €5 Cig C17 en
T2 Co2 C23 Cyq C25 C6 Co7 €22
733 €33 C3¢4 C35 C36 C37 €33
Tig | = C44 Cq5 Ca5 Cay 2ep2 |, (2.10)
713 Cs5 Cse Cs7 2e13
T23 Ce6 Co7 2exs
T Cr7 €kk

with the symmetry property c;; = cj;. In case of complete isotropy the function V' becomes
invariant for all transformations from one set of orthogonal axes to another. Then the
problem is simplified and the number of elasticity coefficients reduces to four. The stress
components are given by the partial derivatives of V as follows:

ov 1% ov

- = _ = — = Taa. 2.11
dery i1, Fen T22, Deas 733 ( )
oV ov v
S =97, —— =273, = O, 2.12
Oerz e Oey3 s Jes & ( )
ov
— =T 2.13
5 =7 (2.13)
For the isotropic case, the stress-strain relations read as follows (Biot 1955):
Tij = Aekkéi]- + Qekk&-j + 2G6i]’, (214)
T = —¢p = Qexx + Rexx, (2.15)

where the elasticity coefficients A, @, R and G have been introduced and eg, = e;; +
€22 + e33. Using Equation (2.5) and (2.7) we write for the intergranular stress:
(1-9) (1-9¢)

Oij = — [A - TQJ exidi; — [Q Bl

R:‘ Ekkdij - 2G€,‘j. (2.16)

2.2 'Gedanken' experiments

The so-called 'gedanken’ experiments can be used to relate the elasticity coefficients A4, Q,
R and G to measureable quantities. The coefficient G corresponds to the shear modulus
of the solid skeleton, and can be determined by a shear test. The relations of the coeffi-
cients A, () and R to measureable quantities, however, are complicated. The ’gedanken’
experiments presented in this section have been developed by Biot and Willis (1957) and
were used by Geertsma and Smit (1961), Berryman (1981), Johnson and Plona (1986),
Smeulders (1992) and Kelder (1998).
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2.2.1 ‘'Jacketed' test

In the first ’gedanken’ experiment, the so-called ’jacketed’ test, the influence of the inter-
granular stress is studied. There are no shear forces acting on the sample and the second
(pressure) term on the RHS of Equation (2.7) is equal to zero. This result is obtained
in the following way. A saturated porous sample is jacketed and fully submerged in a
watertank (pressure change dp’) and the inside of the jacket is allowed to communicate
with the atmosphere via a tube to ensure constant internal fluid pressure. Using Equation
(2.7) with p = 0, we may write for the stress tensor:

Tij = —dp'dij,
(2.17)
T=0.
From Equations (2.14) and (2.15) we obtain:
—d'—A—Qze +zGe (2.18)
p - R kk 3 kk> .
and
e
€xk — —%. (2.19)

As there are no changes of the pore pressure, the jacketed test measures the influence of
a change of the intergranular stress on the bulk volume of the sample. The matrix bulk
modulus K} is defined in the following way:

1 1dV,
—_ = 2.20
K, Vi dp'’ (2:20)
which gives the opportunity to write the dilatation of the solid as:
dp
= ——. 2.21
ek = (2.21)
- We then obtain the following expression for the bulk modulus Kj:
Q 2
K,=A—- % + =@, 2.22
b ) + 3 ( )

which shows a similarity to the elastic case, where the well-known Lamé coefficients A and
u are related to the bulk modulus as follows (Achenbach 1973):

Ky= A+ %u. (2.23)

The quantity A — Q?/R is therefore equivalent to the Lamé coefficient A of the porous
material under conditions of constant pore pressure.
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2.2.2 'Unjacketed’ test

In the second ’gedanken’ experiment the influence of a pore pressure change is studied.
Then the first (stress) term on the RHS of Equation (2.7) is kept equal to zero. In this
test, called the unjacketed test, the porous sample is immersed in a watertank, while a
pressure change dp’ is applied, and the sample is assumed to be fully water-saturated.
Then it is clear that the fluid pressure must be continuous over the interface (dp = dp')
and the intergranular stresses are equal to zero. Then we may write for the stress tensor:

T = —(1 - @)dp'é;;,
T = —¢dp.

(2.24)

In this unjacketed test the influence of pore pressure changes on the volumes of both the
solid and the fluid are studied. In the homogeneous case the application of an incremental
pressure dp’ means applying this increment both to the outer and inner pore surface, which
leads to a linear mapping and does not change the porosity ¢. Therefore the change of
the volume of the solid as well as the change of the bulk volume can be related to the
bulk modulus of the single grains K in the following way:

1%,
K, Vodp ~ V,dp’

(2.25)

The pore fluid is compressed only due to the increase of pressure dp’ and can move freely
in and out of the sample at the boundaries of the sample. Therefore, the change of the
fluid volume V% is related to the pressure change dp’ via the bulk modulus of the saturant
fluid:

1 -14dV;
1 _Zldly 2.26
Ky Vydp (226)
In this way we have obtained expressions for the dilatation of the solid (exx = —dp'/Kj)

and the dilatation of the fluid (exx = —dp’/K). These relations can be substituted in the
stress-strain Equations (2.14) and ( 2.15). Together with the expressions for the stresses
of Equation (2.24) we obtain two additional equations for the coefficients A, Q, R and G:

R Q

s, 9 (2.27)
K 1x,
A Q 20
1= —— 4+ 2 42— 2.2
=% Tk T3%, (228)

Note that these relations are only valid for the homogeneous case. For the non-homogeneous
case the reader is referred to Biot and Willis (1957) and Kelder (1998).

2.2.3 Relation to measurable quantities

After some algebraic manipulation of the results of the jacketed test (Equation (2.22))
and the unjacketed test (Equations (2.27) and (2.28)), we can write the coefficients A, Q
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and R explicitly as function of the measurable quantities K, K, and K;:

K,
AzKf(1—¢>((1—¢)—gg)+¢Kb_§G

7 , (2.29)
oK ((1—¢)— &
- (( ;’) KE) , (2.30)
R= ¢2;{f, (2.31)
where
ﬂ=¢+%((1—¢)—%)- (2:32)

Kelder (1998) derived these expressions from continuity and constitutive relations based
on the work of Verruijt (1982). If we assume that the matrix and pore fluid are much
more compressible than the grains themselves (K,/K, < (1 — ¢) and K/ K, < ¢), we
may write

1-¢)? 2
A= ( ¢¢) Kf + Ky — EG, (233)
Q=K;(1-9), (2.34)
R = ¢K;. (2.35)

In Appendix E the measurement methods of K, and G is discussed. Then it is assumed
that the saturant fluid does not influence the values of K and G. This implies that the
measurements can be performed on dry samples, which facilitates their determination. For
the incompressible grain approximation the stress-strain relations simplify. Substituting
Equations (2.33), (2.34), and (2.35) in Equations (2.15) and (2.16), we obtain:

2
0y = —(Ky— gG)ekk(Sij - 2Geyj, (2.36)
and

K1 -
p= _g - ___f(d);weﬂi ~ K (2.37)
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2.3 Momentum equations

The momentum equations for a porous medium have been derived from Lagrangian me-
chanics by Biot in his paper of 1956. Using a two-space method of homogenization
Burridge and Keller (1983) arrived at the same results for the case that the viscosity of
the saturant liquid is low. In this section we follow the derivation of Biot.

From Lagrange’s equations (Davies 1988) including dissipation it can be derived that

o (or oD

3 (a u) Fay 1 (2.38)
and

a (oT oD

52 <a—u;) + 5-17; = Ff,’. (2.39)

In these equations T is the kinetic energy per unit volume of the porous system, Fy; the
force acting on the solid per unit volume, and Fy; the force acting on the fluid per unit
volume. The dissipation function is denoted by D. Time derivatives are denoted by dots
above the variables. The expression for the kinetic energy reads as follows:

2T = pyy Ugithsi +2p12 Usilhp; +po2 Upitip, (2.40)

where the summation convention must be invoked. In this expression the densities p;;
and py; are related to the density of the solid p, and the density of the fluid p; by

pi1 = (1 = @)ps — p12, (2.41)

P2 = ¢ps — pr2. (2.42)

The coefficient p;2 represents a mass coupling parameter between the solid and the fluid
and is related to the fluid density in the following way:

P2 = —(aoo - 1)¢Pf; (243)

where the parameter o, is referred to as the tortuosity (o, > 1). We discuss this term
more extensively in the next section. Dissipation depends only on the relative motion
between the fluid and the solid. Introducing the concept of the dissipation function, we
may write this function as a homogeneous quadratic form with the six velocities ,; and
uy;. The dissipation vanishes when there is no relative motion of the fluid and the solid.
The dissipation function D for the isotropic case is therefore (Biot 1956b):

2D = bo('l'lz_.,,f ad T.I/ﬁ)(il,si - ’Q.l,f,'), (244)
where the coefficient by is related to the Darcy’s coefficient of permeability ko by

_ ¥

b .
0 "o

(2.45)
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The dynamic viscosity of the saturant liquid is denoted by 7. For anisotropic solids the
permeability depends on the direction and is expressed by a tensor. In the next section,
the relation between Darcy’s law and the dissipation function is clarified using simplified
cases. The force components F;; and FY; are related to the stresses in the following way:

0Tij
Fsi = l]v .
7; (2.46)
and
or
Fp = 2.47
= o (2.47)

Using the expressions for the stress tensor we can write for the dynamic equations:

87'1' 7

oz, put tg; +p1o Gy +bo (s — g;), (2.48)
T

or . - _ )

1. = P12 U +p22 Ufi —bo(usi Ld 'U,ﬁ). (2.49)

The equations of motion are obtained by substituting the stress-strain relations (2.14)

and (2.15) into the dynamic relations (2.48) and ( 2.49). The equations of motion read
then as follows:

GV2u, + (A+ G)VV - 4, + QVYV - uy = pyy i, +py2 iy +b(i1, — 1),
(2.50)

QVY -u, + RVV - uy = ppp Ui, +pa iy —b(1, — 1) (2.51)

2.4 Rigid frame limit

As an illustration, we proceed with the discussion of the rigid frame limit. The rigid frame
limit clarifies the role of dissipation term and the background of the added mass term
p12- We can also incorporate the dynamic-permeability concept, which means that the b
coefficient in the dissipation function is modified because of the frequency dependence of
the dissipation process.

We obtain for the dynamic relations for the fluid from Equation (2.49):

dp . .
_¢0—$i = pag Ugi +bo Up; - (2.52)

Subsequently, we can study the low- and high-frequency limit of this equation. For low
frequencies the acceleration vanishes and viscous forces are dominant. We obtain the
well-known Darcy’s law:

Op bo . ne .

Bn = g b= (2.53)
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In the high-frequency limit the inertia terms become dominant over the viscosity terms.
Using the expression for the densities ps; and py2 of Equation (2.42) and Equation (2.43)
we simply obtain

op
63:,- '

Coops Ugi= —¢ (2.54)

In this equation the tortuosity a, appears as a modification of the acceleration term of
the fluid. To understand this phenomenon, it is important to realize that we are dealing
with a macroscopic theory. The macroscopic lengthscale is related to the wavelength A,
a scale at which measurable, continuous and differentiable quantities may be identified
and boundary value problems can be stated and solved. The microstructure of a random
porous medium is generally characterized by a lengthscale proportional to the pore size
(Smeulders et al. 1992). The direction of the acceleration on a micro-scale may very
well differ from the macroscopic acceleration direction, as indicated in Fig. 2.2, where
the macroscopic flow is assumed to be one-dimensional, while the microscopic flow is at
least two-dimensional. Smeulders et al. (1992) relate the microscopic flow field to the
macroscopic flow field using an averaging technique of homogenization. Then they obtain
the following result in the high frequency limit:

_ {(mP) 255

= [vol? '

In this expression, u, is the microscopic potential flow solution and vy is the macroscopic
velocity of the fluid while () denotes the averaging operator (Smeulders et al. 1992). In

Figure 2.2: Sketch of the microscopic flow of the fluid

this way, it can be imagined that the local variations of the flow (see Fig. 2.2) contribute
to the one-dimensional inertia term on the macroscopic level. In a cylindrical duct the
averaged microscopic velocity is the same as the macroscopic velocity, which results in a
tortuosity equal to 1.
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2.5 Dynamic permeability

Equation (2.52) shows the momentum equation of the fluid as a superposition of the low-
frequency and the high-frequency limit as described above. This is, however, a simplified
model of the dissipation process. A more realistic model can be obtained by assuming a
frequency dependence of the factor by. Hence, by is replaced by b(w). A model for b(w)
has been developed by Johnson et al. (1987), which satisfies the high-frequency and the
low-frequency limit. For the intermediate frequency range a model is proposed based on
the ratio of the 6 = \/2n/wpy and the characteristic lengthscale of the pore size, denoted
by A. Johnson et al. arrive at the following expression:

blw) / M w _
T =4/14+ T‘w—c, (2.56)

where
ne
We = ———, 2.57
¢ koaoopf ( )
and
8a°°k0

= . 2.58
M A2 ( )

The rollover frequency w, denotes the frequency where the inertia effects and the viscous
effects are of the same magnitude. The factor M is a universal scaling parameter for all
porous media, which is assumed to be equal to 1. Allard et al. (1998) report measurements
of M, where indeed M is of that order of magnitude. Smeulders et al. (1994) discuss the
validity of the assumption M = 1 for sharp-edged porous media and Kelder (1998) uses
a model of tubes with different radii to investigate M. They conclude that the dynamic
permeability of smooth porous media can be described very well by M ~ 1. For a further
background of this model we refer to Johnson et al. (1987) and Smeulders et al. (1992).

Previously, Biot (1956b) proposed a model for b(w)/by based on an oscillating flow in
a circular tube. He suggested:

bw) 1., J1(13/%g)
_1 2.5
bo A4 P3RRJe(12K) — 201 (12K) (2.59)

where k = Regpy/wps /n and J; and Jy are Bessel functions. For the effective radius Ry
the characteristic lengthscale A as defined by Equation (2.58) can be used. Kelder (1998)
provides a comparison between these two models and concludes that the two functions
essentially display the same behaviour. The models for the dynamic permeability can
be incorporated in the equations of motion for deformable porous materials simply by
substituting the coefficient by by b(w) (Biot 1956b).
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Chapter 3

Wave phenomena

In this chapter we discuss the general characteristics of waves in porous media using Biot’s
model, including the concept of dynamic permeability as summarized in the previous
chapter. The displacements of the fluid and the solid are described by a number of
potentials, which is advantageous in case of cylindrical coordinates. Results are obtained
for the phase velocities and damping coefficients for several wave types. Again we pay
attention to the high- and low- frequency behaviour of the rigid frame limit. The last
section is concerned with acoustic bulk properties and boundary conditions. Part of the
analysis is performed in the frequency-wavenumber domain. We use the following sign
conventions for the temporal and spatial Fourier transform:

Flxyw) = %_Z F(x, t)e-“tdt, (3.1)
f(x,t) = 7 F(x, w)e“tdw, (3.2)
and -
Flk,w) = (2;)3_2: Flx, w)e**dx, (3.3)
F = [ Fre 3.4

where x is the three-dimensional position vector, k is the three-dimensional wavenumber
vector, t denotes the time, and w is the angular frequency.

3.1 Equations of motion using potentials
Following Deresiewicz (1960) and Berryman (1983) we use the following decomposition,
which is similar to the Lamé solution in the elastic case (Miklowitz 1978):

u;, =V, +V x 9,

uy =V +V x ;. (3.5)
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Substituting these equations in the equations of motion (2.50) and (2.51), we obtain the
following equations

\vJ [(A +2G)V2p, + QV%@/ - ‘Ps —Pr2 Ps —.b(‘bs - ('bf)] (3.6)
+V x [GV*, — puy B, —pra By ~b(ab, — )] =0, '

and

V@V + RV?; = pio by —prg by ~b(0s — 9] (3.7)
—V x [p1z b, +pz Py +b(dh; — ,)] = 0.

These equations are satisfied if the terms between the square brackets are equal to zero.!

3.1.1 Compressional waves

For the temporal Fourier transform of the potentials ¢, and ¢y, which correspond to the
compressional waves, we can now write (Allard 1993):

P Q V3, -pu —p12 2 Ps
A = - ~ ' , 3.8
(Q R)<V2<pf) (—Plz ~P22 v er (38)
where P = A + 2G, pu1 = pu — ib/w, p12 = p1z + ib/w and py; = pay — ib/w. This can
also be written as:
Vig 2 @
20 ) = —wtM | ¥ ), 3.9
( Vigs ) ¢ ( @5 (39)
where
1 PR = p12Q praR — pn@Q
M=——«+ [~ - - "~ . 3.10
PR -Q? < p12P — pnQ  paP — p12Q (3.10)

Using the spatial Fourier transform we obtain the following eigenvalue problem:

M<£;>=%<§;>=C<£;)- (3.11)

The charactaristic polynomial of this matrix is defined as M — (I| = 0, where I denotes

the unity matrix, and | | denotes the determinant. After some algebraic manipulation, we
find:

do(? + di¢ + dy = 0, (3.12)
where
d; = PR — Q?,
di = —(Pp22 + Rpu — 2Qp12), (3.13)

do = pr1paz — P2y

!In the elastic case, a proof of completeness of Lamé ’s solution can be given. Deresiewicz (1960) was
the first to apply this decomposition on Biot’s equations for the non-dissipative case. His remark on the
completeness: ’It is not unlikely that the present solution, too, is complete’.
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Equation (3.12) has two complex roots ¢.; and (., which means that two damped dilata-
tional waves exist. For (., and (,, we write:

—dy +dy, 1 - 4%?&
1

2d,

Ccl,c2 = (3.14)
The eigenvalue  is equivalent to the inverse squared wave velocities: ¢ = |k|?/w? where
k is the free-field wavenumber. The properties of the two waves were illustrated by
Biot (1956a), who showed that the fluid and the skeletal velocities have the same sign
for one root, and have opposite signs for the other root. This means that there is one
wave in which fluid and skeletal velocities are in phase, and another in which they are
in opposite phase. In the same paper, it is also shown that the wave which propagates
fastest has in-phase fluid and skeletal velocities, whereas the slower propagating wave has
those velocities in opposite phase. As a matter of definition the wave which propagates
fastest will be denoted as the fast wave (subscript c1), while the other one will be denoted
as the slow wave (subscript ¢2). 2 It can be imagined that the slow wave is damped more
strongly than the fast wave because the out-of-phase character of the slow wave represents
a highly effective dissipation mechanism.

The scalar potential @, consists of contributions of the fast and the slow compressional
wave (ﬁscl and ¢562:

(;53 = (ﬁscl + @sc?- (315)

The potentials of the fluid @1, are related to the potentials of the solid @g(c1,.2) via a
linear relationship. Equation (3.8) can be used to show that

Prerfez P11 — Plaea

Berer = = = = 3.16
che Pscrysz @Cer,c2 — P12 ( )
Therefore we may write for the potential of the fluid @;:

Qbf = Be1Pset + BeaPsce- (317)

3.1.2 Shear waves

The vector potentials 1, and 1) describe the displacements of the solid and the fluid due
to transverse waves. Using the equations (3.6) and (3.7), we obtain:

GV, = —pnw’, - /712&)2":/),', (3.18)

0= —w?prath, — wpnt;. (3.19)

2This nomenclature applies for the porous media which are investigated in this thesis. For a further
comment we refer to Bardot (1996).
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The latter expression provides the relation (,, between the fluid vector potential and the
solid vector potential:

¥y =B, (3.20)
where
ﬂsh = “&- (321)
2
For (,;, we find:
L_ ¢ Gz (3.22)

Csh B Ik:;hl2 B /3111322 - p?Z

3.2 Low- and high-frequency limits

We shall discuss now some limiting cases for the complex wave velocities as formulated in
Equations (3.14) and (3.22). We start with the low-frequency limit for which the viscous
effects in the fluid dominate the inertial effects. The slow wave will become diffusive and
the fast wave will remain propagatory.

3.2.1 Low-frequency limit

For w — 0 the square root in Equation (3.14) can be replaced by the first term of the
Taylor series expansion, and hence we obtain:

—dy £ d,(1 - 24(2151&)
1

~ 3.23
Ccl,c2 2d2 ( )
For fast wave we can write:
1 dd P+R+2Q H
lim—=—-——F= —— = = 3.24
w—0 Ccl dO o 0 ( )

where p = p1; +2p12 + pa2. The effective modulus H was originally derived by Gassmann
(1951) in an article which predates the Biot theory, and therefore this low-frequency limit
is often called the Biot-Gassmann result. According to Equation (3.16), the corresponding
value f3,; is equal to 1. This means that the fluid motion is locked-on to the solid’s. The
relative velocity of the fluid (uy—u,) is then equal to zero, so no damping will be observed.
This is in agreement with the phase velocity which is real-valued according to Equation
(3.24).
For the slow wave we find that:

1 d  w(PR-Q?

—_— e 3.25
oW Co & (P +R+2Q) (325)
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This solution shows that the slow wave is described by a diffusion equation rather than
a wave equation in the low-frequency limit, because the squared wavenumber |k|? is the
eigenvalue of the diffusion equation

*x  xiw
9t = o (3.26)
where x can be any relevant variable (p, p; etc.) and
PR — 2
R-Q (3.27)

O P+ R+2Q)

The ratio of fluid and the solid potential §., in this case can be calculated using Equation
(3.16):

Q+P

/602 = "Q__‘*_“"‘é'

(3.28)

In the low-frequency limit the expression for the transverse wave is simplified also. It
is straightforward to derive that

Csn = g, (3.29)

where p = ¢p; + (1 — ¢)p;. The motion of the fluid is also locked-on to the solid for this
case. The low-frequency limit of 3,y is equal to 1 and the phase velocity is also real-valued,
according to Equation (3.29).

3.2.2 High-frequency limit

In the high-frequency limit the inertia effects dominate the viscous ones which results in

real-valued density terms py1, p12, and gao. The coefficients of Equation (3.12) become for
W — 00:

dy = PR— Q.
di = —(Ppy2 + Rp1y — 2Qp12), (3.30)
do = pr1pxn — iy

Consequently, both waves become propagatory. For the inverse squared phase velocity of
the shear wave we find:

(1 - d)ps + o1 — 1/aw)py
G :

Despite the fact that the fluid cannot sustain shear forces on the macroscopic scale the
fluid contributes to the shear wave velocity due to the tortuosity factor. It follows that
Boh = —p12/p2z, which is equal t0 —(qeo — 1)/oo.

Csh -

(3.31)
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3.3 Stiff frame

A case of special interest for both the low-frequency limit and the high-frequency limit
is obtained when it is assumed that the grains are incompressible, and also that: K,
G > Kj;. This is the so-called stiff frame limit. In this case the coefficient P is equal
to K3 + 3G which is also called the constrained modulus K,. The wave velocity for the
transverse wave is influenced only by the shear modulus and the densities, and hence the
shear wave velocity is insensitive to the ratio of the compressibilities. The low-frequency
limit of the slow wave was investigated by Chandler (1981), Chandler and Johnson (1981),
while Johnson (1980), Nagy et al. (1990), and Allard et al. (1993,1998) investigated the
high-frequency limit.

3.3.1 Low-frequency limit (stiff frame)

For the rigid-frame limit we obtain an expression for the diffusion coefficient which is
decoupled from the elasticity of the solid:

koK s
cp = —L, 3.32
i (3.32)
For the solution of the fast wave we may write:
1 P+R+2 K,
el p (1 - ¢)ps + ¢pf

The phase velocity of the fast wave is related to the elasticity of the solid and decoupled
from the fluid modulus. For a density of the fluid much smaller than the solid density
the equations reduce further, which can be used in the so-called dry measurements to
determine the permeability using cp, and K, using (.. The value of (3, remains 1 due
to the viscous forces.

3.3.2 High-frequency limit (stiff frame)

For the high-frequency limit we can derive for a stiff frame that:

(1~ ¢)os +d(1 — 1/ac)pf
K ?

P

Ce1 = (3.34)

(o = 2Pl o Qoo
K; C?‘luid

(3.35)

Johnson (1980) used superfluid *He, with zero viscosity, as a saturant fluid to measure the
tortuosity parameter a.. Nagy et al. (1990) and Allard et al. (1998) used ultra-sound
on air-filled porous materials to measure the tortuosity. As in the low-frequency case, K,
and G can be deduced from (. and (.
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3.4 Bulk properties and boundary conditions

The complex wavenumbers k; for j = ¢y, ¢3, ¢gp, are related to the acoustic bulk properties
of the material viz. the phase speed w/|Re(k;)| and the attenuation Sm(k;). * Using
the parameters of water-saturated Bentheimer sandstone (see Table E.1), we calculated
the frequency dependence of the phase velocities and the attenuation of the fast, the slow
and the shear waves. The results are shown in Fig. 3.1. For the elasticity parameters P,
@ and R we used the Equations (2.33), (2.34) and (2.35). For the dynamic permeability
the tube model of Biot was used.

It is clear from these results that the phase velocities of the fast wave are almost
frequency-independent. The phase velocity of the slow wave, however, shows a transition
from a low-frequency diffusion-like behaviour to a high-frequency propagatory behaviour.
The phase velocity of the shear wave is in between the fast wave speed and the slow wave
speed. The attenuation is frequency-dependent for both the compressional waves and the
shear wave. It is shown in Fig. 3.1 that the slow wave attenuation is much higher than the
attenuation of the fast and the shear wave. This is a result of the out-of-phase character
of the slow wave which explains a highly effective dissipation.

Boundary conditions on porous media were proposed by Deresiewicz and Skalak (1963).
These boundary conditions were applied by Rosenbaum (1974) to a cylindrical borehole.
In this section we limit ourselves to the boundary between a (saturated) porous solid
(subscript a) and a fluid (subscript b). The configuration is given in Fig. 3.2. The normal
vector is denoted by n. The velocities in the normal direction for the solid and the pore
fluid are indicated by u., and 1.y, respectively. The relevant stress components are the
normal stress and the shear stress, which are indicated by o,, and o, respectively. The
velocity in the normal direction of the fluid (b) is indicated by u,s. For the condition at
the interface we discern the so-called ’sealed’ and the 'unsealed’ case.

In the unsealed case only forces due to the fluid pressure are acting on the grains at
the boundary (see Fig. 3.2) so that it can be stated that at the boundary

Oan = 07
(3.36)
Oash = 0.
The second condition for the "unsealed’ case prescribes the continuity of the fluid pressure:

Pa = Pp- (3'37)

Continuity of the fluid mass over the boundary moving with the normal velocity of the
solid %4, provides a third boundary condition:

@ oy +(1 — @) Ugg=1pg . (3.38)

$An alternative way to present damping properties is to define the specific attenuation 1/Q. It is
defined as:

1 ‘\‘rm(k,)

0 = ety

In this thesis the data will be presented using Sm(k;).
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Figure 3.1: Phase velocities and damping of the fast, slow and shear wave for water-saturated
Bentheimer sandstone. Parameter values are listed in Table E.1, Appendix E.

Figure 3.2: Boundary between a fluid and a porous solid. The normal vector is denoted by n.
The velocities in the normal direction for the solid and the pore fluid are indicated by 45 and
Uos. The stress components are denoted by 04y, and 0,44, The velocity in the normal direction
of the fluid (b) is indicated by ;.
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In the sealed case the relative normal displacement of the fluid of the porous medium
is equal to zero at the surface, so that we may write:

Ugp="llgs=Upf . (3.39)
The following relation applies for the continuity of the stresses:
Oan + Pa = Dby (3.40)
and
Oash = 0. (3.41)

In the next chapter, it is shown that a sealed interface suppresses the generation of the
slow wave. This can be imagined if we note that in case of a sealed boundary the velocities
of the solid and the fluid are equal at the interface. The slow wave, however, is associated
with out of phase motion of the fluid and the solid.
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Chapter 4

One-dimensional wave propagation

In this chapter we use the Biot theory to study one-dimensional wave propagation in
porous materials. The approach of this chapter is an extension of the work of Smeulders
(1992), and Van Dongen et al. (1995). In combination with concepts of Hélscher (1995)

we are able to handle multiple layers consisting of porous materials, elastic materials or
fluids.

4.1 1-D waves in porous materials

For one-dimensional wave propagation we assume that the displacements of the solid and
the fluid in the y- and z-direction are equal to zero. In case of one-dimensional wave
propagation we write for the pore pressure in a porous material:

pz,w) = pf (k, w)e kE 4 By (k, w)e k22 4 5o (k, w)erz 4 b (k, w)eik?z. )
(4.1

In this expression the pressures due to the fast waves travelling in the positive and negative
z-directions are superimposed (wavenumbers +k;). The same is performed for the slow
waves (wavenumbers 1k,). The intergranular stress can be written in a similar way:

6.2(z,0) = 64 (k,w)e ™2 4 57, (k,w)e ™2 4+ 57, (k,w)e™* + 5 ,,(k,w)e™**.
(4.2)
We can relate the stress amplitudes 57.;, ..., 5,5 to the pressure amplitudes pf, ...p; . Us-

ing Equation (2.36) the following expression for the time derivative of the one-dimensional
intergranular stress can be derived:

60zz _ a'l)” _ avsz
=i =~ (K + 4/3G) 5 = — K==, (4.3)

where v, is the time derivative of the solid displacement us,. The time-derivative of the
pressure follows from Equation (2.37): !

Ovs,

6p _ 6Ufz
_¢E =Ki(1-¢) 5 + ¢Ks

0z’

INote that in the linear theory the elasticity coefficicnts are constant. The porosity in this equation
denotes the time-averaged value.

