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Abstract

This thesis presents a method to semi-automate the reasoning about network bounds, namely
the backlog and delay. Network Calculus offers a rich theory for modeling network elements.
Using the modeling techniques of network calculus, network elements are represented by
discrete-time systems whose dynamics are linear in min-plus algebra. From the state-space
representation of a min-plus linear (MiPL) system, a finite-state symbolic model or quotient
system can be constructed. The construction of such quotient systems is done by first par-
titioning the state-space according to the MiPL dynamics and certain atomic propositions
defined over the states. The transitions between the quotient states are then computed based
on the dynamical system. The resulting finite abstraction simulates the infinite-state discrete-
time model, which permits applying formal verification to reason about the properties of the
discrete-time system. The work is finalized by transforming the backlog and virtual delay
properties of the original model to equivalent specifications, given by Linear Temporal Logic
(LTL) formulas, on the finite abstraction.
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Chapter 1

Introduction

In the recent years, a lot of work has been done in the emerging field of cyber-physical
systems (CPS) to develop methods and techniques to bridge the gap between the cyber and
the physical sides of control systems’ implementations. Much of the effort was invested in
finding suitable approaches to automate the process of verification and/or synthesis of correct-
by-design control systems [1], [2], [3], [4]. Symbolic modeling is a central technique in CPS
that is based on extracting a finite-state model of any infinite-state system in order for the
model to be used for further automated processing. The symbolic model, also called the
finite abstraction, can be used to verify certain properties about the physical system and, if
possible, automatically synthesize a symbolic controller for it. Various techniques have been
developed to obtain symbolic models from the mathematical description of physical systems
given in the form of differential equations. These techniques have shown great potentials for
solving many control problems very effectively.

Many challenges arise when analyzing controllers whose control loops are closed via shared
communication channels as in Networked Control Systems (NCS) [5]. NCS rely on networks
for information exchange between their elements. In NCS, sampled data from sensors must
travel through a network to reach a controller. After performing the necessary computa-
tions, the actuation data is then sent back also through the network to the actuators. Since
the last decade, a lot of research was devoted to study and understand the effects of the
shared communication infrastructures on control systems [6], [7], [8]. With sensing and ac-
tuation paths going through a network, time predictability is greatly compromised. Timing
properties are very crucial to ensure the stability and performance guarantees of the control
systems. Controllers in networked systems must deal with new problems that arise from the
fact that networks are shared resources. As the number of control loops implemented over
the shared communication channel increases, bandwidth scarcity becomes a significant issue
requiring a more conservative usage by each controller. These new challenges rendered the
conventional periodic execution paradigms inefficient for managing network resources. For
this reason, researchers have proposed alternative approaches to the control problem that
depend on aperiodic updates such as the event-based schemes [9], [10], [11], [12]. Despite
partially solving the problem of bandwidth, aperiodic control schemes require guaranteeing
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2 Introduction

certain delay bounds for traffic. For aperiodic traffic with known deadlines, there are well-
studied scheduling techniques that offer guaranteed delay bounds for the traffic [13], [14], [15].
However, this problem remains less studied for cases involving sporadic traffic with unknown
deadlines generated in event-based schemes.

Reasoning about network parameters is in general not a simple task. The challenge is even
magnified if the reasoning is to be done automatically during the controller synthesis to make
the design more optimal for the network. Inspired by the above problems, the work in this
thesis will investigate an approach to study networks based on Network Calculus [16]. Net-
work calculus theory offers a very rich set of mathematical tools to model network elements
and quantitatively assess the quality of service offered. What makes network calculus dif-
ferent from and more attractive than the traditional queuing theory is that it is concerned
with the worst-case scenario rather than the average case or steady-state behavior. From
the perspective of NCS, the worst-case analysis is the most important and relevant type of
analysis to guarantee the correct operation of controllers. Interestingly, network calculus al-
lows modeling traffic sources in a way that can readily incorporate aperiodic traffic flows.
Moreover, physically different network elements can be modeled with very similar abstract
elements simplifying the analysis of compositions in the actual networks. Strongly motivated
by these characteristics, this work’s main objective is to create a suitable modeling frame-
work based on network calculus concepts to allow the application of verification techniques
to network problems using finite abstractions. Being highly relevant to control applications,
the work focuses particularly on the virtual delay and backlog bounds of a network. In the
context of control systems, studying the virtual delay is useful for quantifying the worst-case
delay in the feedback measurements. At the same time, the backlog bound can be studied
to prevent network congestion and avoid packet drop-outs. Although these parameters can
already be analyzed using network calculus, the goal of this work is to automate the process
using symbolic abstraction approaches similar to those proposed for the automated synthesis
of controllers. In future, this could open the door for simultaneous verification of controller
and communication software. Furthermore, it could provide a suitable means for optimizing
correct-by-design controllers that are targeted to operate in networked systems.

This thesis is divided into six chapters. In Chapter 2, the reader is provided with the theoret-
ical background that is required for understanding the modeling and abstraction techniques
presented later. The network problem is formulated in Chapter 3, where network calculus is
used to create state-space representations of conventional network elements. The abstraction
technique is presented in Chapter 4 together with the algorithms that can be used to gener-
ate the symbolic models automatically. The problem of automated reasoning about network
parameters is also approached in Chapter 4 by representing network properties in temporal
logic for formal verification. In Chapter 5, the presented techniques are applied to an exam-
ple where the symbolic abstraction is created automatically via MATLAB. The concluding
remarks and the discussion of future work are finally given in Chapter 6.
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Chapter 2

Background

2-1 Notation

Let R = (−∞,+∞) be the set of all real numbers, Rε = R ∪ {+∞} be the extended set of
real numbers, Z = {· · · − 2,−1, 0, 1, · · · } be the set of all integers, and N = {0, 1, 2, · · · } be
the set of natural numbers. The empty set {} is denoted by ∅. Given a set of numbers W ,
W+ denotes the set of all non-negative numbers in W , that is W+ = {w ∈ W | w ≥ 0}.
Given a set Z, |Z| denotes the cardinality of the set and Z is said to be countable if and only
if |Z| ≤ |N|. The super set of Z, denoted by 2Z , is the set of all subsets of Z. For a set Z, Zω

denotes the set of all infinite strings obtained from concatenating elements in Z. An element
z ∈ Zω is a map z : N 7→ Z represented by z = z0z1z2 · · · with z(i) being the ith element in z
and z[k] being an infinite string obtained from removing the first k elements from z.
The set F is the set of all non-negative wide-sense increasing functions and sequences formally
defined as F = {f : R 7→ R+

ε | f(t) ≥ f(s) for all t ≥ s}. Also, F0 is the set of all functions
and sequences in F satisfying f(0) = 0. Given a function f : X 7→ Y , the image of a set
K ⊆ X under f is f(K) = {y ∈ Y | y = f(k) for some k ∈ K} and f |K : K 7→ Y describes a
restriction of f to K defined by f |K(k) = f(k) for every k ∈ K.
Let T be a partially ordered set. For a set S ⊆ T , sup [S] is the least upper bound of S
in T , and inf [S] is the greatest lower bound of S in T . If inf [S] ∈ S (resp. sup [S] ∈ S),
then it is called the minimum (resp. maximum) element denoted by min [S] (resp. max [S]).
Given a function f : X 7→ Y and a set K ⊆ X, the greatest lower limit of f over K is
infk∈K [f(k)] = inf [f(K)] and the least upper limit of f over K is supk∈K [f(k)] = sup [f(K)].
In min-plus algebra, the minimum operation is denoted by ⊕ and the addition operation is
denoted by ⊗. The min-plus operations are defined over the set Rε with the null element
ε = ∞ and the unity (also identity) element e = 0. The clipping operator [·]+ is defined as
[x]+ = max [x, 0]. Given an n-dimensional vector

[
v1 · · · vn

]
,
[
v1 · · · vn

]T
denotes the

transpose of the vector.
An equivalence relation Q on a set Z induces a partition denoted by Z/Q. For any z ∈ Z,
[z] = {z′ ∈ Z | (z, z′) ∈ Q} is the equivalence class to which the element z belongs and
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πQ : z 7→ Z/Q is the canonical projection map that maps each element of the set to its
equivalence class such that πQ(z) = [z] ∈ Z/Q. If |Z/Q| is finite, i.e. the partition is
composed of a finite number equivalence classes, then Q is said to be a finite equivalence
relation.

The operators ∧, ∨, and ¬ of propositional logic are used to denote the conjunction, disjunc-
tion, and negation operations, respectively. Logical implication and equivalence are denoted
by =⇒ and ⇐⇒ , respectively. The existential and universal quantifiers of predicate logic
are denoted by ∃ and ∀, respectively. The temporal logic operators are: ♦ for “eventually,”
� for “always,” © for “next,” and U for “until.”

2-2 Network calculus

Since the early development of telephony, queuing theory has served as a very handy mod-
eling tool for the analysis of communication systems. The development of new technologies
for computer communications and the emergence of the Internet have rapidly increased the
complexity of the networks to be analyzed. It was soon observed that packet data traffic of
the Internet do not possess the memoryless property of Poisson processes. This observation
rendered many useful results from the classical queuing theory inapplicable, and increased the
need for a new modeling paradigm, especially with the advent of architectures for quality of
service. The emergence of new challenges in the modeling of modern communication networks
soon paved the way for the development of network calculus, which was introduced by Cruz in
his seminal paper [17] and subsequently in [18]. With the collaboration of more researchers,
the theory was expanded to target more complex quality of service architectures. Most of the
results of the theory are compiled in a useful reference book [16] by Le Boudec and Thiran. A
more elaborate approach based on min-plus system theory is given in the book by Chang [19].
The concepts of network calculus were later expanded to include stochastic analysis, creating
a branch called stochastic network calculus (SNC). Jiang gives a good introduction to stochas-
tic network calculus in [20]. Since this thesis is based exclusively on the deterministic branch
of network calculus (DNC), the theory related to SNC will be excluded from the following
discussion and the modifier “deterministic” will be dropped for being redundant.

Network calculus provides a rich set of results that allows a precise analysis of performance
parameters of complex communication networks. It is mathematically founded on the min-
plus system theory, which is, unlike the conventional system theory, based on the min-plus
algebra. The most important result in network calculus is that the performance analysis of
a complex network can be done with a limited knowledge of the traffic flow through the
network given that certain requirements are met. The first requirement is that input flows
must have a limited arrival rate in the long run in addition to limited burstness, which is
the amount of data units (bits, cells, packets, etc.) that can arrive at once. The second
requirement is that the networks must commit to providing a minimum service guarantee.
Given that the basic requirements are met, one can use network calculus to compute bounds
of very important performance parameters including the backlog and the virtual delay. A
more detailed description of each performance parameter will be given later in this section.
The rest of this section contains a quick overview of important results from network calculus
theory that are used in this thesis.
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2-2 Network calculus 5

2-2-1 Basic Concepts in Network Calculus

The two basic modeling elements in network calculus are the traffic shaper (also called regu-
lator) and the server (also called service node). The shaper is the element used at the input
of a network to force the data flow that is about to enter the network to conform to a specific
predefined flow constraint expected by the service network. Shapers that are used to check
conformance of the data without affecting the flow are called policers. The flow constraint is
mathematically described by an arrival curve, often symbolized by α.

On the other hand, servers abstract physical network elements such as links, routers, and
schedulers. The key power of network calculus is the ability to model each of the physically
different elements along the flow path by the same network calculus element, that is the server.
This is so powerful because then these elements can be lumped together according to the rules
of network calculus into only one server representing the whole network, which extensively
simplifies further analysis. Servers are characterized by the minimum service guarantee offered
to an input flow that is mathematically described by a service curve, symbolized by β.

Remark 2.1. The two terms “traffic” and “flow” are used as synonyms referring to the collec-
tion of data transmitted from a certain source to a destination through the service network.

Definition 2.1 (Process [21, §2.1]). A process A : R 7→ R+
ε is a wide-sense increasing

function of time, with A(s) ≤ A(t) ∀ s ≤ t. In addition, the process A(t) is said to be causal
if it satisfies: A(t) = 0 ∀ t < 0.

A causal process, A(t), can be used to count the data arrivals at a certain location in the
network during the interval [0, t]. In that case, A(t) is called an arrival process. On the other
hand, if A(t) is counting data departures, then it is called a departure process. The naming
is merely a matter of perspective. It follows that for all s ≤ t, A(t) − A(s) is the number of
arrivals or departures in the interval (s, t].

The definition of process assumes an infinitely divisible data model, which is called the fluid
model. Since, in reality, data is fundamentally discrete, the fluid model is viewed as an ideal
model that is convenient for the general mathematical analysis. A depiction of the basic
scenario considered in network calculus with a single flow passing through the network is
given in Figure 2-1.

Service Network

R(t) R*(t)

Output “serviced” 
Flow

Input “constrained” 
Flow

Source Destination

Figure 2-1: A basic network calculus model. R(t) is an arrival process and R∗(t) is a departure
process.

Definition 2.2 (Arrival Curve). The arrival curve is a non-negative wide-sense increasing
function or sequence that specifies the maximum amount of arrivals allowed for a particular
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6 Background

arrival process in a given time interval. Let R(t) be an arrival process. We say that R is
upper-constrained by an arrival curve α if and only if for all 0 ≤ s ≤ t

R(t)−R(s) ≤ α(t− s) (2-1)

which is equivalent to

R(t) ≤ inf
0≤ s≤ t

[R(s) + α(t− s)] def= (R~ α)(t) (2-2)

The right-hand side of the second inequality is defined as a min-plus convolution operation.
More details on this operation will come later. Some texts refer to arrival curves as departure
curves when they are used as traffic constraints for departure processes. For simplicity and
since both are mathematically the same, we will use arrival curve as a general term to refer
to any traffic constraint regardless of whether it is for an arrival or a departure process.

An important property to be possessed by an arrival curve is the subadditivity.

Definition 2.3 (Subadditivity). A function f : R 7→ Rε is said to be subadditive if and
only if

f(t+ s) ≤ f(t) + f(s), ∀ s, t ∈ R (2-3)

One of the most widely used class of arrival curves is the class of the affine curves, shown in
Figure 2-2, that have the form

αr,b(t) =
{
rt+ b, if t > 0

0, if t ≤ 0 (2-4)

where r ≥ 0 is the peak rate and b ≥ 0 is the burstiness limit.

t

b

r
αr,b(t)

1

Figure 2-2: A generic affine curve

The affine arrival curve is obviously subadditive. It was first used by Cruz in [17] to explain
the concept of the traffic constraint, which was later called arrival curve. Besides its simplicity,
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2-2 Network calculus 7

the affine arrival curve is physically realizable by the leaky bucket, which is a traffic shaper
introduced by Turner in [22]. In fact, it is proven that the leaky bucket is an optimal shaper
for regulating traffic to have αr,b as an arrival curve [19, Th. 2.2.12]. The details of the leaky
bucket mechanism will be discussed in Chapter 3.
Definition 2.4 (Service Curve). The service curve is a mathematical abstraction of the
service guarantee offered by a server. A server is said to offer the service curve β to a traffic
flow with an arrival process R and departure process R∗ if and only if β is a wide-sense
increasing function with β(0) = 0 and

R∗(t) ≥ inf
0≤ s≤ t

[R(s) + β(t− s)] = (R~ β)(t) (2-5)

Given a server with service curve β such as the one in Figure 2-3, Eq. (2-5) is equivalent to
saying that ∀t ≥ 0 there exits some t0 ≥ 0 with t0 ≤ t such that

R∗(t)−R(t0) ≥ β(t− t0)

R(t) R∗(t)
Server (β)

1

Figure 2-3: A basic model of a server with service curve β.

A server is said to offer a strict service curve if, during any backlogged (busy) period ∆, the
output flow (departure process) is at least equal to β(∆) [23]. This property provides an easy
way to comprehend the more abstract concept of general service curves. One of the most
widely used service curves is the latency-rate curve, shown in Figure 2-4, with the form

βc,d(t) = c · [t− d]+ (2-6)

where c ≥ 0 is the rate and d ≥ 0 is the latency of the server.

td

c

βc,d(t)

1

Figure 2-4: A generic latency-rate service curve
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8 Background

Servers that provide this service curve are called latency-rate servers. The latency-rate service
curve is very useful to characterize many popular packet schedulers like the Weighted Fair
Queuing (WFQ) [24], which can be generalized as guaranteed-rate (GR) [25] or latency-
rate [26] schedulers. The GR service curve can be seen as a special case of the latency-rate
service curve with d = 0.

