
Refactoring with confidence
Creating and proving the correctness of a refactoring to add arguments to functions in a functional language

Kalle Struik1

Supervisors: Jesper Cockx1, Luka Miljak1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 30, 2023

Name of the student: Kalle Struik
Final project course: CSE3000 Research Project
Thesis committee: Jesper Cockx, Luka Miljak, Koen Langendoen

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Refactoring tools are an important tool for devel-
opers, but their reliability can be questionable at
times. In this paper, we show that it is feasible to
formally verify refactoring tools using computer-
aided proofs. To this end, we create a Haskell-like
language and a refactoring operation on this lan-
guage to add an extra function argument to an ar-
bitrary function in the program. And finally, use
the Agda proof assistant to construct a proof of the
correctness of this refactoring.

1 Introduction
Refactoring is often used by developers to improve their code
quality. This is often aided by automated tools. Some of
these tools are built into IDEs, while others are used exter-
nally. These tools have one thing in common, however. They
are often trusted blindly by the developer. After all these tools
are made by professionals. What could go wrong?

In a 2013 study[3] it was found that the refactoring tools
provided by the Eclipse IDE failed for up to 7% of cases
tested. In some of these cases, the tool produced code that
simply did not compile, but in others, the problems were
harder to detect. In such cases, we have to rely on the devel-
oper or their own test cases to catch the issue. But as stated
earlier they have no reason to doubt these tools, so they will
not be as vigilant as might be required.

The cost of issues with these refactoring tools, and soft-
ware in general, scales with user counts. In 2021, JetBrains
stated that they have 10.1 million users 1. If they have an is-
sue in their refactoring tools, even if it only affects a small
subset of their users, that is still a large group of developers
that has to spend their time finding the issues caused by faulty
tools that they did not expect to be fallible in such a way. We
can imagine that the costs of these issues have the potential
to balloon very quickly.

Most commonly these refactoring tools rely on testing to
make sure that they do not contain any issues. But there is
another way: formal verification. While it does take signifi-
cantly more time to formally verify a program than to write
test cases for it, it does mathematically guarantee correctness.
This can be desirable in certain cases where the cost of failure
is high. As explained in section 2 this cost can be quite high
for refactoring tools. Therefore, it makes sense to formally
verify these programs.

Previous work has been done on creating refactoring tools
and formally verifying them. One such work is the imple-
mentation of a refactoring tool done by Huiqing Li and Si-
mon Thompson in [5] with the formal verification following
later in [6]. This work, however, only proves a small subset
of their refactoring tool.

We aim to show that it is possible to create refactor-
ing tools and prove their correctness using computer-aided
proofs, such as those created in the Agda proof assistant. To

1
https://blog.jetbrains.com/blog/2021/03/03/

jetbrains-2020-21-annual-highlights-10-million-users-30-tools-and-more/

this end, we create and prove the correctness of, a refactor-
ing on a Haskell-like language. We limiting the scope of this
paper to a refactoring that adds an argument to a top-level
function. Like the paper discussed above we define a custom
language to aid in the creation and proving of this refactoring.
But we diverge in the way in which we prove the correctness
of our refactoring. While they performed a pen and paper
proof, we aim to provide a computer-checked proof using the
Agda proof assistant.

To this end make the following contributions:
1. We define a Haskell-like language and its semantics

written as big-step semantics.
2. We create a refactoring that can be applied to this lan-

guage.
3. We construct a proof that given a well-typed expression

our refactoring will produce a well-typed output.
4. We construct a proof that our refactoring does not

change the behaviour of the program being refactored.
This paper is structured as follows. We will start discussing

the required background information in section 2. We will
then go over the definition of the Haskell-like language we
have created and the refactoring we have created for this lan-
guage in sections 3 and 4 respectively. After that, we will
cover the proof of correctness for this refactoring in section
5. We will quickly cover the reproducibility of our research
in section 6. We continue with a discussion of the results and
their potential limitations in section 7 and finally we close out
the paper with a conclusion in section 9.

2 Background
In this section, we go over some knowledge that is required
to understand the rest of the paper. First, we cover the Agda
programming language, after that, we introduce de Bruijn in-
dices and their benefits, we then go over big-step semantics,
and finally we will discuss what intrinsically typed languages
are.

2.1 Agda
In this paper, we will be working with the Agda program-
ming language. Because of the Curry-Howard correspon-
dence, which provides a way to translate intuitionistic logic
into a type system, and Agda’s dependant type system, we
can also use Agda as a proof assistant. For a better under-
standing of how Agda works and its syntax we recommend
reading through the Agda documentation2.

