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Summary

The kite power group at TU Delft is currently researching the use of leading edge inflatable
(LEI) kites for use in power generation. A thorough understanding of the aeroelastics of
these kites is paramount to the development of system simulation models and optimum
kite and system designs. The current lack of understanding is therefore seen as a roadblock
to the development of a commercially viable kite power system.

The aeroelastics of LEI kites are complicated by three main challenges.

• There is a high degree of coupling between the flexible kite and the aerodynamic
loading. This means that a fluid-structure interaction approach is typically needed
to produce accurate simulation results.

• The low aspect ratio and large anhedral of the kite means that 3D effects are sig-
nificant [57].

• During normal power production it is desirable to fly the kite at high angles of
attack where significant non-linear viscous phenomena (e.g. flow seperation) are
known to occur [45].

In order to model correctly the 3D viscous aerodynamic phenomena present in LEI kite
flight a computational approach utilizing a steady-state Reynolds-Average-Navier-Stokes
(RANS) solver has been suggested. This work presents a review of relevant literature, out-
lines the computational approach taken, and discusses the limitations and computational
costs of the approach.

It was found that the RANS approach is able to model the kite’s flow environment up
to angles of attack of 24◦. At angles larger than this significant flow separation from the
suction surface of the kite precludes the use of a steady-state solver. At angles as low as
18◦ significant non-linear effects begin to take effect, decreasing lift and increasing drag.
It was also found that at lower angles of attack separation from behind the leading edge
tube serves to decrease effective camber and therefore lift. The computational cost of
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vi Summary

the approach is heavily influenced by the quality of the mesh generated, in particular the
presence of non-orthogonal cells.

It is concluded that the RANS approach is capable of quantifying well the non-linear flow
effects of LEI kites at moderately high angles of attack. The challenge of this method in
the future will be to decrease it’s significant computational costs so that it may be used
in the context of systems modeling, optimization, or fluid-structure interaction.
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γ Turbulence Model Constant [−]
∆s First Boundary Layer Cell Height [m]
∆t Time Step [s]
δij Kronecker Delta [−]
ε Turbulent Dissipation Rate [m2/s3]
εL Sail Excess Length [−]
η Kolmogorov Length Scale [m]
κ LEI Airfoil Relative Camber or von Karman Constant [−]
µ Dynamic Viscosity [kg/ms]
µt Turbulent Dynamic Viscosity [kg/ms]
ν Kinematic Viscosity [m2/s]
νt Turbulent Kinematic Viscosity [m2/s]
ρ Air Density [kg/m3]
σk Turbulence Model Constant [−]
σω Turbulence Model Constant [−]
τ Kolmogorov Time Scale [s]
τw Wall Shear Stress [kg/ms2]
τij Reynolds Stress Tensor [kg/ms2]
φ Example Turbulence Model Parameter or Example Flow Variable [−]
Ω Vorticity Magnitude [1/s]
ω Specific Turbulent Dissipation Rate [1/s]

Abbreviations

AWE Airborne Wind Energy
CD Central Differencing
CFD Computational Fluid Dynamics
CPU Computer Processing Unit
DNS Direct Numerical Simulation
DOF Degrees of Freedom
EWEM European Wind Energy Master
FSI Fluid-Structure Interaction



xxii Nomenclature

FVM Finite Volume Method
HAWT Horizontal Axis Wind Turbine
KCU Kite Control Unit
LEI Leading Edge Inflatable
LLT Lifting Line Theory
NACA National Advisory Committee for Aeronautics
NS Navier-Stokes
RANS Reynolds-Average-Navier-Stokes
RHS Right Hand Side
SIMPLE Semi-Implicit Method for Pressure Linked Equations
SST Shear Stress Transport
UD Upwind Differencing
VLM Vortex Lattice Method



Chapter 1

Introduction

1.1 Airborne Wind Energy

Over the past few years a community of scientific and commercial institutions have been
developing what could turn out to be the next paradigm of wind energy technology.
Known collectively as Airborne Wind Energy (AWE), these technologies possess a number
of advantages over horizontal axis wind turbines (HAWT), making it possible that they
may come to supplant HAWTs and become the dominant wind energy technology in years
to come.

1.1.1 Concepts and Advantages

The AWE community is currently evaluating many different concepts. A great overview of
these concepts is provided by Cherubini et. al. [12]. Many of the most successful concepts
share the characteristic feature of a tethered aerodynamic surface (wing or kite), flying
fast cross-wind motions to extract energy from the wind. These cross-wind concepts can
be further divided into groups depending on the type of wing used and where in the
system electricity is generated.

Rigid Wing vs. Soft Wing Rigid wing concepts use composite materials to construct
an aerodynamic structure similar to a small airplane or a glider. Soft wing concepts
borrow from the kite and paragliding industries and use specially designed fabric kites.
Rigid wing concepts enjoy greater aerodynamic efficiencies but typically at larger costs
per square meter of wing surface. Safety is also of greater concern for rigid wing designs.

Ground Based vs. Airborne Generators Ground based concepts rely on the strong
pulling force from the tether to turn a drum connected to a generator placed on the ground.
These concepts must eventually reel back in when the maximum tether length is reached.
For this reason they are also known as ’yo-yo’ concepts. Airborne generating concepts use

1
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(a) Ampyx Power’s rigid wing system. (b) e-kite’s flexible ram-air wing.

Figure 1.1: Examples of a rigid wing and a soft wing.

(a) EnerKite’s ground based generator. (b) Makani Power’s wing mounted turbines.

Figure 1.2: Examples of ground based generation and airborne generation.

small wind turbines attached to the wing to generate electricity in the air. This power is
sent through an electrically conductive tether to the ground.

Cross-wind concepts have many advantages over conventional HAWTs. They have the
potential to access the stronger, less intermittent winds at higher altitudes. They are more
mobile than HAWTs, allowing them to be deployed in a variety of short term or remote
scenarios. Due to their concentration of mass close to the ground they could be more
suited to floating offshore applications. Finally, they have the potential to utilize signif-
icantly less material in their construction, reducing the cost of the electricity generated.
Figure 1.3 shows a comparison between a cross-wind AWE concept and a conventional
HAWT. Due to the increase in swept area with radius the outer 30% of a conventional
wind turbine blade is responsible for over half of the energy production [16]. In the cross-
wind concept the functions of the tower and inner part of the blade are replaced by the
light weight tether and kite control system.

All of these advantages are currently driving the AWE community to develop an econom-
ically viable commercial scale system. It is unclear at the present moment which concept
will be the first to reach commercial viability.

1.2 TU Delft’s Cross-Wind Kite Power System

The Kite Power group at TU Delft is actively involved in the research and development
of a cross-wind AWE system. The current concept utilizes a 20 kW ground based gener-
ator connected by a single tether to a flexible 25 m2 Leading Edge Inflatable (LEI) kite.
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Figure 1.3: A comparison of a conventional HAWT and the kite power concept. Figure is
illustrated by R. Paelinck, and reproduced from [16].

Hanging below the kite is a remotely controlled Kite Control Unit (KCU) that provides
the steering and depower actuation through the kite’s bridle lines. The kite and KCU
can be seen in Figure 1.4.

Figure 1.4: TU Delft’s LEI kite and KCU.

The kite power system utilizes pumping power cycles to generate electricity. These cycles
consist of two main phases. During the reel out phase the kite flies fast cross-wind figure
eight manoeuvres in order to increase the relative velocity of the kite with respect to the
air [7]. The large traction force generated is used to turn an electrical generator on the
ground producing positive electrical energy. Once the maximum tether length is reached,
the KCU alters the kite’s bridle geometry, reducing the traction force, and allowing the
kite to be pulled back in with a minimal expenditure of energy. These pumping cycles
then repeat. For a more in depth description of the kite power system concept the reader
is referred to the Airborne Wind Energy text released in 2013 [16].
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Reel-out phase (energy generation) 

Reel-in phase (energy consumption)

(a) One complete pumping cycle.

(b) Power production during many pumping cycles.

Figure 1.5: TU Delft’s kite power system operation reproduced from [45].

1.2.1 Cross-Wind Power Operating Principal

Both [37] and [2] have produced thorough theoretical analyses of the cross-wind power
concept’s main operating principal. The key results are discussed here briefly, but for a
more in depth analysis the reader is refereed to their publications.
Figure 1.6 shows the flow velocities and lift and drag forces of a kite flying horizontally,
directly down wind with high tangential velocity vk,τ . The wind velocity, tether reel
out velocity, and resulting apparent wind velocity are shown as vw, vt, and va respec-
tively. Also shown are the resulting lift, drag, and tether (traction) forces, L, D, and Ft

respectively.

Figure 1.6: A simplified analysis of the forces and flow velocities on a kite in crosswind
motion.

The operating principal of the kite is seen clearly from this simplified case. It is the
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tangential component of the lift that pulls the kite forward with high crosswind velocities.
The radial component of the lift is responsible for the large tether force and as a result
the considerable power generating capabilities of the system. In turn the drag of the
kite balances the tangential component of the lift force such that there is a limit on the
maximum crosswind velocity that can be attained. It is shown by both [37] and [2] that
in the case of a massless kite and by considering only the aerodynamic forces on the
wing the maximum mechanical power is generated at a reel out velocity of vt = 1

3vw.
Under these assumptions the maximum mechanical power that can be produced is given
by Equation 1.1.

PmaxM = 2
27ρAv3

w

(
C3
L

C2
D,eff

)
(1.1)

Where ρ is the density of the air, A is the characteristic area of the kite, vw unperturbed
wind speed, CL is the kite lift coefficient and CD,eff is the effective drag coefficient of the
kite that accounts for the parasitic drag of lines and bridle systems.

In reality the maximum power that can be generated from the kite is a much more
complicated optimization problem since a number of important factors have been left out
of this analysis. Tether elevation angle, wind shear, kite depower capabilities and many
other factors have been ignored. A more thorough discussion can be found in [18]. Never
the less this simplified analysis stresses the importance of an aerodynamically efficient
kite that maximizes its value of

(
C3

L

C2
D,eff

)
. This fact is important as it leads to kites

operating near stall conditions as discussed in section 2.2.

1.3 Thesis Direction

Of critical importance in the development of TU Delft’s kite power system is a thorough
understanding of the complex and highly non-linear aeroelastic phenomena that occur
during LEI kite flight. This understanding would allow for the development of more effi-
cient kite designs and an accurate simulation environment that could be used to improve
the system design and optimization process. Unfortunately the aeroelastics of LEI kite
flight are complicated by three main challenges.

• There is a high degree of coupling between the flexible kite and the aerodynamic
loading. This means that a fluid-structure interaction (FSI) approach is typically
needed to produce accurate simulation results.

• The low aspect ratio and large anhedral of the kite means that 3D effects are sig-
nificant [57].

• During normal power production it is desirable to fly the kite at high angles of
attack where significant non-linear viscous phenomena (e.g. flow seperation) are
known to occur [45].
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Due to these challenges there is currently a large gap in the literature with respect to
understanding the aeroelastics of LEI kite flight. Recent advances in the field of Com-
putational Fluid Dynamics (CFD), specifically Reynolds-Average-Navier-Stokes (RANS)
methods, may enable the investigation of two of the three main challenges listed above. It
is the purpose of this thesis to discover how RANS methods could be used to investigate
the 3D, nonlinear effects present in LEI kite flows. Specifically the following questions
will be answered.

• To what extent are RANS methods able to model the 3D non-linear effects (i.e. flow
separation) present?