2-2-2 Min-plus Algebra and Filtering Theory

The nonlinear mathematical relations described in (2-2) and (2-5) can be interpreted as
linear relations under min-plus algebra. In min-plus algebra, min operation, denoted with
⊕, replaces the conventional addition and the usual addition operation, denoted with ⊗,
substitutes the multiplication operation. According to the used terminology, the conventional
algebra would be called ”plus-times” algebra. Based on the properties of ⊕ and ⊗ operations,
the algebraic structure (Rε,⊕,⊗) is formally a commutative dioid [27]. More elaborately,
besides the closure of Rε under ⊕ and ⊗, operations in min-plus algebra possess the following
properties:

1. (Associativity of ⊕ and ⊗)

(a⊕ b)⊕ c = a⊕ (b⊕ c) ∀ a, b, c ∈ Rε

(a⊗ b)⊗ c = a⊗ (b⊗ c) ∀ a, b, c ∈ Rε

2. (Commutativity of ⊕ and ⊗)

a⊕ b = b⊕ a ∀ a, b ∈ Rε

a⊗ b = b⊗ a ∀ a, b ∈ Rε

3. (Distributivity of ⊗ over ⊕)

(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) ∀ a, b, c ∈ Rε

c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b) ∀ a, b, c ∈ Rε

4. (Existence of null element ε = +∞)

∃ε ∈ Rε such that a⊕ ε = ε⊕ a = a ∀ a ∈ Rε

5. (Absorption by null element ε)

a⊗ ε = ε⊗ a = ε ∀ a ∈ Rε

6. (Existence of unity element e = 0)

∃e ∈ Rε such that a⊗ e = e⊗ a = a ∀ a ∈ Rε

7. (Idempotency of ⊕)
a⊕ a = a ∀ a ∈ Rε
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2-2 Network calculus 9

The min-plus operations can be extended to matrices. Given the matrices A,B ∈ Rn×n
ε ,

C ∈ Rn×m
ε and the constant K ∈ Rε, ∀ i, j ∈ {1, · · · , n}

[A⊕B]i,j = [A]i,j ⊕ [B]i,j
[K ⊗A]i,j = K ⊗ [A]i,j

[A⊗ C]i,j =
n⊕

v=1
[A]i,v ⊗ [C]v,j

The null matrix, denoted by ε, is a matrix with all elements equal to +∞. The n×n identity
matrix, denoted by En, is a matrix with all diagonal elements equal to 0 and all off-diagonal
elements equal to +∞. Note that, similar to the conventional matrix multiplication, the
min-plus matrix multiplication is not commutative in general. The analysis can be further
extended to functions and sequences. Given the two functions or sequences f, g ∈ F

• Two functions are said to be equal, f = g, if f(t) = g(t) for all t.

• A function is bounded by another, f ≤ g, if f(t) ≤ g(t) for all t.

• Minimum of two functions is defined as a pointwise operation with

(f ⊕ g)(t) = f(t)⊕ g(t)

• Convolution of two functions under min-plus algebra is defined as

(f ~ g)(t) =
⊕

s∈[0,t]
[f(s)⊗ g(t− s)]

• The minimum and convolution operations are monotonic. That is, ∀f, f ′g, g′ ∈ F if
f ≤ f ′ and g ≤ g′, then

f ⊕ g ≤ f ′ ⊕ g′ ≤ f ′

f ~ g ≤ f ′ ~ g′

The algebraic structure (F ,⊕,~) is also a commutative dioid with the null element ε, defined
as ε(t) = +∞ ∀t, and the identity element δ, defined as δ(t) = 0 ∀t ≤ 0 and δ(t) = +∞ ∀t >
0.
Remark 2.2. Network calculus results are often presented in the literature using inf and sup
operations instead of the min and max operations. This distinction only matters for the
continuous-time case where the least upper limit or the greatest lower limit of a function
f ∈ F over an interval X ⊆ R generally does not belong to f(X). This can occur when X
is an open or a half-closed interval. In the discrete-time case, inf (resp. sup) and min (resp.
max) can be used interchangeably.

The input/output relationship of the server in Eq. (2-5) greatly resembles those of the linear
time-invariant (LTI) filters. Borrowing the terminology from the conventional filtering theory,
the service curve, β is the impulse response of the server. Unlike the conventional LTI filters,
the input-output relationship of servers is in general governed by an inequality. Servers
characterized by equality in Eq. (2-5) instead of inequality are called exact servers. Shapers
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10 Background

that are used to model the mechanisms of traffic regulation can be also modeled as min-plus
linear filters as well. The most prominent example of such shapers is the greedy shaper. A
shaper is said to be greedy if it delays the input data units in a buffer to avoid the violation
of an arrival curve constraint α, but outputs them as soon as possible otherwise. This useful
property allows a greedy shaper with subadditive arrival curve α to be modeled as an exact
server with service curve α [28],[29].

The filtering theory can be extended to time varying systems introduced in [30],[31]. However,
for the purpose of this thesis, the discussion is limited to time-invariant systems.

2-2-3 Important Results from Network Calculus

The literature contains many useful results of network calculus that are used by the com-
munity. The network calculus analysis was successfully applied to the window flow control
problem by Cruz and Okino in [32] and later by Chang in [33]. Internet quality of ser-
vice is perhaps the most prominent field of application of network calculus, for example, the
guaranteed services in the Integrated Services (IntServ) networks [34],[35]. Network calculus
concepts were also used to define the Expedited Forwarding Per-Hop Behavior [36],[37] of
the Differentiated Services (DiffServ) [38] network architecture. A comprehensive overview
of Internet quality of service is given by Firoiu et al. in [39]. Many current parameter-based
and measurement-based admission control schemes use network calculus to achieve quality of
service. The following discussion will include the most important results that are relevant to
this thesis.

Definition 2.5 (Backlog). The backlog, B(t), is formally the amount of data that is seen at
the input to the server at time t but not yet at the output. Let R(t) be the arrival process at
the input and R∗(t) be the departure process at the output. In a network where data is only
forwarded, the backlog can be calculated as

B(t) = R(t)−R∗(t) (2-7)

If the network is composed of a single buffer, the backlog would correspond to the queue size
at any instant. A server is said to be causal if and only if the backlog is never negative.

Theorem 2.1 (Backlog Bound [16, Th. 1.4.1]). Let α be the arrival curve that constrains
the input traffic and β be the service curve guarantee offered by the server. The backlog, B(t),
is bounded by

B(t) ≤ sup
s≥ 0

[α(s)− β(s)] = v(α, β) (2-8)

where v(α, β) is practically the maximum vertical distance between the α curve and the β
curve. If v(α, β) is infinite, then the backlog in the server is unbounded.

Definition 2.6 (Virtual Delay). The virtual delay, d(t), is the amount of time that a data
unit that entered the network at time t has to wait until it is serviced if all the previous units
were serviced before it. Let R(t) be the arrival process at the input and R∗(t) be the departure
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2-2 Network calculus 11

process at the output. In a network where data is only forwarded, the virtual delay can be
calculated as

d(t) = inf [τ ≥ 0 | R(t) ≤ R∗(t+ τ)] (2-9)

Theorem 2.2 (Virtual Delay Bound [16, Th. 1.4.2]). Let α be the arrival curve that
constrains the input traffic and β be the service curve guarantee offered by the server. The
virtual delay, d(t), is bounded by

d(t) ≤ sup
s≥0

[inf [τ ≥ 0 | α(s) ≤ β(s+ τ)]] = h(α, β) (2-10)

where h(α, β) is the maximum horizontal distance between the α curve and the β curve as
shown in Figure 2-5. Same as with the backlog, if h(α, β) is infinite, then the virtual delay
in the server is unbounded.

t

β(t)α(t)

v(α, β)

h(α, β)

1

Figure 2-5: Performance bounds of a server based on the arrival and service curves

The bounds given by the previous two theorems are tight as long as both α and β are wide-
sense increasing functions with α(0) = β(0) = 0 and α being subadditive [16, Th. 1.4.4]. A
powerful result of network calculus is the ability to replace a group of servers in tandem by
an equivalent server. Consider a situation shown in Figure 2-6
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Server1

(β1)
R(t) Server2

(β2)
Servern

(βn)•  •  • 
R1(t)* R2(t)* Rn(t)**Rn-1(t)

Network (β)

Figure 2-6: A flow passing through a group of servers in tandem.

Theorem 2.3 (Concatenation of Servers [16, Th. 1.4.6]). Given a traffic flow that
passes through n servers in tandem each having a service curve βi for i = 1, · · · , n. The flow
will experience the same service guarantee as that offered by a single server with service curve
β that is computed as

β = β1 ~ β2 ~ · · ·~ βn (2-11)

This theorem allows reducing very complicated problems to ones that are easier to analyze.
In this way, the whole network can be substituted with a single server that will provide
an equivalent service guarantee to the traffic flow. Finally, since min-plus convolution is
commutative, the order of the servers is irrelevant and has no effect on the overall service
experienced by the traffic flow.

2-3 Systems and Relations

In this thesis, systems are mathematical models of dynamical phenomena. In order to tran-
scend problem specific models of dynamical phenomena, a unified versatile notion of system
is used. As will be apparent in the discussion, this notion is equipped with powerful tools to
establish relationships among different systems.

Definition 2.7 (System [2, §1.1]). A system S is a sextuple (X,X0, U, δ, Y,H) consisting
of:

• the set of states X;

• the set of initial states X0 ⊆ X;

• the set of inputs U ;

• a transition relation δ ⊆ X × U ×X;

• the set of outputs Y ;

• an output map H : X 7→ Y
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2-3 Systems and Relations 13

The transition relation prescribes the way the system can evolve. Note that the (x, u, x′) ∈ δ
is represented by x u−−−→ x′ for simplicity. Also, U(x) ⊆ U represents the set of inputs possible
at state x. The properties that can be possessed by a system are summarized below:

• A system is finite-state if X is a finite set

• A system is countable if X is a countable set

• A system is blocking if there is a state x ∈ X such that U(x) = ∅

• A system is deterministic if for any state x ∈ X and any input u ∈ U(x), x u−−−→ x′ and
x

u−−−→ x′′ implies that x′ = x′′

• A system is output deterministic if for any state x ∈ X and any inputs u, u′ ∈ U(x),
x

u−−−→ x′ and x u′−−−→ x′′ with H(x′) = H(x′′) implies that x′ = x′′

Since a system models dynamical phenomenon, understanding the way the system evolves
over its state space is very important to characterize the dynamics.

Definition 2.8 (System Behavior [2, §1.2]). Given a system S = (X,X0, U, δ, Y,H), the
system internal behavior generated from some state x ∈ X is a sequence of transitions over
the system state space starting from state x

x0
u0−−−→ x1

u1−−−→ · · · un−2−−−→ xn−1
un−1−−−→ xn

where x0 = x. Using the output map, the internal behavior from x ∈ X defines an external
behavior with H(xi) = yi ∈ Y for all i ∈ {0, · · · , n}

y0 −−−→ y1 −−−→ · · · −−−→ yn−1 −−−→ yn

The behavior is infinite if the transition sequence is nonterminating. The set of finite (resp.
infinite) external behaviors of a system S that are defined by the internal behaviors generated
from a state x is denoted by Bx(S) (resp. Bω

x (S)). As a result, the finite (resp. infinite)
external behavior of a system is the set of all external behaviors generated from initial set X0
denoted by B(S) (resp. Bω(S)), that is

B(S) =
⋃

x∈X0

Bx(S) and Bω(S) =
⋃

x∈X0

Bω
x (S)

If a system is nonblocking, then Bω(S) 6= ∅. Infinite behaviors are well-suited to model be-
haviors of reactive systems that are supposed to interact indefinitely with their environments.
When S is infinite-state it is possible to create a finite-state symbolic model called the quo-
tient system. This can be done with the help of an equivalence relation Q on state set of S.
As a result, states that are related by the equivalence relation are indistinguishable from each
other in the quotient system.

Definition 2.9 (Quotient System [2, §4.2]). Let S = (X,X0, U, δ, Y,H) and let Q be an
equivalence relation on X such that (x, x′) ∈ Q implies H(x) = H(x′). The quotient of S by
Q, denoted by S/Q, is the system (X/Q, X/Q0, U/Q, δ/Q, Y/Q, H/Q) consisting of:
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14 Background

• X/Q = X/Q;

• X/Q0 =
{
x/Q ∈ X/Q | x/Q ∩X0 6= ∅

}
;

• U/Q = U ;

• x/Q
u−−−→

/Q
x′/Q if there exists x u−−−→ x′ in S with x ∈ x/Q and x′ ∈ x′/Q;

• Y/Q = Y ;
• H/Q(x/Q) = H(x) for some x ∈ x/Q

For the symbolic model to be finite, there must be a finite number of equivalence classes
induced by a finite equivalence relation. Based on the previous definition, the equivalence
relation Q is finite when the set of outputs Y (or, more precisely, the range of H) is finite.

2-3-1 System Relations

An important relation that can be established between systems is the simulation relation.
Definition 2.10 (Simulation Relation [2, §4.2]). Let Sa and Sb be two systems with
Ya = Yb. A relation R ⊆ Xa × Xb is a simulation relation from Sa to Sb if the following
conditions hold:

1. for every xa0 ∈ Xa0, ∃xb0 ∈ Xb0 such that (xa0, xb0) ∈ R;
2. for every (xa, xb) ∈ R, it is true that Ha(xa) = Hb(xb);

3. for every (xa, xb) ∈ R, it is true that xa
ua−−−→
a

x′a in Sa implies the existence of xb
ub−−−→
b

x′b

in Sb satisfying (x′a, x′b) ∈ R

Given two systems Sa and Sb with Ya = Yb, system Sa is simulated by system Sb, denoted
by Sa �S Sb, if there exists a simulation relation from Sa to Sb. In more concrete terms,
the simulation relation implies that all the behaviors of Sa are also behaviors of Sb, which
could probably have more behaviors [2, Prop 4.9]. That is, Bω(Sa) ⊆ Bω(Sb), which is called
behavioral inclusion, and is denoted by Sa �B Sb. Hence, proving that a property holds for
the behaviors of Sb automatically proves it for those of Sa. However, no conclusion can be
made about the behaviors of Sa if the property does not hold for Sb.
Theorem 2.4 ([2, Th. 4.18]). Let S = (X,X0, U, δ, Y,H) and let Q be an equivalence
relation on X such that (x, x′) ∈ Q implies H(x) = H(x′). The relation Γ defined as:

Γ(πQ) =
{

(x, x/Q) ∈ X ×X/Q | x/Q = πQ(x)
}

is a simulation relation from S to S/Q.
Definition 2.11 (Bisimulation). Given two systems Sa and Sb with Ya = Yb, Sa and Sb

are said to be bisimilar, denoted by Sa
∼=S Sb, if and only if Sa �S Sb and Sb �S Sa.

Bisimulation is a strong notion of equivalence between systems which also implies behavioral
equivalence, that is the behaviors of bisimilar systems are equivalent [2, Prop 4.14]. Hence,
any property proven for one of the systems implies that the other one possesses the same
property. Also, showing that a property fails to hold in one system sufficiently implies the
same for the other system .
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2-4 Formal Verification

System verification is the procedure of showing that the design under consideration possesses
certain properties that come from the system specification. The system specification describes
the desired behavior of the system, that is what the system should do and what should not.
If all the properties obtained from the specification are satisfied, the system is said to be
correct. Hence, the correctness is always relative to the system specification.
Over the years, engineers have devised and used many verification techniques to help them
discover the errors in their designs. The main objective, especially for safety-critical systems,
is to uncover as many design errors as possible and as early as possible. As the system become
more complex, the complexity of verification increases drastically rendering many manual or
ad-hoc techniques unfeasible. For this reason, more systematic approaches were introduced
such as the formal methods.
Formal verification methods aim at establishing system correctness with mathematical rigor.
In other words, they target the problem of mathematically proving that systems satisfy the
properties they need to satisfy. This makes them great candidates for verifying safety-critical
systems that require great deal of reliability. The following discussion in this section covers a
brief introduction to formal verification by model checking in addition to an overview of the
temporal logic that is used to formulate system specifications.

2-4-1 Model Checking

In model-based design approaches, an unambiguous mathematical description of a system is
given in the form of a transition system (TS). The main advantage of such descriptions is
that the verification on these models can be automated via model checkers.