(4.4)
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where vy, is the time derivative of the fluid displacement uy,. Using the temporal and
1D spatial Fourier transform we find:

—Wa,, = —1kKyD,,, (4.5)
and
—iwPp = _ika [(1 - ¢)ﬁsz + ¢,Bﬁsz] . (4-6)

In this way we can relate the pressure and the stress amplitudes for the positive z-direction:

~+ K ¢
Bt=22l-5 = 4 47
Pt T T K -6+ 48] (47
Ef = G _ Kpf (4.8)

7 K (U= 6)+ #Bal
We can also derive that Ei = E{, and E; = E5. The velocity amplitudes of the solid

are related to the pressure amplitudes:

] Smet
Df = 2 _ 2mim (4.9)
I3 Ky

where m = 1,2 denotes the fast and the slow wave respectively, and ¢}, = w/k, and
€ = —w/ k. The fluid velocity amplitudes are related to the pressure amplitudes by:

~+
Fi= o ﬁmsf’. (4.10)
Hence we write:
6::(2,w) = Efpfe™ ™ + Efpre ™12 4 Bl pre®? + By py e1?, (4.11)
b5s(2,w) = D pfe™*®1% + DFpfe 12 4 Dy pre*1* 4+ Dy p; e%, (4.12)
and
Ors(2,w) = Fpfe ™ + Ffpie ™12 4 FTpret” 4+ Fy pyee, (4.13)

4.2 Liquid-loaded porous half-space

With the techniques as given above we study the one-dimensional impact of a pressure
wave on a semi-infinite porous layer, surrounded by a liquid-filled gap. The configuration
is given in Fig. 4.1. It may be seen as a 1-D representation of the shock tube set-up
presented in Chapter 5. The incident wave with amplitude p;, partially reflects, and
partially transmits into both the porous sample and the liquid filled gap. The amplitude
of the reflected wave is denoted by p,. Within the porous halfspace, the initial pressure
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Figure 4.1: Impact of a pressure wave on a semi-infinite porous layer.

disturbance is distributed over the fast and the slow wave. The amplitudes are denoted
by pi and p7, respectively.

For open-pore boundary conditions (see Section 3.4) the total pressure py is continous
at z =0:

Pin + Py = P{ + B3 = Po- (4.14)
Furthermore, the intergranular stress at the interface is zero:
Gzz1 + 0222 = 0, (4.15)
which also can be written as
Efpt + Bt = 0. (4.16)

The third boundary condition is given by:

f)ﬁn -+ ﬁfr =A [(1 — (]5)(1751 + 552) + qﬁ(ﬁfl + @fz)] + (1 — A)f}fg, (4.17)

where @, is the fluid velocity in the gap and A is the surface fraction of the porous
column. The pore fluid velocities are denoted by @51 and 9. The solid velocities are
denoted by ¥s; and 0,. We use 5in = Pin/Zw, Ufr = —Dr) 2y Ly = PuCuw, Vg = Do/ Zw)
and Equations (4.12) and (4.13) to relate the velocities to the pressures. Hence, we obtain
for Equation (4.17):

Pin B _ A1 - @)(DF5! + DB + (8T + FHAD)] + (1 - A2,
Zw  Za Zw (4.18)




50 One-dimensional wave propagation

where it is assumed that p} = py.
Using Equations (4.14) and (4.16) we can now compute the distribution of the total
pressure over the transmitted pressures pi and 57

it _ B 5

o B —Ef S-S (4.19)
and
=t +
D2 Ey Sy
- = = . 4.20
Po Ef-Ef S5 -5 (4.20)
We can now relate the incident pressure to the total pressure py:
Min N Zw-A By Z, .A .A
P - DL 202 [(1- 8)DF + 0F] + 2222 [(1 - 4)Df + 5] + (1 - —) .
Po  Po 2 Bo 2 2/ 421)

Subsequently, the reflection coefficient » = fy/f;, — 1 can be computed as a function
of frequency. Fig. 4.2 shows the results for A = 1 (no correction) and A = 0.95. The
reflection coefficient for the open pore condition decreases as a function of the frequency.
For values of A below 1 the wave is partially transmitted into the liquid-filled gap and
the corresponding reflection coefficient is lower over the entire frequency range.

0.8

0.75

A =1 (sealed)
0.7

= 065

A =1 (open)
—
o6 -
0.55 | A=095(0pen)
05 ‘ . -
102 10" 10° 10 10

W/,

Figure 4.2: Frequency dependence of the reflection coefficient for open pore and sealed pore
conditions. For the open pore conditions the result for A = 0.95 is also plotted. The calcula-
tions are performed for a Bentheim/water interface. Parameter values are given in Table E.1,
Appendix E.

For sealed pores we apply the conditions as given in Section 3.4 at z = 0 for 4 = 1.
For the continuity of the velocities we obtain:

Di D - . . .
7~ 7 = Dbl + Dfps = F'pl + F{ ;. (4.22)
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For the stresses and pressures, we write:
Pin +Pr = p7 (1 + EF) + 53 (1 + E). (4.23)
For the ratios p7 /py and p3 /Po, we can derive the following expressions:

ﬁf- SZCZ()B52 - 1)

B0 (L+5)(Ba — 1)S0cs + Sren(l = fa)’ (4.24)
and
2 ol 7 ) : (4.25)
o (1+81)8¢(Bcr — 1) + Sier( ~ Bar)
For pin/Po we obtain
%f - Z2w 1;1 D+ BN + wp2 [D+ (1+E))]. (4.26)

The frequency dependence of the reflection coefficient is shown in Fig. 4.2. For this
case we observe an increasing value of |r| as a function of frequency. The value of 3.
is approximately 1 and from Equation (4.25) we conclude that the slow wave is not
generated effectively. The amplitude of the slow wave differs one order in magnitude from
the amplitude of the fast wave.

The weak generation of the siow wave for the sealed case is also observed in the time
domain. The pressures in the time domain was determined as follows. Using for example
a step-wise incident disturbance, we computed the values of f;, by means of Fast Fourier
Transform. The pressure amplitudes 57 and §i were calculated at each frequency and
Equation (4.1) was used to determine the pressure at position z. The inverse Fast Fourier
Transform was used to obtain the pressure signal in the time domain. Fig. 4.3 shows the
pressure signals at z = 7 cm for both the open pore and sealed pores. The first pressure
rise is due to the fast wave, while the second pressure rise for the open pore case is due
to the slow wave. For the sealed pores the slow wave is not observed indeed.

4.3 Multiple layers

In our shock tube, reflections in the porous column occur, and the waves in the porous
column will be partially transimitted into the end plate (see Chapter 5). Furthermore, it
is possible that a shallow water layer exists between the porous sample and the end plate.
The one-dimensional model of this configuration is given in Fig. 4.4. In the following the
quasi one-dimensional correction for the liquid-filled gap will be omitted.

The open pore boundary conditions at z = 0 are the same as in the previous subsection
for A = 1. We also include the reflected waves, so that at z = 0:

G0, +0,,,+6.,,=0, (4.27)

B + B, =P + b3 +51 + 57, (4.28)
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Figure 4.3: Transmitted pressure signal in Bentheimer sandstone at z = 7 cm. A = 1.
Parameter values are given in Table E.1, Appendix E.
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Figure 4.4: Configuration multiple layers: Water-porous medium-water-steel.
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b+ 5 = (1= @) [5 + 0% + G + 0] + 6 [Th + 0 + 071 + 5]
(4.29)
At z = L1 we obtain for open pore conditions:
5;16—ik1L1 + 5':228_ik2L1 + a_z—zleilel + 52—226ik2L1 — 0’ (430)
i)_{_ —ik L1 +p e —ikgL1 +p ethLl +p etkle _ iiw —‘lkle +p— 1kmL1
(4.31)
(1 _ ¢) [ ohe —ikiLl ,L~)+e—ikgL1 +i5e iky L1 +5— eikng]
52
+¢[ 1e—ilc1L1 + ﬁf =ik Ll | 5= zk1L1 +17, mzm] (4.32)
_ 4 —ikwll | ~— ikyLl
= e ™l g ettt
At z = L2 we have continuity of the velocity:
-+ —1kwL2 + ’U— tkwL2 __ +,E:;e—iks¢L2’ (433)
and continuity of the pressures and stresses:
p+ —tky, L2 +p ellc.,,LZ — &:te—iksgL? (4.34)

In these expressions, the wavenumber in the water is denoted by &, and the wavenumber
in the steel by ky. The velocities in the water and the steel are indicated by 7}, ¥, and
7 respectively. The amplitude of the stress is denoted by 5. Now we have obtalned
8 boundary conditions for eight unknown amplitudes p,, py, Py, b1, Pz, Dy Dy, and
&5 The stress and velocity amplitudes can be related to the pressure amplitudes by the
coefficients BZ, DE and FZ. After these operations we write the system of equations in
the following matrix form:

e md oo e o mp ae = T S
M (. Bt 55 51 B b By Gut) = (0 Pin in 0000 0)". (4.35)

The matrix elements follow straightforwardly from the boundary conditions as given
above. At a given frequency w we derive p;, from the input signal and the system is
solved using the routines FO7TARF and FO7ASF of the Fortran NAG Library (1995).

For the low-frequency limit w = 0 the wavenumbers k;, ko, ky and kg are zero. Due
to the zero phase velocity of the slow wave we obtain DF = 0 and F = 0. The boundary
conditions at z = 0 and z = L1 are therefore not independent anymore. Equation (4.27)
and (4.30), for example, become identical. However, the variables pf, p7, and p3, p; are
also not independent. By replacing 57 and 57 by (5 + 51 ), and p§ and p; by (53 + P>)
we obtain 6 unknown variables and 6 independent boundary conditions, and hence the
system of equations can be solved. The pressure signals in the time domain are obtained
in the same way as for the case of the fluid-loaded porous half space. Fig. 4.5(a) shows
an example of the computed pressure signals in the water layer at z = —10 cm (P1)
and in the porous rock at z = 7 cm (P2). For this case we used L1 = L2 = 40 cm in
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Figure 4.5: Computed pressure signals in the water layer (P1, z= -10 cm) and in the porous
layer (P2, z = 7 cm) as a function of time (a). The space-time plot is given in (b). The
compressional waves are denoted by clc and c2c, the expansion wave by cle. Parameter values
are given in Table E.1, Appendix E.

order to obtain a limited number of arrivals. Hence, no water layer exists between the
porous medium and the steel. Using the space-time plot of Fig. 4.5(b) we can identify
the arrivals of the different waves. At P1 the incident step wave arrives at ¢ = —0.07 ms.
The reflection from the interface at z = 0 is recorded at ¢ = 0.07 ms. The pressure rise
at t = 0.3 ms corresponds to the reflection from the interface L1. At P2, the fast wave
and the slow wave arrivals are observed at ¢ = 0.02 ms and ¢t = 0.1 ms respectively. The
reflection from the interface L1 is recorded at ¢t = 0.22 ms. At z = 0 this wave reflects as
an expansion wave because of the open pore conditions. The expansion wave is recorded
at P2 at { = 0.26 ms.




Chapter 5

Shock tube experiments

In this chapter we discuss the basics of the shock tube experiments. Both experiments
on water-saturated and air-filled pores are covered, but we limit ourselves to the results
in the time domain. Phase velocities and damping coefficients in the frequency domain
are presented in Chapter 10. In the current chapter the experimental results in the time
domain are compared with 1D computations based on Biot’s theory and with the results
of Wyllie’s equations. For air-filled pores we investigate non-linear phenomena which
occur due to the high air velocities in the pores.

5.1 Shock tube

The shock tube which we used to perform experiments on porous rocks is shown in Fig. 5.1,
where the configuration for water-saturated experiments is shown. The configuration for
experiments on air-filled pores is similar, and the details are given in the last section of
this chapter. The advantage of our experimental set-up is the capability of generating
a simple and reproducible step loading on the pore fluid, which covers a broad band of
frequencies. An additional advantage is the possibility to vary the amplitude of the input
signal, which enlarges the field of applications to non-linear problems. Van der Grinten et
al. (1985,1987), Sniekers et. al. (1989), and Smeulders and Van Dongen (1997) performed
shock tube experiments on water-saturated, partially saturated and dry samples. In the
current chapter we present an extension of the work of these authors as we performed a
large series of experiments on samples with a wide range of properties. Nakoryakov et
al. (1989) studied the propagation of both step waves and bell-shaped waves in porous
media, using a shock tube configuration as well.

The shock tube consists of a high pressure section and a low pressure section, divided
by a diaphragm. The length of the shock tube is about 8 m, while the inner diameter of
the test section is 77 mm. The test section is this long in order to obtain a fully developed
shock wave. The shock tube sections are made out of steel with a wall thickness of 24 mm
in order to suppress compliance effects. A porous cylinder is mounted in the test section
of the shock tube and carefully saturated with water. The water level is some 66 cm above
the top of the sample. For the diameter of the sample two cases have been considered.
In the first case a diameter is chosen very close to the inner diameter of the test section:
76.9 mm. This means that the sample-to-tube surface ratio is 0.997. Experiments in this
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Figure 5.1: Shock tube configuration water-saturated pores. P1, P2, P3 and P4 indicate the
positions of the pressure transducers.

configuration are called the small gap experiments. In the second case a diameter of 70.0
mm is used. The surface ratio is then only 0.826 and thus a relatively large water-filled
gap exists between the radial surface of the sample and the shock tube wall. These series
of experiments are denoted by the large gap experiments.

A wave experiment proceeds as follows. The pressure in the high pressure section
is raised to a value in the range of 2-5 bars and by means of an electric current, the
diaphragm is forced to rupture. A shock wave in air is generated which is transmitted
into the water column on top of the sample. The step wave in the water partially reflects,
partially transmits into the sample. Surface waves are generated on the interface between
the sample and the liquid filled gap. Because of normal incidence no bulk-type shear
waves are induced. The shock tube wall is equipped with four pressure transducers,
Kistler 603B, at the positions indicated by P1, P2, P3 and P4. The first transducer
P1 is mounted some 15 cm above the top of the cylinder, the second transducer P2 at
0.5 cm below the top. The distance between P2 and P3, and P3 and P4 is 5 cm. The
data-acquistion is performed using a Lecroy 6810 waveform recorder.

5.2 Results water-saturated samples
Experiments have been performed with both natural and synthetic rock. The proper-

ties of these samples are given in Appendix E. The natural Bentheim sample has a
shear velocity higher than the sound velocity of water, a so-called fast formation. Of




5.2 Results water-saturated samples 57

the synthetic rock samples (N and G series) some correspond to fast formations, some
to slow formations. The shear velocity of a slow formation is lower than the water velocity.

5.2.1 Large gap experiments

An example of the presssure signals recorded for natural Bentheim sandstone with a
diameter of 70.0 mm is given in Fig. 5.2 (solid lines). Note that for this case a large
water-filled gap exists between the cylinder surface of the sample and the shock tube
wall. The results can be interpreted using the space-time plot as given in Fig. 5.3. At
P1 the arrival of the step wave is observed at t = 0.25 ms followed by its reflection from
the top of the sample at t = 0.43 ms. The wave which reflected from the top of the
porous sample, reflects again from the water-air interface, and returns as an expansion
wave which is recorded at t = 1.1 ms. The pressure rise at t = 0.8 ms is caused by the
reflection of the fast wave from the end-plate of the shock tube. At P4 the arrival of the
fast compressional wave is recorded at t = 0.38 ms, followed by a second pressure rise
which probably corresponds to the surface wave.

This is suggested by the results of the one-dimensional theory. Using the computer
code as described in Chapter 4 we computed the pressure signals as given in Fig. 5.2
(dashed lines). The parameters are given in Table E.1. The fast wave arrival is predicted
at t = 0.37 ms, while the slow wave arrival is predicted at t = 0.53 ms. Due to the
large damping the amplitude of the slow wave arrival is small. The arrival at t = 0.55
ms corresponds to the reflection of the fast wave from the end-plate of the shock tube.
Therefore, it is unlikely that experimentally observed arrival at t =0.45 ms corresponds
to the slow wave arrival. We find that 3-D effects become important for this case. They
are modelled in the forthcoming chapters, and we will show that surface wave effects are
prominent. Furthermore, the amplitude of the reflected wave in Fig. 5.2 is lower than
predicted, but a better match can be obtained by taking into account the quasi 1-D
correction as discussed in Section 4.2. This correction, however, does not influence the
predicted arrival times.

An example of recorded pressure signals for the synthetic material N5b is given in
Fig. 5.4 (solid lines). Again, the diameter of the sample is 70.0 mm. The rock properties
of this sample are given in Table E.3. The signal at P1 is similar to the signal of the
Bentheim sample. In Fig. 5.4(b) the arrival at t = 0.4 ms corresponds to the fast wave,
while the pressure rise at t = 0.68 ms corresponds to the reflection from the end plate of
the shock tube. Again it is suggested that the arrival at t = 0.56 ms corresponds to the
surface wave. The predicted results, indicated by the dashed lines, are much better in
agreement than for the Bentheim case. The amplitude of the reflected wave is too large,
but again this can be improved by introducing a quasi 1-D correction. The computed
amplitudes at P4 do not predict a slow wave, and hence we conclude that 3-D effects
occur.

The conditions for the validity of the 1-D approximation shall be discussed in Chapter
8 where the radial variations of the displacements and stresses are also taken into account.
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Figure 5.2: Pressure signals at P1 (a) and P4 (b). The experiments were performed on
Bentheimer sandstone. Sample diameter: 70 mm. Sample length: 40 cm. P1 is mounted at z =
-133 mm and P4 at z = 117 mm, where z = 0 corresponds to the top of the sample. Solid lines
refer to the experiments while the dashed lines correspond to 1-D computations based on Biot’s

theory.

air

water|

Figure 5.3: Space-time plot of the incident, reflected and transmitted waves. The compres-
sional waves in water are denoted by cw,, the expansion wave by cw,. The fast compressional
wave is denoted by cl, the slow compressional wave by c2, and the surface wave by s.
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Figure 5.4: Pressure signals at P1 (a) and P4 (b). Sample diameter: 70 mm. Sample length:
40 cm. The experiments were performed on the synthetic material N5b. P1 is mounted at z =
_98 mm and P4 at z = 153 mm, where z = 0 corresponds to the top of the sample. Solid lines
refer to the experiments while the dashed lines correspond to 1-D computations based on Biot’s
theory.

5.2.2 Small gap experiments

An example of the recorded signals for a small gap experiment on the synthetic material
N5 is shown in Fig. 5.5 (solid lines). The rock properties are given in Table E.3. The
diameter is equal to 76.5 mm, while the inner diameter of the shock tube is equal to 77.0
mm. The surface wave is not observed in the small gap experiment and the agreement
between the 1-D theory and the experiments is much better. The recorded amplitudes
for the reflected and the transmitted waves are in perfect agreement with the predictions.
The velocity of the fast wave is somewhat overpredicted as shown by the arrival of the
reflection from the end-plate of the shock tube.

Fig. 5.6 shows the results of a similar experiment for the synthetic sample N2. This
sample has a permeability one order of magnitude higher than the permeability of N5 and
Bentheim (see Table E.3). In addition to the fast wave, the slow compressional wave is
also observed with its arrival at t = 0.78 ms. The predictions of the 1-D theory show a
good agreement with the experimental results. Van der Grinten et al. (1987) measured
both the pore pressure and the gap pressure. They observed that the registered gap
pressure is almost identical to the registered pore pressure. Our experiments confirm the
validity of the one-dimensional approximation for small gaps.

5.2.3 Comparison of Biot's theory and the Wyllie equation

We used the small gap configuration for a large measurement series on samples with a
wide variety of properties. The parameters were determined in independent laboratory
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Figure 5.5: Pressure signals at P1 (a) and P4 (b). Sample diameter: 76.9 mm. Sample
length: 40 cm, The experiments were performed on the synthetic material N5b. P1 is mounted
at z = —152 mm and P4 at z = 136 mm, where z = 0 corresponds to the top of the sample.
Solid lines refer to the experiments while the dashed lines correspond to 1-D computations based

on Biot’s theory.
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Figure 5.6: Pressure signals at P1 (a) and P4 (b). Sample diameter: 76.9 mm. Sample
length: 40 cm. The experiments were performed on the synthetic material N2. P1 is mounted
at z = —152 mm and P4 at z = 148 mm, where z = 0 corresponds to the top of the sample.
Solid lines refer to the experiments while the dashed lines correspond to 1-D computations based

on Biot’s theory.
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Figure 5.7: Comparison of experimental results with computations based on 1D Biot theory
and Wyllie’s equation. Phase velocities of the fast wave are given in (a), the reflection coefficients
in (b). Error bars indicate the uncertainty in the measurements.

experiments (see Appendix E). Subsequently, we used both Biot’s theory and Wyllie’s
equation to calculate the fast wave velocity and the reflection coefficient. Wyllie’s equation
(Wyllie et al. 1956, Wyllie et al. 1958) relates the sound velocity of the porous medium

Vayt to the sound velocity of the solid V; and the sound velocity of the saturant liquid V;
via the following assumption:

1 ¢ 1-9
wat_‘/l+ Vs -

(5.1)

For V; we used the sound velocity of water: V; = 1488 m/s. For V, we used the sound
velocity of silica: Vi = 5900 m/s (Wyllie et al. 1956). The corresponding reflection
coefficients for Wyllie's equation were computed using

r= Zwyllie - Zl’ (52)
Zwyllie + Zl

where Zyyie = (¢ + (1 — #)ps) V. The reflection coefficients for the Biot theory are
given by the ratios of the amplitudes of the incoming and reflected waves for a semi-infinite
cylinder (see Chapter 3).

Fig. 5.7(a) shows the results for the velocity of the fast wave. Twelve different porous
samples were used with different porosities and permeabilities. The data represent ex-
periments on the following samples: Bentheimer sandstone, N1B, N2, N3, N4, N4B, N5,
N6B, G50A, G30B, G40A, and G20B. The parameters are given in Table E.2 and Table
E.3. The experimental fast wave velocities were determined using the arrival time of the
minimum of the pressure at P4 (t=0.68 ms in Fig. 5.6). Generally, we observe that
prediction of Biot’s theory are more accurate than the predictions of Wyllie’s equation,
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but Wyllie’s equation works surprisingly well, considering it’s ad-hoc character. The de-
viations between experiments and theory for Wyllie’s equation are in agreement with the
data of Wyllie (Wyllie et al. 1956, Wyllie et al. 1958). He observed agreement between
his experiments and his equation for porous samples under high pressures. For saturated
porous sandstone cores under atmospheric conditions the predicted values were too high.

Fig. 5.7(b) gives the comparison between the experiments and both models for the
reflection coefficient. The experimental reflection coefficients were determined using the
amplitudes of the incident and reflected waves at P1. Generally, we observe a reasonable
agreement between the 1-D Biot theory and the measurements. The predicted values are
systematically somewhat too high. Most likely, this is due to the occurence of 3-D effects.
We notice that Wyllie’s approach fails here, but we have to keep in mind that it merits
lie in the quite accurate predictions of the velocity of the fast compressional wave.

5.3 Results air-filled pores

The configuration for air-filled pores is given in Fig. 5.8. The pressures above the sample
are measured by transducers P1 and P2, which are respectively 250 and 150 mm above
the lower end plate of the shock tube. Pressure transducer P3 is mounted in the lower end
plate of the shock tube. We have performed experiments on samples with a wide range of
permeabilities. The physical parameters were determined using the techniques described
in Appendix E. We used Bentheimer sandstone and Eindhoven sandstone, as well as two
samples which consist of glued glass beads. The glass bead samples are labelled GB1
and GB2. The following size ranges apply: 2.50-3.50 mm for GB1 and 1.16-1.40 mm for
GB2. The GB samples were cast in a perspex cylinder in order to prevent radial outflow.
For the same reason, the Bentheimer sandstone and the Eindhoven sandstone samples
were coated with a two-component epoxy resin. The relevant parameters of the samples
are given in Table 5.1. Due to the large difference in compressibility between the solid
and the air we can use the rigid frame approximation, and hence the properties of the
solid are omitted in Table 5.1. In that case the slow wave properties depend only on the
permeability, the tortuosity factor and the properties of the saturant fluid (see Chapter
3). In the high-frequency limit the slow wave is propagatory and its phase velocity is
¢r/ /0o, Where ¢; is the sound velocity of the fluid. In the low-frequency limit the slow
wave shows diffusion-like behaviour with a diffusion coefficient Cp = Kjko/(n¢). The
cross-over frequency corresponds to a situation in which inertial and viscous forces are
of equal importance. Note that the cross-over frequencies w, as given in Table 5.1 cover
several orders of magnitude.

5.3.1 Wave behaviour

The experimental results for the GB1 sample are shown in Fig. 5.9(a) by the solid lines.
The shock wave arrives at the top of the sample at ¢ = 0. It is recorded by P2 at t = —0.24
ms, and the reflected wave from the sample is recorded at ¢ = 0.28 ms. In the porous
sample we notice at ¢ = 0.23 ms a distinct pressure jump, which corresponds to the arrival
of the shock wave at the end plate of the shock tube. From the arrival time we determine
the shock wave velocity, which is 243 + 5 m/s. Since the high-frequency limit of the
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T GB1 | GB2 | Eindhoven | Bentheimer
sandstone | sandstone

length of the sample (mm) 56 | 61 152.5 20.5

porosity ¢ 0.32 | 0.31 0.35 0.23

permeability £ (107'2m) 4200 | 900 122 3.7

Second forchheimer coeff. by (mm™!) | - - 75 4990

tortuosity oo 2.6 | 2.7 2.1 24

we ((ms)~1) 04 | 19 18.8 388

Table 5.1: Parameters of the samples which are used in the air-filled pores experiment.

high pressure

£
~ l _"_ section

~ diaphragm

77
mm

+— test section

€

&
— P1
- P2
I~~~

r sample
™~ coating
P3

Figure 5.8: Shock tube configuration air-filled pores. P1, P2, P3 indicate the positions of the
pressure transducers. P1 and P2 are respectively 250 and 150 mm above the end plate, while
P3 is mounted in the end plate of the shock tube.

phase velocity is equal to c;/+/@, which is in this case 211 m/s, the shock wave velocity
significantly exceeds the phase velocity. The shock wave is followed by a more gradual
diffusive pressure rise. We used the numerical code of Chapter 4 to compute the pressure
at the end plate of the shock tube. At P3 we predict the arrival of the slow wave, which
is decoupled from the properties of the solid. At ¢ = 0.8 ms the first internal reflection of
the slow wave arrives, which is is an expansion wave due to the free interface at the top of
the porous sample. We observe that the qualitative behaviour of the computed pressure
signal differs strongly from the experimental pressure curve. The linear theory predicts
internal reflections of the slow wave, while the experiments show a diffusive pressure rise.
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Figure 5.9: Experiments and theory for glass bead sample GBI (a) and GB2 (b). Solid lines
indicate experimental results, while the dashed lines indicate the computational results, which
are obtained with the 1-D Biot theory. The atmospheric pressure is denoted by pg.
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Figure 5.10: Experiments and theory for Eindhoven sandstone (a) and Bentheim sandstone
(b). Solid lines indicate the experimental results. The computational results are indicated by
the dashed lines and are obtained from the diffusion theory with Darcy’s and Forchheimer’s
equation respectively. The atmospheric pressure is denoted by pq.
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For the sample GB2 we observe similar phenomena in Fig. 5.9(b), but the amplitude
of the shock wave in the porous sample is smaller. Again we observe that the shock wave
velocity exceeds the predicted maximum phase velocity. The permeability of this sample
is one order lower and the shock wave is strongly damped. We may say that for cross-over
frequencies below 10 (ms)~! wave-like behaviour plays an important role. Due to the
high-velocities in the pores non-linear effects occur, and the linear Biot theory does not

apply. A full description of shock wave propagation in porous media is beyond the scope
of this thesis.

5.3.2 Diffusion behaviour

Fig. 5.10(a) shows the experimental results for Eindhoven sandstone. The pressure rise
at P3 corresponds to a diffusion-like behaviour. In terms of linear theory we can say that
the dominant frequencies in the input signal are far below the cross-over frequency, so
that the slow wave is diffusive. As far as wave phenomena occur, they can be neglected
because of the strong damping. This gives us the possibility to apply diffusion theory
instead of wave theory.

We re-derive the result for the diffusion coefficient Cp of Equation (3.32) using the
continuity equation and the momentum balance. The continuity equation for a rigid
porous medium reads as follows:

9oy
ot

where p; is the density of the fluid and v the velocity vector of the fluid. Using the ideal
gas law and assuming isothermic compression we obtain:

+V(psvy) =0, (5.3)

dp
= =0 5.4
L+ V(pvy) =0, (54)
where p is the absolute pore pressure. For the momentum equation we use Darcy’s law:
—vp="y,. (5.5)
ko

We substitute Darcy’s law in Equation (5.4), and linearize the system using p = py + p/,
which gives the following result:

Bp’ kao 2
= = L2V = CpVp, 5.6
at o 4 pVv'p (5-6)
where K is the air bulk modulus. The initial and boundary conditions are given by:
t=0:p=0

T o B (5.7)
t>0: p=p atz=0, 6%—0atx—L,

where L is the length of the sample. Equation (5.6) is a diffusion equation. For the
initial and boundary conditions given in Equation (5.7), it can be solved analytically by
separation of variables (Carslaw and Jaeger 1986). The following expression results:

N = —4p| @En+1)r\* )\ . (@n+D)r
p(z,t) —p1+n=0————(2n+1)7rexp ( Cp (————-—2L t | sin 5T z). 655
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The computational results are given in Fig. 5.10(a) for Eindhoven sandstone and in
Fig. 5.10(b) for Bentheimer sandstone. For Eindhoven sandstone we observe a strong
deviation between the linear diffusion theory and the experimental results, while for Ben-
theimer sandstone the agreement is quite reasonable. For Eindhoven sandstone the air
velocities in the pores are large so that non-linear effects occur and Darcy’s law is not
valid any more.

