
Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

Exploring Program Equivalence as a Means of
Comparing Definitional Interpreters

Ruben Backx Casper Bach Poulsen Cas van der Rest

Delft University of Technology
Research Project - Q4 2020 / 2021

Abstract

Grading and giving feedback to student
submissions automatically is becoming
more and more necessary with an in-
creasing amount of students. To verify
the correctness of student-written defin-
itional interpreters, a program equival-
ence approach has been implemented,
improved, and extended with new rules
to make it more suited specifically for
verifying interpreters. This approach is
able to soundly recognise two different in-
terpreters as equivalent. Interpreters can
thus be compared to a correct interpreter
to verify their correctness or be grouped
with equivalent interpreters to be graded
in batches. Using program equivalence
in combination with other verification ap-
proaches can improve the process of giv-
ing feedback to students and help build
up a collection of common errors made by
students.

1 Introduction

In recent times, as the amount of students has
increased, so has the demand for more effi-
cient automated grading. The course Concepts
of Programming Languages at the Delft Uni-
versity of Technology is no exception. In this
course, students write definitional interpreters,
i.e. interpreters for a language defined in the
same metalanguage as the interpreters. These
interpreters are compared to the reference inter-
preters using an ever-growing amount of tests.
Every year, students find ways of passing all
tests with a wrong interpreter. The need to
manually come up with tests for new edge cases
would be reduced if student interpreters could

be compared to the reference interpreters auto-
matically.

There has been some research into compar-
ing student submissions for programming as-
signments. Examples are Gulwani et al. [1], who
cluster python programs and correct errors in
them to assist in grading, and Jaber [2], who
automatically determines whether higher-order
programs are equivalent as long as they do not
have recursion. Another approach is that by
Clune et al. [3]. They convert programs to a lo-
gical formula that will be satisfiable only if the
programs are equivalent. Student submissions
can subsequently be grouped into ‘buckets’ of
equivalent submissions for batch grading or, in
the case that they are in a correct ‘bucket’, to be
labeled as correct. Since this approach requires
programs to be written in a purely functional
language, it might be more suited for comparing
definitional interpreters, as those are most com-
monly written in functional languages. How-
ever, it has some limitations. To name a few:
recursive functions with a different base case
are not recognised as equivalent, programs that
use built-in functions are not always recognised
as equivalent, and it does not have support for
strings nor for lists.

How effective is program equivalence for
comparing definitional interpreters? In the rest
of this paper we explore this thoroughly:

• In section 3 we explain how we implemen-
ted list and string support.

• We introduce pre- and post-processing
techniques to make program equivalence
more reliable in section 3.

• We create an additional set of formula gen-
eration rules, specifically suited for com-
paring interpreters and prove their sound-
ness in section 3.

1

Delft University of Technology, In Partial Fulfilment of the Requirements For the Bachelor of Computer Science and Engineering

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

• The effectiveness of these new additions
and program equivalence in general needs
to be examined. We set up an experiment
comparing the effectiveness on different
classes of interpreters and discuss the res-
ults in section 4.

• No approach is perfect, so in section 5
and 6 we discuss possible flaws and future
work.

2 Methodology

A definitional interpreter can be many times
more complicated than the programs compared
in Clune et al. First of all, case matches might
contain a dozen or more cases, with possibly
deeper nested case matches inside of them.
Secondly, the main recursive interpret func-
tion is called extensively in multiple equally
valid places. An interpreter might additionally
make use of a number of helper function. Fi-
nally, strings and lists are fundamental for inter-
preters with variable or environment support.
This all might pose a problem when using the
program equivalence method to compare defin-
itional interpreters.

On the other hand, program equivalence is
currently able to recognise equivalent programs
when they are structurally similar. Because in-
terpreters written in a functional style often are
structurally almost identical, program equival-
ence seems like a suitable approach to verify
them. The restriction, that programs should
have recursive calls in similar places with the
same arguments, lest they be more likely to not
be recognised as equivalent, should additionally
not be a problem for interpreters. Take for ex-
ample the expression l + r. Both interp l and
interp r will have to be called, otherwise the in-
terpreter should be recognised as non-equivalent
to a correct one. The equivalence of smaller
parts of functional programs is even decidable,
as long as they can be converted to simply typed
lambda calculus [4].

The testing of the program equivalence
method was split up into several steps. Before
anything could be done, an implementation of
the method was needed. We created a new im-
plementation containing all the rules from the
Clune et al. paper. We chose to do this rather

than modify the implementation Clune et al.
provide, mainly because modification is easier
if the implementation is written with modifica-
tion in mind. Then, support for strings and lists
was added. The details of this are described in
section 3. 120 different interpreters, both with
and without errors, were written next. The in-
terpreters were labeled according to the ‘bucket’
they should belong to, i.e. equivalent interpret-
ers were given the same label. The exact distri-
bution will be described in the section 4.

In the following step the interpreters were
compared using the unmodified program equi-
valence approach. This was done to provide
a baseline to which a modified program equi-
valence approach, more suited for definitional
interpreters, could be compared. Additionally,
these results have provided insight in what im-
provements to make.

After improvements had been made, the in-
terpreters were once again compared using the
same method. Since the insight the original res-
ults provided was used to make improvements,
it could be the case that only the mistakes in the
original interpreters will be recognised with the
modified program equivalence implementation.
Therefore another 120 interpreters, with new
types and combinations of errors, were written
using the same insight. The full approach used
to overcome this selection bias can be found in
section 5. The last set of interpreters was com-
pared just like the other two to obtain the final
set of results.