Definition 2.12 (Model Checking). Model checking refers to a formal verification method
that is based on the exhaustive exploration of the system model in order to make inferences
about the system behavior. In addition, model checkers are software tools that perform model
checking.

A comprehensive presentation of model-checking methods is given in the book by Baier and
Katoen [40]. Because it is based on exploring all the possible system states, model checking
is applicable to systems with finite state space. Thus, to verify an infinite-state system via
model checking the system must be abstracted by a finite state transition system, that i.e.
symbolic model. For the verification of the system to be valid, the symbolic model must at
least simulate the original system [2]. Establishing the simulation relation ensures that the
behavior of the abstracted system is included in the behavior of the symbolic model.
In order to verify the properties of the model, the property specifications must be mathe-
matically formalized in a way that can be verified by model checkers. Temporal logics offer a
great framework to mathematically formulate system specification.

2-4-2 Linear Temporal Logic (LTL)

Temporal logic is a logical formalism that extends propositional and predicate logic by modal
operators that allow describing infinite behavior of systems. Temporal logic is well suited for
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reactive systems, where the correctness of operation depends on the timeliness of the behavior
in addition to input/output computation. In temporal logic, the underlying nature of time
can be either linear or branching. These different views of time in addition to other factors
gave rise to different flavors of temporal logic that are collectively referred to as temporal
logics. Note that time here is referred to in the abstract sense, in which time is discrete
and advances as the system evolves from one state to the next. Introduced by Pnueli [41],
LTL is one prominent example of temporal logic that is based on the linear time perspective.
Intuitively, an LTL formula specifies a property that should apply to all behaviors starting
from the initial set. The following discussion includes a review of the syntax and semantics
of LTL.

Definition 2.13 (Syntax of LTL [40, §5.1.1]). LTL formulas over the set of atomic
propositions AP is generated by the following grammar:

ϕ ::= true | a | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ¬ϕ | ©ϕ | ϕ1Uϕ2

where a ∈ AP

Regarding the precedence, the unary operators bind stronger than the binary ones and the
U (until) operator takes precedence over the propositional logic operators (∨, ∧, ¬). The
parentheses have the highest precedence, while ¬ and © (next) bind equally strong. The
temporal modalities, ♦ and �, can be defined in terms the U operator as the following:

♦ϕ
def= true Uϕ �ϕ

def= ¬♦¬ϕ

Intuitively, ♦ϕ ensures that ϕ will finally be true in future, while �ϕ ensures that ϕ will
always be true from now and forever in future.

Semantics of LTL formulas can be defined over infinite sequences z ∈ (2AP )ω

Definition 2.14 (Semantics of LTL [40, §5.1.2]). Let ϕ be an LTL formula over a set of
atomic propositions AP . Given a satisfaction relation |=⊆ (2AP )ω × LTL, the semantics of
LTL formula ϕ is defined as a language L(ϕ) =

{
z ∈ (2AP )ω | z |= ϕ

}
, which is the set of all

infinite sequences over 2AP that satisfy ϕ under the following satisfaction rules

• z |= true;

• z |= a ⇐⇒ a ∈ z(0);

• z |= ϕ1 ∨ ϕ2 ⇐⇒ z |= ϕ1 or z |= ϕ2;

• z |= ϕ1 ∧ ϕ2 ⇐⇒ z |= ϕ1 and z |= ϕ2;

• z |= ¬ϕ ⇐⇒ z 6|= ϕ;

• z |=©ϕ ⇐⇒ z[1] |= ϕ;

• z |= ϕ1Uϕ2 ⇐⇒ ∃k ≥ 0 s.t. z[k] |= ϕ2 and z[j] |= ϕ1 ∀j ∈ {0, · · · , k − 1};
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Let S be a system with Y = 2AP and consequently H : X 7→ 2AP . The system S satisfies ϕ,
denoted S |= ϕ, if Bω(S) ⊆ L(ϕ).

Let S/Q be a quotient system of S constructed as given in Definition 2.9. Because of the be-
havioral inclusion implied by the simulation relation, when S/Q is shown to satisfy a property
ϕ it is sufficient to conclude that S also satisfies the same property. Mathematically,

Bω(S) ⊆ Bω(S/Q) ∧ Bω(S/Q) ⊆ L(ϕ) =⇒ Bω(S) ⊆ L(ϕ)

Remark 2.3 ([40, Rem. 5.9]). Note that the statements S 6|= ϕ and S |= ¬ϕ are not equivalent
in general. However, it is true that S |= ¬ϕ implies S 6|= ϕ.

Two LTL formulas ϕ1 and ϕ2 are said to be equivalent, denoted ϕ1 ≡ ϕ2, if L(ϕ1) = L(ϕ2).
The following are some important equivalence rules for LTL:

¬© ϕ ≡ ©¬ϕ
¬♦ϕ ≡ �¬ϕ
¬�ϕ ≡ ♦¬ϕ

© (ϕ1Uϕ2) ≡ (©ϕ1)U (©ϕ2)
♦ (ϕ1 ∨ ϕ2) ≡ (♦ϕ1) ∨ (♦ϕ2)
♦ (ϕ1 ∧ ϕ2) 6≡ (♦ϕ1) ∧ (♦ϕ2)
� (ϕ1 ∧ ϕ2) ≡ (�ϕ1) ∧ (�ϕ2)
� (ϕ1 ∨ ϕ2) 6≡ (�ϕ1) ∨ (�ϕ2)
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Chapter 3

Problem Formulation

3-1 Problem Description

The main premise of network calculus is that when a data traffic that conforms to a certain
arrival curve passes through a network with some service curve guarantee, the upper bounds
of the backlog and virtual delay can be calculated from the maximum vertical and horizon-
tal translations between the arrival and service curves. The upper bounds in Eq. (2-8) and
Eq. (2-10) theoretically require infinite-horizon computations. In simple cases, these com-
putations might still be possible however that would not be as general as one would like to
have as a modeling framework. As a remedy to the problem a slightly different approach
will be taken based on the min-plus filtering theory discussed in the previous chapter. In
the system theoretic view of network calculus, the server in a network acts as a min-plus
linear filter with an impulse response equal to its service curve. By exploiting this idea, an
alternative mathematical description of the server can be obtained by representing the server
as a state-space system. The state-space description of the server will prepare the system
for the application of finite abstraction techniques to get a finite-state system that represents
the server. It is important to note that since the exact input-output mapping of the server is
unknown, the min-plus convolution of the input and the service curve captures the worst-case
scenario for the departure process or the output flow. Hence, if the inequality in the server
equation changed to equality, the new equation would represent an exact server that provides
a service equivalent to the worst-case possible service of the actual server. Since the target
of the analysis is the worst-case scenario in the server, assuming the worst-case output would
be a very natural choice. Since the attention is shifted from the curves to the worst-case flow
propagation through the server, the upper bounds of the delay and backlog can be obtained by
directly checking R(t) and R∗(t) since R∗(t) would be the worst possible departure. However,
in order for the basic premise of network calculus to hold, the input flow must always conform
to an arrival that is known apriori. Therefore, the system must check the conformance of
the input flow with the expected traffic behavior besides propagating the flow through the
server as shown in Figure 3-1. As a result, one can say that as long as the input passes the
conformance check, correct inferences can be made about the delay and backlog of the server
based on R(t) and R∗(t).
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Sβ

Hα

R(t) R∗(t)

1

Figure 3-1: General model with a single server S and a policer (conformance checker) H

The two systems work simultaneously together to capture the dynamics of a single server
with a constrained input flow. H is constructed based on the required arrival curve α of the
input flow. S is constructed based on the expected service curves β of the server.

The derivation of the state-space representation will assume a sampled version of the ideal
fluid model. This means that the arrival curves, service curves, and processes will be sequences
taken from set F0 (cf. Section 2-1). Let ts be the sampling period, the discrete-time sequences
are defined as the following:

R|Z·ts = u

R∗|Z·ts = y

where Z ·ts = {· · ·−2ts, −ts, 0, ts, 2ts, 3ts, . . . }. The sampling period is assumed to be small
enough to capture all the details needed. Without loss of generality, ts will be taken to be
equal to 1 in this thesis. To avoid ambiguity, the discrete variable k ∈ Z will be used as a
time parameter of the functions from now on to emphasize that they are sequences. In other
words, α(k), β(k), u(k), and y(k) are all discrete-time sequences. As a result, the general
model will look like Figure 3-2

Sβ

Hα

u(k) y(k)

1

Figure 3-2: Discrete-time model
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3-2 State-Space Representation of Deterministic Servers

To be able to derive the state-space representation of a server, its impulse response or the
service curve β must be known. Network calculus provides a variety of service curves that
can be used to characterize different network elements. Because of its versatility in modeling,
the latency-rate curve will be used in the derivation. Latency-rate service curve can be math-
ematically represented as the min-plus convolution of two other simpler curves [16]. In other
words, the latency-rate server is equivalent to a concatenation of two other simpler servers,
namely the maximum delay server and the guaranteed rate server. Exploiting this fact will
not only make the derivation more elegant, but also give the state-space representation of the
constituent servers as a byproduct. In the rest of the section, the state-space representation of
these simpler servers is first discussed and then combined together to form the representation
of the latency-rate server.

3-2-1 Maximum-Delay Servers

Traffic transmitted through a network is subject to arbitrary delays. To account for these
delays, network calculus offers a very useful model of worst-case delay in networks. This
network element is the maximum-delay server [19] which can be characterized by the service
curve δd, shown in Figure 3-3 defined as

δd(k) =
{

+∞, if k > d
0, if k ≤ d (3-1)

where d ∈ N is the maximum delay experienced by an input traffic.

kd

δd(k)

b bb b

1

Figure 3-3: Maximum-delay service curve

Maximum-delay service curves are sometimes referred as delay-burst curves [16]. Let yL
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22 Problem Formulation

denote the output of the delay server.

yL(k) ≥ (δd ~ u)(k)

=
k⊕

s=0
[δd(k − s) + u(s)]

= u([k − d]+)

(3-2)

The expression of the worst-case output yL(k), can be rewritten by introducing internal states
v1, v2, . . . in the following manner:

v1(k) = u(k)
vi(k) = vi−1(k − 1), i = 2, . . . , d
yL(k) = vd(k − 1)

(3-3)

The obtained form in Eq. (3-3) is the state-space representation of the maximum-delay, or
more correctly the exact-delay, server.

3-2-2 Guaranteed-Rate (GR) Servers

Guaranteed-rate servers are characterized by the service curve λc, shown in Figure 3-4, defined
as

λc(k) =
{
c · k, if k > 0

0, if k ≤ 0 (3-4)

where c ∈ R+ is the service rate.

k

λc(k)

b

b

b

b

b

b

b

b

c

1

Figure 3-4: Guaranteed-rate service curve
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3-2 State-Space Representation of Deterministic Servers 23

The output yR(k) of a GR server is

yR(k) ≥ (u~ λc)(k)

=
k⊕

s=0
[λc(k − s) + u(s)]

=
k⊕

s=0
[c · (k − s) + u(s)]

= w(k)

(3-5)

where w is the state variable of the GR server. From Eq. (3-5), the state evolution equation
can be derived as the following

w(k) =
k⊕

s=0
[c · (k − s) + u(s)]

=
k⊕

s=0
[c · (k − 1− s) + c+ u(s)]

=
k−1⊕
s=0

[c · (k − 1− s) + c+ u(s)]⊕ (c · (k − 1− k) + c+ u(k))

=
(
c+

k−1⊕
s=0

[c · (k − 1− s) + u(s)]
)
⊕ u(k)

= (c+ w(k − 1))⊕ u(k)

(3-6)

3-2-3 Latency-Rate Servers

Recall from Chapter 2 that the latency-rate server is characterized by the service curve βc,d

defined as

βc,d(k) =
{
c · (k − d), if k > d

0, if k ≤ d (3-7)

Based on the fact that βc,d = δd ~ λc, the output y(k) of the latency-rate server can be
represented as

y(k) ≥ (u~ βc,d)(k)
= (u~ (δd ~ λc))(k)
= ((u~ δd)~ λc)(k)

(3-8)

The state-space representation of the latency-rate server will be derived by concatenating
the delay and guaranteed-rate servers together. Assuming that the output of the delay server
enters the input of the guaranteed-rate server, the state evolution equation of the guaranteed-
rate server is equivalent to

w(k) = (c+ w(k − 1))⊕ yL(k)
= (c⊗ w(k − 1))⊕ vd(k − 1)

(3-9)
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Let x1, . . . , xd+1 denote the state variables of the latency-rate server. The state variables
v1, . . . , vd of the delay server are assigned to x1, . . . , xd, and the state variable w of the
guaranteed-rate server is assigned to xd+1. As a result, the state-space representation of the
latency-rate server is

x1(k) = u(k)
xi(k) = xi−1(k − 1), i = 2, . . . , d

xd+1(k) = xd(k − 1)⊕ (c⊗ xd+1(k − 1))
y(k) = xd+1(k)

(3-10)

3-3 Conformance Checking

Conformance checking is important for making correct inferences about quality of service
provided by the server. If the input does not conform to the predefined arrival curve, the
backlog and delay bounds would be violated. In real networks, policers make sure that
incoming traffic is upper constrained by the expected arrival curve. One of the most widely
used shaper/policer, is the leaky bucket [22]. As mentioned in Chapter 2, the leaky bucket is
optimal for shaping a traffic to have an affine arrival curve αr,b. The discussion in this section
will focus on the policing or conformance checking aspect of leaky buckets.
Remark 3.1. There is some ambiguity in the literature about the term leaky bucket. To
prevent any confusion, it must be noted that the term used in this thesis refers to the same
mechanism as the one discussed by Cruz in [18] and Chang in [19]. This version of leaky
bucket is sometimes referred to as token bucket.

Figure 3-5 shows an illustrative model of a discrete-time leaky bucket

13 Challenge the future 

b h 

r 

Rout Rin 

Figure 3-5: Discrete-time leaky bucket

The discrete-time leaky bucket is composed of a token buffer (bucket) with a token generation
rate r and a maximum buffer size b. Such a leaky bucket is also referred to as (b,r)-leaky
bucket. As long as the buffer is not full, r tokens are leaked into the buffer every time
unit. When data arrives, enough tokens must be available in the buffer in order to allow
the data to move forward. If the amount of data arrivals at some point in time is greater
than the amount of tokens available in the buffer, a traffic violation is detected and the
flow is considered nonconformant. If leaky bucket is used as a shaper, then it will delay to
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3-3 Conformance Checking 25

nonconformant data arrivals until enough tokens become available in the buffer, after which
it releases the data. Based on the description, one can represent the content of the bucket by
state h. Mathematically, the trajectory h(k) should obey the following:

h(k) = min [h(k − 1) + r − a(k) , b] h(0) = b (3-11)

where a(k) = u(k) − u(k − 1) is the number of data arrivals at time k with a(0) = 0. As a
result, the conformance checking of the leaky bucket is transformed to checking whether the
following condition is satisfied or not

h(k) ≥ 0 ∀k ∈ Z (3-12)

Eq. (3-11) can be further manipulated to obtain a simpler form. Let z(k) = h(k) + u(k) with
z(0) = h(0) + u(0) = b+ u(0).

z(k) = min [h(k − 1) + r − (u(k)− u(k − 1)) , b] + u(k)
= min [h(k − 1) + r −���u(k) + u(k − 1) + ���u(k) , b+ u(k)]
= min [r + z(k − 1) , b+ u(k)]

(3-13)

The conformance condition becomes

z(k)− u(k) ≥ 0 ∀k ∈ Z (3-14)

A very important property of leaky buckets is that several different leaky buckets can be
concatenated to be used for more complicated arrival curves.
Theorem 3.1 (Concatenation of Leaky Buckets [19, §2.3.3]). Consider the concate-
nation of n (bi,ri)-leaky buckets with i ∈ {1, . . . , n}. The resulting shaper can be characterized
by a subadditive piecewise-affine arrival curve

α = αr1,b1 ~ αr2,b2 ~ · · ·~ αrn,bn = αr1,b1 ⊕ αr2,b2 ⊕ · · · ⊕ αrn,bn (3-15)

Moreover, the concatenation of leaky buckets is equivalent to the parallel composition of the
same leaky buckets all joined by the ⊕ operation at the output as shown in Figure 3-6.

b b b

b
b
b

b
b
b

b
b
b

(b1,r1) (bn,rn)

(b1,r1)

(bn,rn)

⇐⇒

1

Figure 3-6: Equivalence of serial and parallel compositions of leaky buckets

This theorem can be used to create an H system for more complicated piecewise-affine arrival
curves. All what needs to be done is to represent each affine piece by a (b,r)-leaky bucket.
Then, the dynamics of each leaky bucket can be described by equations similar to Eq. (3-
13). Finally, the conformance checking condition will be equivalent to checking if all of the
individual leaky bucket conditions are satisfied simultaneously or not.
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26 Problem Formulation

3-4 Combined Dynamics of S and H

The dynamics of the two systems S and H can be combined by taking the Cartesian product
of their state spaces. Let the state variables x1 to xd+1 represent the state variables of the
latency-rate server. Note that for each leaky bucket considered in H, a single state is needed
in the combined system. Assuming that H represents a single leaky bucket, the additional
state variable xd+2 denotes the state variable z related to the leaky bucket dynamics. The
dynamics of the resulting system can be represented as the following:



x1(k)
x2(k)

...
xd(k)
xd+1(k)
xd+2(k)


=



∞ ∞ · · · ∞ ∞ ∞
0 ∞ · · · ∞ ∞ ∞
∞ 0 · · · ∞ ∞ ∞
...