2.2 De Bruijn Indices
De Bruijn indices (named after and originally introduced by
de Bruijn in his paper [2]) are used to have variables without
giving them explicit names. Instead, we refer to them using a
number. Each variable gets the next available number. So the
first variable would get index 0, the second index 1, and so
on. This allows us to not worry about difficult-to-solve issues
such as name shadowing so we can instead focus on writing
the main logic of our refactoring.

2
https://agda.readthedocs.io/en/latest/overview.html

https://blog.jetbrains.com/blog/2021/03/03/jetbrains-2020-21-annual-highlights-10-million-users-30-tools-and-more/
https://blog.jetbrains.com/blog/2021/03/03/jetbrains-2020-21-annual-highlights-10-million-users-30-tools-and-more/
https://agda.readthedocs.io/en/latest/overview.html

As an example look at the Haskell program in listing 1. In
this code snippet, the variable a would have de Bruijn index
0, b index 1, and c index 2.

f :: Int -> Int -> Int -> Int
f a b c = ...

Listing 1: Simple Haskell program to show de Bruijn indices.

2.3 Big-Step Semantics
Big-Step semantics, or natural semantics as they were orig-
inally called in Kahn’s paper [4], are used to formalize the
behaviour of a programming language. Compared to other
ways to formalize the semantics of a programming language,
big-step semantics are intended to be quite close to the way
programming languages would be implemented.

2.4 Intrinsic Typing
The Haskell-like language we create in this paper is intrinsi-
cally typed as described in the deBruijn chapter of the Pro-
gramming Language Foundations in Agda[8] book. This
means that all of our language terms will have a type asso-
ciated with them. As an example, for our addition operator,
we have to specify that it will return a number type. We use
this approach because it gives us guarantees about the well-
typedness of any expression in our language as it is impossi-
ble to represent non-well-typed terms in an intrinsically typed
language.

3 Defining the Language
In this section, we will go over the process of defining our
language constructs and their behaviour. First, we will cover
what constructs we decided to include and why those deci-
sions were made. After that, we will cover the definition of
the semantics of our language.

For the definition of our language and its behaviour, we
made heavy use of the book Programming Language Foun-
dations in Agda[8].

3.1 Constructs
We decided to include three base types in our language. These
are natural numbers (hereafter referred to as just numbers),
booleans, and functions. We decided to include both num-
bers and booleans to allow the possibility for our refactoring
to create arguments of the wrong type in case it was written
wrong. The inclusion of functions was an obvious require-
ment for our language since we are trying to create a refac-
toring that deals with functions.

Other than constructors for these base types we also in-
clude some operations on these types. For numbers, we have
implemented addition, multiplication, and less-than opera-
tions. For booleans, we decided on implementing and, or,
and negation.

The constructs in our language are defined as a data type
in Agda. Each construct takes a function context (named ∆),
a variable context (named Γ), and a returned type. Different
constructors of this type then take their own arguments and
return this type. For example the constructor for the addition

(plus) language construct in listing 2. It takes two other lan-
guage constructs that return a number and returns a language
construct that also returns a number.

plus : δ × γ ⊢ tyNat
→ δ × γ ⊢ tyNat

→ δ × γ ⊢ tyNat

Listing 2: Agda definition of the plus constructor for our language.

The number and boolean constructors simply take their re-
spective Agda types and return constructs in our language.
An example definition of the number type can be seen in list-
ing 3.

nat : N

→ δ × γ ⊢ tyNat

Listing 3: Agda definition of the natural number constructor for our
language.

The multiplication, and, or, and negation constructors fol-
low a similar pattern as the addition constructor in listing 2.
The only difference is that the boolean operators work with
booleans instead of numbers. The less-than constructor is
slightly more complex taking two numbers and returning a
boolean as seen in listing 4.

lt : δ × γ ⊢ tyNat
→ δ × γ ⊢ tyNat

→ δ × γ ⊢ tyBool

Listing 4: Agda definition of the less than constructor for our lan-
guage.

As stated earlier our language also includes constructs for
function definition. We do this in the form of a lambda con-
struct as given in listing 5. The argument it takes is a lan-
guage construct that returns a type B if we append a variable
of type A to the variable context. The variable of type A is
the function argument in this case and the given construct is
the function body. We can use this to create a multi-argument
function by simply nesting lambda expressions until we have
the desired number of arguments.

lambda : δ × γ , A ⊢ B

→ δ × γ ⊢ (A ⇒ B)

Listing 5: Agda definition of the lambda constructor for our lan-
guage.