3 Equivalence Implementation
and Improvement

The implementation of the program equival-
ence approach can be divided into three phases:
conversion, processing, and formula generation.
Haskell code was converted into a smaller lan-
guage based on the one in the Clune et al. pa-
per. The language remains largely unmodified
save the addition of nil, cons, concatenation, and
the char type. The syntax of this language can
be found in figure 1. Since a Haskell program
need not be fully explicitly typed, parts where a
type is missing get assigned a fresh type vari-
able instead. We added a type reconstruction
algorithm [5] to be run as the first step of the

2

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

processing phase. This works as long as there
is enough information to reconstruct a concrete
type. It would not work on \x -> x for ex-
ample, as its type can only be reconstructed as
a → a. The processing phase also performs
a type check on the two programs being com-
pared to ensure they have the same type. Af-
terwards, a process of formula generation takes
place based on a set of formula generation rules,
which make use of term judgement, freshening,
and equating bindings rules. We added new
rules to support the additions to the language.
Figure 2 and 3 define new typing rules for pat-
terns and expressions respectively. New rules
for pattern matching and the dynamic semantics
are defined in figure 4 and 5. New rules for
term judgement, freshening, equating bindings,
and formula generation are defined in figure 6,
7, 8, and 9. An explanation about the notation
used in the figures can be found in appendix
A. Although an understanding of the original
rules and definitions not mentioned in this pa-
per is welcomed, it is not necessary to under-
stand the contributions. After a formula is gen-
erated, it gets converted to bindings for an SMT
solver, like Z3 [6], which then attempts to find a
counter-example to the formula.

We treat strings as lists of characters from
conversion up to formula generation. In the for-
mula generation phase, terms of type [char] are
converted to strings instead of lists. Lists can
be handled in one of two ways. A list can be
converted to a built-in list or to a data type with
constructors Nil and Cons. We chose the latter
approach to ease implementation. This way no
extra logic specifically for lists is needed.

We added six new rules to improve equival-
ence recognition. These can be found in fig-
ure 10. The ISOcommutative rules are designed to
recognise equivalence between two operations
that have their operands flipped. They only ap-
ply to the operators +, ∗, =, and 6=. These rules
simply compare the left hand side to the right
hand side of the other operation in addition to
comparing left hand side and right hand side
operands. The other two rules attempt to peer
deeper into a case analysis expression to find po-
tential recursive calls. Originally, the expression
matched on in a case analysis had to be a term
for the case analysis to be checked against an
arbitrary expression. Doing this for every ex-

pression would be too computationally intens-
ive, but only applying this tactic to specific case
matches does not impact performance too much.

To increase the chances two case analyses
get recognised as equivalent, we added a small
amount of processing to be done before formula
generation to ensure the cases are in a predict-
able order. First, a check is performed such that
only cases that can safely be reordered are con-
sidered. Then the cases are sorted. This can ap-
ply to matches on injections, lists, constants, or
a combination of those with matches on records.
For records, the cases are sorted using a radix
sort.

We added additional logic directly after for-
mula generation, since SMT solvers do not un-
derstand all terms. Specifically, the wildcard
term cannot be passed directly to most SMT
solvers. Therefore extraction of nested wild-
cards has been added. When a nested wildcard
is encountered, it will be replaced by a fresh
variable. That variable will be set equal to the
value the wildcard originally occupied. For ex-
ample, Just · {. . . , `i = , . . .} ≡ t is converted to
Just · {. . . , `i = x, . . .} ≡ t ∧ x ≡ getJust(t) · `i.

We have not only made improvements in the
formula generation stage, but also in the conver-
sion stage. To achieve the best results, programs
should be converted to result in as similar pro-
grams as possible. Smaller, less deep programs
seem to provide better results as well. To cre-
ate smaller programs, functions without recurs-
ive calls are converted to simple lambdas. To
create more similar programs, if statements are
always converted to their most ‘non-negated’
form. This means the condition e1 = e2 will not
change, but e1 6= e2 will be changed to e1 = e2
with swapped branches.

The rules introduced should be sound to pre-
serve the soundness of the original program
equivalence approach, i.e. if two programs are
recognised as equivalent, they are definitely ex-
istentially equivalent. The set of original rules
has been proven sound in Clune et al., so we
only prove the soundness of the new rules. Ex-
planation about the notation used in the proof
can also be found in appendix A.

3

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

base types b ::= int|boolean|char
types τ ::= b base type

| δ data type
| {`1 : τ1, . . . , `n : τn} product type
| τ1 → τ2 function type
| [τ] list type

injection labels i ::= label1|label2|...
patterns p ::= wildcard pattern

| x variable pattern
| {`1 = p1, . . . , `n = pn} record pattern
| x as p alias pattern
| c constant pattern
| i · p injection pattern (with argument)
| i injection pattern (without argument)
| []τ nil pattern
| p1 :p2 cons pattern

primitive operations o ::= +| − | ∗ | < | > | ≤ | ≥
| =τ | 6=τ |++ (concat)

expressions e ::= c constant
| x variable
| {`1 = e1, . . . , `n = en} record
| e · `i projection
| i · e injection (with argument)
| i injection (without argument)
| case e {p1.e1| . . . |pn.e1} case analysis
| λx.e abstraction
| e1 e2 application
| fix x is e fixed point
| o primitive operation
| []τ nil
| e1 :e2 cons

Figure 1: The syntax of the smaller language

[]τ :: [τ] a PATlist1
p1 :: τ a Γ1 p2 :: [τ] a Γ2

p1 :p2 :: [τ] a Γ1Γ2
PATlist2

Figure 2: The new pattern typing rules

Γ ` []τ : [τ] TYlist1
Γ ` e1 : τ Γ ` e2 : [τ]