... . . . ...
...

...
∞ ∞ · · · 0 c ∞
∞ ∞ · · · ∞ ∞ r


⊗



x1(k − 1)
x2(k − 1)

...
xd(k − 1)
xd+1(k − 1)
xd+2(k − 1)


⊕



0
∞
...
∞
∞
b


⊗ u(k)(3-16)

y(k) = xd+1(k) (3-17)

with the following initial conditions:[
x1(0) x2(0) · · · xd+1(0) xd+2(0)

]T
=
[
µ µ · · · µ (b+ µ)

]T
where µ is the number of data units that already passed through the system in the past.

In simple terms, the initial condition corresponds to an empty backlog and a full leaky bucket.
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Chapter 4

Finite Abstractions and Property
Specification

To be able to apply model checking techniques, the modeled infinite-state systems must be
abstracted by finite-state quotient systems, also called finite abstractions or symbolic models.
This chapter will target the problem of generating finite abstractions of dynamical systems like
the one obtained in the end of Chapter 3. Since these dynamical systems are min-plus linear
(MiPL) systems, the discussion in this chapter is general and could be applied to other MiPL
systems. The approach that is implemented mainly depends on a novel technique developed by
Adzkiya et al. [42],[43] for Max-Plus Linear (MPL) systems [27] based on the piecewise-affine
(PWA) [44] representation of the MPL dynamics. The underlying mathematical structure of
MiPL systems is very similar to MPL systems. This similarity stems from the fact that both
types of systems are founded on the commutative dioid algebraic structure, which gives them
the same algebraic properties. The main difference between the two structures is that the
“min” operation is substituted by the “max” operation (with its null element ε = −∞) for
max-plus algebra. This difference has a minor effect on the abstraction procedure adapted
from [43]. After obtaining the quotient system, the model is ready for verification via model
checking. The last section discusses how to formulate the backlog and virtual delay bounds
as LTL properties that can be checked against the symbolic model.

4-1 Min-Plus Linear (MiPL) Systems

Min-plus linear (MiPL) systems are dynamical systems with the following form:

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k) (4-1)

where A ∈ Rn×n
ε , B ∈ Rn×m

ε , x ∈ Rn
ε , u ∈ Rm

ε for all k ∈ N. When the MiPL is autonomous,
all the elements of B are ε. As for other discrete-time dynamical systems, a smooth map
f : Rn

ε × Rm
ε 7→ Rn

ε describes the current state reached by the MiPL system based on the
current input u and the previous state x. For MiPL systems, f is linear in the min-plus
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28 Finite Abstractions and Property Specification

algebraic sense (cf. Section 2-2-2). In other words, each component of f is a min-plus linear
combination of state and input variables.

Definition 4.1 (MiPL Dynamical System). Formally, an MiPL dynamical system can
be defined as a quadruple Σ = (Rn

ε ,Rm
ε , A,B) consisting of:

• the state space Rn
ε ;

• the input space Rm
ε ;

• the matrices A ∈ Rn×n
ε and B ∈ Rn×m

ε that describe the state evolution

Definition 4.2 (Infinite-State System associated with the MiPL Dynamics). Let
Σ = (Rn

ε ,Rm
ε , A,B) be an MiPL dynamical system, AP be a set of atomic propositions defined

over its state-space , and I ⊆ Rn
ε be a specified set of initial states. The infinite-state system

associated with Σ, AP , and I is a sextuple, denoted by SAP,I(Σ), consisting of:

• X = Rn
ε ;

• X0 = I;

• U = Rm
ε ;

• x u−−−→ x′ if ∃u ∈ U(x) such that x′ = A⊗ x⊕B ⊗ u;

• Y = 2AP ;

• H = X 7→ 2AP

The choice of atomic propositions for a particular MiPL system mainly depends on the un-
derlying problem and the design preferences. Since verification is the targeted problem of
this thesis, the set of atomic propositions are selected to facilitate the formulation of the
system properties as LTL formulas for model checking. This will become clearer in Sec-
tion 4-3. An equivalence relation Q over the state space of a dynamical system is said to be
output-preserving if the following condition holds

(x, x′) ∈ Q =⇒ H(x) = H(x′)

The partition induced by such an equivalence relation is called output-preserving partition.

4-2 State-Space Partitioning Procedure

In a nutshell, the abstraction technique, adapted from [43], treats the MiPL as a PWA system
by partitioning the state space into regions of different affine dynamics. This partition is
refined by an equivalence relation based on the output map of the states. As a result, states
that belong to the same equivalence class abide by the same affine dynamics and are mapped
to the same output, i.e. the set of atomic propositions. The obtained set of equivalence classes
makes up the state space of the quotient system. The last step in creating the quotient system
is to compute the allowed transitions between the equivalence classes.
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4-2 State-Space Partitioning Procedure 29

PWA representation of MiPL Dynamics

In general, PWA systems [44] are described by a set of affine dynamics together with their
corresponding regions in the input/state space. The PWA regions have non-overlapping
interiors and each can be described by a set of linear inequalities in the input/state space.
Let g = (g1, · · · , gn) ∈ {1, · · · , n}n be a vector of coefficients for the affine dynamics. The
PWA representation of an autonomous MiPL dynamical system (x(k − 1) = A⊗ x(k)) is

Rg =
n⋂

i=1

n⋂
j=1
j 6=gi

{x ∈ Rn | [A]i,gi + xgi ≤ [A]i,j + xj} (4-2)

xi(k) = [A]i,gi + xgi(k − 1) ∀ i ∈ {1, · · · , n} (4-3)

A point in the state space belongs to the region Rg if

n⊕
j=1

( [A]i,j + xj ) = [A]i,gi + xgi ∀ i ∈ {1, · · · , n}

Example 4.1. Consider the following autonomous MiPL system

[
x1(k)
x2(k)

]
=
[
1 2
4 3

]
⊗
[
x1(k − 1)
x2(k − 1)

]
=
[
min [ 1 + x1(k − 1) , 2 + x2(k − 1)]
min [ 4 + x1(k − 1) , 3 + x2(k − 1)]

]

Since A is a (2×2)-matrix, there are at most four different regions in the state space, namely:
R(1,1), R(1,2), R(2,1), and R(2,2). Applying Eq. (4-2) region R(1,1) can be obtained as

R(1,1) = {x ∈ Rn | 1 + x1 ≤ 2 + x2} ∩ {x ∈ Rn | 4 + x1 ≤ 3 + x2}
= {x ∈ Rn | x1 − x2 ≤ 1} ∩ {x ∈ Rn | x1 − x2 ≤ −1}
= {x ∈ Rn | x1 − x2 ≤ −1}

The dynamics corresponding to region R(1,1) according to Eq. (4-3) are

[
x1(k)
x2(k)

]
=
[
1 + x1(k − 1)
4 + x1(k − 1)

]

Other regions can be computed in a similar fashion to obtain

R(1,2) = {x ∈ Rn | −1 ≤ x1 − x2 ≤ 1}
R(2,2) = {x ∈ Rn | x1 − x2 ≥ 1}
R(2,1) = ∅

The PWA regions in the state space together with the corresponding affine dynamics are given
in Figure 4-1
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1

−1

1−1

[
1 + x1(k − 1)
4 + x1(k − 1)

]

R(1,1)

R(1,2)

R(2,2)

[
1 + x1(k − 1)
3 + x2(k − 1)

]

[
2 + x2(k − 1)
3 + x2(k − 1)

]

x1

x2
x1 − x2 = −1

x1 − x2 = 1

1

Figure 4-1: PWA regions and their corresponding affine dynamics of the autonomous MiPL
example

Algorithm 1 can be used to automatically obtain a PWA representation of an MiPL system.

Algorithm 1 Compute the PWA representation of A
Input: A ∈ Rn×p

ε , an (n× p) matrix
Output: RPWA, the set of PWA regions; APWA, and BPWA, PWA dynamics

1: function MiPL2PWA(A)
2: Initialize RPWA, APWA, and BPWA

3: for all g = (g1, · · · , gn) ∈ {1, · · · , p}n do
4: Rg ← Rp, Ag ← [0]n×p, Bg ← [0]n
5: for all i ∈ {1, · · · , n} do
6: for all j ∈ {1, · · · , p} do
7: Rg ← Rg ∩ {[A]i,gi + xgi ≤ [A]i,j + xj}
8: end for
9: [Ag]i,gi

← 1, [Bg]i ← [A]i,gi

10: end for
11: if Rg 6= ∅ then
12: RPWA ← RPWA ∪ {Rg}, APWA ← APWA ∪ {Ag}, BPWA ← BPWA ∪ {Bg}
13: end if
14: end for
15: return RPWA, APWA, and BPWA

16: end function

Algorithm 1 is adapted from [43, Alg. 2], with the only difference being in line 7 where ≤
substitutes ≥. This is necessary to take care of the fact that the particular affine dynamics
that apply in a certain region of the MiPL state space is the minimum one rather than
the maximum one as in MPL systems. The worst-case time complexity of Algorithm 1 is
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O
(
pn(np+ p3)

)
[43, §II-C]. Note that the given algorithm does not require the A matrix to

be square, which is important for later usage.

Each PWA region can be represented by a data structure called Difference-Bound Matrix [45].

Definition 4.3 (Difference-Bound Matrix (DBM)). A DBM D in Rn is an (n + 1)-
dimensional matrix representing the intersection of finitely many sets defined by

n⋂
i,j=0
{x ∈ Rn | xi − xj ./ [D]i+1,j+1}

where x0 = 0, ./∈ {<,≤}, and [D]i,j ∈ R ∪ {+∞} for all i, j ∈ {1, · · · , n+ 1}.

DBMs are particularly interesting to PWA systems because they can be manipulated ef-
ficiently, especially when it comes to computing the image of a DBM through the affine
dynamics [43].

The set RPWA obtained in Algorithm 1 is a cover of the state space. The set RPWA is not
a partition of the state space because boundaries between regions are shared between these
regions. To obtain a partition, another procedure must be implemented to resolve the common
boundaries and attach them to one region only. Two regions that share the same boundary
are called adjacent regions

Definition 4.4 (Adjacent Regions [43, Def. 9]). Let Rg and Rg′ be two regions in Rn.
The two regions are said to be adjacent, denoted by Rg ≥ Rg′, if there exists an i ∈ {1, · · · , n}
such that gi > g′i and gj = g′j for all j 6= i.

Algorithm 2 [43, Alg. 6] loops over all the PWA regions obtained in Algorithm 1 and refines
them to make each common boundary belong to exactly one of the adjacent regions. As a
result, the regions will be pairwise disjoint and, hence, forming a partition of the state space.

Algorithm 2 Generate a partition of the state space by boundary refinements of PWA
regions
Input: RPWA, the set of PWA regions forming a cover of Rn

Output: RPWA, set of regions forming a partition of Rn

1: function PWARegionRefine(RPWA)
2: for all Rg, Rg′ ∈ RPWA do
3: if Rg ≥ Rg′ then
4: Rg′ ← Rg′ \Rg

5: if Rg′ = ∅ then
6: RPWA = RPWA \ {Rg′}
7: end if
8: end if
9: end for

10: return RPWA

11: end function

The worst-case time complexity of Algorithm 2 is O
(
n2n+1) [43, §III-B].
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Refinement to Obtain an Output-Preserving Partition

Let AP = {a1, a2, · · · , ar} be a finite set of atomic propositions, each of which is defined over
a DBM region in the state space with |AP | = r. Then, the set of DBMs corresponding to all
atomic propositions is denoted by DAP = {Da1 , Da2 , · · · , Dar} with Dai being the DBM of
ai for all ai ∈ AP . In addition, let Dc

AP be the set of DBM complements defined as Dc
AP =

{Dc
a1 , D

c
a2 , · · · , D

c
ar
}, where Dc

ai
= Rn \Dai for all i ∈ {1, · · · , r}. Note that each element in

Dc
AP is in general not a DBM but a finite union of DBMs. Let ` = (`1, `2, · · · , `r) ∈ {0, 1}r a

vector of boolean coefficients. Given the set of r atomic propositions, the state space can be
partitioned into regions, denoted R`, where

R` =
r⋂

i=1

{
Dai , if `i = 1
Dc

ai
, if `i = 0

Proposition 4.1. The set regions PAP = {R` ⊆ Rn | ∀ ` ∈ {1, 0}r such that R` 6= ∅} is a
partition of Rn.

Proof. To prove the proposition, one must show that PAP is a cover of Rn and that its
elements are nonempty pairwise-disjoint regions.

• The first statement is equivalent to showing that Rn is a subset of PAP . Let x be a
point Rn. For each i ∈ {1, · · · , r} check whether x ∈ Dai is true or false. When true,
set `i = 1, otherwise set `i = 0. Thus, x is an element of R` with ` = (`1, · · · , `r).

• To prove the second part, one can say that, by definition, all the elements of PAP are
nonempty. Then, suppose that there exist ` and `′ such that ` 6= `′ and R` ∩ R`′ 6= ∅.
Because ` 6= `′, there exists an i ∈ {1, · · · , r} such that `i 6= `′i. Without loss of
generality, assume that `i = 1 and `′i = 0. Notice that R` ⊆ Dai and R`′ ⊆ Dc

ai
.

Since Dai ∩Dc
ai

= ∅, it must be true that R` ∩ R`′ = ∅, which contradicts the initial
assumption. Thus, for any ` 6= `′, R` ∩R`′ = ∅.

As a final step before computing the transitions, the partition obtained from Algorithm 2
can be refined with the partition PAP to obtain an output-preserving partition of the state
space. This can be done with the aid of Algorithm 3. Algorithm 3 takes each region in the
PWA partition and, depending on where it lies with respect to the PAP partition, divides it
into smaller regions such that each new region is mapped to a single output. As a result, the
set of equivalence classes in the refined partition can be used as the finite state space of the
quotient system.

Computation of Transitions

The state-space partitioning is done by considering only the autonomous part of the state evo-
lution equation, i.e. independent from the input space. To compute the transitions between
the states (X/Q) of the quotient system, the input space must be taken into consideration.
This can be done in three steps. The first step is to obtain the PWA representation in the
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Algorithm 3 Generate an output-preserving partition of the state space by refinment
Input: RPWA, a partition of Rn based on the PWA dynamics; PAP , a partition of Rn based

on the atomic propositions
Output: X/Q, an output-preserving partition of Rn

1: function PartitionRefine(RPWA, PAP )
2: X/Q← ∅
3: for all Rg ∈ RPWA do
4: for all R` ∈ PAP do
5: if R` ∩Rg 6= ∅ then
6: X/Q← X/Q ∪ {R` ∩Rg}
7: end if
8: end for
9: end for

10: return X/Q
11: end function

input/state augmented space. Basically, A and B can be augmented together in one matrix
Ā = [AB] and the nonautonomous MiPL system becomes

x(k) = [AB]⊗
[
x(k − 1)
u(k)

]
(4-4)

To obtain the PWA representation of the augmented space, Ā is passed as an input to Al-
gorithm 1. The only purpose of the augmented PWA representation is to help in computing
the transitions.