To retrieve values from the variable context we have the var
construct. The constructor (given in listing 6) takes a lookup
proof for the variable in the variable context.

var : γ ∋ A

→ δ × γ ⊢ A

Listing 6: Agda definition of the var constructor for our language.

We also need the application of functions as defined in list-
ing 7. Function application takes a construct that returns a
function from type A to type B and a construct that returns
something of type A. It then returns the value of type B that is
obtained by evaluating the function with the given argument.

appl : δ × γ ⊢ (A ⇒ B)
→ δ × γ ⊢ A

→ δ × γ ⊢ B

Listing 7: Agda definition of the function application constructor for
our language.

To store a function in the function context we can use the
fdef construct. It takes a construct that returns a function and
a construct that given that a function of this type is added to
the function context returns a type C. It then evaluates this
second construct and returns its returned value. Its construc-
tor can be seen in listing 8.

fdef : δ × γ ⊢ (A ⇒ B)
→ (δ ,f (A ⇒f B)) × γ ⊢ C

→ δ × γ ⊢ C

Listing 8: Agda definition of the fdef constructor for our language.

To retrieve a value from the function context we can use the
fvar construct. This construct works in much the same way
as the var construct, but instead of taking a value from the
variable context, it takes a function from the function context.

Finally, there is the newCtx construct. This construct sim-
ply takes a construct and evaluates it with empty function and
variable contexts. This is used by the refactoring to place the
default value of the argument in later since the context it can
be placed in could be vastly different depending on where in
the program it is used.

To help get a better grasp of the language we will go
through a small example program defined in listing 9. First,
we use an fdef constructor to place a function into the func-
tion context. This function is defined by the lambda construc-
tor with a body that takes the first argument (signified by the
0) and the number 1 and adds them together. The rest of
the program then uses an appl constructor to apply the first
function in the function context to the number 41.

(fdef
(lambda

(plus (# 0) (nat 1))
)
(appl (fvar Zf) (nat 41))

)

Listing 9: Example program in our language that defines a function
to add one to a given number and calls that function.

3.2 Semantics
Our language uses big-step semantics to define its behaviour.
The semantics define rules we can use to determine what
value our program will take. Since we know that our pro-
gram will always terminate (it does not contain looping or
recursion), we can chain these rules together to create a com-
plete evaluation of our program from start to finish.

For these semantics to make sense we have to first define
what values our program can take. To this end we define three
different types of values as seen in listing 10. We also as-
sociate each value with a matching type from the previous
subsection.

data Val : Type → Set where
natV : N → Val tyNat
boolV : Bool → Val tyBool
funcV : Env γ

→ FEnv δ
→ δ × γ , argT ⊢ retT
→ Val (argT ⇒ retT)

Listing 10: Agda definition of the values expressions in our language
can evaluate to.

The semantics for most of our constructs are quite simple.
They tend to take the same shape as the constructors defined
earlier. Take, for example, the addition operator (from listing
2) and its semantics (given in listing 11). Instead of taking
two constructs we now take two reductions to numbers and
instead of returning a number type we now return a concrete
number value based on the two earlier reductions.

↓plus : ∀ {v1 v2} {e1 e2 : δ × γ ⊢ tyNat}
→ ∆ × Γ ⊢ e1 ↓ (natV v1)
→ ∆ × Γ ⊢ e2 ↓ (natV v2)
→ ∆ × Γ ⊢ (plus e1 e2) ↓ (natV (v1 + v2))

Listing 11: Agda definition of the semantics of the addition operator
in our language.

Most other constructs follow a very similar pattern to the
one above. There are, however, a couple of exceptions.
Namely, the reductions for function definition, application,
and variable lookup are a bit more interesting.

The reduction for function definitions (or lambdas) is fairly
straightforward as can be seen in listing 12. It takes the cur-
rent environments and the given function body and stores
them into a funcV or closure for use later.

↓lambda : ∀ {e : δ × γ , A ⊢ B}
→ ∆ × Γ ⊢ (lambda e) ↓ (funcV Γ ∆ e)

Listing 12: Agda definition of the semantics of function definition
in our language.

The var and fvar constructs are also simpler than their
constructor counterparts. They simply use the already given
lookup proof to retrieve a variable from their respective envi-
ronments. As an example, the semantics for var are given in
listing 13.

↓var : ∀ {l : γ ∋ A}
→ ∆ × Γ ⊢ (var l) ↓ (env-lookup Γ l)

Listing 13: Agda definition of the semantics of var in our language.