• What are the tools and best practices that should be used when applying these
methods?

• How sensitive are the results to changes in the various simulation parameters?

• What is their computational cost and how might this be reduced while maintaining
solution accuracy?

• How might these methods be used in an FSI context?



Chapter 2

LEI Kite Aeroelastics

2.1 Kite Geometry

The kite power group currently uses a 25 m2 leading edge inflatable kite known as the
TUD-25mV2, or simply the V2. The inflated leading edge strut provides the kite with
some rigidity, while a bridle system restricts the kite shape and transmits the aerodynamic
loads to the tether. The kite is divided spanwise into 8 sections. Seven inflated struts
positioned along the span stretch from the leading edge to the trailing edge and provide
further structural rigidity. Figure 2.1 shows a 3D model of the kite in the kite design
software SurfPlan™. Figure 1.4 shows a photo of the kite, bridle lines, and KCU while in
flight.

Figure 2.1: A 3D model of the TUD-25mV2 LEI kite in SurfPlan™.

The kite has a flattened wing span of b = 11.7 m, a mid-span chord of cmid = 2.72 m,
and an average chord of cavg = 2.13 m. The chord reduces to zero at the tips. The
kite’s flattened area is A = 25 m2 and its flattened aspect ratio is AR = 5.3 defined as

7
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AR = b2

A . In all cases the mid-span chord and the flattened area will be used as the kite’s
characteristic length and area respectively.

2.2 Flight Envelope

The TU Delft kite power system currently operates at a height of no more than 700 m
above the ground, although discussions are under way to increase the flight ceiling to
1 km in order to increase power capture. Figure 2.2 shows some representative altitude
and apparent velocity data gathered during a test in June 2012.
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Figure 2.2: Representative kite altitude and apparent wind velocity during several pumping
cycles.

During normal operation the kite altitude is bounded between 150 m and 500 m with
apparent flow velocities ranging from 20 m/s to 45 m/s. Using the kite’s mid-span chord as
a characteristic length the kite’s operating Reynolds numbers vary between Re = 3.75 x106

and Re = 8.44 x106.

Ruppert has collected the best available data relating to angle of attack and side slip angle
[45]. Some issues with respect to this data are discussed in section 5.3. Figure 2.3 shows
that the angle of attack seen by the kite during the traction phase varies between 20◦ and
50◦ with a mean value of approximately 30◦. At such large angles of attack significant
flow separation is expected to occur along the suction surface of the kite. In addition,
flow separation is expected to occur behind the leading edge tube.

The side slip angle that the kite sees further complicates its aeroelastic behavior. The side
slip angle varies between −15◦ and +15◦ regularly during the traction phase depending
on whether it is performing the right-hand or the left-hand turn in the flight path.

2.3 Fluid-Structure Interaction

The LEI kite problem is challenging because there is a strong coupling between the kites
structural dynamics and the airflow over the kite. The kite shape influences the pressure
distribution across the surface of the kite, and in turn the flow pressure determines the
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Figure 2.3: Typical angle of attack α and side slip angle β during power production repro-
duced from [45].

kite shape. In general these two components must be modeled together. This section
introduces the current state of the art in modeling the complex FSI problem of LEI kites.

2.3.1 Partioned vs. Monolithic Solvers

FSI solvers can be divided broadly into two categories. Partitioned solvers and monolithic
solvers [17]. The differences between the two categories can be seen in Figure 2.4.

Monolithic solvers attempt to model the entire aeroelastic behavior in one system of
equations that is solved simultaneously. Partitioned solvers separate the flow problem
from the structural problem into two systems of equations that are solved at different
times. Partitioned solvers therefore need a method to pass pressure and shear stress
information to the structural solver, and a method for passing structural deformation
data to the flow solver. Some examples of monolithic solvers that have been applied to
membrane flows can be seen in [5] and [3]. Good examples of partitioned FSI solvers
applied to LEI kite flows are [7] and [8].

Monolithic solvers tend to be more stable and don’t suffer from as many numerical issues
relating to the coupling of the structure with the flow solver. Partitioned solvers on the
other hand enjoy the advantage of modularity. Many different aerodynamic models can
be coupled with the same structural model and vice versa. This modularity makes the
development of effective FSI tools much easier since it is not known a priori which models
will work the best in any given circumstance. The kite power group at TU Delft has
adopted the partitioned solver approach for their FSI modelling of LEI kite aeroelasticity.



10 LEI Kite Aeroelastics

Figure 2.4: The conceptual differences between monolithic and partitioned FSI solvers.

2.4 Kite Structural Models

There are many LEI kite structural models that are currently under development. Each
model can be evaluated on its fidelity, that is how well it reproduces the structural behav-
ior of a real LEI kite, and its computational cost. In general models with higher numbers
of degrees of freedom provide higher fidelity and higher computational costs, although
this is not necessarily so. Figure 2.5 and Figure 2.6 show a comparison of the available
LEI kite structural models.

Figure 2.5: Comparison of the available LEI kite structural models. Reproduced from [7].

In addition to the models shown above a non-linear canopy FEM model is currently under
development by J. Berens [6] for the purposes of fundamental FSI investigations in the
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Figure 2.6: Details of the available LEI kite structural models. Reproduced from [45].
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near future. For a thorough evaluation of these models with respect to LEI kite FSI
problems the reader is referred to [45] and [7].

2.5 Aerodynamic Models

There exists little literature concerning the flow over an LEI kite. However, membrane
flows have been studied extensively in relation to natural systems such as bat wings and
veined leaves, canvas structures such as tents and convertible car roofs, micro-UAVs, sail-
bladed wind turbines, yacht sails, and ram air wings. The most literature exists for yacht
sails and ram air wings. These systems also share some very similar flow conditions to
LEI kites used in power generation. Large angles of attack, frequent flow separation, high
coupling between the fluid and structure, and a high degree of three dimensionality in the
flow are all also present in LEI kite flows. An review of the literature on these subjects is
presented below.

2.5.1 Black Box Model

The simplest aerodynamic model applied to a power producing kite was used by [19]. The
model divides the kite into 3 main surfaces, one large horizontal lifting surface, and two
vertical control surfaces used for steering the kite. Empirically determined lookup tables
are then created to relate the state of the kite with the lift and drag produced on each kite
surface. The model is able to model kite performance with reasonable results, however
the lift and drag values used have little reflection upon reality. In addition since the lift
and drag values have to be determined empirically to bring the model into alignment with
experimental results this method can not be used during the design stage.

2.5.2 2D Finite-Strip Approximation

In this method cross sectional airfoil performance is predicted beforehand, usually by
inviscid flow solvers such as XFOIL, and then the entire 3D wing is modelled as a collection
of 2D ’finite strips’ that behave as if they had infinite span. Using this model 3D effects
like tip recirculation, cross-flow, and lift induced drag, are not captured accurately. [41]
performed a study on using 2D strip theory to predict performance of two-lobed parawings
and found that the method also had issue predicting separation at high angles of attack.

2.5.3 Breukels Aerodynamic Model

The model currently in use with the TU Delft kite power group was developed by J.
Breukels [8]. It was designed to give reasonable results and analytical flexibility with
minimal computation cost. The model takes the finite strip approach a step further and
incorporates the effect of membrane deformations. The kite is divided in the spanwise
direction into a number of 2D cross sections. As in the 2D finite-strip model each cross
section is assumed to act on the flow as if it were infinitely long and placed into perfectly
aligned flow. The lift, drag and moment of each cross-section is provided from a look-up
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table from the values of angle af attack, α, relative airfoil thickness, t = d/c, and relative
airfoil camber, κ = b/c, which in turn are related to the structural deformations of the
kite. These values are provided by RANS or XFOIL simulations before hand.

Cl = f(κ, t, α) Cd = f(κ, t, α) Cm = f(κ, t, α) (2.1)

A schematic of the cross-section is shown in Figure 2.7.

Figure 2.7: Cross sectional view of Breukel’s simplified airfoil cross section. Reproduced
from [8].

The integral aerodynamic forces are then distributed to 6 nodes of the airfoil cross-section
by use of a series of weighting functions. Unfortunately the selection of these weighting
functions is considered somewhat arbitrary since 6 values of the function have to be
determined (the force on each node), but only one moment equation is available. The
system is thus underdetermined.

Bosch has pointed out a number of functional criticisms with Breukels’ model [7].

• Increasing the camber does not always increase the drag force.

• As a results of the 2D finite-strip approximation spanwise velocity components are
ignored. In such a low aspect ratio, highly curved wing as an LEI kite this assump-
tion is certainly questionable.

• When local node velocities are included in the angle of attack calculation the model
becomes unstable.

• The 2D RANS results produced are questionable in themselves due to the large
angles of attack (up to 20◦) used and the inability of most CFD codes to capture
large flow separations.

• The definitions of camber and thickness used produce some peculiarities since the
leading edge tube diameter couples both together. As a result the model may
overemphasize the importance of certain variable interactions.
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Breukels did try to correct for 3D effects by using a linear vortex-lattice code. He assumes
that the relationship between lift curve slope and anhedral angle is independent of airfoil
shape. Although as pointed out by [52] this method has its own drawbacks including the
assumptions of linear (attached) flow, and the use of a different kite’s lift curve slope for
the analysis of the current LEI kite.

2.5.4 Potential Flow Methods

For an in depth description of the subtle differences between the potential flow methods
available the reader is referred to [35] or the great low speed aerodynamics textbook [29].

Flow past 2D inextensible flexible membranes was first conducted in the context of pla-
nar sails. Inviscid, irrotational, thin airfoil theory was combined with static equilibrium
considerations by Thwaites [50], Nielsen [43], Voelz [55], and Greenhalgh [24] in order to
yield the so called sail equation shown in Equation 2.2.

CL ≈ 2πα+BL
√
εL (2.2)

Where εL = (l − c)/c is known as the sail excess length, where l is the sail length and c
is the airfoil chord.

Depending on the numerical technique used to solve the integrals involved slightly varying
results were found. Thwaits foundBL = 0.636, Nielsen foundBL = 0.728, and Greenhalgh
found BL = 0.70.

Inviscid potential flow methods were also used by [23], [36], [20], [34] to model the flow
around yacht sails. Since these methods are computationally inexpensive they are still
commonly used in the design and analysis of yacht sails. It is common for the pure
potential flow technique to be modified slightly to account for the effects of viscosity.
[23] used 3D lifting line theory (LLT) combined with 2D RANS simulations of the sail
cross sections to account for non-linear flow effects. The Helmholtz thick wake model
was used by [36] to account for the effects of flow separation in 2D. This is coupled to a
static equilibrium structural model of the sail to converge to the sail’s steady state loaded
shape. A 3D free wake vortex lattice method (VLM) was combined with a boundary
layer integral formulation by [20] to correct for the effects of viscosity. A coupled 2D
vortex sheet method was used by [34] along with a non-linear membrane model of the
sail to investigate the unsteady dynamics of the sail. While many of these methods look
promising, they often encounter problems with large amount of flow separation, and over
predict lift and under predict drag at high angles of attack.

Much like yacht sails, potential flow methods have been used to model ram air kites
with some success. A VLM flow solver has been coupled with a non-linear finite element
representation of a ram air kite by [11] and [10]. In this approach the flow is assumed to
remain attached throughout.