Γ ` e1 :e2 : [τ] TYlist2

Figure 3: The new expression typing rules

4

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

[]τ � []τ a
MATCHlist1

v 6= []τ
v �\ []τ

MATCHlist2
v1 � p1 a B1 v2 � p2 a B2

v1 :v2 � p1 :p2 a B1B2
MATCHList3

v1 �\ p1
v1 :v2 �\ p1 :p2

MATCHlist4
v2 �\ p1

v1 :v2 �\ p1 :p2
MATCHlist5

Figure 4: The new pattern matching rules

[]τ val DYNlist1
e1 7→ e′1

e1 :e2 7→ e′1 :e2
DYNlist2

e1 val e2 7→ e′2
e1 :e2 7→ e1 :e′2

DYNlist3
e1 val e2 val

e1 :e2 val DYNlist4

Figure 5: The new dynamic semantics

[]τ Term TERMlist1
t1 Term t2 Term

t1 :t2 Term TERMlist2

Figure 6: The new term judgement rules

freshen []τ .e ↪→ []τ .e FRESHENlist1
freshen p1.e ↪→ p′1.e1 freshen p2.e1 ↪→ p′2.e2

freshen p1 :p2.e ↪→ p′1 :p′2.e2
FRESHENlist2

Figure 7: The new freshening rules

EB([]τ .e1, []τ .e2) ↪→ ([]τ .e1, []τ .e2)
EBlist1

EB(p1
1.e1, p2

1.e2) ↪→ (p3
1.e′1, p4

1.e′2) EB(p1
2.e′1, p2

2.e′2) ↪→ (p3
2.e′′1 , p4

2.e′′2)
EB(p1

1 :p1
2.e1, p2

1 :p2
2.e2) ↪→ (p3

1 :p3
2.e′′1 , p4

1 :p4
2.e′′2)

EBlist2

Figure 8: The new equate bindings rules

Γ ` e1
σ1⇐⇒ e′1 : τ a Γ1 Γ ` e2

σ2⇐⇒ e′2 : [τ] a Γ2

Γ ` e1 :e2
(σ1∧σ2)←−−−→ e′1 :e′2 : [τ] a Γ1Γ2

ISOlist1

Figure 9: The new formula generation rule

5

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

Γ ` el
σ1⇐⇒ e′l : τ a Γ1 Γ ` er

σ2⇐⇒ e′r : τ a Γ2

Γ ` el
σ3⇐⇒ e′r : τ a Γ3 Γ ` er

σ4⇐⇒ e′l : τ a Γ4

Γ ` el + er
(σ1∧σ2)∨(σ3∧σ4)←−−−−−−−−→ e′l + e′r : τ a Γ1, Γ2, Γ3, Γ4

ISOcommutative1

Γ ` el
σ1⇐⇒ e′l : τ a Γ1 Γ ` er

σ2⇐⇒ e′r : τ a Γ2

Γ ` el
σ3⇐⇒ e′r : τ a Γ3 Γ ` er

σ4⇐⇒ e′l : τ a Γ4

Γ ` el ∗ er
(σ1∧σ2)∨(σ3∧σ4)←−−−−−−−−→ e′l ∗ e′r : τ a Γ1, Γ2, Γ3, Γ4

ISOcommutative2

Γ ` el
σ1⇐⇒ e′l : τ a Γ1 Γ ` er

σ2⇐⇒ e′r : τ a Γ2

Γ ` el
σ3⇐⇒ e′r : τ a Γ3 Γ ` er

σ4⇐⇒ e′l : τ a Γ4

Γ ` el = er
(σ1∧σ2)∨(σ3∧σ4)←−−−−−−−−→ e′l = e′r : τ a Γ1, Γ2, Γ3, Γ4

ISOcommutative3

Γ ` el
σ1⇐⇒ e′l : τ a Γ1 Γ ` er

σ2⇐⇒ e′r : τ a Γ2

Γ ` el
σ3⇐⇒ e′r : τ a Γ3 Γ ` er

σ4⇐⇒ e′l : τ a Γ4

Γ ` el 6= er
(σ1∧σ2)∨(σ3∧σ4)←−−−−−−−−→ e′l 6= e′r : τ a Γ1, Γ2, Γ3, Γ4

ISOcommutative4

Γ ` e : τ
Γ ` e contains e : τ

CONTAINSrefl
Γ ` ei contains e : τ

Γ ` {. . . , `i = ei, . . .} contains e : τ
CONTAINSrecord

Γ ` e1 contains e : τ
Γ ` e1 e2 contains e : τ

CONTAINSapplication
Γ ` e′ contains e : τ

Γ ` i · e′ contains e : τ
CONTAINSinjection

y fresh Γ ` e1 contains f e3 : τ2

Γ, y : τ2 ` [y/(f e3)]case e1 {M} σ←→ [y/(f e3)]e2 : τ a Γ′

Γ ` case e1 {M} σ←→ e2 a Γ′
ISOcase6

y fresh Γ ` e2 contains f e3 : τ2

Γ, y : τ2 ` [y/(f e3)]e1
σ←→ [y/(f e3)]case e2 {M} : τ a Γ′

Γ ` e1
σ←→ case e2 {M} a Γ′

ISOcase7

Figure 10: The new rules implemented after experimentation

6

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

Theorem 3.1. The new ISO rules introduced in this
paper are sound. That is, for any expressions e1 and
e2

if Γinitial ` e1
σ⇐⇒ e2 : τ a Γ′ and

val
∀ Γ′ .σ

then e1
∼= e2 : τ

Proof. We prove the soundness of each rule by
induction. We use the following induction hy-
pothesis:

• If Γ ` e1
σ⇐⇒ e2 : τ a Γ′ then

val
∀ Γ .