The semantics for function application are too cumbersome
to include in full, but in essence, it takes care of the evaluation
of the function provided to it in full next to also resolving all
of its normal arguments.

We will continue building on the example provided in the
last section in listing 9 and provide the semantic evaluation
of the program in listing 14. As stated earlier our semantics
follow mostly the same structure as the constructors in the
original program. First, we reduce the fdef by providing it
with a reduction for both the function definition side (in this
case a simple lambda reduction) and a reduction for the rest
of the program. The function application reduction takes a
reduction for its first and second arguments (the fvar and nat
reductions) and a reduction for the evaluation of the body of
the given function. Which in this case is an addition with
reductions for its two arguments.

↓fdef
↓lambda
(↓appl

↓fvar
↓nat
(↓plus ↓var ↓nat)

)

Listing 14: Semantic evaluation of the example program given in
listing 9.

The fixFVar function adds a function application with the
default argument around a fvar construct if it refers to the
function being refactored. If it refers to any other function it
is left untouched.

4 Creating the Refactoring
The goal of the refactoring operations we are trying to create
is to add an extra argument to a function and adding a default
to the call sites of the function. As an example, we want to
rewrite the program from listing 15 to the program in listing
16.

add :: Int -> Int -> Int
add a b = a + b

...

add 1 2

Listing 15: A Haskell program defining a function add that takes
two arguments.

add :: Int -> Int -> Int -> Int
add a b c = a + b

...

add 1 2 0

Listing 16: A Haskell program defining a function add that takes
three arguments of which the last one is unused.

As stated in the previous section we use a separate environ-
ment for functions (referred to as ∆). We do this because it
makes the refactoring easier to implement and prove. Without
the two environments we would have to also provide proof
to Agda that the variable we would be modifying indeed re-
solves to a function value, but since the environment being
targeted by the refactoring only contains functions this is al-
ways true.

Each program that is refactored should start with one or
more fdef constructs for the refactoring to be effective. These
constructs are comparable to the top-level function definitions
in Haskell code. If these constructs are not present the refac-
toring will simply exit without performing any modifications.

Our refactoring takes the original program, the index of the
function to modify, and the default expression to be inserted.
Its code signature can be seen in listing 17. The implemen-
tation recursively descends the fdef expressions at the start
of the program until it has found the target function defini-
tion. If it encounters any other expression it simply returns
the original program and exits.

afa : δ × γ ⊢ t → N → ∅f × ∅ ⊢ argT → δ × γ ⊢ t

Listing 17: Agda function signature of our refactoring.

When the refactoring finds the correct function definition
it performs two actions. First, it wraps the function into an-
other lambda expression and updates all references inside the
function to correspond to the same values in the environment
as before. After that, it updates the remainder of the program
at every point the function is called to add an extra function
application using the default argument provided. The code
for this is provided in listing 18.

afa (fdef e e1) zero default = fdef
(lambda (fixRefs e zero))
(fixCalls e1 zero default)

Listing 18: Agda code for our refactoring in the case that it has found
the function to refactor.

The fixRefs helper function (as seen in listing 19) recur-
sively walks the program constructs until it finds a variable
lookup and updates that variable lookup to point to the right
place in the environment. To do this it keeps track of how
many lambda expressions it has encountered, because it only
has to change variable lookups that refer to variables defined
before the function definition.

fixRefs : δ × γ ⊢ t → (n : N)
→ δ × (insertType γ n A) ⊢ t

fixRefs (var x) n = var (fixVar x n)
fixRefs (lambda e) n = lambda (fixRefs e (suc n))

Listing 19: Agda code for the fixRefs helper function. Trivial cases
omitted for brevity.

The fixVar helper function moves lookups to values defined
outside of the function one element deeper into the environ-
ment since we have inserted a new value in between. If the
lookup is to a variable defined within the function it simply
returns the original lookup.

The fixCalls helper works on the other argument of the fdef
construct to update all references to the function being refac-
tored to contain the newly added argument. It works mostly
the same as the fixrefs helper, but instead of acting on var and
lambda constructs it works on fvar and fdef constructs. The
code for it can be seen in listing 20.

fixCalls : δ × γ ⊢ t → (n : N) → ∅f × ∅ ⊢ argT
→ (replaceFunction δ n argT) × γ ⊢ t

fixCalls (fdef e e1) n default
= fdef (fixCalls e n default)

(fixCalls e1 (suc n) default)

fixCalls (fvar l) n default
= fixFvar l n default

Listing 20: Agda code for the fixCalls helper function. Trivial cases
omitted for brevity.