The second step of finding the transitions is to create a finite partition of the input space
U ⊆ Rm. This procedure is very similar to the procedure of partitioning the state space
according to the set atomic propositions that was mentioned earlier in Section 4-2. The only
difference is that, in the case, the space considered is the input space U ⊆ Rm rather than
the state space Rn. The set of regions forming the partition of the input space is denoted by
U/Q ⊆ Rm, which is defined as U/Q = {U1, U2, · · · , U|U/Q|} such that Ui ∩ Uj = ∅∀ i 6= j.

The final step of computing the transitions is to apply the forward reachability approach [43,
§III-C] to form the transitions between the quotient states. Given a set of inputs U/Q ⊆ Rm, a
transition exists between two s and s′ in the quotient system if and only if ∃Ui ∈ U/Q for some
i ∈ {1, · · · , |U/Q|} such that f(Xs, Ui) ∩ Xs′ 6= ∅, where Xs = {x ∈ Rn | πQ(x) = s′} and
Xs′ = {x ∈ Rn | πQ(x) = s′}. Computing the next state set f(Xs, Ui) requires the usage of the
PWA representation of the augmented system. This is done by finding the Cartesian product
Xs×Ui and then intersecting it with the PWA regions of the augmented space. Depending on
where it lies in augmented space, the proper PWA dynamics are used to compute the image
of Xs × Ui. The image of Xs × Ui is then intersected with Xs′ to determine if a transition
from s to s′ is possible or not. This procedure is automated in Algorithm 4. Algorithm 4 is
very similar to [43, Alg. 9] and therefore a similar complexity analysis can be applied. The
complexity of computing the image of f(Xs, Ui) through the dynamics and then computing
the intersection with Xs′ , line 5, is O

(
(n+m)3 · |R̄PWA|

)
[43, §III-C-2]. The loop over all

the inputs, line 4, has the worst-case time complexity of O (|U/Q|), and the outer loop has
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Algorithm 4 Computing transitions between the states of the quotient system
Input: X/Q, a partition of Rn; U/Q ⊆ Rm, the input set; Ā ∈ Rn×n+m

ε , an augmented
matrix; R̄PWA, the PWA regions of the augmented system;

Output: δ/Q ⊆ X/Q× U/Q×X/Q, a transition relation
1: function ComputeTransition(X/Q, U/Q, Ā, R̄PWA )
2: δ/Q ← ∅
3: for all s, s′ ∈ X/Q do
4: for all Ui ∈ U/Q do
5: if f(Xs, Ui) ∩Xs′ 6= ∅ then
6: δ/Q ← δ/Q ∪ {(s, Ui, s

′)}
7: end if
8: end for
9: end for

10: return δ/Q

11: end function

the worst-case complexity of O
(
|X/Q|2

)
. Finally, the overall worst-case complexity is the

product of the individual complexities, which is O
(
(n+m)3 · |R̄PWA| · |U/Q| · |X/Q|2

)
.

By construction, the obtained quotient system, S/Q(Σ), in general simulates the infinite-state
system, S(Σ) (cf. Theorem 2.4).

4-3 Formulation of the verification properties

As discussed earlier, one of the main goals of this thesis is to transform the problems con-
cerned with maximum backlog and virtual delay into verification problems. By doing so, the
reasoning can be automated via model checking instead of manual computation. As a result,
the reasoning procedure could be incorporated with the automatic controller synthesis tools
to generate more optimized controllers based on network analysis. The following discussion
shows how to translate the delay and backlog bounds into LTL formulas.

The first step is to decide about the atomic propositions that will be used. A clever choice of
atomic propositions can allow a smooth and intuitive translation to LTL property specifica-
tion. The chosen set of atomic propositions for this problem is given below

AP = {ConformantInput, BacklogBounded, DelayBounded}

where,

• ConformantInput is true wherever the input is conformant, i.e. conformance checker
detects no violation of arrival constraint in the past time step.

• BacklogBounded is true whenever the backlog is bounded by some predefined parameter
Bmax ∈ R

• DelayBounded is true whenever the virtual delay is bounded by some predefined param-
eter Dmax ∈ N
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These atomic propositions can be defined as DBMs in the state space. Going back to the
system in Section 3-4, ConformantInput DBM can be defined as the following:

ConformantInput = {x ∈ Rn | xd+2(k)− x1(k) ≥ 0} (4-5)

To simplify the discussion, states of S/Q where ConformantInput is true are referred to as
conformant states. On the other hand, states where ConformantInput is false are referred to
as nonconformant states. The DBM of the other two atomic propositions are discussed in
their corresponding subsections.

4-3-1 Backlog Property

Although, the input is unpredictable, the conformance checking mechanism embedded in the
model allows making inferences about the past incoming signals. Recall from network calculus,
the backlog is bounded whenever the input abides by an arrival constraint. Referring to the
system in Section 3-4 and given Bmax as an upper bound of the backlog, the BacklogBounded
DBM can be defined as the following

BacklogBounded = {x ∈ Rn | 0 ≤ u(k)− y(k) ≤ Bmax}
= {x ∈ Rn | 0 ≤ x1(k)− xd+1(k) ≤ Bmax}

(4-6)

When thinking about the LTL property formulation, one can notice that the properties that
are of interest apply to certain paths (trajectories) in the system and not for others. Ver-
bally, the system must satisfy the property that along all paths over which states are always
conformant, it is also true that the backlog is always bounded by the predefined backlog
bound. The quotient system contains many paths that include nonconformant states (i.e.
¬ConformantInput). However, those paths are not very interesting to the discussion. After
all, the backlog bound is not supposed to be respected if the input to the system at some
point was not conformant. On the hand, the backlog bound must be respected as long as the
input is conformant.

Based on intuition, a LTL formulation can be written as the following

ϕ1 = � (ConformantInput) =⇒ � (BacklogBounded) (4-7)

Notice that the LTL formula ϕ1 will not be satisfied by the symbolic model if there is at
least one path over ConformantInput states which also includes ¬BacklogBounded states. In
addition, there are no backlog restrictions over paths that include ¬ConformantInput states
as they always satisfy ϕ1.

Note that ϕ1 is a well-formed LTL formula and therefore can be verified using an LTL model
checker such as SPIN [46]. It is not hard to see that the verification of the backlog property
depends on the backlog parameter Bmax, which might be imposed as a design parameter. If
the property is satisfied by the symbolic model, then one can confidently say that backlog
in the actual system is bounded by the given parameter. However, if the property is not
satisfied, no conclusion can be made about the backlog bound in the actual system. When
the property is not satisfied, the model checking procedure can be iteratively applied with
each time increasing the parameter Bmax until the property is satisfied.
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4-3-2 Virtual Delay Property

Following the same idea of the backlog property, the virtual delay property is formulated to
check if the virtual delay is bounded over all the paths where the input is conformant. Using
Eq. (2-9) of the virtual delay, the statement that the virtual delay in a discrete-time server is
bounded by D ∈ N is mathematically equivalent to

u(k) ≤ y(k+Dmax) ⇐⇒ u(k−Dmax) ≤ y(k) ⇐⇒ u(k−Dmax)−y(k) ≤ 0 ∀ k ∈ N (4-8)

Alternatively, any value of D ∈ N that satisfies the inequality (4-8) for all k is also an upper
bound of the virtual delay. The LTL property formulation is based on this observation.
Checking the value of the input Dmax units back in time requires storing the history of the
input for at least D+ 1 time units. This can be done by introducing D+ 1 state variables in
the following way

x1(k) = u(k)
xi(k) = xi−1(k − 1) = u(k − (i− 1)) ∀ i ∈ {2, · · · , Dmax + 1}

Looking back at the system in Section 3-4, one can see that there are already some states
that store the input, namely x1 to xd. However, if there is a need to store the input for a
longer time (Dmax > d), additional state variables can be added to the system. After the
introduction of the additional state variables if needed, the atomic proposition DelayBounded
can be defined as a DBM in the state space.

DelayBounded = {x ∈ Rn | u(k −Dmax)− y(k) ≤ 0}
= {x ∈ Rn | xDmax+1(k)− y(k) ≤ 0}

(4-9)

The verification property of virtual delay, following the same arguments for the backlog prop-
erty, can be formulated in LTL as the following

ϕ2 = � (ConformantInput) =⇒ � (DelayBounded) (4-10)

As with the formula of the backlog bound, if ϕ2 is not satisfied, no conclusion can be made
about the actual system. This might require adjusting Dmax iteratively until the formula is
satisfied for some value of Dmax.

The backlog and delay properties can be combined and represented by one LTL formula as
the following

ϕ = ϕ1 ∧ ϕ2

= � (ConformantInput) =⇒ � (BacklogBounded ∧ DelayBounded)
(4-11)

The combined LTL formula ϕ checks whether the the backlog and delay bounds are respected
simultaneously. Because it is a conjunction of two well-formed LTL formulas, ϕ is also a
well-formed LTL formula.
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Chapter 5

Example

After presenting the theoretical results, it makes sense to work on an example to assess the
overall procedure. All the proposed procedures to build the MiPL system and to generate the
finite abstraction have been implemented as MATLAB scripts and are included in Appendix B.
The presentation in this chapter is in the form of steps that can be applied to any similar
example. The example that is discussed is based on the system derived in Chapter 3, which
basically captures the dynamics of a single server together with a conformance-checking leaky
bucket as shown in Figure 5-1.

Figure 5-1: Latency-Rate server with a leaky bucket conformance checker used in the example

The parameters used are given in Table 5-1 below
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Table 5-1: Table of parameters

Server Latency(d) Server Rate (c) Leaky Bucket Burstiness (b) Leaky bucket Rate (r)
3 5 2 4

The parameters were arbitrarily chosen for the purpose of the example. Besides keeping the
values small so that the state space does not become very large, the service rate was chosen
to be greater than the rate of the leaky bucket, c > r. This is because the server must
cope with the incoming data rate, or otherwise the backlog and delay cannot be bounded.
After choosing the system parameters, a choice must be made for maximum delay Dmax that
needs to be verified. Recall from Section 4-3-2, the value of Dmax dictates the number of
additional states that must be added to the system in order to store the input for enough
time units. Applying the theorem in Section 2-2-3, the maximum virtual delay in the server
is equal to d + c/b = 5.5. The parameter Dmax is chosen to be 6. The maximum backlog
from network calculus is r · d + b = 14 and it is the choice made for Bmax to be used in the
atomic proposition of the backlog. Note that the choices of Dmax and Bmax need not to be
based on network calculus calculations as they are supposed to be problem dependent. In
this case, the computation via network calculus is simple. However, the ultimate goal is to
have these parameters passed as a design requirements to be checked if they are satisfied via
model checking.

Step 1: Define the state-space representation of the system

With this choice of parameters the system state-space representation (x(k) = A⊗ x(k− 1)⊕
B ⊗ u(k)) is as the following:

A =



∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞
∞ ∞ 0 ∞ ∞ ∞ ∞ 5 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 4


B =



0
∞
∞
∞
∞
∞
∞
∞
2


(5-1)

Comparing the above matrices with the ones in Eq. (3-17), one can notice the effect of adding
the 4 additional state variables (represented by the middle 4 rows in A and B) in order to
keep the input as far as Dmax = 6 units in time. Note that the seventh column is empty
because the value of the input is not stored further.

After defining the state-space representation of the system in Figure 5-1 as prescribed in
Section 3-4, one can start applying the abstraction techniques to obtain a symbolic model.
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Step 2: Define the DBMs of the atomic propositions and partition
the state space accordingly

According to the state-space representation, u(k) = x1(k), u(k−Dmax) = x7(k), and y(k) =
x8(k). Based on this observation, the DBMs of the atomic propositions are defined as the
following:

• ConformantInput =
{
x ∈ R9 | x9 − x1 ≥ 0

}
• BacklogBounded =

{
x ∈ R9 | 0 ≤ x1 − x8 ≤ Bmax = 14

}
• DelayBounded =

{
x ∈ R9 | x7 − x8 ≤ 0

}
Based on the atomic propositions, one can obtain a partition of the state space. In this case,
there are 23 = 8 different regions obtained, each of which is a union of DBMs. Table 5-
2 gives the number of DBMs obtained in each region together with the numbering of the
DBMs. Each DBM is considered a state. The boolean vector beside each region is the vector
l (cf. Section 4-2 ), which shows the contribution of each atomic proposition to the particular
region. The order from left to right is: (DelayBounded, BacklogBounded, ConformantInput).
For example, Region (1,0,1) is the region where DelayBounded is true, BacklogBounded is false,
and ConformantInput is true.

Table 5-2: Regions of the state-space partition based on the atomic propositions (AP partition)

Region (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1)
Number of DBMs 2 2 1 1
Assigned States {1, 2} {3, 4} {5} {6}

Region (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)
Number of DBMs 2 2 1 1
Assigned States {7, 8} {9, 10} {11} {12}

Step 3: Partition the state-space based on the PWA dynamics

After partitioning the state space based on the atomic propositions, the next step is to
partition the state space based on the PWA dynamics. Since all the elements of the first
row in A are infinite, it can be ignored for this procedure. The maximum number of PWA
regions depend on the number of finite elements in each row-finite row. In this case there are
two PWA regions because there are only two different possibilities for vector g (c.f Eq. (4-2)),
namely g1 = (1, 2, 3, 4, 5, 6, 3, 9) and g2 = (1, 2, 3, 4, 5, 6, 8, 9). The two regions are:

R1
g =

{
x ∈ R9 | x3 − x8 < 5

}
R2

g =
{
x ∈ R9 | x3 − x8 ≥ 5

}
Note that the regions shown after resolving the boundary issue, that is after applying Algo-
rithm 2.
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Step 4: Refine PWA partition by AP partition to obtain an output-
preserving partition of the state space

Having the two partitions of the state space, the last step in forming the states of the quotient
system is to apply the refinement procedure described by Algorithm 3. The total number of
regions after refinement is 8× 2 = 16. Since some regions in the AP partition are composed
of unions of DBMs, the number of quotient states, with each state being a DBM, is 12× 2 =
24. A summary of the partition is given in Table 5-3, where each region in the refined
partition is marked by the contributing regions of the coarser partitions. For example, Region
{R2

g, (0, 0, 1)} is the region obtained from the intersection of AP region (0, 0, 1) and PWA
region R2

g.

Table 5-3: Regions of the output-preserving partition

Region {R1
g, (0, 0, 0)} {R1

g, (0, 0, 1)} {R1
g, (0, 1, 0))} {R1

g, (0, 1, 1)}
Number of DBMs 2 2 1 1
Assigned States {1, 2} {3, 4} {5} {6}

Region {R1
g, (1, 0, 0)} {R1

g, (1, 0, 1)} {R1
g, (1, 1, 0))} {R1

g, (1, 1, 1)}
Number of DBMs 2 2 1 1
Assigned States {7, 8} {9, 10} {11} {12}

Region {R2
g, (0, 0, 0)} {R2

g, (0, 0, 1)} {R2
g, (0, 1, 0)} {R2

g, (0, 1, 1)}
Number of DBMs 2 2 1 1
Assigned States {13, 14} {15, 16} {17} {18}

Region {R2
g, (1, 0, 0} {R2

g, (1, 0, 1) {R2
g, (1, 1, 0)} {R2

g, (1, 1, 1)}
Number of DBMs 2 2 1 1
Assigned States {19, 20} {21, 22} {23} {24}

Step 5: Compute the transitions between the symbolic states

To compute the transitions, one must first specify a partition on the input space. In this
case, there is a single input and thus the input space is R. Because the input must always
be nonnegative, the input space can be partitioned into two regions U1 = {u ∈ R | u ≥
0} and U2 = {u ∈ R | u < 0}. Consequently, the transitions are formed based on the
input U1. After applying Algorithm 4, the full transition system is obtained. Because the
transition graph is huge and will not be very useful if presented as it is, all the transitions
to nonconformant states are removed for the graph to be presentable. Looking back at
Table 5-3, the nonconformant states that are part of the regions marked as {R1

g, (−,−, 0)} or
{R2

g, (−,−, 0)}, where − denotes a “don’t care” value that can be replaced by either 0 or 1.
Thus, the set of nonconformant states is {1, 2, 5, 7, 8, 11, 13, 14, 17, 19, 20, 23}. An interested
reader can consult Appendix A for the full transition system. The states that satisfy all
the atomic propositions are {12, 24}, and are marked by green color in Figure 5-2. Other
conformant states are not colored. Notice the nondeterminism in the quotient system.