Work by [22] and [9] proposed a computationally efficient method for determining aero-
dynamic performance of kites (LEI or ram air) and compared the results to 3D RANS
simulations of a simplified kite geometry, shown in Figure 2.9. Also [52] investigated the
feasibility of using this aerodynamic model in FSI simulations of LEI kites. The method
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Figure 2.8: Accuracy of Graf’s non-linear LLT method compared to 3D RANS simulations
and wind tunnel data for an upwind yacht sail. Reproduced from [23].

is based on the iterative coupling between a VLM and 2D sectional airfoil coefficients.
The results obtained are excellent as long as the flow stays attached. However, like many
other modified potential flow methods, it has problems dealing with stalled flow.

2.5.5 Navier-Stokes Methods

In order to capture the effects of flow separation it is often needed to result to solving
the viscous Navier-Stokes equations. The details of how this is done are covered in more
depth in section 3.1.
A numerical analysis of 2D flexible membrane sails using the Navier-Stokes equations as
the fluid model is presented in [47], in the hopes of capturing the effects of viscosity. The
results were in agreement with the analytical results of the sail equation, Equation 2.2,
for certain limiting cases where the effects of viscosity were minimal. Due to limited
computational resources the flows analyzed were assumed to be laminar, which is certainly
not the case for an LEI kite.
Work by [48] presents an analysis of viscous, turbulent, flexible membrane computations
and compares them with classical sail theory. The authors used a 2D discretization to
solve the RANS equations at a realistic Reynolds numbers of 1.3 x106. The k-ω Shear
Stress Transport (SST) [42] equations are used to model the turbulence and close the
system. They are compared to earlier results by the same authors computed using the
k-ε turbulence model. It was found that the k-ε model was unable to predict leading edge
separation, while the k-ω SST model was, at least ostensibly, able to do so. It was found,
however, that when compared to the available experimental data the k-ω SST model over
predicts the lift.
Work by [13] employed the use of the commercial CFD package FLUENT in the analysis
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Figure 2.9: Comparison of lift and drag coefficients from the reference kite using the stan-
dard VLM, Gaunaa’s viscous corrected VLM, and 3D RANS calculations. Re-
produced from [22].
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of upwind sail performance. Since no experimental data was available to the authors they
bench marked the available turbulence models against the canonical backward facing step
problem. The realizable k-ε model was shown to be the most accurate.

Work by [54] is the first to validate RANS simulations of upwind yacht sails with actual
wind tunnel measurements. The agreement is surprisingly good, even for separated flows
as shown in Figure 2.10 and Figure 2.11. Both leading edge and trailing edge separation
were present in the flows investigated. Following the same reasoning as [48] the k-ω
SST turbulence model was used because of its ability to model strong adverse pressure
gradients and separation.

Figure 2.10: Wind tunnel measurements compared with 3D RANS results on an upwind
yacht sail. Reproduced from [54].

2.5.6 Experimental Results

Some experimental results for ram air kites are available in the literature. A Flexfoil Blade
III foil kite was flown behind a moving vehicle by [14], and the tether force and angle
measurements were used to produce estimates of aerodynamic performance. The author
also developed a 3D flow model based on LLT that was incorporated into a dynamic
model of the kite system. Results of the 3D lifting line model were compared to 3D
RANS results of a Clark Y sectioned kite geometry simplification from [38] and it was
found that in the linear region of well attached flow good agreement is found. However,
much like the attempts at modelling sail flow past yacht sails, at larger angles of attack
the LLT model cannot reproduce the flow separation present.

Wok by [15] placed a ram air kite in the wind tunnel and used photogrammetry and laser
scanning to record its loaded 3D shape. Then 3D RANS simulations were performed on
the found geometry to determine the aerodynamic performance of the wing. The k-ω
SST turbulence model was used as well as a transition flow model. A number of wind
tunnel experiments were conducted by [4] with the goal of decreasing drag on paraglider
(ram air) wings. Another series of wind tunnel experiments on 2D parafoil sections were
conducted by [21]. Unfortunately due to the differences in geometry between ram air kites
and LEI kites these experimental results can at best be used as an order of magnitude
check against any LEI kite simulations.
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Figure 2.11: Wind tunnel measurements compared with 3D RANS results on an upwind
yacht sail. Reproduced from [54].
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2.6 The Problem of 3D Viscous Flows

From the available literature of upwind sail and ram air kite flow modeling it is clear that
2D finite strip approximations, or potential flow methods are unable to model effectively
the phenomenon of flow separation. As discussed in section 2.2 angles of attack of the
kite in flight can be quite large. At these angles flow separation from the suction surface
of the kite is expected to occur, precluding these models from use.

Based on the work of [54], in which 3D RANS methods were validated against wind tunnel
experiments for the case of mild flow separation, it would seem that RANS methods are
the best choice of aerodynamic model for separated LEI kite flows. For this reason these
methods were explored further in this work.

Unfortunately RANS methods are too computationally expensive to be coupled with a
structural model of the kite of a similar level of accuracy. As such it was decided that this
work will focus solely on the aerodynamic analyses of LEI kites by assuming a kite shape
a priori. This shape will not be determined from a structural solver, but instead from
the kite design software SurfPlan™. Only in this way can the aerodynamic investigations
that are needed be completed in the allotted time and with the resources available.
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Chapter 3

Methods

3.1 Computational Fluid Dynamics

The physics of incompressible (low mach number), Newtonian flows at constant tempera-
ture, like those found in LEI kite problems, are described by the Navier-Stokes (NS) and
continuity equations. These equations represent mathematically the concepts of conser-
vation of momentum and conservation of mass respectively. They are shown in Einstein
summation notation in Equation 3.1 and Equation 3.2.

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(3.1)

∂ui
∂xi

= 0 (3.2)

Here xi represents the three spatial dimensions x, y, and z. ui represents the three
velocity components, ux, uy, and uz. p is the pressure, and ρ and ν are the fluid density
and kinematic viscosity respectively. Together the momentum and continuity equations
form a non-linear system of partial differential equations, and are as such notoriously
difficult to solve. CFD is the branch of fluid mechanics that aims to use computers to
find numerical solutions to governing flow equations like the NS equations.

3.1.1 Potential Flow Methods

As described in section 2.5 many of the methods used to analyze flows similar to those
found in LEI kites resort to assumptions about the flow in order to simplify the governing
equations. The most popular methods are so called potential flow methods, which make
the assumptions of zero-viscosity, and irrotationality of the flow. This serves to linearize
the NS equations making them much easier to solve numerically. For high Reynolds

21
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number attached flows, where the effects of viscosity and flow rotationality are confined
to a thin boundary layer surrounding the body, they model the flow physics rather well.

Unfortunately for the flows involved with LEI kites the assumptions of zero-viscosity
and irrotationality are poor simplifications since many important flow phenomena are
caused by and intricately linked to the effects of viscosity and vorticity. Most notably
flow separation is not captured by potential flow methods but plays an important role in
LEI kite aerodynamics.

3.1.2 Finite Volume Methods

The Finite-Volume-Method (FVM) an increasingly popular technique used to solve the
NS equations numerically. In the FVM the flow domain is discretized into a number of
small cells, known as a mesh. The flow variables (velocity, pressure, etc.) are assumed
to be constant within each cell. The derivatives present in the NS equations are then
approximated numerically for a solution to the NS equations. As the flow mesh is refined,
the solution should approach the actual flow solution. An example of a flow mesh used
with the FVM can be seen in Figure 3.3.

Solving the NS equations as shown in Equation 3.1 and Equation 3.2 numerically is
known as Direct Numerical Simulation (DNS). Although this technique can be used for
Reynolds numbers in the low thousands, the mesh resolution needed to resolve the turbu-
lent fluctuations of higher Reynolds number flows makes DNS infeasible for most common
engineering problems (including LEI kites).

3.1.3 Turbulent Scales

In the 1940’s Kolmogorov developed the universal equilibrium theory to describe the
behavior of turbulent flows [30] [31]. By assuming scale separation, that is that the dy-
namics of the smallest scales are statistically independent of those of the largest scales,
dimensional analysis could be used to determine the relative length and time scales of tur-
bulence. According to this theory the smallest relevant length scale present in a turbulent
flow, the so called Kolmogorov length scale, is:

η ∼
(
ν3

ε

)1/4

(3.3)

Where ν is the flow’s kinematic viscosity, and ε is the rate of kinetic energy transferred
from the large scales to the small scales, also known as the turbulent dissipation rate.
Similarly expressions for the Kolmogorov time and velocity scales can also be found as:

τ ∼
(
ν

ε

)1/2
(3.4)

v ∼ (νε)1/4 (3.5)



3.1 Computational Fluid Dynamics 23

Using the above expressions we can determine the computational cost of DNS. If we say
that our model problem has geometric length scale ll, then in order to resolve all the
relevant length scales in the flow our domain must contain at least ll/η grid points in each
direction. Since turbulent flows are inherently three dimensional the total number of grid
points needed is:

N = NxNyNz = (ll/η)3 (3.6)

Furthermore in order to compute the unsteady dynamics of the fastest turbulent fluc-
tuations a time step should be chosen as ∆t ∼ η/ul and the simulation run for many
large-eddy turn over times, each with length proportional to ll/ul. This results in the
number of times steps to be taken as:

Nt ∼ ll/η (3.7)

From Equation 3.3 the cost can then be written as:

cost = NxNyNzNt ∼ (ll/η)4 ∼ ε

ν3 l
4
l (3.8)

An estimate for ε can also be found using dimensional analysis. We can say that the large
eddies have kinetic energy proportional to the square of the characteristic flow velocity ul.
If we also assume that the rate of energy transfer to the smallest eddies is proportional
to the large eddy turn over time, tl = ll/ul, then we find that the rate of energy transfer
is:

ε ∼ u3
l

ll
(3.9)

We can use this to determine the cost as a function of the flow’s characteristic Reynolds
number:

cost ∼ u3
l l

3
l

ν3 = Re3
l (3.10)

One of the largest DNS simulations ever run was that of turbulent channel flow at Re ≈
40, 000 [26]. This Reynolds number is based on the channel core velocity and the channel
height. This simulation was completed in 4 months on 2048 processors. It is clear from
this example that to compute flows at the Reynolds numbers present in LEI kite problems
(i.e. Re = 3.75− 8.44× 106) a DNS approach won’t be feasible for many years to come.