(
if
(

val
∀ Γ′ .σ

)
then e1

∼= e2 : τ

)
• If Γ ` e1

σ←→ e2 : τ a Γ′ then
val
∀ Γ .

(
if
(

val
∀ Γ′ .σ

)
then e1

∼= e2 : τ

)
We will use the fact that the language enjoys ref-
erential transparency, meaning existential equi-
valence is closed under replacement of existen-
tially equivalent sub-expressions.

ISOcommutative1: Let Γ = ~x : ~τ with arbitrary
~v, where ∀vi ∈ ~v (vi : τi ∧ vi val).

Assume [~v/~x]
(

val
∀ Γ1,Γ2,Γ3,Γ4 (σ1 ∧ σ2) ∨ (σ3 ∧ σ4)

)
.

We must show [~v/~x](el + er ∼= e′l + e′r).
By the induction hypothesis

val
∀ Γ .

(
if
(

val
∀ Γ1 .σ1

)
then el

∼= e′l

)
thus, since σ1 does not contain any variables in
Γ2, Γ3, or Γ4

if [~v/~x]
(

val
∀ Γ1 .σ1

)
then [~v/~x]

(
el
∼= e′l

)
The same goes for σ2, σ3, and σ4, giving

if [~v/~x]
(

val
∀ Γ2 .σ2

)
then [~v/~x]

(
er ∼= e′r

)
if [~v/~x]

(
val
∀ Γ3 .σ3

)
then [~v/~x]

(
el
∼= e′r

)
if [~v/~x]

(
val
∀ Γ4 .σ4

)
then [~v/~x]

(
er ∼= e′l

)
From this we can conclude

[~v/~x]
(
el
∼= e′l

)
∧ [~v/~x]

(
er ∼= e′r

)
∨ [~v/~x]

(
el
∼= e′r

)
∧ [~v/~x]

(
er ∼= e′l

)

By referential transparency

[~v/~x]
(
el + er ∼= e′l + e′r

)
∨ [~v/~x]

(
el + er ∼= e′r + e′l

)
Since + is commutative [~v/~x]

(
e′l + e′r ∼= e′r + e′l

)
,

therefore

[~v/~x]
(
el + er ∼= e′l + e′r

)
ISOcommutative2: The proof is the same as in
ISOcommutative1 with + substituted for ∗.
ISOcommutative3: The proof is the same as in
ISOcommutative1 with + substituted for =.
ISOcommutative4: The proof is the same as in
ISOcommutative1 with + substituted for 6=.
ISOCase6 : Let Γ = ~x : ~τ with arbitrary ~v, where
∀vi ∈ ~v (vi : τi ∧ vi val).

Assume [~v/~x]
(

val
∀ Γ′ σ

)
.

We must show [~v/~x](case e1 {M} ∼= e2).
By the induction hypothesis

val
∀ Γ .

(
if
(

val
∀ Γ′ .σ

)
then

[y/(f e3)]case e1 {M} ∼= [y/(f e3)]e2)

We can assume f e3 Z⇒ w for some w, such that
Γ ` w : τ and w val, since we only need to prove
soundness for valuable expressions. Since y is
fresh

if [y/w][~v/~x]
(

val
∀ Γ′ .σ

)
then

[y/w][~v/~x] ([y/(f e3)]case e1 {M}
∼= [y/(f e3)]e2)

By assumption we conclude

[y/w][~v/~x] ([y/(f e3)]case e1 {M}
∼= [y/(f e3)]e2)

which is equivalent to

[~v/~x] ([w/(f e3)]case e1 {M} ∼= [w/(f e3)]e2)

Because f e3 Z⇒ w and by referential transpar-
ency

[~v/~x] ([(f e3)/(f e3)]case e1 {M} ∼=
[(f e3)/(f e3)]e2)

7

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

which is

[~v/~x] (case e1 {M} ∼= e2)

ISOCase7 : By symmetry and ISOCase6.

4 Experimental

The initial set of test interpreters written consists
of 120 interpreters in total, equally divided over
over three categories. One category contains in-
terpreters for pure lambda calculus, one con-
tains type checkers, and the last category con-
tains interpreters for a more complicated lan-
guage. These languages are described in ap-
pendix B. Type checkers have been included as
their structure is similar to interpreters and they
are often written by students alongside inter-
preters. Every category consists of 20 correct
and 20 incorrect interpreters. The 20 correct
interpreters are only structurally different from
each other. 10 of the incorrect interpreters have
one or two mistakes. The other 10 are structur-
ally different from one of the first 10.

To test the effectiveness, all interpreters are
compared to all other interpreters from from
same category. This results in 580 checks that
should be negative and 200 checks that should
be positive. The results of this for the program
equivalence approach without any new rules
added can be found in figure 12. True negatives
and false positives have been included as a san-
ity check. If there would be false positives, one
of the rules would be unsound. These results
show the program equivalence approach is able
to recognise some interpreters as equivalent, but
some rules need to be added to make it more vi-
able. By analysing the false negatives, we made
a list of changes that without any new rules res-
ult in programs not being recognised as equival-
ent. Relevant rules can be found in figure 11.