5 Proving Correctness
To prove the correctness of our refactoring we will have to
prove two separate conditions. The first is that our refactoring
outputs a well-typed program and the second is that it does
not change the behaviour in unexpected ways.

The first condition is easily proven in the case of our refac-
toring since we use an intrinsically typed language. As de-
scribed earlier it is impossible to represent a non-well-typed

program in such a language. This means that our refactor-
ing program is itself a proof that it will produce a well-typed
program.

The second condition of behaviour preservation is harder to
prove. First, we have to define what we want our refactoring
to do to the behaviour of our program. In essence, we do not
want it to change at all, but this constraint is too strict for our
refactoring. This is because our refactoring has to modify the
environment of parts of our code. And since closure values
capture their environment as part of themselves, they would
not be identical to their pre-refactoring counterparts.

Because of this, we define a relation between two values
that we will call refactoring equivalence. This relation is
represented by the ≡vr symbol. For natural numbers and
booleans, it is defined as normal equality, but for closure val-
ues, it is defined such that two closure values are considered
refactoring equivalent if and only if given refactoring equiva-
lent arguments they would evaluate to refactoring equivalent
values. This definition allows us to ignore the environment
captured by the closures as long as we can prove that they
would evaluate to refactoring equivalent values. The Agda
definition of the relation can be seen in listing 21.

≡vr : ∀ {ty} → Val ty → Val ty → Set
natV xo ≡vr natV xn = xo ≡ xn
boolV xo ≡vr boolV xn = xo ≡ xn
funcV Γ o ∆o bo ≡vr funcV Γn ∆n bn =

∀ {argVo : Val argTy} {argVn : Val argTy}
{argVo≡vrargVn : argVo ≡vr argVn}
{retVo : Val retTy} {retVn : Val retTy}

→ ∆o × (Γ o ,' argVo) ⊢ bo ↓ retVo
→ ∆n × (Γn ,' argVn) ⊢ bn ↓ retVn
→ retVo ≡vr retVn

Listing 21: Agda definition of the refactoring equivalence relation.

Using this definition of refactoring equivalence we will
also define the notion of refactoring equivalent environments.
These are a list of refactoring equivalence proofs that can be
used to construct an environment with different, but refactor-
ing equivalent, values. They are defined for both normal and
function environments, but their definitions are almost identi-
cal so in the interest of brevity we will only show the one for
normal environments in listing 22.

data EquivEnv : Env γ → Set where
ee-root : EquivEnv ∅'
ee-elem : ∀ {vo vn : Val t}

→ EquivEnv Γ
→ (vo≡vrvn : vo ≡vr vn)
→ EquivEnv (Γ ,' vo)

Listing 22: Agda definition of refactoring equivalent environments
defined as a data type.

For each type of environment, we also define a helper that
takes a refactoring equivalent environment with a lookup into
the environment and returns the proof of refactoring equiv-

alence of the values stored at the lookups location. These
helpers are called var≡vr and fvar≡vr for normal and func-
tion environments respectively.

Using these definitions we can construct a proof that the
same expression evaluated in two refactoring equivalent en-
vironments will produce refactoring equivalent values. The
signature of this proof can be seen in listing 23.

equiv-env≡ : ∀ {vo vn : Val t} {e : δ × γ ⊢ t}
→ (efe : EquivFEnv ∆)
→ (ee : EquivEnv Γ)
→ ∆ × Γ ⊢ e ↓ vo
→ (constructEquivFEnv efe)
× (constructEquivEnv ee) ⊢ e ↓ vn

→ vo ≡vr vn

Listing 23: Signature of the Agda function that produces a proof
that the same expression evaluated in refactoring equivalent envi-
ronments produce refactoring equivalent values.

The above proof is split on the different types of expres-
sions that exist in our language. The natural number and
boolean expressions are trivially proven because our func-
tion signature states that the expression does not change and
Agda can understand that because of that the values produced
by them also does not change. For operators such as addi-
tion, multiplication, etc it is slightly more complicated. For
these, we use a helper function in the form shown in listing
24 (shown is the one for addition). Using the helper function
we provide a proof that i+j = h+k if i = h and j = k. The
other helper functions follow the same pattern, just replacing
the addition operator with others such as multiplication. For
lambda expressions, we return a function that takes a proof
that the arguments are refactoring equivalent and the evalua-
tion of the old and new bodies (listing 25). For function ap-
plication expressions we then call this returned function with
a proof that the arguments are refactoring equivalent and the
evaluation of the bodies to produce a proof that the applica-
tion of the functions is indeed refactoring equivalent (listing
26). The argument refactoring equivalence proof is provided
by a recursive call to the equiv-env≡ function.