We used Forchheimer’s equation to account for the non-linear effects with an extra
quadratic term in the velocity (Hannoura and Barends 1981):

—~-Vp= %Vf + (bzbfpf'VfIVf. (5.9)
Combining Equations (5.4) and (5.9) we obtain a non-linear system which can be solved
in different ways. Van der Grinten et al. (1985) used a semi-analytical solution based
on a transformation of variables. We have applied the Finite Element package SEPRAN,
which has the possibility to extend the computations to two or three dimensions. For
a discussion of the finite element approach we refer to Cuvelier et al. (1986) and Segal
(1984). Using the implicit Euler method we obtain for the time-discretization of Equation

(5.4):
pn+1 _ pn

At
where the superscripts n and n + 1 denote the properties on ¢ = ¢, and ¢ = t, + At,
respectively. Using Forchheimers equation, we write for the velocity vector:
V}H-l =— _Vpn+1 ,
a' + Yprtl|vs|rtt

+p" IV Vv v vptt = g, (5.10)

(5.11)

where o’ = n¢/ko and ¥’ = ¢*bspo/po. The term p™+'V - v}*! is linearized with a Picard
iteration. The value of p"*! denotes the pressure value on step (s+1) during iteration, and
p* denotes the ith value of p"*!. The value of v}*' denotes the velocity vector on (i + 1)

during iteration, and v} denotes the ith value of v}*'. Then we obtain for p"*!V - v}*1:

n+1 n+l __
p V * V, -

1 1

+1 2, n+1 n+l +1 .

U b';D"“l"fI"Jrlv ey (a’ + b’P"+1|Vf|n+1) VP
_pi_____—_v2pn+l _ piv 1 _ . Vpn+1 (512)

a’ + b'p*lvy|* a +0'p'|vef )
The second term is linearized similarly:
Ui

V}l+1 . Vpn+1 ~ _V_p__ . Vpn+1. (513)

~ al+blpi|vj|'i

Re-arranging terms, we obtain the following diffusion equation:

pn+l — pn _pi
V- —— Vp"tl} =0, 5.14
At TV P (5.14)
which is one of the standard problems of the SEPRAN package (Segal 1984).

At each time step the following computational procedure is performed:
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1. An estimate is made for the pressure p'. For the first time step we use the linear
solution as the first estimate for p*, while for later time steps p" is used.

2. Using p*, |v}]| is obtained via an iteration procedure based on Equation (5.11).
3. The solution p™*! is computed using the finite element approximation.

4. The pressure p™*! provides a new estimate for p'.

5. Steps 2 and 3 are repeated until convergence is obtained for p™*!.

Fig. 5.10(a) and (b) show the results of the one-dimensional computations for Eindhoven
sandstone and Bentheimer sandstone. For Eindhoven sandstone we observe that the pre-
dictions using Forchheimer’s equation are in agreement with the experimental results. For
Bentheimer sandstone the difference between Darcy’s law and the Forchheimer’s equation
is small, because non-linear effects are of minor importance.

5.3.3 Concluding remarks air-filled pores

Using a wide range of permeabilities we observed the transition from wave-like behaviour
to diffusion-like behaviour. Due to the high air velocities in the pores, non-linear effects
occur. For high permeabilities shock waves are observed in the saturant air. For low
permeabilities the experiments can be described by a non-linear diffusion theory based on
Forchheimer’s equation. Future work should concentrate on non-linear wave propagation
in order to understand the shock wave phenomena in case of the high permeabilities.
Smeulders et al. (1997) have derived non-linear macroscopic mass and momentum con-
servation laws. Numerical evaluation of their equations is subject of ongoing research.
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Chapter 6

Two-dimensional phenomena

Up to now our discussions on wave phenomena in porous materials were limited to the
one-dimensional approximation. However, the deviations between the experiments and
the theory can, most likely, be attributed to the occurrence of 3-D effects. This was in
particular the case for the large gap experiments where also surface waves were observed.
First we discuss the surface wave phenomena in general for elastic materials. A flat
interface between an semi-infinite elastic solid and a semi-infinite liquid is investigated.
Subsequently we follow the approach of Feng and Johnson (1983) in order to extend these
computations to a fluid/porous solid interface. Their analysis was limited to the high-
frequency limit of Biot’s theory, for which the free-field wavenumbers are real-valued and
we obtain a lossless medium. In this chapter we extend their results to lossy media, which
means that the full Biot theory is used to describe the poroelastic solid.

6.1 Surface waves and elastic solids

An elastic solid is characterized by the so-called Lamé coefficients A and p and the density
p. Using these properties we define the following free-field velocities of the compressional

and the transversal waves:
A+2
oy = | 2 (6.1)
p
n
Cr = - (62)
\/;

Poisson’s ratio is defined using the compressional wave velocity ¢z and the shear velocity
Cr.

2 —c}
=72 1T 6.3
S ag ) (63
In vector notation the wave equation can be written as (Achenbach 1973):
d%u,
pViu, + (A + p)VV - u, = p—é;—, (6.4)

69
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vacuum

solid z

Figure 6.1: Interface solid/vacuum

where u, is the displacement vector. If we devide both the LHS and the RHS by the density
p we observe that the wave equation is uniquely characterized by the shear velocity cr
and the Poisson’s ratio v.

In order to solve the wave propagation problem it is useful to define a decomposition
of the displacement vector in scalar and vector potentials. According to Miklowitz (1978),
Lamé states that every displacement vector field of the form

U, = Vi, + V x 9, (6.5)

satisfies the Equation (6.4), provided that the scalar potential ¢, is a solution of

Py
2 s _
and the vector potential 1, is a solution of
0%

Vi, — 2 =0. 6.7
A My (6.7)

Motions of the compressional waves are related to the scalar potential ¢, while the motions
due to transversal waves correspond to the vector potential ¥. A proof of completeness
of this solution is given by Miklowitz (1978). !

6.1.1 Free surface of an elastic half space

First we consider waves along an interface between a semi-infinite elastic solid and a
vacuum (Fig. 6.1). In this two-dimensional case 8/8y = 0 and uy, = 0, so only the second
component of 1, viz. 1, is of importance. We consider waves which propagate in
the positive z-direction. Consequently, we assume the following expressions for the two
scalars ¢ and ¥sy,:

05 = Alei(wt—kx—k,dz)’ (68)

1This decomposition of the displacement vector is similar to the Helmholtz decompostion of a vector
field which reads the same as Equation (6.5), together with and additional condition: V-9, = 0. However,
Lamé’s solution satisfies the wave equation even when this last condition is not satisfied. If a new potential
¥, =9, + Vg is formed, with g a scalar function, it is straightforward to show that the displacement u
is invariant to the change in vector potentials.
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"/)sy — Cshei(wt—kz—k“hz)’ (69)

with Re(k) > 0. The wavenumbers in the z-direction are related to the wavenumber in
the z-direction and the free-field wave velocities via a complex square root:

k1 = V w2/cL2 - k27 (610)
kzsh = ‘/(.L)Q/Cq12 — k2. (611)

This can easily be seen if we substitute the expressions for the potentials in the equations
of motion. The finite amplitudes of the potentials for z — oo and z — oo require that

Sm(k) <0, Sm(kse) <0, Smksen) < 0. (6.12)

These conditions are satisfied by choosing the appropriate branch and branch cuts (see
Appendix C).

At the interface, the normal and shear stress components vanish and we obtain the
following boundary conditions:

Tz = 01 Tzg = 0. (6.13)

Substituting the expressions for the potentials of the Equations (6.8) and (6.9) in the
boundary conditions we obtain a set of equations for the amplitudes A; and Cjy:

()‘ + 2”)(k3c1 + kz) - 2[”(;2 2pkk g Ay — 0 (6 14)

—2ukk, e w(kZ,, — k%) Csn 0/’ ’

For the stress-strain relations in cartesian coordinates the reader is referred to Appendix
A. For a non-trivial solution of Equation (6.14) the determinant of the first matrix on the
LHS must be zero. After some algebraic manipulation, we can derive an expression for
the wave velocity ¢ = w/k, which is the so-called Rayleigh equation (Achenbach 1973):

A ) 2
Flo)=(2-=5) —44/1 - 1-— =0. 6.15
@=(-5) 455 (6.13)

In this equation there is no explicit reference to k, which means that the wave velocity
which satisfies the Rayleigh equation is frequency independent. 2 We developed a numer-
ical code to find the zeros of Equation (6.15). This code is based on a Newton-Raphson
iteration and comprises a search routine in the complex wavenumber plane. More de-
tails are given in Appendix D. We found one wavenumber on the real wavenumber axis,
which corresponds to a real phase velocity ¢ = 0.927¢r for v = 0.3. This wave is called
the Rayleigh wave. Achenbach (1973) shows that this is the only root which satisfies
the boundary conditions. The wavenumbers k,; and k.5, are negative-imaginary be-
cause ¢ < ey < ¢ and k is real. The potentials show therefore an exponential decaying
behaviour in the direction perpendicular to the surface:

05 = Ale%m(kwl)zei(ut—kx), (616)

2This is self-evident for the lossless elastic medium. However, for a lossy porous solid the surface wave
velocity is frequency dependent (see Section 6.2.3).
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Figure 6.2: Distributions of the relative displacements (a) and stresses (b) for the Rayleigh
wave. Displacements are normalized by us,|,=o, the stresses by T,z|,-0, and the distances from
the surface by the wavelength A = 2x /k.

and
((/)sy - Cshe%m(kuh)zei(wt—kz). (617)

We can plot the distributions of the stresses and displacements as a function of the
distance from the surface. The results for the Rayleigh wave are shown in Fig. 6.2. The
displacements in Fig. 6.2(a) are normalized by the displacement u,,|,-o while the stresses
in Fig. 6.2(b) are normalized by 7;;|,—9. For the distance from the surface we used the
wavelength A = 27/k as a typical length scale, which leads to frequency-independent
distributions. The exponential decay of the stresses and displacements from the surface
is typical of surface waves. Furthermore, if we prescribe a real value of 7, it is observed
that 7, is also real-valued while the shear stress is imaginary-valued. This means that the
shear stress is 90° out of phase with the other stress components. The same is valid for
the displacement u,; which is 90° out of phase with the displacement u,,. For a further
discussion on Rayleigh waves we refer to the work of Viktorov (1967)

6.1.2 Liquid-solid interface

In case of a fluid-loaded elastic halfspace, the situation becomes somewhat different
(Fig. 6.3). Introducing a potential ¢,, for the water, defined by

uy, = Vi, (6.18)
we may write:

1 0%
2 _ w
Vipy = 612,1 a1z (6.19)
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water
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Figure 6.3: Interface solid/liquid

where ¢, is the sound velocity in the water. Assuming harmonic variation and plane wave
propagation, we write:

Py = Agellvi-hetkiuz) (6.20)
with

kew = Jw?/c2, — k2. (6.21)

Note that for k., in Equation (6.20) we have chosen a positive sign, contrary to the
convention used for the elastic solid. The reason is that in this way a negative imaginary
part of the wavenumbers k., k,c1 and k., always corresponds to a damping when moving
away from the liquid-solid interface, i.e., for z — —co in the water, and for z = co in the
solid. For the pressure of the water we can write:

Pu = Pu’Pu. (6.22)

The boundary conditions at z = 0 for this case are:

Tzz = —Pw,
—_—) (6.23)
Ugz = Uz

The relations between the stresses and the potentials are given in Appendix A. By
substitution of the potentials in the boundary conditions we obtain the following set of
equations:

2
~(A+ 2#)%2- +2uk?  —2pkkug  pow? A,
L pu—
—2ukk,e p(k2, —k2) 0 Cop | =0 (6.24)
kel ik ik %

After some algebraic manipulations, we can write the determinant of the matrix explicitly.
For a non-trivial solution this determinant must be equal to zero:

0 ik ik | [2- C : -2 i-< =0 6.25)
Egzzcl‘*'lzw _O% - "E{ ‘212: — Uy (
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where 8 = py/psoiia and ¢ = w/k. Note that for § = 0 we obtain two solutions. The
first one is the sound velocity of water (k., = 0), the second one is the velocity of the
Rayleigh wave. For # > 0 we obtain also two solutions as will be explained below. For a
steel /water interface, for example, with § = 0.126 we found one zero on the real k-axis,
with a phase velocity below the sound velocity of the liquid. This wave type is generally
called the Stoneley wave as a special case of the surface wave along an interface between
two solids. Due to the contributions of J.G. Scholte (1948) some authors refer to this wave
as the ’Scholte’ wave (Miklowitz 1978, van der Hijden 1984,de Hoop and van der Hijden
1983). The Stoneley wave between two solids exists only for a limited range of elasticity
parameters of the solids, while Scholte showed that the surface wave along a solid/liquid
interface exists for arbitrary parameters of the solid and the fluid. De Hoop and Van der
Hijden (1983) derived that there is only one Stoneley wave along a liquid/solid interface.
The distribution of the relative normal stresses, pressures and displacements of the solid
and the water are given in Fig. 6.4 for the steel/water interface. For both the liquid
and the solid we observe an exponential decay of the stresses and displacements in the
direction perpendicular to the surface. The phase velocity of the Stoneley wave, made
dimensionless with the sound velocity of the water, is given in Fig. 6.5 as function of the
density ratio 6. Note that the Stoneley wave is undamped for the whole range of density
ratios. From this graph we observe that for a small density ratio the phase velocity reaches
the sound velocity of the water (k,, = 0).

The second solution for § > 0 is the so-called pseudo-Rayleigh wave. There has been a
lot of discussion about this wave type (Phinney 1961a,Phinney 1961b, Strick 1959, Ansell
1972, Uberall 1973, Brekhovskikh 1980, de Hoop and van der Hijden 1983, van der Hijden
1984). This wave type is a solution of Equation (6.25) on that part of the Riemann surface
where

Smk.w) 20, Sm(k.a) <0, and Sm(k.sn) < 0. (6.26)

This means that the amplitude of the potential of the liquid ¢,, will increase as we move
away from the interface. This fact contradicts our physical intuition, because it results
in an infinite amount of energy far away from the surface. However, any result in the
space-time domain is obtained only after an integral transformation from the frequency-
wavenumber domain. The locations of the branch-cuts (see Appendix C) complicate the
definition of closed integration contours in the complex k-plane. These contours are not
allowed to pass the branch cuts and thus have to be modified accordingly. The integra-
tion can be performed by rewriting it as a set of residue contributions from poles lying
on the sheet of integration and branch line integrals arising from integration around the
cuts (Ewing et al. 1957). According to Phinney (1961b) and Strick (1959) the pseudo-
waves are caused by poles of the response which lie on Riemann sheets other than the
principal sheet of integration. Due to their proximity to the branch cuts they affect the
form of the solution obtained by integration around the cuts, thus generating a contribu-
tion to the signal, despite their location on a lower Riemann sheet. Experimentally the
pseudo-Rayleigh arrival was observed by Roever (1959), and agreement was found with
the modelling of Strick (1959). Van der Hijden (1984) showed the influence of the pseudo-
Rayleigh phenomenon on the Green’s function (system response) of a fluid /solid interface.
The dimensionless phase velocity of the pseudo-Rayleigh wave is given in Fig. 6.6(a) as
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Figure 6.4: Distributions of the relative displacements (a) and normal stresses and pressures
(b) for the Stoneley wave. The displacements are normalized using us;|.=o, the stresses and
pressures by 7;5|,=0- The distances from the surface are normalized by the wavelength A. The
calculations were performed for a steel/water interface.
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function of the density ratio while the damping coefficient Sm(k) is given in Fig. 6.6(b).
For the limit § — 0 the phase velocity of the (undamped) Rayleigh wave on an elastic
halfspace is reached. For # > 0 the pseudo-Rayleigh wave is damped in the direction
along the interface. This phenomenon is typical of pseudo-surface waves. Note that the
true surface wave (Stoneley wave) is undamped. The relative displacements, stresses and
pressures for the pseudo-Rayleigh wave are shown in Fig. 6.7, where exponential decay in
the solid, and exponential growth in the liquid are observed. The compressional and the
shear waves in the solid 'leak’ energy into the liquid. Therefore the pseudo-waves are also
called ’leaky’ waves. This becomes more clear if we sketch the wave fronts in the solid
and the fluid as given in Fig. 6.8 (Brekhovskikh 1980). Note that from a mathematical
point of view the concept of wave fronts for the pseudo-waves is not applicable (van der
Hijden 1984). The waves in the solid and in the fluid travel in the same direction, which
can be derived from the behaviour of the complex square roots (Appendix C). The roots
for the compressional and shear waves are located in the third quadrant of the k,,; and
k.sh planes with the sign conventions e~**:<12) and e~"kz=+2) for 2 > 0. The root for k,,, is
located in the first quadrant with the sign convention e!*:v2) for z < 0. The amplitudes
are indicated by the line thicknesses.

6.2 Surface waves and porous solids

When the solid half space of Fig. 6.3 is replaced by a porous half space, the situation
becomes more complex because of the extra bulk wave, the slow wave, which is typical of
porous solids. Feng and Johnson (1983) were the first to consider this configuration. Their
results were based on the high-frequency limit of Biot’s theory, i.e., they only considered
a lossless medium. As in the elastic case, the true surface waves are undamped, while
pseudo-waves are damped significantly. In this section we will also consider lossy media.
Lauriks et al. (1998) considered surface and leaky waves in a lossy porous medium with
a motionless frame. In our computations the full Biot theory is used to study the surface
and leaky waves. We start with the lossless medium.

6.2.1 Potentials

Following our approach of Chapter 3 we define for the porous solid two scalar potentials
for the two compressional wave types and a vector potential for the shear waves. In the
two-dimensional configuration with u,, = 0 and 8/8y = 0 we write:

i(wt—k:z:—knlz), Poe2 :A1C2ei(wt—kz—lcuzz)7 (6.27)

Pse1 = Alcle
and
Yoy = Cpope’ @t Fakzan2), (6.28)

For the water we use the same potential as in the previous case of a solid/liquid interface:

O = Agellt=hatksuwz) (6.29)
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Figure 6.6: Phase velocity (a) and damping (b) of the pseudo-Rayleigh wave as a function of
the density ratio 8. The calculations were performed for a solid/water interface.
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Figure 6.7: Distributions of the relative displacements (a) and normal stresses and pressures
(b) for the pseudo-Rayleigh wave. The displacements are normalized using us:|:=o, the stresses
and pressures by Tpg|,—0. The distances from the surface are normalized by the wavelength A.
The calculations were performed for a steel/water interface.
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water K,
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Figure 6.8: Schematic plot of the wave fronts for the pseudo-Rayleigh wave. The wave
vectors ke, ksh, and ky, consist of the x-component k and the z-components k1, k;sn and k),
respectively.

In these equations the wavenumbers in the z-direction are defined using the free-field
velocities of the Biot waves:

ki = V Wz/c% - k2’ koo = v WZ/C‘% - k27 koon = V wz/cih - k"2’ (630)

and

ko = Jw2/c2 — k2. (6.31)

The signs of these square roots are similar to the elastic case (Feng and Johnson 1983)
(see also Table 6.1). For true surface waves we take:

Smkyer) <0, Smky) <0, SMlkyen) <0, SMm(kzyp) <O0. (6.32)

For elastic solids the relations between the potentials and the stresses are given in Ap-
pendix A. Assuming incompressible grains we can write A = (K, —2/3G) and we can use
expressions for the intergranular stresses o,, and o,, which are similar to the elastic case:

oo, 0%
_ _ 2 s y
Ous (Kp — 2/3G)Veps — 2G [ 57 azax] , (6.33)
and
_ Do 0%y 0%y
O, = —G [232:8;: e + 32 |- (6.34)

The scalar potential , is the sum of the potential of the fast wave ¢, and the potential
of the slow wave @ . Using Equation (2.37) with exx = V2501 + V2052 and e =
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V2(Be1@se1 + Beapsez) we can write for the pore pressure p:
(1= 9)+ ) V2o + (1 = @) + Biad) VZpsca) -
(6.35)

For the solid displacements we can use the expressions of Appendix A with ¢ = s +@sco-
For the interface between a porous half-space and a liquid we investigate two sets of
boundary conditions, the sealed and the open pore interface.

6.2.2 Lossless porous medium
For the sealed interface the following conditions apply at z = 0 (see Chapter 3):
Oz +D = Puy Ozz =0, Usz = Upy = Uz (6.36)

Using these boundary conditions we obtain the following set of equations for the ampli-
tudes of the potentials:

M(Acl Ac2 Csh A2)T = Qa (637)
where the matrix M contains the following elements:
M) = [(Ks - 2/36) + BL (1 - 8) + 9] /] + 20K,
M(,2) = [~ 2/36) + 5L (1 - 6) + 98)| w2/ + 26K,

M(1,3) = 2Gkk,q,
M(174) = "prUQ,

M(2v 1) = 2kk;a,
M(2,2) = 2kk 2,
M(2,3) = (k2 + k),
M(2,4) =0,
M(3,1) = —ik,q,
M(3,2) = —ikye,
M(3,3) = —ik,
M(3,4) = —ik,y,
M(4v 1) = _,Bclikzclv
M(47 2) - "'ﬂcZikzc%
M(47 3) - _:Hcshiky
M(4,4) = —iku.

The zero’s of the determinant of this matrix are determined using our numerical search
routine. For this sealed boundary we found one undamped and therefore true surface
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wave with a velocity 0.914c; for an interface between water and saturated Bentheimer
sandstone, for which the parameters can be found in Appendix E, Table E.1. This new
type of surface wave is typical of a porous medium and is present due to the slow com-
pressional wave. Feng and Johnson (1983) were the first to consider this wave type and
called it the true Stoneley wave. Experimentally this surface wave was observed by Adler
and Nagy (1994). The distributions of the pore pressure and the pressure in the water

15¢
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Figure 6.9: Pressure distribution associated with the true Stoneley wave (lossless medium).
Pressures are normalized by py|.—o, and the distances from the surface by the wavelength A.
The Bentheim/water interface is sealed.

are shown in Fig. 6.9. The pore pressure at the interface differs one order of magnitude
with the water pressure at the interface. This is due to the sealing. The pressures show
the exponential decay from the surface which is typical of the true surface waves. With
the wavelength A as a scaling parameter the distribution is frequency-independent.

For a porous medium there exist also pseudo-surface waves. Due to the presence
of the slow wave two pseudo-surface waves occur. In agreement with the work of Feng
and Johnson (1983), we found a pseudo-surface wave which has a wavenumber k on the
Riemann sheet with the following signs:

Smkzer) < 0, Smlkze) > 0, Smksesn) < 0, Sm(ksy) > 0. (6.38)

This wave is called the pseudo-Rayleigh wave. Its phase velocity is 0.98¢p, and there-
fore comparable with the pseudo-Rayleigh wave for a solid/water interface. The pseudo-
Rayleigh wave leaks energy in both the water and the slow compressional wave, and it
is damped significantly. The distributions of the pore and water pressure are given in
Fig. 6.10. Due to the leakage in both the water and the slow wave the pressures at both
sides of the interface increase as we move away from the surface.




6.2 Surface waves and porous solids 81

157

IRel. pressuresl

05

Figure 6.10: Pressure distribution associated with the pseudo-Rayleigh wave (lossless
medium). Pressures are normalized by pu|;=o, and the distances from the interface by the
wavelength A. The Bentheim/water interface is sealed.
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Figure 6.11: Pressure distribution associated with the pseudo-Stoneley wave (lossless
medium). Pressures are normalized by py|,—¢, and the distances from the interface by the
wavelength A. The Bentheim/water interface is sealed.
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We found a second pseudo-surface wave with a wavenumber & on the Riemann sheet
with the following signs:

Sm(kze1) <0, Sm(kyez) >0, Sm(kzesn) < 0, Sm(k,y) < 0. (6.39)

This wave type is called the pseudo-Stoneley wave (Feng and Johnson 1983). Its phase
velocity is 0.958¢c, and therefore comparable with the Stoneley wave for a solid/water
interface. However, this pseudo-Stoneley wave is damped significantly, because of its
energy leakage into the slow wave. The phase velocity is frequency-independent, while
the damping factor Im(k) increases as a function of the frequency (see Fig. 6.15(b)).
The pressure distribution for the pseudo-Stoneley wave is given in Fig. 6.11. The pore
pressure increases slowly as we move away from the interface into the porous solid.

Next, we consider the situation where the pores are not sealed. Then, the following
conditions apply at z = 0 (see Chapter 3);

0. =0, Pf = Puy 02z =0, Pus, + (1 - (b)ufz = Uyy- (640)

Using these boundary conditions we obtain for the amplitude matrix M the following
elements:

M(1,1) = (K, — 2/3G)w?/c? + 2GK2,,,
M(1,2) = (K, — 2/3G)w?/c2 + 2GK2,,,
M(1,3) = 2Gkk,,

M(1,4) =0,
M(2a 1) = 2kkzcly
M(2,2) = 2kk,,
M(2’ 3) = (_kgsh + k2)7
M(2,4) =0,

M(3,1) = K; ((1 = ¢) + ¢Br) w?/(9¢}),
M(3,2) = K¢ ((1 = ¢) + ¢fe2) w?/(¢c3),
M(3,3) =0,

M(37 4) - _pwwzv

M(41 1) = —¢ﬁclikzcl - (1 - ¢)ikzc17
M(47 2) = _¢ﬂc2ikzc2 - (1 - ¢)ikz027
M(47 3) = _¢ﬂcshik - (1 - ¢)1‘k7
M(4, 4) = —ik,y.

We found that the pseudo-Rayleigh wave and the pseudo-Stoneley wave still existed, but
that the true Stoneley wave on an interface between Bentheimer sandstone and water did
no longer exist. This phenomenon is in agreement with the results of Feng and Johnson
(1983), who found that the true Stoneley wave exists only for a limited range of parameters
of the poroelastic solid and the fluid. Only for sealed conditions the true Stoneley wave
exists for arbitrary material properties. This conclusion is confirmed by the experimental
results of Adler and Nagy (1994). For the open pore conditions, we found that the phase
velocities of the pseudo-Rayleigh and pseudo-Stoneley waves were 0.93c,, and 0.97c,,,
respectively.
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6.2.3 Lossy media

In case of a lossy poroelastic solid the free-field wavenumbers for the fast, slow, and shear
wave become complex-valued, while the free-field wavenumber of the water remains real-
valued. This means that both true waves and pseudo-waves are damped. For the lossless
medium, we showed in the previous subsection that the true waves were undamped, and
that the pseudo waves were damped due to their energy leakage. For a lossy medium the
pseudo waves are damped due to a combination of the intrinsic damping of the poroelastic
solid and energy leakage. As open pore conditions are applied for our shock tube configu-
ration, we focus in this section on open pore conditions. The true Stoneley wave, however,
exists only for the sealed pore condition for our set of rock parameters. Therefore, we
apply the sealed pore conditions for the true Stoneley wave. Again, our numerical code
is used and the frequency-dependent Biot damping mechanism is incorporated.

In Fig. 6.12(a) the frequency dependence of the phase velocity of the true Stoneley
wave is shown, together with the phase velocity of the true Stoneley wave for the lossless
medium. The free-field phase velocity of the slow wave is given for comparison. The phase
velocities are normalized by the high-frequency limit of the phase velocity of the free-field
slow wave. The phase velocity of the true Stoneley wave is lower than the phase velocity
of the free-field slow wave over the entire frequency range. Furthermore, we observe that
the phase velocity of the true Stoneley wave for the lossy medium is lower than the phase
velocity of the true Stoneley wave for the lossless medium. In the high-frequency limit,
we found that the velocity of the true Stoneley wave for the lossy medium approaches the
velocity of the true Stoneley wave for the lossless medium. In Fig. 6.12(b) the frequency
dependence of the damping coefficient of the true Stoneley wave is shown in comparison
with the damping of the free-field slow wave. We observe that the damping coefficients of
these two waves show the same characteristics. Hence, we conclude that the Biot damping
mechanism strongly influences the damping of the true Stoneley wave.

For the pseudo-Rayleigh wave we found two solutions for k that satisfy the boundary
conditions. The results for the corresponding phase velocities and damping coefficients
are shown in Fig. 6.13. The phase velocities and damping coefficients for the lossless
medium are given as a reference. We observe that the phase velocity of one of the two
pseudo-Rayleigh waves for the lossy medium converges to the phase velocity of the pseudo-
Rayleigh wave for the lossless medium. We studied the k.., wavenumbers associated with
the pseudo-Rayleigh waves, in order to investigate the convergence of these two waves.
In the 1-100 kHz frequency range, we found that for the wave indicated by the solid line,
k.o is located in the second quadrant of the k,c-plane. For the wave indicated by the
dashed line, k. is located in the fourth quadrant of the k.c-plane. The k.., associated
with the pseudo-Rayleigh wave for the lossless medium, is located in the first quadrant.
In the 1000-10000 kHz frequency range, the results for k.. are shown in Fig. 6.14. 3
We find for the wave indicated by the solid line a transition from the second quadrant
of the k,co-plane to the third quadrant. Therefore, this pseudo-Rayleigh wave is labelled
as PRy3. For the wave indicated by the dashed line we find a transition from the fourth
quadrant to the first quadrant (Fig.6.14(b)). Consequently, this pseudo-Rayleigh wave is

3Note that Biot’s theory does not apply in this frequency range, due to scattering effects. However,
the current investigations focus on the mathematical properties of the theory of surface waves in lossy
media.
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Figure 6.12: Frequency dependence of the phase velocity (a) and damping (b) of the true
Stoneley wave for the lossy medium. The solution for the lossless medium is also shown. The
Bentheim/water interface is sealed.
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Figure 6.13: Frequency dependence of the phase velocity (a) and damping (b) of the pseudo-
Rayleigh wave for the lossy medium. The solution for the lossless medium is also shown. We

use open pore conditions for the Bentheim/water interface.
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Figure 6.14: Frequency dependence of Sm(k,.2) for the pseudo-Rayleigh waves (a). Open
pore conditions are used for Bentheim/water interface . The complex k2 plane is given in (b).
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Figure 6.15: Frequency dependence of the phase velocity and damping of the pseudo-Stoneley
wave for the lossy medium. The solution for the lossless medium is also shown. Open pore
conditions arc used for a Bentheim/water interface.
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labelled as PR4;. From this analysis, we conclude that the high-frequency limit of the
PR4;-wave is equivalent to the pseudo-Rayleigh wave for a lossless medium. The damping
of the PRy, solution is of the same order as the solution for the lossless medium over the
entire frequency range as shown in Fig. 6.13(b). Hence, we conclude that the energy
leakage strongly influences the damping of the pseudo-Rayleigh wave. It depends only
slightly on the damping of the bulk waves.