Bassilio Dahlan Master of Science Thesis



41

12

24

3

4

6

9

10

15

16

18

21

22

Figure 5-2: Transition graph of the quotient system after removing the nonconformant states
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Step 6: Use model-checking to verify the properties

Since the original system is a deterministic dynamical system, the nondeterminism of the
quotient system is a clear indication that it does not bisimulate the original system. The
construction of the quotient system by the abstraction technique discussed in Chapter 4 only
guarantees that the quotient system simulates the original system (cf. Theorem 2.4). In some
cases, iteratively refining the state-space partition can lead to a bisimulating quotient system.
However, this procedure is not guaranteed to terminate in general [43], as it might be the
case that the infinite-state system cannot be bisimulated by a finite-state quotient system.

The resultant quotient system is exported as a Promela file to be used by the SPIN model
checker [46] for the verification of the given LTL specifications. Unfortunately, the symbolic
abstraction was too coarse to satisfy the LTL properties ϕ1 and ϕ2. To better understand why
the properties were not satisfied, the transition graph given in Figure 5-2 can be consulted
since it is small enough to be visually analyzed. Although the transition graph given is only
part of the full transition system, it is still useful to deduce the counterexamples that violate
each of the LTL formulas. For easier reference, the two LTL formulas are listed again below:

ϕ1 = � (ConformantInput) =⇒ � (BacklogBounded)
ϕ2 = � (ConformantInput) =⇒ � (DelayBounded)

In order to perform model checking, the initial state of the quotient system must be spec-
ified. Recall from Section 3-4 that the initial states of the original system are those that
correspond to zero backlog and full leaky bucket. After performing the symbolic abstrac-
tion, these initial states are part of the symbolic state 12. One path that acts as a coun-
terexample violating ϕ1 is the infinite path z1 = (12, 22, 22, 22, . . . ). Obviously, z1 satisfies
� (ConformantInput) since both states, 12 and 22, are conformant states. However, z1 does
not satisfy � (BacklogBounded) because BacklogBounded is not satisfied in state 22. As a
result, the implication in ϕ1 is not respected by at least one path, z1, in the quotient system,
which renders the LTL property unsatisfied.

Another path that acts as a counterexample violating ϕ2 is the infinite path z2 = (12, 18, 18, 18,
. . . ). Similar to z1, z2 also satisfies � (ConformantInput) since state 18 is a conformant
state as well. At the same time, DelayBounded is not satisfied in state 18, which causes
� (DelayBounded) not to be satisfied by z2. Hence, the implication in ϕ2 is also not respected
and the LTL property not satisfied.

Arriving to this result where both properties are not satisfied by the quotient system, no
conclusion can be made about the original infinite-state system. At this stage, there are
two options. The first option is to increase the parameters Bmax and Dmax and repeat the
abstraction process again. The second option is to refine the state-space partition with hope
of obtaining a bisimulating quotient system or at least a simulating system that verifies the
properties. The procedure in the second option should be applied with care since it is not
guaranteed to terminate as discussed earlier.
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Chapter 6

Conclusion and Future Work

The event-triggered control paradigm has great potentials in modern networked control sys-
tems’ applications. Nevertheless, challenges imposed by the network are far from being trivial.
In this thesis, a finite abstraction modeling technique was proposed based on network calcu-
lus. Targeting worst-case analysis, network calculus offers a well-suited ground for developing
discrete-time systems that model network elements. The state-space representation of such
discrete-time models was derived obtaining MiPL systems. To construct finite abstractions of
the MiPL systems, a useful technique, which was developed for the abstractions of max-plus
linear systems, was applied with some modifications. The abstraction procedure was fully
described in Chapter 4. Based on the intuitive meaning of the backlog and virtual delay,
the properties of the network were formulated as LTL specifications. The abstraction proce-
dures were applied to an example. Despite successfully obtaining a finite abstraction of the
discrete-time system, the symbolic model included many more behaviors than the original
infinite-state system causing the LTL properties not to be satisfied.

Reflecting back on the abstraction procedure, one can conclude that the main cause of the
coarse abstraction is the way the procedure deals with the input. Because the input is
cumulative, the input space is considered to be unbounded to account for any possible input to
the system. As a result, even after partitioning the input space into a finite number of symbolic
inputs, at least one of the symbolic inputs will be unbounded. In addition, the current
abstraction procedure does not accommodate the fact that the input is a nondecreasing
sequence. The abstraction procedure allows the input to change less restrictively than it
can do in original model. As a result, all trajectories that are only possible when the input is
allowed to decrease are possible in the resultant quotient system. This result clearly manifests
itself in the quotient system by having transitions between nearly any two symbolic states,
as shown in Figure 5-2 and Figure A-1.

One possible improvement is to consider the input increments instead of the input itself.
The advantage of working with the increments is that they are essentially bounded because
the arrivals during any bounded time interval are finite. Another advantage is that dealing
with the nondecreasing nature of the input becomes more possible. For example, an internal
variable can be introduced to continuously accumulate the increments and represent the
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nondecreasing input. Showing great potentials, this idea is worth further investigation in
future.

Finally, the future work for this thesis can be summarized by the following bullet points:

• Improve the abstraction techniques presented in this thesis to allow generating sym-
bolic models that better capture the dynamics of the discrete-time dynamical systems.
Considering the idea of input increments could offer valuable improvements.

• Improve the efficiency of the abstraction procedures by utilizing more efficient data
structures, such as Binary Decision Diagram [47], to allow working with very large state
spaces.

• Analyze more complicated arrival curves that can better model the data transmitted in
networked control systems.

• Improve the server model to incorporate more sophisticated features that are useful for
actual networked control system.

• Extend the analysis to min-plus nonlinear compositions of systems that can arise in real
networks. Nonlinear compositions place some challenges in network calculus. Finding
an efficient technique to compose the symbolic models nonlinearly can open the door
for more complicated types of analysis for networked control systems.
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Appendix A

The full state transition graph of the
quotient system obtained from the

example

Figure A-1 shows the full state transition graph of the quotient system presented in the
example of Chapter 5. Note that nonconformant states are colored with red, states where all
the atomic propositions are satisfied are colored with green, and the other conformant states
are kept in white.
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Figure A-1: Transition graph of the quotient system obtained in the example
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Appendix B

MATLAB Files

All the MATLAB files that were developed to implement the abstraction techniques presented
in this thesis are given below. It should be mentioned that the implementation is partially
based on the implementation of the VeriSiMPL toolbox [48].

B-1 example.m

1 % This script can reproduce the results of the example described in
2 % Chapter 5 of the thesis
3 %% Step 1: Define the state -space representation of the system
4 clear , clc ;
5 d = 3 ;
6 c = 5 ;
7 r = 4 ;
8 b = 2 ;
9

10 B_max = r∗d+b ; % The maximum from NC
11 D_max = d+c/b ; % The maximum from NC
12
13 B_margin = 0 ;
14 B_max = B_max + B_margin ; % Maximum Baklog to be tested
15
16 D_margin = 0 ;
17 D_max = ceil ( D_max + D_margin ) ; % Maximum delay to be tested
18
19 [ A , B , n ] = generate_AB ( [ d , c ] , [ r , b ] , D_max ) ;
20
21 %% Step 2: Define the DBMs of the atomic propositions and partition the

state space accordingly
22
23 % Create a DBM for the region where x(n)-x(1) >=0 is true
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24 % This is the region where the input flow conforms with the arrival
policy

25 AP_1 = R (n ) ; % Initialize DBM
26
27 % x(n)-x(1) >=0 ==> x(1)-x(n)<=0 ==> D(n+1,2) = 0
28 i = (1) +1;
29 j = (n )+1;
30 AP_1 {1}(j , i ) = 0 ;
31 AP_1 {2}(j , i ) = 1 ;
32
33 % Create a DBM for the region where u(k)-y(k)<=B_max (x(1)-x(n-1)<=B_max)
34 % is true
35 % This is the region where the backlog is bounded.
36 AP_2 = R (n ) ; % Initialize DBM
37
38 i = (1) +1;
39 j = (n−1)+1;
40
41 % Upper bound:
42 AP_2 {1}(j , i ) = B_max ;
43 AP_2 {2}(j , i ) = 1 ;
44
45 % Lower bound:
46 AP_2 {1}(i , j ) = 0 ;
47 AP_2 {2}(i , j ) = 1 ;
48
49 % Virtual Delay Bound AP
50 % Create a DBM for the region u(k-D_max)-y(k)<=0 ( x(D_max+1)-x(n-1) <=0)
51 % This is the region where the backlog is within the limit.
52 AP_3 = R (n ) ; % Initialize DBM
53
54 % x(D_max+1)-x(n-1) <=0
55 %D_max = 1;
56 i = ( D_max+1)+1;
57 j = (n−1)+1;
58
59 % Upper bound:
60 AP_3 {1}(j , i ) = 0 ;
61 AP_3 {2}(j , i ) = 1 ;
62
63 % Combine the three DBMs into one DBM representing the three APs
64 AP = cell ( 1 , 2 ) ;
65 AP { 1 } ( : , : , 1 ) = AP_1 {1} ;
66 AP { 1 } ( : , : , 2 ) = AP_2 {1} ;
67 AP { 1 } ( : , : , 3 ) = AP_3 {1} ;
68
69 AP { 2 } ( : , : , 1 ) = AP_1 {2} ;
70 AP { 2 } ( : , : , 2 ) = AP_2 {2} ;
71 AP { 2 } ( : , : , 3 ) = AP_3 {2} ;
72
73 % Partition the state space into a set of DBMs based on the atomic
74 % propositions
75 AP_regions = dbm_sspart (AP ) ;
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76
77 AP_Partition = label_AP_partition ( AP_regions ) ;
78 %% Step 3: Partition the state -space based on the PWA dynamics
79
80 U = R (1 ) ; % DBM describing the set of possible inputs
81
82 % The input U(k) is a counter and therefore cannot be negative. So we

need
83 % to restrict the DBM of U to the non-negative region.
84 U {1}(2 ,1 ) = 0 ;
85 U {2}(2 ,1 ) = 1 ;
86
87 % Generate the PWA system of the autonomous min-plus system , i.e no input
88 [ A_pwa , B_pwa , D_pwa ] = minpl2pwa (A ( 2 : end , : ) ) ;
89
90 % Refine the cover to form a partition of the state -space
91 [ A_pwa , B_pwa , D_pwa ] = minpl2pwa_refine (A ( 2 : end , : ) , A_pwa , B_pwa , D_pwa ) ;
92
93
94 %% Step 4: Refine PWA partition by AP partition to obtain an output -

preserving partition of the state space
95
96 % Generate a refined partition based on the PWA and AP partitions
97 Refined_part = AP_PWA_part_refine ( D_pwa , AP_Partition ) ;
98
99 % Find the number of symbolic states in the refined partition

100 num_states = size ( Refined_part {1} ,3) ;
101 %% Step 5: Compute the transitions between the symbolic states
102
103 % Form the Transition System of the nonautonomous min-plus system
104 % Generate the PWA system of the augmented min-plus system
105 [ Anon , Bnon , Dnon ] = minpl2pwa ( [ A B ] ) ;
106
107 % Create the transitions between the states according to the dynamics of
108 % the PWA systems.
109 Refined_part_unlabelled = {Refined_part {1} , Refined_part {2}} ;
110 adj = minplnon2ts_trans ( Refined_part_unlabelled , Anon , Bnon , Dnon , U ) ;
111
112 All= −1; % Constant used for clarity indicating all the possible values
113 BoundedBacklogDelay_set = prop2state ( [ 1 , 1 , 1 ] , Refined_part ) ;
114 NonConformant_set = prop2state ( [ All , All , 0 ] , Refined_part ) ;
115 Conformant_set = prop2state ( [ All , All , 1 ] , Refined_part ) ;
116
117 adj_safe_only = remove_set (adj , NonConformant_set ) ; % Remove the unsafe

set
118
119 % Create a graphical representation of the transition system in graphviz
120 % code
121 ts2graphviz_color ( adj_safe_only , BoundedBacklogDelay_set , . . .
122 NonConformant_set , ’ts’ ,’mygraph’ ) ;
123 %% Step 6 : Generate the Promela file that can be used to verify the

properties using SPIN
124
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125 initial_set = prop2state ( [ 1 , 1 , 1 ] , Refined_part ) ;
126
127 % Mark the initial set by adding a new initial node with a transition to
128 % each state in the initial set
129 adj_new = mark_initial_set (adj , initial_set ) ;
130
131 s0_dbm = R (n ) ;
132 s0_label = ’111’ ;
133 Refined_part { 1 } ( : , : , num_states+1) = s0_dbm {1} ;
134 Refined_part { 2 } ( : , : , num_states+1) = s0_dbm {2} ;
135 Refined_part{3}{num_states+1} = s0_label ;
136
137 s0 = size ( adj_new , 1 ) ; % Initial state is the last one added
138
139 % Generate the Promela file for transition system that can be fed to SPIN
140 mipl_ts2promela ( Refined_part , adj_new ,’ts’ ,s0 ) ;

B-2 generate_AB.m

1 % Description: This function is used to generate the state -space
2 % representaion of the system based on the Latency -rate and leaky bucket
3 % parameters
4
5 function [ A , B , n ] = generate_AB ( LR_param , LB_param , tau )
6
7 d = LR_param (1 ) ;
8 c = LR_param (2 ) ;
9 r = LB_param (1 ) ;

10 b = LB_param (2 ) ;
11
12 mem_states = tau+1; % Number of memory states needed to store the input
13 LB_states = 1 ; % Number of states for leaky bucket dynamics
14 GR_states = 1 ; % Number of states for guaranteed -rate server dynamics
15 n = mem_states + GR_states + LB_states ; % Dimension of State Space
16
17
18 %% Create A matrix
19 A = Inf (n , n ) ;
20
21 % Assign the values related to the memory states
22 for k = 2 : mem_states
23 A (k , k−1) = 0 ;
24 end
25
26 % Assign the values related to the guaranteed -rate server dynamics
27 %w(k) = min[ x_d(k-1), c + w(k-1)]
28 %x_{N-1} <-- w
29 A (n−1,d ) = 0 ;
30 A (n−1,n−1) = c ;
31
32 % Assign the values related to the leaky bucket dynamics
33 A (n , n ) = r ;
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34
35 %% Create B matrix
36 B = Inf (n , 1 ) ;
37 B (1 ) = 0 ;
38 B (n ) = b ;
39
40 end

B-3 dbm_relax.m

1 % Description: This function removes all the redundant elements from a
DBM.