i+j≡h+k : ∀ {i j h k} → i ≡ h → j ≡ k
→ i + j ≡ h + k

i+j≡h+k refl refl = refl

Listing 24: Helper function used to prove that the equality of values
implies that their addition is also equal.

equiv-env≡ efe ee ↓lambda ↓lambda
{argVo≡vrargVn = argVo≡vrargVn} ↓bo ↓bn

= equiv-env≡ efe
(ee-elem ee argVo≡vrargVn) ↓bo ↓bn

Listing 25: Case of the equiv-env≡ function that handles lambda
expressions.

equiv-env≡ efe ee (↓appl eo eo1 eo2)
(↓appl en en1 en2)
= equiv-env≡ efe ee eo en
{argVo≡vrargVn = equiv-env≡
efe ee eo1 en1}

eo2 en2

Listing 26: Case of the equiv-env≡ function that handles function
application expressions.

The constructEquivFEnv and constructEquivEnv
helpers used above create the equivalent function and normal
environments respectively. They allow us to express to Agda
that an expression will be evaluated under refactoring equiv-
alent environments. This works by extracting the right hand
side values of each refactoring equivalence relation stored in
the constructs to build up the new environment recursively.

We use these same constructs to define a function to prove
the refactoring equivalence of the values pre and post our
refactoring function (listing 27). This function mostly calls
the earlier defined equiv-env≡ except for when the expres-
sion is of the type fdef. This is because our refactoring does
not touch any expression except for fdef at the top level.

correct-afa : ∀ {∆ : FEnv δ} {e : δ × ∅ ⊢ t}
{vo vn : Val t}

→ (efe : EquivFEnv ∆)
→ (ee : EquivEnv ∅')
→ ∆ × ∅' ⊢ e ↓ vo
→ (constructEquivFEnv efe)
× (constructEquivEnv ee)
⊢ (afa e n default) ↓ vn

→ vo ≡vr vn
correct-afa {n = zero} efe ee

(↓fdef eo eo1) (↓fdef ↓lam@↓lambda en)
= correct-fix-calls ee
(efer-repl efe ee eo ↓lam) eo1 en

correct-afa {n = suc n} efe ee
(↓fdef eo eo1) (↓fdef en en1)

= correct-afa (efe-elem efe
(equiv-env≡ efe ee eo en)) ee eo1 en1

Listing 27: Signature and non-trivial cases of the Agda function that
produces a proof that the pre and post-refactoring expressions, eval-
uated in refactoring equivalent environments, produce refactoring
equivalent values.

Just as our refactoring program, the proof splits into two
cases when it comes to fdef expressions. One case for n =
zero and one for n = sucm. The latter simply does a re-
cursive call to the correct-afa function. In the zero case
we call another helper function called correct-fix-calls
with a modified version of our EquivFEnv to also include
that we have replaced a function of type A ⇒ B with one of
type C ⇒ A ⇒ B.

This correct-fix-calls (Agda code in listing 28)
helper gets its name from the fixCalls helper used by the
refactoring. As an astute reader might have guessed from

the name correct-fix-calls is the behaviour preserva-
tion proof for fixCalls. Just as the other proof helpers, it
is mostly the same as equiv-env≡. The exception to this
is the code that handles the fvar expressions. This calls the
correct-fix-fvar helper function.

correct-fix-calls : ∀ {∆ : FEnv δ} {Γ : Env γ}
{e : δ × γ ⊢ t} {vo vn : Val t}

→ (ee : EquivEnv Γ)
→ (efer : EquivFEnvReplaced ∆ n argT)
→ ∆ × Γ ⊢ e ↓ vo
→ (constructEquivFEnvReplaced efer)
× (constructEquivEnv ee)
⊢ (fixCalls e n default) ↓ vn

→ vo ≡vr vn

correct-fix-calls ee efer eo@↓fvar en
= correct-fix-fvar ee efer eo en

Listing 28: Signature and the non-trivial case of the Agda function
that produces a proof that the pre and post-refactoring expressions,
in refactoring equivalent environments, produce refactoring equiva-
lent values (fixCalls helper function).