3.1.4 Turbulence Modelling

Since a DNS approach is not feasible for LEI kite flows a different approach to solving
the NS equations is needed. One important realization is that for typical engineering
problems one is usually only interested in the mean flow properties, and has little interest
in small scale flow fluctuations. By decomposing the velocities and pressures in the NS
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equations into a mean and a fluctuating component, one can rewrite the NS equations as
the Reynolds-Average-Navier-Stokes (RANS) equations. These can be solved on a much
coarser grid, significantly decreasing the computational cost. Furthermore, if the flows
investigated can be considered steady-state, that is the mean flow properties do not change
significantly with time, then the time derivatives of the NS equations can be assumed to
be zero, further reducing the computational time. Equation 3.11 and Equation 3.12 show
the steady-state RANS equations in Einstein summation convention.

uj
∂ui
∂xj

= −1
ρ

∂p

∂xi
+ 1
ρ

∂

∂xj

(
µ
∂ui
∂xj
− ρu′iu′j

)
(3.11)

∂ui
∂xi

= 0 (3.12)

Here ui and p denote the mean components of velocity and pressure respectively. u′i
and p′ denote the fluctuating components such that ui(t) = ui + u′i(t) and p(t) = p +
p′(t). The last terms in the brackets on the right hand side (RHS) are known as the
Reynolds Stresses. The effect of turbulent fluctuations is to increase the diffusion of
momentum, in much the same way that an increase in viscosity would. This is why the
Reynolds Stresses are commonly placed on the RHS with the viscous diffusion term [27].
Accurately modelling the Reynolds Stresses is challenging work, and as of yet no model
has been developed which provides accurate results across many different flow situations.
A thorough discussion of the turbulence models available is beyond the scope of this
work. However results were found in the literature which can give some guidance as to
the applicability of turbulent models to the LEI kite aeroelastic problem.
Notable turbulence models include the mixing length model developed by Prandtl, the
k − ε model developed by Launder [33], the Spalart-Almaras model [49], and the Menter
Shear Stress Transport (SST) model [42]. The Menter SST model, also known as the
k − ω SST model, has shown good results for flows with adverse pressure gradients and
so is a good choice for airfoil flows [28] [42] [53]. For this reason it will be used in the rest
of this work to model the Reynolds Stresses present in the LEI kite flows investigated.

k − ω SST Model

The specifics of Menter’s k − ω SST turbulence model [42] are beyond the scope of this
work. However, a basic understanding of how the model works is necessary in order to
properly perform RANS simulations. The model contains a shear stress transport SST
formulation, which blends the k − ω model that is used in the boundary layer with the
k − ε model that is used in the free stream. This utilizes the strengths of both models.
The model begins, like many others, with the Boussinesq eddy viscosity assumption. This
assumption links the turbulent Reynolds stresses to the mean flow gradients through a
term known as the turbulent (eddy) viscosity µt, as shown in Equation 3.13, where δij is
the Kronecker delta.

−ρu′iu′j = τij = 2µt
(
Sij −

1
3
∂uk
∂xk

δij

)
− 2

3ρkδij (3.13)
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Sij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
(3.14)

In this way the Reynolds stresses can be found from knowledge of only one parameter,
the turbulent viscosity µt. This turbulent viscosity is in turn found from the turbulent
kinetic energy k, specific turbulent dissipation rate ω, and the vorticity magnitude Ω, as
shown in Equation 3.15.

µt = ρa1k

max(a1ω,ΩF2) (3.15)

Ω =
√

2WijWij (3.16)

Wij = 1
2

(
∂ui
∂xj
− ∂uj
∂xi

)
(3.17)

The values of k and ω are then assumed to convect and diffuse through the flow domain in
the same way that any other flow property would. As such they are governed by similar
partial differential equations, as shown in Equation 3.18 and Equation 3.19 in incom-
pressible form, which are solved using the finite volume method given the appropriate
boundary conditions.

∂k

∂t
+ uj

∂k

∂xj
= P

ρ
− β∗ωk + 1

ρ

∂

∂xj

(
(µ+ σkµt)

∂k

∂xj

)
(3.18)

∂ω

∂t
+ uj

∂ω

∂xj
= γ

µt
P − βω2 + 1

ρ

∂

∂xj

(
(µ+ σωµt)

∂ω

∂xj

)
+ 2(1− F1)σω2

ω

∂k

∂xj

∂ω

∂xj
(3.19)

P = τij
∂ui
∂xj

(3.20)

F1 = tanh(arg4
1) (3.21)

arg1 = min
(

max
( √

k

β∗ωd
,
500ν
d2ω

)
,

4ρσω2k

CDkωd2

)
(3.22)

CDkω = max
(

2ρσω2
1
ω

∂k

∂xj

∂ω

∂xj
, 10−20

)
(3.23)

F2 = tanh(arg2
2) (3.24)
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arg2 = max
(

2
√
k

β∗ωd
,
500ν
d2ω

)
(3.25)

Where ρ is the flow density, ν is the flow kinematic viscosity, and d is the distance from a
point to the nearest wall. The constants β, σk, σω, and γ have been empirically determined
to tune the model such that it produces satisfactory results. The SST formulation blends
these constants according to the value of F1, as shown in Equation 3.26 where φ represents
any of these constants.

φ = F1φ1 + (1− F1)φ2 (3.26)

The empirically tuned values are shown below.

γ1 = β1
β∗
− σω1κ

2
√
β∗

γ1 = β2
β∗
− σω2κ

2
√
β∗

(3.27)

σk1 = 0.85 σω1 = 0.5 β1 = 0.075 (3.28)

σk2 = 1.0 σω2 = 0.856 β2 = 0.0828 (3.29)

β∗ = 0.09 κ = 0.41 a1 = 0.31 (3.30)

3.1.5 Flow Transition

The transition of flows from laminar to turbulent is a complex and well studied field. A
complete discussion of the topic is way beyond the scope of this work. The goal of this
section is only to determine how this transition can be modelled for the flows involving
LEI kites, and how sensitive the results of CFD calculations are likely to be to the choice
of transition model.
The effect of transition to turbulence is to delay flow separation and increase the skin
friction drag [29]. It is postulated that at the large Reynolds numbers present in LEI
kite flows transition will happen close to the leading edge. Following this reasoning it
is assumed that the choice of transition model will have little effect on the position of
trailing edge flow separation. The importance of transition is then only pertinent to
the calculation of skin friction drag, with later transition resulting in a larger amount of
laminar flow and a lower integral drag coefficient.
For flows on curved surfaces with pressure gradients, like those encountered with airfoils,
the transition to turbulence is more complicated. For these flows other methods of pre-
dicting laminar to turbulent transition have been developed. The most common is the
so called en method initially proposed by Smith [46] and van Ingen [51], and available
for use in the 2D panel code XFOIL. Figure 3.1 and Figure 3.2 show the effect of assum-
ing fully turbulent flow or using the en method when utilizing a RANS solver for airfoil
performance prediction.
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Figure 3.1: Pressure distribution, Cp, for fully turbulent flow compared with transition flow
and computed transition location. NACA0012, α = 12◦,Re = 3× 106. Repro-
duced from [28].

Figure 3.2: Drag curve for fully turbulent compared with transitional flow and experimental
data, NACA0012, Re = 3× 106. Reproduced from [28].
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It is seen that the pressure, and therefore the lift calculations are relatively unaffected for
the NACA0012 at this Reynolds number. The drag however is affected significantly by
the choice of transitional model. It is also known that surface roughness, and free stream
disturbances can increase the boundary layer instability and trigger transition sooner.
Seams on an LEI kite, membrane flutter, dirt, and other contamination all act to increase
surface roughness. These facts, along with the larger Reynolds numbers encountered in
LEI kite flight point to the conclusion that transition to turbulence is likely to occur
very close to the leading edge of the kite. For this reason is seems reasonable to use
fully turbulent parameters in the simulation of LEI kite flows, that is the boundary
layer is assumed to be turbulent throughout its length. However, without experimental
verification, it is difficult to say if this approach yields correct results. As shown in
Figure 3.2 one should be especially wary of any drag values predicted from a fully turbulent
computation.

3.2 OpenFOAM

OpenFOAM is an open source collection of utilities and applications that can be used
to solve many different vector field problems, including incompressible fluid flows. The
source code is freely available under the General Public License, meaning anyone can view
and alter the code as they wish. This has made it a popular choice among academic and
commercial organizations alike.

OpenFOAM contains many different applications for solving many different kinds of flow
problems. The simpleFoam application solves the discretized steady-state RANS equa-
tions using the finite-volume method according to the mesh, boundary conditions, turbu-
lence models, and flow parameters specified.

3.2.1 Semi-Implicit Method for Pressure Linked Equations (SIMPLE)

Solving the steady-state RANS equations numerically is not straight forward because an
explicit expression for the pressure is not available. To over come this difficulty the sim-
pleFoam application in OpenFOAM uses the Semi-Implicit Method for Pressure Linked
Equations (SIMPLE) algorithm to solve the RANS equations numerically [44]. A com-
plete discussion of this method can be found in [53]. The general idea is to first guess a
value for the pressure, and use the deficit from the continuity equations (conservation of
mass) to obtain a pressure correction. This is repeated until the solution converges.

The algorithm can be summed up as follows.

1. Set the boundary conditions.

2. Solve the discretized momentum equations to compute the intermediate velocity
field.

3. Compute the mass fluxes at the cell faces.

4. Solve the pressure equation and apply under-relaxation.
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5. Correct the mass fluxes at the cell faces.

6. Correct the velocities on the basis of the new pressure field.

7. Update the boundary conditions.

8. Repeat till convergence.

Steps 4 and 5 can be repeated a prescribed number of times to correct for the effects of
mesh non-orthogonality. In OpenFOAM this is specified in the fvSolution file with the
key word nNonOrthogonalCorrectors. A complete desciption of this correction process
can be found in [39]. Mesh non-orthogonality is discussed further in subsection 3.3.3.

3.3 Meshing

In order to mesh the kite the commercial software Pointwise was used. In order to become
familiar with the software, and to validate the solution parameters used with the software
OpenFOAM, a number of 2D meshes were also created. This section discusses the meshing
process and the various decisions that were made.

3.3.1 2D Meshing

For the 2D meshes the hyperbolic mesh extrusion algoithm was used to create a high
quality structured O-Mesh of the airfoils being investigated. An example of this type of
mesh can be seen in Figure 3.3.

The number of points around the airfoil, and the total radius of the O-Mesh were varied
in order to determine their effect on solution accuracy, as discussed in section 4.1. The
height of the first boundary layer cell was selected according to the method discussed in
subsection 3.3.4.

3.3.2 3D Meshing of V2

Using a similar approach to the 2D meshing, a 3D structured kite mesh was created cross-
section by cross-section. Since no consideration of yawed inflow has been considered in
this work, and since the flow solver (simpleFOAM) assumes a steady-state flow solution,
there is no reason to mesh the entire kite. Any solution found will be symmetric about
the mid span of the kite. Therefore, in order to save computational cost, only half of the
kite was meshed, and a symmetry plane boundary condition was imposed at the mid span
location.

The geometry of the kite was taken from Surfplan. A new output format was developed
for this purpose. This format specifies a number of cross-sections, their chord, orientation,
and profile shape. For the case of the V2 8 cross-sections were specified to mesh the half
kite. This information was then passed to Pointwise in order to build up a structured
surface mesh of the kite. It can be seen in Figure 3.4.
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(a) Mesh overview. (b) Boundary layer mesh.

(c) Leading edge. (d) Trailing edge.

Figure 3.3: 2D structured hyperbolic mesh of V2 mid span cross section airfoil created in
Pointwise (243x146x50).

Figure 3.4: Structured surface mesh half of the V2 kite.
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A number of geometric simplifications were made to the kite geometry. These simplifi-
cations greatly reduce the complexity of the meshing process. The chordwise struts have
been removed and the volume behind the leading edge tube has been ‘filled in’. It is
unsure what the effect of removing the struts is on the flow solution found. A discussion
of the effect of ‘filling in’ behind the leading edge tube can be seen in section 4.2.

One challenge with the cross-section approach to building a 3D mesh is how to treat the
tip. This problem was solved by building a special tip treatment that wraps around the
tip to ensure the surface mesh is water tight. This can be seen in Figure 3.5.

Figure 3.5: Tip treatment of the kite surface mesh.

Using this surface mesh a structured boundary layer mesh can be extruded using the
hyperbolic mesh extrusion algorithm in Pointwise, similar to how it was done in 2D. The
purpose of this section of the mesh is to ensure that the boundary layer is well resolved
with enough cells to capture the steep velocity gradients near the wall. In this case
between 70 and 80 layers were extruded. The hyperbolic mesh extrusion in Pointwise
ensures that the cells are minimally skewed and well aligned with the dominant flow
streamlines, thus ensuring high mesh quality. The height of the first boundary layer cell
was selected according to the method discussed in subsection 3.3.4. The boundary layer
mesh can be seen in Figure 3.6.