2 % The function keeps only the elements that are needed to describe the
3 % region covered by the DBM correctly.
4
5 function D_relaxed = dbm_relax (D )
6
7 n = size (D {1} ,1) ; % size of the DBM
8 D = floyd_warshall (D ) ; % Get the canonical form of D, which is unique
9

10 D_new = D ; %initialize D_new
11
12 i = 1 ; % Initialize row counter ’i’
13 while (i <= n ) % Loop over the rows of the DBM
14
15 j = 1 ; % Initialize column counter ’j’
16
17 while (j <= n ) % Loop over the columns of the DBM
18
19 % Enter if the current element is bound is finite
20 if (j ~= i && D{1}(i , j )<Inf )
21 % Relax the current bound
22 D_new {1}(i , j ) = Inf ;
23 D_new {2}(i , j ) = 0 ;
24
25 % Calculate the canonical form of the relaxed DBM
26 C = floyd_warshall ( D_new ) ;
27
28 %Check if the relaxed DBM still represents the same region
29 if (~isequal (C , D ) )
30 % Restore the previous values of the relaxed bound
31 D_new {1}(i , j ) = D{1}(i , j ) ;
32 D_new {2}(i , j ) = D{2}(i , j ) ;
33 end
34 end
35
36 j = j+1; % Update column counter
37
38 end
39
40 i = i+1; % Update row counter
41
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42 end
43
44 D_relaxed = D_new ;
45
46 end

B-4 dbm_complement.m

1 % Description: This function generates the complement of a DBM. The
2 % complement of a DBM is in general a region composed of finite union of
3 % DBMs
4
5 function D_comp = dbm_complement (D )
6 n = size (D {1} ,1)−1; % Get the dimension of the state space
7
8 % Get the equivalent DBM with the least number bounds possible
9 D = dbm_relax (D ) ;

10
11 num_inf = (D{1} < Inf ) ;
12 num_dbm = sum ( sum ( num_inf ) )−(n+1) ; % Number of finite off-diagonal

elements
13
14 % Define the DBM of the entire state space R^n
15 R_n= cell ( 1 , 2 ) ;
16 R_n{1} = Inf (n+1,n+1) ;
17 for i = 1 : n+1
18 R_n {1}(i , i ) = 0 ;
19 end
20 R_n{2} = eye (n+1,n+1) ;
21
22 % Prepare the DBMs of the complement and initialize each one to R^n
23 D_comp = dbm_repmat (R_n , num_dbm ) ;
24
25 A = R_n ; % Initiallize A to R_n. In each round , ’A’ will be filled by a
26 % new element from ’D’.
27 i = 1 ; % Counter over the rows of ’D’
28 k = 1 ; % Counter over the DBMs that form the complement of ’D’
29
30 while ( ( i<=(n+1) ) && (k <=num_dbm ) )
31 j = 1 ; % Counter over the columns of ’D’
32 while (j<=(n+1) )
33 if (j ~= i ) && (D{1}(i , j ) < Inf )
34 % Start by storing the complement of the half-space defined
35 % the current upper bound value D{1}(i,j)
36 D_comp {1}(j , i , k ) = −D{1}(i , j ) ;
37 D_comp {2}(j , i , k ) = ~D{2}(i , j ) ;
38
39 % No need to find the intersection for k = 1 since A = R_n.
40 if (k>1)
41 %Store the current complement DBM in ’C’
42 C = {D_comp { 1 } ( : , : , k ) , D_comp { 2 } ( : , : , k ) } ;
43
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44 % Find the intersection between C and A
45 C = dbm_and (C , A ) ;
46
47 %Store the intersection back in the current complement

DBM
48 D_comp { 1 } ( : , : , k ) = C {1} ;
49 D_comp { 2 } ( : , : , k ) = C {2} ;
50 end
51
52 %Store the D(i,j) in A(i,j) for the next round
53 A{1}(i , j ) = D{1}(i , j ) ;
54 A{2}(i , j ) = D{2}(i , j ) ;
55
56 k = k+1; % Go to next complement DBM to be filled
57 end
58 j = j+1; % Go to next column of ’D’
59 end
60 i = i+1; % Go to next row of ’D’
61 end
62
63 end

B-5 union_dbm_and.m

1 % Description: This function takes two finite union of DBMs and finds the
2 % intersection between them, which is also a finite union of DMBs.
3 % This function can be seen as the generalization of "dbm_and" function ,
4 % which finds the intersection between single DBMs.
5
6 function P = union_dbm_and (P1 , P2 )
7 n = size (P1 {1} ,1)−1; % Find out the dimension of the state space
8 M1 = size (P1 {1} ,3) ; % Number of DBMs in region P1
9 M2 = size (P2 {1} ,3) ; % Number of DBMs in region P2

10
11 % Define the DBM of the entire state space R^n
12 R_n= cell ( 1 , 2 ) ;
13 R_n{1} = Inf (n+1,n+1) ;
14 for i = 1 : n+1
15 R_n {1}(i , i ) = 0 ;
16 end
17 R_n{2} = eye (n+1,n+1) ;
18
19 M = M1∗M2 ; %Maximum number of DBMs that can make up the intersection

region
20
21 % Prepare the DBMs of the intersection and initialize each one to R^n
22 P = dbm_repmat (R_n , M ) ;
23
24 i = 1 ; % Counter over the DBMs of region P1
25 k = 1 ; % Counter over the DBMs of the intersection region P
26 while (i<=M1 )
27 % Store the ith DBM of region P1 in DBM_i
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28 DBM_i = {P1 { 1 } ( : , : , i ) , P1 { 2 } ( : , : , i ) } ;
29
30 j = 1 ; % Counter over the DBMs of region P2
31 while (j<=M2 )
32 % Store the ith DBM of region P2 in DBM_j
33 DBM_j = {P2 { 1 } ( : , : , j ) , P2 { 2 } ( : , : , j ) } ;
34
35 % Find the intersection between DBM_i and DBM_j
36 C = dbm_and ( DBM_i , DBM_j ) ;
37
38 % Store the intersection
39 P { 1 } ( : , : , k ) = C {1} ;
40 P { 2 } ( : , : , k ) = C {2} ;
41
42 k = k+1; % Go to next element of region P
43 j = j+1; % Go to next element of region P2
44 end
45 i = i+1; % Go to next element of region P1
46 end
47
48 % Remove the DBMs in P that are subsets of another DBM.
49 P = dbm_delsubset (P ) ;
50 end

B-6 dbm_sspart.m

1 % Description : This function creates a state -space partition based on a
2 % set of atomic propositions that are passed as DBMs
3
4 function P = dbm_sspart (D )
5 num_dbm = size (D {1} ,3) ;
6
7 D_comp = cell (1 , num_dbm ) ; % Cell array to store the complement DBMs
8 P = cell (1 , num_dbm ) ; % Cell array to store the DBMs and their complements
9 k = 1 ;

10 while (k <= num_dbm )
11 D_comp{k} = dbm_complement ({D { 1 } ( : , : , k ) ,D { 2 } ( : , : , k ) }) ;
12 P{k} = {D_comp{k} ,{D { 1 } ( : , : , k ) ,D { 2 } ( : , : , k ) }} ;
13 k = k+1;
14 end
15
16 k = 0 ;
17 N = num_dbm ;
18 while (N >= 2)
19 isOdd = mod (N , 2 ) ;
20 N = ceil (N/2) ;
21 i = 1 ; % Counter over the elements in the P
22 while (i <= N−1)
23 % Form the intersections between the two "property" sets
24 P{i} = property_combine (P{i} ,P{i+1}) ;
25 P (i+1) = [ ] ; % Remove cell from cell array
26 k = k+1;
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27 i = i+1;
28 end
29 if ( isOdd == 0)
30 % Form the intersections between the two "property" sets
31 P{i} = property_combine (P{i} ,P{i+1}) ;
32 P (i+1) = [ ] ; % Remove cell from cell array
33 k = k+1;
34 end
35 end
36
37 % After merging all the elements in P, P will have only 1 element which

is
38 % a cell array of 2^num_dbm elements. In other words , result we need is

in
39 % P{1}.
40 P = P {1} ; % Adjust P so that the needed DBMs are directly accesible
41 end

B-7 property_combine.m

1 % Description: This function combines two atomic properties in one
2 % partition
3
4 function Poperties = property_combine (P1 , P2 )
5 % Each input is composed of a set of "property regions". A property

region
6 % is given by a set of DBMs that span the set of states in which a

certain
7 % property holds.
8 num_regions_1 = length (P1 ) ; % number of different "property regions" in

P1
9 num_regions_2 = length (P2 ) ; % number of different "property regions" in

P2
10 Poperties = cell (1 , num_regions_1∗num_regions_2 ) ;
11 i = 1 ;
12 while (i <=num_regions_2 )
13 j = 1 ;
14 while (j <= num_regions_1 )
15 index = (i−1)∗num_regions_1+j ;
16
17 % Find the intersection between the two finite unions of DBMs
18 Poperties{index} = union_dbm_and (P2{i} ,P1{j}) ;
19 j = j+1;
20 end
21 i = i+1;
22 end
23
24 end

B-8 label_AP_partition.m
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1 % Description: This function adds labels to the AP partition. The label
2 % is a binary string representing the contribution of each atomic
3 % proposition. For example , string ’011’ representes a DBM in which AP3 =
4 % false , AP2 = true and AP1 = true.
5
6 function P_labeled = label_AP_partition (P )
7
8 num_regions = length (P ) ; % Find the total number of regions (=2^|AP|)
9 n_bits = log2 ( num_regions ) ; % Find the length of the labeling string

10 P_labeled = cell ( 1 , 3 ) ;
11
12 k_end = 0 ; %initialize
13 for k = 1 : num_regions
14 num_dbms = size (P{k }{1} ,3) ;
15 k_begin = k_end+1;
16 k_end = k_begin + num_dbms−1;
17 P_labeled { 1 } ( : , : , k_begin : k_end ) = P{k }{1} ;
18 P_labeled { 2 } ( : , : , k_begin : k_end ) = P{k }{2} ;
19
20 for i = k_begin : k_end
21 P_labeled{3}{i} = dec2bin (k−1,n_bits ) ; % Add the binary label
22 end
23 end
24
25 end

B-9 minpl2pwa.m

1 % MINPL2PWA Generating a piecewise -affine system of the MiPL system
2 % Adapted from maxpl2pwa(Ampl) by Dieky Adzkiya
3
4 function [ A , B , D ] = minpl2pwa ( Ampl )
5
6 % in general Ampl is not square , it is m by n matrix
7 [ m n ] = size ( Ampl ) ;
8
9 % F, find the location of finite values in each row of Ampl

10 % idxmax , keep the number of finite values in each row of Ampl
11 % idxmax will be used to calculate the maximum number of regions
12 idxmax = ones (1 , m ) ;
13 F = cell (1 , m ) ;
14 for i = 1 : m
15 F{i} = find ( Ampl (i , : ) ~= Inf ) ; % >>> Original: F{i} = find(Ampl(i,:)

~= -Inf)
16 idxmax (i ) = length (F{i}) ;
17 end
18
19 % N, maximum number of regions
20 N = prod ( idxmax ) ;
21
22 % initialize the dynamical systems
23 A = zeros (m , N ) ;
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24 B = zeros (m , N ) ;
25
26 % initialize regions (DBM)
27 D = cell ( 1 , 2 ) ;
28 D{1} = zeros (n+1,n+1,N ) ;
29 D{2} = false (n+1,n+1,N ) ;
30
31 % Nr, the number of inserted (nonempty) regions
32 Nr = 0 ;
33
34 % number of elements of idx is the same with rows of A
35 % position/column of finite element at each row w.r.t. F (not for A)
36 idx = ones (1 , m ) ;
37
38 % level , this variable is used in the pruning technique
39 lvl = 1 ;
40
41 % some temporary regions used to build the tree in the pruning technique
42 Di = cell (m , 2 ) ;
43
44 while lvl > 0
45 % while there exists an unobserved node in the tree
46
47 % constructing a region and save it to the temporary region
48 Di (lvl , : ) = row2dbm_pwa_min ( Ampl (lvl , : ) , idx ( lvl ) ,F{lvl }) ;
49 if lvl > 1
50 % do not forget to intersect with the upper region
51 Di (lvl , : ) = dbm_and (Di (lvl , : ) , Di (lvl−1 , : ) ) ;
52 end
53
54 % check emptiness of the new region , indexed by i-lvl
55 [ empty , Di (lvl , : ) ] = dbm_isempty (Di (lvl , : ) ) ;
56 % the new region is in the canonical -form representation
57
58 if empty
59 % the new region is empty , we go to the right
60 [ idx , lvl ] = next_comb (idx , idxmax , lvl ) ;
61 else
62 % the new region is not empty , we go down
63
64 % check whether the new region has a child
65 if lvl == m
66 % the new region does not have a child
67 % we are in the leaf/bottom
68 % save the region and its dynamical system
69
70 % update the number of inserted (nonempty) regions
71 Nr = Nr + 1 ;
72
73 % insert the new (nonempty) region
74 D { 1 } ( : , : , Nr ) = Di{lvl , 1 } ;
75 D { 2 } ( : , : , Nr ) = Di{lvl , 2 } ;
76
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77 % constructing the dynamical system from idx
78 for i = 1 : m
79 % construct A and B
80 A (i , Nr ) = F{i}( idx (i ) ) ;
81 B (i , Nr ) = Ampl (i , A (i , Nr ) ) ;
82 end
83
84 % since we are in the bottom and the region is not empty , we

go
85 % to the right
86 [ idx , lvl ] = next_comb (idx , idxmax , lvl ) ;
87 else
88 % since we are not in the bottom , we go down
89 lvl = lvl + 1 ;
90 end
91 end
92 end
93
94 % delete the unused spaces
95 A ( : , Nr + 1 : end ) = [ ] ;
96 B ( : , Nr + 1 : end ) = [ ] ;
97 D { 1 } ( : , : , Nr + 1 : end ) = [ ] ;
98 D { 2 } ( : , : , Nr + 1 : end ) = [ ] ;
99

100 end

B-10 row2dbm_pwa_min.m

1 % ROW2DBM_PWA_MIN Constructing a difference -bound matrix from a row
2 % vector.
3 % Adapted from row2dbm_pwa() by Dieky Adzkiya
4
5 function D = row2dbm_pwa_min (A , idx , F )
6
7 % n, the dimension of the state space
8 n = length (A ) ;
9

10 % initialize the output with the state space
11 % the size is n+1 because of the zero variable
12 D = cell ( 1 , 2 ) ;
13 D{1} = Inf (n+1) ;
14 D{2} = false (n+1) ;
15
16 % D{1}(i,i) = 0, for 1 <= i <= n+1
17 % the main diagonal of D{1} is initialized to zero
18 D {1}(1 : n+2:(n+1)∗(n+1) ) = 0 ;
19 % D{2}(i,i) = 0, for 1 <= i <= n+1
20 % the main diagonal of D{2} is initialized to one
21 D {2}(1 : n+2:(n+1)∗(n+1) ) = 1 ;
22
23 % check the number of elements in F
24 if length (F ) == 1
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25 % if F contains one element , the result is the state space
26
27 % avoid D{1} and D{2} defined as an empty matrix
28 return ;
29 end
30
31 % j, indices of finite elements other than idx
32 % j is not empty , because length(F) > 1
33 j = F (F ~= F ( idx ) ) ;
34 D{1}(F ( idx ) ∗(n + 1) + j + 1) = A (j ) − A (F ( idx ) ) ;
35 D{2}(F ( idx ) ∗(n + 1) + j + 1) = 1 ;
36
37 end

B-11 minpl2pwa_refine.m

1 % MINPL2PWA_REFINE Refining the regions
2 % Adapted from maxpl2pwa_refine() by Dieky Adzkiya
3
4 function [ A , B , D ] = minpl2pwa_refine (Ampl , A , B , D )
5
6 for i = 1 : size (A , 1 )
7
8 % idx_fi is the position of finite elements in i-th row of Ampl
9 idx_fi = find ( Ampl (i , : ) < Inf ) ;

10
11 for j = 1 : size (A , 2 )
12 % g = A(:,j) and gi = A(i,j)
13
14 % idx is the position of finite elements , on the right of gi
15 %idx = find(idx_fi > A(i,j));
16 idx = idx_fi ( idx_fi > A (i , j ) ) ;
17
18 % check whether there are some finite elements
19 if isempty ( idx )
20 continue ;
21 end
22
23 % find "bigger" adjacent region(s)
24 % the previous data stored on idx can be overwritten
25 idx = intersect ( [ repmat (A ( 1 : i−1,j ) ,1 , length ( idx ) ) ; . . .
26 idx ; . . .
27 repmat (A (i+1:end , j ) ,1 , length ( idx ) ) ] ’ , . . .
28 A ’ , ’rows’ ) ’ ;
29
30 % check the existence of bigger adjacent region(s)
31 if isempty ( idx )
32 continue ;
33 end
34
35 % compute the set difference
36 % be careful , idx is a matrix
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37 Dj = row2dbm_pwa_min ( Ampl (i , : ) , . . .
38 sum ( idx_fi <= A (i , j ) ) , . . .
39 idx_fi ) ; % >>> Original : row2dbm_pwa(...)
40 Dj {2}( idx (i , : ) +1,A (i , j )+1) = 0 ;
41
42 % the result is saved on Dj temporarily
43 Dj = dbm_and ({D { 1 } ( : , : , j ) ,D { 2 } ( : , : , j ) } ,Dj ) ;
44 % finally save it on D
45 D { 1 } ( : , : , j ) = Dj {1} ;
46 D { 2 } ( : , : , j ) = Dj {2} ;
47 end
48 end
49
50 % remove empty regions and the corresponding affine dynamics , if it

exists
51 % idx = 1, if the DBM is empty
52 [ idx , D ] = dbm_isempty (D ) ;
53 D { 1 } ( : , : , idx == 1) = [ ] ;
54 D { 2 } ( : , : , idx == 1) = [ ] ;
55 A ( : , idx == 1) = [ ] ;
56 B ( : , idx == 1) = [ ] ;
57
58 end

B-12 AP_PWA_part_refine.m

1 % Description: This function takes two partitions one based on the PWA
2 % and another based on the atomic propositions. It computes the refined
3 % partition. The resultant refined partition is labelled based on the
4 % atomic propositions.
5
6 function Refined_part = AP_PWA_part_refine ( PWA_part , AP_part )
7
8 num_PWA_DBMs = size ( PWA_part {1} ,3) ; % number of DBMs in PWA_part
9 num_AP_DBMs = size ( AP_part {1} ,3) ; % number of DBMs in AP_part