For the pseudo-Stoneley wave we found also two solutions in the 1-100 kHz frequency
range (Fig. 6.15). Again these waves are labelled by the quadrant of k.. The pseudo-
Stoneley wave PS; is indicated by the solid line. For wavenumbers k in the fourth quad-
rant, i.e. for damped waves in the positive z-direction, the corresponding k,.; for this
wave is located only in the second quadrant. The pseudo-Stoneley wave PSy; is indicated
by the dashed line. For k in the fourth quadrant, the corresponding &, is located in
the fourth quadrant of the k,c.-plane at low frequencies. At high frequencies it is located
in the first quadrant. The results for the pseudo-Stoneley wave for a lossless medium
are also given in Fig. 6.15. The phase velocities of the PS,-wave and the PSy;-wave are
nearly equivalent. The damping coefficients, however, differ significantly, but exceed the
damping coefficients for the lossless case. Hence, we conclude that both the Biot damp-
ing mechanism and the energy leakage contribute to the damping of the pseudo-Stoneley
wave.

As a summary of the discussion on true and pseudo surface waves Table 6.1 gives an
overview of the quadrants of the wavenumbers k.., k,c, and k,;,. The quadrants of the
wavenumbers are given for a value of k£ which is located in the fourth quadrant of the
k-plane. The boundary conditions for which the surface waves occur on a Bentheim/water
interface are also indicated.

From these discussions it can be concluded that extrapolation of the classical concept
of pseudo-waves as developed by Strick (1959) and Phinney (1961b) to lossy media is not
straightforward. For a complete description of the pseudo-wave phenomena in lossy media,
one needs also to consider the integral transformation from the frequency-wavenumber
domain to the time-space domain. This subject is beyond the scope of this thesis and
needs to be investigated in the future.

Surface wave type boundary | quadrant quadrant quadrant | quadrant
conditions kze1 kzeo kash kaw

true Stoneley

c< ¢ sealed 3 3 3 3

Lossless medium: undamped

pseudo-Stoneley sealed and 2

¢y < ¢ < Cyater open pore 3 and 3 3

Lossless medium: damped 4 (LF) - 1(HF)

pseudo-Rayleigh sealed and 2 (LF)— 3 (HF)

Cuater < € < Cshear open pore 3 and 3 1

Lossless medium: damped 4 (LF) - 1 (HF)

Table 6.1: Quadrants of the different wavenumbers, for wavenumbers k which are located in the
fourth quadrant. The boundary conditions for which the wave type occurs on a Bentheim/water
interface are also indicated.




Chapter 7

Wave modes in elastic cylinders

In this chapter, we discuss the theory of wave modes in elastic solid cylinders. We use
this theory to understand the basics of wave propagation in cylindrical configurations. In
the next chapter, we combine the theory of wave modes with Biot’s theory. Waves in
elastic cylinders have been investigated by many authors. The research was started by
Pochhammer in 1876, but due to the complexity of the equations it took half a century
to obtain computational results. For further details of the historical development we
refer to Onoe et al. (1962) and Meeker and Meitzler (1964). Experimental data on this
subject were provided by Fox et al. (1958) and Zemanek (1971). In this chapter we
use the system of coordinates as given in Fig. 7.1. Note the difference with the system
which we used for flat interfaces, where the z-coordinate is perpendicular to the interface,
while now the z-coordinate is parallel to the radial surface of the cylinder. We start with

z
s
N

Figure 7.1: Solid elastic cylinder
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the derivation of the frequency-wavenumber equation, which is called the Pochhammer
equation. Subsequently, we discuss the computational results.
7.1 Pochhammer equation

It appears to be useful for cylindrical configurations to decompose further the vector
potential ¢ (Miklowitz 1978):

Y = xe, + V x (n2), (7.1)
where x and 7 satisfy
2 16* X\ _
(v 255 (1) =2 (72)

and e, is the unit vector along the axial cylindrical coordinate z. Now the scalar potentials
©, x and 7 all satisfy a wave equation. We now demonstrate the derivation for the solution
of the wave equation for the scalar potential . The solutions for the other potentials are
similar.

In cylindrical coordinates, a solution for the wave equation can be found by separation
of variables. We use a modal harmonic wave propagating in the positive z-direction. The
radial and tangential dependence of the potential are modelled by two functions ® and ©
so that we may write:

@ = ®(r)O(h)ewt*2), (7.3)

where Re(k) > 0 and Im(k) < 0. This expression is substituted in the wave equation for
w:

|~

32
_§=0 (7.4)

2 —
Ve 3

(el

C

For cylindrical coordinates, as given in Appendix A, we now derive the following equations
for ® and O:

?® 1do w? 9 n?
FJ“?E*(E{_’“)@_}?@‘O’ (75)
and
4?0 9

where n is a constant. By substitution of k2, = w?/c? — k? and ( = k.7 in Equation
(7.5) we obtain the Bessel equation:

fd 100 n?
6_424-25?_}-(1—?)@:0. (7.7)
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The solution of Equation (7.6) is given by:
0 = e*™f, (7.8)

Using the condition of continuity for © only integer values of n remain. For integer values
of n, solutions of the Bessel equation (7.7) are the Bessel functions of the first and the
second kind, with argument k,.;r. Only Bessel functions of the first kind are taken into
account, as the solution for ® must be finite at 7 = 0. The expression for the scalar
potential ¢ then becomes:

o= AclJn(krcl,r)ei(wt—kz)ej:inﬂ. (79)
The solutions for x and 7 can be derived in the same way:

X = Boy Jn(kpopr)elWt-k2)eEne (7.10)

n= Csth(krshr)ei(wt_kZ)eiinG) (711)

where the radial wavenumbers k., and k,,, are defined as:

fw? [w?
krnl = z{ - k‘2, krsh = —02; - k2. (712)

The signs of the square roots are chosen such that Sm(kr.1) < 0 and Sm(k,g,) < 0. The
solutions for the potentials ¢, x, and 7 show that due to the internal reflections from the
radial surface standing wave patterns are formed in the radial direction. In the axial and
tangential directions travelling harmonic waves occur.

Due to the normal incidence of waves on the top of the cylinder in our shock tube
we only consider axially symmetric waves: a% =0, and ug = 0. Then, it is sufficient to
let x = 0 and n = 0 (see Equation (A.29)). The modal wave propagation is therefore
described by the two potentials ¢ and 7 in this case:

Y= Acljo(krclr)ei(wt_kz), (713)

1 = ConJo(krenr)e@t*2), (7.14)

The corresponding radial and axial displacements (u, and u,) are given in Appendix A.
Accordingly, we write:

2
e = 22 0k Ty(ar) + Conikean s (v, (7.15)
or  0z20r
Uy = a_<p _ lg 7-8-—” = —iijClJo(krclT) + Cshkzsh']o(krshr)' (716)
9z ror \ Or
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Substituting Equations (7.13) and (7.14) in Equations (A.39), (A.41), and (A.43) we can
derive that:

2 krc
Ter = Acl ,:—/\(;%Jo(krclr) - 2# (kgcljﬂ(krclr) - r : Jl(krclr))] +
L

Csh [Qﬂikkzsh.lo(k”hr) - 2/,Likk:h J](krsh’l')] , (717)
2
Tow = AaJolkrerr) [—)\%2— - 2uk2} + Condo(kesnr) [—2uikk2,] (7.18)
L
Trz = Acl [Qikkrcl']l(krclr)] + Csh [(_kgsh + kz)krsth(krshT)] . (719)
It is required that all stresses at » = a vanish:
Trr =0, T =0, T, = 0. (7.20)

Due to the axial symmetry the condition 7, = 0 is always satisfied. From Equations
(7.17) and (7.19), we obtain for the amplitude coefficients:

M (4a Cu)T =0, (7.21)
where M =
(-%[k‘;’-sh - k) Jo(krcra) + KL T, (kyeya) kK2, Jo(Krsna) — i“%m.n(kmha))
Qikkyer J1 (k1) — (K2, — k2)krondy (Kren) (7.22)

The requirement that the determinant of coefficients must vanish yields the frequency
equation:

w? 2krerky
F(w’ k) = (‘C? - 2k2)2krshJ0(krcla)Jl(krsha) + -—%ﬂ

”aJ rc1@
1 h 1(Fre1

— 4Kk ke Ty (K@) Jo (K na) = 0. (7.23)

This equation is called the Pochhammer equation. It was first derived by Pochhammer
in 1876, and solutions of both damped and undamped waves were given by Onoe et al.
(1962) and Zemanek et al. (1971). We notice that k.1, Jo(kre17) and Ji(k,i7) only occur
in the combinations k%, Jo(krei7) and kyerJi (k7). The Besselfunction Jo(¢) is the sum
of even powers of ¢, while J1(C) is the sum of odd powers of { (see Equation(B.2)). The
combinations of wavenumbers and Besselfunctions display therefore only even powers of
the radial wavenumber k.. This means that discussions on the choice of the sign of
the square root in Equation (7.12) can be avoided. The same is valid for the radial
wavenumber k..
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7.2 Computational results wave modes

As in the case of flat interfaces, we use the numerical code described in Appendix D to
determine the zero’s of Pochhammer’s equation. An important difference with the flat
interface computations is the number of zero’s at a given frequency. For the flat interface,
we found one undamped wave only, but here we find a finite number of undamped waves,
and an infinite number of damped waves. These different solutions of the Pochhammer
equation are the so-called modes and correspond to the different types of wave motion
in the cylinder. Please note that there is a difference with the more general use of the
term 'modes’ in acoustics, where the 'modes’ denote the individual natural resonances of
a finite body.

We use two graph types that are well-known in literature (Onoe et al. 1962, Zemanek
1971, Achenbach 1973, Miklowitz 1978) to present our solutions. One is for the frequency
dependence of the real part of & and the other for the frequency dependence of the
imaginary part of k. It is also common to present the former one in a modified way by
plotting the phase velocities w/Re(k) versus the frequencies w. First, we will discuss the
results for the undamped modes. Following the conventions of Zemanek (1971), these
modes are labelled L modes.

7.2.1 Undamped modes

The results of the calculations are shown in Fig. 7.2(a). On the horizontal axis the real part
of the dimensionless wavenumber is shown, while on the vertical axis the dimensionless
frequency is given, where a is the radius of the cylinder. Pochhammer’s equation is
determined uniquely by the variables wa/cr, ka, and Poisson’s ratio v (Achenbach 1973).
The results are given for v = 0.3. In Fig. 7.2(b) the same data are presented using the
phase velocity of the modes. For reference, we have also given the free-field velocities of
the compressional and the shear waves.

In Fig. 7.2 the solutions of the Pochhammer equation in the dashed region (w/cy <
w/er < Re(k)), correspond to surface waves. Considering the square roots given in
Equation (7.12), it follows that for Sm(k) = 0 and w/c, < w/ep < RNe(k) the radial
wavenumbers kre; are k,,, are imaginary. Then the Besselfunctions Jo(iSm(k,e1)r) and
Jo(iSm(kyss)7) are proportional to Io(Sm(kret)r) and Io(Sm(kpsn)r), respectively. The
latter functions are proportional to exponential functions for large values of r (see Equa-
tion (B.11)). Hence, the solutions of the Pochhammer equation in the dashed region
correspond to surface waves.

In the high-frequency limit the L1 mode is located in the dashed region, and therefore
it is a surface wave. The phase velocity of L1 at high frequencies is equal to the phase
velocity of the Rayleigh wave, which was derived in the previous chapter. Because at
high frequencies A/a < 1, the effect of the curvature of the interface can be neglected.
Obviously, this is no longer true for lower frequencies.

We further investigate the physical character of the L1 mode by plotting the radial
distributions of the corresponding stresses T,., T,, and 7, (see Fig. 7.3). Because of the
presence of a geometrical length scale in this configuration, we use the radius a of the
cylinder as the normalizing parameter. At wa/cr = 12 we observe a strong similarity with
the stress distributions of the Rayleigh wave as given in Fig. 6.2. For wa/cr = 0.12 the
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Figure 7.2: Frequency dependence of the Re(k) (a) and phase velocity (b) of the undamped
modes. Note that both graphs represent the same data of an elastic cylinder with v = 0.3.
Dashed line: w = ¢ Re(k). Shaded region: w/cr < Re(k).
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Figure 7.3: Radial distribution of the stress componenents of mode L1 at wa/cr = 0.12 (a)
and wa/cr = 12 (b). The stress components are normalized using the value of 7,, at r = a at
that particular frequency. The radius is normalized by the radius of the cylinder a.
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distribution of 7., is flat. The shear stress 7., and the radial stress 7., differ one order in
magnitude with the axial stress component 7,, and are therefore not visible in Fig. 7.3(a).
The low-frequency limit can thus be characterized by one-dimensional longitudinal stress,
contrary to the free-field situation which is characterized by a one-dimensional longitudinal
strain. In cartesian coordinates the stress 7, and ¢,, are related for the longitudinal stress
(72z = 0 and 7, = 0) by

Ter = Feyy, (7.24)
where E is the Young’s modulus:
B(3A + 241)
E=——1-—. 7.25
LA (7.25)

The low-frequency limit of the phase velocity for the L1 mode is equal to \/E/p. It is
called the ’bar’ velocity, and is often used as an approximate model for thin rods.

The higher-order modes L2,..., L6 are characterized by the high-frequency limit of the
phase velocity, which is the free-field shear velocity. At lower frequencies they show a
so-called cut-off behaviour. At the cut-off frequencies these modes are non-propagating,
which means that the axial wavenumber is equal to zero. This also means that the radial
wavenumber is equal to the free-field wavenumber. The cut-off frequencies of the modes
can be obtained from Equation (7.23), where k = 0:

hA (“’—a) [-‘YEJO (“ﬂ) 2%y, (ﬂ‘f)] — 0. (7.26)
cr cr Cr, Ccr cL

Using this equation two classes of cut-off modes can be discerned. The first one satisfies
Ji(wa/er) = 0, while for the second one the term between the square brackets is zero.
We found that the L2, L4 and L6 modes belong to the first class, and the L3 and L5
modes to the second. These classes display different physical phenomena as illustrated
in the plots of the stress components near the cut-off frequency. Fig. 7.4(a) shows that
for the L2 mode 7, is the dominant stress component. This behaviour is also observed
for the L4 mode. When the radial and axial displacements are plotted (Zemanek 1971),
it is observed that the axial displacement is dominant. Therefore, this mode class is also
called the axial shear mode (Onoe et al. 1962, Zemanek 1971). Fig. 7.5(a) gives the radial
distributions of the stresses for the L3 mode near the cut-off frequency. In this case 7,
is one order lower than 7, and 7,,. This difference in order of 7, is also observed for
the L5 mode. Compared to the axial displacement the radial displacement is dominant
(Zemanek 1971). The L3 and L5 modes are therefore called the radial modes. At high
frequencies this distinction between the mode classes disappears. As an example, the
three stress components of L2 are plotted in Fig. 7.4(b) for wa/cr = 12. The three stress
components are of equal importance for this mode. For the L3 mode the shear stress
component T, is still small at high frequencies (see Fig. 7.5(b)).

Near the cut-off frequencies several interesting phenomena occur. The phase velocities
reach an infinite value. However, it must be noted that the so-called *group’ velocity, which
corresponds to the velocity of energy transmission (Miklowitz 1978), remains finite. The
group velocity is defined as:

dw

) 7.27
Cg dk ( )
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Figure 7.4: Radial distribution of the stress componenents of mode L2 at wa/cT = 3.83 (a)
and wa/cr = 12 (b). Stresses have been normalized with respect to the axial stress component
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Tazlr=q. The radius is normalized by the radius of the cylinder a. Note the different scales on

the vertical axes in (a) and (b).
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and corresponds to the slope of the curves given in Fig. 7.2(a). It is clear from this graph
that the group velocities of the presented modes are lower than the free-field velocity
of the compressional wave. Furthermore, we observe that the group velocity of the L2
mode shows an interesting behaviour. Below Re(k)a = 1, the slope of the curve in
Fig. 7.2 is negative and corresponds therefore to a negative group velocity while the phase
velocity is positive. This means that the energy is transported in the direction opposite
to the direction of propagation. For a further discussion on this so-called backward-wave
transmission phenomenon the reader is referred to the work of Meitzler (1965).

7.2.2 Damped modes

We now discuss the damped wave modes, for which Re(k)a and Im(k)a are given in
Fig. 7.6 as a function of the frequency wa/cr. We present these results in one graph,
as the Re(k)-plane and the Sm(k)-plane are projections of the complex k-plane. As a
reference, we also have given the solution for the undamped waves, which are indicated by
the solid lines. The solutions for the damped waves are indicated by pairs of dashed lines:
one in the Re(k)-plane, and one in the Sm(k)-plane. We also have found a mode which
does not propagate, i.e., Re(k) = 0. This mode is indicated by the solid-cross line, and
labelled Z1. The labels of the damped modes are based on the frequency range for which
they exist. The C modes start at a frequency equal to zero, and for higher frequencies,
they continue until they join an undamped mode or the Z1 mode. The I modes start at
the Z1 mode, and continue until they join the Z2 mode (not shown in Fig. 7.6).

The C, I, and Z modes play an important role for cylinders with finite length (Zemanek
1971). A way to study an impact in the z-direction on a cylinder of finite length is to
express the stress condition at the boundary of impact as a sum of the stresses associated
with the L, C, I, and Z modes. This method only works if the sum converges and provided
that the set of particular modes is complete. At the boundary of impact one can prescribe
one single stress component and one single displacement component. This is a set of so-
called mixed boundary conditions. For pure boundary conditions one prescribes two stress
components. For mixed boundary conditions the impact on a cylinder has been studied
by several authors (Skalak 1957, Folk et al. 1958, Kaul and McCoy 1964, McKenna and
Simpkins 1985, Wilson 1986, Herczynski and Folk 1989). However, for pure boundary
conditions it is not known how to solve the impact problem analytically (McKenna and
Simpkins 1985, Herczynski and Folk 1989).
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Figure 7.6: Modes of an elastic cylinder in the complex plane. The solid lines correspond to
the L modes of Fig. 7.2(a). The pairs of dashed lines correspond to the imaginary and real part
of k. The computations were performed for an elastic cylinder with v = 0.3.




Chapter 8

Wave modes in the shock tube

In this chapter we discuss the application of the wave mode theory to the shock tube
configuration. We investigate both the large gap and the small gap configuration for
Bentheimer sandstone, which is a fast formation. The influence of permeability and shear
modulus on the phase velocities and damping coefficients is studied afterwards. The last
topic of the chapter is the modelling of a slow formation. We start with computations
where the influence of the wall of the shock tube is neglected.

8.1 Rigid shock tube wall

Wave motion in the porous cylinder is described using the potentials as given in Chapter
3 and the wave mode theory for the elastic cylinder as described in Chapter 6. The
eigen vectors . and . in Equation (3.9) satisfy the wave equation with respect to the
complex-valued velocities of the fast and slow wave, respectively. The vector potential of
the shear wave 9, in Equations (3.18) and (3.19) satisfies the wave equation with respect
to the (complex-valued) shear wave velocity. The wave motion in the water-filled gap is
also described using potentials. The configuration is given in Fig. 8.1. A porous cylinder
with a radius a is within a shock tube with inner radius . Boundary conditions are
indicated.

8.1.1 Frequency-wavenumber equation

Similar to Equation (7.13), we can derive for the potentials ¢, and @c:

Pscr = Act Jo(rear)e @ F), (8.1)
and

Pscr = AcaJo(krear)e™ @52, (8.2)

For the porous cylinder we also apply the decomposition described in Equation (7.1). For
the shear wave potential we write (see Equation (7.14)):

Nsh = CsnJo(Krsnr)e @+, (8.3)

97
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Figure 8.1: Porous cylinder in shock tube

The radial wavenumbers are defined by

2 2 2
krcl = u_)2' - k2, krc2 = w_T - k27 krsh = 52— - kza (84)
1 2 sh

with Sm(kre1) < 0, Sm(kre) <0, and Sm(kysn) < 0. As we did in Section 7.1, we write
for the solid velocities, omitting the eX“*~*%) dependence:

Ugr = _AclkrclJl(krcl"') — Acrkrad (erZT) + CShikkrSth(k"’hT)’ (8'5)

Ugy = —ikAcng(krclT) — ikAEQJ()(k,-CQT) + CshkgshJO(krshT)- (86)
The fluid displacements are given by

Ufr = —Acl /Bcl krcl Jl (krcl'r) - ACZ,BchcmJl (k,.ch) + Cshﬁcshikkrshjl (krsh.r) 3
(8.7)

Ufz = *ikﬁcl AclJO(krclr) - ikﬁC2AC2J0(kTC2r) + Cshﬂcshkfsh']o(k”hr)' (88)

The relations for the intergranular stresses, including the compressibility of the grains,
can be derived from Equation (2.16) with ex, = V3.1 + V20se2 and exx = V2(Be1ser +
Beawse2). Hence, we write for the radial component o,, with P = A + 2G:

o [p-16- 00 g, [o U=BR]

¢
2 3

2 9z0r2
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where Ps = Psci + Pse2 and Pf = Pfa + Pfe2- USing Pl = .Bclsoscl and Pfe2 = ﬂc2(psc2 we
obtain:
s P nan
— 2 s s
Orr = _Aclv Pset — Ac2v2ﬂpsc2 -2G [ 912 - 8287’2 (810)
where
Acl — P . 2G ( ¢)Q + Qﬁcl ( - ¢)Rﬂc1’ (8.11)
e ¢
and
Ao=P-26- qj’)Q 1 Qp — L) ";)Rﬁd. (8.12)

For the incompressible-grain approximation we simply obtain that Ay = Agp = (Kp —
2/3G). We substitute the Equations (8.1), (8.2), and (8.3) in Equation (8.10), and we

write:

Opr = Acl

[ 2
AcZ ACZ%JO(ICTCZT) + 2G ( rcho(krczT)
L 2

2
Acl%Jo(krclr) + 2G (kgcl‘lﬂ(kﬂilr) -
1

(har)) | +
krrﬂ Jl(k,czr)ﬂ +

(8.13)
[ k
Con —QGikkzshJO(krshr) + 2Gik 1:h J1 (krshr)] .
For the axial stress component o,, we can derive that:
w? w?
O, = Acng(krclr) [Ad—g + 2Gk2:| + Acho(krczT) [ACZ? + 2Gk2] +
1 2
Condolkranr) [2GEkKZ) (8.14)
For 0,, we obtain:
Trz = Acl [_Qikkrcljl (krclr)] + Ac2 ["27:kkrc2']l(k1'62r)] +
(8.15)
Con [ —(—K2n + F)bpan 1 (krsnr)|
Using Equation (2.15), we can write for the pore pressure:
1
m=-3 [QV%0, + RV?¢/], (8.16)

where @5 = @sc1 52, 05 = Pt Psez, Prer = BerPsct, and @ sez = Beapsea. Subsequently,
we substitute Equations (8.1) and (8.2) in Equation (8.16), and the pore pressure is given
by:

2

w?1 w?1
Dp = Acl > 70 ( rclT) (Q + ﬁrl )] + Ac2 l:_g‘_‘JO(kTCZT) (Q + /662R) .
cr ¢ c ¢ (8.17)
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The wave motion in the water-filled gap is described by the wave equation of water.
Hence, we can derive the potential of the water-filled gap:

Yw = (BaYo(krur) + AgJy(kpyr))e@t=F2), (8.18)

where the Bessel function of the second kind Yj is included, and
kpp = | = — k2, (8.19)

with Sm(kyy) < 0. For the pressure in the liquid we write

Pv = pu’ 0w, (8.20)
and for the radial water displacement :

oy
tor =

where the ¢“*=%¥?) dependence has been omitted again. At r = a we apply the open-pore
boundary conditions as given in Chapter 3, while at r = b the radial displacement of the
water is assumed to be zero. Hence, we obtain the following boundary conditions:

= —krwaYl(ker) - krwAle(krwr), (821)

eatr=a: 0y =0,0,,=0, (1 Q)us + Uy = Ury, P = P,
e at r =b: up =0.

Using the expressions for the displacements and stresses as given previously, we write for
the five unknown amplitudes:

M(Acl Ac2 Csh Bw Aw)T = Q: (822)

where ,
M(l, 1) = Acl(‘;}‘{)JO(krcla) + 2G(krcl(1‘:1'411J()(k51'cla) - i‘Jl(krcla)))y

M(1,2) = Ac2(%§')‘]0(krc2a) + 2G'(krcz(I‘:rz:2t]0(krc2a') - %Jl(krﬁa)))a
M(17 3) - —2Gikkrsh(krsh¢]0(krsha) - iJl (krsha'))y

M(1,4) =0,

M(1,5) =0,

M(Q, 1) = —2ikkrdJ1 (krcla),
M(2,2) = —2ikk, o J, (kre2a),

M(Q’ 3) =- Tsh(k2 - kr?sh)Jl(krsha)v
=0,

(({é - 1) - ﬂcl¢)krc1'}l(kr01a),
((¢ - 1) - ﬁc2¢)krc2-]l(krc2a),
((1 - ¢) + ﬂsh¢)ikkrshJ1(kT£ha))
k"w)/l(krwa))

= krle (krwa)u
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M(4,1) = §(4)Jo(kra10)(Q + Rpa),

1
¢
M(4,2) = (%) Jo(kr2a)(Q + RBe2),
M(4,3) =0,
M(4, 4) = _pwwzy()(krwa)a
M(4,5) = —pyw?Jo(krwa),

The matrix elements show only combinations of Jo(kr;7), k2;Jo(Kejr), and krjJi(krjT),
where j = cl, ¢2, csh. These combinations are even functions of the corresponding radial
wavenumbers and therefore the choice of the Riemann sheet is arbitrary. The Neumann
functions Yy(z) and Y;(x) are neither an odd nor an even function of z. However, Yo(—2)
can be written as the sum of Yy(x) and Jo(z) (see Equation(B.5)). Hence, the final result
of the potential ¢, as given by Equation (8.18) is not influenced by the sign of k., and
the choice of the Riemann sheet for the radial wavenumber k., is arbitrary. The only
relevant cut is the branch cut of the functions Y; and Y;: |arg(k,.,7)| = 7. Passing this
cut can be avoided by using Sm(k,) < 0 or Sm(ky,) > 0.

8.1.2 Computational results

The computational results were obtained by our Newton-Raphson based search routine,
which is described in Appendix D. Some of the modes which we found show similarities
with the L, C, and I modes of the elastic cylinders, and consequently these modes are
labelled L, C, and I. Furthermore, we found a surface mode, which will be denoted S. Due
to the presence of the Biot’s slow wave in the porous cylinder an extra class of modes
occurs, which is denoted D. Because of the complexity of the complete mode pattern we
present the results in separate figures. First, we discuss the L and S modes, which are
characterized by a relatively low damping factor. These results are shown in Fig. 8.2, while
the results for the C, I, and D modes are shown in Figs. 8.14 and 8.15. The computations
were performed for water-saturated Bentheimer sandstone, with a diameter of 70.0 mm,
i.e., a = 0.909b. The compressibility of the grains was not taken into account. Parameter
values are given in Table E.1.

L and S modes

We present the data for the L and S modes in the same way as we did for the elastic case,
but for later comparison with our experimental results, we use the frequency instead of
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the dimensionless parameter wa/er. In Fig. 8.2(a) we plot the frequency versus the real
part of k, while in Fig. 8.2(b) the frequency dependence of the phase velocities is given.
We normalized Re(k) by the inner radius of the shock tube b, while the phase velocities

(a)

b,
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Figure 8.2: Frequency dependence of Re(k) (a) and the phase velocity (b) for the L and
S modes. The wavenumber is normalized by the inner radius of the shock tube b, the phase
velocity by the sound velocity of water. The free-field solutions for the fast (Cy), the slow (C2),
and the shear wave (Cyy,) are also given. The computations are performed for a Bentheimer
sandstone cylinder with a diameter of 70.0 mm. Note that the full computational results are
presented in three figures. The C and I modes are shown in Fig. 8.14, while the D modes are
shown in Fig. 8.15.

are normalized by the sound velocity of water. For comparison, we have also given the
free-field solutions for the fast, slow, and shear wave, denoted by C;, C,, and Cj;.

The L1 and L2 modes have a finite phase velocity over the entire frequency range, while
the higher-order L modes are cut off below a certain frequency. The L modes in Fig. 8.2
show strong similarities with the results of Fig. 7.2, where we observed one mode which
propagated over the entire frequency range, while the other modes were cut off below
a certain frequency. There is, however, an important difference with the case of elastic
cylinders. The L1 mode for the elastic cylinder is undamped over the entire frequency
range, and the higher-order L modes are undamped above the cut-off frequency. Below the
cut-off frequency they join the strongly damped C and I modes. For the porous material
however, the fast, slow, and shear waves are damped, and consequently, all the L modes
are damped over the entire frequency range. The damping coefficients of the L1 mode over
the entire frequency range, and of the higher-order L modes above the cut-off frequency
are low, i.e., Sm(k)b < 1. The behaviour of the L2 mode is somewhat ambiguous, as
the phase velocity is limited below 30 kHz (see Fig. 8.2), while the damping coefficient is
high.