Ideally this hyperbolic mesh extrusion would be continued until the farfield to create a
high quality, fully structured, hemispherical mesh. This is indeed possible for straight
wings and wind turbine blades. However, in the case of the V2 kite, the hyperbolic mesh
extrusion algorithm is unable to deal with the large anhedral of the kite as the cells become
too squeezed. The algorithm thus becomes unstable after approximately 80 layers.

During many conversations with the Pointwise support team it was concluded that a
hybrid mesh approach would be needed in which the boundary layer mesh shown in
Figure 3.6 is joined with an unstructured mesh covering the rest of the domain. The
completed mesh can be seen in Figure 3.7 and Figure 3.8. Several layers of unstructured
mesh cells were created to control the grading of the cells in the direction normal to the
kite surface. Unfortunately this approach results in many non-orthogonal cells at the
boundary between the structured and structured portions of the mesh. This requires that
non-orthogonal correctors be used in the flow solver in order to ensure solution stability,
severely increasing the computational cost.
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Figure 3.6: Half kite boundary layer mesh.

Figure 3.7: Total V2 hemispherical mesh (186x63x80x60).
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Figure 3.8: The transition of the structured BL mesh to the unstructured farfield mesh
(186x63x80xr60).

3.3.3 Mesh Non-Orthogonality

Mesh non-orthogonality can cause stability issues and numerical errors. It occurs when
the line joining two adjacent cell centers does not pass through the cell face at a right
angle. Figure 3.9 shows two different meshes, one that is orthogonal (A) and one that is
not (B).

Figure 3.9: An illustration of mesh nonOrthogonality.

When building a hybrid mesh in Pointwise significant mesh non-orthogonality is found to
occur on the junction between the structured boundary layer mesh and the unstructured
farfield mesh. A related mesh quality metric, known as cell skewness, can be visualized
in Pointwise and is shown in Figure 3.10.

On this junction the cells are unique to the entire domain in that they have one quadri-
lateral face and four triangular faces. In the rest of the domain the cells have either 6
quadrilateral faces (structured) or four triangular faces (unstructured). The mesh qual-
ity is the worst along a strip that runs span wise along the trailing edge portion of the
boundary layer mesh. The quadrilateral faces of the cells in this region have a large aspect
ratio, that is they are long and thin. This is seen in Figure 3.11. This causes cells that are
long, but not very high, resulting in large cell skewness and non-orthogonality as shown
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Figure 3.10: Mesh skewness, an indicator of non-orthogonality, on the junction between the
boundary layer and farfield meshes.

in Figure 3.12. Unfortunately due to the need to cluster cells near the trailing edge of the
airfoil it seems that this thinning of cells in this region is unavoidable. Perhaps a more
creative analysis of the problem could yield a solution that the author is unaware of.

Figure 3.11: High aspect ratio of quadrilateral faces along the trailing edge of the boundary
layer mesh.

3.3.4 First Boundary Layer Cell Height

In order to properly resolve the boundary layer it is important that the height of the first
cell in the boundary layer, measured in non-dimensional wall units, is on the order of
1, as shown in Equation 3.31. This holds true for both the 2D and the 3D meshes that
were created. This ensures there are enough cells to resolve the linear viscous sublayer.
However, prior to running the simulation the value of u∗ is unknown, hence it is not known
how large to make the first layer of cells in the boundary layer. Luckily an estimate of the
cell height can be made from flat plate boundary layer relations [56]. The approximate
first cell height used is calculated from Equation 3.34 with x = c, and will be checked
later.

y+
∆s = u∗∆s

ν
= O(1) (3.31)
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Figure 3.12: Highly skewed and non-orthogonal cell caused by large aspect ratio quadrilat-
eral face.

u∗ =
√
τw
ρ

(3.32)

Cf = τw
1
2ρU

2
∞

= 0.027
Re1/7

x

(3.33)

∆s = 8.61x1/14
(
ν

U∞

)13/14
(3.34)

3.3.5 Mesh Naming

In order to investigate the effect of mesh grading on the solution several different meshes
were created. In order to make it easier to discuss which mesh was used a mesh naming
convention was adopted.

For 2D meshes three numbers are given which describe the number of mesh points sur-
rounding the airfoil, the number of mesh points normal to the airfoil, and the distance
from the airfoil to the farfield in chords (i.e. 186x80x60). In 3D four numbers are given
that describe the number of points surrounding the airfoil, the number of points in the
spanwise direction excluding the tip treatment, the number of points around the circum-
ference of the farfield mesh, and the distance from the kite to the farfield boundary in
mid-span chords (i.e. 186x63x80x60).
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3.4 Simulation Settings

3.4.1 Turbulence Models

The two equation k-ω SST model, a well established model used widely in the aerospace
field, was chosen to close the RANS equations. This model is discussed in section 3.1.4.

3.4.2 Boundary Conditions

The simulation boundary conditions were chosen to give the flow the desired Reynolds
number and also to approximate the turbulence levels found in the real LEI kite flight.
In all the simulations a Reynolds number of 6 million was used.

Shown in Table 3.1 and Table 3.2 are the boundary conditions used in the farfield and
airfoil surface respectively.

Table 3.1: Farfield Boundary Conditions

Flow Variable Type Value
Velocity Magnitude inletOutlet Re·ν

c
Relative Pressure outletInlet 0 Pa

k Turbulent Kinetic Energy inletOutlet 0.0031 m2/s2

ω Specific Turbulent Dissipation Rate inletOutlet 23.7× 103 s−1

Table 3.2: Boundary Conditions Applied at Airfoil Surface

Flow Variable Type Value
Velocity Magnitude fixedValue 0 m/s
Relative Pressure zeroGradient -

k Turbulent Kinetic Energy fixedValue 0 m2/s2

ω Specific Turbulent Dissipation Rate fixedValue 1× 108 s−1

Generally for external aerodynamic applications it is advised to specify a fixed velocity
and zero pressure gradient at the inlet, and a zero velocity gradient and fixed pressure
at the outlet. Unfortunately for the O-Mesh and hemispherical mesh topologies it is
difficult to know before hand which parts of the farfield will be inlets and which outlets,
particularly if one wants to investigate flows are varying angles of attack. For this reason
the inletOutlet and outletInlet boundary types are available for use in OpenFOAM.
The inletOutlet specification applies a fixed value (i.e. Dirichlet) condition to any
parts of the boundary where flow is entering the domain, and a fixed gradient of zero (i.e.
Neumann) condition to any part of the boundary where flow is leaving the domain. The
outletInlet specification does the reverse, applying a fixed value to outflow and a zero
fixed gradient to inflow.
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3.4.3 Finite Volume Schemes

A complete description of the finite-volume method is not needed in this work as many
great references already exist (see [53] for example). However the point of discretiza-
tion schemes will be discussed here shortly in relation to LEI kite aerodynamics. One of
the principal problems involved with using the finite-volume method to solve convection-
diffusion problems (like the RANS equations) is the calculation of the value of the trans-
ported value φ (could be mass, momentum, turbulent kinetic energy, etc.) at the cell
faces. Consider the 1D convection diffusion problem as illustrated below in Figure 3.13.

Figure 3.13: The finite-volume method applied to a 1D convection-diffusion problem. Re-
produced from [53].

The finite volume method balances the convective and diffusive fluxes of φ across the con-
trol volume boundaries with the accumulation of φ within the control volume. Typically
the values of φ are stored at the cell nodes (P) and are average cell values. This leaves
the problem of how to determine the values of φ at the cell faces (w,e), values that are
needed to compute the fluxes across the cell boundaries.
The Central-Differencing scheme (CD) simply takes the average of the two neighboring
nodes as the value of φ at the cell boundary. This works well for problems that are
dominated by diffusive processes. That is Pe < 2, where Pe is the cell Peclet number
defined in this context according to Equation 3.35, where L is the chractersitic length of
the cell, Sct is the turbulent Schmidt number, νt is the turbulent eddy viscosity, and K
is the turbulent eddy diffusivity.

Pe = LU

D
= ReL · Sct = UL

ν

νt
K

(3.35)

For low Peclet numbers the value of φ in one cell influences more or less evenly the
values of φ in all neighboring cells. However, for processes dominated by convection,
Pe > 2, this no longer holds. Using the CD scheme in these cases can lead to numerical
instabilities (so called wiggles). The solution is the adoption of other schemes that lend
more importance to the value of φ in the nodes upwind of the cell face (so called Upwind
schemes). Figure 3.14 shows why for high Peclet numbers this approach produces a more
suitable estimate of φ at the cell face.
The simplest Upwind scheme is the Upwind Differencing scheme UDS. This scheme simply
takes the value of the node directly upwind of the cell face as the value of φ at the cell
face. This scheme works well but can lead to a numerical phenomenon known as false
diffusion in coarse meshes where the flow is not aligned with the main cell direction.
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Figure 3.14: The influence of Pe on the distribution of φ in convection-diffusion problems.
Reproduced from [53].

For the simulations being done on LEI kites the Reynolds numbers are high, and the need
for a reduced number of cells is paramount to keep computational costs reasonable. For
these reasons the cell Peclet numbers encountered will be high and necessitate the need
for using an upwind scheme.

Shown in Table 3.3 are the finite volume schemes used to discretize the governing equa-
tions. The upwind and linearUpwind schemes were chosen for the divergence terms
because of the large flow velocities in the domain.

Table 3.3: Finite Volume Schemes

Gradient Gauss linear
Laplacian Gauss linear limited 0.5

Divergence (U) bounded Gauss linearUpwind
Divergence (k, ω, ν̃) bounded Gauss upwind

3.4.4 Solution Parameters

OpenFOAM allows the user to control a number of options that determine how the
matrices created by the SIMPLE algorithm are solved, to what tolerances, and using
what relaxation factors. The precise function of each of these settings can be found in
the OpenFOAM documentation. The settings used for all the simulations are shown in
Table 3.4. The setting nNonOrthogonalCorrectors is particularly important for hybrid
meshes, such as those used in the 3D simulations, where cells at the boundary between the
structured boundary layer mesh and unstructured farfield mesh can become significantly
non-orthogonal. More about this setting can be seen in subsection 3.2.1.
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Table 3.4: Solution Parameters

Matrix Solver (p) PCG
Matrix Solver (U,k,ω) PBiCG

tolerance (p,U,k,ω) 1× 10−8

relTol (p,U,k,ω) 0.01
Relaxation Factor (P) 0.3

Relaxation Factor (U,k,ω) 0.7
nNonOrthogonalCorrectors (2D) 0
nNonOrthogonalCorrectors (3D) 4 depending on mesh
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Chapter 4

Results

4.1 NACA0012

The solution settings described in section 3.4 were validated by simulating the 2D, steady
state flow around the well studied NACA0012 airfoil. The results were compared against
data from [25], [32], and [1]. Table 4.1 and Table 4.2 describe the comparison data that
was used. Also used was McCroskey’s best fit ∂Cl/∂α curve found from [40] shown in
Equation 4.1. Three meshes were investigated, built as described in section 3.3 with sizes
of 150x100xr150, 250x150xr150, and 600x150xr150. Simulations were run at a Reynolds
number of 6× 106.

Table 4.1: Summary of comparison data.