Case ordering When two case analyses are be-
ing compared, it is helpful if the cases are
in the same order. Case analyses with dif-
ferently ordered cases cannot make use of
the ISOcase4 and ISOcase5 rules effectively,
as the freshen together judgements require
the cases to be in the same order.

Nested patterns Since patterns are terms, they
can appear nested in records and injec-
tions. Often a term is generated of the
form x ≡ {`1 = , . . .}. The naive ap-
proach of converting the record directly
to some value in the SMT solver does not
work. The wildcard cannot be conver-
ted to a value. This term can also not be
filtered out in simplification like x ≡ ,
which simplifies to true. This caused the
equivalence checker to fail and assume the
programs being compared are not equival-
ent.

Complex case analysis Comparing a case ana-
lysis that analyses an non-term expression,
e.g. case interp e {. . .}, means that ISOcase1
and ISOcase2 cannot be used. If the other
expression is not a case analysis, no for-
mula can be generated, causing the equi-
valence checker to assume the programs
are not equivalent. These kinds of case
analyses occur often in interpreters, in-
creasing the chance that no formula is gen-
erated.

Nested case analyses Nested case analyses in-
crease the likelihood of generating an
equivalence discussed in the previous
point, resulting in no formula being gen-
erated.

Commutative operations The application rules
usually do not detect equivalence in com-
mutative operations, e.g. e1 ∗ e2 ↔ e3 ∗ e4.
A part of the term this generates is σ1 ∧
σ2 ∧ ∗ ≡ ∗, where σ1 and σ2 are gener-
ated by e1 ⇔ e3 and e2 ⇔ e4 respectively.
Ideally e1 ⇔ e4 and e2 ⇔ e3 would also be
checked.

Negated conditions Two implementations that
check the same condition cannot be recog-
nised as equivalent when one of them is
negated, e.g.

case e1 = e2 {true.e3| f alse.e4}
l

case e1 6= e2 {true.e4| f alse.e3}

Clearly these are equivalent, but no rule
can recognise this.

8

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

e Term ∀i∈[n]

(
freshen pi.ei ↪→ p′i.e

′
i pi :: τ′ a Γi Γ, Γi ` e′i

σi⇐⇒ e′ : τ a Γ′i
)

Γ ` case e {p1.e1| . . . |pn.en}
∧i∈[n]

((
∧j∈[i−1]

(
e 6≡p′j

))
∧e≡p′i

)
⇒σi

←−−−−−−−−−−−−−−−−−−−→ e′ : τ a ∀i∈[n]Γi, Γ′i

ISOcase1

e Term ∀i∈[n]

(
freshen pi.ei ↪→ p′i.e

′
i pi :: τ′ a Γi Γ, Γi ` e′i

σi⇐⇒ e′ : τ a Γ′i
)

Γ ` e′
∧i∈[n]

((
∧j∈[i−1]

(
e 6≡p′j

))
∧e≡p′i

)
⇒σi

←−−−−−−−−−−−−−−−−−−−→ case e {p1.e1| . . . |pn.en} : τ a ∀i∈[n]Γi, Γ′i

ISOcase2

FT ({M}, {M′}) s
↪−→

(
{p1.e1| . . . |pn.en}, {p′1.e′1| . . . |p′m.e′m}

)
∀i∈[s]

(
pi :: τ′ a Γi Γ, Γi ` ei

σi⇐⇒ e′i a Γ′i
)

∀j∈[s+1,n]

(
pj :: τ′ a Γj Γ, Γj ` ej

σj⇐⇒ case x {p′1.e′1| . . . |p′m.e′m} : τ a Γ′j

)
Γ ` case x {M} Ψ←→ case x {M′} : τ a ∀i∈[n]Γi, Γ′i

ISOcase4

FT ({M}, {M′}) s
↪−→

(
{p1.e1| . . . |pm.em}, {p′1.e′1| . . . |p′n.e′n}

)
∀i∈[s]

(
pi :: τ′ a Γi Γ, Γi ` ei

σi⇐⇒ e′i a Γ′i
)

∀j∈[s+1,n]

(
pj :: τ′ a Γj Γ, Γj ` case x {p′1.e′1| . . . |p′m.e′m}

σj⇐⇒ ej : τ a Γ′j

)
Γ ` case x {M′} Ψ←→ case x {M} : τ a ∀i∈[n]Γi, Γ′i

ISOcase5

Ψ :=
(
∧i∈[s]σi

)
∧
(
∧j∈[s+1,n]

((
∧k∈[j−1] (x 6≡ pk)

)
∧ x ≡ pj

)
⇒ σj

)
Figure 11: Relevant original rules

9

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

The improvements described in section 3
have solved most of these problems in some
way. Nested patterns and negated conditions
have been completely solved by pattern extrac-
tion and better conversion. Case ordering is
solved by case reordering except in the case of
some record patterns. It might be possible to
fix this as well with a more sophisticated re-
ordering approach. Complex case analysis and
commutative operations have been solved as a
consequence of the new ISOcase rules and the
ISOcommutative rules. Nested case analysis is still
a common problem, although it is no longer as
frequent.

Lambda calc. Type checker Interpreter
0

200

400

600

16 16 300 0 0

580 580 580

184 184 170

True Positive
False Positive
True Negative
False Negative

Figure 12: Results with no additional rules

The new results on the original set of inter-
preters can be found in figure 13. This shows an
improvement over unmodified program equi-
valence. This improvement can also be seen on
a new set of interpreters. These result can be
found in figure 14. Depending on the type of
interpreter about 25% to 65% of the tested modi-
fications can be detected as equivalent.