We now focus on the analysis of the S, L1 and L2 modes. For these modes we study
the low-frequency and the high-frequency limits of the phase velocities and damping
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Figure 8.3: Frequency dependence of the phase velocity (a) and damping (b) for the S mode
in the 1-1000 kHz frequency range. The results for the pseudo-Stoneley wave for a flat interface
are also shown. The computations are performed for a Bentheimer sandstone cylinder with a
diameter of 70.0 mm. Parameter values are given in Table E.1.

coefficients, as well as the radial distributions of the stresses and pressures. Fig. 8.3
shows the frequeny dependence of the phase velocity and the damping coefficient of the S
mode in the 1-1000 kHz frequency range. In this figure the pseudo-Stoneley wave PSy; for
a flat interface is also shown. The properties of this wave type are discussed in Chapter
6. From Fig. 8.3 we observe that the S mode is equivalent to the pseudo-Stoneley wave
in the high-frequency range. Both the phase velocities and the damping coefficients are
nearly identical. At high frequencies the wavelength A is small, and hence the S mode has
a small penetration depth, related to both the liquid-filled gap and radius of the cylinder.
Thus, the interface of the cylinder can be considered flat. At lower frequencies the S mode
is influenced by the curvatures of the porous cylinder and of the wall of the shock tube.
The figures 8.4-8.7 show the radial distributions of the stresses and pressures for the
S mode at several frequencies in the 1-120 kHz frequency range. This frequency range is
relevant for our experimental results as will be demonstrated in Chapter 10. The stresses
and pressures are normalized by the pore pressures at the radial surface of the porous
cylinder r = a. From Figs. 8.4 and 8.5 we observe that the typical behaviour of the
surface wave is present at 60 and 120 kHz. The pressure oscillations near r = 0 are due
to the slow wave. As the frequency is lowered, the pressure peak at the wall becomes
broader, and the surface wave character disappears. This is illustrated in Fig. 8.6 where
bulk type behaviour is dominant. For a frequency of 0.6 kHz, we observe a longitudinal
stress situation (Fig. 8.7). This means that there is a uniform distribution of ., over
the width of the cylinder, and that o,, becomes zero. Summarizing, we may say that the
S mode is associated with a surface wave at high frequencies, while it corresponds to a
bulk wave type at low frequencies. Note that this is similar to the corresponding mode in
a borehole, which is associated with the so-called *water-hammer’ at low frequencies and
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Figure 8.4: Radial distributions of the stresses (a) and pressures (b) for the S mode at 120 kHz.
Both the stresses and pressures were normalized by pp|,=.. The calculations were performed for
a Bentheim cylinder with a diameter of 70.0 mm (a = 0.909b). The pores at the boundary were
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Figure 8.5: Radial distributions of the stresses (a) and pressures (b) for the S mode at 60 kHz.
Both the stresses and pressures were normalized by py|r=q. The calculations were performed for
a Bentheim cylinder with a diameter of 70.0 mm (a = 0.909b). The pores at the boundary were
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Figure 8.7: Radial distributions of the stresses (a) and pressures (b) for the S mode at 0.6 kHz.
Both the stresses and pressures were normalized by py|r=o. The calculations were performed for
a Bentheim cylinder with a diameter of 70.0 mm (a = 0.909b). The pores at the boundary were
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with the pseudo-Stoneley wave at high frequencies. Furthermore, we remark that over
the entire frequency range, the gap pressures are of the same order as the pore pressures
in the porous cylinder.

The phase velocities and the damping coefficients for the L1 mode are shown in Fig. 8.8
in the 1-1000 kHz frequency range. The phase velocity of this wave mode shows similarities
with the L1 mode for the elastic case which is shown in Fig. 7.2. At high frequencies, the
L1 phase velocity in a poroelastic cylinder in the shock tube reaches the sound velocity
of water. This wave is therefore associated with wave motion in the gap. We previously
noted that the L.1 phase velocity for the elastic case, however, reached for high frequencies
the velocity of the Rayleigh wave. In the low-frequency limit, the phase velocity of the
L1 mode is somewhat lower than the free-field velocity of the fast wave. For the elastic
case the low-frequency limit of the L1 mode was defined as the so-called 'bar’ velocity,
which was given by /E/p. The damping coefficient of the L1 mode displays a peculiar
behaviour. In the high-frequency limit, the L1 mode is associated with wave motion in
the gap. As no intrinsic damping is included for the water, the L1 mode is undamped
here. In the low-frequency limit the Biot damping of the fast wave strongly influences the
damping of the L1 mode. In between 30 and 500 kHz, a transition occurs from the bulk
wave motion in the porous cylinder to bulk wave motion in the gap. Both radial and axial
wave motion are important. We observe a number of local maxima and minima in the
damping coeflient. The frequencies of the maxima correspond to free-field wavelengths
in the water which approximately fit the diameter of the porous cylinder. The Figs. 8.9
and 8.10 show the radial distributions of the stresses and pressures at 120 and 0.6 kHz,
respectively. At 120 kHz we observe that the stress components are of equal importance,
which is in agreement with our conclusion that both axial and radial wave motion are
important in between 30 and 500 kHz. At 0.6 kHz the longitudinal stress situation is
reached, which corresponds to bulk wave motion in the porous cylinder.

Fig. 8.11 shows the phase velocity and the damping coefficient of the L2 mode in the
1-1000 kHz frequency range. Above 300 kHz the L2 phase velocity reaches the phase
velocity of the free-field shear velocity. At low frequencies the phase velocity remains
finite, which is contrary to the behaviour of the L2 mode for the elastic case. The phase
velocity of the latter mode becomes infinite. For the poroelastic cylinder, we observe that
the damping of the L2 mode is large in the low-frequency limit: Sm(k) ~ —6 (not shown
in Fig. 8.11). For the high-frequency limit the damping of the L2 mode is equivalent to
the damping of the free-field shear wave. In the intermediate frequency range, a transition
occurs from a bulk wave with two-dimensional effects to a one-dimensional shear wave.
The Figs. 8.12, and 8.13 show the radial distributions of the stresses and the pressures at
120 and 0.6 kHz, respectively. At 120 kHz we observe that the stress components have
amplitudes which are relatively high with respect to the pressure amplitudes. At 0.6 kHz
we observe non-uniform stress and pressure distributions, similar to the behaviour of the
L2 for the elastic case (Fig. 7.4). The pressure in the gap is negligible at this frequency.

Summarizing the analysis of the S, L1, and L2 modes, we may say that for the S and
L1 modes the motion of the water in the gap plays an important role. The gap pressures
for these modes are of the same order of magnitude as the stresses and pressures in the
porous cylinder. The L2 mode however, is dominated by the motion of the solid matrix
and the pore fluid. The same behaviour can be expected for the higher-order wave modes.
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Figure 8.8: Frequency dependence of the phase velocity (a) and damping coefficient (b) for

the L1 mode in the 1-1000 kHz frequency range. The results for the phase velocities for the free-
field Biot solutions are also given. The computations are performed for a Bentheimer sandstone

cylinder with a diameter of 70.0 mm. Parameters are given in Table E.1.
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Figure 8.9: Radial distributions of the stresses (a) and pressures (b) for the L1 mode at
120 kHz. Both the stresses and pressures were normalized by pp|r=o. The calculations were
performed for a Bentheim cylinder with a diameter of 70.0 mm (a = 0.909b). The pores at the
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Figure 8.10: Radial distributions of the stresses (a) and pressures (b) for the L1 mode at
0.6 kHz. Both the stresses and pressures were normalized by pplr—.. The calculations were
performed for a Bentheim cylinder with a diameter of 70.0 mm (a = 0.909b). The pores at the
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Figure 8.11: Frequency dependence of phase velocity (a) and damping coefficient (b) for the
L2 mode. The results for the free-field Biot shear wave are also shown. The computations were
performed for a Bentheim cylinder with a diameter of 70.0 mm. The pores at the boundary

were open.
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Figure 8.12: Radial distributions of the stresses (a) and pressures (b) for the L2 mode at
120 kHz. Both the stresses and pressures were normalized by pplr=o. The calculations were
performed for a Bentheim cylinder with a diameter of 70.0 mm (a = 0.909b). The pores at the

boundary were open.
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Figure 8.13: Radial distributions of the stresses (a) and pressures (b) for the L2 mode at
0.6 kHz. Both the stresses and pressures were normalized by pplr=q. The calculations were
performed for a Bentheim cylinder with a diameter of 70.0 mm (a = 0.909b). The pores at the

boundary were open.
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C and | modes

Our numerical computations also predict a number of strongy damped modes, which are
similar to the damped C and I modes for the elastic case (see Fig. 7.6). Consequently,
these modes for the poroelastic cylinder are also labelled C and 1. In Fig. 8.14, we present
the results in the same way as for the elastic case. The C modes are indicated by the
dashed lines, and the I modes are indicated by the solid lines. As a reference, we have
given some of the L modes, which are also given in Fig. 8.2. The behaviour of Re(k)
of the C modes for the porous cylinder is somewhat different from the C modes for the
elastic case, which have a finite value of Re(k) at low frequencies. For C modes of the
porous cylinder, Re(k) is zero in the low-frequency limit. The C modes are connected to
the I modes via modes in the third quadrant of the k-plane. Those modes have infinite
amplitudes for z — oo, and hence, we did not show them in Fig. 8.14.

D modes

Up to now we could relate our computational results to the elastic cylinder. For the
poroelastic cylinder in the shock tube, however, we found an extra mode type, due to the
presence of the slow wave. The occurrence of the slow wave mode type is in agreement
with the predictions of Gardner (1962), Liu (1988), and Hsu et al. (1997). Gardner gives
an expression for the slow wave mode type in the low-frequency limit for a water-saturated
porous cylinder in vacuum. Hsu et al. present phase velocities and damping coefficients of
a slow wave mode for a configuration which is similar to the shock tube (Fig. 1.4(b)). Liu
also found slow wave modes, but the configuration was somewhat different (Fig. 1.4(a)).
In the following, we denote the slow wave mode by D. The results for the D modes are
shown in Fig. 8.15, where the frequency dependence of the real and imaginary parts of &
is shown. In this figure the dashed lines indicate the free-field solution for the slow wave.
From these results we clearly observe that the D modes have the free-field solution of the
slow wave as their high-frequency limit. The damping of these modes is at least as high
as the damping of the slow wave and of the same order of magnitude as the damping of
the C modes. The radial distributions for the stresses and pressures of the D1 mode are
given in Figs. 8.16 and 8.17 for 60 kHz and 0.6 kHz, respectively. For both frequencies,
we observe that the pore pressures and the stress components are of the same order of
magnitude, while the pressures in the centre of the cylinder are much larger than the gap
pressure. This means that the wave motion in the gap is of less importance for the D
modes.
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Figure 8.14: Frequency dependence of $m(k) and Re(k) for the C and I modes. As a reference
some L modes are given. The wavenumber is normalized by the inner radius of the shock tube
b. The computations were performed for a Bentheim cylinder with a diameter of 70.0 mm. The
pores at the boundary were open. Note that the full computational results are presented in three
figures. The L and S modes are shown in Fig. 8.2, while the D modes are shown in Fig. 8.15.
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Figure 8.15: Frequency dependence of Sm(k) and Re(k) for the D modes. The wavenumber
is normalized by the inner radius of the shock tube b. The computations were performed for a
Bentheimer sandstone cylinder with a diameter of 70.0 mm. The pores at the boundary were
open. The free-field solution Cy for the slow wave is indicated by the dashed line. Note that
the full computational results are presented in three figures. The L and S modes are shown in
Fig. 8.2, while the C and I modes are shown in Fig. 8.14.
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60 kHz. Both the stresses and pressures were normalized by pplr=a. The calculations were
performed for a Bentheim cylinder with a diameter of 70.0 mm (a = 0.909b). The pores at the
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Figure 8.17: Radial distributions of the stresses (a) and pressures (b} for the DI mode at
0.6 kHz. Both the stresses and pressures were normalized by pylr=o- The calculations were
performed for a Bentheim cylinder with a diameter of 70.0 mm (a = 0.909b). The pores at the
boundary were open.
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8.2 Full modelling fast formation

In this section we discuss the compliance effect of the wall of the shock tube. The con-
figuration for this case is given in Fig. 8.18. The porous cylinder and the water-filled gap

_1
i}
—ch- (¢}

NP 77
gap )ﬂ% 'Grz =0
\ >cont.
- cont. press.
Tr=0 Ppress.

cont.
.
mass

—

L
7 e

i
N

Figure 8.18: Full model of the shock tube.

are described in exactly the same way as in the previous section. For the elastic wall of
the shock tube we use two new potentials:

Pst = ley()(krstcr) + Ast']()(krstcr)v (823)

and
Nst = Dstyb(krstsh'r) + CstJO(krstsh)' (824)

The radial wavenumbers in these expressions are defined by:

kr.stc - V w2/c%, - k2a krstsh = v wz/c%‘ - k2’ (825)

with Sm(krsic) < 0 and Sm(kyasn) < 0. The free-field velocities in the shock tube wall
of the compressional and the shear wave are given by c; and cr respectively. For the
boundary conditions at r = a we use the same conditions as in the previous section while
at 7 = b and 7 = ¢ we use a stress free interface condition. Hence we obtain:

e atr =a: g, = 0, Oy = O, (1 - ¢)’U,s,- +¢u,,. = Upwy P = Puw,y
® at 7 = b: Uy, = Ustrs Pw = Tstrry Tstrz = 0,

e atr =c Torr =0, Totr, = 0,
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where T, and 7y,, are the radial and shear stress in the wall of the shock tube. The
relations between these stresses and the potentials are given in Appendix A. We obtain
a system with nine unknown amplitudes:

M(Acl Ap Cs By Ay By Ay Dy Cst)T =0 (8.26)

where

M(lv 3) = _2Gikkrsh (krsh'}()(krsha) - %Jl (krsha)) ’
M(1v4) =0,
M(1,5) =0,
M(1,6) =0,
M(1,7) =0,
M(1,8) =0,
M(1,9) =0,
]\4(27 1) = —'27;kk,-d¢]1(klrcla),
M(2, 2) = —Qikkrchl (k,-cga),
M(2, 3)= "krsh(kg - kzsh)Jl(krsha)y
M(2,4) =0,
M(2,5) =0,
M(2,6) =0,
M(2,7) =0,
M(2,8) =0,
M(2,9)=0,
M(37 1) = ((¢ - 1) - ﬂcl¢) krclJl(krcla)7
M(B’ 2) = ((¢ - 1) - ,802¢) krc2J1 (krc2a)7
M(3’ 3) = ((1 - ¢) + ﬂsh¢) ikkrsth(krsha)a
M(3,4) = kyYi(krya),
M(3,5) = ki1 (krwa),
M(3,6) =0,
M(@3,7) =0,
M(3,8) =0,
M(@3,9) =0,
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Figure 8.19: Frequency dependence of the phase velocities of the L and S modes. In these
computations the elasticity of the wall is included. The free-field velocities of the three Biot
waves, and the free field velocities of steel are given. The latter ones are indicated by Cr and
Cr for the compressional and shear wave respectively. The computations are performed for a

Bentheimer sandstone cylinder with a diameter of 70.0 mm, ie., a = 0.909b and ¢ = 1.62b.

M(8,1) =0,
M(8,2) =0,
M(8,3) =0,
M(8,4) =0,
M(8,5) =0,
M(S, 6) = ( ( st + 2,ufst)( rstc) - stk2)}/0(kr.stcc) + Zustkrstcyl (krstcc)/cy
M(Sa 7) = ( ( st + 2/-’/51,‘)( rstc) stkg)']ﬂ(kntcc) + 2lufstkratc']1 (krstcc)/C,
M(S’ 8) = 2 tzk rstc)YE)( rstshc) 2Nfstikkr.-;tsh}/1 (krstsh.c)/c)
M(S, 9) =2 stZk(krstC)Jﬂ( rstshc) 2/~‘leikk7‘5t5h‘]l(k‘l‘stshc)/ca
M(9,1) =0,
M(9,2) =0,
M(9,3) =0,
M(9,4) =0,
M(9,5) =0,

M(9,6) = szkchl(k,stcc),

M(9,7) = 2ikkrsic 1 (Krstcc),

M(g 8) (krstsh 2)krstshYI (kTStShc)7
(9 9) ( rstsh k )krstsh'jl(krsishc)-

We have performed computations for a Bentheim cylinder with a diameter of 70.0 mmm.
The outer diameter of the shock tube is 125 mm, and we used the literature values of
steel for the free-field velocities of the compressional and the shear wave in the wall of the

shock tube: ¢y = 5790 m/s and ¢y = 3100 m/s (CRC 1973).
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The computational results for the phase velocities of the L and S modes are shown in
Fig. 8.19. We have also given the free-field velocities of the three Biot waves, as well as
the free-field velocities of the steel. If we compare the wave modes with the data of the
rigid wall case (Fig. 8.2), we observe that the L1 and the S mode are influenced by the
compliance effects of the wall, especially at low frequencies. For the S mode, the phase
velocities are larger, and for the L1 mode we observe an oscillation in the phase velocity.
This is also illustrated by the plots of the radial distributions of the radial displacements.
For the porous cylinder we show the property |¢us + (1 — ¢)uy|, which is identical to
[tyr| at r = b. Fig 8.20 shows the results for the the S mode at 13.5 and 120 kHz. At
13.5 kHz the displacement of the wall is significant and the rigid wall approximation is
not valid. At 120 kHz the effect is much less important. For the L1 mode the compliance
effect of the wall at 13.5 kHz is even more prominent. Fig. 8.21(a) shows that the radial
displacements of the wall are larger than the radial displacements of the porous cylinder.
At 120 kHz the radial displacements of the wall of the shock tube are small however, and
the influence of the elasticity of the tube wall on the phase velocity of the L1 mode is small
(see Fig. 8.21(b)). The higher-order modes L2, L3, etc. are slightly influenced, which is
in agreement with our previous observation that the higher order modes are primarily
related to wave motion in the porous cylinder. Computations for the D modes yield that
the rigid wall approximation is accurate for this mode type also.

Please note that in this configuration also tube wave modes occur which are primarily
related to wave motion in the wall of the shock tube. We did not investigate these modes,
as we are primarily interested in wave motion of the porous cylinder and the water-filled
gap. Moreover, these tube wave modes are not generated effectively in our experiments.

8.3 Parameter study

In this section we study the influence of geometrical and material properties on phase
velocities and damping coefficients of the several wave modes. First, we take into account
the compressibility-effects of the grains. Subsequently, we pay attention to the influence
of the gap width on the L, S and D modes. This topic is relevant from a theoretical point
of view, but it is also important for studying the effects of the diameter variations in a
borehole, as well as the influence of a logging tool on different wave modes. As discussed in
Chapter 1, borehole wave modes are used for shear modulus and permeability evaluation.
The shear and permeability effects for the borehole configuration were studied by Schmitt
et al. (1988a,1988b). In this section, we discuss the permeability and shear effects for the
shock tube configuration.

8.3.1 Compressible grains

For the rigid grain approximation we used the expressions of the Equations (2.33), (2.34)
and (2.35), and we substituted Ay = A, = (K, — 2G/3) in Equation (8.13). For com-
pressible grains, however, Equations (8.11) and (8.12) are used. In the full expressions for
P, Q, and R, we use the literature value for the bulk modulus of quartz K, = 36.5 GPa,
(CRC 1973).

In Fig. 8.22(a), we plot the free-field velocities of the three Biot waves for compressible
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Figure 8.20: Radial distributions of the displacements for the S mode at 13.5 kHz (a) and
120 kHz (b). The displacements are normalized by the radial displacement of the water in the
gap. For the porous cylinder the property |dus, + (1 — d)uy,| is given. Note the continuity at
r = a. The calculations were performed for a Bentheim cylinder with a diameter of 70.0 mm.,

ie., a = 0.909b and ¢ = 1.62b.
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Figure 8.21: Radial distributions of the displacements for the L1 mode at 13.5 kHz (a) and
120 kHz (b). The displacements are normalized by the radial displacement of the water in the

gap. For the porous cylinder the property |¢us,

+ (1 — ¢)uy,| is given. Note the continuity at

r = a. The calculations were performed for a Bentheim cylinder with a diameter of 70.0 mm.,

ie, a=0.909b and ¢ = 1.62b.
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and incompressible grains. Also, the compressional and shear velocities of the wall of the
shock tube are given. The solutions for compressible grains are indicated by the solid
lines, while the solutions for the incompressible grains are indicated by the dashed lines.
The compressibility of the grains influences the free-field velocity of the fast wave so that
it becomes nearly equal to the free-field shear wave velocity of the wall. The shear wave
of the porous material is not influenced by the compressibility of the grains, and the slow
wave is only slightly influenced. In Fig. 8.22(b) the phase velocities for the L and S wave
modes including the compressibility of the grains are indicated by the solid lines, while
the results for the rigid grains are indicated by the dashed lines. Note that the results
for the rigid grains are also given in Fig. 8.19. The compressibility of the grains strongly
influences the higher-order L modes, while the S mode and the L1 mode are slightly
influenced. Due to large decrease of the free-field velocity of the fast wave, the phase
velocities of the higher-order L modes are lower for the compressible grains.

8.3.2 Gap effects

We performed computations for a smaller gap width (a/b = 0.998). Results are given
in Fig. 8.23. The computations include the compressibility of the grains as well as the
elasticity of the wall. We observed the existence of a new mode type, denoted M. This
mode type shows similar behaviour as the L modes. The M mode is also cut off below a
certain frequency, but this wave mode has the the fast wave velocity, instead of the shear
wave velocity as its high-frequency limit. In the 1-120 kHz frequency range, we found
only one M mode, for which the phase velocity is given in Fig. 8.23(a). The M modes are
also observed for the slow formation as we discuss in Section 8.3.5.

L and D modes

For this small gap width we observe that over a large frequency range the L1 mode has a
phase velocity which is equal to the free-field velocity of the fast wave. Fig. 8.23(b) shows
that the damping coefficient of the L1 mode becomes very high for certain frequencies.
For reference the damping of the free-field C; wave is also given. Fig. 8.24 shows the radial
distributions of the stresses and pressures at 120 kHz. From these plots we observe that
the axial stress component o, is dominant, while the pressure distribution is oscillatory
around an approximately uniform average. The radial stress component in the wall of
the shock tube is of the same magnitude as the pore pressure. Further insight can be
obtained by plotting the radial distributions of the axial and radial displacements. The
results are given in Fig. 8.25, from which we can conclude that the axial displacements
are dominant. Furthermore, we observe from Fig. 8.25(b) that the radial displacement of
the wall of the shock tube is of the same order as the radial displacements in the porous
cylinder. Indeed, the rigid wall approximation would have been not applicable, even at
at high frequencies. We recall that for the large gap the rigid wall approximation was
accurate at high frequencies, but it failed at low frequencies.

Changing the gap width does not alter the shape of the higher-order mode curves, but
does influence the location in the frequency-wavenumber plane. For example, the cut-off
frequencies for the small gap configuration are much larger than the cut-off frequencies
for the large gap configuration.




8.3 Parameter study 121

(a)
5 5
compr. gr. {i
4t c>L 4}
. incompr. gr.
N C, (incompr. gr.) R incompr. g
g 3[ C, (compr. gr.) § 3
9] 8]
3 3
g X 2
o 2 C, o 2
Csn
1 1+
C, L
° \ . . . . 0 . . . . ,
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Frequency (kHz) Frequency (kHz)

Figure 8.22: Frequency dependence of the free-field velocities (a) and the phase velocities of
the L and S modes (b). The solid lines indicate the computations including the compressibility
of the grains. The dashed lines indicated the computations without the compressibility of the
grains. The computations are performed for a Bentheim cylinder with a diameter of 70.0 mm.,
ie., a = 0.909b, and ¢ = 1.62b.
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Figure 8.23: Frequency dependence of the phase velocities (a) and damping coefficients (b)
for L and M modes. The free-field velocities of the three Biot waves and the compressional and
shear velocities of the steel wall are also shown. For the damping only the L1 mode is shown,
together with the free-field damping coefficient of the fast wave. The calculations were performed
for Bentheimer sandstone with a diameter of 76.85 mm., i.e., a/b = 0.998 and ¢/b = 1.62. The
compressibility of the grains was included.
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Figure 8.24: Radial distributions of the stresses (a) and pressures (b) for the L1 mode at
120 kHz. Both the stresses and pressures were normalized by pp|r=o. The calculations were
performed for Bentheimer sandstone with a/b = 0.998 and ¢/b = 1.62. The water-filled gap is
not visible in this figure.
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Figure 8.25: Radial distributions of the axial displacements (a) and radial displacements (b)
for the L1 mode at 120 kHz. The displacements were normalized by the radial displacement
in the gap at r = a. For the porous cylinder the property {¢usr + (1 — d)uqr| is shown. The
calculations were performed for Bentheimer sandstone with a/b = 0.998 and ¢/b = 1.62. The

water-filled gap is not visible in this figure.
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Fig. 8.26 shows the phase velocities and damping coefficients of the D modes. "T'he
character of the D modes is not sensitive to a change in gap width. We observe that the
D1 mode is equivalent to the solution for the free-field slow wave over nearly the entire
frequency range.
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Figure 8.26: Frequency dependence of the phase velocity (a) and damping coefficient (b) for
the D modes. The free-field velocities and damping coeflicientsof slow wave are also shown.
The calculations were performed for Bentheimer sandstone with a diameter of 76.85 mm, i.e.,
a/b=0.998 and c/b = 1.62.

S modes

For the small gap configuration a/b = 0.998, the S mode did not appear in our com-
putations. It is therefore interesting to investigate the behaviour of the S mode for a
decreasing gap width. Fig. 8.27 shows the phase velocity and the damping coefficient for
the S mode for different diameters of the Bentheim porous cylinder. The inner diameter
of the shock tube is kept constant (77.0 mm). From these plots we observe that for a
decrease of the gap width the phase velocity of the S mode decreases and the damping
coefficient increases. Detailed computations showed that the local maxima in the damp-
ing coefficients occur for that frequencies where the phase velocity of one of the D modes
is equal to the phase velocity of the S mode. Hence, there is an interaction between the
S mode and the D modes. For very small gap widths (diameters 76.6 and 76.7 mm), the
S mode joins one of the D modes at a certain frequency, and below this frequency the S
mode does not exist. For the diameter of 76.85 mm, the S mode does not exist in the
1-120 kHz frequency range. A possible explanation is that the radial motions of the fluid
and the solid are suppressed by the presence of the wall of the shock tube.
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Figure 8.27: Frequency dependence of the phase velocity (a) and damping (b) for the S mode.
Results are given for several diameters of a Bentheimer sandstone cylinder. The innner diameter
of the shock tube is 77.0 mm.

8.3.3 Permeability effects

We performed computations to study permeability effects for the large gap configuration:
a = 0.909b. As reference parameters, we used the parameters of Bentheimer sandstone as
given in Table E.1. The permeability was varied by two orders of magnitude with respect
to the reference permeability k,.;. As an illustration, we first discuss the permeability
effects for the free-field Biot waves and for the pseudo-Stoneley wave in the flat-interface
configuration. The phase velocities and damping coefficients of the fast, the slow, and
the shear wave are given given in Fig. 8.28. Please note that the absolute values of
the damping coefficients are shown on a logarithmic scale. The permeability strongly
influences the damping coefficients of all the wave types. The velocities of the fast and
shear wave are weakly sensitive to permeability changes. The slow wave phase velocity,
however, is strongly influenced by the permeability changes.

Fig. 8.29 gives for the flat-interface configuration the phase velocities and the damping
coefficients for the pseudo-Stoneley wave PSy; at 120 kHz. The properties of this wave
were discussed in Chapter 6. Parameter values are given in Table E.1. The phase velocity
shows a weak dependence on the permeability. The damping of the pseudo-Stoneley wave
shows the same characteristics as the damping of the fast and the shear wave in Fig. 8.28.

We now discuss the permeability effects in the shock tube configuration. In Fig. 8.30
the results of the S mode are given for different permeabilities. At low frequencies the
phase velocity increases as the permeability decreases. At higher frequencies the reverse
situation is obtained. These phenomena are in agreement with the results of Schmitt et
al. (1988a) for the Stoneley mode in a permeable borehole. The damping coefficients of
the S mode are strongly influenced by the permeability changes. We notice that the shape
of the curve can change dramatically. For the L1 mode we observe from Fig. 8.31 that
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Figure 8.28: Permeability dependence of the phase velocity (a) and damping coefficients (b )
for the free-field fast, slow and shear waves at 120 kHz. Note that the absolute value & f the
damping coefficient is shown on a logaritmic scale. Parameter values are given in Table FZ. 1 .
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Figure 8.29: Permeability dependence of the phase velocity (a) and damping (b) for the
Pseudo-Stoneley mode PS4,. Parameter values are given in Table E.1.




Wave modes in the shock tube

126
a
; @
5
= Fe]
g 3
2 £
&)
0.6 PR . . . 05 . a . N _—
0 20 40 &0 80 100 120 0 20 40 80 80 100 120
Frequency (kHz) Frequency (kHz)

Figure 8.30: Frequency dependence of the phase velocity (a) and damping (b) for the S mode.
Parameters are given in Table E.1. Computations include the compressibility of the grains and

the elasticity of the wall. a/b=0.909 and c/b =1.62.
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Figure 8.31: Frequency dependence of the phase velocity (a) and damping (b) for the L1
mode. Parameters are given in Table E.1. Computations include the compressibility of the

grains and the elasticity of the wall. a/b = 0.909b and c/b = 1.62.
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the influence of the permeability on the phase velocity can be neglected. The damping
coefficients, however decrease for a decreasing permeability.

Summarizing, we may say that the phase velocities of the S and L1 mode are weakly
sensitive to permeability changes, especially at high frequencies. The damping coefficients,
however, are strongly influenced by permeability changes. Winkler et al. (1989) found
similar phenomena for a borehole configuration. From the discussion as given above we
can conclude that the permeability dependence of the S and L1 mode have generally the
same characteristics as the borehole wave modes.

8.3.4 Shear effects

We studied the influence of the shear modulus on the phase velocities of the L and S
modes. In Fig. 8.32 the solid lines represent the results for G = 0.7G,.y, while the dashed
lines correspond to the results for the reference parameters given in Table E.1. The
computations were performed for a Bentheim cylinder with a diameter of 70.0 mm. In
Fig. 8.32(a) the free-field velocities are shown, while in Fig. 8.32(b) the phase velocities
of the L and S modes are given. The character of the L and S modes is insensitive to
changes of the shear modulus. Quantitatively, the phase velocities decrease when the shear
modulus is decreased. The damping coefficients are weakly sensitive to changes in the
shear modulus. From Figs. 8.32 and 8.22 we observe that shear effects and compressibility
effects are similar.