Data Set Re Ma Boundary Layer Treatment
Gregory 2.88× 106 Approx. Incompressible Smooth surface

Ladson (1988) 6× 106 0.15 Transition strips at 5% chord
NASA CFL3D 6× 106 Incompressible Fully Turbulent CFD

Table 4.2: Measurements available from data sets.

Data Set Cl, Cd Cp Cf

Gregory 3 3 7

Ladson (1988) 3 3 7

NASA CFL3D 7 7 3

∂Cl/∂α = (0.1025 + 0.00485 log10(Re/106))/(1−Ma2) (4.1)

41
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4.1.1 Lift and Drag

Summaries of the relative error are shown in Table 4.3 and Table 4.4 with a positive value
indicating that the OpenFOAM solution was greater than the reference. The OpenFOAM
results on the finest mesh under predict the lift by less than 7% against all the reference
data presented. This agreement is considered to be very good, considering that there is
a similar spread in the experimental data.

The drag predictions are off by as much as 73% compared with the Ladson data. This
is a somewhat surprising result, and highlights the difficulty of simulating the drag of
streamlined bodies.

Table 4.3: Summary of Cl relative error.

Mesh α vs Gregory vs Ladson vs CFL3D vs McCroskey

600x150x150 10◦ -1.3% 0.8% -2.2% 1.8%
15◦ -2.0% -1.5% -4.9% -6.5%

250x150x150 10◦ -3.1% -1.0% -3.9% 0.0%
15◦ -7.8% -7.4% -10.5% -12.0%

150x100x150 10◦ 0.5% 2.6% -0.4% 3.6%
15◦ -4.5% -4.0% -7.3% -8.8%

Table 4.4: Summary of Cd relative error.

Mesh α vs Gregory vs Ladson vs CFL3D

600x150xr150
0◦ 25.7% 7.3% 5.9%
10◦ 16.3% 31.4% 27.2%
15◦ 10.4% 72.8% 49.3%

250x150x150
0◦ 23.6% 5.6% 4.2%
10◦ 13.5% 28.3% 24.2%
15◦ 10.5% 72.9% 49.4%

150x100x150
0◦ 27.6% 9.0% 7.6%
10◦ 23.1% 39.1% 34.7%
15◦ 31.2% 105.4% 77.4%

This comparison highlights the level of accuracy and repeatability obtainable from RANS
simulations and experimental trials. In general lift values across simulations and different
experiments can be found to agree to within a few percentage points. Since lift is mainly a
consequence of pressure, this points to the conclusion that the RANS simulations are able
to model the pressure distribution across the airfoil very well. The pressure distribution
found from the finest mesh for the case of α = 15◦ can be seen in Figure 4.1. It is seen
that the agreement to the experimental data is very good.

Drag values however can vary by a considerable margin. This is especially true in the
case of streamlined bodies in which skin friction is responsible for the majority of the
drag. Unfortunately only the skin friction data from the top surface of the airfoil from
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Figure 4.1: Pressure coefficient found in OpenFOAM for α = 15◦ compared with experi-
mental results.

the CFL3D simulations is available here for comparison. It can be seen in Figure 4.2 that
there is good agreement between the OpenFOAM simulations and the CFL3D simulations.
The most likely reason for the large differences in drag comes down to small differences
in pressure drag, which when applied to a streamlined body such as this, result in large
relative differences in total drag. This would mean that in the context of LEI kites, in
which large flow separations behind the leading edge tube cause significant pressure drag,
the slight discrepancies in pressure would result in much smaller relative changes in total
drag.
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Figure 4.2: Skin friction coefficient found in OpenFOAM for α = 15◦ compared with CFL3D
results.
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4.1.2 First Cell Height

In order to ensure that the choice of first cell height was sufficient small to correctly
resolve the boundary layer the height of the first cell was calculated in y+ units. It was
found that for all angles that the first cell height was sufficiently small. Figure 4.3 shows
the first cell height for α = 15◦.
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Figure 4.3: First cell height in y+ units for α = 15◦, mesh is 250x150x150.

4.1.3 Turbulence Decay

An interesting result from the NACA0012 simulations is the realization that the turbu-
lence imposed at the farfield boundaries may have very little effect on the solution. It
can be seen from Figure 4.4 and Figure 4.5 that the farfield turbulent parameters chosen
decay rather quickly. This is an interesting result and points to the conclusion that the
farfield turbulence parameters make little difference to the solution. This is investigated
further with the 3D simulations of the V2 kite.

Figure 4.4: The decay of k from the farfield to the airfoil surface at α = 10◦. Note the
logarithmic axis. Also the maximum shown on the scale does not correspond to
the maximum found in the domain.
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Figure 4.5: The decay of ω from the farfield to the airfoil surface at α = 10◦. Note the
logarithmic axis. Also the maximum shown on the scale does not correspond to
the maximum found in the domain.

4.2 Filling in the Tube

In order to investigate the effect of filling in behind the leading edge tube a two dimensional
analysis was performed on the mid span cross section of the V2 kite. Two meshes were
created, one that is ‘tight’ behind the leading edge tube and one that is ‘filled in’. The
meshes were both the same size, 730x150x60, and can be seen in Figure 4.6.

(a) Tight mesh. (b) Filled in mesh.

Figure 4.6: The meshes used to investigate the effect of ’filling in’ behind the leading edge
tube.

Lift and drag values for the two airfoils are shown in Figure 4.7. It can be seen that across
a large range of angles the lift and drag values agree to within 5%, which is within the
range of error found for the NACA0012 simulations, as discussed in subsection 4.1.1. At
low angles of attack significant flow separation is seen to occur behind the leading edge
tube. Under these conditions it would appear that filling in behind the tube has a larger
effect on the solution than at slightly higher angles where less flow separation occurs
behind the tube. At angles of attack larger than 18◦ flow separation is seen to occur from
the suction surface of the airfoil. It is therefore reasoned that the discrepancies at the
high angles of attack are not caused by differences in mesh (filled or tight), but rather
due to difficulties replicating a flow solution due to the convergence issues at high angles
of attack discussed in section 5.1.
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Figure 4.7: Comparison of the lift and drag values found for the filled in and tight meshes.

4.3 3D V2 LEI Kite

4.3.1 Mesh Resolution

In order to investigate the effect of mesh resolution on the solution 3 different meshes were
investigated, as shown in Table 4.5. In all three meshes the farfield boundary was kept at
40 mid span chords away from the kite and the first boundary layer cell height was kept
constant according to Equation 3.34. The number of cells around the airfoil, in the span
wise direction, and around the circumference of the farfield boundaries were changed. All
simulations were run at α = 10◦. The integral lift and drag values found were compared
to the finest mesh of size 510x178x200x40. The results are shown in Table 4.6 where a
positive number means the value found was larger than the reference.

Table 4.5: Description of meshes used for grid study (millions of cells).

Mesh Boundary Layer Cells Unstructured Cells Total Cells
186x63x80x40 1.05 0.64 1.69

306x102x120x40 2.71 1.83 4.54
510x178x200x40 8.90 6.25 15.15

Table 4.6: Integral lift and drag error compared to 510x178x200x40 at α = 10◦.

Mesh CL Error CD Error
186x63x80x40 1.2% -1.8%

306x102x120x40 1.2% -1.4%

The agreement between the three meshes is very good with errors of less than 5%. The
coarser meshes under predict the drag and over predict the lift.
Although the integral values of lift and drag were found to be in close agreement, it is also
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of interest to check the local values of pressure to determine the effect of grid resolution
on the solution. Shown in Figure 4.8 are the Cp distributions found at the mid span
location of the kite using the three different meshes. It can be seen that the agreement
on the suction side of the kite is very good. Behind the leading edge tube on the pressure
side some disagreement can be seen. This disagreement could be caused by the change in
mesh resolution, or more likely it is caused by the unsteadiness of the flow in the separated
region behind the leading edge tube. This is discussed in more detail in section 5.1.
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Figure 4.8: Pressure coefficient at mid-span for the different meshes, α = 10◦.

Since the agreement between the coarsest mesh is so close to that of the very finest
mesh, the 186x63x80x40 mesh will be used for all future simulations in order to save on
computational resources.

4.3.2 Domain Size

In order to investigate the effect of the total size of the flow domain on the solution 4
different meshes were created with domain sizes of 20,40,60, and 80 mid-span chords.
Simulations were performed on the V2 kite at α = 10◦. The differences in lift and drag
coefficients can be seen in Table 4.7 as compared to the 186x63x80x80 mesh. Positive
errors indicate that the values found were larger than the reference.

Table 4.7: Integral lift and drag error compared to 186x63x80x80 at α = 10◦.

Mesh CL Error CD Error
186x63x80x20 -0.8% -0.8%
186x63x80x40 -0.5% -0.5%
186x63x80x60 -0.2% -1.1%

It can be seen that the differences in lift and drag coefficients with changes in flow domain
size are less than 1%. Based on these results a domain size of 60 mid span chords was
chosen because it was noticed that solution convergence was slightly quicker with this
farfield size.
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4.3.3 First Cell Height

As with the case of the NACA0012, it is important that the first cell height be small
enough to properly resolve the boundary layer. This parameter was not varied in the grid
study discussed in subsection 4.3.1 because it was assumed that so long as the cells are
thin enough to properly resolve the boundary layer no change in solution will result. As
discussed in subsection 3.3.4 the approximate first cell height is given by Equation 3.34.
Figure 4.9 shows the actual height in y+ units of the first boundary layer cell at the mid
span chord, and it is found to be less than 1 indicating that it is fine enough to resolve
the boundary layer properly.
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Figure 4.9: First cell height in y+ units at the mid span for α = 10◦.

4.3.4 Turbulence Boundary Conditions

It was mentioned in subsection 4.1.3 that for the 2D simulations of the NACA0012 airfoil
the turbulence introduced at the boundaries of the domain quickly decays to zero such that
the values imposed at the boundaries should make little difference to the final solution.
This assumption was tested for the 3D simulations performed on the V2 kite. Three
different turbulent boundary conditions were specified and their results were compared as
shown in Table 4.8. It can be seen that the turbulence imposed at the farfield boundaries
makes less than a 1% difference in the integral lift and drag solution.

Table 4.8: Integral lift and drag results for different turbulent boundary conditions. α = 10◦,
mesh is 186x63x80x60.

Turb. Intensity k [m2/s2] ω [s−1] CL−CL,norm

CL,norm

CD−CD,norm

CD,norm

Normal - 0.052% 3.11× 10−3 2.37× 104 - -
High - 0.5% 0.29 2.19× 106 0.2% -0.3%

Low - 0.005% 2.9× 10−5 219 -0.1% 0.0%



4.3 3D V2 LEI Kite 49

4.3.5 Integral Lift and Drag

Shown in Figure 4.10 are the integral lift and drag values found for the V2 kite using
the mesh discussed in subsection 4.3.1. Shown for comparison are linear results obtained
from Prandtl’s Lifting-Line-Theory (LLT). This theory is summarized by Equation 4.2
and Equation 4.3.

CL = a(α− αL=0) (4.2)

CD = CD,L=0 + C2
L

πeAR
(4.3)

Where a = dCl
dα is the 3D lift curve slope, αL=0 is the zero-lift angle of attack, CD,L=0

is the drag of the wing at zero lift, and e is the span efficiency factor that corrects for
the non-elliptical lift distribution over the wing. Here it should be noted that Prandtl
developed LLT in the context of planar wings which is clearly not the case for LEI kites.
However it is hoped that comparison with LLT can yield some insights into the non-linear
behavior of LEI kite flows.
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Figure 4.10: Comparison of V2 lift and drag with linear Lifting-Line-Theory.