10
11 % Define a cell array that will store the DBMs of the refined partition
12 Refined_part = cell ( 1 , 3 ) ;
13
14 index = 0 ;
15 for i = 1 : num_PWA_DBMs
16 DBM_1 = {PWA_part { 1 } ( : , : , i ) , PWA_part { 2 } ( : , : , i ) } ;
17 for j = 1 : num_AP_DBMs
18 DBM_2 = {AP_part { 1 } ( : , : , j ) , AP_part { 2 } ( : , : , j ) } ;
19
20 % Find the intersection between the two DBMs
21 DBM_intersection = dbm_and ( DBM_1 , DBM_2 ) ;
22
23 %Store the intersection if it is not empty
24 if (~dbm_isempty ( DBM_intersection ) )
25
26 % index = (i-1)*num_AP_DBMs+j;
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27 index = index+1;
28 Refined_part { 1 } ( : , : , index ) = DBM_intersection {1} ;
29 Refined_part { 2 } ( : , : , index ) = DBM_intersection {2} ;
30
31 % Store the AP label of the intersection
32 Refined_part{3}{index} = AP_part{3}{j } ;
33 end
34 end
35 end
36
37 end

B-13 minplnon2ts_trans.m

1 % MINPLNON2TS_TRANS Constructing the transitions
2 % Adapted from maxplnon2ts_trans() by Dieky Adzkiya
3
4 function adj = minplnon2ts_trans (D , Anon , Bnon , Dnon , U )
5
6 % nA, the number of regions generated by the autonomous MPL model
7 nA = size (D {1} ,3) ;
8
9 % nAB, the number of regions generated by the nonautonomous MPL model

10 nAB = size ( Dnon {1} ,3) ;
11
12 % initialize the output variable adj
13 adj = sparse (nA , nA ) ;
14
15 parfor i = 1 : nA
16
17 % 1. compute the cross product of X and U, denoted by XU
18 % the result is a DBM in the augmented space
19 % 2. intersect XU and each region in the augmented space
20 % 3. check whether the intersections are empty
21 [ empty , Ej ] = dbm_isempty ( dbm_and ( dbm_repmat ( xu_and ( . . .
22 {D { 1 } ( : , : , i ) ,D { 2 } ( : , : , i ) } ,U ) , nAB ) , Dnon ) ) ;
23
24 % eliminate empty regions
25 Ej { 1 } ( : , : , empty == 1) = [ ] ;
26 Ej { 2 } ( : , : , empty == 1) = [ ] ;
27
28 % compute the image w.r.t. the augmented dynamics of the intersection
29 % the images are (nonempty) DBM in the state space
30 Ej = dbm_image ( Anon ( : , ~ empty ) , Bnon ( : , ~ empty ) , Ej ) ;
31
32 % find partitioning regions that intersect the images
33 for j = 1 : size (Ej {1} ,3)
34 % for each (nonempty) image
35
36 % 1. intersect the image with each partitioning region
37 % 2. check whether the intersection is empty
38 % the negation , 1 = region is empty -> 0 = no relations
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39 % the transpose , the output of dbm_isempty_vect is a row vector
but

40 % we need a column vector
41 adj ( : , i ) = max ( adj ( : , i ) ,~ dbm_isempty ( dbm_and ( dbm_repmat ( . . .
42 {Ej { 1 } ( : , : , j ) , Ej { 2 } ( : , : , j ) } ,nA ) ,D ) ) ’ ) ;
43 end
44 end

B-14 minplnon2ts_part.m

1 % MINPLNON2TS_PART Partitioning the state space and constructing a
2 % piecewise -affine system over the augmented space
3
4 % Adapted from maxplnon2ts_part() by Dieky Adzkiya
5
6 function [ D , Anon , Bnon , Dnon ] = minplnon2ts_part (Ampl , Bmpl )
7
8 % generate a partition of the state space using the MPL approach based on
9 % the autonomous MPL model

10 D = minpl2pwa_noab ( Ampl ) ;
11
12 % generate a PWA system based on the nonautonomous MPL model
13 [ Anon , Bnon , Dnon ] = minpl2pwa ( [ Ampl Bmpl ] ) ;
14
15 end

B-15 minpl2pwa_noab.m

1 % MINPL2PWA_NOAB Generating the regions of a PWA system
2 % Adapted from maxpl2pwa_noab() by Dieky Adzkiya
3
4 function D = minpl2pwa_noab ( Ampl )
5
6 % in general Ampl is not a square matrix , it is m by n matrix
7 [ m n ] = size ( Ampl ) ;
8
9 % F, find the location of finite values in each row of Ampl

10 % idxmax , keep the number of finite values in each row of Ampl (temporary
)

11 % idxmax will be used to calculate the maximum number of regions
12 idxmax = ones (1 , m ) ;
13 F = cell (1 , m ) ;
14 for i = 1 : m
15 F{i} = find ( Ampl (i , : ) ~= Inf ) ;
16 idxmax (i ) = length (F{i}) ;
17 end
18
19 % update idxmax , based on the maximum number of regions generated by the
20 % MPL approach
21 idxmax = 2.^ idxmax − 1 ;
22
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23 % N, maximum number of regions
24 N = prod ( idxmax ) ;
25
26 % initialize regions and its relation to the dynamical system
27 D = cell ( 1 , 2 ) ;
28 D{1} = zeros (n+1,n+1,N ) ;
29 D{2} = false (n+1,n+1,N ) ;
30
31 % Nr, the number of inserted (nonempty) regions
32 Nr = 0 ;
33
34 % number of elements of idx is the same with rows of A
35 % position/column of finite element at each row w.r.t. F (not for A)
36 idx = ones (1 , m ) ;
37
38 % level , this variable is used in the pruning technique
39 lvl = 1 ;
40
41 % some temporary regions used to build the tree in the pruning technique
42 Di = cell (m , 2 ) ;
43
44 while lvl > 0
45 % while there exists an unobserved node in the tree
46
47 % constructing a region and save it to the temporary region
48 Di (lvl , : ) = row2dbm_min ( Ampl (lvl , : ) , idx ( lvl ) ,F{lvl }) ;
49 if lvl > 1
50 % do not forget to intersect with the upper region
51 Di (lvl , : ) = dbm_and (Di (lvl , : ) , Di (lvl−1 , : ) ) ;
52 end
53
54 % check emptiness of the new region , indexed by i-lvl
55 [ empty , Di (lvl , : ) ] = dbm_isempty (Di (lvl , : ) ) ;
56 % the new region is in the canonical -form representation
57
58 if empty
59 % the new region is empty , we go to the right
60 [ idx , lvl ] = next_comb (idx , idxmax , lvl ) ;
61 else
62 % the new region is not empty , we go down
63
64 % check whether the new region has a child
65 if lvl == m
66 % the new region does not have a child
67 % we are in the leaf/bottom
68 % save the region and its dynamical system
69
70 % update the number of inserted (nonempty) regions
71 Nr = Nr + 1 ;
72
73 % insert the new (nonempty) region
74 D { 1 } ( : , : , Nr ) = Di{lvl , 1 } ;
75 D { 2 } ( : , : , Nr ) = Di{lvl , 2 } ;
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76
77 % since we are in the bottom and the region is not empty , we

go
78 % to the right
79 [ idx , lvl ] = next_comb (idx , idxmax , lvl ) ;
80 else
81 % since we are not in the bottom , we go down
82 lvl = lvl + 1 ;
83 end
84 end
85 end
86
87 % delete the unused spaces
88 D { 1 } ( : , : , Nr + 1 : end ) = [ ] ;
89 D { 2 } ( : , : , Nr + 1 : end ) = [ ] ;
90
91 end

B-16 prop2state.m

1 % Description: This function returns all the symbolic states that possess
2 % the property needed. The property is passed as an array with each
3 % element corresponding to one of the atomic propositions. The elements
4 % of the array are 1 whenever the corresponding atomic proposition is
5 % true, or 0 whenever the corresponding atomic proposition is false. An
6 % elemente with -1 marks a don’t care value.
7
8 function states = prop2state ( Property , P_labeled )
9

10 num_dbms = size ( P_labeled {1} ,3) ;
11 num_AP = length ( Property ) ;
12 label_list = cell ( 1 , 1 ) ;
13
14 % Loop over the property input to see which lables are involved
15 for i = 1 : num_AP
16 val = Property (i ) ;
17 if ( val == 0)
18 % append zero to all elements in the label_list
19 label_list = strcat ( label_list , ’0’ ) ;
20
21 elseif ( val == 1)
22 % append ones to all elements in the label_list
23 label_list = strcat ( label_list , ’1’ ) ;
24 elseif ( val == −1)
25 % Create a duplicate of the label_list
26 duplicate_list = label_list ;
27 % Append ’0’ to all elements in the original label_list
28 label_list = strcat ( label_list , ’0’ ) ;
29 % Append ’1’ to all elements in the duplicate label_list
30 duplicate_list = strcat ( duplicate_list , ’1’ ) ;
31 % Merge the two lists
32 label_list = [ label_list , duplicate_list ] ;
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33 end
34 end
35
36 % Loop over all the states to find which ones have labels that are

included
37 % in the label_list.
38 states = [ ] ;
39 for k = 1 : num_dbms
40 state_label = P_labeled{3}{k } ;
41
42 if ( any ( ismember ( label_list , state_label ) ) )
43 states = [ states , k ] ;
44 end
45 end
46
47 end

B-17 R.m

1 % This function returns a DBM representing a region that covers the
2 % entire state space R^n.
3
4 function D = R (n )
5 D = cell ( 1 , 2 ) ;
6 D{1} = Inf (n+1,n+1) ;
7 for i = 1 : n+1
8 D{1}(i , i ) = 0 ;
9 end

10 D{2} = eye (n+1,n+1) ;
11
12 end

B-18 remove_set.m

1 % Description: This function removes a set of states from the transition
2 % system , by deleting all the transitions to and from the states.
3
4 function adj = remove_set (adj , set )
5
6 for i = 1 : length ( set )
7 state = set (i ) ;
8 adj ( : , state ) = 0 ;
9 adj ( state , : ) = 0 ;

10 end
11
12 end

B-19 ts2graphviz_color.m
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1 % TS2GRAPHVIZ_COLOR Generating a graphviz code with colored states
2 % Adapted from ts2graphviz() by Dieky Adzkiya
3
4 function ts2graphviz_color (adj , favored_set , unsafe_set , filename , gname )
5
6 % add dot extension to filename
7 filename = sprintf (’%s.dot’ , filename ) ;
8
9 % open the given filename

10 fid = fopen ( filename , ’w’ ) ;
11
12 % write the declaration of digraph
13 fprintf (fid , ’digraph %s {\n’ , gname ) ;
14 fprintf (fid , ’\t rankdir="LR" \n\t node [ width=0.02, height=0.02];\n’ ) ;
15
16 % the main part
17 % r = row, c = column
18 [ r , c ] = find ( adj ~= 0) ;
19
20 % h = hist([r;c],max([r;c]));
21
22 for state = 1 : size (adj , 1 )
23 if ( sum ( find ( state==favored_set ) ) ~=0)
24 fprintf (fid , ’\t %d[style=filled , fillcolor=green ];\n’ , state ) ;
25 elseif ( sum ( find ( state==unsafe_set ) ) ~=0)
26 fprintf (fid , ’\t %d[style=filled , fillcolor=red ];\n’ , state ) ;
27 else
28 fprintf (fid , ’\t %d[style=filled , fillcolor=white];\n’ , state ) ;
29 end
30
31 end
32
33 % create an unlabeled transition system
34 fprintf (fid , ’\t %d -> %d [ len=2 ];\n’ , [ c ’ ; r ’ ] ) ;
35
36 % write the closing bracket of digraph
37 fprintf (fid , ’}’ ) ;
38
39 % close the file
40 fclose ( fid ) ;

B-20 mark_initial_set.m

1 % Description: This function adds a new hypothetical vertex to the
2 % transition system and adds transitions from this vertex to all the
3 % vertices in the set of initial states.
4
5
6 function adj_new = mark_initial_set ( adj_old , initial_set )
7
8 num_init = length ( initial_set ) ; %Get the number of initial states
9
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10 [ dst , src , w ] = find ( adj_old ) ; % Get the information about the transitions
11
12 [ m , n ] = size ( adj_old ) ;
13
14 % % Shift the vertex numbers by one to make a room for the additional
15 % % initial vertex
16 % dst_new = dst+1;
17 % src_new = src+1;
18 % initial_set = initial_set+1;
19
20 dst_new = [ dst ; initial_set ’ ] ; % Append initial set to the destination
21 % vector
22 new_state_index =(m+1) ;
23
24 % Append the source vector with indecies of the newly created state
25 src_new = [ src ; new_state_index∗ones ( num_init , 1 ) ] ;
26
27 w_new = [ w ; ones ( num_init , 1 ) ] ; % Append the weights of the additional

edges
28
29 adj_new = sparse ( dst_new , src_new , w_new , m+1,n+1) ; % Form the new adjcency
30
31 end

B-21 mipl_ts2promela.m

1 % Description: This function generates the Promela file that represents
2 % the transition system of the finite abstraction.
3
4 function mipl_ts2promela ( P_labeled , adj , filename , s0 )
5
6 % Extract the label of s0
7 s0_label = P_labeled{3}{s0 } ;
8
9 % n is the number of atomic propositions

10 n = length ( s0_label ) ;
11
12 % N is the number of states in the transition system
13 N = size (adj , 1 ) ;
14
15 % add pml extension to filename
16 filename = sprintf (’%s.pml’ , filename ) ;
17
18 % open a file, if the file is already exists then it will be overwritten
19 % the promela code for spin will be written to this file
20 fid = fopen ( filename , ’w’ ) ;
21
22 %% Start Promela Code
23
24 % state is a variable to represent the current state
25 fprintf (fid , ’int state;\n\n’ ) ;
26
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27
28 % initialize p1, p2, ..., pn variables
29 for i = 1 : n
30 if ( s0_label (n+1−i ) == 0)
31 fprintf (fid , ’bool p%d = false; \n’ ,i ) ;
32 else
33 fprintf (fid , ’bool p%d = true; \n’ ,i ) ;
34 end
35 end
36
37 % constructing the transition system
38 fprintf (fid , ’\n\nproctype fsm()\n{\n do\n’ ) ;
39
40 % remember , the relation is coming from src and going to dest
41 [ dest , src ] = find ( adj ) ;
42
43 for k = 1 : length ( dest )
44 % d_step is used to improve the spin’s performance
45 fprintf (fid , ’ :: d_step\n {\n (state == %d) -> state =

%d;\n’ , [ src (k ) , dest (k ) ] ) ;
46
47 % Extract the label of the destination state
48 dest_label = P_labeled{3}{dest (k ) } ;
49
50 % Add some space
51 fprintf (fid , ’ ’ ) ;
52
53 % Assign p1, p2, ..., pn variables according to the label of sk
54 for i = 1 : n
55 % The least significant bit (LSB) of state label corresponds to

p1
56 if ( dest_label (n+1−i ) == ’0’ )
57 fprintf (fid , ’p%d=false; ’ ,i ) ;
58 else
59 fprintf (fid , ’p%d=true; ’ ,i ) ;
60 end
61 end
62
63 % closing bracket for d_step
64 fprintf (fid , ’\n }\n’ ) ;
65 end
66
67 % closing bracket for proctype fsm
68 fprintf (fid , ’ od\n}’ ) ;
69
70
71 % init proc, similar to main in c
72 fprintf (fid , ’\n\ninit\n{\n d_step\n {\n state=%d;\n’ ,s0 ) ;
73
74 % Add some space
75 fprintf (fid , ’ ’ ) ;
76
77 % Assign p1, p2, ..., pn variables according to the label of s0
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78 for i = 1 : n
79 if ( s0_label (n+1−i ) == 0)
80 fprintf (fid , ’p%d=false; ’ ,i ) ;
81 else
82 fprintf (fid , ’p%d=true; ’ ,i ) ;
83 end
84 end
85
86 % closing bracket for d_step and init proc, respectively
87 fprintf (fid , ’\n }\n run fsm();\n}’ ) ;
88
89 % End Promela Code
90 %%
91
92 % close the file
93 fclose ( fid ) ;
94
95 end
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