8.3.5 Slow formation

Up to now, our parameter studies were limited to the Bentheimer sandstone. This is
usually called a fast formation. This means that the free-field velocity of the shear wave
is higher than the water velocity. To study a slow formation we used the parameters
given in Table E.3 (N5B). Fig. 8.33 shows the results of the wave mode computations for
this rock type in the 1-150 kHz frequency range. Significant experimental data could be
obtained in the high-frequency regime for this formation (see Fig. 10.16). The free-field
velocities of the three Biot waves are also given. Similar to the Bentheim case, we observe
S, L, M, and D modes. In the following, we give a short analysis of the character of the
S, L1 and L2 mode.

As can be observed from Fig. 8.33(a), at high frequencies the S mode has a lower
phase velocity than the phase velocity of the free-field slow wave. This means that this
wave mode corresponds to the true Stoneley wave. The properties of this wave type were
discussed in Chapter 6. For low frequencies the S mode has a velocity in between the shear
wave velocity and the slow wave velocity. In this frequency range bulk wave phenomena
are present.

The shape of the L1 mode in Fig. 8.33 is different from the L1 Bentheim mode, but
nevertheless this mode has the same behaviour at high and low frequencies as the L1
Bentheim mode. At high frequencies, its phase velocity reaches the water velocity and
the L1 mode is primarily based on wave motion in the gap. The phase velocity at low
frequencies is nearly equivalent to the fast wave velocity. The L2 mode is characterized
by the high-frequency limit of the phase velocity and the cut-off frequency. At high
frequencies, the L2 phase velocity reaches the shear velocity.
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Figure 8.32: Frequency dependence of the free-field velocities (a) and the phase velocities
of the L and S modes (b). The solid lines indicate the computations with G = 0.7G.s. The
dashed lines indicate the computations G = Gr¢s. In the computations the elasticity of the wall
is included, as well as the compressibility of the grains. The computations are performed for
Bentheimer sandstone cylinder with a diameter of 70.0 mm, ie., a/b = 0.909 and ¢/b = 1.62.
As reference parameters, we used the values of Table E.1.
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Figure 8.33: Frequency dependence of the phase velocities of the L, M, and S modes (a)
and the D modes (b). In the computations the elasticity of the wall is included, as well as
the compressibility of the grains. The computations are performed for the N5b cylinder with a
diameter of 70.0 mm, i.e., a/b = 0.909 and ¢/b = 1.62.
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Figure 8.34: Radial distributions of the stresses (a) and pressures (b) for the S mode at
150 kHz. Both the stresses and pressures were normalized by pplr—q. In the computations the
elasticity of the wall is included, as well as the compressibility of the grains. The computations
were performed for the N5b cylinder with a diameter of 70.0 mm, i.e., a/b = 0.909 and ¢/b = 1.62.
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Figure 8.35: Radial distributions of the stresses (a) and pressures (b} for the L1 mode at
150 kHz. Both the stresses and pressures were normalized by pp|r=.. In the computations the
elasticity of the wall is included, as well as the compressibility of the grains. The computations
are performed for the N5b cylinder with a/b = 0.909 and c¢/b = 1.62.
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Figure 8.36: Radial distributions of the stresses (a) and pressures (b) for the L2 mode at
150 kHz. Both the stresses and pressures were normalized by pp|r=a. Note the different scales
in Fig. (a) and (b). In the computations the elasticity of the wall is included, as well as
the compressibility of the grains. The computations are performed for the N5b cylinder with
a/b = 0.909 and ¢/b = 1.62.

The radial distributions of the stresses and pressures are given for the S mode in
Fig. 8.34. These plots clearly show the exponential decay away from the surface for both
stresses and pressures. Note that the pressure amplitude at r = b is small at 150 kHz.

In Fig. 8.35 the radial distributions of the stresses and pressures are given for the
L1 mode. The stresses are oscillatory around an approximately uniform avarage,. The
maximum pressure occurs in the water-filled gap, while the pressures in the center of
the cylinder are very small. For the L2 mode the radial distributions of the stresses and
pressures are given in Fig. 8.36.

The shear stress component o,, is dominant over the pressure and the other stress
component 0,, and o,r. This is in agreement with the phase velocity of L2 mode, which
is equal to the shear velocity.

8.4 Summary
As a summary we give the main points of this chapter:

1. The theory of wave modes has been applied to the porous cylinder in the shock
tube. The so-called L modes are equivalent to the ones in a solid elastic cylinder.
These modes are characterized by cut-off frequencies and their phase velocities in
the high-frequency limit which are equal to the shear velocity.

2. A surface mode S occurs at the interface between a porous cylinder and a relatively
large water-filled gap. At high frequencies this wave corresponds to the pseudo-
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Stoneley wave in case of a Bentheimer sandstone cylinder, which is a fast formation.
For one specific synthetic slow formation, we found that this wave corresponds to
the true Stoneley wave.

3. We investigated the permeability effects and the shear effects on the phase velocities
and damping coefficients of the S mode and L1 mode. The surface mode S is sensitive
to both the permeability and the shear velocity. This conclusion is valid both for
our shock tube set-up and also for the borehole configuration.

4. Extra bulk wave modes, the D modes, occur due to the presence of the Biot slow
wave. The damping of the higher-order D modes is at least as high as the damping
of the Biot slow wave itself.

5. We investigated the influence of the compressibility of the grains on the phase ve-
locities of the L and S modes. We found that the higher-order L modes are sensitive
to the compressibility of the grains.

6. We studied the gap effects on the phase velocities and damping coefficients of the L,
S, and D modes. We found that for the small gap configuration one of the L modes is
equivalent to the free-field solution for the fast wave over nearly the entire frequency
range. One of the D modes is identical to the free-field solution of the slow wave.
The phase velocities and damping coefficients of the S mode are strongly sensitive
to the dimensions of the gap. The S mode does not exist at lower frequencies for a
very small gap width.

7. The elasticity of the wall of the shock tube influences the wave modes in the lower
frequency range in case of a large gap. For a small gap the compliance effects of the
wall are important over the entire frequency range.
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Chapter 9

Prony’s method

It is very attractive to consider Biot’s theory in the frequency domain. The transition
from the dominance of viscous effects to the dominance of inertia effects, marked by the
roll-over frequency w,, strongly influences the phase velocities and damping coefficients of
the waves. Moreover, the two-dimensional modelling as described in Chapter 8 is carried
out in the frequency domain. Therefore it is important to convert the experimental data
from the time domain to the frequency domain.

There are several methods to estimate the wavenumbers of the different wave modes
in a time-recorded pressure signal. For an overview of a number of (classical) spectral
estimation methods, the reader is referred to the work of Kay and Marple (1981) and
Marple (1987). Schoenberg et al. (1981) used Fourier transforms both in time and in space
for their horehole measurents, but they observed a poor resolution in the spatial domain.
They tried to improve their results by using a Maximum Likelihood Method (MLM) but
were not quite successful. A better performance of the MLM was obtained by Hsu and
Baggeroer (1986). However, this technique is computationally intensive. A technique
which is reported to perform as well as the MLM while requiring less computational effort
is the one by Prony (Lang and McClellan 1980, Lang et al. 1987, Tufts and Kumaresan
1982). In 1795, Gaspard Riche, Baron de Prony, assumed that laws governing expansion
of various gases could be represented by sums of damped exponentials (Marple 1987). The
modern least square version of the exponential modelling method has evolved significantly
from Prony’s original procedure. Tijhuis (1987) provides results of Prony’s method for
electromagnetic fields. Lang (1987) applied Prony’s method to estimate phase velocities
from arrays of sonic logging waveforms. Several other papers also reported the successful
use of Prony’s method in geophysics and solid mechanics, also in the presence of noise
(Winkler et al. 1989, Ellefsen et al. 1989, Plona et al. 1992, Grosh and Williams 1993,
Vollman et al. 1997,Hsu et al. 1997).

Ellefsen et al. (1993) presented their so-called homomorphic processing method which
shows a better performance than Prony’s method. However, it can only be used for a single
wave mode. One of the advantages of Prony’s technique is that it enables us to analyse
a number of modes which are not separated in time. This is especially important in the
case of our shock tube, where several wave modes add up to constitute the total pressure
signal. Prony’s method can be used as a first guess in the parametric estimation method
of Hsu and Emmersoy (1992). Their method, however, is computationally intensive. For

133




134 Prony’s method

these reasons, we use Prony’s method for the processing of our data.

The approach of this chapter is as follows. First, we explain the basics of Prony’s
method as described by Hildebrand (1956). Subsequently, we discuss the extended ver-
sions which account for noise.

9.1 Noiseless signals

We apply Prony’s method by transforming the pressure signals to the frequency domain
using FFT. Then we assume a finite number (say M) of travelling harmonic waves and
we write:

Pw, ) = pre” % 4 pre 2% 4 | 4 prrehMT, (9.1)

This means that at any position (n — 1)Az (n = 1,...,, N), the pressure p(w,n) can be
written in terms of the pressure components py, Pa, ... Pu:

f)(w, n) — ﬁle_ikl("_l)AI +1526—ik2(n-1)A1 4. +ﬁMe~ikM(n—1)Az' (92)
By substitution of

zj = e kBT i=1 .., M, (9.3)

we can write for a given frequency w:

p(n) = Y+ p'gzg"—l) + ... +17Mz$_1). (9.4)
Written in this way it is possible to determine at a given frequency w the values of 7,
P2 ... Pu and the values of 21, 25 ... zp. If the number of pressure signals N is at least
two times the number of wave components M the system can be solved. However, this
is not straightforward because of the powers of z. To overcome these problems Prony’s
method uses the so-called Linear Prediction techniques (Makhoul 1975). We illustrate
these techniques assuming two travelling waves. For the extended versions which account
for noise the general expressions are given in Section 9.2.
In the linear prediction techniques the pressure values on nAz are predicted using the
values on (n — 1)Az and (n — 2)Az. Using Equation (9.4) we can write (M=2):

aop(n) + a1p(n — 1) + azp(n — 2) ag (ﬁlz{'_l + 13225"1)

+ (ﬁlz{‘_z + ﬁgz?_z) (9.5)
+ a (1712?—3 + 13223_3) .
By re-arranging we obtain:
aop(n) + arp(n — 1) +azp(n —2) = 512773 (ao2? + a1z + an)

(9.6)
+ P28 (a02d + ayzg + ay) -
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Up to now, ag, a1, and ay were still arbitrary. Let us choose ag, a;, and a; such that z,
and 2, are the roots of the equation

ao2% + a1z +ap = 0. 9.7
Subsequently, we can write with ay = 1:
—p(n) = a1p(n — 1) + azp(n — 2). (9.8)
The same can be done for the pressure value recorded at (n — 1)Az:
—p(n — 1) = a1p(n — 2) + a2p(n — 3). (9.9)

In this way we need four pressure values to determine the coefficients of the polynomial
a; and ay. Once the coefficients of the polynomial are known it is straightforward to
determine z, and z,, the zero’s of the polynomial. Then Equation (9.3) can be used in its
inverse form to determine the real and imaginary parts of the wavenumbers &; and ko:

Im(k) = I—HA%I, (9.10)
Re(k) = —ari—(:). (9.11)

By the property —m < arg(z) < m we obtain a condition for the value of Ax:
[Re(k)Az| < 7. (9.12)

In the case of a negligible amount of noise this method works very well as illustrated in
the following example. We take

p(x) = ® + 2e** (9.13)

as a function to generate four pressure values p,, P2, p3 and py. This means that Sm(k,) =

1 and Qm(k,) = 2, and that §; = 1, and p» = 2. For Az = 1 we obtain the following
values:

p(l) | x=0 3

p2) | x =1 17.496
5(3) | x = 2 | 116.585
p(4) | x =3 | 826.943

The rounding-off crrors introduce a very small amount of noise. Using the forward pre-
diction as explained above the following polynomial can be derived:

z* —10.106z + 20.077 = 0. (9.14)

The zero’s of this equation are z, = 7.3886 and z; = 2.7174, which give Sm(ks) = 1.9999
and Qm(k;) = 0.9997. The real parts of k; and k, are equal to zero. In this case 4
pressure values are sufficient to reconstruct the wavenumbers.

The influence of a larger amount of noise can be investigated using the truncated
values of the pressures:
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p(l) |x=0] 3

2 [x=1] 17
p(3) | x=2|116
p(4) | x =3 | 826

These values give the following polynomial:
22 ~8.5762+9.93 =0. (9.15)

We obtain bad results for recomstruction of the wavenumbers: Jm(ks) = 1.97 and
Sm(k;) = 0.322. This example clearly shows the sensitivity to noise of the original
version of Prony’s method.

9.2 Least squares Prony’s methods

To account for noisy signals extended versions were developed, which is necessary for the
application of Prony’s method in experiments. In the original Prony’s method the number
of spatial measurements N is equal to 2M, where M is the number of wave components
in the data. Using a number of equations for the linear prediction coefficients larger than
the number of unknowns, a problem is stated which can be solved by the so-called least
squares approximation (LS). This approach was already proposed by Hildebrand (1956),
who improved the performance of Prony’s method in the presence of noise.

However, a more efficient measure to account for noise is obtained by application
of the method of overdetermination, in combination with the LS method (Tufts and
Kumaresan 1982, Braun and Ram 1987, Grosh and Williams 1993). The recorded signals
in the presence of noise can be written as follows:

p(n) = z_:ﬁjz]("_” + w(n), (9.16)

where w(n) is the noise function. In the method of overdetermination the noise function
is then written as a sum of additional wave components so that we obtain:

M L
) =Y 5"+ 3 gt (9.17)
G=1 J=M+1

The characteristic polynomial, a generalized version of Equation (9.7), determines the
roots more accurately, but also includes noise roots:

M L L .
®(z) = H(z —2;) H (z—2z) = Za,:zL_’, (9.18)
i=1 i=M+1 i=0

with a¢ = 1.

The procedure described in Section 9.1 can be generalized from two roots to L roots.
The coefficients a; are related to the pressure values j(n) by a set of linear equations (see
Equations (9.8) and (9.9)). In matrix form, we write:

Ba=g, (9.19)
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where
p(L) pL-1) ...  p(1)
B ﬁ(L.Jrl) 15(.15) ﬁ(‘2) 7 (9.20)
AN-1) p(N-2) ... p(N—1L)
and
a=(a a ... a), (9.21)
g=( —pL+1) —p(L+2) ... —p(N)) . (9.22)

This system of L unknowns and (N — L) equations can be solved using the LS approx-
imation. Once the coefficients of the characteristic polynomial have been found it is
straightforward to find the L solutions of Equation (9.18). We used the Nag Fortran
Library routine CO2AFF (Group 1995) to determine the roots of the complex polyno-
mial. The wavenumbers follow from the inversions as given by the Equations (9.10) and
(9.11). Subsequently it is possible to determine the amplitudes p of the different wave
components. Again by the LS approximation we can solve the following set of equations:

1 1 1 - .

21 o 21 Y4 (1)

A A A I #(2)

4 4 ... 4 P 7 (9.23)
:_ :_ : :_ N SN
A0 ey o AR/ AR

The total procedure gives in this way the wavenumbers and the amplitudes of the model
given in Equation (9.17). However, a practical implementation of the overdetermination
requires the answers on the following questions:

e What is the number M of wave components in the data ?
e What is the necessary extent of overdetermination (L — M) ?
e How can the true poles be distinguished from the noisy poles ?

Before discussing these questions we treat the solution of the LS problem, which is not
trivial because of the overdetermination. The followed approach provides also some tools
to determine the number of wave components present in the data.

9.2.1 Singular value decomposition

As the number of wave components M is a priori unknown, the principle of overdeter-
mination has to be applied in both the noisy and the noise less case, i.e., L > M. In
the absence of noise, the rank r of matrix B, is equal to the number of wave components
M. If the system is overdetermined, and the amount of noise is zero, the matrix B is
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called rank deficient. Then the standard LS techniques which use the normal equations
fail (Bjoerck 1996). In case of the presence of a small amount of noise the matrix B is
not exactly rank deficient. For the general case we write therefore:

M<r<L. (9.24)

Following Marple (1987), Braun and Ram (1987), and Grosh and Williams (1993)
we solve the LS problem using singular value decompositions (SVD). The vector space
of m x n complex matrices is designated by C™*" and the vector space of m X n real
matrices by R™*™. The SVD of matrix B € C/¥-1*L is (Bjoerck 1996):

B=UxVH, (9.25)

where & € RWW-DxL U € CWW-D)x(N-L) and V € CLXL, The superscript H denotes the
conjugate transposition: Vg = Vj;. The matrix X contains the so-called singular values
of matrix B. For (N — L) > L we write:

¥ 0
= 0 X1, (9.26)
0 0
where X, = diag(o1,02,...,0n) and B, = diag(ormy1,0m42,---,01). The singular

values are denoted by o, and o3 ... etc., and are sorted in descending order (o > g5 >
... > 0). The matrices U and V are unitary matrices which means that UU¥? = 1. The
first L columns of the matrices U and 'V are the left-hand and right-hand singular vectors
of B:

Bv; = o;u;,
(9.27)
BHu; = ;v

where 1 = 1, ..., L. Please note that o; is a scalar, and that we do not apply the Einstein
convention here. The i-th columns of U and V are denoted by u; and v; respectively. In
the noise less case the problem is exactly rank-deficient (r = M, L > M) and the elements
of X are equal to zero. If a very small amount of noise is introduced the problem is not
exactly rank-deficient, M < r < L and the elements of £, are non-zero. However, it can
be imagined that the elements of 3, are small related to the elements of X;. Then we
can define a so-called break point between the singular values, which is defined by a large
change in magnitude between two subsequent singular values i.e. 0,41/0; < ¢, where €
is the maximum noise-induced variation in the matrix. Another definition of the break
point is the first ¢; for which

a;

— <, (9.28)
where 0,4, is the largest singular value. For high signal-to-noise ratios (SNR’s) it is
therefore possible to obtain a first estimate of the number of wave components M by the
number of ¢ for which the break point occurs (Braun and Ram 1987, Grosh and Williams
1993). If the SNR decreases, the break point will be ill-defined and the determination of
M becomes complicated.
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The rank deficient LS problem has an infinite number of solutions. In order to obtain
a unique solution, the minimum norm solution can be used. This solution constrains the
length of the solution vector, a.s, to be the minimum. The resulting solution is (Bjoerck
1996)

B 0 0Nk
aLS~V( 0 =, O)U g = B¥g, (9.29)
where 3., = diag(1/01,1/09,...,1/0um). For the exact rank deficient case the elements
of 3, are equal to zero, otherwise X, = diag(1/0a41,1/0Mm+2,--- ,1/0r). The matrix

B# is called the pseudo-inverse of matrix B (Bjoerck 1996).

In this way the SVD can be used to solve the rank-deficient problem as stated by
Equation (9.19). In case of high SNR's it is also possible to determine the true number
of exponents which are present in the data. There are several ways to determine the
SVD of a matrix (Bjoerck 1996). We used the Nag Fortran Library Routine FO2XEF to
determine the SVD of matrix B.

9.2.2 Implementation

For a practical implementation of Prony’s technique in case of an overdetermined system,
we first have to determine first the number of wave components M. Subsequently, we have
to chose the necessary extent of overdetermination (L—M). The last step of the procedure
is the determination of the roots which correspond to the signal roots. Braun and Ram
(1987) propose the following techniques for the first two steps. A rough estimate of the
number M has to be made on physical grounds, after which a value of L is chosen which
is larger than M. Subsequently the SVD is used and the singular values are evaluated
by definition of the break point criterion of Equation (9.28). Note that the definition of
the value of € can be problematic in case of real experiments. If none of the singular
values satisfies this criterion the number of L is increased until a break point is found. In
this way an approximation of M is obtained. In order to determine the necessary extent
of overdetermination (L — M) the number of L is increased further. The results for the
wavenumbers are evaluated now. If at least M wavenumbers remain unaltered in the
k-plane for increasing L, the extent of overdetermination (L — M) is large enough. Braun
and Ram (1987) found the following range for L:

1.5M < L < 3M. (9.30)

It is important to realize that this range of values is derived empirically from synthetic
data with white noise. No garantuees are given that it works for real experiments with
non-white noise. Furthermore the SVD technique with the break point method only works
for high SNR’s. For low SNR’s the value of M can only be estimated roughly. We come
back to these methods in the discussion of our experimental results. Once the extent of
overdetermination (L — M) is known, it is possible to discriminate between the true and
the noisy poles. This can be done by the following approaches (Braun and Ram 1987, Lang
et al. 1987):

1. By repetition of the experiment the noise in the signals will be varied. Therefore the
noisy poles will move in the complex k-plane, while the true poles remain, approxi-
mately, at the same positions. A clustering algorithm can be used to determine the
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moving poles, which are the noisy poles, and the true poles. A criterion must be
used to define the conditions for which a pole can be labelled as a moving pole.

2. Starting from the necessary extent of overdetermination the value of L can be in-
creased. The noisy poles are perturbed again, while the true poles remain at the
same positions in the complex k-plane. Again a clustering algorithm can be used to
determine the true poles.

3. Option 1 can be simulated by the introducion of arbitrary perturbations on the
elements of matrix X,,. After calculating the SVD of matrix B, we simulate a
number of experiments by perturbation of op4; ... . Therefore this method is
called the perturbation method. Those poles which cluster within a fixed area are
the true poles.

4. Power editing of the data. Wave components with an amplitude p; which fall below
a certain threshold, based on the LS approximation error, are assumed to be noisy
poles. The drawback of this method is that true poles with a small amplitude are
removed.

Grosh and Williams (1993) used the perturbation method as described in option 3, in
addition to criteria on physical grounds. Poles which correspond to unrealistic damping
factors and/or phase velocities are identified as noisy poles. Braun and Ram (1987), and
also Grosh and Williams (1993) applied their techniques to synthetic data, where white
noise was added, and obtained good results. However, in experimental data the situation
can become more complex, a fact which is also recognized by Grosh and Williams. Fur-
thermore, we want to perform the editing at a large range of frequencies, while procedures
as described above have to be performed at each frequency. This will enlarge the com-
putational effort. Ellefsen et al. (1989) windowed out the signal of the wave of interest
already in the time domain, which reduces the number of waves in the processing. In
their experiments the noise data were deleted manually.

In the next chapter we discuss our experimental technique. We apply option 2 for
the processing of our experimental results. As the number of recorded pressure signals is
limited, we also apply a modified version of option 2. Instead of taking two values for L,
we then use two values for Az.

9.2.3 Forward and backward prediction

For slightly damped or undamped waves it is possible use the so-called backward pre-
diction in addition to the forward prediction as given in Equation (9.20). In forward
prediction p(IV) is predicted based on the values of (N — 1), (N - 2), ... , p(N — L).
In the backward prediction the method is performed the other way around. The pressure
value p(1) is predicted based on the values $(2), #(3), ..., B(L + 1). For undamped waves
the linear predictor coefficients for the backward prediction are the complex conjugate
values of the coefficients for the forward prediction (Marple 1987, Haykin 1985), so that
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we can write (Tufts and Kumaresan 1982):

A(L) AL-1) ... B
(L +1) L) . B
| sy sv-n . osw-p)
B=1 "5 73 .. P+ | (8-31)
5(3) @) .. p(L+2)
FIN-L+1) P(N—L+2) ... #(N)
and
a=(a o ... a), (9.32)
and
g=(-pL+1) —HL+2) ... —p(N) -p'(0) (@) ... -P(N-D1)) .

(9.33)

Similar to the single use of forward predicition the system of equations can be solwved
using singular value decomposition. Note that for this case B € C!W-IxI For an
elaborate discussion on the choice of the model order L we refer to Tufts and Kumarasan
(1982). They suggest a value of L equal to 3N/4 for the forward-backward prediction.. ¥or
these values of L and N the system given by Equation (9.19) is underdetermined. Stach a
system has an infinite number of solutions and SVD can be used to obtain the mini rryum

norm solution (Golub and Loan 1989). Again we remark that the analysis of Tufts and
Kumarasan (1982) is based on synthetic signals.

9.3 Discussion and conclusions

In this chapter we discussed the main properties of Prony’s technique. Usingthistechmique
it is possible to determine the wavenumbers of the different modes which are presenit in
pressure signals. The wave modes need not to be separated in the time domain. "I'his
is especially advantageous in our shock tube experiments. To account for noise, e>ctra
wave components are added to the system. The total number of wave components vwhich
is needed, is discussed by several authors (Tufts and Kumaresan 1982, Braun and Ram
1987, Grosh and Williams 1993). They developed also sophisticated techniques in order
to separate the true poles from the noisy poles. These procedures have to be carried out
at a large number of frequencies, which gives a considerable amount of the computational

effort. Moreover, these techniques are limited to experiments with high signal-to—moise
ratios.
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Chapter 10

Experimental results in the frequency domain

In this chapter the results of Prony’s technique applied to the shock tube experiments are
discussed. From the treatment of Prony’s method in the previous chapter it has become
clear that a large number of pressure signals at equidistant axial positions is needed. As
we have only a limited number of pressure gauges available, the shock tube was modified
so that we could record this large number of pressure signals by repeating the wave
experiment. We present reflection measurements that serve as a test procedure for the
application of Prony’s method. It is shown that our experimental technique can be used
to determine the frequency dependence of phase velocities in a broad frequency range. As
an additional result of these test measurements we obtained the frequency dependence of
the reflection coefficient. The last section is used to discuss the results of experiments on
porous cylinders. Phase velocities and damping coefficients of bulk and surface waves are
presented in a broad frequency range.

10.1 Modification of the conventional shock tube

In order to record a large number of pressure signals at equidistant positions the shock
tube had to be modified. In the conventional measurements as described in Chapter 5,
only three signals at 5 cm spacing could be recorded, while for the application of Prony’s
technique a number in the range of 20-40 is indispensable. Furthermore, the distance
between two spatial samples has to be small (0.5 - 1 cm) in order to satisfy the condition
Re(k)Az < m. We have developed a new part of the set-up to overcome these problems.
The bottom section of the shock tube (Fig. 10.1) is designed so that the position of the
porous sample in the shock tube can be varied with respect to the pressure gauges. By
rotation of the screw gear, drawn in Fig 10.1, the piston pushes the porous cylinder in
the upward direction with a system inaccuracy of a tenth of a millimeter. The position
of the porous cylinder is measured electronically.

In this way a large number of equidistant pressure signals can be recorded by combining
the experiments. The experimental procedure is organized as follows. A shock-tube run
as described in Chapter 5 is performed. The pressure transducers are mounted as drawn
in Fig. 5.1. The first pressure transducer P1 is mounted in the wall of the shock tube
above the porous sample. The transducers P2, P3, and P4 are mounted in the wall of the
shock tube along the porous sample. Then three pressure signals are recorded for Az =5
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POROUS
SAMPLE

PISTON

PRESSURE

Figure 10.1: Porous sample in test section of the shock tube.

cm by P2, P3, and P4, while the transducer P1 is used as a reference. Subsequently, the
sample is moved upwards over a distance of 0.5 cm. Then again a wave experiment is
carried out and three more pressure signals are recorded. This procedure is repeated 10
times, which results in a record of 30 pressure signals 0.5 cm apart. Instead of the 0.5 cm
we also used Az = 0.25 cm in our experiments.

In the final result, measurements of several shock-tube runs are incorporated. This
means that the repeatability of the experiments must be sufficiently high. It is observed
that the signal shape reproduces quite well, but the amplitude of the signal displays some
variation. Another complicating factor is that the time axis varies in each experiment. The
data-acquisition is triggered at P1, while the distance between the top of the sample and
P1 decreases when the porous cylinder is displaced in the upward direction. Furthermore,
the 30 pressure signals are not sorted properly, and distributed over 10 files. In the first
experiment, P(t,1), P(t,11) and P(t,21) are recorded, in the last experiment P(%,10),
P(t,20) and P(t,30). For these reasons a FORTRAN computer code has been written
which performs the following operations:
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e The pressure signal P1 is used to determine the zero of the time axis. The average
of the arrival times of the step wave and the reflection from the top of the sample
(indicated by the arrows in Fig. 10.2(a)), yields the arrival time ¢ = 0 of the step

wave at the top of the sample. In this way a unique time scale for the experiments
is defined.

e Corrections are made for the offset of the pressure transducers. Subsequently, the
amplitude of the incident wave is determined. The pressure signals P1, P2, P3, and
P4 are normalized on this amplitude.

e The pressure signals are ordered as P(t,1), P(t,2),..., P(t,30).

The output of these manipulations is considered as the output of 30 pressure transducers
0.5 ¢m apart at a single shock-tube run. An example is given in Fig. 10.3, where 8 signals
are displayed for Az = 0.5 cm. This graph also shows that the signal shape reproduces
quite well. The pressure signals were recorded with a sample frequency of 2 MHz.

However, the signals generated by the step wave are non-periodic signals. Therefore,
a part of the signal has to be windowed out (see Fig. 10.2(b)), which is used for the
generation of a periodic signal as is drawn in Fig. 10.4. The first part of the signal in
Fig. 10.4 corresponds to the window in Fig. 10.2. The end value of the signal within the
window is used to fill the remaining data points in a 2048 record. Subsequently, we take
for the second 2048 points the mirrored values of the first ones. In this way the end value
of the period is equal to its begin value and we have obtained a continous periodic signal.
For the determination of the length of the window we used two methods. In the first case,
a time interval is chosen such that the reflection from the bottom of the shock tube is
windowed out as is drawn in Fig. 10.2. The length of this time interval is equal for all
the spatial measurements P(t,1), P(t,2), ..., P(¢,30). In the second case, we applied a
window such that all phase velocities which are lower than a certain threshold value are
outside the window. Due to the different positions of Pi(t), P(t), ... Pso(t), the lengths
of the windows are different for every pressure signal.