The correct-fix-fvar helper continues the trend of be-
ing the behaviour preservation proof of the similarly named
fixFvar. It follows the same pattern as the fixFvar of
using a with abstraction to split the possible cases into
two groups with a proof that a certain case belongs to that
group. The first group is where the lookup is referring
to the refactored function. This case is delegated to the
correct-fix-lookupy . The rest of the cases are delegated
to the correct-fix-lookupn.

First, we will cover the correct-fix-lookupn helper. It
uses the proof generated in the correct-fix-fvar function
to recurse down on the lookup into the replaced refactoring
equivalent function environment until it either hits n = zero
or runs out of replaced function environment. When it hits
zero it uses the proof stored in the refactoring equivalent
function environment as a proof that both lookups produce
refactoring equivalent values. If it does not hit zero it will use
the fvar≡vr helper to provide the proof that both lookups
provide refactoring equivalent values.

The correct-fix-lookupy helper is used in the case that
the lookup does point to the refactored function. In this case,
we have to prove that a lookup into the old function environ-
ment is refactoring equivalent to the following expression in
the new function environment: (appl (fvar l) (newCtx
default)). This new expression wraps the lookup with an
application to provide the default value for our new function
argument. To prove this equivalence we need to prove that
the evaluation of the returned clojures is still equivalent. To
this end, we use the correct-fix-refs helper function.

Within our new function, we have a new value bound into
the environment (the new function argument). Because of the
extra function argument, some variables will be moved over
by one in the environment. This is represented by a mod-
ified version of EquivEnv named EquivEnvPadded. The
name is chosen because the new environment has one entry

of ”padding” in it compared to the original, but other than
that all values are still refactoring equivalent. As long as the
”padded” value is never accessed this will not cause issues.

The correct-fix-refs helper proves that the fixRefs
function correctly updated the references within the body
of the function to reference the same values in the new
environment. This function is almost identical to the
equiv-env≡ helper, except for the case involving var ex-
pressions. In this case, we use one last helper function called
correct-fix-var to provide a proof that the two variables
are equivalent. The code for the correct-fix-var helper
can be found in listing 29.

correct-fix-var : ∀ {Γ : Env γ}
→ (l : γ ∋ t)
→ (n : N)
→ (eep : EquivEnvPadded Γ n A)
→ (env-lookup Γ l) ≡vr (env-lookup

(constructEquivEnvPadded eep)
(fixVar l n))

correct-fix-var l zero (eep-pad ee vn)
= var≡vr ee l

correct-fix-var Z (suc n) (eep-elem eep vo≡vrvn)
= vo≡vrvn

correct-fix-var (S l) (suc n)
(eep-elem eep vo≡vrvn)
= correct-fix-var l n eep

Listing 29: Agda function that produces a proof that the variable
lookups within the body of the refactored function point to refactor-
ing equivalent values pre and post-refactoring.

6 Responsible Research
Our work should be easy to reproduce from the source code
provided at our GitHub repository3. The source code in the
repository is provided under the MIT License. The repository
also contains documentation that explains how to run the code
and what every part of it does. Together this allows any other
researchers to reproduce, and build on top of, this work.

7 Discussion
Our provided proofs contain some potential issues that could
stop them from generalizing. For one, our language is a very
small subset of what most functional programming languages
offer. It has no user-defined types, no branching constructs,
and most importantly, it is not capable of recursion. This
raises potential issues as we do not know how our refactor-
ing will be affected by the introduction of these constructs. It
might be that our proofs are trivially adapted, or they could
completely fall apart.

A potential point of contention is our definition of refactor-
ing equivalence. An argument could be made that this notion
of equality is not strong enough and would leave room for
unintended side effects of the refactoring, but since closures
capture their environments we can not simply use proper
equality between values.

3
https://github.com/MetaBorgCube/brp-agda-refactoring-khstruik

https://github.com/MetaBorgCube/brp-agda-refactoring-khstruik

Another potential issue is that our proofs do not prove what
we say they do. This is partly mitigated by the use of the Agda
proof assistant, but it could still be possible, albeit unlikely,
that there is an issue within Agda itself allowing us to prove
something that is false. There could also be subtle issues with
the way our goals have been translated into Agda code, such
as the above refactoring equivalence. This would lead to us
proving a different constraint than what has been described in
this paper.

On a positive note, during the process of writing our lan-
guage and the refactoring operation, we learned that intrin-
sically typed language has some big advantages during the
creation of the refactoring tool. Initially, we started with an
extrinsically typed language, but eventually, we switched to
an intrinsically typed language. This switch happened when
we got stuck with writing our refactoring. It turns out that
since our refactoring is now also a proof of well-typedness,
Agda can give a lot more assistance during the creation of the
refactoring itself. Agda was able to reject wrong ideas earlier
than before and in that way steered us in the direction of a
correct refactoring.