To conclude the experimental results, we
performed a small performance analysis. The
averages of 10 different execution times of the
unmodified and modified program equivalence
approaches were taken. For all runs, two equi-
valent interpreters were compared. The modi-
fications should not make the approach too slow
in order for it to be practical, nor should the un-
modified approach be slow. The results are as
follows: 0.42 seconds for unmodified program
equivalence and 0.69 seconds for modified pro-

gram equivalence. These numbers do not differ
much for smaller or larger interpreters, as the ex-
ecution time largely depends on the amount of
applied formula generation rules. This number
is similar for a pair of similarly different inter-
preters. These results shows the improvements
slow comparison down slightly, but two equi-
valent interpreters can still be compared in less
than a second with and without improvements.

Lambda calc. Type checker Interpreter
0

200

400

600

54
104 104

0 0 0

580 580 580

146
96 96

True Positive
False Positive
True Negative
False Negative

Figure 13: Results from the first set of
interpreters with the full ruleset

Lambda calc. Type checker Interpreter
0

200

400

600

44
104 132

0 0 0

580 580 580

156
96 68

True Positive
False Positive
True Negative
False Negative

Figure 14: Results from the second set of
interpreters with the full ruleset

10

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

5 Responsible Research

Any approach that automatically grades stu-
dents should not be blindly trusted. The
soundness of the program equivalence approach
makes it such that the main concern is false neg-
atives. This is why only interpreters for which
a counter-example gives different results can
be labeled as ‘definitely different’. If no such
counter-example is generated, the interpreters
might simply be too structurally different. This
can be of interest in grading, but should never
be used to label a solution as incorrect.

One should also keep in mind the possibil-
ity that the program equivalence approach does
not work well on interpreters written by stu-
dents. It has been tested on interpreters with
common mistakes students make when writ-
ing interpreters, but this is not a guarantee it
will work in a real world situation. Hence why
it is important all interpreters used to test be
available. They have been made available open
source at https://gitlab.ewi.tudelft.nl/cse3000-
auto-test/test-suites.

Next, the possibility of a bug in the imple-
mentation needs to be discussed. It is likely
a bug was introduced in the implementation
used for this paper or will be introduced in
any re-implementation in the future. To reduce
the probability of this happening, any imple-
mentation should be extensively tested. The
implementation used for this paper has been
tested manually on many interpreters of differ-
ent structures. Automated tests are also ad-
visable for future implementations. Bugs can
lead to more false negatives or even false pos-
itives, violating the soundness of the approach.
During testing for this paper no such bug has
been found. This does not mean there is none
however. For full transparency the implement-
ation used has also been made available open
source at https://gitlab.ewi.tudelft.nl/cse3000-
auto-test/programme-equivalence.

Lastly, to avoid selection bias, some precau-
tions were taken. Although mentioned in this
paper, the effectiveness on the original set of test
interpreters should not be taken as the real ef-
fectiveness of the approach. The effectiveness
on the second set of interpreters is more accur-
ate. The first set of interpreters was used to
gain insight on which rules should be added to

make the program equivalence approach more
suitable for interpreters. Creating two sets of in-
terpreters would be useless however, if the same
types of errors and structural changes were used
in the new interpreters as well. This is why, if
a rule was added that made the approach more
effective for interpreters with a certain error or
structural change, this change was not made in
any of the new interpreters. Only when a change
proved hard to detect, was it used in the new
interpreters with the same frequency as in the
original set. This likely still does not give an ac-
curate depiction of the real world and therefore
the results only serve as a crude approximation
of the effectiveness of program equivalence to
verify definitional interpreters.

6 Using Program Equivalence

Based on the experimental results, we can con-
clude that the program equivalence approach
is at least suitable for automatically verifying
student-written interpreters. Not only because
the approach seems to recognise about half of
the equivalent interpreters, but more import-
antly because it is sound. In a real world setup,
student submissions could be compared to a ref-
erence interpreter. If an interpreter is then recog-
nised as equivalent, it can be assumed that the
student’s interpreter is not only correct, but also
likely structurally similar to the reference inter-
preter. Another possibility is to ‘bucketise’ stu-
dent submissions. Interpreters can be compared
to each other and equivalent interpreters can be
grouped in the same ‘bucket’. With this setup,
manual or automatic feedback given to one stu-
dent likely applies to all other students in the
same bucket as well.

Something program equivalence lacks is the
ability to generate a good counter-example for
two non-equivalent interpreters. When two in-
terpreters are non-equivalent, usually a counter-
example is generated that gives a different res-
ult on the two interpreters. This is however
not guaranteed. Additionally, it might be the
case two interpreters are equivalent, just not
recognised as such. Another problem is the
fact that not all counter-examples are meaning-
ful. Therefore it might be beneficial to pair
the program equivalence approach with some

11

https://gitlab.ewi.tudelft.nl/cse3000-auto-test/test-suites
https://gitlab.ewi.tudelft.nl/cse3000-auto-test/test-suites
https://gitlab.ewi.tudelft.nl/cse3000-auto-test/programme-equivalence
https://gitlab.ewi.tudelft.nl/cse3000-auto-test/programme-equivalence

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

other verification approaches. One option is
concolic or symbolic execution [7] [8]. The be-
nefit of such an approach is that it can run on
the smaller language the interpreters get con-
verted to, easing implementation. Since these
approaches generate their counter-examples by
recording constraints against execution paths,
the counter-examples are more likely to be use-
ful. Alternatively, a property based testing tool,
like QuickCheck, can be used [9] [10]. Prop-
erty based testing tools make use of random-
isation to generate counter-examples that viol-
ate some property. These counter-examples are
usually large for more complex programs. This
is why property based testing tools can employ
‘shrinking’ to make a counter-example as small
as possible. Both these approaches are suit-
able to generate counter-examples for two non-
equivalent interpreters. They might also be used
to gain insight into why an interpreter is incor-
rect. Combining this with bucketising can be
used to provide better feedback to groups of stu-
dents at once or to collect common errors, which
correspond to buckets with many incorrect sub-
missions.