10.2 Reflection measurements

Experiments were carried out in a reflection configuration. In this case the pressure
transducers P1, P2, P3 and P4 are all mounted in the wall of the shock tube above
the porous cylinder. In this way the reflection coefficient and the phase velocities of the
incident and reflected waves can be determined. These experiments also provide a test for
the application of Prony’s method. Four pressure measurements 5 cm apart were obtained
in each shock-tube run. We performed the shock tube experiments using Az = 0.5 cm.
Pressure signal P(t, 1) was recorded 24 cm above the sample. The pressure signals display
the behaviour of the P1 signal as shown in Fig. 10.2(a). For the length of the window
a constant time interval for all pressure signals was chosen. The length of the window
was determined by the condition that reflections from the bottom must be outside the
interval. In this way we have to do with a number of wave components that is a priori
known (M = 2), as only the incident step wave and its reflection from the top of the
sample are taken into account. Subsequently, Prony’s analysis is carried out at each
frequency as described in Chapter 9.
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Figure 10.2: Pressure signals recorded at P1 (a) and P4 (b). The arrows indicate the arrival
and reflection times which are used for the definition of t = ty, where tg is the moment of arrival
of the step wave at the top of the sample. The window indicated in (b) is used to construct
a periodic signal (see Fig.10.4). The measurements were performed on Bentheimer sandstone.
Sample diameter: 70.0 mm.
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Figure 10.3: Pressure signals for a Bentheim sample at equidistant axial positions. Sample
diameter 70.0 mm. Az = 0.5 cm.
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Figure 10.4: Input signal for Fast Fourier Transform.
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Figure 10.5: Prony analysis of the reflection experiment. Both the real parts of the wavenum-
ber (a) and the phase velocities (b) are plotted. Noisy poles are included. L is the number of
wave components in Prony’s technique. The number of pressure signals N is 40.
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10.2.1 Phase velocities

The results for the real parts of the wavenumbers are shown in Fig. 10.5(a). In Fig. 10.5(b)
the results for the phase velocities are shown. For both variables the results are plotted for
L =6 and L = 8. As mentioned earlier, L > M is used to compensate for the noise in the
recordings. Because of the occurrence of both incident and reflected waves, we used the
forward-backward linear prediction technique as described in Chapter 9. In Fig. 10.5(a),
two straight lines appear in the form of a 90 degrees rotated V-shape, corresponding to
the incident step wave and its reflection from the top of the sample. Both waves appear as
horizontal lines in Fig. 10.5(b). The other data points are wave components which account
for the noise. The band of wavenumbers which is found corresponds to the requirement
that Re(k)Az < .

Editing process

Using these results we demonstrate the editing process of the spurious wavenumbers as
discussed in the previous chapter. As the number of wave components is a priori known as
M = 2, we have to find the extent of overdetermination (L — M), in order to remove the
noisy wavenumbers. This is done by increasing the number of wave components L until
Prony’s solution does not show any significant changes with respect to the two straight
lines. This is the case for L = 8. Using a much larger number for L as suggested by
Tufts and Kumarasan (1982) appears not to be useful. The number L = 8 is larger than
indicated by Braun and Ram (1987), who suggested a maximum L = 6 for M = 2. This
is an indication that the values given by other authors are of limited use for our case.

The same is more or less valid for the application of the editing techniques which are
used to remove the noisy wavenumbers. One of these techniques is based on the singular
values procedure as discussed in Section 9.2.2, option 3. As an illustration, Fig. 10.6(a)
shows the frequency dependence of the singular values of the data matrix B (see Section
9.2.1). At frequencies below 30 kHz, the singular values of the true poles are clearly
indicated by the two upper lines, while the singular values of the noisy poles form a cloud
of points. However, above this frequency the distinction between true and noisy poles
becomes ambiguous. For the application of the break point criterion of Equation (9.28),
one would have to vary the threshold level at every frequency, which seems to be rather
complicated. For this reason the determination of the true number of poles based on the
singular values procedure (Option 3, section 9.2.2) is not quite accurate.

Another possibility is editing on the basis of amplitudes of the wave components
(Option 4, section 9.2.2). The amplitudes of the wave components can be determined once
the wavenumbers are known (see Equation (9.23)). The results are shown in Fig. 10.6(b).
At high frequencies the amplitudes become small and of the same order of magnitude as
the noise for the reflected wave. This problem will become worse in case of the experiments
on the porous cylinders (see Fig. 10.11(b)). Therefore one cannot neglect those amplitudes
below a certain threshold, because the true poles will also be omitted.

For option 1 of Section 9.2.2, it is necessary to perform two shock-tube runs at each
spatial position, and therefore we did not try this option. We found that option 2 works
quite well. In this technique, the wavenumbers are plotted for different L-values. The
true poles remain at the same position, while the noisy poles move. In the frequency-
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Figure 10.6: Frequency dependence of the singular values (a) and the amplitudes (b).
Forward-backward prediction, L = 8, N = 40.
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Figure 10.7: Prony analysis of the reflection experiment using Gaussian noise as input signal.
The standard deviation of the noise is equal to 0.15, while the average value is equal to zero.

Both the real part of the wavenumber (a) and phase velocity (b) are plotted. The number of
pressure signals N = 40.
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wavenumber plane (Fig. 10.5(a)), the true poles line up to wave modes, and the noisy
poles form clouds of points. However, some points coincide and suggest the presence
of a mode. Therefore still additional criteria are needed. An important criterion is the
phase velocity of the modes which are presented in Fig. 10.5(b). Here the question arises
whether the non-horizontal lines that are visible in this figure also represent physical wave
modes. To solve this problem, we tested the Prony approach using synthetic Gaussian
noise having a standard deviation of 0.15 and an average value of zero. The results are
shown in Fig. 10.7. We observe the same non-horizontal lines as in Fig. 10.5(b), which
thus can be attributed to the noise in the signal. Removing these poles from Fig. 10.5
we finally arrive at Fig. 10.8. The obtained phase velocities show good agreement with
the predicted values. The small decrease of the experimental phase velocity below 20 kHz
can be explained by the deviation from the one-dimensional approach. This phenomenon
was also observed by Lafleur and Shields (1995) in a water-filled aluminum tube.

10.2.2 Reflection coefficients

The ratio between the amplitudes of the incoming and reflected waves determines the
reflection coefficient. The two upper lines of Fig. 10.6(b) can therefore be used to de-
termine the reflection coefficient as a function of the frequency. The experiments were
performed using sample N6b, for wich the parameters are given in Table E.3. The di-
ameter of the sample was 76.9 mm. At high frequencies the oscillations of the lines in
Fig. 10.6(b) are quite large and the results for the reflection coefficients are unsatisfac-
tory. Most likely, these oscillations are due to the small signal-to-noise ratio. In order
to suppress the amount of noise we re-derive the amplitudes of Fig. 10.6(b) using the
frequency independent theoretical wavenumbers for the z-values of Equation (9.23). The
results of Prony’s analysis with L = 2 are shown in Fig. 10.9. If we compare Fig. 10.9(a)
to the upper lines of Fig. 10.6(b), it is clear that the performance of Prony’s method has
improved. In Fig. 10.9 the solid line indicates the computations based on the 1-D Biot
theory. Despite the oscillations, the measurements show a reasonable agreement between
the measured reflection coeffient and the one-dimensional computations based on Biot’s
theory. Note that all the physical parameters were determined in independent laboratory
experiments. The significant non-oscillatory deviation from the one-dimensional theory
in the 5-30 kHz frequency range is probably due to compliance effects of the wall of the
shock tube (see chapter 8).

10.3 Transmission experiments

In this section we discuss the results for the transmission experiments. As mentioned
in Chapter 5, we consider two cases for the diameter of the sample. In the first case
a diameter of 70.0 mm is chosen. This means that the sample-to-tube surface ratio is
0.826, and a relatively large water-filled gap exists between the cylinder surface of the
sample and the shock tube wall. Experiments in this configuration are called the large
gap experiments. In the second case we use a diameter close to the inner diameter of
the test section: 76.9 mm. This means that the sample-to-tube surface ratio is 0.997.
Experiments in this configuration are called the small gap experiments. The pressure
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Figure 10.8: Comparison between experiment and theory for the phase velocity of the incident
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Figure 10.9: Experimental results for the amplitudes of the incident and reflected waves (a)
using theoretical wavenumbers in Prony’s technique. The corresponding reflection coefficients
are given in (b). The solid line indicates the computational results based on the 1D Biot theory.
We used sample N6b with a diameter of 76.9 mm. The rock properties are given in Table E.3.
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transducers are mounted for both cases in the same configuration as for the conventional
shock tube experiments (see Fig. 5.1). The first transducer P1 is mounted in the wall of
the shock tube above the porous sample. The transducers P2, P3, and P4 are mounted
in the wall along the porous sample. Some results in the time domain are discussed in
Chapter 5 for both large and small gap experiments. Here, we focus on the frequency
domain. First, we demonstrate the editing process for the transmission experiment, which
is somewhat different from that of the reflection measurements. Here, we deal with
forward prediction, and we use a variable length for the time window. Subsequently,
we compare the experimental results with the wave mode calculations. This is done for
Bentheimer sandstone for the large and the small gap experiments. We discuss the large
gap experiment for the synthetic rock sample N5b in the last subsection.

10.3.1 Editing the large gap experiment for Bentheimer sandstone

Fig. 10.2 shows an example of the recorded pressure signals in the time domain for a
large gap experiment. For this experiment the length of the window is chosen such that
the part of the signal with a phase velocity lower than 0.6 times the water velocity is
windowed out. Using this variable window we obtained the smallest amount of scatter for
the higher order modes. Note that the length of the window at each spatial position is
different. An additional benefit of this windowing is that the reflections from the bottom
are windowed out. The wave modes of interest now travel in one direction, so that only
forward linear prediction was applied. The experiments were carried out with Az = 0.25
cm and a record length of 60 signals. Now, it is also possible to construct an array of
pressure signals with Az = 0.5 cm or Az = 0.75 cm. For the record of Az = 0.5 cm
we obtain 30 pressure signals, while for Az = 0.75 cm, 20 signals remain. The results,
presented in Fig 10.10, are obtained from two separate processing procedures using Ar =
0.5 c¢m, and Az = 0.75 cm, respectively. No editing has taken place in Fig. 10.10(a). In
Fig. 10.10(b) only positive values are shown for the phase velocities.

As mentioned in Chapter 9 we first have to determine the number of wave modes M
which are present in the data. Subsequently, the extent of overdetermination (L — M)
has to be chosen, after which the true poles must be separated from the noisy poles. In
Fig. 10.11(a), we show the singular values of the data matrix B (see Section 9.2.1). The
distinction, between the singular values is ambiguous, especially at higher frequencies, and
therefore, the singular value procedure to determine the true wave modes (see Chapter
9) is not applicable. In Fig. 10.11(b) we show the amplitudes of the wave modes. The
distinction between the amplitudes is also ambiguous, and therefore the power-editing
method also cannot be used to determine the true wave modes. We conclude therefore,
that the editing methods as presented by different authors (Lang et al. 1987, Braun and
Ram 1987, Grosh and Williams 1993) are not applicable to our case.

If we take into account that phase velocities which are within the window, i.e., wave
modes with a phase velocity above 0.6 times the water velocity, we obtain that M is 3 or 4.
As we need M for the estimation of the extent of overdetermination (L — M), we can only
obtain a rough approximation for L. We have taken the number of L as large as possible
for the case of Az = 0.75 cm. As we have only 20 pressure signals available (N = 20),
the maximum number to satisfy the condition N > 2L is L = 10. For Az = 0.5 cm we
used L = 11. For the removal of the noisy poles we use a modified version of option 2 (see
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Figure 10.10: Prony analysis of the transmission experiment. Both the real part of the
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Figure 10.12: Comparison between experiments and theory for parameters which were de-
termined in independent laboratory experiments. Solid lines: wave mode computations. o:
experiments with a cylinder which was sealed at the top surface. *: experiments with open
pores at the top surface. We used a Bentheimer sandstone cylinder with a diameter of 70.0 mm.

Section 9.2.2). Instead of taking two values for L, we used two values for Az. The output
of the processing with Az = 0.5 cm and Az = 0.75 cm can be considered as the results
of two separate experiments. Those points which do not ’'line-up’ and form ’clouds’ of
points correspond to noisy poles in any case. At frequencies above 60 kHz we observe
in Fig. 10.10(a) clouds of points, which consequently correspond to noisy poles. Below
this frequency several points line up and therefore suggest the presence of physical wave
modes. However, not all of these modes are physical wave modes indeed. The modes
with a negative real part of the wavenumbers are removed, as only wave modes with
positive phase velocities are within the window. In Fig. 10.10(b) we observe the same
non-horizontal lines as in the synthetic white noise experiment of Fig. 10.7(b). They
correspond to phase velocities which are outside the time-window which we have chosen
for the input of Prony’s method. Therefore, we remove in the output of Prony’s method
the wavenumbers with a phase velocity below 0.6 times the water velocity. Finally, we
arrive at the data indicated by the asterixes in Fig. 10.12. We have shown the data for
L =11 and Az = 0.5 cm. The data in Fig. 10.12 indicated by the open symbols are also
observed in Fig. 10.10(b) for the frequencies above 60 kHz.
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10.3.2 Comparison with theory

We now compare the edited expermental results with the wave mode computations given
in Chapter 8. In Fig. 10.12 the solid lines indicate the computations for the Bentheimer
sandstone cylinder with a diameter of 70.0 mm. The computations include the compress-
ibility of the grains, as well as the elasticity of the wall. We determined the physical
parameters in independent laboratory experiments. The data values represented by the
circles in Fig. 10.12 are taken from an experiment with a porous cylinder which was sealed
at the top surface. We used a two-component coating (Araldit SW 404) as a sealing. The
asterixes in Fig. 10.12 represent the data taken from an experiment with open pores at
the top surface.

The data indicated by the asterixes show two different lines. The lower line is in
agreement with the L1 mode. Below 20 kHz the data points were omitted, as the scatter
in the data was high. A strong decrease of the phase velocity of the L1 mode in between
25 and 50 kHz is observed in the experimental results, as well as an asymptotic behaviour
above 50 kHz. The upper line of the asterixes in Fig. 10.12 is difficult to explain, but
clearly can be attributed to the higher-order wave phenomena. In Chapter 8 we noted
that these modes generate relatively low pressure amplitudes in the gap. Hence, they are
difficult to be detected.

The data represented by circles in Fig. 10.12 are in agreement with the S mode pre-
dictions over the entire frequency range. The S mode corresponds to the pseudo-Stoneley
wave in the high-frequency limit and is a bulk wave in the low-frequency limit. We found
that the sealing at the top surface of the cylinder enhances the excitation of the S mode.

The results of Fig. 10.12 show that we are able to excitate multiple wave modes in one
experiment over a broad frequency range. This is noteworthy, as most experimental set-
ups are able to excitate either one wave mode over a broad frequency range, or multiple
wave modes in a limited frequency range (see Chapter 1).

Fig. 10.13 shows the corresponding imaginary parts of the wavenumbers. Again these
plots results from a combination of 60 pressure signals, from which the noise has been
removed in the output of Prony’s method. The scatter in these measurements, however,
is large. Only the results for the L1 mode suggest qualitative agreement between 30
and 40 kHz. Ellefsen et al. (1993) and Hsu et al. (1997) also report large bias in
the attenuation coefficient in the presence of noise. For higher SNR’s the scatter in the
damping coefficients decreases as will be shown later.

10.3.3 Small gap experiments for Bentheimer sandstone

Experiments were performed for Bentheimer sandstone using the small gap configuration.
We observed two wave modes in the experimental results. For a clear comparison with
the theory the results are presented in two separate figures. Figs. 10.14 display the mode
with the highest phase velocity. The data were processed using Az = 0.5 cm. As for the
large gap experiment, the length of the window was chosen such that cypgse /Cwater > 0.6.
The experimental data show an acceptable agreement with the L1 mode. The scatter
of the damping coefficients is large, and the experiments and theory differ one order in
magnitude.

The results for the second mode are shown in Figs. 10.15. The data were processed
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Figure 10.13: Comparison between experiment and theory for the damping coefficient. Solid
lines: wave mode computations. o: experiments with a cylinder which was sealed at the top
surface. *: experiments with open pores at the top surface. We used a Bentheimer sandstone
cylinder with a diameter of 70.0 mm.

using Az = 0.25 cm. For this case the length of the window was constant for every spatial
measurement. It was chosen such that reflections from the bottom were windowed out.
Most likeley, the experimental wave mode as given in Fig. 10.15 can be attributed to the
D modes. These modes have the free-field slow wave velocity as their high-frequency limit,
as explained in Chapter 8. The experiments show only one mode in Fig. 10.15(a), while
a number of theoretical D modes exist in this frequency range. A possible explanation
is that Prony’s technique only finds the most dominant amplitudes. Similar phenomena
were reported by Plona et al. (1992) and Hsu et al. (1997). The experimental damping
coefficients in Fig. 10.15(b) show the same trend as the theoretical attenuation data.

10.3.4 Large gap experiments for synthetic rock

Experiments were carried out for the synthetic rock sample N5b. The parameters are
given in Table E.3, Appendix E. The corresponding shear velocity is lower than the water
velocity, and hence this rock sample is a so-called slow formation.

The results of the wave mode computations for this rock type are given by the solid
lines in Fig. 10.16. As explained in Chapter 8 the L1 mode is based on the wave motion
in the gap between the porous cylinder and the shock tube wall at high frequencies. At
low frequencies it is based on longitudinal wave motion in the shock tube. The S mode
for this slow formation corresponds to a so-called true surface wave at high frequencies.
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Figure 10.14: Comparison between experiment and theory for the small gap experiment. Both
the results for the phase velocities (a) and damping (b) are shown. The damping coeflicients are
scaled by the inner radius of the shock tube b. We used a Bentheimer sandstone cylinder with a

diameter of 76.8 mm. Note that the results of the experiment are presented using two separate
figures: Fig. 10.14 and Fig. 10.15.
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Figure 10.15: Comparison between experiment and theory for the small gap experiment. Both
the results for the phase velocities (a) and damping (b) are shown. The damping coeflicients
are scaled by the inner radius of the shock tube b. We used a Bentheimer sandstone cylinder

with a diameter of 76.8 mm. Note that the results of this experiment are presented using two
separate figures: Fig. 10.14 and Fig. 10.15.
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The phase velocity is lower than the slow wave velocity. At low frequecies the S mode
related to bulk wave motion.

The experimental results in the frequency domain show one dominant wave mode
over the entire frequency range with a slightly decreasing phase velocity (Fig. 10.16(a)).
For this experiment the smallest amount of scatter was obtained for a sample which was
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Figure 10.16: Comparison between experiments and theory for synthetic rock N5b. The
theoretical results for the phase velocities (a) are given for the L, M and S modes. For the
damping (b) the L1 mode is shown. The lines indicate the theory. The damping coefficients are
scaled by the inner radius of the shock tube b. The diameter of the sample was 70 mm.

sealed at the top surface. The time window was chosen such that cphese/Cuwater > 0.5.
For the processing in Prony’s method we used N = 30, Az = 0.5 cm, and L = 11.
The experimental wave mode is in excellent agreement with the theoretical predictions
for the L1 mode. Note that these predictions are based on parameters which have been
determined in independent laboratory experiments. The amplitude of the surface wave
was too small to be detected using Prony’s method. This is consistent with the modelling
of the S mode. Fig. 8.34 shows that the relative amplitude of the gap pressure is small.

We obtained reasonable results for the damping coefficients, most likely due to the high
SNR. Experiments and the theory show the same trend and the orders of the magnitudes
are also in agreement (see Fig. 10.16(b)).

10.4 Discussion and conclusions

By a unique modification of a conventional shock tube configuration data recorded in the
time domain could be converted to the frequency domain using Prony’s technique. Several
methods for the editing process of the spurious wavenumbers in Prony’s method have been
discussed. We found that processing of two records of pressure signals with different values
for the spatial sampling distance works best. Furthermore, we used a synthetic white noise
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signal to investigate the influence of noise on Prony’s method. Phase velocties, damping
coefficients and reflection coefficients could be measured in the 1-120 kHz frequency range.

For a synthetic rock sample agreement was found for the reflection coefficient with
one-dimensional calculations based on Biot’s theory. In Bentheimer sandstone the pseudo-
Stoneley wave has been observed in case of the large gap experiment. In this large gap
experiment we have also recorded a wave mode which is, at high-frequencies, based on
wave motion in the water-filled gap. Furthermore, we observed wave modes which could
be related to higher-order wave phenomena. It is difficult to obtain results for higher-
order wave modes, due to the small pressure amplitude in the gap. For the syntetic rock
sample N5b, we have recorded one wave mode in the large gap configuration. This wave
mode is based on wave motion in the water-filled gap.

Experiments were carried out for the small gap configuration using Bentheimer sand-
stone. We found a wave mode, which most likely can be attributed to the D modes, which
have a direct relation with the slow wave. This is a confirmation of the existence of the
slow compressional wave in natural rock.

The experimental results have been compared to the computational results, which
were discussed in Chapter 8. The computations were based on independent parameters,
which were determined using dry samples. The compressibility of the grains was taken
into account. For the compressibility of the grains literature values were used. For both
Bentheimer sandstone and the synthetic rock N5b, the theoretical predictions for the
phase velocities were in agreement with the measurements.

We have also determined the damping coeflicients of the wave modes. Due to the large
amount of scatter in the damping coefficients, the comparison with the theoretical results
is complicated. For the synthetic rock sample, qualitative agreement with the predictions
has been found.
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Chapter 11

Conclusions

. A shock tube was used to generate acoustic bulk and surface waves in poroelastic
materials. The pores of the materials were filled with either air or water. The size
of the gap between the porous cylinder and the wall of the shock tube determined
which wave modes were generated. For a large gap surface waves were generated.
For a small one the fast and the slow compressional wave were detected.

. For air-filled pores the transition from wave-like behaviour to diffusion-like behaviour
of the slow compressional wave was demonstrated. For very high permeabilities
(> 500 Darcy) the shock wave character was preserved and could be detected at
the end of the sample. For lower permeabilities the diffusion effect dominated. The
non-linear diffusion was described by Forchheimer’s equation.

. For water-saturated pores wave-like behaviour is prominent. Computations based
on a one-dimensional version of Biot’s theory were carried out. Good agreement
was observed with the experimental results in the time domain, provided that the
gap between the porous sample and the shock tube wall was small.

. Wyllie’s equation was used to determine the velocity for a given porosity. The
corresponding impedance poorly correlated with reflection coefficients that were
derived from the experiments. For the velocity the correlation was reasonable.

. For a large size of the gap between the cylinder and the shock tube two-dimensional
effects played an important role. The theory of surface waves on flat interfaces and
the theory of waveguides in cylinders are both important to understand the wave
phenomena in the shock tube configuration.

. We considered surface waves on an interface between an elastic solid and a liquid.
Following Feng and Johnson (1983), this analysis was extended to an interface be-
tween a lossless poroelastic solid and a liquid. We included the full Biot theory and
obtained a better description of the attenuation of surface waves.

. The theory of waveguides in elastic and poro-elastic solid cylinders was investigated.
Some of the wave modes that occur in the porous cylinder in the shock tube are
equivalent to the ones in solid elastic cylinders. These modes are characterized by
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Conclusions

10.

11.

12.

13.

14.

a low-frequency cut-off and the high-frequency limit of the phase velocity, which is
equal to the shear velocity. In our shock tube configuration also modes occurred
which have the fast wave velocity as their high-frequency limit.

A surface mode occurs on the interface between the porous cylinder and a relatively
large water-filled gap. This wave is related to the pseudo-Stoneley wave in case of a
Bentheimer sandstone cylinder, which is a fast formation. For one set of properties
for a slow formation, it corresponds to the true Stoneley wave.

An extra bulk wave mode type occurs due to the presence of the slow Biot wave.
The damping of the higher-order slow wave modes is at least as high as the damping
of the free-field slow wave.

The surface mode in the shock tube configuration is sensitive to both the perme-
ability and the shear velocity. Because this sensitivity also applies to the surface
mode in a borehole configuration, this conclusion can have important implications
for the analysis of permeability estimation from acoustic logging data.

A screw gear unit was used to change the position of the porous cylinder in the shock
tube. Performing multiple shock tube runs it was possible to obtain the equivalence
of a large series of pressure transducers at equidistant positions. This modification of
the shock tube configuration enables the determination of phase velocities, damping
and reflection coefficients in the 1-120 kHz frequency range.

A least-squares version of Prony’s method was used to perform the transformation
of a series of time-recorded signals to the frequency domain. We evaluated editing
methods suggested in literature to remove spurious wave modes in Prony’s method.
It was demonstrated that modified versions of these editing techniques could effec-
tively be used in our experiments.

The surface mode was detected in the shock tube from 1 to 120 kHz on Bentheimer
sandstone. This was to our knowledge the first time that this mode was recorded in
a shock tube on porous material in such a broad frequency range. The velocity of
this mode agreed well with the velocity derived from the full modelling of the shock
tube with a wide gap between the cylinder and the tube wall. The comparison be-
tween the experiments and theory was based on parameters which were determined
independently on core samples.

The modelled and measured phase velocities of the lowest-order bulk mode agreed
for both fast and slow formations. For high Signal-to-Noise ratio’s it is possible
to obtain damping coefficients. Qualitative agreement between experimental and
theoretical attenuation data was found for synthetic rock.




Appendix A

Basic relations cartesian and cylindrical
coordinates

In this appendix relations between potentials, displacements and stresses are given for
cartesian and cylindrical coordinates. They can also be found in standard textbooks
(Achenbach 1973, Miklowitz 1978). The following decomposition for the displacements is
used:

u=Vp+Vxp (A1)

A.1 Cartesian coordinaters

We obtain for cartesian coordinates:

Op O, 0Oy
= T — ——'—’ A2
%= T oy o ®-2)
dp O, O
_9% _ 3
W9y " ac "oz (4-3)
Op O, Oy
= Al - — A4
“ 0z + oz dy (A-4)
The strain-displacement relations in cartesian coordinates read as follows:
Oug Juy Ou,
T — ——, = —-7 z — —-—’ .5
T YT 9y T a2 (4.5)
Ou, Ou,
265y = 26y, = -a—y + a—z, (AG)
ou Ou,
2y, = 265 = —a—zy + By’ (A7)
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Basic relations cartesian and cylindrical coordinates

ou, Ouyg

2€,, = 265, =

Ec—-*' 0z

For the stress-displacement relations Hook’s law applies:
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The stress-strain relations are of the form:

T = (%‘:’ +oy 1% + a“’) + 2#%?, (A.33)
T99=A<%+ﬂ+%%1;" +au’> +2p [ur +l{);;} (A.34)
L
(- 2).

o = (; Ej,;;z + %) : (A.37)
=G+ 32). (4.38)

The relations between the stress components and the potentials ¢ and 7 are given here
for the axi-symmetric case, so 8/80 = 0 and ug = 0.

8%  n
2 —— ——
o = AV 1 20 [ s azaﬂ] , (A.39)
) 18p 1 0%n
- A.
Tos = AVZ0 + 2p [ o (A.40)
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A.2 Cylindrical coordinates

The displacement components in the r, # and z directions are denoted by u,, ug and u,,
respectively. The Laplacian in cylindrical coordinates is defined as:

”# 18 18 o

2 < Y. 29 .9

V= or? + ror Tr2o T o2 (A.21)
The Laplacian of a vector can be calculated using the vector identity

VA =V(V-9) -V xVx, (A.22)
where

O | O(rr) | 1
qp= LR g A o A2
V¥ 6z+ or +r69 (4.23)

The relations between the displacement components and the potentials are given by:

- 6_‘;’ E awz 61;{’6

=% Ty o8 Bz (A-24)
_10p Oy O,

WETe T Bz or (4.25)

u, = 20 100er) _ 10 (A.26)

T 0z r or r 00

For cylindrical coordinates the following decomposition for the vector potential is used:
P = xe, +V x (nz). (A.27)
where e, is the unit vector in the z-direction. Then we can write:

_9p  13x 8y

U= Y750 T Bzar (A.28)
U, = -g—f - -71:% (r%—?) - ;IE%Z—Z (A.30)

In cylindrical coordinates the strain-displacement relations are given by
€ = %, € = % + %_36_7;27 €, = %uf, (A.31)

(A.32)




Appendix B

Bessel functions

In this appendix we show a few aspects of the Bessel functions which are used in this
thesis. For further details we refer to Abramowitz and Stegun (1964). Bessel functions
are solutions of Bessel’s equation:

d*y 1ldy n?
w+;£+(l~ﬁ)y_0’ (B.1)

where z, y, and n are complex-valued in the general case. For integer values of n two
independent solutions for y exist. The first one, J,(z), is called the Bessel function of the
first kind of order n. It can be expressed by the following power series:

Jn(z) = 20 % (B.2)

A second independent solution Y;(z) is the Bessel function of the second kind of order n.
This function is denoted as the Neumann function. The following power series apply:

Valz) = 2an(@log(e/2) + 2 3 ana®™ +4" 3 Bt (8.3)

m=0 m=0

where @, and B, are real-valued constants. Expressions for a,, and S, are given by
Abramowitz and Stegun (1964). Y, is singular in z = 0 with branch cut |arg(z)| = 7.
For the argument —x it can be derived that:

J(=2) = (~1)"J(2) (B.4)
and

Yi—z) = {(—1)" (Ya(z) = 2iJa(z)) if arg(x) € (0, ], (B5)

(=)™ (Yo(z) + 2iJ,(x)) if arg(x) € (—m,0].