Shown in Table 4.9 are the constants found from a least squares fit of the integral lift and
drag data with the LLT theory using an aspect ratio of AR = 5.3.

Table 4.9: Lifting line theory parameters.

CD,L=0 0.0384
αL=0 −3.54◦
CD,min 0.0339
αCD,min

−2◦
a1 [1/rad] 2.72
a2 [1/rad] 1.82

e 0.70
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The first manner in which the results found differ from LLT is in the clearly visible change
in lift curve slope at approximately α = 4◦. This is shown in Figure 4.10a and Table 4.9
as a1 and a2. A least squares fit of the data for angles −6◦ : 4◦ was used to find a1.
The data at the angles 6◦ : 18◦ was used to find a2. At low angles of attack large flow
separation exists behind the leading edge tube, artificially reducing the camber of the
airfoil and decreasing the lift causing a1 to be greater than a2.

The second major difference is in the difference the minimum drag, and the drag at zero
lift. Since C2

L ≥ 0, CD,L=0 should be the minimum drag found at any angle of attack.
This is not the case for the V2 kite, where CD,L=0 = 0.0384 at αL=0 = −3.54◦ while the
minimum drag, CD,min = 0.0339, is found at αCD,min

= −2◦. This difference is again
thought to be caused by the flow seperations that occur behind the leading edge tube at
low angles of attack. It should be noted that the LLT line drawn in Figure 4.10b and the
value of e were found using CD,min as shown in Equation 4.4 in order to try to account
for this effect.

CD = CD,min + C2
L

πeAR
(4.4)

Above α ≈ 18◦ the flow begins to separate off the suction surface of the kite. This leads
to the large increase in drag and significant reduction in lift curve slope that is seen. This
flow separation is considered in more depth in subsection 4.3.7.

4.3.6 Kite Performance

As discussed in subsection 1.2.1 the performance of a kite power system is perhaps best
evaluated by the parameter C3

L

C2
D,eff

. The value of CD,eff can be found from Equation 4.5.

CD,eff = CD + CD,p (4.5)

Where CD,p is the parasitic drag due to the tether and bridle lines. The exact quantifi-
cation of CD,p depends entirely on the system design, and is thus hard to estimate when
only considering the performance of the kite as is done here. Never the less some insight
into how the kite performs can be gained by evaluating C3

L

C2
D,eff

at all angles of attack, for
many different values of CD,p. This is shown in Figure 4.11.

As can be seen, regardless of the parasitic drag the kite seems to perform best in conditions
close to stall, and at angles of attack somewhere between 14◦ and 20◦, with larger parasitic
drag pushing the optimal point towards higher angles and lift coefficients. This is a
somewhat surprising result as it seems to conflict with the data presented in Figure 2.3.
This is discussed further in section 5.3.

4.3.7 Flow Separation

Flow separation is the most significant non-linear phenomena that occurs in LEI kite
flight. Determining how and where the flow separates from the surface of the kite could
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Figure 4.11: Kite performance metric applied for differing parasitic drag values.

yield important insights that could be used to adjust linear flow models to account for
these effects. For this reason significant attention is given to the topic in this section.

Shown in Figure 4.12 is the development of the flow separation phenomenon off of the
suction surface of the kite. Here the wall shear stress in the chordwise direction is used as
an indicator of where the flow is separating. Negative values of wall shear stress indicate
areas of flow recirculation and separation.

It can be seen that flow separation begins between angles of 18◦ and 20◦. This causes
a deviation from linear theory, an increase in drag and a decrease in lift, as shown in
Figure 4.10. Interestingly the flow begins to separate first from the quarter span area, even
though the geometric angle of attack in this area is reduced due to the kite’s anhedral.
The reason for this phenomena is not yet known. Some reasons could be a decreased
downwash in the area due to the complex lift distribution across the kite, or the slightly
different airfoil cross-section in this region. None the less this phenomena should be
studied more carefully.

It would be a good time now to point out the problems of investigating flow separation
using a steady state solver such as simpleFoam. Flow separation is fundamentally an
unsteady phenomena, so any results obtained from a steady solver are likely to be inac-
curate. It can be seen that at high angles of attack it is much more difficult to obtain
solution convergence, or indeed even know if solution convergence has been reached. This
is discussed in further detail in section 5.1. This difficulty can be seen in Figure 4.13,
where the separation pattern changes wildly even as the flow residuals remain more or less
unchanged between snap shots. Solution residuals can be found in Appendix A. The re-
sults presented in this section, therefore, should be understood as only an approximation
of reality.

Behind the leading edge tube significant flow separation is seen to occur as well in LEI
kite flows. This can be seen in Figure 4.14. Unlike separation from the suction side of
the kite, these separation areas tend to grow in size as the angle of attack is decreased.
This causes a reduction in effective camber, an increase in drag, and a reduction in lift at
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angles below approximately 4◦ as seen in Figure 4.10.

It can be seen that significant flow separation exists behind the kite even at the high angle
of 22◦. This points to the conclusion that any linear aerodynamic model must account
for these effects even at these large angles. In a similar manner to separation from the
suction surface of the kite, separation behind the leading edge tube leads to considerable
solution convergence issues.

(a) α = 14◦ (b) α = 16◦ (c) α = 18◦

(d) α = 20◦ (e) α = 22◦ (f) α = 24◦

(g) Color legend, τw,z/ρ [m3/s2]

Figure 4.12: Flow separation off the suction surface. Negative values indicate regions of
flow separation.
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(a) α = 24◦, 8,000 iters. (b) α = 24◦, 10,000 iters. (c) α = 24◦, 16,000 iters.

(d) α = 20◦, 24,000 iters. (e) α = 20◦, 28,000 iters. (f) α = 20◦, 30,000 iters.

(g) Color legend, τw,z/ρ [m3/s2]

Figure 4.13: Changes in flow separation patterns as solution converges. Negative values
indicate regions of flow separation.
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(a) α = −6◦ (b) α = −4◦ (c) α = −2◦

(d) α = 0◦ (e) α = 2◦ (f) α = 4◦

(g) α = 6◦ (h) α = 8◦ (i) α = 10◦

(j) α = 12◦ (k) α = 14◦ (l) α = 16◦

(m) α = 18◦ (n) α = 20◦ (o) α = 22◦

(p) Color legend, τw,z/ρ [m3/s2]

Figure 4.14: Flow separation behind the leading edge tube. Negative values indicate regions
of flow separation.
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Discussion

5.1 Solution Convergence

Determining at which point the simpleFoam solver has reached a ‘converged’ solution is
not as straight forward as it may seem. Two indicators are typically used to judge solution
convergence.

Flow variable residuals are calculated by substituting the current flow solution into the
equations and evaluating the difference between the left and right hand sides. The result
is then normalized to be independent of the scale of the problem being solved. Flow
variables below the level of 10−8 are a strong indication of solution convergence.

Since we are typically interested in the integral force coefficients, CL & CD, or Cx &
Cy, monitoring these values directly is the second indicator of flow convergence. If the
normalized changes in these coefficients between solution iterations is less than some
prescribed tolerance, then the solution can said to be converged. A tolerance of 10−5 is a
good starting point.

The difficulty comes because for many of the flows investigated the residuals never reach
the level of 10−8 and the force coefficients never converge to one value. This is thought
to be due to the unsteady nature of the separated flows that are investigated, as shown
in subsection 4.3.7, and the steady state assumption used in the flow solver simpleFoam.

For the case of attached flow over the NACA0012 airfoil solution convergence was very
quick and easy to determine from monitoring the force coefficients. As shown in Figure 5.1
the force coefficients converge within 1,000 iterations.

However for the case of the LEI kite the situation can be much more complicated, as
shown in Figure 5.2. It appears that for this flow condition convergence similar to the
NACA0012 α = 10◦ case is just not possible. It could be that if the solver was left to
run for many more iterations that eventually a converged solution would be found, how-
ever resource limitations preclude this type of investigation. What is needed therefore
is an engineering judgment that balances solution accuracy with computational expense.

55
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Figure 5.1: simpleFoam solution convergence for NACA0012, α = 10◦
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Figure 5.2: simpleFoam solution convergence for V2 kite, α = 0◦

To further complicate matters the progress of the solution towards convergence is highly
dependent on the mesh, solution settings, and flow conditions. What is deemed to be
converged in one flow conditions is simply not possible to reach with another flow condi-
tion.

The solution convergence for all the results presented in this work can be found in Ap-
pendix A. In all cases the integral force coefficients reported were the average values of
the final 500 iterations.

5.2 Computational Cost

It could be argued that reducing computational cost while maintaining solution accuracy
is the main challenge for modern engineers, aerodynamicists in particular. Typically the
level of accuracy achieved with a result is constrained by the computational resources
available and the ingenuity of the engineering models used. Since resources are typically
fixed, increasing solution accuracy requires more ingenious engineering solutions. Fur-
thermore the value that can be created when coupling an aerodynamic model with a
structural or optimization code can be very great, however this will require even further
reductions in computational cost.



5.2 Computational Cost 57

The RANS methods applied in this work are considered to be computationally expensive
when compared to lower fidelity techniques. However this does not necessarily have to be
the case. This section describes the costs of obtaining the results presented and discusses
improvements that could be made to decrease these costs.

The extreme variation in computational costs between the 2D simulations of the NACA0012
airfoil and the 3D flow of the V2 kite cannot be understated. Shown in Table 5.1 is a
comparison of these costs. It can be seen that the 3D simulations require over 400 times
the processor hours. Discussed below are the number of factors that contribute to this
severe increase in cost.

Table 5.1: Summary of computational costs.

Geometry NACA0012 V2
Mesh cells 93,729 1.7 million

CPU Intel®Core i5-2467M AMD Opteron™Processor 6234
Cores 4 16

Core speed 1.6 GHz 2.4 GHz
nNonOrthogonal Correctors 0 4
Execution time per iteration 0.48 s 14.9 s
Approx. iterations needed 3,000 15,000

Total Time 24 min 62 hrs

5.2.1 nNonOrthogonalCorrectors

As discussed in subsection 3.3.2 the creation of the 3D mesh requires a hybrid approach
due to the limitations of the hyperbolic mesh extrusion method when dealing with the
large anhedral of the kite. Unfortunately this meshing technique tends to create very
non-orthogonal cells at the boundary between the structured and unstructured mesh
components. This causes severe solution instability unless a number of correction steps,
called non-orthogonal correctors, are used to correct the pressure field for this effect. For
the V2 kite solution stability was achieved with 4 non-orthogonal correctors. This means
that the pressure correction step of the simpleFoam algorithm is performed 5 times. The
pressure step is the most computationally expensive piece of the algorithm, requiring
between 50 and 100 sub-iterations. Solving for the other flow variables typically needs
less than 5 sub-iterations. The need to repeat the pressure correction step 4 more times
therefore results in an almost 5 times increase in computational expense.

Removing these non-orthogonal cells could remove entirely the need for non-orthogoanl
correctors and decrease computational costs substantially.

5.2.2 Number of Iterations Until Convergence

The number of iterations needed to reach solution convergence is influenced by a number
of factors. Finite volume schemes used, the specifics of the flow, the mesh used, and the
solution tolerances and relaxations factors all have an influence. For the 3D simulations
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of the V2 kite the number of iterations needed is typically larger than 10,000, while for
the 2D simulations of the NACA0012 airfoil less than 5,000 were typically needed. This
is obviously responsible for some of the large difference in computational cost between
the two cases.