7 Conclusion

We have presented an approach to check the
equivalence of definitional interpreters, based
on earlier work about program equivalence. We
have introduced new rules and steps in the pro-
cess to make the approach more suited for defin-
itional interpreters. The main question, whether
program equivalence is suitable for verifying
definitional interpreters, has been answered. We
have proven the soundness of the approach
and experimentally assessed its effectiveness.
Without any other methods, we can already
verify the correctness of an interpreter most of
the time by comparing it to a reference inter-
preter. In combination with other methods, in-
terpreters can with certainty be marked as incor-
rect as well.

The rules introduced provide better results,
but the results are far from perfect and come at
a performance cost. In the future, more rules
could be discovered. However, their soundness
and run time cost should be taken into consider-
ation. Improving equivalence recognition might

also be achieved by improving other steps in the
process such as conversion and formula simpli-
fication. Another open question is whether pro-
gram equivalence will prove effective in a real
world setting; more experiments can be conduc-
ted on larger sets of interpreters.

References

[1] S. Gulwani, I. Radiček and F. Zuleger,
‘Automated clustering and program re-
pair for introductory programming as-
signments,’ in Proceedings of the 39th ACM
SIGPLAN Conference on Programming Lan-
guage Design and Implementation, Phil-
adelphia PA USA: ACM, 11th Jun. 2018,
pp. 465–480, ISBN: 978-1-4503-5698-5. DOI:
10 . 1145 / 3192366 . 3192387. [Online].
Available: https://dl.acm.org/doi/
10 . 1145 / 3192366 . 3192387 (visited on
22/04/2021).

[2] G. Jaber, ‘SyTeCi: Automating contextual
equivalence for higher-order programs
with references,’ Proceedings of the ACM
on Programming Languages, vol. 4, pp. 1–
28, POPL Jan. 2020, ISSN: 2475-1421. DOI:
10 . 1145 / 3371127. [Online]. Available:
https://dl.acm.org/doi/10.1145/

3371127 (visited on 22/04/2021).

[3] J. Clune, V. Ramamurthy, R. Martins
and U. A. Acar, ‘Program equival-
ence for assisted grading of functional
programs,’ Proc. ACM Program. Lang.,
4(OOPSLA):171:1–171:29, Nov. 2020. DOI:
10 . 1145 / 3428239. [Online]. Available:
https : / / doi . org / 10 . 1145 / 3428239

(visited on 22/04/2021).

[4] B. C. Pierce, ‘Logical relations and a case
study in equivalence checking,’ in Ad-
vanced topics in types and programming lan-
guages, Cambridge, Mass: MIT Press, 2005,
pp. 223–244, ISBN: 978-0-262-16228-9.

[5] ——, ‘Type reconstruction,’ in Types and
programming languages, Cambridge, Mass:
MIT Press, 2002, pp. 317–336, ISBN: 978-0-
262-16209-8.

12

https://doi.org/10.1145/3192366.3192387
https://dl.acm.org/doi/10.1145/3192366.3192387
https://dl.acm.org/doi/10.1145/3192366.3192387
https://doi.org/10.1145/3371127
https://dl.acm.org/doi/10.1145/3371127
https://dl.acm.org/doi/10.1145/3371127
https://doi.org/10.1145/3428239
https://doi.org/10.1145/3428239

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

[6] L. de Moura and N. Bjørner, ‘Z3: An ef-
ficient smt solver,’ in Tools and Algorithms
for the Construction and Analysis of Sys-
tems, C. R. Ramakrishnan and J. Rehof,
Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 337–340, ISBN: 978-
3-540-78800-3.

[7] S.-H. You, R. B. Findler and C. Dimoulas,
‘Sound and complete concolic testing for
higher-order functions,’ in Programming
Languages and Systems, N. Yoshida, Ed.,
vol. 12648, Series Title: Lecture Notes in
Computer Science, Cham: Springer Inter-
national Publishing, 2021, pp. 635–663,
ISBN: 978-3-030-72018-6 978-3-030-72019-
3. DOI: 10 . 1007 / 978 - 3 - 030 - 72019 -
3_23. [Online]. Available: http://link.
springer . com / 10 . 1007 / 978 - 3 - 030 -

72019-3_23 (visited on 14/06/2021).

[8] A. D. Mensing, H. van Antwerpen, C.
Bach Poulsen and E. Visser, ‘From defini-
tional interpreter to symbolic executor,’ in
Proceedings of the 4th ACM SIGPLAN In-
ternational Workshop on Meta-Programming
Techniques and Reflection - META 2019,
Athens, Greece: ACM Press, 2019, pp. 11–
20, ISBN: 978-1-4503-6985-5. DOI: 10.1145/
3358502 . 3361269. [Online]. Available:
http : / / dl . acm . org / citation .

cfm?doid=3358502.3361269 (visited on
14/06/2021).

[9] L. Lampropoulos, M. Hicks and B. C.
Pierce, ‘Coverage guided, property based
testing,’ Proceedings of the ACM on Pro-
gramming Languages, vol. 3, pp. 1–29,
OOPSLA 10th Oct. 2019, ISSN: 2475-1421.
DOI: 10 . 1145 / 3360607. [Online]. Avail-
able: https : / / dl . acm . org / doi / 10 .
1145/3360607 (visited on 14/06/2021).