For |z| — oo, the two solutions can be written as:

2 1.7
; ~ ]2 - il B B.6
|zl|1—r>noo Ju(z) ‘/ m:cos (x (n+ 2) 2) , (B.6)
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lim Yi(z) ~ \/gsin (3: —(n+ %)g) . (B.7)

Other common independent sets of solutions are the Hankel functions, which are labelled
using the superscripts (1) and (2):

HY(z) = Jo(z) + 1Yo (),

HP(z) = Ju(z) — i¥n(2). (B.8)

For the asymptotic behaviour of H(®) we can write:

[1:1|i—I)noo H® ~ \/gexp (—i (z —(n+ 1/2)%)) . (B.9)

Note that the Hankel functions are singular in £ = 0 and the branch cut is defined by
|arg(x)| = 7. For Bessel functions with purely imaginary arguments, it is appropriate to
use the modified Bessel functions. The so-called modified Bessel function of the first kind
is defined as:

I(z) = 1™ Jn(ix). (B.10)

If |arg(z)| < (7/2), we can write for the asymptotic behaviour of I,(z):

2
lim I,(z) ~ | ——e. B.11
am (@)~ e (B.11)

For the derivatives of the Bessel functions, the following relations are valid:
d 1
E'x—(z]n(/\.'l)) = 5/\(‘]”__1(/\1') - Jn+1(/\$)), (812)

where A is a complex-valued constant. The function J,4;(z) is related to J,(z) and
Jn—1(z) via:

i1 () = i—ZJ,,(/\x) — Ju(0). (B.13)
Hence, we can write for the derivatives:

dii-(J,,(,\x)) = AMpoi(Az) — ;—‘Jn(,\z). (B.14)

For Jy the expression is

%JD()\:C) = =M (Ax)). (B.15)



Appendix C

Riemann sheets

In multi-dimensional configurations the components of the wave vector are related to each
other as well as to the free-field wavenumbers via a square root which can be complex-
valued. By choosing the appropriate branch and branch cuts we obtain a single-valued
square root function. We illustrate the choice of the branch and branch cuts for the shear
wavenumbers. The square roots for the other wavenumbers are treated in a similar way.
For a flat interface between a solid and a fluid we write the potential ¥, (see Chapter 6):

¢y — Alei(wt — kx — kzshZ)’ (Cl)

where

kooh = 1/w?/c — k2. (C.2)

As in Chapter 6, we have chosen the x-axis parallel to the interface and z-axis perpendic-
ular to the interface. The sign of the square root is chosen such that v, remains finite for
z — oo. Splitting the wavenumber in a real and an imaginary part we can derive that

must be satisfied. For the so-called 'leaky’ waves (see Chapter 6) the opposite sign is used.
In order to avoid confusion, we only consider the case of Sm(k).s, < 0 in this Appendix.
The line Sm(k,s,) = 0 divides the two sets of solutions of the square root. In the complex
k-plane this line is called the branch cut. Via this branch cut, the k-planes corresponding
to the positive and the negative square roots are connected. The different k-planes are
also called Riemann sheets. Together they form the Riemann surface. Following the
approach of Ewing et al. (1957), we investigate the position of the branch cuts. We start
with the following relation

kzsh = kgh - K2, (C.4)

where k,, = w/cp. We assume kg, to be complex. Splitting the real and the imaginary
parts of Equation (C.4), we obtain two relationships to determine the branch cuts:

§Rez(kz.s:h) - ng(kzsh) = §Rez(ksh) - sz(ksh) - SRC‘E(":) + (‘\sz(k)’ (C5)
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Re(kzon) SM(Kson) = Smksn)Re(ksn) — Re(k)Sm(k). (C.6)

The branch cut Sm(k,s,) = 0 is substituted in these expressions and from Equation (C.5)
it follows that:

Re?(k) — Sm2(k) < Re? (ko) — Im2(ksn). (C.7)
. From Equation (C.6), we obtain:

Re(ken)Sm(ksp)

Smk) = = etk

(C.8)
In Fig. C.1(a), we have drawn the complex k-plane. The solid lines indicate the branch
cuts and correspond to those parts of the hyperbola defined by Equation (C.8) which
satisfy Equation (C.7). In Fig. C.2 we have drawn the complex k,,;-plane. The branch
cut Sm(k.sn) = 0 is indicated by the solid line. The dashed curve defined by Re(k,sp) =0
in Fig. C.2 corresponds to the dashed part of the hyperbolic curve in Fig. C.1(a). The
solid and the dashed lines intersect a special point of interest where k,,;, = 0. In that case
k = kgn. These points are the so-called branch points.

We now investigate which quadrants of the k,,,-plane correspond to values of k in the
fourth quadrant of the A-plane. We are interested in the fourth quadrant of the k-plane,
as it represents damped waves in the positive z-direction. In Equations (C.5) and (C.6),
we substitute values of k£ which are located in the dashed region of Fig. C.1(a). Then, we
find that the corresponding values of k., are located in the dashed region of Fig. C.2. If
we substitute in the same equations values of k located in the blank region of the fourth
quadrant of Fig. C.1(a), we find corresponding k,,,-values in the fourth quadrant of the
k.sh-plane. Hence, we conclude that for damped waves which propagate in the positive
z-direction, the sign of Re(k,,,) can either be positive or negative.

If there is no intrinsic damping, we can write: Sm(ks,) = 0. Using Equations (C.5)
and (C.6) and Sm(k.sn) = 0, we obtain for the branch cut:

Re2(kqn) > Re2(k) — Sm2(k), (C.9)
and
Re(k)Sm(k) = 0. (C.10)
Hence,
Re(k) = 0V Sm(k) = 0. (C.11)

If Sm(k) =0, we find from Equation (C.9):
Re?(k) < Re(kyn). (C.12)

In Fig. C.1(b), again the complex k-plane is given. The line BOA indicates the values of
k which satisfy Equation (C.12).
If Re(k) = 0, we obtain

Re?(ksp) > —Sm?(k). (C.13)
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Figure C.1: Branch cuts in the complex k-plane for free field wavenumbers which are complex-
valued (a) and real-valued (b)
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Figure C.2: Complex k,;,-plane. The solid line 3m(k,sn) = 0 corresponds to the branch cuts
in the Fig. C.1. The dashed line Re(k,s,) = 0 corresponds to the dashed lines in Fig. C.1. The
dashed regions corresponds to the dashed regions in Fig. C.1.
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This relation is satisfied for all k. From Equations (C.12) and (C.13), we find that part
of the real k-axis is a branch cut and the entire imaginary k-axis is a branch cut also.
The branch cuts only are independent if they pass through a branch point (Ewing et al.
1957). Therefore, we use AOL and BOC as the branch cuts in the complex k-plane (see
Fig. C.1(b)). The solid and dashed lines in Fig. C.1(b) correspond to the solid and dashed
lines in Fig. C.2. From these graphs it is also clear that values of £ on the dashed line
correspond to a completely imaginary value of ks, which is typical for a surface wave.
Similar to Fig. C.1(a), the dashed region in Fig. C.1(b) corresponds to the dashed region
in Fig. C.2. For the undamped case, the sign of Re(k,,) is negative for damped waves
propagating in the positive z-direction.

For the liquid-loaded porous halfspace we obtain a combination of branch cuts for
real-valued and complex-valued free field velocities. A schematic drawing of the branch
cuts for this system is given in Fig. C.3. Note that the positions of these branch cuts are
a function of the frequency, due to the frequency-dependence of the Biot velocities.

Im(k)
k =Ky,
_ S Re()
- —
k= kzc1 k=kzsh K=k
~ hze2

Figure C.3: Branch cuts in the complex k-plane for a liquid-loaded porous halfspace.



Appendix D

Zero-search routines

In this appendix we discuss the zero-search methods which have been used to determine
the zero’s of the dispersion relations F(w,k) = 0, where k is the complex wavenumber,
and w is the frequency. The following two methods have been used:

1. Plotting phase contour lines

2. Newton-Raphson iteration

D.1 Phase contour lines

When the absolute value of a complex number is equal to zero, the phase is not defined.
Plotting the phase contour lines of F' in the complex k-plane at fixed w, these contour lines
will intersect when F(k,w) = 0. An example of such a contour plot is given in Fig. D.1.
We used Pochhammer’s equation for wa/cr = 1.6 (see Chapter 7). Four zero’s occur in
this plot. One of the zero’s (near Re(k)a = 1) only has a real part. This corresponds to
an undamped wave. The other zero’s correspond to damped waves. It must be remarked
that the resolution of the contour plots must be high related to distance between two
zero’s, otherwise the zero cannot be detected. This method will yield only qualitative
results. When studying the frequency dependence of the wave modes this method is far
from efficient and can only be used as a first orientation with respect to the existing wave
types.

D.2 Newton-Raphson iteration

A more efficient method, yielding also quantitative results, is based on the well known
Newton-Raphson method. We implement the Newton-Raphson method in the following
way. At a given frequency w, we start at an arbitrary value of &; in the complex k-plane.
The next value k;;1, at the same frequency w, is determined using:

F(k;)
dF
d_ki(ki)
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wa/cy =1.6
8t Cr

-Im(k)a

05 1 15
Re(k)a

Figure D.1: Contour plot of the phase of F for the case of an elastic cylinder, with v = 0.3.
wa/cr = 1.6, where a is the radius of the cylinder. The line thickness is a measure for the
number of coinciding curves.
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The derivative dF/dk; can be determined analytically, but due to the complexity of F' in
case of the full shock tube configuration we use a second-order numerical method:

fi.lj(k,) _ F(k; +dk) — F(k; — dk)
dk;~ 2dk;
In order to improve the accuracy of the determination of dF/dk, we determined this
derivative in three different directions in the complex k-plane. Please note that for an

analytic function the derivative in the complex plane is insensitive to the direction of the
derivative. As a convergence criterion we use:

ki1 —k; ir1 — ki
l 41 l < 6/\ ikﬂ-l ki 1| <, (D3)
K1 Ko

+ Odk?). (D.2)

where € = 1073,
The effect of the choice for dk; is investigated using the following test function:

F(k) = (k- p)*, (D.4)

where Re(p) = 1 and Sm(p) = —1. Both F(k) and the first two derivatives are zero
at k = p, and hence this function can be considered as being a worst case. We used
Re(k;) = 0.0 and Sm(k;) = 0.0. Table D.2 gives the results of the numerical search
routine for different values of |dk|. The number of iterations n is given for which the
convergence criterion Equation (D.3) was satisfied. The last two columns of Table D.2
indicate the final results Re(k,) and Sm(k,). From Table D.2, we conclude that our

|dk| | number of | Re(k,) | Sm(k,)

iterations n

0.5 483 0.991 -1.00
0.25 310 0.994 -1.00
0.125 202 0.996 -1.00

Table D.1: Computational results Newton-Raphson iteration for different values of dk. The
number of iterations is given for which the convergence criterion Equation (D.3) is satisfied. We
have also given the final results Re(k,) and Sm(k,).

numerical search routine performs quite well even for large values of |dk| with respect to
|k]. The best results are obtained if |dk| is much smaller than |k|.

It is possible that the derivative of F' can be discontinous at the so-called branch cuts.
This will cause an error in the determination of the derivative. In our numerical code, we
included a procedure to check whether a branch cut was passed or not. If a branch cut
was passed, |dk| was automatically decreased so that this was no longer the case. Another
computational problem is that the values of F' may become very large. To overcome this
problem, we used a normalization procedure such that |F| < 10%. The final results of
the numerical search routine were insensitive to the normalization procedure.

To find the a priori unknown positions of all values of k, we divide the complex k-plane
in a number of blocks as illustrated in Fig. D.2. We start the iteration in a first block. If
the iteration procedure does not converge within 100 steps or has moved out of the block
after 100 steps, we stop the procedure and re-start it in the next block.
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Figure D.2: Initial locations of k for the Newton-Raphson procedure.



Appendix E

Parameters of porous samples.

The properties of the porous samples were determined in independent laboratory experi-
ments. We used three series of samples: natural Bentheimer sandstone and two series of
synthetic samples. The latter two series are indicated by N and G. The N-series consist
of sintered crushed glass and were manufactured by COSS (Poland). The G series con-
sist of Al,O3 and were manufactured by Gimex (Geldermalsen, The Netherlands). The
natural Bentheimer sandstone samples were prepared by Schols en 't Hart (Delft, The
Netherlands) and Shell International Exploration and Production Laboratory (Rijswijk,
The Netherlands).

E.1 Porosity and grain density

Porosities of all porous samples were measured using the standard two-weight (dry and
buoyant) method. The dry weight Gy is measured first, and subsequently, the bouyant
weight G, of the same sample is determined. Using Go and G|, the density of the solid
p, and the porosity can be obtained:

Go

Ps = 'GO—_‘G—le’

(E.1)

and

G1—Go+ puwgVs

= PugVs

(E.2)

where p,, is the water density, V; is the bulk volume of the sample and g the gravity
constant.

E.2 Permeability
The steady-state permeability constant ko and the second Forchheimer coefficient (see
Section 5.3) are determined using an integrated form of Forchheimer’s equation. The

permeability constants are determined using dry samples. It is assumed that the same
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Figure E.1: Set-up for the permeability measurements.

parameters apply for water-saturated samples. The Forchheimer equation reads as follows:

O _ v _ 5 o

%= ¢ pv®b (E3)
where v is the average velocity in the pores, 7 the dynamic fluid viscosity, and p the fluid
density. The permeability coefficients are determined by measuring both the volumetric
flow rate and the pressure drop. The set-up is shown in Fig. E.1. The pressure difference
P2 — P1 is measured with manometer 1 and the pressure difference P1 — P, is mea-
sured using manometer 2, where P, is the atmospheric pressure. Highly sensitive water
manometers (v. Essen, Betz micromanometer, 500 mm ) were used for small pressure
differences. For higher pressures, we used a water U-tube and also mechanical pressure
meters (Wallace and Tiernan). We measured the volume flow rate using a gasmeter
(Schlumberger Industries, Meterfabriek) for low flow rates, while for higher flow rates a
Rota meter (Q1.1000) was applied. A jacket is applied to prevent leakage of air along
the porous sample. In this way a one-dimensional flow is obtained in the sample. The
Forchheimer equation as given in Equation (E.3) is related to the measured quantities in
the following way. The avarage velocity v in the pores is related to the measured volume
flow rate, which is written as a mass flow rate @y, in order to avoid pressure effects:

_ O

v= A (E4)

where A = 7D?/4, with D the diameter of the sample. The density of the air can be
related to the pressure p by

=P
P =T (E.5)
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where R is the specific gas constant and T the temperature. Integrating along the length
L of the porous sample we obtain:

v — i 1 b

SRTLnOnJA ~ % + an/A. (E.6)
Plotting the LHS of this equation versus @ /A yields kg from the intercept with the
vertical axis and yields b from the slope of the curve. As an example, the results for
Eindhoven Sandstone are given in Fig. E.2. For the higher mass flow rates Forchheimer’s
equation is in good agreement with the experimental results. For the lower range we
observe a significant deviation from the theory. Forchheimers equation essentially is an
empirical model, and for lower velocities in the pores the validity is not quite clear. For
a discussion on this subject we refer to Firdaouss et al. (1997).

% *
<09 x
E x
a <
& 3 Bagio
& 08| *
Nc'e, E
o
07}
0.6 - -
0 0.1 0.2 0.3 0.4 05
Q/A (kg/m2s)

Figure E.2: Experimental results of the permeability measurements for Eindhoven Sandstone.
On the horizontal axis, the mass flowrate is given, while on the vertical axis the LHS of Equation
(E.6) is given. o: flowrates measured using Schlumberger gasmeter, +: flowrates measured using
Rota meter Q1.1000.

E.3 Tortuosity

The tortuosity was determined in an electrical resistivity experiment. The analogy be-
tween the accelaration of an inviscid imcompressible fluid within a rigid porous medium,
and the electric current density within an electrolyte filled porous insulator, was first
demonstrated by Brown (1980). We can write for the tortuosity c.e:

Qoo _ B (E.7)
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with Ry as the intrinsic resistivity of the electrolyte in Om and R, as the intrinsic resistiv-
ity of the porous sample in Qm. The ratio ay/¢ is also known as the formation factor F.
This relation was verified experimentally by Johnson et al. (1982). Our set-up is shown
in Fig. E.3. A storage vessel is filled with a 0.08 KCl water solution and subsequently

vessel
pump
A~
T )
g
S .
L 1
“___.J
Df
/v | 1\\
/ porous Ni
Ni jacket ~ sample disk
dis!
Marconi
bridge

Figure E.3: Set-up for the tortuosity measurements.

the porous sample is slowly saturated with this solution. The pump is used to keep the
solution homogenous. A jacket is applied in order to avoid leakage along the sample.
Furthermore, it is assumed that the conductivity of the matrix can be neglected. The
distance S between two Ni-electrodes can be varied. The length of the porous sample is
denoted by L. The resistivities Ry and R, are measured in the following way. Using a
resistance bridge (Marconi Universal Bridge TF2700), the restistance in €2 of the system
with length S between the two Ni-electrodes is measured. We apply a.c. with a 1000 Hz
frequency in order to avoid electrolysis. Subsequently, the electrodes are displaced and
we measure the resistance again. This is repeated for decreasing values of S and we plot
the resistance versus S — L. An example of the results is given in Fig. E.4. The intercept
of the first order fit gives the resistance r; in Q of the porous sample with length L. The
slope of the curve gives the resistance of the electrolyte per mm (rs/L). The intrinsic
resistivity of the porous insulator is obtained by:

R, = Tﬂl’Df,

4L
where D, is the diameter of the porous sample. The intrinsic resistivity of the electrolyte
follows from:

(E.8)

_ Tle'D%
4L’
where Dy is the inner diameter of the perspex tube (see Fig. E.4). For this specific case
we obtain for the formation factor F' a value of 3.86. Using the porosity ¢ = 0.48 we
arrive at ao, = 1.85 for the tortuosity.

Ry

(E.9)
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Figure E.4: Experimental data resistivity measurements sample N4. The resistance is plotted
versus S - L.

E.4 Elastic parameters

For air-saturated porous materials the velocities of the fast and shear wave only depend
on the solid properties. For the high-frequency limite we can write from Equation (3.3.2)

using py = 0:
f Ky
= E.10
“ (1 - ¢)ps’ ( )
and
G
h= | —— E.11
=\ T (E.11)

These velocities are deduced from acoustic transmission experiments. In a water-filled
tank a dry sample of porous material is enclosed in a thin impermeable jacket. The
experimental configuration is shown in Fig. E.5. In this set-up a short duration pulse
is sent through the sample and recorded by the receiver. The porous sample can be
mounted in various positions in between the transducers. For details of this set-up we
refer to Kelder (1998). We perform two experiments for each porous sample. First, we
record the transmitted signal for normal incidence (o = 0°). Subsequently, an experiment
for oblique incidence is carried out (e &~ 20°). Fig. E.6(a) shows the recorded signal for
o = 0°. For this case only the fast compressional wave and the internal reflection of this
wave in the sample is recorded. The first arrival is denoted by T, and the arrival of the
reflection is denoted by T.;. Using these arrival times, we determine the velocity of the
fast wave ¢,. For oblique incidence the shear wave is also generated. Fig. E.6(b) shows
the arrival of the fast wave T,, followed by the arrival of the shear wave T¢en. We use
Too, Tisn, and ¢; to determine the velocity of the shear wave ¢y, in the dry material.
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Another method for the determination of the fast wave velocity in dry samples is the
use of a concrete tester (SIMAC- CSI-ctt4). In that case the piezo-electric transducers are
brought in good mechanical contact with the dry sample and the transit time of an acoustic
pulse is measured. In order to enhance the acoustic coupling between the transducers and
the porous sample a mixture of glycerine and quartz powder was applied. Fig. E.7 gives
a comparison between the data for different samples of the concrete tester and the water
tank. We found that the difference between the two measurements was within 100 m/s.

Water-filled tank

Porous sample in jacket

O

Transmitter Receiver

Measurement

Y

Figure E.5: Set-up for experiments on dry samples.
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Figure E.6: Recorded signals at the receiver in the water tank. The signals are given for two
configurations. For the first case (a) a = 0° and for the second case (b) a = 22°.
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Figure E.7: Comparison between data for different samples of the water tank and the concrete
tester.
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E.5 Parameters

We now give the parameters which we used in our computations, and subsequently, we
give the properties for the samples which were used for shock tube experiments.

air-filled pores:

density of air py (kg/m®) 1.205
speed of sound (m/s) 343
viscosity of air (10~ kgm~'s~1) 1.81
water-saturated rock:

density of water p,, (kg/m®) 998
dynamic viscosity of water n (Pa.s) 1073
water bulk modulus K; (GPa) 2.2
rock properties:

density of the solid p, (10°kg/m3) 2.62
porosity (%) 0.22
permeability ko (10712m?) 2.73
tortuosity 2.9
constrained modulus K, (GPa) 17
shear modulus G (GPa) 8.0
bulk modulus of the grains K, (GPa) | 36.5

Table E.1: Parameter values used in computations. The rock parameters correspond to the
parameter set of Bentheimer sandstone 1 in Table E.3. For the bulk modulus of the grains we
use the literature value for quartz (CRC 1973).

Sample diameter length

name (mm) (mm)

Eindhoven sandstone 73.2 £0.1 152.5 £0.1
Bentheimer sandstone 1 { 70.0 and 76.9 +£0.1 | 400 +£0.2
Bentheimer sandstone 2 74.7 £0.1 20.5 +0.1
N1B 75.8 +£0.1 400 +0.2
N2 76.5 1£0.1 400 +0.2
N3 76.8 +0.1 400 £0.2
N4 76.8 £0.1 400 £0.2
N4B 76.8 +£0.1 400 +0.2
N5 76.5 £0.1 400 0.2
N5B 70.0 £0.1 400 +0.2
N6B 76.8 £0.1 400 +£0.2
G50A 76.8 +£0.1 200 +0.2
G30B 76.8 £0.1 200 +0.2
G40A 75.8 £0.1 200 £0.2
G20B 76.8 £0.1 200 +£0.2

Table E.2: Measured lengths and diameters of the porous samples.
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Sample solid porosity permeability second tortuosity | constrained shear
name density Forchheimer modulus modulus

coefficient
Ps ¢ ko b Qoo Ky G
(kg/m*) ) (10"2m?) (10'm—1) ) (GPa) (GPa)

Eindhoven 2.46 & 0.05 | 0.35 + 0.01 122 + 8 75101 21 +0.1 9.6 + 0.9 )
sandstone
Bentheimer | 2.62 1 0.04 | 0.22 & 0.01 2,73 £ 0.2 -) 29+ 0.1 172 80X 08
sandstone 1
Bentheimer | 2.63 £ 0.04 | 0.23 & 0.01 37102 500 £ 0.1 24 +0.1 16 + 2 7.0 £ 0.7
sandstone 2
NiB 2.51 £ 0.04 | 0.57 £ 0.01 216 + 15 ) 16 £0.1 1.5+ 0.1 (-)
N2 2.55 + 0.04 | 0.48 & 6.01 71+ 4 ) 1.8 +£ 0.1 42 + 0.4 1.6 £ 0.1
N3 2.49 i 0.04 | 0.51 £ 0.01 825 -) 1.6 +£0.1 35+03 1.4+ 01
N4 2.56 + 0.04 | 0.48 + 0.01 201 (-) 1.8 +0.1 6.4 + 0.6 294 0.2
N4B 2.55 + 0.04 | 0.46 = 0.01 20+ 1 -) 20x0.1 9.1 +09 33+03
N5 2.59 £ 0.04 | 0.52 & 0.01 3.2x02 -) 1.7+ 0.1 25 +0.2 0.88 4+ 0.09
N5B 2.57 £ 0.04 | 0.52 + 0.01 34+02 ) 1.7 £ 0.1 2.1 £0.2 0.88 & 0.09
Né6B 2.59 £+ 0.04 | 0.53 + 0.01 29+ 0.2 (-) 1.7+ 0.1 3.7+03 1.3 + 0.1
G50A 3.14 £ 0.06 | 0.58 & 0.01 | (3.45 £ 0.2) 10-4 2.0+ 0.1 48 + 04 2.0 £ 02
G30B 3.1 + 0.06 0.56 = 0.01 (3.9 + 0.2) 10-3 ) 3.1x02 59+ 0.6 24 +£02
G410A 3.21 £ 0.06 | 0.53 + 0.01 (6.1 & 0.02 10-3 ) 2.53 £ 0.2 6.6 £ 0.6 2.6 £ 02
G20B 3.06 + 0.06 | 0.52 + 0.01 (-) (-) () 6.2 + 0.6 (-)

Table E.3: Measured rock properties porous samples.
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Dankwoord

Na het schrijven van een groot aantal bladzijden wetenschappelijke tekst hier een per-
soonlijk woord van dank aan allen die de afgelopen vier jaar hebben bijgedragen aan de
totstandkoming van dit proefschrift.

Dit proefschrift is het resultaat van een voorbeeldige samenwerking tussen twee uni-
versiteiten: de Technische Universiteit Delft en de Technische Universiteit Eindhoven.
Als zijnde promovendus van de (sub)Faculteit Technische Aardwetenschappen (voorheen
Mijnbouwkunde) van de eerstgenoemde universiteit heb ik ruim vier jaar de Brabantse
gastvrijheid ondervonden van de vakgroep Transportfysica, sectie Gasdynamica. Dit
boekje staat officieel op naam van de TU Delft, de TU Eindhoven echter heeft minstens
zoveel bijgedragen aan het welslagen van het onderzoek. Hiervoor hartelijk dank.

David Smeulders van de TU Delft heeft als directe begeleider vele uurtjes gespendeerd

om alle bladzijden van dit proefschrift door te ploegen en van commentaar te voorzien.
De opmerking dat sommige passages een sprookjesachtig karakter hadden, heb ik uiter-
aard opgevat als een compliment. Deze passages zijn er uitgeknipt (helaas voor de lieve
lezertjes). Aan de bladzijden van dit proefschrift gingen minstens evenzovele uren van
discussie vooraf over diverse uitgeprinte figuren.
Mijn eerste promotor Max Peeters heeft er voor gezorgd dat de link van het onderzoek met
de ’echte’ boorgatmetingen steeds up-to-date bleven. Tevens heeft zijn commentaar de
leesbaarheid van verscheidene delen van dit proefschrift vergroot. Mijn tweede promotor
Rini van Dongen was elke keer weer bereid om tijd te investeren in dit onderzoek. Even
binnelopen was voldoende voor een hoop bruikbare ideeén. Verder is hij in staat om op
sympatieke wijze je duidelijk te maken als er iets niet klopt, dan wel slecht opgeschreven
1S.

Ondersteuning op theoretisch gebied heb ik gekregen van Dr. Frans van de Vosse van
de TUE met betrekking tot Sepran. Dr. Sjoerd Rienstra van de faculteit Wiskunde en
Informatica (TUE) heeft me attent gemaakt op de problematiek van de complexe wortels
en vertakkingsneden. Verder was hij bereid in de commissie zitting te nemen, evenals
Prof. Fokkema, en Prof. Barends. Mede door hun suggusties naar aanleiding van het
conceptproefschrift is dit manuscript tot stand gekomen. Prof. Allard van I'Université
du Maine in Frankrijk heeft het conceptproefschrift van commentaar voorzien, maar was
helaas niet in de gelegenheid om de promotie bij te wonen. Prof. van Kruijsdijk was
bereid om als reservelid op te treden.

Een onderzoek met een belangrijke experimentele poot heeft groot belang bij goede
technische ondersteuning. Die is de afgelopen vier jaar in ruime mate aanwezig geweest.
De eerste twee jaar heeft Marieke van Hilten veel energie gestopt in het wederopbouw
van de schokbuis, het bepalen van parameters, het bakken van nieuwe monsters en het
voorbereiden en uitvoeren van schokbuisexperimenten, het tekenen in AutoCad en nog
veel meer. De 'oogstperiode’ vond, zoals gewoonlijk bij een promotieonderzoek, plaats in
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de laatste twee jaar. De resultaten van al de inspanningen zijn nu te lezen in dit boekje.
Joachim Tempelaars heeft de laatste twee jaar van de technische ondersteuning voor zijn
rekening genomen. Een brandweerman, tevens directeur van een onderneming-in-wording,
vermomd als technicus. Hij bleek ontzettend handig te zijn. Zonder de verstelbare bodem-
sectie was het experimentele deel van dit proefschrift een heel stuk magerder uitgevallen.
De flitsende 3D AutoCad-plaatjes (zie omslag) doen de grenzen van de realiteit vervagen.
Voor verdere technische ondersteuning hebben Eep van Voorthuizen, Jan Willems, Harm
Jager en Louis Wasser gezorgd. Mijn 'buurmannen’ Ad Holten en Herman Koolmees
hebben, naast technische ondersteuning, de laatste anderhalf jaar gezorgd voor de aan-
wezigheid van boeiende achtergrondgeluiden. Karel Heller en André Hoving van de TU
Delft hebben tijdens mijn spaarzame verblijven in Delft de nodige technische ondersteu-
ning verleend.

Birgitt Hepp heeft met haar stage een bijdrage geleverd aan de bepaling van de ge-
steenteparameters. Mijn verblijf in Eindhoven werd verder veraangenaamd door de aan-
wezigheid van mijn collegapromovendi. Tk heb ze één keer vermoeid met het spelen op
het orgel van de TU. Ze vonden het nog boeiend ook. Tijdens het tafeltennissen ben ik
overigens afgehaakt wegens chronisch gebrek aan talent. De secretaresses Anita Peeters
en Brigitte van de Wijdeven voorzagen de lunchgesprekken van andere onderwerpen dan
computers, wetenschap en aanverwante artikelen.

Van mijn ouders, broers en schoonzussen heb ik morele ondersteuning ontvangen.
Het is moeilijk uit te leggen hoe je over een buis met een stuk steen een boek van 200
pagina’s kan schrijven. Het is dan toch gelukt, maar de inhoud ervan is voor een leek
volkomen onbegrijpelijk. De gedachte van Pascal dat de gehele zichtbare wereld slechts
een onwaarneembaar streepje is in de schoot van de natuur, is voldoende excuus om een
ander boek ter hand te nemen.
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