One way of decreasing the number of iterations needed to reach convergence is to initialize
the flow domain with an already converged solution from a previously computed angle
of attack. In OpenFOAM this can be accomplished by using the mapFields utility. For
the case of the NACA0012 airfoil this utility worked great. Unfortunately with the large
mesh of the V2 simulations the mapFields utility took hours to complete, offsetting any
reduction in computational cost. It is still unknown whether this problem can be solved
using different mapFields options, or if any other method could be used instead.

5.2.3 Mesh Size

The size of the mesh has an obvious effect on the computational cost. It was shown in
subsection 4.3.1 that the mesh of size 186x63x80x40 was able to reproduce the results
of a much finer mesh to within a few percent. The decrease in computation cost due
to changes in mesh size was calculated on a per iteration basis using the three meshes
presented in subsection 4.3.1. The metric of equivalent processor seconds per iteration
was used to evaluate the difference in cost and is shown in Figure 5.3. The times shown
were found for the Quad-Core AMD Opteron™8354 processor.
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Figure 5.3: Computational cost of one simpleFoam solution iteration expressed in equivalent
processor seconds.

A linear relationship between the number of mesh cells and the cost per iteration was
found. This is considered to be very good performance and is indicative that the matirx
solver chosen is performing well.

It is likely that by clustering cells in the areas of high flow gradients the number of mesh
cells could be reduced without negatively impacting the solution accuracy. As shown this
would have a linear effect on computational cost.
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5.2.4 Multi-Grid Solvers

OpenFOAM comes with a number of different matrix solvers. The solvers used can be
seen in Table 3.4. The multi-grid solvers available with OpenFOAM seek to reduce the
number of iterations needed to reach convergence by first mapping the solution onto a
coarser mesh, solving the flow equations, and then mapping that converged solution to
the finer mesh before iterating further. This ensures that large scale flow features are
resolved quickly on the coarse mesh first, increasing solution convergence. These matrix
solvers were tried in the context of the V2 kite but for an unknown reason they caused
large solution instability and hence could not be used. It is suspected that the hybrid
mesh used is incompatible with the multi-grid solvers in OpenFOAM, but this is just
speculation.

5.2.5 Commercial Software Packages

It is well known among the OpenFOAM community that when comparing OpenFOAM
to many other commercially available flow solvers such as Star CCM or Fluent, that
OpenFOAM is typically more sensitive to mesh quality, and is more unstable numerically.
It could be the case that running identical simulations in a commercial package could
negate the need for non-orthogonal correctors and require fewer solution iterations to
reach convergence.

5.3 Kite Performance

As shown in Figure 4.11 the kite seems to perform optimally at an angle of attack some-
where between 14◦ and 20◦. This is seen as very good news because if true it would
mean that the kite is flying below stall conditions, perhaps allowing inviscid potential
flow methods to accurately resolve the flow. However, this result does contradict the
in flight data shown in Figure 2.3 which shows that the kite typically flies between 20◦
and 50◦ during the power production phase. Many explanations for this discrepancy are
offered here.

The simplest explanation is perhaps that since the angle of attack information is not fed
back to the ground station the kite is simply oriented incorrectly for maximum power
production. This is relatively easy to check by adjusting the power lines during flight and
recording the effect on tether traction.

Another explanation is that the data shown in Figure 4.11 is incorrect due to unsteady or
FSI effects and that the kite actually can produce more lift than calculated at the higher
angles of attack.

However the most likely cause of the discrepancy is the difficulty in determining accurately
the chord line that was required to produce the results presented in Figure 2.3. Below is
a direct quote from Ruppert’s work that highlights this issue.

It should be noticed that the angle of attack depends on the definition of the
chord line. Currently the chord line is not defined and the measured angles
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depend on the mounting of the X-Sense sensor. Consequently, the measured
angles of attack will shift up or down depending on your chord line definition.

It is the opinion of the author that a 10◦ discrepancy in the definition of the chord line
is present, and that the kite is flying at an average angle of near 20◦, where it would be
capable of producing the most power.



Chapter 6

Conclusions

The steady-state RANS solver simpleFoam, available from the open source CFD toolbox
OpenFOAM, was used to evaluate the 3D viscous effects present in LEI kite flows. The
meshing software Pointwise was used to mesh the kite. The following conclusions were
reached.

Meshing

• Creating a fully structured mesh on the V2 is challenging due to the large anhedral
of the kite. The hybrid meshing approach was found to be possible although at the
expense of much larger computational costs.

• A mesh of approximately 1.7 million cells is capable of reproducing lift and drag
results within a few percent of a much finer mesh.

• The geometric simplification of ‘filling in’ behind the leading edge tube has a neg-
ligible effect on the flow solution.

• Changing the size of the farfield boundary from 20 mid span chords to 80 mid span
chords also has a negligible effect on the flow solution.

NACA0012

• The OpenFOAM solution under-predicts the lift by as much as 12% when compared
to a number of experimental data sources.

• Simulation of the drag of a streamlined body such as the NACA0012 airfoil is very
difficult. In general OpenFOAM over-predicts drag by somewhere between 5% and
78%, depending on the mesh and which experimental dataset is used for comparison.

• The pressure and skin friction distributions found from OpenFOAM match very well
with the experimental data, meaning they are well suited for use in FSI simulations
involving membrane flows.
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V2 Flow Solution

• The SimpleFOAM solver is capable of producing reasonable results for the V2 kite
at angles between −6◦ and 24◦.

• At larger angles of attack SimpleFOAM becomes unstable and no solution could be
found.

• Flow separation is seen to occur behind the leading edge tube at all angles studied.
Separation from the suction surface begins to occurs between 18◦ and 20◦.

• Flow separation from the suction surface of the kite is responsible for the deviation
from linear theory, mainly a decrease in lift and a large increase in drag, at angles
of attack above 18◦.

• Flow separation from the suction side of the kite is seen to occur at the quarter
span location before occurring at the mid span location.

• Flow separation from behind the leading edge tube at lower angles of attack, serves
to decrease the effective camber of the kite, decreasing lift and increasing the lift
curve slope.

• The V2 kite produces maximum cross-wind power at angles of attack between 14◦
and 20◦ depending on the parasitic drag of the tether and bridle lines.

Computational Cost and Solution Convergence

• Due to the large amount of flow separation determining solution convergence is only
made possible by sound engineering judgment.

• The use of the hybrid meshing method introduces non-orthogonal cells which sig-
nificantly increase the computational cost and may preclude the use of faster, less
expensive multi-grid solvers.

• It is found that the computational cost is linearly related to the number of mesh
cells.



Chapter 7

Recommendations

Based on the results presented a number of important recommendations can be made for
future work.
Firstly the large computational costs can be seen as a direct consequence of the non-
orthogonal cells present in the hybrid mesh. Techniques capable of building a fully struc-
tured, or fully unstructured mesh should be investigated. Also reductions in cell count
from clustering or mesh refinement in certain key areas is likely to decrease computational
costs further. Furthermore many mesh types are commonly used in CFD simulations
other than the O-Mesh used here. Investigating these options is important to producing
an optimum balance of solution accuracy and computational cost.
Significant geometric simplifications were made to the kite in order to make meshing
easier. The inflated struts and bridle lines were removed and the tip geometry was
modified slightly. The effect that these modifications have on the flow solution is at
present unclear and should be investigated in future work.
A large amount of uncertainty still exists surrounding the apparent large discrepancy in
drag found between the OpenFOAM simulations and experimental results. If the goal
is to evaluate the kite’s performance based on a metric involving the kite’s drag this is
seen as a significant problem. Questions that should be tackled include the laminar to
turbulent transition of the boundary layer of the kite and the significance of pressure
(form) drag vs. skin friction drag.
Despite the ‘high fidelity’ status granted to steady-state RANS solvers when compared
to simpler inviscid methods, it would seem that steady-state RANS has quite a bit of
trouble resolving the unsteady dynamics of flow separation. Solution convergence is dif-
ficult to achieve, and much engineering judgment has to be made regarding the results.
Future researchers should perhaps investigate the use of unsteady flow solvers to deal with
these issues. This however would first require significant improvements in computational
efficiency since the costs of the steady-state solvers are already at the limit of what is
possible with available resources.
Arguably one of the most significant simplifications made in this work is the assumption of
a kite shape a priori from SurfPlan™, when in reality the kite shape in flight is determined
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by the much more complex FSI problem. Unfortunately unless significant improvements
in computational efficiency are made the RANS methods described in this work are too
computationally expensive to be used in an FSI setting. Therefore other methods of
determining the kite shape in flight should be investigated. These methods could include
photograph or video analysis, or simple bridle tension measurements coupled to a very
simple kite structural model.

Finally the results presented in this work ignored a number of important flow factors that
could prove to be significant in real LEI kite flows. Factors such as changes in Reynolds
number, side slip angle and dynamic effects caused by changes in angle of attack or flow
velocity have not been considered but are likely to be significant.
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Appendix A

3D V2 Solution Convergence
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Figure A.1: SimpleFOAM solution convergence, α = −6◦, 186x63x80x60.
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Figure A.2: SimpleFOAM solution convergence, α = −4◦, 186x63x80x60.
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Figure A.3: SimpleFOAM solution convergence, α = −2◦, 186x63x80x60.
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Figure A.4: SimpleFOAM solution convergence, α = 0◦, 186x63x80x60.
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Figure A.5: SimpleFOAM solution convergence, α = 2◦, 186x63x80x60.
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Figure A.6: SimpleFOAM solution convergence, α = 4◦, 186x63x80x60.
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Figure A.7: SimpleFOAM solution convergence, α = 6◦, 186x63x80x60.
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Figure A.9: SimpleFOAM solution convergence, α = 10◦, 186x63x80x60.
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(a) Flow variable residuals.
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Figure A.10: SimpleFOAM solution convergence, α = 12◦, 186x63x80x60.
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Figure A.11: SimpleFOAM solution convergence, α = 14◦, 186x63x80x60.



73

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  2  4  6  8  10  12  14  16

R
es

id
u
al

Iteration (x1000)

Ux
Uy
Uz

omega
k
p

(a) Flow variable residuals.
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Figure A.12: SimpleFOAM solution convergence, α = 16◦, 186x63x80x60.
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Figure A.13: SimpleFOAM solution convergence, α = 18◦, 186x63x80x60.
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Figure A.14: SimpleFOAM solution convergence, α = 20◦, 186x63x80x60.
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Figure A.15: SimpleFOAM solution convergence, α = 22◦, 186x63x80x60.
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Figure A.16: SimpleFOAM solution convergence, α = 24◦, 186x63x80x60.
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Figure A.17: SimpleFOAM solution convergence, α = 10◦, 186x63x80x60, high turbulence
boundary condition.



75

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  1  2  3  4  5

R
es

id
u
al

Iteration (x1000)

Ux
Uy
Uz

omega
k
p

(a) Flow variable residuals.

 6

 6.5

 7

 7.5

 8

 0  1  2  3  4  5
-0.6

-0.58

-0.56

-0.54

-0.52

-0.5

-0.48

-0.46

-0.44

-0.42

-0.4

C
y

C
x

Iteration (x1000)

Cy
Cx

(b) Integral force coefficients.

Figure A.18: SimpleFOAM solution convergence, α = 10◦, 186x63x80x60, low turbulence
boundary condition.
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