[10] K. Claessen and J. Hughes, ‘QuickCheck:
A lightweight tool for random testing of
haskell programs,’ in Proceedings of the
fifth ACM SIGPLAN international confer-
ence on Functional programming - ICFP ’00,
Not Known: ACM Press, 2000, pp. 268–
279, ISBN: 978-1-58113-202-1. DOI: 10 .

1145/351240.351266. [Online]. Available:
http : / / portal . acm . org / citation .

cfm ? doid = 351240 . 351266 (visited on
22/04/2021).

A Notation

Pattern typing In pattern typing p :: τ a Γ
means that pattern p can match the type τ
and will bind the variables in Γ in the fol-
lowing expression. Γ can be omitted if the
pattern binds no new variables.

Expression typing Γ ` e : τ can be read as:
given an environment Γ, the expression e
has type τ.

Pattern matching Similar to pattern typing e �
p a B binds the variables in B in the fol-
lowing expression. Rather than match-
ing a type, in this case, an expression e
matches pattern p. e �\ p indicates the ex-
pression does not match the pattern.

Dynamic semantics e val means the expression
e is a value and cannot be interpreted fur-
ther. e 7→ e′ indicates that expression e
can be interpreted in one step to e′. Sim-
ilarly, e Z⇒ v indicates e can be interpreted
in many steps to v.

Term judgement To indicate an expression is a
valid logical term e Term is used.

Freshening Freshening of a pattern p with its
corresponding expression e is indicated as
freshen p.e ↪→ p′.e′. p′ is the resulting pat-
tern and e′ is the resulting expression.

Equate bindings Two pattern-expression pairs
p1.e1 and p2.e2 can be equated resulting
in p′1.e′1 and p′2.e′2. This is indicated as
EB(p1.e1, p2.e2) ↪→ EB(p′1.e′1, p′2.e′2)

Formula generation Formula generation state-
ments are of the form Γ ` e1

σ←→ e2 : τ a Γ′.
Here e1 and e2 are the two expressions be-
ing checked for equivalence. Γ contains
the variables such that Γ ` e1 : τ and
Γ ` e2 : τ. The result is a new set of
variables Γ′, disjoint from Γ. The result-
ing logical formula is σ. If e1 and e2 are
first reduced to weak head normal form,
Γ ` e1

σ⇐⇒ e2 : τ a Γ′ is written. In this
paper, e1 ↔ e2 and e1 ⇔ e2 are used to in-
dicate that e1 and e2 are being checked for
equivalence.

13

https://doi.org/10.1007/978-3-030-72019-3_23
https://doi.org/10.1007/978-3-030-72019-3_23
http://link.springer.com/10.1007/978-3-030-72019-3_23
http://link.springer.com/10.1007/978-3-030-72019-3_23
http://link.springer.com/10.1007/978-3-030-72019-3_23
https://doi.org/10.1145/3358502.3361269
https://doi.org/10.1145/3358502.3361269
http://dl.acm.org/citation.cfm?doid=3358502.3361269
http://dl.acm.org/citation.cfm?doid=3358502.3361269
https://doi.org/10.1145/3360607
https://dl.acm.org/doi/10.1145/3360607
https://dl.acm.org/doi/10.1145/3360607
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
http://portal.acm.org/citation.cfm?doid=351240.351266
http://portal.acm.org/citation.cfm?doid=351240.351266

Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

Existential equivalence e1
∼= e2 : τ is used

to indicate e1 and e2 have type τ and are
existentially equivalent, i.e. they behave
identically in any program. : τ may be
omitted if the type is obvious or not im-
portant.

Substitution When an expression y is substi-
tuted by an expression x in e, [x/y]e is
used. A list of expressions ~y can be sub-
stituted by a list of expressions ~x as well.
In that case, notation remains [~x/~y]e.

Validity The validity of σ is denoted
val
∀ Γ .σ.

This means that for all ~v where Γ ` vi : τi
and vi val for all vi ∈ ~v, [~v/~x]σ holds.

Binary operators Although the language from
figure 1 does not have infix operators, e1 ◦
e2 is used to denote (◦ e1) e2, where ◦ is any
binary operator. Additionally the τ from
=τ and 6=τ may be omitted when the type
of the operands is obvious or not import-
ant.

B Languages Used in
Experimentation

Lambda Calculus
expressions e ::= x variable

| λx.e abstraction
| e1 e2 application

Interpreter

expressions e ::= n integer
| x variable
| λx.e abstraction
| e1 e2 application
| e1 + e2 addition
| e1 − e2 subtraction
| e1 ∗ e2 multiplication
| [] nil
| e1 :e2 cons
| head e head of list
| tail e tail of list

Type Checker

types τ ::= int
| boolean
| τ1 → τ2 function type

expressions e ::= c constant
| x variable
| λx : τ.e abstraction
| e1 e2 application
| e1 + e2 addition
| e1 − e2 subtraction
| e1 ∗ e2 multiplication
| e1 and e2 logical and
| e1 or e2 logical or
| not e logical not
| e1 = e2 equality check
| e1 < e2 less than check
| e1 > e2 greater than check
| if e1 then conditional

e2 else e3

14

	Introduction
	Methodology
	Equivalence Implementation and Improvement
	Experimental
	Responsible Research
	Using Program Equivalence
	Conclusion
	References
	Notation
	Languages Used in Experimentation