8 Related Work

While some work has been done on the formal verification
of refactoring operations, the use of computer-aided proving
techniques is somewhat rare. We would argue that computer-
aided proofs are a better fit for the formal verification of refac-
toring operations, since could easily be kept next to the refac-
toring program itself ensuring that it never goes out of date as
changes are made to the refactoring program itself.

The same refactoring as discussed in this paper is also
present in the work by Huiqing Li and Simon Thompson[5],
but in their later formalization of some of these refactoring
operations it is excluded[6]. On top of that, they choose to
use pen and paper proofs instead of computer-aided proofs as
described in this paper.

A similar method of proving correctness, as described in
this paper, is used in [1] by Barwell et al. In their work, they
focus on creating a renaming refactoring and proving its cor-
rectness. They find that for the correctness of a renaming
refactoring, they do not need to prove behaviour equivalence
so long as they can prove structural equivalence between the
pre and post-refactoring program. This is distinctly different
from our approach in this paper because for our refactoring it
is required to prove behavioural equivalence.

The work by Nik Sultana and Simon Thompson in [7]
again follows a similar approach as we described in this pa-
per, except that they are working with source-to-source refac-
toring operations. While in this paper we decided to not
worry about the textual representation of the code being refac-
tored, they chose to also verify that their refactoring did not
make unnecessary changes to the textual representation. They
constructed proofs for many different refactoring operations,
but adding function arguments is notably absent from their
work.

9 Conclusions and Future Work
In conclusion, we have created a Haskell-like language with
corresponding big-step semantics and a refactoring operation
that adds an argument to top-level functions in this language.
We have also been able to use Agda to construct a proof
of behaviour preservation. Since our language is intrinsi-
cally typed, the refactoring also serves as a proof of well-
typedness.

This, combined with the work done by others in this space,
shows that it is feasible to construct refactoring operations
and prove their correctness when applied to functional lan-
guages using computer-aided proofs.

There are plenty of ideas left worth exploring related to this
work. One such idea is to expand our language with some im-
portant missing constructs such as branching and recursion
and to expand our proofs to fit these new conditions. Another
idea to explore would be to take the work done by the rest
of the group and combining these different refactoring opera-
tions into one tool.

References
[1] Adam David Barwell, Christopher Mark Brown, and Sus-

mit Sarkar. Proving renaming for haskell via dependent
types: a case-study in refactoring soundness. In 8th Inter-
national Workshop on Rewriting Techniques for Program
Transformations and Evaluation (WPTE 2021), 2021.

[2] N.G. de Bruijn. Lambda calculus notation with name-
less dummies, a tool for automatic formula manipulation,
with application to the church-rosser theorem. Indaga-
tiones Mathematicae, 75(5):381–392, 1972.

[3] Milos Gligoric, Farnaz Behrang, Yilong Li, Jeffrey Over-
bey, Munawar Hafiz, and Darko Marinov. Systematic
testing of refactoring engines on real software projects.
In Giuseppe Castagna, editor, ECOOP 2013 – Object-
Oriented Programming, pages 629–653, Berlin, Heidel-
berg, 2013. Springer Berlin Heidelberg.

[4] Gilles Kahn. Natural semantics. In STACS 87: 4th
Annual Symposium on Theoretical Aspects of Computer
Science Passau, Federal Republic of Germany, Febru-
ary 19–21, 1987 Proceedings 4, pages 22–39. Springer,
1987.

[5] Huiqing Li and Simon Thompson. Tool support for refac-
toring functional programs. In Proceedings of the 2nd
Workshop on Refactoring Tools, WRT ’08, New York,
NY, USA, 2008. Association for Computing Machinery.

[6] Huiqing Li and Simon J Thompson. Formalisation of
haskell refactorings. Trends in Functional Programming,
pages 95–110, 2005.

[7] Nik Sultana and Simon Thompson. Mechanical ver-
ification of refactorings. In Proceedings of the 2008
ACM SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation, pages 51–60,
2008.

[8] Philip Wadler, Wen Kokke, and Jeremy G. Siek. Pro-
gramming language foundations in Agda, August 2022.

	Introduction
	Background
	Agda
	De Bruijn Indices
	Big-Step Semantics
	Intrinsic Typing

	Defining the Language
	Constructs
	Semantics

	Creating the Refactoring
	Proving Correctness
	Responsible Research
	Discussion
	Related Work
	Conclusions and Future Work

